[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014155413A1 - タブ線の製造方法 - Google Patents

タブ線の製造方法 Download PDF

Info

Publication number
WO2014155413A1
WO2014155413A1 PCT/JP2013/002015 JP2013002015W WO2014155413A1 WO 2014155413 A1 WO2014155413 A1 WO 2014155413A1 JP 2013002015 W JP2013002015 W JP 2013002015W WO 2014155413 A1 WO2014155413 A1 WO 2014155413A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab wire
tab
wire
post
molding
Prior art date
Application number
PCT/JP2013/002015
Other languages
English (en)
French (fr)
Inventor
直人 今田
大裕 岩田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2013/002015 priority Critical patent/WO2014155413A1/ja
Priority to PCT/JP2014/001093 priority patent/WO2014155973A1/ja
Publication of WO2014155413A1 publication Critical patent/WO2014155413A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a tab wire manufacturing technique, and more particularly to a tab wire manufacturing method for connecting a plurality of solar cells.
  • Adjacent solar cells are connected in series by tab wires. Since the tab line is also provided on the light receiving surface side of the solar cell, the tab line causes an optical loss of the solar cell.
  • the specular reflectivity of the tab line is lowered, so that the re-incidence rate of light to the solar cell is lowered.
  • an insulator such as an oxide film
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for reducing the presence of fine irregularities on the surface of a tab wire.
  • a method for manufacturing a tab wire is a method for manufacturing a tab wire for connecting electrodes provided in each of a plurality of solar cells, and by plastic working. Forming a tab line, and performing polishing using a solution on the surface of the formed tab line.
  • the presence of fine irregularities on the surface of the tab wire can be reduced.
  • FIGS. 1A to 1E are diagrams showing a manufacturing process of a tab wire according to Embodiment 1 of the present invention. It is sectional drawing to which the tab line after shaping
  • FIGS. 4A to 4D are diagrams showing the manufacturing process of the tab wire according to the comparative example of Example 1 of the present invention. It is sectional drawing which shows the solar cell module which uses the tab wire after chemical polishing of FIG.1 (e). It is a top view which shows the surface of the solar cell of FIG. It is sectional drawing of the direction different from FIG. 5 of the solar cell module which uses the tab wire after chemical polishing of FIG.1 (e).
  • FIGS. 9A to 9D are diagrams showing the tab wire manufacturing process according to the second embodiment of the present invention. It is sectional drawing to which the tab line after shaping
  • Example 1 An outline will be given before specifically explaining the first embodiment of the present invention.
  • Example 1 relates to a technique for manufacturing a tab wire for connecting bus bar electrodes provided in each of a plurality of solar cells.
  • a silver-plated copper wire is often plastically processed, but in Example 1, an aluminum wire is plastically processed for the purpose of cost reduction. Fine irregularities exist on the surface of the aluminum tab wire formed by plastic working. In order to reduce the presence of such fine irregularities, in Example 1, chemical polishing is performed on the surface of the formed tab wire.
  • the solar cell module using such a tab wire is explained.
  • FIGS. 1A to 1E show the manufacturing process of the tab wire according to the first embodiment.
  • Fig.1 (a) shows the side view of the aluminum wire 200 used as the raw material of a tab wire.
  • FIG. 1B is a cross-sectional view of the aluminum wire 200 taken along the cross-sectional line AA in FIG.
  • the cross section of the aluminum wire 200 is circular.
  • the left and right directions in FIG. 1A are referred to as “length directions”, and the left and right directions in FIG. 1B are referred to as “width directions”.
  • the vertical direction of (b) is referred to as the “thickness direction”.
  • a post-molding tab line 202 in FIG. 1C is a cross-sectional view corresponding to FIG.
  • Plastic working is an operation for forming a predetermined shape by applying plastic deformation to a part or the whole of a metal material, and includes rolling, extruding, pressing and the like. Here, it is shaped by a roller. Further, the post-molded tab wire 202 having a final shape is molded by one plastic working, and no further molding process is performed after this molding process.
  • the tab wire 202 has irregularities on one side as a final shape as shown in FIG.
  • the convex portions of the unevenness on the one surface side have a mountain shape such as a substantially pyramid shape or a substantially conical shape, and the plurality of convex portions are arranged in the width direction and the length direction of the tab wire 202 after molding.
  • FIG. 2 is an enlarged cross-sectional view of the tab wire 202 after molding.
  • the raw material of the tab wire 202 after molding is aluminum, and since aluminum has high malleability, many fine irregularities are generated on the molded surface.
  • the term “fine” means that it is sufficiently smaller than a substantially pyramid shape or a substantially conical shape provided on one surface side of the tab wire 202 after molding.
  • the term “fine” may mean that the post-molding tab wire 202 is sufficiently smaller than the shortest length in the length direction, width direction, and thickness direction. Due to such fine irregularities, as described above, the specular reflectance of the surface of the tab wire 202 after molding is lowered. As a result, the light re-incidence rate of the solar cells connected by such post-molded tab wires 202 becomes low.
  • an oxide film (not shown) is formed on the surface of the tab wire 202 after molding, but the thickness of the oxide film is not uniform due to fine unevenness. As a result, a thin portion of the oxide film is generated, and the insulating property is lowered in that portion.
  • the post-annealed tab line 204 of FIG. 1D is generated.
  • Annealing is an operation of heating to an appropriate temperature and maintaining that temperature, and then gradually cooling to improve the mechanical properties of the metal material.
  • the annealing is performed for the purpose of increasing the crystal grain size.
  • the post-chemical polishing tab line 206 of FIG. 1E is generated.
  • Chemical polishing is a method for obtaining a smooth glossy surface by dissolving fine irregularities on the metal surface prior to the recess, and in particular a method for chemically polishing the metal surface by dipping in a polishing liquid. It is.
  • FIG. 3 is an enlarged cross-sectional view of the tab line 206 after chemical polishing.
  • An oxide film layer 210 is formed so as to enclose the central aluminum portion 208.
  • the oxide film layer 210 is not formed by natural oxidation in the tab wire 202 after molding, but is formed by chemical polishing as an oxidation process.
  • the tab wire 206 after chemical polishing is cleaned.
  • FIGS. 4A to 4D show the manufacturing process of the tab wire according to the comparative example of Example 1 of the present invention.
  • FIG. 4A shows a cross-sectional view of the silver-plated copper wire 300.
  • the direction of the cross section in FIG. 4A is the same as that in FIG.
  • the side view of the silver plated copper wire 300 is omitted, it is shown in the same manner as FIG.
  • the “length direction”, “width direction”, and “thickness direction” are determined in the same manner as before.
  • the tab wire 302 after the first forming in FIG. 4B is formed.
  • the first post-molding tab wire 302 has a quadrangular shape as shown in FIG.
  • the second post-molding tab wire 304 of FIG. 4C is formed.
  • the second post-molding tab wire 304 has irregularities on one surface side, like the post-molding tab wire 202 of FIG.
  • the post-annealed tab line 306 in FIG. 4D is generated by annealing the second post-molding tab line 304. Since silver is highly chemically resistant, chemical polishing cannot be performed on silver-plated copper. Therefore, chemical polishing is not performed on the post-annealed tab wire 306.
  • FIG. 5 is a cross-sectional view showing a solar cell module using the tab wire 206 after chemical polishing.
  • the solar cell module 100 includes a plurality of solar cells 70, tab wires 40, resin layers 50 a and 50 b (hereinafter collectively referred to as a resin layer 50), a protective substrate 62, a back sheet 64, and a sealing layer 66.
  • the solar cell 70 includes the power generation layer 10, the first electrode 20, and the second electrode 30.
  • the tab line 40 in FIG. 5 corresponds to the post-chemical polishing tab line 206 in FIG.
  • the power generation layer 10 is a layer that absorbs incident light and generates a photovoltaic force, and includes, for example, a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the power generation layer 10 is not particularly limited, but in the present embodiment, it has a heterojunction of an n-type single crystal silicon substrate and amorphous silicon.
  • the power generation layer 10 is, for example, an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like on the light-receiving surface side of an n-type single crystal silicon substrate, and a light-transmitting material such as indium oxide.
  • boron B
  • a light-transmitting material such as indium oxide.
  • transparent conductive layers made of conductive conductive oxide.
  • an i-type amorphous silicon layer, an n-type amorphous silicon layer doped with phosphorus (P) or the like, and a transparent conductive layer are laminated on the back side of the substrate in this order.
  • the power generation layer 10 has a light receiving surface 12 that is one of the surfaces of the solar cell 70 and a back surface 14 that is one of the surfaces of the solar cell 70 and faces away from the light receiving surface 12.
  • the light receiving surface means a main surface on which solar light is mainly incident in the solar cell 70, and specifically, a surface on which most of the light incident on the power generation layer 10 is incident.
  • the first electrode 20 and the second electrode 30 are provided on the light receiving surface 12 and the back surface 14 as electrodes provided on the surface of the solar cell 70, respectively, and take out the electric power generated by the power generation layer 10 to the outside.
  • the first electrode 20 and the second electrode 30 are conductive materials including, for example, copper (Cu) and aluminum (Al).
  • An electrolytic plating layer such as copper (Cu) or tin (Sn) may be included.
  • the present invention is not limited to this, and other metals such as gold and silver, other conductive materials, or combinations thereof may be used.
  • the tab wire 40 is adhered on the surface by the resin layer 50 so as to be electrically connected to the first electrode 20 or the second electrode 30.
  • the tab wire 40 and the 1st electrode 20 or the 2nd electrode 30 are adhere
  • conductive particles such as nickel are included in the resin layer 50, the tab wire 40 and the first electrode 20 or the second electrode 30 may not be directly bonded.
  • the tab wire 40 extends in the x direction in which the plurality of solar cells 70 are arranged, and connects the first electrode 20 of one solar cell 70 adjacent to the x direction and the second electrode 30 of the other solar cell 70. .
  • the tab wire 40 includes an extending portion 42, a bent portion 43, and an end portion 44.
  • the extending part 42 extends in the x direction along the light receiving surface 12 or the back surface 14 and is bonded to the light receiving surface 12 or the back surface 14 via the resin layer 50. More specifically, the extending part 42 is disposed on the bus bar electrode of the first electrode 20 or the second electrode 30 and is bonded in direct contact with at least a part of the bus bar electrode so as to be electrically connected to the bus bar electrode. Is done.
  • the end portion 44 is provided on the light receiving surface 12 or the back surface 14 where the extending portion 42 is provided, and is disposed in a region near the outer periphery of the solar cell 70.
  • the bent portion 43 has a step corresponding to the thickness of the solar cell 70.
  • the protective substrate 62 is provided on the light receiving surface 12 side of the solar cell 70, protects the solar cell 70 from the external environment, and transmits light in a wavelength band that the solar cell 70 absorbs for power generation.
  • the protective substrate 62 is, for example, a glass substrate.
  • the back sheet 64 and the sealing layer 66 are resin materials such as ethylene vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyimide, polyethylene, polypropylene, and polyethylene terephthalate (PET). This prevents moisture from entering the solar cell 70 and improves the strength of the entire solar cell module 100.
  • the back sheet 64 may be the same glass as the protective substrate 62 or a transparent substrate such as plastic. Further, by providing a metal foil or the like between the back sheet 64 and the sealing layer 66 so that a large amount of light incident from the protective substrate 62 side is absorbed by the solar cell 70, the back sheet 64 is transmitted through the solar cell 70. The light reaching the solar cell 70 may be reflected to the solar cell 70.
  • FIG. 6 is a plan view showing the surface of the solar cell 70.
  • the first electrode 20 includes three bus bar electrodes 24 extending in parallel to each other in a first direction (x direction) and a plurality of finger electrodes 22 extending in a second direction (y direction) orthogonal to the bus bar electrodes 24.
  • the finger electrode 22 is an electrode formed on the light receiving surface 12, it is desirable to form the finger electrode 22 so as not to block light incident on the power generation layer 10. In addition, it is desirable to arrange the generated power at predetermined intervals so that the generated power can be collected efficiently.
  • the bus bar electrode 24 connects the plurality of finger electrodes 22 to each other.
  • the bus bar electrode 24 is formed to be thin to the extent that the light incident on the power generation layer 10 is not blocked, and is thickened to some extent so that the power collected from the plurality of finger electrodes 22 can flow efficiently.
  • the tab wire 40 is bonded to the bus bar electrode 24 and covers the bus bar electrode 24.
  • the second electrode 30 also includes three bus bar electrodes extending in the x direction parallel to each other, and extending in the y direction orthogonal to the bus bar electrodes. A plurality of finger electrodes are provided.
  • the number of finger electrodes of the second electrode 30 is increased by increasing the number of the first electrodes 20 on the light receiving surface 12 side, The current collection efficiency can be increased.
  • the tab wire 40 is bonded to the bus bar electrode of the second electrode 30.
  • FIG. 7 is a cross-sectional view of the solar cell module using the post-chemical polishing tab wire 206 in a direction different from that of FIG. This corresponds to a cross-sectional view taken along a cross-sectional line AA in FIG.
  • the resin layers 50a and 50b are provided on each of the light receiving surface 12 and the back surface 14, and adhere the light receiving surface 12 or the back surface 14 and the tab wire 40 extending thereon.
  • the resin layer 50 is an adhesive layer obtained by curing a resin adhesive.
  • a thermosetting resin material having adhesiveness such as an epoxy resin, an acrylic resin, or a urethane resin is used.
  • the resin layer 50a is provided in contact with the bus bar electrode 24 and bonds the bus bar electrode 24 and the tab wire 40 together.
  • the resin layer 50 a is at least in contact with the lower surface 40 a of the tab wire 40, and the tab wire 40 is bonded to the light receiving surface 12 in a state where the tab wire 40 is in contact with the bus bar electrode 24.
  • the aluminum portion 208 is enclosed by the oxide film layer 210. Since the oxide film layer 210 is insulative, conduction between the bus bar electrode 24 and the tab wire 40 is prevented. Therefore, here, the bus bar electrode 24 and the aluminum portion 208 are in direct contact with each other by partly breaking through the oxide film layer 210 by the bus bar electrode 24.
  • the resin layer 50 a is provided with a width in the y direction perpendicular to the x direction in which the bus bar electrode 24 extends wider than the width of the bus bar electrode 24.
  • the resin layer 50b is provided in contact with the bus bar electrode 34, and bonds the bus bar electrode 34 and the tab wire 40 together.
  • the surface of the tab wire 40 bonded to the bus bar electrode 34 is different from the surface of the tab wire 40 bonded to the bus bar electrode 24.
  • the latter is the lower surface 40a, while the former is the upper surface 40b.
  • the resin layer 50 b is at least in contact with the upper surface 40 b of the tab wire 40, and the tab wire 40 is bonded to the back surface 14 in a state where the tab wire 40 is in contact with the bus bar electrode 34.
  • the bus bar electrode 34 and the aluminum portion 208 are in direct contact with each other by partly breaking through the oxide film layer 210 by the bus bar electrode 34 and the aluminum portion 208. As described above, a part of the oxide film layer 210 on the upper surface 40b side is pierced by the aluminum portion 208 and the bus bar electrode 34, but the oxide film layer 210 on the lower surface 40a side is held as it is. By maintaining the oxide film layer 210, the insulation between the tab wire 40 and the back sheet 64 is also maintained.
  • FIG. 8 is a flowchart showing the manufacturing procedure of the tab wire according to the first embodiment of the present invention.
