[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014156356A1 - 加圧流動炉設備 - Google Patents

加圧流動炉設備 Download PDF

Info

Publication number
WO2014156356A1
WO2014156356A1 PCT/JP2014/053427 JP2014053427W WO2014156356A1 WO 2014156356 A1 WO2014156356 A1 WO 2014156356A1 JP 2014053427 W JP2014053427 W JP 2014053427W WO 2014156356 A1 WO2014156356 A1 WO 2014156356A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
air
supplied
exhaust gas
supercharger
Prior art date
Application number
PCT/JP2014/053427
Other languages
English (en)
French (fr)
Inventor
俊樹 小林
隆文 山本
和由 寺腰
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to US14/777,797 priority Critical patent/US9933156B2/en
Priority to CN201480016469.2A priority patent/CN105190175B/zh
Priority to KR1020157025560A priority patent/KR102085125B1/ko
Priority to EP14772740.8A priority patent/EP2980476B1/en
Publication of WO2014156356A1 publication Critical patent/WO2014156356A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/16Fluidised bed combustion apparatus specially adapted for operation at superatmospheric pressures, e.g. by the arrangement of the combustion chamber and its auxiliary systems inside a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/30Combustion in a pressurised chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/12Sludge, slurries or mixtures of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/101Baghouse type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/103Intercepting solids by filters ultrafine [HEPA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/104High temperature resistant (ceramic) type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15004Preventing plume emission at chimney outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/05021Gas turbine driven blowers for supplying combustion air or oxidant, i.e. turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a pressurized fluidized-furnace facility equipped with a pressurized fluidized furnace that uses a supercharger to pressurize combustion air and combust while flowing a workpiece.
  • Patent Document 1 discloses that this uses a combustion exhaust gas generated by a fluidized bed furnace (combustion furnace) that burns an object to be treated (sludge).
  • a pressurized fluidized-furnace facility equipped with first and second plural superchargers (turbochargers) for generating and blowing compressed air to be supplied to a fluidized bed furnace.
  • first and second plural superchargers turbochargers
  • each of the superchargers is required to have a capability of generating compressed air necessary for combustion of an object to be processed in a fluidized bed furnace.
  • two superchargers having the same specifications and having such ability are prepared.
  • one supercharger is sufficient, so that the facility becomes excessive.
  • the present invention has been made under such a background, and while including the first and second superchargers, it is possible to prevent the facility from becoming excessive and to effectively use the excess combustion exhaust gas.
  • the object is to provide a pressurized fluidized-furnace facility.
  • the pressurized fluidized-furnace facility of the present invention includes a fluidized bed furnace that pressurizes combustion air and burns while flowing a workpiece, An air preheater that exchanges heat between the combustion exhaust gas discharged from the layered furnace and the combustion air, a dust collector that removes dust from the combustion exhaust gas, and heat that is exchanged in the air preheater and dust removal in the dust collector First and second superchargers that generate compressed air by being supplied with the combustion exhaust gas, and the first compressed air that is generated in the first supercharger passes through the air preheater. While being supplied to the fluidized bed furnace as the combustion air, the second compressed air generated in the second supercharger has a higher pressure than the first compressed air.
  • the first supercharger In the pressurized fluidized-furnace facility configured in this way, most of the combustion exhaust gas discharged from the fluidized bed furnace and subjected to heat exchange in the air preheater and removed from the dust collector as described above is the first supercharger.
  • the first compressed air generated by the first supercharger is supplied to the fluidized bed furnace as combustion air.
  • the remaining part of the combustion exhaust gas is supplied as a surplus to the second supercharger.
  • the second compressed air generated in the second supercharger has a higher pressure than the first compressed air. That is, the first and second superchargers have different specifications. As a result, the second compressed air generated by the surplus combustion exhaust gas can be effectively used for applications other than the combustion air.
  • the first and second superchargers are provided with first and second supply passages for supplying combustion exhaust gas, respectively.
  • the second supply passage has a pressure of the first compressed air. It is desirable to provide a flow rate adjusting means for adjusting the flow rate of the combustion exhaust gas supplied to the second supercharger based on the above.
  • the flow rate of the combustion exhaust gas supplied to the second supercharger is reduced by the flow rate adjusting means.
  • the pressure of the compressed air can be returned to the pressure required for combustion.
  • the flow rate of the combustion exhaust gas supplied to the second supercharger can be increased to generate more second compressed air. it can. That is, it is possible to effectively use the second compressed air by the surplus combustion exhaust gas without impairing the combustion of the object to be processed in the fluidized bed furnace.
  • the second compressed air generated in this way first, at least a part of the second compressed air is supplied to the dust collector, and is used as pulsed air for removing dust removed from the combustion exhaust gas.
  • Such pulse air blows away dust adhering to the filter by intermittently blowing compressed air onto the filter of the dust collector from the side where the purified combustion exhaust gas in the dust collector is discharged.
  • the second compressed air since the second compressed air is higher in pressure than the combustion exhaust gas supplied to the dust collector, dust attached to the filter can be surely removed against the pressure of the combustion exhaust gas removed through the filter. it can.
  • the instrumentation equipment provided in the pressurized fluidized bed furnace facility is, for example, a pressure gauge installed in the fluidized bed furnace to measure the state in the furnace, a property of the combustion exhaust gas provided in the flow path of the combustion exhaust gas. NOx meter, oxygen concentration meter, or air-driven control valve for each flow path.
  • NOx meter, oxygen concentration meter, or air-driven control valve for each flow path.
  • the pressure gauge, the NOx gauge, or the oxygen concentration meter it is necessary to spray compressed air intermittently in order to remove adhering dust.
  • compressed air is required to drive the control valve. Therefore, the high-pressure second compressed air can be effectively used.
  • the second compressed air may be supplied to a white smoke prevention air preheater provided in the pressurized fluidized furnace facility to obtain white smoke prevention air.
  • the white smoke prevention air preheater preheats the air with the combustion exhaust gas discharged from the first and second superchargers to obtain white smoke prevention air.
  • the white smoke prevention air thus preheated is mixed with the combustion exhaust gas when the combustion exhaust gas is discharged from the flue gas treatment tower, and the steam contained in the combustion exhaust gas is removed by the flue gas treatment tower.
  • a blower or the like for supplying preheated white smoke prevention air is required.
  • the power of such a blower or the like can be reduced, or in some cases, the blower or the like can be made unnecessary.
  • the second compressed air may be supplied to any one of the above-described dust collector, instrumentation device, and white smoke preventing air preheater, may be supplied to two types, or all three types. May be supplied.
  • the supply of the second compressed air to the dust collector and the instrumentation equipment is intermittent as described above. Therefore, by connecting a compressed air storage tank to the second supercharger and allowing the second compressed air to be stored in the compressed air storage tank, a high-pressure second compressed air can be stored as necessary. Can be intermittently supplied to these dust collectors and instrumentation equipment.
  • white smoke prevention is performed through the compressed air storage tank thus connected to the second supercharger. Supply to air preheater.
  • a second compressor is connected to the compressed air storage tank by connecting a compressor for supplying compressed air to the compressed air storage tank when the pressure in the compressed air storage tank becomes lower than a lower limit set value. Regardless of fluctuations in the amount of air supply, it is possible to stably generate white smoke prevention air.
  • the pressurized fluidized-furnace facility of the present invention while avoiding an unnecessary excess of the facility, it is supplied to the fluidized bed furnace as combustion air generated by excess combustion exhaust gas. It is possible to effectively use the second compressed air having a pressure higher than that of the first compressed air.
  • FIG. 1 shows an embodiment of the pressurized fluidized furnace equipment of the present invention.
  • reference numeral 1 denotes a pressurized fluidized bed furnace that burns while moving the workpiece A, and the fluidized bed furnace 1 is filled with a fluidized medium.
  • the processing object A such as sewage sludge and municipal waste supplied from the storage device 2 into the fluidized bed furnace 1 is heated while being fluidized with the fluid medium by the high-temperature, high-pressure combustion air B supplied from the hearth. And burned.
  • the fluidized bed furnace 1 includes an auxiliary combustion apparatus 1A and a start burner 1B, and instrumentation equipment such as a pressure gauge and a thermometer (not shown) for measuring the pressure, temperature, and other conditions in the furnace.
  • the high-temperature combustion exhaust gas C generated by burning the workpiece A in the fluidized bed furnace 1 is supplied to, for example, a shell and tube type air preheater 3 and supplied to the fluidized bed furnace 1.
  • the combustion air B is heated to increase the temperature to about 200 ° C. to 700 ° C. as described above.
  • the dust collector 4 includes, for example, a ceramic filter 4A. That is, when the combustion exhaust gas C passes through a ceramic filter having minute pores, dust and the like in the combustion exhaust gas C are collected and removed, thereby cleaning the combustion exhaust gas C. In addition, on the side where the purified combustion exhaust gas C in the dust collector 4 is discharged, the dust adhered thereto is blown off by intermittently blowing compressed air toward the ceramic filter 4A that collects dust and the like in this way.
  • a pulsed air injection device 4B is provided.
  • the combustion exhaust gas C cleaned in the dust collector 4 is discharged at a pressure of about 100 kPa to 200 kPa and a temperature of about 250 ° C. to 650 ° C., and is supplied to the first supercharger 5 through the first supply path 5A. At the same time, it passes through the second supply path 6A branched from the first supply path 5A and is supplied to the second supercharger 6 through the flow rate adjusting means 6B such as a valve or a damper. That is, these first and second superchargers 5 and 6 are arranged in parallel.
  • the first and second superchargers 5 and 6 include a turbine that is supplied with the combustion exhaust gas C and is rotated at a high speed, and a high-pressure compressed air that is coaxially connected to the turbine and rotates at a high speed integrally. It is a known so-called turbocharger equipped with a compressor that generates However, the specifications differ between the first and second superchargers 5 and 6. For example, when the flow rate, pressure, temperature, etc. of the flue gas C supplied to the turbine are the same, the ratio of the pressure of the air supplied to the compressor and the pressure of the compressed air generated and discharged by the compressor It is preferable to employ a supercharger having a specification in which the second supercharger 6 has a higher (pressure ratio) than the first supercharger 5.
  • First compressed air D having a pressure of about 100 kPa to 200 kPa is generated.
  • the first compressed air D is heated to about 200 ° C. to 700 ° C. as described above by heat exchange with the combustion exhaust gas C through the air preheater 3, and is used as the combustion air B.
  • a starter blower 5B is connected to the compressor of the first supercharger 5, and this starter blower 5B is also connected to a starter burner 1B of the fluidized bed furnace 1.
  • the second supercharger 6 has more than the remaining 10% of the total flow rate of the combustion exhaust gas C discharged from the dust collector 4 except for the amount supplied to the first supercharger 5. Less than 50% of the combustion exhaust gas C is supplied.
  • the second supercharger 6 pressurizes the air sucked from the atmosphere by the combustion exhaust gas C that is less than the amount supplied to the first supercharger 5 in this way, and compresses the air from the first compressed air D.
  • the pressure of the second compressed air E is, for example, 400 kPa to 700 kPa.
  • the supply amount of the combustion exhaust gas C to the first supercharger 5 is based on the flow rate of the first compressed air D measured by the flow rate measuring means X, and the flow rate provided in the second supply path 6A. It is controlled by adjusting the flow rate of the combustion exhaust gas C supplied to the second supercharger 6 by the adjusting means 6B.
  • the flow rate adjustment of the combustion exhaust gas C by the flow rate adjusting means 6B may be performed based on the pressure of the first compressed air D measured by a pressure gauge (not shown). Further, based on the measurement result of the pressure gauge that measures the pressure in the fluidized bed furnace 1, based on the pressure of the first compressed air D supplied to the fluidized bed furnace 1 as the combustion air B through the air preheater 3. It may be done.
  • a specific value or a set value consisting of a specific range for the flow rate and pressure of the first compressed air D is stored in advance in a control means (not shown).
  • These set values may be appropriately calculated based on parameters indicating the operation state of the equipment such as the supply amount of the workpiece A and the combustion temperature.
  • the opening of the valve or the like of the flow rate adjusting means 6B is reduced to reduce the second supercharger 6.
  • the flow rate of the supplied combustion exhaust gas C is reduced.
  • the pressure of the first compressed air D is increased by increasing the flow rate of the combustion exhaust gas C supplied to the first supercharger 5.
  • the combustion supplied to the second supercharger 6 by opening the flow rate adjusting means 6B.
  • the exhaust gas C is increased.
  • the combustion exhaust gas C supplied to the first supercharger 5 is reduced to reduce the pressure of the first compressed air D.
  • the combustion exhaust gas C that has generated the first and second compressed air D and E in the first and second superchargers 5 and 6 is discharged through the first and second discharge passages 5C and 6C, respectively. Then, they are mixed and supplied to the air preheater 7 for preventing white smoke.
  • the second supply path 6A and the second discharge path 6C of the second supercharger 6 are connected by a bypass path 6E provided with a second flow rate adjusting means 6D such as a valve or a damper.
  • the flow rate of the combustion exhaust gas C supplied to the second supercharger 6 can also be adjusted by the second flow rate adjusting means 6D.
  • the air preheater 7 for preventing white smoke the high-temperature combustion exhaust gas C and air that have passed through the first and second superchargers 5 and 6 are heat-exchanged by a shell-and-tube or plate heat exchanger. Then, the air is preheated to be white smoke prevention air F, while the temperature of the combustion exhaust gas C is lowered.
  • the white smoke prevention air preheater 7 is provided with a blower 7A capable of supplying preheated air.
  • the combustion exhaust gas C whose temperature has decreased is supplied to the flue gas treatment tower 8.
  • the combustion exhaust gas C whose temperature has been lowered is supplied from the lower part in the flue gas treatment tower 8 and rises. During that time, caustic soda water and water are sprayed from the spray pipes 8A and 8C, thereby removing impurities and the like. To be cooled. The cooled combustion exhaust gas C is heated by being mixed in the chimney 8D with the white smoke prevention air F preheated to prevent white smoke when discharged from the chimney 8D.
  • the compressed air storage tank 9 is connected to the compressor of the second supercharger 6, and the second compressed air E generated in the second supercharger 6 is the compressed air. It is temporarily stored in the storage tank 9.
  • the compressed air storage tank 9 is provided with a pressure gauge 9A and a compressor 9B different from the second supercharger 6.
  • the high-pressure second compressed air E stored in the compressed air storage tank 9 is supplied to each device of the pressurized fluidized furnace equipment for uses other than the combustion air B.
  • At least a part of the second compressed air E is first supplied as pulse air to the pulse air injection device 4B of the dust collector 4 as shown in FIG.
  • the instrumentation equipment provided in the pressurized fluidized-furnace facility includes, for example, a pressure gauge, a thermometer, and a combustion exhaust gas C installed in the fluidized bed furnace 1, and the properties of the combustion exhaust gas C are provided.
  • at least a part of the second compressed air E may be air that is used as the white smoke prevention air F in place of the air supplied from the blower 7A in the white smoke prevention air preheater 7. Used.
  • the combustion exhaust gas C discharged from the fluidized bed furnace 1 is supplied to the first supercharger 5 to generate the first compressed air D.
  • the first compressed air D is preheated in the air preheater 3 and supplied to the fluidized bed furnace 1 as combustion air B. Therefore, the combustion air B can be supplied only by the first supercharger 5 during normal operation, which is efficient.
  • combustion air is supplied from the starter blower 5B to the starter burner 1B of the fluidized bed furnace 1 at the time of starting the equipment.
  • the starter blower 5 ⁇ / b> B supplies the first supercharger 5. Compressed air is also supplied to the fluidized bed furnace 1.
  • the remaining surplus combustion exhaust gas C supplied to the first supercharger 5 is supplied to the second supercharger 6 to generate the second compressed air E.
  • the second compressed air E has a lower flow rate than the first compressed air D, but is a high pressure.
  • the second compressed air E having such a high pressure is used for applications other than the combustion air B of the workpiece A in the fluidized bed furnace 1 of the pressurized fluidized furnace equipment. It can be used effectively.
  • the second compressed air E when the second compressed air E is first supplied as pulse air to the pulsed air injection device 4B of the dust collector 4 as in the present embodiment, the second compressed air E is supplied to the dust collector 4. Higher than the combustion exhaust gas C. Therefore, the dust adhering to the ceramic filter 4A can be surely removed against the pressure of the combustion exhaust gas C removed through the ceramic filter 4A. Moreover, since the temperature of the second compressed air E is raised by being compressed, even if it is sprayed on the ceramic filter 4A exposed to the high temperature of the combustion exhaust gas C, the temperature of the ceramic filter 4A may be drastically lowered. Absent. Therefore, it is possible to prevent the ceramic filter 4A from being damaged due to the temperature difference.
  • the second compressed air E is supplied to an instrument such as a pressure gauge of the fluidized bed furnace 1 of the pressurized fluidized-furnace facility or a NOx meter or an oxygen concentration meter provided in the flow path of the combustion exhaust gas C.
  • dust attached to such instrumentation equipment can be removed by the high-pressure second compressed air E.
  • an instrument such as a valve or a damper provided in each flow path is an air-driven control valve, even if the second compressed air E is supplied as the driving air, excess combustion exhaust gas C Effective use of the generated second compressed air E can be achieved.
  • supply of the 2nd compressed air E to such instrumentation equipment and the said pulse air injection apparatus 4B becomes intermittent, the 2nd compressed air E with a small flow volume can also be utilized effectively.
  • the second compressed air E is stored in the compressed air storage tank 9 as in the present embodiment, regardless of the supply amount of the combustion exhaust gas C supplied to the first supercharger 5.
  • the second compressed air E can be stably supplied from the compressed air storage tank 9. Therefore, the second compressed air E can be effectively used as the white smoke prevention air F by thirdly supplying the second compressed air E to the white smoke prevention air preheater 7. Accordingly, by supplying the second compressed air E to the white smoke prevention air preheater 7 in this way, the power of the blower 7A provided in the white smoke prevention air preheater 7 is reduced, and in some cases, the blower 7A itself. Can be made unnecessary.
  • Air must be continuously supplied to the air preheater 7 for preventing white smoke.
  • the second compressed air E is generated by the remaining surplus combustion exhaust gas C that generated the first compressed air D in the first supercharger 5. Accordingly, the first supercharger 5 supplies the fluidized bed furnace 1 as the combustion air B with the change in the properties of the water to be processed A, the amount of heat retained, and the supply amount to the fluidized bed furnace 1. As the supply amount of the first compressed air D varies, the supply amount of the second compressed air E also changes.
  • the pressure in the compressed air storage tank 9 is measured by the pressure gauge 9A, and the compressed air storage tank 9
  • the pressure of the second compressed air E becomes lower than a predetermined lower limit set value, it is desirable to control so that the compressed air is supplied to the compressed air storage tank 9 by the compressor 9B.
  • the pressure in the compressed air storage tank 9 measured by the pressure gauge 9A is a predetermined upper limit set value. You may control to supply the 2nd compressed air E to the air preheater 7 for white smoke prevention when it becomes above.
  • the second compressed air E is not supplied from the compressed air storage tank 9, air is supplied to the white smoke prevention air preheater 7 from the blower 7A and preheated to generate white smoke prevention air F. May be.
  • the flow rate adjusting means 6B is provided in the second supply path 6A branched from the first supply path 5A that supplies the combustion gas C to the first supercharger 5.
  • the flow rate adjusting means 6B is controlled based on the pressure of the first compressed air D supplied as the combustion air B from the first supercharger 5 to the fluidized bed furnace 1 as described above. For this reason, the flow volume of the combustion exhaust gas C reduces with the said property and supply amount of the to-be-processed object A. FIG. Accordingly, when the supply amount of the first compressed air D decreases and the pressure also decreases, the flow rate of the combustion exhaust gas C supplied from the second supply passage 6A to the second supercharger 6 by the flow rate adjusting means 6B. By reducing the amount of combustion exhaust gas C supplied to the first supercharger 5 and increasing the combustion air B sufficient to burn the workpiece A, the fluidized bed furnace 1 is supplied with stable treatment. Can be planned.
  • the second supply path 6A and the second discharge path 6C of the second supercharger 6 are connected by a bypass path 6E provided with a second flow rate adjusting means 6D. Therefore, for example, if a sufficient supply amount of the combustion exhaust gas C is supplied to the first and second superchargers 5 and 6 and the supply amount of the combustion exhaust gas C is excessive, the second flow rate adjusting means 6D is opened. By bypassing the combustion exhaust gas C from the second supply path 6A to the second discharge path 6C, it is possible to avoid an unnecessary burden on the first and second superchargers 5 and 6. it can.
  • the second flow rate adjusting means 6D is used exclusively when the supply amount of the combustion exhaust gas C is excessive as described above. Therefore, especially when the compressed air storage tank 9 is connected to the second supercharger 6 as in the present embodiment, the compressed air storage tank 9 is within the pressure resistance range or the second supercharger 6. Within the range of performance, the second compressed air E generated by the second supercharger 6 can be stored in the compressed air storage tank 9 for effective use. Therefore, during normal operation, the second flow rate adjusting means 6D is closed, and the combustion exhaust gas C supplied to the second supercharger 6 by the flow rate adjusting means 6B provided in the second supply path 6A. The flow rate may be adjusted. In this case, the control can be simplified as compared with the case where the flow rate is adjusted by the two flow rate adjusting means 6B and 6D.
  • the second compressed air E is supplied to all three types of devices, that is, the pulse air injection device 4B of the dust collector 4, the instrumentation device, and the air preheater 7 for preventing white smoke.
  • the second compressed air E may be supplied only to any one of these, or may be supplied to any two of the three.
  • the second compressed air E may be supplied to other devices provided in the pressurized flow furnace facility that requires high-pressure compressed air. Alternatively, the second compressed air may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

燃焼用空気(B)を加圧して被処理物(A)を流動しつつ燃焼する流動層炉(1)と、流動層炉(1)から排出された燃焼排ガス(C)と燃焼用空気(B)との間で熱交換を行う空気予熱器(3)と、燃焼排ガス(C)の除塵を行う集塵機(4)と、空気予熱器(3)において熱交換されるとともに集塵機(4)において除塵された燃焼排ガス(C)がそれぞれ供給されて圧縮空気(D、E)を発生する第1、第2の過給機(5、6)とを備え、第1の過給機(5)において発生する第1の圧縮空気(D)は空気予熱器(3)を経て流動層炉(1)に燃焼用空気(B)として供給され、第2の過給機(6)において発生する第2の圧縮空気(E)は第1の圧縮空気(D)よりも高圧とされることにより、第1、第2の複数の過給機を備えながらも、設備が過剰となるのを防ぐとともに余剰の燃焼排ガスを有効に利用することが可能となる。

Description

加圧流動炉設備
 本発明は、特に過給機を用いて燃焼用空気を加圧して被処理物を流動しつつ燃焼する加圧流動炉を備えた加圧流動炉設備に関する。
本願は、2013年3月26日に、日本に出願された特願2013-064470号に基づき優先権を主張し、その内容をここに援用する。
 このような過給機を備えた加圧流動炉設備として、例えば特許文献1には、被処理物(汚泥)を燃焼する流動層炉(燃焼炉)によって生成された燃焼排ガスを利用してこの流動層炉に供給する圧縮空気を生成および送風する第1、第2の複数台の過給機(ターボチャージャ)を備えた加圧流動炉設備が記載されている。この特許文献1に記載の加圧流動炉設備によれば、これら2台の過給機が並列に配置されているので、一方の過給機の運転を停止した場合であっても他方の過給機使用することによって設備の運転を停止することなく連続的な処理が可能となる。
日本国特許第3783024号公報
 このように一方の過給機の運転を停止した場合に他方の過給機を使用することによって設備の運転を停止することなく連続的な被処理物の処理を可能とするには、これら2台の過給機には、いずれも単独で流動層炉における被処理物の燃焼に必要な圧縮空気を発生させる能力が要求される。一般的にこのような場合には、そうした能力を備えた同一仕様の過給機を2台用意する。しかしながら、通常の設備の運転時には1台の過給機で事足りるため、過剰な設備となってしまう。
 一方、流動層炉から排出される燃焼排ガスは、通常の運転時には多くが流動層炉に供給する圧縮空気を発生する1台の過給機に供給される。しかしながら、すべての燃焼排ガスがこの過給機に供給されることはなく、残りの一部は余剰となる。ここで、この余剰の燃焼排ガスを他の過給機に供給しても、上述のように同一仕様の過給機では発生する圧縮空気は圧力や流量が限定されるため、その用途も限られる。
 本発明は、このような背景の下になされ、第1、第2の複数の過給機を備えながらも、設備が過剰となるのを防ぐとともに、余剰の燃焼排ガスを有効に利用することが可能な加圧流動炉設備を提供することを目的としている。
 上記課題を解決して、このような目的を達成するために、本発明の加圧流動炉設備は、燃焼用空気を加圧して被処理物を流動しつつ燃焼する流動層炉と、この流動層炉から排出された燃焼排ガスと上記燃焼用空気との間で熱交換を行う空気予熱器と、上記燃焼排ガスの除塵を行う集塵機と、上記空気予熱器において熱交換されるとともに上記集塵機において除塵された燃焼排ガスがそれぞれ供給されて圧縮空気を発生する第1、第2の過給機とを備え、上記第1の過給機において発生する第1の圧縮空気は上記空気予熱器を経て上記流動層炉に上記燃焼用空気として供給されるとともに、上記第2の過給機において発生する第2の圧縮空気は上記第1の圧縮空気よりも高圧とされている。
 このように構成された加圧流動炉設備では、流動層炉から排出されて空気予熱器において熱交換されるとともに集塵機において除塵された燃焼排ガスは、上述のように多くが第1の過給機に供給されて、この第1の過給機で発生した第1の圧縮空気が流動層炉に燃焼用空気として供給される。残りの一部の燃焼排ガスは余剰として第2の過給機に供給される。
 このため、通常の運転時には第1の過給機のみによって燃焼用空気の供給が賄われるので、効率的である。そして、第2の過給機において発生する第2の圧縮空気は、上記第1の圧縮空気よりも高圧とされる。すなわち第1、第2の過給機は仕様が異なる。これにより、余剰の燃焼排ガスによって生成された第2の圧縮空気を燃焼用空気以外の用途に有効に利用することが可能となる。
 ここで、上記第1、第2の過給機に燃焼排ガスをそれぞれ供給する第1、第2の供給路を備えて、このうち第2の供給路には、上記第1の圧縮空気の圧力に基づいて上記第2の過給機に供給される燃焼排ガスの流量を調整する流量調整手段を備えるのが望ましい。
 流動層炉の燃焼用空気とされる第1の圧縮空気の圧力が低下した場合には、流量調整手段によって第2の過給機に供給される燃焼排ガスの流量を低減することにより、第1の圧縮空気の圧力を燃焼に必要な圧力にまで戻すことができる。また、逆に第1の圧縮空気の圧力が増大した場合には、第2の過給機に供給される燃焼排ガスの流量を増大させて、より多くの第2の圧縮空気を発生させることができる。すなわち、流動層炉における被処理物の燃焼を損なうことなく、余剰の燃焼排ガスによる第2の圧縮空気の有効利用を図ることができる。
 こうして発生した第2の圧縮空気の用途としては、第1に、この第2の圧縮空気の少なくとも一部を上記集塵機に供給して、上記燃焼排ガスから除塵されたダストを払い落とすパルスエアとすることができる。このようなパルスエアは、集塵機内の浄化された燃焼排ガスが排出される側から上記集塵機のフィルターに圧縮空気を間欠的に吹き付けてフィルターに付着したダストを払い落とす。特に、第2の圧縮空気は、集塵機に供給される燃焼排ガスよりも高圧であるので、フィルターを通って除塵される燃焼排ガスの圧力に抗してフィルターに付着したダストを確実に払い落とすことができる。
 また、第2の圧縮空気の用途として、第2には、第2の圧縮空気の少なくとも一部を、上記加圧流動炉設備に備えられる計装機器に供給してもよい。ここで、この加圧流層炉設備に備えられる計装機器とは、例えば上記流動層炉に設置されて炉内の状態を測定する圧力計、燃焼排ガスの流路に設けられて燃焼排ガスの性状を測定するNOx計や酸素濃度計、あるいは各流路のエア駆動の各コントロール弁などが挙げられる。上記圧力計、あるいはNOx計や酸素濃度計においては付着したダストを除去するために間欠的に圧縮空気を吹き付ける必要がある。また上記コントロール弁の駆動にも圧縮空気が必要となる。そのため、高圧の第2の圧縮空気を有効利用することができる。
 さらに、第3には、上記第2の圧縮空気の少なくとも一部を、上記加圧流動炉設備に備えられる白煙防止用空気予熱器に供給して白煙防止用空気としてもよい。白煙防止用空気予熱器は、第1、第2の過給機から排出された燃焼排ガスによって空気を予熱して白煙防止用空気とする。こうして予熱された白煙防止用空気は、燃焼排ガスが排煙処理塔から排出される際に燃焼排ガスと混合され、排煙処理塔で燃焼排ガスに含有した水蒸気を除去する。通常の白煙防止用空気予熱器では、予熱される白煙防止用空気を供給するブロワ等が必要となる。しかしながら、第2の圧縮空気を白煙防止用空気に利用することにより、このようなブロワ等の動力を削減したり、場合によってはブロワ等を不要としたりすることができる。
 上記第2の圧縮空気は、上述した集塵機、計装機器、および白煙防止用空気予熱器のうちいずれか1種にのみ供給されてもよく、2種に供給されてもよく、3種すべてに供給されてもよい。ただし、集塵機や計装機器への第2の圧縮空気の供給は上述のように間欠的である。従って、上記第2の過給機に圧縮空気貯留タンクを接続して、上記第2の圧縮空気をこの圧縮空気貯留タンクに貯留可能とすることにより、必要に応じて高圧の第2の圧縮空気をこれら集塵機や計装機器に間欠的に供給することが可能となる。特に、上述のように上記第2の圧縮空気の少なくとも一部を白煙防止用空気として利用する場合には、こうして第2の過給機に接続された圧縮空気貯留タンクを介して白煙防止用空気予熱器に供給する。また、上記圧縮空気貯留タンクに、この圧縮空気貯留タンク内の圧力が下限設定値よりも低くなった場合に上記圧縮空気貯留タンクに圧縮空気を供給するコンプレッサーを接続することにより、第2の圧縮空気の供給量の変動に関わらず、安定して白煙防止用空気を発生させることができる。
 以上説明したように、本発明の加圧流動炉設備によれば、設備が不要に過剰となるのを避けながらも、余剰の燃焼排ガスによって発生する、燃焼用空気として流動層炉に供給される第1の圧縮空気よりも高圧の第2の圧縮空気を、有効に利用することが可能となる。
本発明の一実施形態を示す加圧流動炉設備の概略図である。
 図1は、本発明の加圧流動炉設備の一実施形態を示す。なお、開示の技術は以下の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。この図1において符号1で示すのは被処理物Aを流動させつつ燃焼する加圧式の流動層炉であり、この流動層炉1内には流動媒体が充填されている。貯留装置2から流動層炉1内に供給された下水汚泥や都市ゴミ等の被処理物Aが、炉床部から供給される高温、高圧の燃焼用空気Bによって流動媒体と流動させられつつ加熱されて燃焼させられる。流動層炉1には、補助燃焼装置1Aおよび始動用バーナ1Bと、炉内の圧力、温度等の状態を測定する図示されない圧力計および温度計等の計装機器とが備えられている。
 この流動層炉1において被処理物Aが燃焼させられて発生した高温の燃焼排ガスCは、例えばシェルアンドチューブ式の空気予熱器3に供給され、流動層炉1に供給される燃焼用空気Bとの間で熱交換されることにより、この燃焼用空気Bを加熱して200℃~700℃程度の上述のような高温に昇温する。
 こうして空気予熱器3において燃焼用空気Bを加熱した燃焼排ガスCは、集塵機4に供給されて燃焼排ガスCに含有されたダスト等が除塵される。この集塵機4は、例えばセラミックフィルター4Aを備えている。すなわち微小な細孔を有するセラミック製のフィルターを燃焼排ガスCが通過する際に、燃焼排ガスC中のダスト等が捕集されて除塵されることにより、燃焼排ガスCを清浄化する。なお、この集塵機4内の浄化された燃焼排ガスCが排出される側には、このようにダスト等を捕集したセラミックフィルター4Aに向けて圧縮空気を間欠的に吹き付けて付着したダストを払い落とすパルスエア噴射装置4Bが備えられている。
 この集塵機4において清浄化された燃焼排ガスCは、100kPa~200kPa程度の圧力と250℃~650℃程度の温度で排出され、第1の供給路5Aを通して第1の過給機5に供給されるとともに、第1の供給路5Aから分岐した第2の供給路6Aを通りバルブやダンパ等の流量調整手段6Bを介して第2の過給機6に供給される。すなわち、これら第1、第2の過給機5、6は並列に配設されている。なお、第1、第2の過給機5、6は、上記燃焼排ガスCが供給されて高速回転させられるタービンと、このタービンに同軸に連結されて一体に高速回転することにより高圧の圧縮空気を発生するコンプレッサーとを備えた周知の、いわゆるターボチャージャーである。ただしその仕様は第1、第2の過給機5、6で異なる。例えば、タービンに供給される燃焼排ガスCの流量、圧力、温度等が同一の条件である場合に、コンプレッサーに供給される空気の圧力と、コンプレッサーで生成され吐出される圧縮空気の圧力との比(圧力比)が、第1の過給機5と比較して第2の過給機6が高い仕様の過給機を採用することが好ましい。
 第1の過給機5には集塵機4から排出された燃焼排ガスCの全流量(Nm/h)のうちの50%~90%が供給され、大気から吸気した空気を上記コンプレッサーにおいて加圧して100kPa~200kPa程度の圧力の第1の圧縮空気Dを発生する。この第1の圧縮空気Dは、上記空気予熱器3を介して燃焼排ガスCと熱交換されることにより上述のように200℃~700℃程度に昇温させられて、上記燃焼用空気Bとして流動層炉1に供給される。なお、第1の過給機5のコンプレッサーには起動用ブロワ5Bが接続されており、この起動用ブロワ5Bは流動層炉1の始動用バーナ1Bにも接続されている。
 また、第2の過給機6には、集塵機4から排出された燃焼排ガスCの全流量のうち、第1の過給機5に供給された分を除いて残りの、10%よりも多く50%未満の燃焼排ガスCが供給される。この第2の過給機6は、このように第1の過給機5に供給される分よりも少ない燃焼排ガスCによって、やはり大気から吸気した空気を加圧して第1の圧縮空気Dよりも高圧で、ただし少ない流量の第2の圧縮空気Eを発生する仕様とされている。この第2の圧縮空気Eの圧力は、例えば400kPa~700kPaとされる。
 上記第1の過給機5への燃焼排ガスCの供給量は、流量測定手段Xによって測定される第1の圧縮空気Dの流量に基づいて、第2の供給路6Aに備えられた上記流量調整手段6Bにより第2の過給機6に供給される燃焼排ガスCの流量を調整することによって制御される。なお、この流量調整手段6Bによる燃焼排ガスCの流量調整は、図示されない圧力計によって測定される第1の圧縮空気Dの圧力に基づいて行われてもよい。さらには、流動層炉1内の圧力を測定する圧力計の測定結果により、空気予熱器3を経て燃焼用空気Bとして流動層炉1に供給された第1の圧縮空気Dの圧力に基づいて行われてもよい。なお、流量調整手段6Bを制御するために、第1の圧縮空気Dの流量、圧力について予め特定の値、または特定の範囲からなる設定値が図示されない制御手段に記憶させてある。これらの設定値は、被処理物Aの供給量、燃焼温度などの設備の運転状態を示すパラメータを基に適宜算出しても良い。
 すなわち、第1の圧縮空気Dの流量が制御手段に記憶させた設定値に対して低い場合には、流量調整手段6Bのバルブ等の開度を絞ることにより、第2の過給機6に供給される燃焼排ガスCの流量を低減させる。同時に、第1の過給機5に供給される燃焼排ガスCの流量を増加することによって第1の圧縮空気Dの圧力を増加させる。また、逆に第1の圧縮空気Dの圧力が制御手段に記憶させた設定値に対して高い場合には、流量調整手段6Bを開くことにより、第2の過給機6に供給される燃焼排ガスCを増大させる。同時に、第1の過給機5に供給される燃焼排ガスCを低減して第1の圧縮空気Dの圧力を低減させる。
 こうして第1、第2の過給機5、6において第1、第2の圧縮空気D、Eを発生させた燃焼排ガスCは、それぞれ第1、第2の排出路5C、6Cを経て排出された後に混合されて、白煙防止用空気予熱器7に供給される。なお、第2の過給機6の第2の供給路6Aと第2の排出路6Cとは、バルブやダンパ等の第2の流量調整手段6Dを備えたバイパス路6Eによって接続されている。この第2の流量調整手段6Dによっても第2の過給機6に供給される燃焼排ガスCの流量が調整可能とされている。
 上記白煙防止用空気予熱器7においては、第1、第2の過給機5、6を経た未だに高温の燃焼排ガスCと空気とがシェルアンドチューブ式やプレート式の熱交換器によって熱交換され、空気が予熱されて白煙防止用空気Fとされる一方で燃焼排ガスCの温度は低下する。なお、白煙防止用空気予熱器7には予熱される空気を供給可能なブロワ7Aが備えられている。温度低下した燃焼排ガスCは排煙処理塔8に供給される。
 この温度低下した燃焼排ガスCは、排煙処理塔8内の下部から供給されて上昇し、その間に噴霧管8A、8Cから苛性ソーダ水および水が噴霧されることにより、不純物等が除去されるとともに冷却される。冷却された燃焼排ガスCは、煙突8Dから排出される際の白煙を防止するために予熱された白煙防止用空気Fと煙突8D内において混合されることにより加熱される。
 一方、本実施形態では、第2の過給機6のコンプレッサーに圧縮空気貯留タンク9が接続されており、この第2の過給機6において発生した第2の圧縮空気Eは、この圧縮空気貯留タンク9に一旦貯留される。圧縮空気貯留タンク9には圧力計9Aと第2の過給機6とは別のコンプレッサー9Bが備えられている。そして、この圧縮空気貯留タンク9に貯留された高圧の第2の圧縮空気Eは、上記燃焼用空気B以外の用途で上記加圧流動炉設備の各機器に供給される。
 本実施形態では、第2の圧縮空気Eの少なくとも一部がまず第1に図1に示すように集塵機4のパルスエア噴射装置4Bに上記パルスエアとして供給される。また、第2には、第2の圧縮空気Eの少なくとも一部は、上記加圧流動炉設備に備えられる計装機器に供給される。ここで、この加圧流動炉設備に備えられる計装機器は、例えば上記流動層炉1に設置された圧力計、温度計、燃焼排ガスCの各流路に設けられて燃焼排ガスCの性状を測定するNOx計、酸素濃度計、および流量調整手段6B、6Dのような各流路に設けられるバルブやダンパをエア駆動のコントロール弁とした場合の上記コントロール弁のうち少なくとも1つである。さらに、第2の圧縮空気Eの少なくとも一部は、第3に、白煙防止用空気予熱器7においてブロワ7Aから供給される空気に代えて、白煙防止用空気Fとされる空気としても利用される。
 このような構成の加圧流動炉設備では、流動層炉1から排出された燃焼排ガスCの多くが第1の過給機5に供給されて第1の圧縮空気Dを発生する。この第1の圧縮空気Dは空気予熱器3において予熱されて流動層炉1に燃焼用空気Bとして供給される。従って、通常の運転時には第1の過給機5のみによって燃焼用空気Bを供給することができるので、効率的である。なお、設備の始動時には起動用ブロワ5Bから流動層炉1の始動用バーナ1Bに燃焼用空気が供給される。また、この始動時や第1の過給機5から十分な第1の圧縮空気Dを流動層炉1に供給できなくなった場合などには、起動用ブロワ5Bから第1の過給機5にも圧縮空気が供給されて流動層炉1に供給される。
 その一方で、第1の過給機5に供給された残りの余剰の燃焼排ガスCは、第2の過給機6に供給されて第2の圧縮空気Eを発生する。そして、この第2の圧縮空気Eは、第1の圧縮空気Dより少ない流量であるが高圧である。上記構成の加圧流動炉設備においては、このような高い圧力の第2の圧縮空気Eを、上記加圧流動炉設備の流動層炉1における被処理物Aの燃焼用空気B以外の用途に有効に利用することができる。
 すなわち、本実施形態のように、この第2の圧縮空気Eを第1に集塵機4のパルスエア噴射装置4Bにパルスエアとして供給した場合には、この第2の圧縮空気Eは、集塵機4に供給される燃焼排ガスCよりも高圧である。従って、セラミックフィルター4Aを通って除塵される燃焼排ガスCの圧力に逆らって、セラミックフィルター4Aに付着したダストを確実に払い落とすことができる。しかも、第2の圧縮空気Eは、圧縮されることによって昇温しているので、燃焼排ガスCの高温に晒されたセラミックフィルター4Aに吹き付けてもセラミックフィルター4Aの急激な温度低下を招くことがない。そのため、温度差によってセラミックフィルター4Aに損傷が生じるのを防ぐことができる。
 また、第2に、加圧流動炉設備の流動層炉1の圧力計、あるいは燃焼排ガスCの流路に設けられるNOx計や酸素濃度計等の計装機器に第2の圧縮空気Eを供給した場合にも、高圧の第2の圧縮空気Eによってこのような計装機器に付着したダストを除去することができる。さらに、各流路に設けられるバルブやダンパ等の計装機器をエア駆動のコントロール弁とした場合に、その駆動用エアとして第2の圧縮空気Eを供給しても、余剰の燃焼排ガスCによって発生した第2の圧縮空気Eの有効利用を図ることができる。しかも、このような計装機器や上記パルスエア噴射装置4Bへの第2の圧縮空気Eの供給は間欠的となるので、少ない流量の第2の圧縮空気Eでも有効に利用することができる。
 さらにまた、特に本実施形態のように第2の圧縮空気Eを圧縮空気貯留タンク9に貯留した場合には、第1の過給機5に供給される燃焼排ガスCの供給量に関わらずに、この圧縮空気貯留タンク9から安定的に第2の圧縮空気Eを供給することができる。そのため、この第2の圧縮空気Eを第3に白煙防止用空気予熱器7に供給することにより白煙防止用空気Fとして有効利用することもできる。従って、こうして第2の圧縮空気Eを白煙防止用空気予熱器7に供給することにより、この白煙防止用空気予熱器7に備えられるブロワ7Aの動力を削減し、場合によってはブロワ7A自体を不要とすることができる。また、このように第2の圧縮空気Eを圧縮空気貯留タンク9に貯留することにより、パルスエア噴射装置4Bや計装機器に間欠的に第2の圧縮空気Eを供給する場合でも必要が生じた時点で安定して第2の圧縮空気Eを供給することが可能となる。
 白煙防止用空気予熱器7には連続的に空気を供給しなければならない。一方で、第2の圧縮空気Eは第1の過給機5において第1の圧縮空気Dを発生した残りの余剰の燃焼排ガスCによって発生する。従って、被処理物Aの水分や保有熱量等の性状や流動層炉1への供給量の変動に伴って第1の過給機5から流動層炉1に燃焼用空気Bとして供給される第1の圧縮空気Dの供給量が変動することにより、第2の圧縮空気Eの供給量も変化する。このため、特にこうして第2の圧縮空気Eを白煙防止用空気予熱器7に供給する場合には、圧縮空気貯留タンク9内の圧力を圧力計9Aにより測定して、この圧縮空気貯留タンク9内の第2の圧縮空気Eの圧力が所定の下限設定値よりも低くなった場合には、コンプレッサー9Bによって圧縮空気を圧縮空気貯留タンク9に供給するように制御するのが望ましい。
 また、専ら第2の圧縮空気Eをパルスエア噴射装置4Bや計装機器への供給に利用する場合には、例えば圧力計9Aによって測定された圧縮空気貯留タンク9内の圧力が所定の上限設定値以上になったときに白煙防止用空気予熱器7に第2の圧縮空気Eを供給するように制御してもよい。また、圧縮空気貯留タンク9から第2の圧縮空気Eが供給されない間は、ブロワ7Aから白煙防止用空気予熱器7に空気を供給して予熱することにより白煙防止用空気Fを生成してもよい。
 さらに、本実施形態では、第1の過給機5に燃焼排ガスCを供給する第1の供給路5Aから分岐した第2の供給路6Aに流量調整手段6Bを設けている。この流量調整手段6Bは上述のように第1の過給機5から流動層炉1に燃焼用空気Bとして供給される第1の圧縮空気Dの圧力に基づいて制御される。このため、被処理物Aの上記性状や供給量によって燃焼排ガスCの流量が減る。これに伴い第1の圧縮空気Dの供給量が減って圧力も低下したときには、この流量調整手段6Bによって第2の供給路6Aから第2の過給機6に供給される燃焼排ガスCの流量を減らして第1の過給機5に供給される燃焼排ガスCを増やすことにより、被処理物Aを燃焼させるのに十分な燃焼用空気Bを流動層炉1に供給して安定した処理を図ることができる。
 また、逆に燃焼排ガスCの流量が増えて第1の圧縮空気Dの供給量および圧力が増加したときには、流量調整手段6Bによって第2の過給機6に供給される燃焼排ガスCの流量を増加させることにより、燃焼用空気Bとして流動層炉1に供給される第1の圧縮空気Dの供給量および圧力を低減して流動層炉1において燃焼温度が高くなりすぎるなどの異常燃焼が生じるのを防ぐことができる。しかも、より多くの第2の圧縮空気を発生させることが可能となる。
 さらに、本実施形態では、第2の過給機6の第2の供給路6Aと第2の排出路6Cとが第2の流量調整手段6Dを備えたバイパス路6Eによって接続されている。従って、例えば第1、第2の過給機5、6に十分な燃焼排ガスCを供給してもさらに燃焼排ガスCの供給量が過剰な場合には、この第2の流量調整手段6Dを開いて燃焼排ガスCを第2の供給路6Aから第2の排出路6Cにバイパスさせることにより、第1、第2の過給機5、6に必要以上の負担が生じたりするのを避けることができる。
 ただし、この第2の流量調整手段6Dは、専らこのように燃焼排ガスCの供給量が過剰な場合に使用される。従って、特に本実施形態のように第2の過給機6に圧縮空気貯留タンク9が接続されている場合には、この圧縮空気貯留タンク9の耐圧範囲内や第2の過給機6の性能の範囲内であれば第2の過給機6によって発生した第2の圧縮空気Eを圧縮空気貯留タンク9に貯留して有効利用することができる。そこで、通常の運転時には第2の流量調整手段6Dを閉じておいて、第2の供給路6Aに備えられた上記流量調整手段6Bによって第2の過給機6に供給される燃焼排ガスCの流量を調整してもよい。この場合には、2つの流量調整手段6B、6Dによって流量を調整するのに比べて、その制御を簡易にできる。
 本実施形態では、第2の圧縮空気Eを、集塵機4のパルスエア噴射装置4B、計装機器、および白煙防止用空気予熱器7の3種の機器すべてに供給する場合について説明した。しかしながら、第2の圧縮空気Eを、これらのうちいずれか1種にのみ供給してもよく、また3種のうちいずれか2種に供給してもよい。さらに、これらの機器以外でも、高圧の圧縮空気を必要とする上記加圧流動炉設備に備えられた他の機器に第2の圧縮空気Eを供給してもよく、例えば上記機器のシールエアやパージエアに第2の圧縮空気を用いてもよい。
 本発明によれば、第1、第2の複数の過給機を備えながらも、設備が過剰となるのを防ぐとともに、余剰の燃焼排ガスを有効に利用することが可能な加圧流動炉設備を提供することが可能となる。
1 流動層炉
2 貯留装置
3 空気予熱器
4 集塵機
4B パルスエア噴射装置
5 第1の過給機
5A 第1の供給路
6 第2の過給機
6A 第2の供給路
6B 流量調整手段
6D 第2の流量調整手段
6E バイパス路
7 白煙防止用空気予熱器
8 排煙処理塔
9 圧縮空気貯留タンク
A 被処理物
B 燃焼用空気
C 燃焼排ガス
D 第1の圧縮空気
E 第2の圧縮空気
F 白煙防止用空気

Claims (7)

  1.  燃焼用空気を加圧して被処理物を流動しつつ燃焼する流動層炉と、この流動層炉から排出された燃焼排ガスと上記燃焼用空気との間で熱交換を行う空気予熱器と、上記燃焼排ガスの除塵を行う集塵機と、上記空気予熱器において熱交換されるとともに上記集塵機において除塵された燃焼排ガスがそれぞれ供給されて圧縮空気を発生する第1、第2の過給機とを備え、上記第1の過給機において発生する第1の圧縮空気は上記空気予熱器を経て上記流動層炉に上記燃焼用空気として供給されるとともに、上記第2の過給機において発生する第2の圧縮空気は上記第1の圧縮空気よりも高圧とされている加圧流動炉設備。
  2.  上記第1、第2の過給機に燃焼排ガスをそれぞれ供給する第1、第2の供給路を備え、このうち第2の供給路には、上記第1の圧縮空気の圧力に基づいて上記第2の過給機に供給される燃焼排ガスの流量を調整する流量調整手段が備えられている請求項1に記載の加圧流動炉設備。
  3.  上記第2の圧縮空気の少なくとも一部は上記集塵機に供給されて、上記燃焼排ガスから除塵されたダストを払い落とすパルスエアとされる請求項1または請求項2に記載の加圧流動炉設備。
  4.  上記第2の圧縮空気の少なくとも一部は、上記加圧流動炉設備に備えられる計装機器に供給される請求項1に記載の加圧流動炉設備。
  5.  上記第2の圧縮空気の少なくとも一部は、上記加圧流動炉設備に備えられる白煙防止用空気予熱器に供給されて白煙防止用空気とされる請求項1に記載の加圧流動炉設備。
  6.  上記第2の過給機には圧縮空気貯留タンクが接続されて、上記第2の圧縮空気はこの圧縮空気貯留タンクに貯留可能とされている請求項1に記載の加圧流動炉設備。
  7.  上記第2の圧縮空気の少なくとも一部は、上記第2の過給機に接続された圧縮空気貯留タンクを介して上記加圧流動炉設備に備えられる白煙防止用空気予熱器に供給されて白煙防止用空気とされるとともに、上記圧縮空気貯留タンクには、この圧縮空気貯留タンク内の圧力が下限設定値よりも低くなった場合に上記圧縮空気貯留タンクに圧縮空気を供給するコンプレッサーが接続されている請求項1に記載の加圧流動炉設備。
PCT/JP2014/053427 2013-03-26 2014-02-14 加圧流動炉設備 WO2014156356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/777,797 US9933156B2 (en) 2013-03-26 2014-02-14 Pressurized fluidized furnace equipment
CN201480016469.2A CN105190175B (zh) 2013-03-26 2014-02-14 加压流动炉设备
KR1020157025560A KR102085125B1 (ko) 2013-03-26 2014-02-14 가압 유동로 설비
EP14772740.8A EP2980476B1 (en) 2013-03-26 2014-02-14 Pressurized fluidized furnace equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-064470 2013-03-26
JP2013064470A JP6071687B2 (ja) 2013-03-26 2013-03-26 加圧流動炉設備

Publications (1)

Publication Number Publication Date
WO2014156356A1 true WO2014156356A1 (ja) 2014-10-02

Family

ID=51623357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053427 WO2014156356A1 (ja) 2013-03-26 2014-02-14 加圧流動炉設備

Country Status (6)

Country Link
US (1) US9933156B2 (ja)
EP (1) EP2980476B1 (ja)
JP (1) JP6071687B2 (ja)
KR (1) KR102085125B1 (ja)
CN (1) CN105190175B (ja)
WO (1) WO2014156356A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196028A (zh) * 2016-07-25 2016-12-07 泉州恒兴能源节能技术有限公司 一种有机热载体循环流化床锅炉

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507006B2 (ja) * 2015-03-26 2019-04-24 月島機械株式会社 流動層焼却設備
CN107119160A (zh) * 2017-07-10 2017-09-01 中冶华天南京工程技术有限公司 一种带压缩气体预热的高炉喷煤方法及系统
JP6678265B1 (ja) * 2019-02-28 2020-04-08 月島機械株式会社 燃焼排ガスの処理装置及び処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113906A (en) * 1980-01-22 1981-09-08 Neratoom Combustion apparatus for fluid bed
JPH03279602A (ja) * 1990-03-12 1991-12-10 Hitachi Ltd 一軸型加圧流動床コンバインドプラント及びその運転方法
JPH05231613A (ja) * 1992-02-24 1993-09-07 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラ
JPH1073207A (ja) * 1997-07-22 1998-03-17 Hitachi Ltd 加圧流動床プラントとその運転方法
JP2005028251A (ja) * 2003-07-09 2005-02-03 Public Works Research Institute 汚泥処理システム及び方法
JP2007170705A (ja) * 2005-12-20 2007-07-05 Public Works Research Institute 加圧流動焼却設備及びその立上げ方法
JP2009121778A (ja) * 2007-11-16 2009-06-04 Public Works Research Institute 加圧流動焼却設備及び加圧流動焼却設備の運転方法
WO2011016556A1 (ja) * 2009-08-07 2011-02-10 独立行政法人産業技術総合研究所 有機性廃棄物処理システム及び方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2514198A1 (de) * 1975-04-01 1976-10-14 Linde Ag Verfahren zur beseitigung von abfallstoffen
DE3428041A1 (de) * 1984-07-30 1986-01-30 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Luftspeichergasturbinenkraftwerk mit wirbelbettfeuerung
US5255507A (en) * 1992-05-04 1993-10-26 Ahlstrom Pyropower Corporation Combined cycle power plant incorporating atmospheric circulating fluidized bed boiler and gasifier
US5680752A (en) * 1992-08-28 1997-10-28 Abb Carbon Ab Gas turbine plant with additional compressor
US6123910A (en) * 1994-06-14 2000-09-26 Hitachi, Ltd. Method of predicting and controlling harmful oxide and apparatus therefor
SE512141C2 (sv) * 1998-05-14 2000-01-31 Abb Ab Trycksensor för mätning av gastryck i en cylinder av en förbränningsmotor
US6038849A (en) * 1998-07-07 2000-03-21 Michael Nakhamkin Method of operating a combustion turbine power plant using supplemental compressed air
CN1258642C (zh) 2001-01-02 2006-06-07 中国船舶重工集团公司第七研究院第七○三研究所 内燃机注汽涡轮增压系统
PL1638678T3 (pl) * 2003-06-11 2012-02-29 Glatt Ingtech Gmbh Sposób wytwarzania granulatu enzymatycznego i otrzymywane granulaty enzymatyczne
JP4831309B2 (ja) * 2005-12-20 2011-12-07 独立行政法人土木研究所 廃棄物処理設備および廃棄物処理方法
KR101238728B1 (ko) 2006-04-12 2013-03-05 맨 디젤 앤드 터보 필리얼 아프 맨 디젤 앤드 터보 에스이 티스크랜드 에너지 회수 설비를 구비한 대형 터보 과급 디젤 엔진
JP4991986B2 (ja) * 2006-07-25 2012-08-08 独立行政法人土木研究所 加圧焼却炉設備及びその立上げ方法
JP5067653B2 (ja) * 2006-07-25 2012-11-07 独立行政法人土木研究所 加圧焼却炉設備及びその運転方法
US8341964B2 (en) * 2009-10-27 2013-01-01 General Electric Company System and method of using a compressed air storage system with a gas turbine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113906A (en) * 1980-01-22 1981-09-08 Neratoom Combustion apparatus for fluid bed
JPH03279602A (ja) * 1990-03-12 1991-12-10 Hitachi Ltd 一軸型加圧流動床コンバインドプラント及びその運転方法
JPH05231613A (ja) * 1992-02-24 1993-09-07 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラ
JPH1073207A (ja) * 1997-07-22 1998-03-17 Hitachi Ltd 加圧流動床プラントとその運転方法
JP2005028251A (ja) * 2003-07-09 2005-02-03 Public Works Research Institute 汚泥処理システム及び方法
JP3783024B2 (ja) 2003-07-09 2006-06-07 独立行政法人土木研究所 汚泥処理システム及び方法
JP2007170705A (ja) * 2005-12-20 2007-07-05 Public Works Research Institute 加圧流動焼却設備及びその立上げ方法
JP2009121778A (ja) * 2007-11-16 2009-06-04 Public Works Research Institute 加圧流動焼却設備及び加圧流動焼却設備の運転方法
WO2011016556A1 (ja) * 2009-08-07 2011-02-10 独立行政法人産業技術総合研究所 有機性廃棄物処理システム及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196028A (zh) * 2016-07-25 2016-12-07 泉州恒兴能源节能技术有限公司 一种有机热载体循环流化床锅炉
CN106196028B (zh) * 2016-07-25 2018-01-05 泉州恒兴能源节能技术有限公司 一种有机热载体循环流化床锅炉

Also Published As

Publication number Publication date
KR102085125B1 (ko) 2020-03-05
JP6071687B2 (ja) 2017-02-01
US9933156B2 (en) 2018-04-03
CN105190175B (zh) 2017-03-22
CN105190175A (zh) 2015-12-23
EP2980476A1 (en) 2016-02-03
KR20150133718A (ko) 2015-11-30
EP2980476A4 (en) 2016-12-14
EP2980476B1 (en) 2019-08-07
JP2014190572A (ja) 2014-10-06
US20160273762A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
US8601960B2 (en) Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
JP6266440B2 (ja) 廃棄物処理設備および廃棄物処理方法
JP2011522987A (ja) 熱回収蒸気発生装置と併用する放出物低減装置
JP2012531480A (ja) 廃熱ボイラーが停止状態にあるときにコークス炉室を保温する方法及びその装置
JP5482792B2 (ja) 有機性廃棄物処理システム及び方法
WO2014156356A1 (ja) 加圧流動炉設備
EP2267366B1 (en) Method and apparatus of controlling combustion in oxyfuel combustion boiler
JP3783024B2 (ja) 汚泥処理システム及び方法
ITMI20090709A1 (it) Metodo e apparato per migliorare il rendimento di un generatoredi calore ad uso industriale o domestico
JP4714912B2 (ja) 加圧流動焼却設備及びその立上げ方法
JP7156922B2 (ja) 廃棄物処理設備及び廃棄物処理設備の運転方法
JP5956210B2 (ja) 加圧流動炉システムの起動方法
JP6523007B2 (ja) 流動層焼却設備
JP2004092426A (ja) 熱電併給方法及び熱電併給システム
JP2006266085A (ja) 再生サイクル式ガスタービン発電システム
JP2013200086A5 (ja)
JP2011074901A (ja) 石炭焚きボイラ設備の運転停止方法及びその運転停止装置
KR102067303B1 (ko) 가압유동로 시스템의 비상정지 방법
JP2006118751A (ja) 残炭燃焼停止方法
JPS63131832A (ja) 石炭焚き発電装置
KR20090048895A (ko) 탈질공정을 갖는 엔진 열병합발전소의 순환수 제어장치
JP2007100621A (ja) 加圧流動床プラントの停止制御方法
JP2013200088A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016469.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014772740

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157025560

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14777797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE