[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014155819A1 - アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法 - Google Patents

アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法 Download PDF

Info

Publication number
WO2014155819A1
WO2014155819A1 PCT/JP2013/080957 JP2013080957W WO2014155819A1 WO 2014155819 A1 WO2014155819 A1 WO 2014155819A1 JP 2013080957 W JP2013080957 W JP 2013080957W WO 2014155819 A1 WO2014155819 A1 WO 2014155819A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
wire
alloy conductor
heat treatment
Prior art date
Application number
PCT/JP2013/080957
Other languages
English (en)
French (fr)
Inventor
祥 吉田
茂樹 関谷
京太 須齋
賢悟 水戸瀬
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to CN201380053411.0A priority Critical patent/CN104781431B/zh
Priority to EP13880539.5A priority patent/EP2896708B1/en
Priority to KR1020157031012A priority patent/KR101813772B1/ko
Priority to EP17182347.9A priority patent/EP3260563B1/en
Priority to JP2014508613A priority patent/JP5607853B1/ja
Publication of WO2014155819A1 publication Critical patent/WO2014155819A1/ja
Priority to US14/681,731 priority patent/US9263167B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses

Definitions

  • the present invention relates to an aluminum alloy conductor used as a conductor of an electrical wiring body.
  • the present invention relates to an aluminum alloy conductor that achieves high conductivity, high bending fatigue resistance, appropriate proof stress, and high elongation even though it is an extremely thin wire.
  • the specific gravity of aluminum is about 1/3 of the specific gravity of copper
  • the conductivity of aluminum is about 2/3 of the conductivity of copper (based on 100% IACS for pure copper, about 66% IACS for pure aluminum)
  • IACS International Annealed Copper Standard
  • Patent Document 1 As a representative example of an aluminum conductor used for an electrical wiring body of a moving body, there is one described in Patent Document 1. This is an extremely thin wire, and realizes an aluminum alloy conductor and an aluminum alloy twisted wire excellent in elongation while having high strength and high conductivity. In addition, Patent Document 1 describes that it has excellent bending characteristics because it has sufficient elongation. However, for example, an aluminum alloy wire is used as a wire harness attached to a door or the like, and bending fatigue resistance is easily generated due to repeated bending stress caused by opening and closing of the door. There is no disclosure or suggestion.
  • the first problem is that, as described above, high bending fatigue resistance is required when it is used for a repeated bending portion such as a door of a car.
  • the bending fatigue property of aluminum is inferior to that of currently used copper, so the use place is limited.
  • the second problem is that high load resistance requires a large force at the time of attaching the wire harness, and the working efficiency is low.
  • the third problem is that since the extensibility is low, it can not withstand the impact at the time of attaching the wire harness or after the attaching, and the occurrence of the disconnection or the crack occurs. In order to solve all these problems, on the premise of high electrical conductivity, it is necessary to have an aluminum alloy wire having high resistance to bending fatigue and having appropriate resistance and high elongation.
  • Patent Document 2 As an aluminum alloy having both high strength and high conductivity, an alloy to which Mg, Si, Cu, Mn or the like is added is known. For example, in Patent Document 2, a tensile strength of 150 MPa or more and a conductivity of 40% or more are realized by adding these elements. Further, in Patent Document 2, by preparing a wire having a maximum crystal grain size of 50 ⁇ m or less, an extensibility of 5% or more is simultaneously realized.
  • An object of the present invention is to provide an aluminum alloy conductor, an aluminum alloy stranded wire, a coated electric wire, and a wire harness which have both an appropriate yield strength and a high bending fatigue resistance while maintaining elongation and conductivity equal to or more than conventional products. And providing a method of manufacturing an aluminum alloy conductor.
  • the present inventors discovered that when the aluminum alloy conductor is bent, the stress generated in the outer peripheral portion of the conductor is larger than the stress generated in the central portion, and a crack is easily generated in the outer peripheral surface. Therefore, the present inventors focused on the fact that when the grain size of the aluminum alloy is small, the number of times the crack collides with the grain boundary increases and the progressing rate decreases, and as a result of intensive studies, the aluminum alloy conductor By setting the average crystal grain size in the outer peripheral part of the value within the predetermined range, resistance to bending fatigue is improved while maintaining high conductivity, and further, appropriate proof stress and high extensibility can be realized. The present invention has been completed.
  • (3) The chemical composition is Cu: 0.01 to 1.00 mass%, Ag: 0.01 to 0.50 mass%, Au: 0.01 to 0.50 mass%, Mn: 0.01 to 1.00 mass%, Cr: 0.01 to 1.00 mass%, Zr: 0.01 to 0.50 mass%, Hf: 0.01 to 0.50 mass%, V: 0.01 to 0.
  • the total content of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, Ni is 0.01 to 2.50 mass%, (1 )
  • any one of the above (1) to (5) characterized in that the number of repetitions until breakage measured by the bending fatigue test is 100,000 or more and the conductivity is 45 to 55% IACS.
  • Aluminum alloy conductor as described in. (7) The aluminum alloy conductor according to any one of the above (1) to (6), which is an aluminum alloy wire having a wire diameter of 0.1 to 0.5 mm. (8) An aluminum alloy stranded wire obtained by twisting a plurality of the aluminum alloy conductors according to (7) above. (9) A coated electric wire having a coating layer on the outer periphery of the aluminum alloy conductor according to (7) or the aluminum alloy stranded wire according to (8).
  • a wire harness comprising: the coated electric wire according to (9); and a terminal attached to an end of the coated electric wire from which the coating layer is removed.
  • (11) Aluminum obtained by performing solution treatment, casting treatment, hot or cold working, first wire drawing, intermediate heat treatment, second wire drawing, solution heat treatment, and aging heat treatment in this order A method of manufacturing an alloy conductor, In the first wire drawing process, the half angle of the die used is 10 to 30 °, and the processing rate per pass is 10% or less, In the second wire drawing processing, the half angle of the die used is 10 to 30 °, and the processing ratio per pass is 10% or less, any of (1) to (7) The manufacturing method of the aluminum alloy conductor as described in. (12) The manufacturing method according to (11), wherein strain processing is performed on the outer peripheral portion of the workpiece to perform low strain processing before the aging heat treatment. (13) The manufacturing method according to (12), wherein the distortion processing is performed during the solution heat treatment.
  • the aluminum alloy conductor of the present invention since it has the conductivity equal to or higher than that of the prior art, it is useful as a battery cable, a harness or a lead for a motor mounted on a moving body. In particular, since it has high resistance to bending fatigue, it can be used for a bending part such as a door or a trunk where high resistance to bending fatigue is required. In addition, since the load resistance is appropriate, the wire harness can be attached with a small external force, and the working efficiency is improved. Furthermore, since it has the extensibility equal to or more than the conventional one, it can withstand the impact at the time of attachment or after attachment of the wire harness, and can reduce the occurrence of disconnection or cracking.
  • the aluminum alloy conductor of the present invention comprises Mg: 0.10 to 1.00% by mass, Si: 0.10 to 1.00% by mass, Fe: 0.01 to 2.50% by mass, Ti: 0.000 to 0.100 mass%, B: 0.000 to 0.030 mass%, Cu: 0.00 to 1.00 mass%, Ag: 0.00 to 0.50 mass%, Au: 0.00 to 0.
  • Remainder An aluminum alloy conductor having a composition comprising Al and unavoidable impurities, and an average grain size at the outer peripheral portion of the aluminum alloy conductor There is a 1 ⁇ 35 ⁇ m.
  • Chemical composition ⁇ Mg: 0.10 to 1.00 mass%> Mg has a function of solid solution strengthening in an aluminum matrix, and a part thereof combines with Si to form a precipitate to improve tensile strength, bending fatigue resistance and heat resistance. It is an element having an action.
  • Mg content is less than 0.10% by mass, the above-mentioned effect is insufficient, and if the Mg content exceeds 1.00% by mass, a Mg-concentrated portion is formed in the grain boundaries.
  • the Mg content is made 0.10 to 1.00 mass%.
  • the Mg content is preferably 0.50 to 1.00 mass% when importance is attached to high strength, and 0.10 to 0.50 mass% when importance is attached to conductivity. It is preferable that the total content be 0.30 to 0.70% by mass from such a viewpoint.
  • Si is an element that combines with Mg to form a precipitate, and has the effect of improving tensile strength, bending fatigue resistance, and heat resistance. If the Si content is less than 0.10% by mass, the above-described effects are insufficient, and if the Si content exceeds 1.00% by mass, the possibility of forming a Si-concentrated portion in the crystal grain boundaries As a result, the tensile strength, the elongation, and the bending fatigue resistance decrease, and the conductivity also decreases due to the increase in the amount of solid solution of the Si element. Therefore, the Si content is set to 0.10 to 1.00 mass%.
  • the Si content is preferably 0.5 to 1.0% by mass in the case of placing importance on high strength, and 0.10 to 0.50% by mass in the case of placing importance on conductivity. It is preferable that the total content be 0.30 to 0.70% by mass from such a viewpoint.
  • Fe is an element that contributes to the refinement of crystal grains by mainly forming an Al—Fe-based intermetallic compound and improves the tensile strength and the bending fatigue resistance characteristics.
  • Fe can only form a solid solution of 0.05 mass% in Al at 655 ° C. and is less at room temperature, so the remaining Fe that can not form a solid solution in Al is Al-Fe, Al-Fe-Si, Al-Fe Crystallized or precipitated as an intermetallic compound such as -Si-Mg. This intermetallic compound contributes to the refinement of crystal grains and improves the tensile strength and the bending fatigue resistance.
  • Fe also has an effect of improving the tensile strength by Fe in solid solution in Al. If the Fe content is less than 0.01% by mass, these effects are insufficient, and if the Fe content is more than 2.50% by mass, wire drawing occurs due to coarsening of crystallized matter or precipitate. In addition to the deterioration of the processability and the occurrence of wire drawing interruption lines, the desired bending fatigue resistance can not be obtained, and the conductivity also decreases. Therefore, the Fe content is 0.01 to 2.50% by mass, preferably 0.15 to 0.90% by mass, and more preferably 0.15 to 0.45% by mass.
  • the working rate per one pass is 10 Since it is as small as% or less, the tensile force at the time of wire drawing is suppressed, and disconnection hardly occurs. Therefore, a large amount of Fe can be contained, and it can be contained up to 2.50% by mass.
  • the aluminum alloy conductor of the present invention contains Mg, Si and Fe as essential components, but if necessary, it may further be one or more selected from the group consisting of Ti and B, Cu, Ag, Au One or more of Mn, Cr, Zr, Hf, V, Sc, Co and Ni can be contained.
  • Ti is an element having the function of refining the structure of the ingot during melt casting. If the structure of the ingot is coarse, disconnection occurs in the ingot cracking in the casting and in the wire processing step, which is not desirable industrially. If the Ti content is less than 0.001% by mass, the above-mentioned effects can not be sufficiently exhibited, and if the Ti content exceeds 0.100% by mass, the conductivity tends to decrease. It is. Therefore, the Ti content is set to 0.001 to 0.100% by mass, preferably 0.005 to 0.050% by mass, and more preferably 0.005 to 0.030% by mass.
  • B like Ti, is an element having the function of refining the structure of the ingot during melt casting. If the structure of the ingot is coarse, it is industrially undesirable because breakage tends to occur in the ingot cracking and wire rod processing steps during casting. If the B content is less than 0.001% by mass, the above-described effects can not be sufficiently exhibited, and if the B content exceeds 0.030% by mass, the conductivity tends to decrease. Therefore, the B content is set to 0.001 to 0.030% by mass, preferably 0.001 to 0.020% by mass, and more preferably 0.001 to 0.010% by mass.
  • ⁇ Cu 0.01 to 1.00 mass%>, ⁇ Ag: 0.01 to 0.50 mass%>, ⁇ Au: 0.01 to 0.50 mass%>, ⁇ Mn: 0.01 to 1 .00 mass%, ⁇ Cr: 0.01 to 1.00 mass%>, ⁇ Zr: 0.01 to 0.50 mass%>, ⁇ Hf: 0.01 to 0.50 mass%>, ⁇ V : 0.01 to 0.50 mass%>, ⁇ Sc: 0.01 to 0.50 mass%>, ⁇ Co: 0.01 to 0.50 mass%>, ⁇ Ni: 0.01 to 0.50 Containing one or more selected from the group consisting of mass%> Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni all refine the crystal grains Cu, Ag and Au are elements which have the effect of enhancing the grain boundary strength by precipitating at the grain boundaries, If at least one of these elements is contained at 0.01% by mass or more, the above-described effects can be obtained, and tensile strength,
  • the total content of these elements is preferably 2.50% by mass or less. Since Fe is an essential element in the aluminum alloy conductor of the present invention, the total content of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is 0. The content is made to be 01 to 2.50 mass%. The content of these elements is more preferably 0.10 to 2.50% by mass.
  • Ni is particularly preferably 0.10 to 0.80% by mass, and more preferably 0.20 to 0.60% by mass.
  • the conductivity is slightly reduced, but in order to further improve the tensile strength, elongation and bending fatigue resistance, more than 0.80 to 2.50 mass% is particularly preferable, and 1.00 to 2.50 mass% Is more preferred.
  • Unavoidable impurities mean impurities of a content level that can be included inevitably in the manufacturing process. Since the unavoidable impurities can also be a factor to reduce the conductivity depending on the content, it is preferable to suppress the content of the unavoidable impurities to some extent in consideration of the decrease in the conductivity.
  • As a component mentioned as an unavoidable impurity Ga, Zn, Bi, Pb etc. are mentioned, for example.
  • the average crystal grain size in the outer peripheral portion of the aluminum alloy conductor is 1 to 35 ⁇ m
  • the outer peripheral portion in the present invention means a region in the vicinity of the outer edge including the outer edge of the aluminum alloy conductor in the aluminum alloy conductor. Show. In the case of an aluminum alloy conductor having a circular cross section perpendicular to the wire drawing direction, the outer peripheral portion includes the outer edge of the aluminum alloy conductor, and an area having a width of 1/10 of the diameter of the aluminum alloy conductor from the outer edge 2) say. In the case of an aluminum alloy conductor such as a compressed stranded wire whose cross section is not circular, first, a diameter equivalent to a circle is obtained from the cross sectional area of the aluminum alloy conductor. Then, a region including the outer edge of the aluminum alloy conductor and having a width of 1/10 of the equivalent circle diameter of the aluminum alloy conductor from the outer edge is taken as an outer peripheral portion.
  • the average crystal grain size in the outer peripheral portion is 1 to 35 ⁇ m.
  • the average grain size at the outer peripheral portion is 1 to 35 ⁇ m, preferably 3 to 30 ⁇ m, and more preferably 5 to 20 ⁇ m.
  • the average crystal grain size in the portion other than the outer peripheral portion of the aluminum alloy conductor, that is, inside thereof is 1 to 90 ⁇ m. If the average grain size inside is less than 1 ⁇ m, the yield strength is excessive and the elongation is reduced, and if the crystal grain size inside is more than 90 ⁇ m, sufficient elongation and proof strength can not be obtained.
  • the average grain size of the present invention was observed by an optical microscope and measured using the tolerance method.
  • the aluminum alloy conductor of the present invention is [1] melting treatment, [2] casting treatment, [3] hot or cold working, [4] first wire drawing processing, [5] intermediate heat treatment, [6] It can manufacture through each process of 2 wire drawing processing, [7] solution heat treatment and 1st distortion processing, [8] aging heat treatment, and 2nd distortion processing.
  • a process of forming a stranded wire or a process of resin-coating an electric wire may be provided before or after the solution heat treatment and the first strain processing, or after the aging heat treatment. The steps [1] to [8] will be described below.
  • the bar is, for example, about ⁇ 5.0 to 13.0 mm.
  • the cooling rate at the time of casting at this time is preferably 1 to 20 ° C./sec from the viewpoint of preventing coarsening of the Fe-based crystallized product and preventing conductivity decrease due to forced solid solution of Fe. It is not limited. Casting and hot rolling may be performed by billet casting and extrusion methods and the like.
  • the surface is peeled off, for example, to a bar of ⁇ 5.0 to 12.5 mm, and wire drawing by die drawing using a die 21 as shown in FIG. Process
  • the diameter of the workpiece is reduced to, for example, ⁇ 2.0 mm.
  • the die half angle ⁇ of the die 21 is preferably 10 to 30 °, and the processing rate per pass is preferably 10% or less.
  • the processing rate is the difference between the cross sectional area before and after wire drawing divided by the original cross sectional area and multiplied by 100.
  • the processing rate becomes extremely small, the number of wire drawing for processing to the target wire diameter increases and productivity declines, so 1% or more is preferable, and when the processing rate is larger than 10%, the elongation Since the wire processing tends to be uniform inside and outside the wire, there is a tendency that a difference in crystal grain size does not easily occur between the outer peripheral portion and the inside, and the proof stress can not be appropriately reduced and the elongation can not be improved.
  • the heating temperature in the intermediate annealing is 250 to 450 ° C., and the heating time is 10 minutes to 6 hours.
  • the heating temperature is lower than 250 ° C., the film can not be sufficiently softened, deformation resistance is increased, and breakage or surface damage is likely to occur at the time of wire drawing. If the temperature is higher than 450 ° C., coarsening of the crystal grains is likely to occur, and the elongation (such as yield strength and tensile strength) decreases.
  • the work material is drawn by die drawing using a die 22 as shown in FIG.
  • the outer diameter of the workpiece is reduced to, for example, ⁇ 0.31 mm.
  • the die half angle ⁇ of the die 22 is preferably 10 to 30 °, and the processing rate per pass is preferably 10% or less. If the half die diameter is in the above range, it is advantageous in that the surface processing rate is increased, and only the outer peripheral portion can be processed.
  • Solution heat treatment (first heat treatment) and first strain processing
  • the workpiece is subjected to solution heat treatment and to the first strain processing.
  • This solution heat treatment is performed for the purpose of dissolving Mg and Si compounds randomly contained in the workpiece into the matrix of the aluminum alloy.
  • the first heat treatment is a heat treatment of heating to a predetermined temperature in the range of 480 to 620 ° C., and then cooling to a temperature of at least 150 ° C. at an average cooling rate of 10 ° C./s or more.
  • the solution heat treatment temperature is preferably in the range of 500 to 600 ° C., more preferably in the range of 520 to 580 ° C.
  • the first heat treatment for example, batch heat treatment, or continuous heat treatment such as high frequency heating, electric heating, inter-heating heating may be used, but heat treatment is performed by Joule heat generated from the wire itself such as high frequency heating or electric heating.
  • continuous heat treatment it is advantageous because the crystal grain size at the outer peripheral portion tends to be smaller than the crystal grain size inside.
  • the temperature of the wire rises with the passage of time because the current is normally supplied to the wire. Therefore, if the current continues to flow, the wire may be melted, so it is necessary to perform the heat treatment in an appropriate time range.
  • the temperature of the inter-heating annealing furnace is usually set higher than the wire temperature.
  • the heat treatment for a long time since the wire may be melted, it is necessary to carry out the heat treatment in an appropriate time range. Further, in all heat treatments, it is necessary to have a predetermined time or longer for dissolving Mg and Si compounds randomly contained in the workpiece into the matrix of the aluminum alloy. The heat treatment according to each method will be described below.
  • the continuous heat treatment by high frequency heating is a heat treatment by Joule heat generated from the wire itself by the induction current when the wire continuously passes through the magnetic field by high frequency.
  • the wire can be heat treated by controlling the temperature of the wire and the heat treatment time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water or nitrogen gas atmosphere after rapid heating.
  • the heat treatment time is 0.01 to 2 s, preferably 0.05 to 1 s, more preferably 0.05 to 0.5 s.
  • heat treatment is performed by Joule heat generated from the wire itself by passing an electric current through the wire continuously passing through the two electrode wheels.
  • the wire can be heat treated by controlling the temperature of the wire and the heat treatment time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water, air, or a nitrogen gas atmosphere after rapid heating.
  • the heat treatment time is 0.01 to 2 s, preferably 0.05 to 1 s, more preferably 0.05 to 0.5 s.
  • the wire is continuously passed through the heat treatment furnace maintained at a high temperature for heat treatment.
  • the wire material can be heat treated by controlling the temperature in the heat treatment furnace and the heat treatment time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water, air, or a nitrogen gas atmosphere after rapid heating.
  • the heat treatment time is 0.5 to 120 s, preferably 0.5 to 60 s, more preferably 0.5 to 20 s.
  • Batch type heat treatment is a method in which a wire is put into an annealing furnace and heat treatment is performed at a predetermined set temperature and set time.
  • the wire itself may be heated for several tens of seconds at a predetermined temperature, but a large amount of wire is to be introduced for industrial use, so 30 minutes or more to suppress heat treatment unevenness of the wire Is preferred.
  • the upper limit of the heat treatment time is not particularly limited as long as crystal grain coarsening does not occur, but in industrial use, heat treatment is performed within 10 hours, preferably within 6 hours because productivity is better if conducted in a short time. Be done.
  • the first straining treatment performed before the solution heat treatment, during the solution heat treatment, or both of them causes low distortion in the outer peripheral portion of the workpiece. For this reason, the outer peripheral portion is in a more processed state, and the crystal grain diameter of the outer peripheral portion becomes smaller after solution treatment.
  • the first straining process is a process of deforming the workpiece along the pulley through one or more of the pulleys having a diameter of 10 to 50 cm, and the strain amount of the workpiece at this time is 0 0006 to 0.0150.
  • the amount of distortion is the radius of the workpiece divided by the sum of twice the pulley radius and the radius of the workpiece.
  • [8] Stranding Treatment A plurality of wire rods subjected to the solution heat treatment and the first distortion processing are bundled and twisted. This process may be performed before or after solution heat treatment or after aging heat treatment. In the present embodiment, although the twisting treatment is performed, the following aging heat treatment may be performed on the single wire of the wire material on which the solution heat treatment and the first distortion processing are performed without performing the main twisting treatment.
  • the stranded wire of the wire is subjected to the aging heat treatment and the second strain processing.
  • Aging heat treatment is performed for the purpose of depositing needle-like Mg 2 Si precipitates, and the like.
  • the heating temperature in the aging heat treatment is 140 to 250.degree. If the heating temperature is less than 140 ° C., needle-like Mg 2 Si precipitates can not be sufficiently precipitated, and the strength, bending fatigue resistance and conductivity tend to be insufficient.
  • the heating temperature is higher than 250 ° C., the size of the Mg 2 Si precipitates increases, so the conductivity increases, but the strength and the resistance to bending fatigue tend to be insufficient.
  • the heating time varies depending on the temperature. Heating at a low temperature for a long time and at a high temperature for a short time is preferable in order to improve strength and resistance to bending fatigue. In consideration of productivity, a short time is good, preferably 15 hours or less, more preferably 10 hours or less.
  • the second straining process is a process in which the wire is deformed along the bobbin or spool via one or more of a bobbin or a spool with a diameter of 30 to 60 cm, and the strain amount of the wire at this time is 0 It is from .0005 to 0.0050.
  • the amount of distortion is the radius of the wire divided by the sum of twice the radius of the bobbin (spool) and the radius of the wire.
  • the bobbin or the spool referred to here is a member having a cylindrical outer edge and allowing the wire to be wound along the outer edge.
  • the wire diameter of the aluminum alloy conductor of the present invention is not particularly limited and can be appropriately determined according to the application, but in the case of fine wire, ⁇ 0.1 to 0.5 mm, and in the case of medium fine wire, ⁇ 0 .8 to 1.5 mm is preferred.
  • the present aluminum alloy conductor can be represented as a wire made of an outer peripheral portion 31 formed on the aluminum alloy conductor 30 and an inner portion 32 which is the remaining portion other than the outer peripheral portion, as shown in the sectional view of FIG. .
  • the value of the width of the outer peripheral portion 31 does not necessarily have to be 1/10 of the diameter, and the above value can have a certain range based on the technical idea of the present invention.
  • the average grain size in the outer peripheral part 31 is set to a predetermined value within the above range, and the average grain size in the outer peripheral part 31 is increased to the average grain size in the inner part 32
  • the diameter is smaller than the diameter, it is possible to appropriately reduce the proof stress and to improve the elongation, without appreciably changing the conductivity and the number of repetitions until breakage.
  • the average crystal grain size of the inside 32 is 1.1 times or more of the average crystal grain size of the outer peripheral portion 31, and the above effect can be reliably achieved.
  • the aluminum alloy conductor or the aluminum alloy stranded wire can be applied to a coated electric wire having a coating layer on the outer periphery thereof.
  • the wire harness assembled wire comprised with two or more of the structure which consists of a coated wire and the terminal attached to the edge part.
  • the manufacturing method of the aluminum alloy conductor which concerns on the said embodiment is not limited to the embodiment of description, Various deformation
  • the range of the die half-angle in the first wire drawing process is the same as the range of the die half-angle in the second wire drawing process, but the die half of the first wire drawing process is the die for the second wire drawing process It may be larger or smaller than half size.
  • the range of the processing rate in the first wire drawing process is the same as the range of the processing rate in the second wire drawing process, the processing rate of the first wire drawing process is the process for the second wire drawing process It may be larger or smaller than the rate.
  • the present invention is not limited to this, and may be performed before the solution heat treatment.
  • the second low strain processing is performed during the aging heat treatment, the present invention is not limited thereto, and the second low strain processing may not be performed.
  • Example 1 Using a propelchi continuous casting mill so that the contents (% by mass) shown in Table 1 of Mg, Si, Fe and Al, and selectively added Cu, Zr, Ti and B are obtained. Rolling was carried out while continuously casting using a water-cooled mold to obtain a bar of about ⁇ 9.5 mm. The casting cooling rate at this time was 1 to 20 ° C./second. Next, the first wire drawing was performed so as to obtain the working ratio shown in Table 2.
  • Example 2 The contents (% by mass) shown in Table 3 of Mg, Si, Fe and Al and Cu, Mn, Cr, Zr, Au, Ag, Hf, V, Ni, Sc, Co, Ti and B to be selectively added Casting and rolling were performed in the same manner as in Example 1 except that the mixture was formulated to be a bar of about ⁇ 9.5 mm.
  • the first wire drawing was performed so as to obtain the working ratio shown in Table 4.
  • intermediate heat treatment was performed on the processed material subjected to the first wire drawing, and thereafter, the second wire drawing was performed to a wire diameter of ⁇ 0.3 mm at the same processing rate as the first wire drawing.
  • solution heat treatment (first heat treatment) was performed under the conditions shown in Table 4.
  • aging heat treatment (second heat treatment) was performed under the conditions shown in Table 4 to produce an aluminum alloy wire.
  • (A) Average Grain Size The longitudinal section of the test material cut out in the wire drawing direction was filled with a resin, and after mechanical polishing, electrolytic polishing was performed. This tissue was photographed with a 200 to 400 ⁇ optical microscope, and the particle size was measured by the tolerance method according to JIS H0501 and H0502. Specifically, a straight line parallel to the drawing direction was drawn on the photographed photograph, and the number of grain boundaries intersecting the straight line was measured. This measurement was performed so as to intersect with about 50 crystal grain boundaries in each of the outer peripheral portion and the inner portion of the aluminum alloy conductor, and the average crystal grain size of the outer peripheral portion and the inner portion was obtained. The longer the linear length, the better. However, from the viewpoint of workability, it is possible to measure about 50 crystal grain sizes, and if the straight line is too long, it will be out of the imaging range of the optical microscope. Then, the length and number of straight lines were adjusted and measured.
  • Repetitive bending is performed by repeating bending using a jig with a bending strain of 0.17% using a bending fatigue tester made by Fujii Seiki Co., Ltd. (now Fujii Co., Ltd.). The number of returns was measured. In this example, the number of repetitions until breakage was 100,000 or more.
  • the aluminum alloy wires of the invention examples 1 to 31 were able to simultaneously achieve high conductivity, high bending fatigue resistance, appropriate proof stress and high extensibility.
  • Comparative Example 1 the processing rate per pass and the average crystal grain size at the outer peripheral portion were out of the range of the present invention, and under this condition, the number of repetitions until breakage was insufficient.
  • Comparative Example 2 the average crystal grain size at the half of the die and the outer periphery was out of the range of the present invention, and the number of repetitions until breakage was insufficient.
  • Comparative Example 3 the machining ratio per pass, the half grain diameter of the die, and the average crystal grain size at the outer peripheral portion were out of the range of the present invention, and the number of repetitions until breakage was insufficient.
  • Comparative Example 4 the average crystal grain size at the half of the die and the outer periphery was out of the range of the present invention, and the number of repetitions until breakage and the proof stress were insufficient.
  • All of the aluminum alloy wires of the invention examples 32 to 54 were able to simultaneously achieve high conductivity, high bending fatigue resistance, appropriate proof stress and high extensibility.
  • Comparative Example 5 pure aluminum
  • Mg, Si content, processing rate per pass, and die half angle were out of the range of the present invention, and under this condition, the number of repetitions until breakage was insufficient.
  • Comparative Example 6 the machining ratio per pass, the half grain diameter of the die, and the average crystal grain size at the outer peripheral portion were out of the range of the present invention, and the number of repetitions until breakage was insufficient.
  • Comparative Example 7 the Mg and Si contents were out of the range of the present invention, and the number of repetitions until elongation and elongation were insufficient, and the yield strength was excessive.
  • Comparative Example 8 the contained Ni content was out of the range of the present invention, and the number of repetitions until elongation and elongation were insufficient, and the yield strength was excessive.
  • the Mn content was out of the range of the present invention, the number of repetitions until breakage and the conductivity were insufficient, and the yield strength was excessive.
  • the Zr content was out of the range of the present invention, the number of repetitions until breakage and elongation were insufficient, and the yield strength was excessive.
  • Comparative Example 11 the Mg and Cr contents were out of the range of the present invention, and under this condition, a break occurred during wire drawing.
  • Comparative Example 12 corresponds to sample No. 1 in Patent Document 2. It is an imitation of 18 examples.
  • the aluminum alloy conductor according to the present invention is an Al-Mg-Si alloy, for example, a 6000 series aluminum alloy, in particular, the diameter is not more than ⁇ 0.5 mm by setting the average grain size in the outer peripheral portion to a value within a predetermined range.
  • the diameter is not more than ⁇ 0.5 mm by setting the average grain size in the outer peripheral portion to a value within a predetermined range.
  • it can be used as a wire material of an electrical wiring body that exhibits high conductivity, high bending fatigue resistance, appropriate proof stress and high extensibility.
  • it can be used for aluminum alloy stranded wire, coated electric wire, wire harness and the like, and is useful as a battery cable mounted on a moving body, a harness or a lead for a motor, and a wiring body of an industrial robot.
  • it can be suitably used for doors, trunks, bonnets and the like where high bending fatigue resistance is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

 高導電率、高い耐屈曲疲労特性を有し、更には適切な耐力と高い伸び性を同時に実現するアルミニウム合金導体を提供する。 本発明のアルミニウム合金導体は、Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~2.50質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物からなる組成を有するアルミニウム合金導体であって、前記アルミニウム合金導体の外周部での平均結晶粒径が1~35μmである。

Description

アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法
 本発明は、電気配線体の導体として用いられるアルミニウム合金導体に関する。特に、極細線でありながらも、高導電率、高い耐屈曲疲労特性、適切な耐力、更には高い伸び性を実現するアルミニウム合金導体に関するものである。
 従来、自動車、電車、航空機等の移動体の電気配線体、または産業用ロボットの電気配線体として、銅又は銅合金の導体を含む電線に銅又は銅合金(例えば、黄銅)製の端子(コネクタ)を装着した、いわゆるワイヤーハーネスと呼ばれる部材が用いられてきた。昨今では、自動車の高性能化や高機能化が急速に進められており、これに伴い、車載される各種の電気機器、制御機器などの配設数が増加すると共に、これらの機器に使用される電気配線体の配設数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上するため、軽量化が強く望まれている。
 こうした近年の移動体の軽量化を達成するための手段の一つとして、例えば、電気配線体の導体を、従来から用いられている銅又は銅合金より軽量なアルミニウム又はアルミニウム合金に変更する検討が進められている。アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、純アルミニウムの導体線材に純銅の導体線材と同じ電流を流すためには、純アルミニウムの導体線材の断面積を、純銅の導体線材の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウムの導体線材を用いたとしても、アルミニウムの導体線材の質量は、純銅の導体線材の質量の半分程度であることから、アルミニウムの導体線材を使用することは、軽量化の観点から有利である。なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10-8Ωmを100%IACSとした場合の導電率を表したものである。
 しかし、送電線用アルミニウム合金導体(JIS規格によるA1060やA1070)を代表とする純アルミニウムでは、一般に引張耐久性、耐衝撃性、屈曲特性などが劣ることが知られている。そのため、例えば、車体への取付け作業時に作業者や産業機器などによって不意に負荷される荷重や、電線と端子の接続部における圧着部での引張や、ドア部などの屈曲部で負荷される繰り返し応力などに耐えることができない。また、種々の添加元素を加えて合金化した材料は引張強度を高めることは可能であるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に金属間化合物に起因する断線が生じることがあった。そのため、添加元素を限定ないし選択することにより、十分な伸び特性を有することで断線しないことを必須とし、さらに、従来レベルの導電率と引張強度を確保しつつ、耐衝撃性、屈曲特性を向上する必要があった。
 移動体の電気配線体に用いられるアルミニウム導体として代表的なものに特許文献1に記載のものがある。これは極細線であって、高強度・高導電率を有しながら、伸びにも優れるアルミニウム合金導体、及びアルミニウム合金撚線を実現するものである。また、特許文献1には、十分な伸びを有することから、優れた屈曲特性を有する旨が記載されている。しかし、例えばドア部などに取り付けられるワイヤーハーネスとしてアルミニウム合金線を用い、ドアの開閉により繰り返し曲げ応力が作用することで高サイクル疲労破壊が発生しやすい使用環境下での耐屈曲疲労特性については、何ら開示も示唆もしていない。
 近年、自動車に用いられるアルミニウム合金導体、特にφ0.1mm~φ1.5mm程度のアルミニウム合金導体を製造する際に、以下の3つの課題が生じることが確認されている。第1の課題は、上述のように、自動車のドア部のような繰り返し屈曲部に用いられる場合に高い耐屈曲疲労特性が求められる。アルミニウムの屈曲疲労特性は、現在使用されている銅に比べて劣るため、使用箇所が限られている。第2の課題は、耐力が高いためにワイヤーハーネス取り付け時に大きな力を必要とし、作業効率が低いことである。第3の課題は、伸び性が低いことから、ワイヤーハーネス取り付け時や搭載後の衝撃に耐えられず、断線や亀裂の発生が生じることである。これらの課題を全て解決するためには、高い導電率を前提として、高い耐屈曲疲労特性を有し、かつ適切な耐力、高い伸び性を有するアルミニウム合金線が必要である。
 高強度と高導電率を合わせ持つアルミニウム合金としては、MgやSi、Cu、Mnなどを添加した合金が知られている。例えば、特許文献2では、これらの元素を添加することで150MPa以上の引張強度と40%以上の導電率を実現している。また、本特許文献2では、最大結晶粒径が50μm以下の線材を作製することで5%以上の伸び性も同時に実現している。
特開2012-229485公報 特許5155464号公報
 しかしながら、特許文献2のアルミニウム合金導体では、高導電率と高い伸び性に加えて、高い耐屈曲疲労特性と適切な耐力とを合わせ持つことはできず、上記3つの課題を同時に解決することができない。
 本発明の目的は、従来品と同等以上の伸び性および導電率を維持しつつ、適切な耐力と高い耐屈曲疲労特性を両立したアルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスを提供すること、およびアルミニウム合金導体の製造方法を提供することにある。
 本発明者らは、アルミニウム合金導体を屈曲させたとき、該導体の外周部に発生する応力が中心部に発生する応力より大きく、外周面に亀裂が発生し易いことを発見した。そこで、本発明者らは、アルミニウム合金の結晶粒径が小さい場合、亀裂が結晶粒界に衝突する回数が多くなり進行速度が小さくなることに着目し、鋭意研究を行った結果、アルミニウム合金導体の外周部での平均結晶粒径を所定範囲内の値とすることで、高導電性は確保したままで、耐屈曲疲労特性が向上し、更には適切な耐力、高い伸び性を実現できることを見出し、本発明を完成させるに至った。
 すなわち、上記課題は以下の発明により達成される。
 (1)Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~2.50質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物からなる組成を有するアルミニウム合金導体であって、
 前記アルミニウム合金導体の外周部での平均結晶粒径が1~35μmであることを特徴とするアルミニウム合金導体。
 (2)前記化学組成が、Ti:0.001~0.100質量%およびB:0.001~0.030質量%からなる群から選択された1種または2種を含有する、上記(1)に記載のアルミニウム合金導体。
 (3)前記化学組成が、Cu:0.01~1.00質量%、Ag:0.01~0.50質量%、Au:0.01~0.50質量%、Mn:0.01~1.00質量%、Cr:0.01~1.00質量%、Zr:0.01~0.50質量%、Hf:0.01~0.50質量%、V:0.01~0.50質量%、Sc:0.01~0.50質量%、Co:0.01~0.50質量%およびNi:0.01~0.50質量%からなる群から選択された1種または2種以上を含有する、上記(1)または(2)に記載のアルミニウム合金導体。
 (4)Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niの含有量の合計が0.01~2.50質量%である、(1)~(3)のいずれかに記載のアルミニウム合金導体。
 (5)内部の平均結晶粒径が、前記外周部の平均結晶粒径の1.1倍以上であることを特徴とする、上記(1)~(4)のいずれかに記載のアルミニウム合金導体。
 (6)屈曲疲労試験によって測定した破断までの繰返回数が10万回以上であり、導電率が45~55%IACSであることを特徴とする、上記(1)~(5)のいずれかに記載のアルミニウム合金導体。
 (7)素線の直径が0.1~0.5mmであるアルミニウム合金線である上記(1)~(6)のいずれかに記載のアルミニウム合金導体。
 (8)上記(7)に記載のアルミニウム合金導体を複数本撚り合わせて得られるアルミニウム合金撚線。
 (9)上記(7)に記載のアルミニウム合金導体または上記(8)に記載のアルミニウム合金撚線の外周に被覆層を有する被覆電線。
 (10)上記(9)に記載の被覆電線と、該被覆電線の、前記被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス。
 (11)溶解処理、鋳造処理、熱間もしくは冷間加工処理、第1伸線加工処理、中間熱処理、第2伸線加工処理、溶体化熱処理および時効熱処理を、この順に実行して得られるアルミニウム合金導体の製造方法であって、
 前記第1伸線加工処理において、用いられるダイスのダイス半角が10~30°とし、かつ1パスあたりの加工率が10%以下とし、
前記第2伸線加工処理において、用いられるダイスのダイス半角が10~30°とし、かつ1パスあたりの加工率が10%以下とすることを特徴とする、(1)~(7)のいずれかに記載のアルミニウム合金導体の製造方法。
 (12)前記時効熱処理前に、被加工材の外周部に低歪の加工を施す歪み加工処理を行うことを特徴とする、上記(11)に記載の製造方法。
 (13)前記歪み加工処理を前記溶体化熱処理中に行うことを特徴とする、上記(12)に記載の製造方法。
 本発明のアルミニウム合金導体によれば、従来と同等以上の導電率を有するため、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線として有用である。特に、高い耐屈曲疲労特性を有するので、ドア部やトランクなどの、高い耐屈曲疲労特性が求められる屈曲部に用いることができる。また、適切な耐力を有するので、小さい外力でワイヤーハーネスを取り付けることができ、作業効率が向上する。更に、従来と同等以上の伸び性を有するので、ワイヤーハーネス取り付け時や搭載後の衝撃に耐えることができ、断線や亀裂の発生を低減することができる。
本発明における第1伸線加工処理および第2伸線加工処理を説明する図である。 本実施形態に係るアルミニウム合金導体について、伸線方向に対して垂直な断面を示す断面図である。
 本発明のアルミニウム合金導体は、Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~2.50質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.5質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物からなる組成を有するアルミニウム合金導体であり、アルミニウム合金導体の外周部での平均結晶粒径が1~35μmである。
 以下に、本発明のアルミニウム合金導体の化学組成等の限定理由を示す。
(1)化学組成
<Mg:0.10~1.00質量%>
 Mg(マグネシウム)は、アルミニウム母材中に固溶して強化する作用を有すると共に、その一部はSiと化合して析出物を形成して引張強度、耐屈曲疲労特性および耐熱性を向上させる作用を有する元素である。しかしながら、Mg含有量が0.10質量%未満だと、上記作用効果が不十分であり、また、Mg含有量が1.00質量%を超えると、結晶粒界にMg濃化部分を形成する可能性が高まり、引張強度、伸び、耐屈曲疲労特性が低下するとともに、Mg元素の固溶量が多くなることによって導電率も低下する。したがって、Mg含有量は0.10~1.00質量%とする。なお、Mg含有量は、高強度を重視する場合には0.50~1.00質量%にすることが好ましく、また、導電率を重視する場合には0.10~0.50質量%とすることが好ましく、このような観点から総合的に0.30~0.70質量%が好ましい。
<Si:0.10~1.00質量%>
 Si(ケイ素)は、Mgと化合して析出物を形成して引張強度、耐屈曲疲労特性、及び耐熱性を向上させる作用を有する元素である。Si含有量が0.10質量%未満だと、上記作用効果が不十分であり、また、Si含有量が1.00質量%を超えると、結晶粒界にSi濃化部分を形成する可能性が高まり、引張強度、伸び、耐屈曲疲労特性が低下するとともに、Si元素の固溶量が多くなることによって導電率も低下する。したがって、Si含有量は0.10~1.00質量%とする。なお、Si含有量は、高強度を重視する場合には0.5~1.0質量%にすることが好ましく、また、導電率を重視する場合には0.10~0.50質量%とすることが好ましく、このような観点から総合的に0.30~0.70質量%が好ましい。
<Fe:0.01~2.50質量%>
 Fe(鉄)は、主にAl-Fe系の金属間化合物を形成することによって結晶粒の微細化に寄与すると共に、引張強度および耐屈曲疲労特性を向上させる元素である。Feは、Al中に655℃で0.05質量%しか固溶できず、室温では更に少ないため、Al中に固溶できない残りのFeは、Al-Fe、Al-Fe-Si、Al-Fe-Si-Mgなどの金属間化合物として晶出又は析出する。この金属間化合物は、結晶粒の微細化に寄与すると共に、引張強度および耐屈曲疲労特性を向上させる。また、Feは、Al中に固溶したFeによっても引張強度を向上させる作用を有する。Fe含有量が0.01質量%未満だと、これらの作用効果が不十分であり、また、Fe含有量が2.50質量%超えだと、晶出物または析出物の粗大化により伸線加工性が悪くなり、伸線中断線が発生しやすくなる他、目的とする耐屈曲疲労特性が得られなくなり、導電率も低下する。したがって、Fe含有量は0.01~2.50質量%とし、好ましくは0.15~0.90質量%、更に好ましくは0.15~0.45質量%とする。なお、Feが多すぎると晶出物または析出物の粗大化により伸線加工性が悪くなり、その結果、断線が発生しやすくなる傾向にあるが、本発明では1パス当たりの加工率を10%以下と小さくしているため、伸線時の引張力が抑制され、断線が発生しにくい。よって、Feは多く含有することができ、2.50質量%まで含有できる。
 本発明のアルミニウム合金導体は、Mg、SiおよびFeを必須の含有成分とするが、必要に応じて、さらに、TiおよびBからなる群から選択された1種または2種、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの1種または2種以上を含有させることができる。
<Ti:0.001~0.100質量%>
 Tiは、溶解鋳造時の鋳塊の組織を微細化する作用を有する元素である。鋳塊の組織が粗大であると、鋳造において鋳塊割れや線材加工工程において断線が発生して工業的に望ましくない。Ti含有量が0.001質量%未満であると、上記作用効果を十分に発揮することができず、また、Ti含有量が0.100質量%超えだと導電率が低下する傾向があるからである。したがって、Ti含有量は0.001~0.100質量%とし、好ましくは0.005~0.050質量%、より好ましくは0.005~0.030質量%とする。
<B:0.001~0.030質量%>
 Bは、Tiと同様、溶解鋳造時の鋳塊の組織を微細化する作用を有する元素である。鋳塊の組織が粗大であると、鋳造において鋳塊割れや線材加工工程において断線が発生しやすくなるため工業的に望ましくない。B含有量が0.001質量%未満であると、上記作用効果を十分に発揮することができず、また、B含有量が0.030質量%超えだと導電率が低下する傾向がある。したがって、B含有量は0.001~0.030質量%とし、好ましくは0.001~0.020質量%、より好ましくは0.001~0.010質量%とする。
<Cu:0.01~1.00質量%>、<Ag:0.01~0.50質量%>、<Au:0.01~0.50質量%>、<Mn:0.01~1.00質量%>、<Cr:0.01~1.00質量%>、<Zr:0.01~0.50質量%>、<Hf:0.01~0.50質量%>、<V:0.01~0.50質量%>、<Sc:0.01~0.50質量%>、<Co:0.01~0.50質量%>、<Ni:0.01~0.50質量%>からなる群から選択された1種または2種以上を含有させること
 Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、いずれも結晶粒を微細化する作用を有する元素であり、さらに、Cu、AgおよびAuは、粒界に析出することで粒界強度を高める作用も有する元素であって、これらの元素の少なくとも1種を0.01質量%以上含有していれば、上述した作用効果が得られ、引張強度、伸び、耐屈曲疲労特性を向上させることができる。一方、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量のいずれかが、それぞれ上記の上限値を超えると、導電率が低下する傾向がある。したがって、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の範囲は、それぞれ上記の範囲とした。
 また、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、多く含有するほど導電率が低下する傾向と伸線加工性が劣化する傾向がある。従って、これらの元素の含有量の合計は、2.50質量%以下とするのが好ましい。本発明のアルミニウム合金導体ではFeは必須元素であるため、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計は0.01~2.50質量%とする。これらの元素の含有量は、0.10~2.50質量%とするのが更に好ましい。
なお、高導電率を保ちつつ、引張強度や伸び、耐屈曲疲労特性を向上させるには、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計は、0.10~0.80質量%が特に好ましく、0.20~0.60質量%が更に好ましい。一方で、導電率はやや低下するが更に引張強度、伸び、耐屈曲疲労特性を向上させるためには、0.80超~2.50質量%が特に好ましく、1.00~2.50質量%が更に好ましい。
<残部:Alおよび不可避不純物>
 上述した成分以外の残部はAl(アルミニウム)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を加味して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Ga、Zn、Bi、Pbなどが挙げられる。
(2)アルミニウム合金導体の外周部での平均結晶粒径が1~35μmであること
 本発明でいう外周部とは、アルミニウム合金導体のうち、該アルミニウム合金導体の外縁を含む外縁近傍の領域を示す。伸線方向に対して垂直な断面が円形であるアルミニウム合金導体の場合、外周部は、該アルミニウム合金導体の外縁を含み、外縁から該アルミニウム合金導体の直径の1/10の幅の領域(図2参照)をいう。圧縮撚線など断面が円形ではないアルミニウム合金導体の場合には、まず、該アルミニウム合金導体の断面積から円相当の直径を求める。そして、該アルミニウム合金導体の外縁を含み、外縁から該アルミニウム合金導体の円相当直径の1/10の幅の領域を外周部とする。
 本発明では、外周部での平均結晶粒径が1~35μmとする。平均結晶粒径が1μm未満であると、耐力が過剰であると共に伸びが低下する。平均結晶粒径が35μmより大きいと耐屈曲疲労特性および耐力が低下する。したがって、外周部での平均結晶粒径を1~35μmとし、好ましくは3~30μm、より好ましくは5~20μmとする。
 また、アルミニウム合金導体の上記外周部以外の部分、すなわち内部での平均結晶粒径は1~90μmである。内部の平均結晶粒径が1μm未満であると耐力が過剰であると共に伸びが低下し、内部の結晶粒径が90μmより大きいと十分な伸び、耐力を得ることができない。本発明の平均結晶粒径は、光学顕微鏡により観察し、公差法を用いて測定を行った。
 (本発明に係るアルミニウム合金導体の製造方法)
 本発明のアルミニウム合金導体は、[1]溶解処理、[2]鋳造処理、[3]熱間または冷間加工、[4]第1伸線加工処理、[5]中間熱処理、[6]第2伸線加工処理、[7]溶体化熱処理および第1歪み加工処理、[8]時効熱処理および第2歪み加工処理の各工程を経て製造することができる。なお、溶体化熱処理および第1歪み加工処理の前後、または時効熱処理後に、撚線とする工程や電線に樹脂被覆を行う工程を設けてもよい。以下、[1]~[8]の工程について説明する。
 [1]溶解処理
 溶解は、後述するアルミニウム合金組成のそれぞれの実施態様の濃度となるような分量で溶製する。
 [2]鋳造処理、[3]熱間または冷間加工
 鋳造軸とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行い棒材とする。このとき棒材は例えば、φ5.0~13.0mm程度にする。このときの鋳造時の冷却速度は、Fe系晶出物の粗大化の防止とFeの強制固溶による導電率低下の防止の観点から、好ましくは1~20℃/秒であるが、これに制限されるものではない。鋳造及び熱間圧延は、ビレット鋳造及び押出法などにより行ってもよい。
 [4]第1伸線加工処理
 次いで、表面の皮むきを実施して、例えばφ5.0~12.5mmの棒材とし、図1に示すようなダイス21を用いて、ダイス引きによって伸線加工する。この伸線加工により、被加工材の直径が例えばφ2.0mmに縮径される。ダイス21のダイス半角αは10~30°、1パス当たりの加工率は、10%以下であることが好ましい。加工率は、伸線加工前後の断面積の差を元の断面積で割って100を掛けたものである。しかしながら、加工率が極端に小さくなると、目標の線径に加工するための伸線回数が多くなり生産性が低下するため1%以上が好ましく、また、加工率が10%よりも大きいと、伸線加工が線材の内外で均一となりやすいため、外周部と内部にて結晶粒径の差が生じにくく、耐力を適度に低下させ、かつ伸びを向上させることができなくなる傾向がある。また、ダイス21のテーパ面21aにおいて適切な表面粗さを持たせると、本伸線加工時に被加工材の表面に加工を施すことができる点で有利である。なお、本第1伸線加工処理では最初に棒材表面の皮むきを行っているが、棒材表面の皮むきを行わなくてもよい。
 [5]中間熱処理
 次に、冷間伸線した被加工材に中間熱処理を施す。本発明の中間熱処理では、中間焼鈍における加熱温度は250~450℃、加熱時間は、10分~6時間である。加熱温度が250℃より低いと、十分に軟化できず変形抵抗が大きくなり伸線時に断線や表面傷が発生しやすい。450℃より高いと、結晶粒粗大化が起こりやすくなり伸び、強度(耐力や引張強度など)が低下する。
 [6]第2伸線加工処理
 さらに、被加工材を図1に示すようなダイス22を用いて、ダイス引きによって伸線加工する。この伸線加工により、被加工材の外径が例えばφ0.31mmに縮径される。ダイス22のダイス半角βは10~30°、1パス当たりの加工率は、10%以下であることが好ましい。ダイス半角を上記範囲のようにすると、表面加工率が大きくなる点で有利であり、外周部のみを加工することができる。また、第一伸線工程ではテーパ面を荒くすることで表面に加わる応力を大きくし、第二伸線工程では表面傷やクラックの発生を防ぐためテーパ面を滑らかにすることが望まれる。よってテーパ面22aの表面粗さを、テーパ面21aの表面粗さより小さくすることは、表面傷を発生させずに外周部の粒径だけを小さくできる点で有利である。
 [7]溶体化熱処理(第1熱処理)および第1歪み加工処理
 次に、被加工材に、溶体化熱処理を施すと共に第1歪み加工処理を施す。この溶体化熱処理は、被加工材にランダムに含有されているMg、Si化合物をアルミニウム合金の母相中に溶け込ませるため等を目的として行う。第1熱処理は、480~620℃の範囲内の所定温度まで加熱した後、少なくとも150℃の温度までは10℃/s以上の平均冷却速度で冷却する熱処理である。溶体化熱処理温度が480℃より低いと、溶体化が不完全になり後工程の時効熱処理時に析出する針状のMgSi析出物が少なくなり、耐力、引張強度、耐屈曲疲労特性、導電率の向上幅が小さくなる。溶体化熱処理が620℃より高いと、結晶粒が粗大化する問題が発生し、耐力、引張強度、伸び、耐屈曲疲労特性が低下する可能性がある。また、純アルミニウムに対してアルミニウム以外の元素が多く含まれているために融点が下がり、部分的に融解してしまう可能性がある。上記溶体化熱処理温度は、好ましくは500~600℃の範囲、更に好ましくは520~580℃の範囲とする。
第1熱処理を行う方法としては、例えばバッチ式熱処理でも、高周波加熱、通電加熱、走間加熱などの連続熱処理でも良いが、高周波加熱や通電加熱のような、線材自体から発生するジュール熱により熱処理される連続熱処理を用いた場合、外周部の結晶粒径が内部の結晶粒径より小さくなる傾向がより大きいため有利である。
高周波加熱や通電加熱を用いた場合、通常は線材に電流を流し続ける構造になっているため、時間の経過と共に線材温度が上昇する。そのため、電流を流し続けると線材が溶融してしまう可能性があるので、適正な時間範囲にて熱処理を行う必要がある。走間加熱を用いた場合においても、短時間の焼鈍であるため、通常、走間焼鈍炉の温度は線材温度より高く設定される。長時間の熱処理では線材が溶融してしまう可能性があるため、適正な時間範囲にて熱処理を行う必要がある。また、すべての熱処理において被加工材にランダムに含有されているMg、Si化合物をアルミニウム合金の母相中に溶け込ませる所定の時間以上が必要である。以下、各方法による熱処理を説明する。
 高周波加熱による連続熱処理は、高周波による磁場中を線材が連続的に通過することで、誘導電流によって線材自体から発生するジュール熱により熱処理するものである。急熱、急冷の工程を含み、線材温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.01~2s、好ましくは0.05~1s、より好ましくは0.05~0.5sで行う。
 連続通電熱処理は、2つの電極輪を連続的に通過する線材に電流を流すことによって線材自体から発生するジュール熱により熱処理するものである。急熱、急冷の工程を含み、線材温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.01~2s、好ましくは0.05~1s、より好ましくは0.05~0.5sで行う。
 連続走間熱処理は、高温に保持した熱処理炉中を線材が連続的に通過して熱処理させるものである。急熱、急冷の工程を含み、熱処理炉内温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.5~120s、好ましくは0.5~60s、より好ましくは0.5~20sで行う。
 バッチ式熱処理は、焼鈍炉の中に線材を投入し、所定の設定温度、設定時間にて熱処理される方法である。線材自体が所定の温度にて数10秒程度加熱されればよいが、工業使用上、大量の線材を投入することになるため、線材の熱処理ムラを抑制するために30分以上は行った方が好ましい。熱処理時間の上限は、結晶粒粗大化が発生しなければ特に制限は無いが、工業使用上、短時間で行った方が生産性が良いため、10時間以内、好ましくは6時間以内にて熱処理される。
 また、上記溶体化熱処理前、溶体化熱処理中またはその両方で行われる第1歪み加工処理は、被加工材の外周部に低歪みを生じさせるものである。そのため外周部にはより加工が入った状態となり、溶体化後に外周部の結晶粒径が小さくなる。この第1歪み加工処理は、直径10~50cmの滑車の1つまたは複数を介して、被加工材を滑車に沿わせて変形させる処理であり、このときの被加工材の歪み量は、0.0006~0.0150である。歪み量は、被加工材の半径を、滑車半径の2倍と被加工材の半径との和で割ったものである。
 [8]撚り合わせ処理
 溶体化熱処理および第1歪み加工処理を実施した線材を、複数本束ねて撚り合わせる。この工程は溶体化熱処理前後、または時効熱処理後であっても良い。本実施形態では撚り合わせ処理を施すが、本撚り合わせ処理を行わず、溶体化熱処理および第1歪み加工処理を実施した線材の単線に、以下の時効熱処理を施してもよい。
 [9]時効熱処理(第2熱処理)および第2歪み加工処理
 そして、線材の撚線に、時効熱処理を施すと共に第2歪み加工処理を施す。時効熱処理は、針状のMgSi析出物を析出させるため等を目的として行う。時効熱処理における加熱温度は、140~250℃である。前記加熱温度が140℃未満であると、針状のMgSi析出物を十分に析出させることができず、強度、耐屈曲疲労特性および導電率が不足しがちである。また、前記加熱温度が250℃よりも高いと、MgSi析出物のサイズが大きくなるため、導電率は上昇するが、強度および耐屈曲疲労特性が不足しがちである。加熱時間は、温度によって最適な時間が変化する。低温では長時間、高温では短時間の加熱が強度、耐屈曲疲労特性を向上させる上で好ましい。生産性を考慮すると短時間が良く、好ましくは15時間以下、更に好ましくは10時間以下である。
 また、上記時効熱処理前に行われる第2歪み加工処理は、線材の外周部に低歪みを生じさせるものである。そのため潰されるなどの変形により、外周部の結晶粒径が小さくなる。加工歪が大きすぎると加工が入りすぎて伸びの低下に繋がる。第2歪み加工処理は、直径30~60cmのボビンあるいはスプールの1つ、または複数を介して、線材をボビンあるいはスプールに沿わせて変形させる処理であり、このときの線材の歪み量は、0.0005~0.0050である。歪み量は、線材の半径を、ボビン(スプール)半径の2倍と線材の半径との和で割ったものである。尚、ここでいうボビンあるいはスプールとは、円筒状の外縁を有し、線材をその外縁に沿わせて巻き取らせる部材である。
 (本発明に係るアルミニウム合金導体)
 本発明のアルミニウム合金導体は、素線径が、特に制限はなく用途に応じて適宜定めることができるが、細物線の場合はφ0.1~0.5mm、中細物線の場合はφ0.8~1.5mmが好ましい。本アルミニウム合金導体は、図2の断面図に示すように、アルミニウム合金導体30に形成される外周部31と、該外周部以外の残りの部分である内部32とからなる線材として表すことができる。なお、外周部31の幅の値は必ずしも直径の1/10である必要はなく、本発明の技術思想に基づいて上記値にある程度の範囲を持たせることができる。
 
 外周部31での平均結晶粒径をより小さくすること、換言すれば、外周部31での平均結晶粒径のみを小さくすることで、高導電率、高い耐屈曲疲労特性、適切な耐力および高い伸び性を同時に実現することができる。さらに、外周部31での平均結晶粒径を上記範囲内の所定値とし、内部32での平均結晶粒径を増大させる等、外周部31での平均結晶粒径を内部32での平均結晶粒径より小さくすると、導電率および破断までの繰返回数はさほど変化させずに、耐力を適度に低下させ、かつ伸びを向上させることが可能となる。具体的には、内部32の平均結晶粒径が、外周部31の平均結晶粒径の1.1倍以上であるのが好ましく、これにより上記効果を確実に奏することができる。
 以上、上記実施形態に係るアルミニウム合金導体およびアルミニウム合金撚線について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 例えば、上記アルミニウム合金導体またはアルミニウム合金撚線を、その外周に被覆層を有する被覆電線に適用することができる。また、被覆電線とその端部に取り付けられた端子とからなる構造体の複数で構成されるワイヤーハーネス(組電線)に適用することも可能である。
 また、上記実施形態に係るアルミニウム合金導体の製造方法は、記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 例えば、第1伸線加工処理におけるダイス半角の範囲は、第2伸線加工処理におけるダイス半角の範囲と同じであるが、第1伸線加工処理のダイス半角を第2伸線加工処理のダイス半角より大きくしてもよいし、あるいは小さくしてもよい。また、第1伸線加工処理における加工率の範囲は、第2伸線加工処理における加工率の範囲と同じであるが、第1伸線加工処理の加工率を第2伸線加工処理の加工率より大きくしてもよいし、あるいは小さくしてもよい。
 また、上記実施形態では第1低歪み加工処理を溶体化熱処理中に行っているが、これに限らず、溶体化熱処理前に行ってもよい。また、第2低歪み加工処理を時効熱処理中に行っているが、これに限らず、第2低歪み加工処理を行わなくてもよい。
 本発明を以下の実施例に基づき詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。
(実施例1)
 Mg、Si、FeおよびAlと、選択的に添加するCu、Zr、TiおよびBを、表1に示す含有量(質量%)になるようにプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行い、約φ9.5mmの棒材とした。このときの鋳造冷却速度は1~20℃/秒とした。次いで、表2に示す加工率が得られるように第1伸線加工を行った。次に、この第1伸線加工を施した加工材に中間熱処理を行い、その後、第1伸線加工と同様の加工率で、φ0.3mmの線径まで第2伸線加工を行った。次に、表2に示す条件で溶体化熱処理(第1熱処理)を施した。なお、溶体化熱処理において、バッチ式熱処理では、線材に熱電対を巻きつけて線材温度を測定した。連続通電熱処理では、線材の温度が最も高くなる部分での測定が設備上困難であるため、ファイバ型放射温度計(ジャパンセンサ社製)で線材の温度が最も高くなる部分よりも手前の位置にて温度を測定し、ジュール熱と放熱を考慮して最高到達温度を算出した。高周波加熱および連続走間熱処理では、熱処理区間出口付近の線材温度を測定した。溶体化熱処理後に、表2に示す条件で時効熱処理(第2熱処理)を施し、アルミニウム合金線を製造した。
(実施例2)
 Mg、Si、FeおよびAlと、選択的に添加するCu、Mn、Cr、Zr、Au、Ag、Hf、V、Ni、Sc、Co、TiおよびBを、表3に示す含有量(質量%)になるように配合した以外は、実施例1と同様の方法で鋳造、圧延を行い、約φ9.5mmの棒材とした。次いで、表4に示す加工率が得られるように第1伸線加工を行った。次に、この第1伸線加工を施した加工材に中間熱処理を行い、その後、第1伸線加工と同様の加工率で、φ0.3mmの線径まで第2伸線加工を行った。次に、表4に示す条件で溶体化熱処理(第1熱処理)を施した。そして、溶体化熱処理後に、表4に示す条件で時効熱処理(第2熱処理)を施し、アルミニウム合金線を製造した。
 作製した各々の発明例および比較例のアルミニウム合金線について以下に示す方法により各特性を測定した。その結果を表2、表4に示す。
 (a)平均結晶粒径
 伸線方向に切り出した供試材の縦断面を樹脂で埋め、機械研磨後、電解研磨を行った。この組織を200~400倍の光学顕微鏡で撮影し、JIS H0501、H0502に準じて公差法による粒径測定を行った。具体的には、撮影された写真に伸線方向に平行な直線を引き、その直線と交わる粒界の数を測定した。この測定を、アルミニウム合金導体の外周部及び内部についてそれぞれ50個程度の結晶粒界と交わるように測定し、外周部及び内部の平均結晶粒径とした。直線長さは長いほど好ましいが、作業性の観点から、50個程度の結晶粒径を測定できるように、また直線が長いと光学顕微鏡の撮影範囲からはみ出てしまうため複数本の直線を用いるなどして、直線の長さと本数を調節して測定した。
 (b)破断までの繰返回数
 耐屈曲疲労特性の基準として、常温におけるひずみ振幅は±0.17%とした。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合、疲労寿命は短くなり、ひずみ振幅が小さい場合、疲労寿命は長くなる。ひずみ振幅は、線材の線径と曲げ冶具の曲率半径により決定することができるため、線材の線径と曲げ冶具の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。藤井精機株式会社(現株式会社フジイ)製の両振屈曲疲労試験機を用い、0.17%の曲げ歪みが与えられる治具を使用して、繰り返し曲げを実施することにより、破断までの繰返回数を測定した。本実施例では、破断までの繰返回数が10万回以上を合格とした。
 (c)耐力(0.2%耐力)および柔軟性(引張破断伸び)の測定
 JIS Z2241に準じて各3本ずつの供試材(アルミニウム合金線)について引張試験を行い、オフセット法により0.2%の規定の永久伸びを用いて0.2%耐力を算出し、その平均値を求めた。耐力は、車体への取付け作業時に不意に負荷される荷重に耐えることができ、かつ、ワイヤーハーネス取り付け時の作業効率を低下させないために、50MPa以上320MPa以下を合格とした。伸びは、引張破断伸びが5%以上を合格とした。
 (d)導電率(EC)
 長さ300mmの試験片を20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて比抵抗を各3本ずつの供試材(アルミニウム合金線)について測定し、その平均導電率を算出した。端子間距離は200mmとした。導電率は特に規定しないが、35%以上を合格とした。なお、導電率は45%IACS以上であると特に好ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2の結果より、次のことが明らかである。
 発明例1~31のアルミニウム合金線は、いずれも高導電性、高い耐屈曲疲労特性、適切な耐力および高い伸び性を同時に実現する事ができた。
 これに対し、比較例1では、1パス当たりの加工率および外周部の平均結晶粒径が本発明の範囲外にあり、この条件では、破断までの繰返回数が不足した。比較例2では、ダイス半角および外周部の平均結晶粒径が本発明の範囲外にあり、破断までの繰返回数が不足した。比較例3では、1パス当たりの加工率、ダイス半角および外周部の平均結晶粒径が本発明の範囲外にあり、破断までの繰返回数が不足した。比較例4では、ダイス半角および外周部の平均結晶粒径が本発明の範囲外にあり、破断までの繰返回数および耐力が不足した。
 また、表4の結果より、次のことが明らかである。
 発明例32~54のアルミニウム合金線は、いずれも高導電性、高い耐屈曲疲労特性、適切な耐力および高い伸び性を同時に実現する事ができた。
 これに対し、比較例5(純アルミニウム)では、Mg、Si含有量、1パス当たりの加工率およびダイス半角が本発明の範囲外にあり、この条件では、破断までの繰返回数が不足した。また、比較例6では、1パス当たりの加工率、ダイス半角および外周部の平均結晶粒径が本発明の範囲外にあり、破断までの繰返回数が不足した。比較例7では、Mg、Si含有量が本発明の範囲外にあり、破断までの繰返回数および伸びが不足し、耐力が過剰となった。
 比較例8では、含有されるNi含有量が本発明の範囲外にあり、破断までの繰返回数および伸びが不足し、耐力が過剰となった。比較例9では、Mn含有量が本発明の範囲外にあり、破断までの繰返回数および導電率が不足し、耐力が過剰となった。比較例10では、Zr含有量が本発明の範囲外にあり、破断までの繰返回数および伸びが不足し、耐力が過剰となった。
 また、比較例11では、Mg、Cr含有量が本発明の範囲外にあり、この条件では、伸線中に断線が生じた。比較例12では、1パス当たりの加工率、ダイス半角および外周部の平均結晶粒径が本発明の範囲外にあり、破断までの繰返回数が不足し、耐力が過剰となった。なお、比較例12は、特許文献2中の試料No.18の実施例を模したものである。
 本発明のアルミニウム合金導体は、Al-Mg-Si系合金、例えば6000系アルミニウム合金において、外周部における平均結晶粒径を所定範囲の値とすることにより、特に、直径がφ0.5mm以下である極細線として使用した場合であっても、高導電性、高い耐屈曲疲労特性、適切な耐力および高い伸び性を示す、電気配線体の線材として用いることができる。また、アルミニウム合金撚線、被覆電線、ワイヤーハーネス等に使用することができ、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線、産業用ロボットの配線体として有用である。さらに、高い耐屈曲疲労特性が求められるドアやトランク、ボンネットなどに好適に用いることができる。
 21 ダイス
 21aテーパ面
 22 ダイス
 22a テーパ面

Claims (13)

  1.  Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~2.50質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物からなる組成を有するアルミニウム合金導体であって、
     前記アルミニウム合金導体の外周部での平均結晶粒径が1~35μmであることを特徴とする、アルミニウム合金導体。
  2.  前記化学組成が、Ti:0.001~0.100質量%およびB:0.001~0.030質量%からなる群から選択された1種または2種を含有する、請求項1に記載のアルミニウム合金導体。
  3.  前記化学組成が、Cu:0.01~1.00質量%、Ag:0.01~0.50質量%、Au:0.01~0.50質量%、Mn:0.01~1.00質量%、Cr:0.01~1.00質量%、Zr:0.01~0.50質量%、Hf:0.01~0.50質量%、V:0.01~0.50質量%、Sc:0.01~0.50質量%、Co:0.01~0.50質量%およびNi:0.01~0.50質量%からなる群から選択された1種または2種以上を含有する、請求項1または2に記載のアルミニウム合金導体。
  4.  Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niの含有量の合計が0.01~2.50質量%である、請求項1~3のいずれか1項に記載のアルミニウム合金導体。
  5.  内部の平均結晶粒径が、前記外周部の平均結晶粒径の1.1倍以上であることを特徴とする、請求項1~4のいずれか1項に記載のアルミニウム合金導体。
  6.  屈曲疲労試験によって測定した破断までの繰返回数が10万回以上であり、導電率が45~55%IACSであることを特徴とする、請求項1~5のいずれか1項に記載のアルミニウム合金導体。
  7.  素線の直径が0.1~0.5mmであるアルミニウム合金線である請求項1~6のいずれか1項に記載のアルミニウム合金導体。
  8.  請求項7に記載のアルミニウム合金導体を複数本撚り合わせて得られるアルミニウム合金撚線。
  9. 請求項7に記載のアルミニウム合金導体または請求項8に記載のアルミニウム合金撚線の外周に被覆層を有する被覆電線。
  10.  請求項9に記載の被覆電線と、該被覆電線の、前記被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス。
  11.  溶解処理、鋳造処理、熱間もしくは冷間加工処理、第1伸線加工処理、中間熱処理、第2伸線加工処理、溶体化熱処理および時効熱処理を、この順に実行して得られるアルミニウム合金導体の製造方法であって、
     前記第1伸線加工処理において、用いられるダイスのダイス半角が10~30°とし、かつ1パスあたりの加工率が10%以下とし、
     前記第2伸線加工処理において、用いられるダイスのダイス半角が10~30°とし、かつ1パスあたりの加工率が10%以下とすることを特徴とする、請求項1~7のいずれかに記載のアルミニウム合金導体の製造方法。
  12.  前記時効熱処理前に、被加工材の外周部に低歪の加工を施す歪み加工処理を行うことを特徴とする、請求項11に記載の製造方法。
  13.  前記歪み加工処理を前記溶体化熱処理中に行うことを特徴とする、請求項12に記載の製造方法。
PCT/JP2013/080957 2013-03-29 2013-11-15 アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法 WO2014155819A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380053411.0A CN104781431B (zh) 2013-03-29 2013-11-15 铝合金导体、铝合金绞线、被覆电线、线束以及铝合金导体的制造方法
EP13880539.5A EP2896708B1 (en) 2013-03-29 2013-11-15 Aluminum alloy wire rod, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor
KR1020157031012A KR101813772B1 (ko) 2013-03-29 2013-11-15 알루미늄 합금 도체, 알루미늄 합금 연선, 피복 전선, 와이어하네스 및 알루미늄 합금 도체의 제조 방법
EP17182347.9A EP3260563B1 (en) 2013-03-29 2013-11-15 Aluminum alloy conductor, aluminum alloy stranded wire, coated wire, wire harness, and manufacturing method of aluminum alloy conductor
JP2014508613A JP5607853B1 (ja) 2013-03-29 2013-11-15 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
US14/681,731 US9263167B2 (en) 2013-03-29 2015-04-08 Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013075401 2013-03-29
JP2013-075401 2013-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/681,731 Continuation US9263167B2 (en) 2013-03-29 2015-04-08 Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod

Publications (1)

Publication Number Publication Date
WO2014155819A1 true WO2014155819A1 (ja) 2014-10-02

Family

ID=51622855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080957 WO2014155819A1 (ja) 2013-03-29 2013-11-15 アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法

Country Status (6)

Country Link
US (1) US9263167B2 (ja)
EP (2) EP2896708B1 (ja)
JP (1) JP5607853B1 (ja)
KR (1) KR101813772B1 (ja)
CN (1) CN104781431B (ja)
WO (1) WO2014155819A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775056A (zh) * 2015-04-28 2015-07-15 绍兴文理学院 一种抗菌铝型材及其生产工艺
JP2016108617A (ja) * 2014-12-05 2016-06-20 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材およびアルミニウム合金撚線の製造方法
WO2016175025A1 (ja) * 2015-04-28 2016-11-03 株式会社オートネットワーク技術研究所 アルミニウム合金素線、アルミニウム合金撚線およびその製造方法、自動車用電線ならびにワイヤーハーネス
JP2016225159A (ja) * 2015-06-01 2016-12-28 矢崎総業株式会社 アルミニウム電線及びワイヤーハーネス
JP2017095806A (ja) * 2017-01-17 2017-06-01 株式会社オートネットワーク技術研究所 アルミニウム合金撚線、自動車用電線およびワイヤーハーネス
CN107109545A (zh) * 2014-12-05 2017-08-29 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束以及铝合金线材的制造方法
KR20170130485A (ko) * 2015-07-29 2017-11-28 가부시끼가이샤 후지꾸라 알루미늄 합금 도전선, 이것을 사용한 전선 및 와이어 하니스
EP3228718A4 (en) * 2014-12-05 2018-07-04 Furukawa Electric Co. Ltd. Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
JP2020506060A (ja) * 2017-01-30 2020-02-27 ジェオブルッグ・アーゲー ワイヤメッシュおよび適切なワイヤの同定方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829843B2 (en) * 2014-08-19 2020-11-10 Autonetworks Technologies, Ltd. Method for producing aluminum wire
JP6499190B2 (ja) * 2014-09-22 2019-04-10 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
WO2016047627A1 (ja) * 2014-09-22 2016-03-31 古河電気工業株式会社 端子付き電線
CN107002183B (zh) 2014-12-05 2019-08-13 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束以及铝合金线材的制造方法
JP6102987B2 (ja) 2015-06-12 2017-03-29 株式会社オートネットワーク技術研究所 アルミニウム合金線、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
RU2754792C1 (ru) * 2016-03-28 2021-09-07 Российская Федерация Деформируемый сплав на основе алюминия
RU2647070C2 (ru) * 2016-07-06 2018-03-13 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" (Госкорпорация "РОСКОСМОС") Алюминиевый сплав
JP6684176B2 (ja) * 2016-07-13 2020-04-22 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
EP3488446B1 (en) * 2016-07-21 2022-11-30 Université Du Québec À Chicoutimi Aluminum conductor alloys having improved creeping resistance
JP6927685B2 (ja) * 2016-10-25 2021-09-01 矢崎総業株式会社 アルミニウム素線、並びにそれを用いたアルミニウム電線及びワイヤーハーネス
JP7137759B2 (ja) * 2016-10-31 2022-09-15 住友電気工業株式会社 アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
DE102017101753B3 (de) * 2017-01-30 2018-06-21 Geobrugg Ag Drahtgeflecht
US10465270B1 (en) * 2017-01-30 2019-11-05 General Cable Technologies Corporation Cables having conductive elements formed from aluminum alloys processed with high shear deformation processes
WO2018163376A1 (ja) 2017-03-09 2018-09-13 住友電装株式会社 電線導体、絶縁電線、ワイヤーハーネス、電線導体の製造方法
CN107058850B (zh) * 2017-03-17 2018-04-17 黄河科技学院 一种高韧性高强度高导电性铝合金导线材料
KR102344357B1 (ko) 2017-05-17 2021-12-27 엘에스전선 주식회사 케이블 도체용 알루미늄 합금
CN107385290B (zh) * 2017-08-10 2018-10-30 广东和胜工业铝材股份有限公司 一种具有优异氧化效果的高强度铝合金及其制备方法和应用
WO2019188452A1 (ja) * 2018-03-27 2019-10-03 古河電気工業株式会社 アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品
CN108806822A (zh) * 2018-06-12 2018-11-13 金寨县鑫和新能源科技有限公司 一种高导电率稀土铝合金导线及其制备方法
JP7228087B2 (ja) * 2018-08-13 2023-02-24 株式会社プロテリアル 端子付電線
CN109161730B (zh) * 2018-09-28 2021-02-12 华北电力大学 母线槽用铝合金导体材料及其制备方法
EP3870728A4 (en) * 2018-10-26 2022-10-19 The Regents Of The University Of California NANO TREATMENT OF HIGH STRENGTH ALUMINUM ALLOYS FOR MANUFACTURING PROCESSES
WO2021049183A1 (ja) * 2019-09-13 2021-03-18 エセックス古河マグネットワイヤジャパン株式会社 電気導線、絶縁電線、コイル、並びに電気・電子機器
CN110706841B (zh) * 2019-10-31 2021-05-04 武汉电缆有限公司 一种高强度高导电率的电工用铝合金导线及其制造方法
CN111893350B (zh) * 2020-08-08 2021-12-07 广东华昌集团有限公司 一种高导热变形铝合金及其制备方法
CN111926224B (zh) * 2020-09-01 2021-10-08 南京工程学院 一种向Al-Mg-Si合金中添加Ag提高合金性能的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986251B2 (ja) * 2010-02-26 2012-07-25 古河電気工業株式会社 アルミニウム合金導体
JP2012229485A (ja) 2011-04-11 2012-11-22 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2013044039A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042790A (en) 1990-02-16 1991-08-27 Xerox Corporation Toggled switch for use in a sheet feed apparatus
US7491891B2 (en) * 2004-05-19 2009-02-17 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire-harness and process for producing the same
DE102005032544B4 (de) * 2004-07-14 2011-01-20 Hitachi Powdered Metals Co., Ltd., Matsudo Abriebsresistente gesinterte Aluminiumlegierung mit hoher Festigkeit und Herstellugsverfahren hierfür
JP4927366B2 (ja) * 2005-02-08 2012-05-09 古河電気工業株式会社 アルミニウム導電線
CN101558177B (zh) * 2006-12-13 2012-03-28 住友轻金属工业株式会社 高强度铝合金产品及其制造方法
JP4787885B2 (ja) * 2008-08-11 2011-10-05 住友電気工業株式会社 ワイヤーハーネス用電線、及び自動車用ワイヤーハーネス
JP2011152557A (ja) * 2010-01-27 2011-08-11 Fujikura Ltd 銅被覆アルミニウム線の製造方法
WO2012133634A1 (ja) * 2011-03-31 2012-10-04 古河電気工業株式会社 アルミニウム合金導体
CN202343603U (zh) * 2011-11-16 2012-07-25 永兴金荣材料技术有限公司 一种新型金属丝拉丝模

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986251B2 (ja) * 2010-02-26 2012-07-25 古河電気工業株式会社 アルミニウム合金導体
JP2012229485A (ja) 2011-04-11 2012-11-22 Sumitomo Electric Ind Ltd アルミニウム合金線
JP5155464B2 (ja) 2011-04-11 2013-03-06 住友電気工業株式会社 アルミニウム合金線、アルミニウム合金撚り線、被覆電線、及びワイヤーハーネス
JP2013044039A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096394B2 (en) 2014-12-05 2018-10-09 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire and wire harness, and method of manufacturing aluminum alloy wire rod
JP2016108617A (ja) * 2014-12-05 2016-06-20 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材およびアルミニウム合金撚線の製造方法
CN107109545A (zh) * 2014-12-05 2017-08-29 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束以及铝合金线材的制造方法
EP3228718A4 (en) * 2014-12-05 2018-07-04 Furukawa Electric Co. Ltd. Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
WO2016175025A1 (ja) * 2015-04-28 2016-11-03 株式会社オートネットワーク技術研究所 アルミニウム合金素線、アルミニウム合金撚線およびその製造方法、自動車用電線ならびにワイヤーハーネス
JP2016204739A (ja) * 2015-04-28 2016-12-08 株式会社オートネットワーク技術研究所 アルミニウム合金素線、アルミニウム合金撚線およびその製造方法、自動車用電線ならびにワイヤーハーネス
CN104775056A (zh) * 2015-04-28 2015-07-15 绍兴文理学院 一种抗菌铝型材及其生产工艺
US10461441B2 (en) 2015-04-28 2019-10-29 Autonetworks Technologies, Ltd. Aluminum alloy element wire, aluminum alloy stranded wire and method for producing aluminum alloy stranded wire, automotive electric wire, and wire harness
JP2016225159A (ja) * 2015-06-01 2016-12-28 矢崎総業株式会社 アルミニウム電線及びワイヤーハーネス
KR20170130485A (ko) * 2015-07-29 2017-11-28 가부시끼가이샤 후지꾸라 알루미늄 합금 도전선, 이것을 사용한 전선 및 와이어 하니스
KR102020134B1 (ko) * 2015-07-29 2019-09-09 가부시끼가이샤 후지꾸라 알루미늄 합금 도전선, 이것을 사용한 전선 및 와이어 하니스
JP2017095806A (ja) * 2017-01-17 2017-06-01 株式会社オートネットワーク技術研究所 アルミニウム合金撚線、自動車用電線およびワイヤーハーネス
JP2020506060A (ja) * 2017-01-30 2020-02-27 ジェオブルッグ・アーゲー ワイヤメッシュおよび適切なワイヤの同定方法

Also Published As

Publication number Publication date
KR101813772B1 (ko) 2017-12-29
CN104781431B (zh) 2018-08-24
EP2896708B1 (en) 2017-09-13
KR20150140709A (ko) 2015-12-16
JP5607853B1 (ja) 2014-10-15
EP2896708A4 (en) 2016-06-01
EP3260563B1 (en) 2019-04-24
CN104781431A (zh) 2015-07-15
EP2896708A1 (en) 2015-07-22
JPWO2014155819A1 (ja) 2017-02-16
EP3260563A1 (en) 2017-12-27
US9263167B2 (en) 2016-02-16
US20150213913A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2014155819A1 (ja) アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法
JP5607855B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6499190B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP5607856B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP5607854B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6534809B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材およびアルミニウム合金撚線の製造方法
JP6782168B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法
JP6782169B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法
JP6678579B2 (ja) アルミニウム合金線及びアルミニウム合金線の製造方法
JP6535019B2 (ja) 端子付き電線
JP6147167B2 (ja) アルミニウム合金導体、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
WO2016088887A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
JP6440476B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法
JP2013044038A (ja) アルミニウム合金導体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014508613

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880539

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013880539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013880539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031012

Country of ref document: KR

Kind code of ref document: A