  • a forming process for forming the tab line is executed (S10).
  • An annealing process for annealing the formed tab line is executed (S12).
  • a chemical polishing process for chemically polishing the annealed tab wire is performed (S14).
  • the manufacturing procedure of the solar cell module 100 will be described.
  • a plurality of solar cells 70 are prepared, and an adhesive for adhering the tab wires 40 is applied to the surface of the solar cells 70.
  • the adhesive is applied by discharging means such as a dispenser or screen printing so as to cover the bus bar electrode 24.
  • the adhesive is a resin adhesive film
  • the resin adhesive film may be attached so as to cover the bus bar electrode 24.
  • the tab line 40 is disposed on the bus bar electrode 24.
  • the tab wire 40 is pressed while the lower surface 40a is in contact with the bus bar electrode 24, and the adhesive is cured by heating. As a result, the adhesive is cured to form the resin layer 50a, whereby the resin layer 50 is formed.
  • the tab wire 40 is bonded to the bus bar electrode of the second electrode 30 provided on the back surface 14 by the same procedure as before.
  • the plurality of solar cells 70 connected to the tab wire 40 are sealed.
  • a resin sheet and a protective substrate 62 constituting a part of the sealing layer 66 are disposed on the light receiving surface 12 side of the plurality of solar cells 70 to which the tab wires 40 are connected, and a part of the sealing layer 66 is disposed on the back surface 14 side.
  • a resin sheet and a back sheet 64 are arranged.
  • Example 1 since chemical polishing is performed, the presence of fine irregularities on the surface of the tab wire can be reduced. Moreover, since the presence of fine irregularities on the surface of the tab line is reduced, the thickness of the oxide film can be made uniform. In addition, since the thickness of the oxide film is uniform, it is possible to suppress a decrease in insulation. Moreover, since the tab wire having the unevenness on the one surface side is manufactured while the presence of fine unevenness on the surface of the tab wire is reduced, the light re-incidence rate of the solar cell can be improved. Further, since the final shape is generated by molding by plastic working, the number of processing steps can be reduced.
  • the processing can be simplified. Further, since an aluminum material is used as a raw material, chemical polishing can be easily performed. Moreover, since an aluminum material is used as a raw material, cost can be reduced. Also, since annealing is performed, the crystal grain size can be increased, and smoother chemical polishing can be performed. By producing a solar cell module using a tab wire having any one of these functions and effects, the same functions and effects can be obtained.
  • Example 2 of this invention is related to the technique for manufacturing a tab wire similarly to Example 1.
  • FIG. 2 the shape of the tab line manufactured in Example 2 is different from the shape of the tab line manufactured in Example 1. Below, it demonstrates focusing on the difference with Example 1.
  • FIG. 1 illustrates focusing on the difference with Example 1.
  • FIGS. 9A to 9D show the manufacturing process of the tab wire according to the second embodiment of the present invention.
  • Fig.9 (a) shows sectional drawing of the aluminum wire 200 used as the raw material of a tab wire.
  • the direction of the cross section in FIG. 9A is the same as that in FIG.
  • the side view of the aluminum wire 200 is omitted, it is shown in the same manner as in FIG.
  • the “length direction”, “width direction”, and “thickness direction” are determined in the same manner as before.
  • FIG. 10 is an enlarged cross-sectional view of the tab wire 202 after molding. Also in the post-molding tab line 202, many fine irregularities are generated on the molded surface, as in FIG. Returning to FIG.
  • FIG. 11 is an enlarged cross-sectional view of the tab line 206 after chemical polishing. Also in FIG. 11, the oxide film layer 210 is formed so as to wrap around the central aluminum portion 208.
  • the tab wire 202 after forming, the tab wire 204 after annealing, and the tab wire 206 after chemical polishing in Example 2 are the same except for the cross-sectional shape of FIGS. 1C to 1E. Then, explanation is omitted.
  • Example 2 by performing chemical polishing, it is possible to reduce the presence of fine irregularities on the surface of the tab line, even for a tab line having a square cross section. Further, the tab wire can be easily manufactured by making the cross section square.
  • Example 3 of this invention is related with the technique for manufacturing a tab wire as before. So far, the tab wire has been formed by one plastic working. On the other hand, in Example 3, the tab wire is formed by plastic processing a plurality of times, for example, twice. Below, it demonstrates centering on the difference from before.
  • FIGS. 12A to 12E show the manufacturing process of the tab wire according to the third embodiment of the present invention.
  • Fig.12 (a) shows sectional drawing of the aluminum wire 200 used as the raw material of a tab wire. This is the same as in FIG.
  • the first post-molding tab line 220 in FIG. 12B has a quadrangular shape as an intermediate shape.
  • a sectional view in which the tab wire 220 after the first molding is enlarged is the same as FIG.
  • the second post-molding tab line 222 of FIG. 12C is formed.
  • molding of FIG.12 (c) has an unevenness
  • An enlarged cross-sectional view of the finger electrode 22 is the same as FIG.
  • the post-annealed tab line 204 in FIG. 12D is generated.
  • the post-chemical polishing tab line 206 of FIG. 12E is generated.
  • An enlarged cross-sectional view of the tab line 206 after chemical polishing is the same as FIG.
  • the first post-molding tab line 220, the second post-molding tab line 222, the post-annealing tab line 204, and the post-chemical polishing tab line 206 in Example 3 are shown in FIGS. 9B and 1C. Since this is the same as (e), the description is omitted here.
  • Example 3 by performing chemical polishing, it is possible to reduce the presence of fine irregularities on the surface of the tab line, even if the tab line has been formed in multiple stages. In addition, since a plurality of stages of molding is performed, the equipment can be used when a plurality of stages of molding has been performed.
  • an aluminum wire 200 that is, an aluminum material is used as a raw material.
  • the present invention is not limited to this.
  • raw materials other than aluminum materials may be used.
  • a raw material other than the aluminum material a material having a small ionization tendency is preferable.
  • unplated copper can be used. According to this modification, even when various raw materials are used, the presence of fine irregularities on the surface of the tab wire can be reduced.
  • annealing is performed after molding.
  • the present invention is not limited to this.
  • annealing may not be performed.
  • chemical polishing may be performed on the formed tab wire.
  • chemical polishing may be performed after the formed tab wire is further processed differently from annealing. According to this modification, the degree of freedom of processing can be improved.
  • Examples 1 to 3 of the present invention chemical polishing is performed.
  • electrolytic polishing may be performed instead of chemical polishing or in addition to chemical polishing.
  • Electropolishing is a method in which a metal surface is polished by dipping in a polishing liquid and electrolyzing with an anode. Such electrolytic polishing can be said to be polishing using a solution, similar to chemical polishing. According to this modification, the degree of freedom of processing can be improved.
  • Example 3 of the present invention the molding process is performed twice.
  • the present invention is not limited to this, and for example, three or more molding processes may be performed. According to this modification, the degree of freedom of processing can be improved.
  • 10 power generation layer 12 light-receiving surface, 14 back surface, 20 first electrode, 22 finger electrode, 24 bus bar electrode, 30 second electrode, 34 bus bar electrode, 40 tab wire, 40 a lower surface, 40 a lower surface, 40 b upper surface, 42 extension, 43 bent Part, 44 end, 50, 50a, 50b resin layer, 62 protective substrate, 64 backsheet, 66 sealing layer, 70 solar cell, 100 solar cell module, 200 aluminum wire, 202 post-molded tab wire, 204 post-annealed tab Wire, 206, tab wire after chemical polishing, 208 aluminum part, 210 oxide film layer.
  • the presence of fine irregularities on the surface of the tab wire can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 複数の太陽電池のそれぞれに設けられた電極間を接続するためのタブ線を製造するために、まず、アルミニウム線200に対する塑性加工を実行することによって、成形後タブ線202が生成される。これにつづいて、成形後タブ線202に対して焼きなましを実行することによって、焼きなまし後タブ線204が生成される。さらに、焼きなまし後タブ線204の表面に対して、溶液を使用した研磨が実行されることによって、化学研磨後タブ線206が生成される。

Description

タブ線の製造方法
 本発明は、タブ線の製造技術、特に複数の太陽電池間を接続するためのタブ線の製造方法に関する。
 隣接した太陽電池は、タブ線によって直列に接続される。タブ線は太陽電池の受光面側にも設けられるので、タブ線によって太陽電池の光学的損失が生じる。
特開2006-13406号公報
 タブ線の表面に微細な凹凸が存在していると、タブ線の鏡面反射率が低くなるので、太陽電池への光の再入射率が低くなってしまう。また、タブ線の表面を酸化膜等の絶縁体が覆っている場合、タブ線の表面に微細な凹凸形状が存在していると、絶縁体が薄くなる部分が存在してしまうので、絶縁性が低くなってしまう。
 本発明はこうした状況に鑑みなされたものであり、その目的は、タブ線の表面の微細な凹凸の存在を低減する技術を提供することにある。
 上記課題を解決するために、本発明のある態様のタブ線の製造方法は、複数の太陽電池のそれぞれに設けられた電極間を接続するためのタブ線の製造方法であって、塑性加工によってタブ線を成形するステップと、成形したタブ線の表面に対して、溶液を使用した研磨を実行するステップと、を備える。
 本発明によれば、タブ線の表面の微細な凹凸の存在を低減できる。
図1(a)-(e)は、本発明の実施例1に係るタブ線の製造工程を示す図である。 図1(c)の成形後タブ線を拡大した断面図である。 図1(e)の化学研磨後タブ線を拡大した断面図である。 図4(a)-(d)は、本発明の実施例1の比較例に係るタブ線の製造工程を示す図である。 図1(e)の化学研磨後タブ線を使用した太陽電池モジュールを示す断面図である。 図5の太陽電池の表面を示す平面図である。 図1(e)の化学研磨後タブ線を使用した太陽電池モジュールの図5とは異なった方向の断面図である。 本発明の実施例1に係るタブ線の製造手順を示すフローチャートである。 図9(a)-(d)は、本発明の実施例2に係るタブ線の製造工程を示す図である。 図9(b)の成形後タブ線を拡大した断面図である。 図9(d)の化学研磨後タブ線を拡大した断面図である。 図12(a)-(e)は、本発明の実施例3に係るタブ線の製造工程を示す図である。
(実施例1)
 本発明の実施例1を具体的に説明する前に、概要を述べる。実施例1は、複数の太陽電池のそれぞれに設けられたバスバー電極間を接続するためのタブ線を製造するための技術に関する。タブ線を製造するために、銀メッキ銅線を塑性加工する場合が多いが、実施例1においては、低コスト化を目的として、アルミニウム線を塑性加工する。塑性加工によって成形したアルミニウム製のタブ線の表面には、微細な凹凸が存在する。このような微細な凹凸の存在を低減するために、実施例1においては、成形したタブ線の表面に対して、化学研磨が実行される。以下では、タブ線の製造工程を説明した後に、そのようなタブ線を使用した太陽電池モジュールを説明する。
 図1(a)-(e)は、実施例1に係るタブ線の製造工程を示す。図1(a)は、タブ線の原材料となるアルミニウム線200の側面図を示す。また、図1(b)は、図1(a)の断面線A-Aにおけるアルミニウム線200の断面図を示す。一例として、アルミニウム線200の断面は、円形である。また、説明の便宜上、以下では、図1(a)の左右の方向を「長さ方向」といい、図1(b)の左右の方向を「幅方向」といい、図1(a)、(b)の上下の方向を「厚さ方向」という。
 アルミニウム線200に対して塑性加工を実行することによって、図1(c)の成形後タブ線202が成形される。図1(c)の成形後タブ線202は、図1(b)に対応した断面図である。塑性加工は、金属材料の一部あるいは全体に塑性変形を加えることによって、所定の形状にする成形がなされる操作であり、圧延加工、押出加工、プレス加工等を含む。ここでは、ローラによって形状づけがなされる。また、1回の塑性加工によって最終的な形状の成形後タブ線202が成形されており、この成形処理の後、さらなる成形処理は実行されない。
 成形後タブ線202は、図1(c)のごとく、最終的な形状として、一面側に凹凸を有する。一面側の凹凸のうちの凸部は、略角錐形状あるいは略円錐形状のような山形形状を有しており、複数の凸部は、成形後タブ線202の幅方向、長さ方向に並ぶように設けられる。図2は、成形後タブ線202を拡大した断面図である。成形後タブ線202の原材料は、アルミニウムであり、アルミニウムは高い展性を有するので、成形された表面には、微細な凹凸が多数発生する。ここで、微細とは、成形後タブ線202の一面側に設けられた略角錐形状あるいは略円錐形状と比較して十分に小さいということである。また、微細とは、成形後タブ線202の長さ方向、幅方向、厚さ方向のうちの最短の長さと比較して十分に小さいということであってもよい。このような微細な凹凸によって、前述のごとく、成形後タブ線202の表面の鏡面反射率が低くなる。その結果、このような成形後タブ線202により接続された太陽電池の光の再入射率が低くなってしまう。また、成形後タブ線202の表面には、図示しない酸化膜が形成されているが、微細な凹凸によって、酸化膜の厚さが一様ではなくなる。その結果、酸化膜の厚さの薄い部分が生じ、その部分において絶縁性が低くなってしまう。図1(c)に戻る。
 成形後タブ線202を焼きなますことによって、図1(d)の焼きなまし後タブ線204が生成される。焼きなましは、適当な温度に加熱してその温度を保持し、その後、徐冷して金属材料の機械的性質を改善する操作であり、ここでは、結晶粒径を大きくすることを目的としてなされる。焼きなまし後タブ線204の表面に対して、化学研磨を実行することによって、図1(e)の化学研磨後タブ線206が生成される。化学研磨とは、金属表面の微細な凹凸の凸部を凹部よりも先に溶解させ、平滑な光沢面を得る方法であり、特に研磨液に浸せきすることにより化学的に金属表面を研磨する方法である。研磨液の一例は、硝酸、リン酸、それらの混合液である。図3は、化学研磨後タブ線206を拡大した断面図である。中央のアルミニウム部208を包み込むように酸化膜層210が形成される。酸化膜層210は、成形後タブ線202において自然酸化によって生じたものではなく、化学研磨が酸化工程となって形成されたものである。図1(e)に戻る。その後、化学研磨後タブ線206は洗浄される。
 図4(a)-(d)は、本発明の実施例1の比較例に係るタブ線の製造工程を示す。比較例では、銀メッキ銅が使用される場合を説明する。図4(a)は、銀メッキ銅線300の断面図を示す。図4(a)の断面の方向は、図1(b)と同様である。ここでは、銀メッキ銅線300の側面図を省略するが、それは図1(a)と同様に示される。また、「長さ方向」、「幅方向」、「厚さ方向」がこれまでと同様に定められる。
 銀メッキ銅線300に対して塑性加工を実行することによって、図4(b)の第1成形後タブ線302が成形される。第1成形後タブ線302は、図4(b)のごとく、四角形の形状を有している。さらに、第1成形後タブ線302に対して塑性加工を実行することによって、図4(c)の第2成形後タブ線304が成形される。第2成形後タブ線304は、図1(c)の成形後タブ線202と同様に、一面側に凹凸を有する。第2成形後タブ線304を焼きなますことによって、図4(d)の焼きなまし後タブ線306が生成される。銀は化学的耐性が強いので、銀メッキ銅には化学研磨を実行できない。そのため、焼きなまし後タブ線306に対して、化学研磨は実行されない。
 図5は、化学研磨後タブ線206を使用した太陽電池モジュールを示す断面図である。太陽電池モジュール100は、複数の太陽電池70、タブ線40、樹脂層50a、50b(以下、総称する場合は樹脂層50という)、保護基板62、バックシート64、封止層66を含む。また、太陽電池70は、発電層10、第1電極20、第2電極30を含む。なお、図5におけるタブ線40は、図1(e)の化学研磨後タブ線206に相当する。
 発電層10は、入射する光を吸収して光起電力を発生させる層であり、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料からなる基板を有する。発電層10の構造は、特に限定されないが、本実施形態では、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を有する。発電層10は、例えば、n型単結晶シリコン基板の受光面側に、i型非晶質シリコン層、ボロン(B)等がドープされたp型非晶質シリコン層、酸化インジウム等の透光性導電酸化物からなる透明導電層の順番で積層されている。また、基板の裏面側に、i型非晶質シリコン層、リン(P)等がドープされたn型非晶質シリコン層、透明導電層の順番で積層されている。
 発電層10は、太陽電池70の表面のひとつである受光面12と、太陽電池70の表面のひとつであり、受光面12に背向する裏面14とを有する。ここで、受光面とは、太陽電池70において主に太陽光が入射される主面を意味し、具体的には、発電層10に入射される光の大部分が入射される面である。
 第1電極20および第2電極30は、太陽電池70の表面に設けられる電極として、受光面12と裏面14にそれぞれ設けられ、発電層10が発電した電力を外部に取り出す。第1電極20および第2電極30は、例えば、銅(Cu)やアルミニウム(Al)を含む導電性の材料である。なお、銅(Cu)や錫(Sn)等の電解メッキ層を含んでもよい。ただし、これに限定されるものでなく、金、銀等の他の金属、他の導電性材料、またはそれらの組合せとしてもよい。
 タブ線40は、樹脂層50により、第1電極20または第2電極30と電気的に導通するように表面上に接着される。なお、樹脂層50が絶縁性を有する場合、タブ線40と、第1電極20または第2電極30とは直接接着される。また、ニッケル等の導電性粒子が樹脂層50に含まれている場合、タブ線40と、第1電極20または第2電極30とは直接接着されていなくてもよい。タブ線40は、複数の太陽電池70が配列されるx方向に延び、x方向に隣接する一方の太陽電池70の第1電極20と、他方の太陽電池70の第2電極30とを接続する。ここで、タブ線40は、延在部42と、屈曲部43と、端部44を備える。延在部42は、受光面12または裏面14に沿ってx方向に延び、樹脂層50を介して受光面12または裏面14に接着される。より詳細には、延在部42は、第1電極20または第2電極30のバスバー電極の上に配置され、バスバー電極と導通するようにバスバー電極の少なくとも一部と直接接触接した状態で接着される。
 端部44は、延在部42が設けられる受光面12または裏面14の上に設けられ、太陽電池70の外周に近い領域に配置される。屈曲部43は、太陽電池70の厚さに相当する段差を有する。屈曲部43が設けられることで、タブ線40は、複数の太陽電池70の受光面12および裏面14がそれぞれ同一平面内に配置した状態で、一方の太陽電池70の受光面12と他方の太陽電池70の裏面14とを接続することができる。
 保護基板62は、太陽電池70の受光面12側に設けられ、太陽電池70を外部環境から保護するとともに、太陽電池70が発電のために吸収する波長帯域の光を透過する。保護基板62は、例えば、ガラス基板である。
 バックシート64および封止層66は、エチレン酢酸ビニル共重合体(EVA)や、ポリビニルブチラール(PVB)、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)等の樹脂材料である。これにより、太陽電池70への水分の浸入等を防ぐとともに、太陽電池モジュール100全体の強度を向上させる。なお、バックシート64は、保護基板62と同じガラスや、プラスチック等の透明基板としてもよい。また、保護基板62側から入射した光が太陽電池70により多く吸収されるよう、バックシート64と封止層66の間に金属箔などを設けることで、太陽電池70を透過してバックシート64に達した光を太陽電池70へ反射させてもよい。
 図6は、太陽電池70の表面を示す平面図である。第1電極20は、互いに平行に第1の方向(x方向)に延びる3本のバスバー電極24と、バスバー電極24と直交する第2の方向(y方向)に延びる複数のフィンガー電極22を備える。フィンガー電極22は、受光面12上に形成される電極であるため、発電層10に入射する光を遮らないように細く形成することが望ましい。また、発電した電力を効率的に集電できるよう所定の間隔で配置することが望ましい。バスバー電極24は、複数のフィンガー電極22を互いに接続する。バスバー電極24は、発電層10に入射する光を遮らない程度に細く形成するとともに、複数のフィンガー電極22から集電した電力を効率的に流せるよう、ある程度太くすることが望ましい。タブ線40は、バスバー電極24に接着されており、バスバー電極24を覆う。
 また、図6には示されていないが、第2電極30も、第1電極20と同様に、互いに平行にx方向に延びる3本のバスバー電極と、バスバー電極と直交してy方向に延びる複数のフィンガー電極を備える。なお、裏面14側は、太陽光が主に入射される主面ではないため、第2電極30のフィンガー電極の本数は、受光面12側の第1電極20よりもその本数を増やすことで、集電効率を高められる。さらに、タブ線40は、第2電極30のバスバー電極に接着されている。
 図7は、化学研磨後タブ線206を使用した太陽電池モジュールの図5とは異なった方向の断面図である。これは、図5の断面線A-Aにおける断面図に相当する。樹脂層50a、50bは、受光面12と裏面14のそれぞれに設けられ、受光面12または裏面14と、その上に延在するタブ線40とを接着する。樹脂層50は、樹脂接着剤を硬化させた接着層であり、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂などの接着性を有する熱硬化性の樹脂材料を用いる。
 樹脂層50aは、バスバー電極24に接して設けられ、バスバー電極24とタブ線40とを接着する。特に、樹脂層50aは、タブ線40の下面40aと少なくとも接しており、タブ線40がバスバー電極24に導通するように接触した状態で、タブ線40を受光面12に接着させる。前述のごとく、タブ線40では、酸化膜層210によってアルミニウム部208が包み込まれている。酸化膜層210は、絶縁性を有するので、バスバー電極24とタブ線40との導通を防ぐ。そのため、ここでは、バスバー電極24によって酸化膜層210の一部が突き破られることによって、バスバー電極24とアルミニウム部208とが直接接触している。このように、酸化膜層210のうち、下面40a側の一部は、バスバー電極24によって突き破られているが、上面40b側の酸化膜層210はそのまま保持される。なお、バスバー電極24の表面は、酸化膜層210よりも硬い。また、樹脂層50aは、バスバー電極24が延びるx方向に直交するy方向の幅が、バスバー電極24の幅よりも広く設けられる。
 樹脂層50bも、樹脂層50aと同様に、バスバー電極34に接して設けられ、バスバー電極34とタブ線40とを接着する。その際、バスバー電極34に接着されるタブ線40の面が、バスバー電極24に接着されるタブ線40の面とは異なる。後者は下面40aであるが、前者は上面40bである。具体的に説明すると、樹脂層50bは、タブ線40の上面40bと少なくとも接しており、タブ線40がバスバー電極34に導通するように接触した状態で、タブ線40を裏面14に接着させる。また、ここでは、バスバー電極34とアルミニウム部208とによって酸化膜層210の一部が突き破られることによって、バスバー電極34とアルミニウム部208とが直接接触している。このように、酸化膜層210のうち、上面40b側の一部は、アルミニウム部208とバスバー電極34によって突き破られているが、下面40a側の酸化膜層210はそのまま保持される。酸化膜層210が保持されることによって、タブ線40とバックシート64との間の絶縁性も保持される。
 図8は、本発明の実施例1に係るタブ線の製造手順を示すフローチャートである。タブ線を成形するための成形処理が実行される(S10)。成形されたタブ線を焼きなますための焼きなまし処理が実行される(S12)。焼きなまされたタブ線を化学研磨するための化学研磨処理が実行される(S14)。
 つづいて、太陽電池モジュール100の製造手順を説明する。まず、複数の太陽電池70を用意し、タブ線40を接着するための接着剤を太陽電池70の表面に塗布する。ここで、接着剤は、バスバー電極24の上を覆うように、ディスペンサなどの吐出手段やスクリーン印刷により塗布される。なお、接着剤が、樹脂接着フィルムである場合、樹脂接着フィルムがバスバー電極24の上を覆うように貼り付けられてもよい。次に、タブ線40が、バスバー電極24の上に配置される。その後、下面40aがバスバー電極24に接触した状態でタブ線40を押圧するとともに、加熱によって接着剤を硬化させる。これにより、接着剤が硬化して樹脂層50aとなることによって、樹脂層50が形成される。
 さらに、これまでと同様の手順によって、タブ線40は、裏面14に設けられる第2電極30のバスバー電極と接着される。最後に、タブ線40を接続した複数の太陽電池70を封止する。タブ線40を接続した複数の太陽電池70の受光面12側に、封止層66の一部を構成する樹脂シートと保護基板62を配置し、裏面14側に封止層66の一部を構成する樹脂シートとバックシート64を配置する。太陽電池70を保護基板62とバックシート64で挟み込んだ状態で加熱圧着することにより、受光面12側と裏面14の樹脂シートが融着して封止層66が形成され、太陽電池モジュール100が形成される。
 実施例1によれば、化学研磨を実行するので、タブ線の表面の微細な凹凸の存在を低減できる。また、タブ線の表面の微細な凹凸の存在が低減されるので、酸化膜の厚さを一様にできる。また、酸化膜の厚さが一様になるので、絶縁性が低くなることを抑制できる。また、タブ線の表面の微細な凹凸の存在が低減されつつも、一面側に凹凸を有したタブ線を製造するので、太陽電池の光の再入射率を向上できる。また、塑性加工による成形によって最終的な形状を生成するので、処理のステップ数を低減できる。
 また、処理のステップ数が低減されるので、処理を簡易にできる。また、原材料としてアルミニウム材を使用するので、化学研磨を容易に実行できる。また、原材料としてアルミニウム材を使用するので、コストを低減できる。また、焼きなましを実行するので、結晶粒径を大きくでき、よりなめらかな化学研磨を実行できる。これらのうちのいずれかひとつの作用効果を有したタブ線を使用した太陽電池モジュールを製造することによって、同様の作用効果を有することができる。
(実施例2)
 本発明の実施例2は、実施例1と同様に、タブ線を製造するための技術に関する。一方、実施例2において製造されるタブ線の形状が、実施例1において製造されるタブ線の形状とは異なる。以下では、実施例1との差異を中心に説明する。
 図9(a)-(d)は、本発明の実施例2に係るタブ線の製造工程を示す。図9(a)は、タブ線の原材料となるアルミニウム線200の断面図を示す。図9(a)の断面の方向は、図1(b)と同様である。ここでは、アルミニウム線200の側面図を省略するが、それは図1(a)と同様に示される。また、「長さ方向」、「幅方向」、「厚さ方向」がこれまでと同様に定められる。
 アルミニウム線200に対して塑性加工を実行することによって、図9(b)の成形後タブ線202が成形される。成形後タブ線202は、最終的な形状として、四角形の形状を有する。図10は、成形後タブ線202を拡大した断面図である。成形後タブ線202でも、図2と同様に、成形された表面に、微細な凹凸が多数発生する。図9(b)に戻る。
 成形後タブ線202を焼きなますことによって、図9(c)の焼きなまし後タブ線204が生成される。焼きなまし後タブ線204の表面に対して、化学研磨を実行することによって、図9(d)の化学研磨後タブ線206が生成される。図11は、化学研磨後タブ線206を拡大した断面図である。図11でも中央のアルミニウム部208を包み込むように酸化膜層210が形成される。実施例2における成形後タブ線202、焼きなまし後タブ線204、化学研磨後タブ線206は、図1(c)-(e)と断面の形状が異なるだけで、その他は同様であるので、ここでは説明を省略する。
 実施例2によれば、化学研磨を実行することによって、四角形の断面を有したタブ線であっても、タブ線の表面の微細な凹凸の存在を低減できる。また、断面を四角形にすることによって、タブ線の製造を簡易にできる。
(実施例3)
 本発明の実施例3は、これまでと同様に、タブ線を製造するための技術に関する。これまでは、1回の塑性加工によってタブ線が成形されている。一方、実施例3では、複数回、例えば、2回の塑性加工によってタブ線が成形される。以下では、これまでとの差異を中心に説明する。
 図12(a)-(e)は、本発明の実施例3に係るタブ線の製造工程を示す。図12(a)は、タブ線の原材料となるアルミニウム線200の断面図を示す。これは、図9(a)と同様である。アルミニウム線200に対して第1の塑性加工を実行することによって、図12(b)の第1成形後タブ線220が成形される。図12(b)の第1成形後タブ線220は、中間的な形状として、四角形の形状を有する。第1成形後タブ線220を拡大した断面図は、図10と同様である。第1成形後タブ線220に対して第2の塑性加工を実行することによって、図12(c)の第2成形後タブ線222が成形される。図12(c)の第2成形後タブ線222は、図1(c)と同様に、最終的な形状として、一面側に凹凸を有する。フィンガー電極22を拡大した断面図は、図2と同様である。
 第2成形後タブ線222を焼きなますことによって、図12(d)の焼きなまし後タブ線204が生成される。焼きなまし後タブ線204の表面に対して、化学研磨を実行することによって、図12(e)の化学研磨後タブ線206が生成される。化学研磨後タブ線206を拡大した断面図は、図3と同様である。このように、実施例3における第1成形後タブ線220、第2成形後タブ線222、焼きなまし後タブ線204、化学研磨後タブ線206は、図9(b)、図1(c)-(e)と同様であるので、ここでは説明を省略する。
 実施例3によれば、化学研磨を実行することによって、複数段階の成形を実行したタブ線であっても、タブ線の表面の微細な凹凸の存在を低減できる。また、複数段階の成形を実行するので、これまで複数段階の成形を実行していた場合、設備を利用できる。
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明の実施例1から3において、原材料としてアルミニウム線200、つまりアルミニウム材を使用している。しかしながらこれに限らず例えば、アルミニウム材以外の原材料が使用されてもよい。アルミニウム材以外の原材料としては、イオン化傾向が小さいものが好ましく、一例としてメッキされていない銅が使用可能である。本変形例によれば、さまざまな原材料を使用した場合であっても、タブ線の表面の微細な凹凸の存在を低減できる。
 本発明の実施例1から3において、成形後に焼きなましがなされている。しかしながらこれに限らず例えば、焼きなましがなされなくてもよい。その際、成形されたタブ線に対して、化学研磨がなされればよい。また、成形されたタブ線に対して、焼きなましとは異なった処理がさらになされた後に化学研磨がなされてもよい。本変形例によれば、処理の自由度を向上できる。
 本発明の実施例1から3において、化学研磨がなされている。しかしながらこれに限らず例えば、化学研磨の代わりに、あるいは化学研磨に加えて、電解研磨がなされてもよい。電解研磨は、研磨液に浸せきし陽極で電解をすることにより金属表面を研磨する方法である。このような電解研磨は、化学研磨と同様に、溶液を使用した研磨であるといえる。本変形例によれば、処理の自由度を向上できる。
 本発明の実施例3において、2回の成形処理がなされている。しかしながらこれに限らず例えば、3回以上の成形処理がなされてもよい。本変形例によれば、処理の自由度を向上できる。
 10 発電層、 12 受光面、 14 裏面、 20 第1電極、 22 フィンガー電極、 24 バスバー電極、 30 第2電極、 34 バスバー電極、 40 タブ線、 40a 下面、 40b 上面、 42 延在部、 43 屈曲部、 44 端部、 50,50a,50b 樹脂層、 62 保護基板、 64 バックシート、 66 封止層、 70 太陽電池、 100 太陽電池モジュール、 200 アルミニウム線、 202 成形後タブ線、 204 焼きなまし後タブ線、 206 化学研磨後タブ線、 208 アルミニウム部、 210 酸化膜層。
 本発明によれば、タブ線の表面の微細な凹凸の存在を低減できる。

Claims (5)

  1.  複数の太陽電池のそれぞれに設けられた電極間を接続するためのタブ線の製造方法であって、
     塑性加工によってタブ線を成形するステップと、
     成形したタブ線の表面に対して、溶液を使用した研磨を実行するステップと、
     を備えることを特徴とするタブ線の製造方法。
  2.  前記成形するステップは、少なくとも1回の塑性加工によって最終的な形状のタブ線を成形し、
     前記研磨を実行するステップは、成形した最終的な形状のタブ線の表面に対して、溶液を使用した研磨を実行することを特徴とする請求項1に記載のタブ線の製造方法。
  3.  成形した最終的な形状のタブ線を焼きなますステップをさらに備え、
     前記研磨するステップは、焼きなましたタブ線の表面に対して、溶液を使用した研磨を実行することを特徴とする請求項2に記載のタブ線の製造方法。
  4.  前記成形するステップは、最終的な形状として、一面側に凹凸を有したタブ線を成形することを特徴とする請求項2または3に記載のタブ線の製造方法。
  5.  前記成形するステップは、アルミニウム材に対して塑性加工を実行することを特徴とする請求項1から4のいずれかに記載のタブ線の製造方法。
PCT/JP2013/002015 2013-03-25 2013-03-25 タブ線の製造方法 WO2014155413A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/002015 WO2014155413A1 (ja) 2013-03-25 2013-03-25 タブ線の製造方法
PCT/JP2014/001093 WO2014155973A1 (ja) 2013-03-25 2014-02-28 タブ線の製造方法、太陽電池モジュールの製造方法、太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002015 WO2014155413A1 (ja) 2013-03-25 2013-03-25 タブ線の製造方法

Publications (1)

Publication Number Publication Date
WO2014155413A1 true WO2014155413A1 (ja) 2014-10-02

Family

ID=51622517

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/002015 WO2014155413A1 (ja) 2013-03-25 2013-03-25 タブ線の製造方法
PCT/JP2014/001093 WO2014155973A1 (ja) 2013-03-25 2014-02-28 タブ線の製造方法、太陽電池モジュールの製造方法、太陽電池モジュール

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001093 WO2014155973A1 (ja) 2013-03-25 2014-02-28 タブ線の製造方法、太陽電池モジュールの製造方法、太陽電池モジュール

Country Status (1)

Country Link
WO (2) WO2014155413A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126151A1 (en) * 2021-12-29 2023-07-06 Rec Solar Pte. Ltd. An electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099452A1 (ja) * 2010-02-15 2011-08-18 ソニーケミカル&インフォメーションデバイス株式会社 薄膜型太陽電池モジュールの製造方法
JP2012094743A (ja) * 2010-10-28 2012-05-17 Mitsubishi Shindoh Co Ltd 太陽電池用電極線材、その基材および基材の製造方法
WO2013035667A1 (ja) * 2011-09-05 2013-03-14 デクセリアルズ株式会社 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842166B2 (ja) * 2010-06-25 2016-01-13 パナソニックIpマネジメント株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2012204388A (ja) * 2011-03-23 2012-10-22 Sony Chemical & Information Device Corp 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線が巻装されたリール巻装体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099452A1 (ja) * 2010-02-15 2011-08-18 ソニーケミカル&インフォメーションデバイス株式会社 薄膜型太陽電池モジュールの製造方法
JP2012094743A (ja) * 2010-10-28 2012-05-17 Mitsubishi Shindoh Co Ltd 太陽電池用電極線材、その基材および基材の製造方法
WO2013035667A1 (ja) * 2011-09-05 2013-03-14 デクセリアルズ株式会社 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126151A1 (en) * 2021-12-29 2023-07-06 Rec Solar Pte. Ltd. An electrode assembly

Also Published As

Publication number Publication date
WO2014155973A1 (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5861044B2 (ja) 太陽電池モジュール
JP5687506B2 (ja) 太陽電池及び太陽電池モジュール
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
WO2014002329A1 (ja) 太陽電池モジュールおよびその製造方法
JP5479228B2 (ja) 太陽電池モジュール
JP2013225712A (ja) 薄膜太陽電池の製造方法
JP5089456B2 (ja) 圧着装置及び太陽電池モジュールの製造方法
JP2010016246A (ja) 太陽電池モジュール及びその製造方法
JP5306353B2 (ja) 太陽電池モジュール
JP5174226B2 (ja) 太陽電池モジュール
WO2017009957A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
WO2014155413A1 (ja) タブ線の製造方法
JP6915054B2 (ja) 光電変換装置およびそれを備える太陽電池モジュール
WO2014033884A1 (ja) 太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2013114555A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2013051339A (ja) 太陽電池モジュール及びその製造方法
JP2011044751A (ja) 太陽電池モジュール
JP5558940B2 (ja) 太陽電池モジュール及びその製造方法
WO2010134467A1 (ja) 太陽電池の製造方法
WO2013014810A1 (ja) 太陽電池モジュール及びその製造方法
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
JP6083685B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2014072276A (ja) 光起電力装置
WO2019092885A1 (ja) 太陽電池モジュール
WO2014155415A1 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP