[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014142314A1 - リチウムイオン二次電池用正極活物質の処理方法 - Google Patents

リチウムイオン二次電池用正極活物質の処理方法 Download PDF

Info

Publication number
WO2014142314A1
WO2014142314A1 PCT/JP2014/056942 JP2014056942W WO2014142314A1 WO 2014142314 A1 WO2014142314 A1 WO 2014142314A1 JP 2014056942 W JP2014056942 W JP 2014056942W WO 2014142314 A1 WO2014142314 A1 WO 2014142314A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
ion secondary
Prior art date
Application number
PCT/JP2014/056942
Other languages
English (en)
French (fr)
Inventor
師宏 濱田
義人 杉渕
肇 鹿島
Original Assignee
日本化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学産業株式会社 filed Critical 日本化学産業株式会社
Priority to CN201480015300.5A priority Critical patent/CN105190963B/zh
Priority to JP2015505603A priority patent/JP6347776B2/ja
Priority to US14/774,286 priority patent/US9755223B2/en
Priority to DE112014001266.1T priority patent/DE112014001266T5/de
Publication of WO2014142314A1 publication Critical patent/WO2014142314A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for treating an active material for removing lithium hydroxide, lithium carbonate and the like contained in a positive electrode active material used as a positive electrode material for a lithium ion secondary battery.
  • a positive electrode active material of a lithium ion secondary battery has been mainly composed of cobalt.
  • cobalt is a rare metal and expensive.
  • a positive electrode active material mainly composed of nickel has attracted attention. Since the positive electrode active material containing nickel as a main component has a lower cobalt content than the positive electrode active material containing cobalt as a main component, the cost is low.
  • the positive electrode active material mainly composed of nickel a large amount of lithium compounds such as lithium hydroxide and lithium carbonate, which are unreacted residues and by-products during synthesis, are present between the particle surfaces and the primary particles.
  • Patent Document 1 a method of washing the positive electrode active material with an aqueous solution in which water or lithium is dissolved
  • an aqueous solution having a pH of 7 or higher such as aqueous ammonia or an aqueous lithium hydroxide solution.
  • Patent Document 2 Several cleaning methods (Patent Document 2) and cleaning methods using various solutions have been proposed.
  • the present invention has been made based on the above situation, and lithium hydroxide and lithium carbonate, which are disadvantageous as a positive electrode material contained in a positive electrode active material for a lithium ion secondary battery, can be sufficiently removed.
  • a positive electrode material for a secondary battery there is no reduction in the discharge capacity of the secondary battery, and no gelation occurs even when the positive electrode paste is stored under certain conditions.
  • a method for treating a positive electrode active material for a lithium ion secondary battery which makes it very easy to treat waste liquid and recover valuable materials in the waste liquid.
  • the present inventors first slurried and washed the positive electrode active material in a washing solution containing ammonia, and then separated the slurry into solid and liquid, and dehydrated and dried the solid component. By firing at a predetermined temperature in an oxygen atmosphere, a positive electrode active material in which the content of lithium hydroxide or lithium carbonate is reduced as much as possible is obtained. By using this positive electrode active material as a positive electrode material, there is no occurrence of battery swelling.
  • the method for treating a positive electrode active material for a lithium ion secondary battery of the present invention (1)
  • the positive electrode active material is washed by bringing it into contact with a cleaning solution containing ammonia, and then separated into solid and liquid, and the solid component is fired at 600 to 700 ° C. in an oxygen atmosphere.
  • the cleaning liquid (2) has a conductivity of 11.6 mS / cm or less
  • (3) may contain a recovered liquid component
  • the method for treating a positive electrode active material for a lithium ion secondary battery of the present invention is a positive electrode active material for a lithium ion secondary battery treated by the treatment method according to any one of (1) to (4). It is preferable that the discharge capacity of 4.25 to 3.5 V of the lithium ion secondary battery using as a positive electrode material is 99% or more of that before washing.
  • the method for treating a positive electrode active material of the present invention it is possible to remarkably reduce both the amount of lithium hydroxide and lithium carbonate which are inconvenient as a positive electrode material contained in the positive electrode active material. Further, according to the treatment method of the present invention, when the treated positive electrode active material is used as a positive electrode material for a lithium ion secondary battery, both the initial discharge capacity and the average discharge voltage are 99.5% or more of the untreated product. Thus, in addition to the occurrence of battery swelling, a lithium ion secondary battery with good charge / discharge characteristics can be obtained.
  • the processing method of the present invention when the cleaning liquid is collected each time it is used and repeatedly used as the cleaning liquid in the next processing, a result equal to or higher than that obtained when a new cleaning liquid is used can be obtained.
  • the performance improvement effect as the positive electrode material can be obtained.
  • the amount of waste liquid is significantly reduced compared to conventional cleaning waste liquid, and the concentration of lithium carbonate, lithium hydroxide, etc. in the waste liquid is remarkably high, so that the waste liquid can be treated. Not only can it be extremely simplified, but also valuables such as lithium carbonate and lithium hydroxide in the waste liquid can be recovered with high efficiency.
  • the positive electrode active material treated by the treatment method of the present invention is used for a lithium ion secondary battery composed of a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte containing a lithium salt, and the like.
  • the positive electrode is formed by applying a positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder on a positive electrode plate (for example, a positive electrode current collector made of an aluminum plate or the like).
  • the positive electrode active material also referred to as a positive electrode active material to be cleaned
  • a cleaning solution containing ammonia is washed by being sufficiently stirred.
  • aqueous ammonia containing ammonia As the cleaning liquid, so-called aqueous ammonia containing ammonia is used.
  • the ammonia (NH 3 ) concentration in the cleaning liquid is preferably 0.5 to 10 g / L.
  • this ammonia water may contain an alcohol such as ethanol. Since ethanol azeotropes with water, it becomes easy to remove water in the drying step after the washing operation. If the alcohol concentration is too low, this effect cannot be obtained. If the alcohol concentration is too high, the effect is saturated. Therefore, the concentration is preferably 50 to 96% by weight.
  • the conductivity of the cleaning liquid is too large, that is, if the concentration of the lithium compound removed from the positive electrode active material by the previous water washing is too high, the effect of removing the remaining lithium compound is lowered, and therefore the conductivity is 11. It is suitable that it is 6 mS / cm or less, preferably 10.6 mS / cm or less, more preferably 10.0 mS / cm or less.
  • the amount of the positive electrode active material to be cleaned with the cleaning liquid as described above is preferably 30 to 50% by weight with respect to the amount of the cleaning liquid in terms of cleaning efficiency.
  • the positive electrode active material becomes a slurry in the cleaning liquid, and after being sufficiently stirred in the slurry state, it is allowed to stand for a while.
  • There is no particular limitation on the stirring time at this time and it is sufficient to perform the stirring for at least 20 minutes to 1 hour depending on the amount of the positive electrode active material to be cleaned.
  • the temperature of the slurry at the time of stirring may be room temperature, or may be a temperature of about room temperature to 30 ° C.
  • the slurry of the positive electrode active material to be cleaned that has been allowed to stand is separated into a liquid component and a solid component, and the solid component is dried.
  • the positive electrode active material to be cleaned which is a solid component after drying, is fired in an oxygen atmosphere while allowing oxygen, air, and the like to pass through.
  • the firing atmosphere is preferably an oxygen concentration of 92 to 100% by volume.
  • the firing condition at this time is suitable at 600 to 700 ° C. for 2 to 8 hours, although it depends on the amount of the solid component to be heated.
  • the above-mentioned cleaning liquid collects the liquid components obtained when the above-mentioned solid-liquid separation is performed, and this can be repeatedly used as a cleaning liquid for the subsequent treatment of the positive electrode active material.
  • This cleaning liquid can be recovered as a liquid component each time the positive electrode active material is processed and used repeatedly as a cleaning liquid.
  • the cleaning effect equivalent to or better than when using a newly prepared cleaning solution that is, a compound inconvenient as a positive electrode material such as lithium carbonate and lithium hydroxide present in the positive electrode active material to be treated This amount can be reduced satisfactorily.
  • a lithium ion secondary battery using a positive electrode active material treated with such a cleaning solution as a positive electrode material can be satisfactorily prevented from being deteriorated in discharge characteristics.
  • the ammonia concentration, conductivity, etc. of the cleaning solution to be used repeatedly are as described above, and it is present in the material by treating the positive electrode active material with the cleaning solution under such conditions.
  • Inconvenient compounds when used as a positive electrode material can be removed well at low cost, and as a result, the deterioration of the battery characteristics of a lithium ion secondary battery using the substance can be well suppressed. it can.
  • the amount of the used cleaning liquid (waste liquid) is drastically reduced, and the cost is drastically reduced in addition to the steps required for the conventional waste liquid treatment.
  • valuable materials such as lithium carbonate and lithium hydroxide accumulated in the waste liquid can be recovered extremely well.
  • the positive electrode active material to be treated in the present invention include Ni-based composite oxides, and a positive electrode active material that can be particularly preferably processed is a Ni—Co—Al-based composite oxide.
  • Lithium ion secondary battery positive electrode active material having a composition of Li 1.05 Ni 0.85 Co 0.12 Al 0.03 O 2 and containing 0.48 wt% lithium carbonate (Li 2 CO 3 ) and 0.99 wt% lithium hydroxide (LiOH) was added to 300 mL of aqueous ammonia containing 1 g / L of ammonia (NH 3 ) (hereinafter referred to as “first cleaning solution”), and the slurry was stirred for 1 hour. Separated into a liquid component and a solid component. Next, the obtained solid component was dried under reduced pressure (134 mmHg, 140 ° C. for 12 hours) to obtain a dried product (hereinafter referred to as “first dried product”). The first dried product was baked at 650 ° C. for 6 hours while passing oxygen gas (oxygen gas concentration: 93 vol%) in an electric furnace, and the positive electrode active material of Example 1 (hereinafter “first positive electrode active material”). Got.
  • Example 2 A solution obtained by adding the same ammonia water as used in Example 1 to the liquid component obtained by solid-liquid separation in Example 1 until the total amount became 300 mL was used as the second washing liquid. The amount added is shown in Table 3.
  • a washed positive electrode active material having the same composition as in Example 1 was washed in the same manner as in Example 1 except that the second cleaning solution was used, and a dried product (hereinafter referred to as “second dried product”) and a positive electrode active material (Hereinafter referred to as “second positive electrode active material”).
  • Example 1 Except for using the liquid component obtained by treating with the second washing liquid and solid-liquid separation, the same procedure as for the second washing liquid was performed to obtain the third washing liquid, and the third washing liquid was used.
  • a to-be-washed positive electrode active material having the same composition as in Example 1 was washed to obtain a dried product (hereinafter referred to as “third dried product”) and a positive electrode active material (hereinafter referred to as “third positive electrode active material”).
  • third positive electrode active material a dried product
  • the same operation as in the case of the third washing liquid was performed to obtain the fourth washing liquid, and the working examples were used except that the fourth washing liquid was used.
  • Example 2 In the same manner as in Example 1, a to-be-cleaned positive electrode active material having the same composition as in Example 1 was washed to obtain a dried product (hereinafter “fourth dried product”) and a positive electrode active material (hereinafter “fourth positive electrode active material”). And Thereafter, the fifth to tenth dried products and the fifth to tenth cathode active materials were obtained in the same manner.
  • fourth dried product a dried product
  • fourth positive electrode active material hereinafter “fourth positive electrode active material”.
  • Example 1 The same positive electrode active material to be cleaned as used in Example 1, which is not subjected to cleaning treatment or heat treatment, is defined as an untreated active material, Only the cleaning treatment of Examples 1 and 2 was performed with the same positive electrode active material to be cleaned as used in Example 1, and the one not subjected to heat treatment was a dry product, A material subjected to only heat treatment without being washed with the same positive electrode active material to be cleaned as used in Example 1 was used as an active material only for heat treatment.
  • Examples 1 to 2 and the dried product obtained in the reference example (1 to 10th dried product) and the positive electrode active material (1 to 10th positive electrode active material, untreated active material, active material only for heat treatment) are as follows. An evaluation test was conducted. The results are shown in Table 1 (dried product after washing) and Table 2 (heat treated product).
  • PTFE polytetrafluoroethylene
  • a CR2016 type coin cell (lithium ion secondary battery) was prepared using a lithium metal foil as a non-aqueous electrolyte of 1: 1 volume% LiPF 6 / PC (propylene carbonate) + DMC (dimethyl carbonate).
  • the coin cell (lithium ion secondary battery) produced as described above was operated at 20 ° C.
  • Amount of lithium compound measured by the following method. A dry product or a 10% by weight suspension of the positive electrode active material was prepared using ion-exchanged water, stirred for 1 hour, and then the supernatant was diluted to 0.1 using a “potentiometric automatic titrator AT-510” manufactured by Kyoto Electronics Industry.
  • Table 3 shows the properties of the liquid components (first to tenth cleaning solutions) obtained in Examples 1 and 2, and the same lithium used in Example 1 with water only (no addition of ammonia) for reference. The property of the liquid component after washing
  • the result of heat treatment of the dried product shown in Table 1 shows that the contents of Li 2 CO 3 and LiOH are sufficiently reduced from the first positive electrode active material to the tenth positive electrode active material.
  • Li 2 CO 3 is somewhat different from the behavior of the active material after drying, and the fourth reduction effect is remarkable.
  • LiOH has the fifth and seventh reduction effects.
  • the discharge capacity most required for these active materials is almost equal to or higher than that when using a new cleaning solution from the first to the tenth time. As is clear from Table 2, this requirement is satisfied. I understand. Further, the discharge capacity of 4.25 to 3.5 V was 99% or more of that before washing except for washing with water not containing ammonia. Accordingly, when considered together with the results in Table 1, heat treatment is essential after the cleaning treatment.
  • Example 3 When the conductivity of the cleaning liquid exceeds 11.0 mS / cm, the same cleaning treatment is performed as in Example 2 except that a liquid adjusted to 10.0 mS / cm or less is used, and the eighth, ninth, and tenth times. 170 ml of each liquid component collected after washing and 130 ml of 1% ammonia aqueous solution were mixed to prepare a washing liquid. The conductivity of these cleaning solutions was 9.0 mS / cm. Each of these positive electrode active materials obtained by performing a cleaning process using these cleaning liquids and performing a heat treatment after drying was subjected to the same evaluation test as in Table 2. The results are shown in Table 4.
  • Example 4 The to-be-washed positive electrode active material was treated in the same manner as in Examples 1 to 3, except that ethanol was added to the novel aqueous ammonia prepared in Example 1 so that the concentration was 90% by weight.
  • Table 5 The results are shown in Table 5.
  • the contents of Li 2 CO 3 and LiOH were equal to or less than a few percent at most compared to those in Tables 1 and 2 after washing and heat treatment,
  • the drying time could be shortened by as much as 10% to as much as 20% in order to obtain a dry state equivalent to that in Examples 1 to 3.
  • the amount of a lithium compound that is inconvenient as a positive electrode material, which exists on the particle surface or between the particles of the positive electrode active material is favorably reduced without gelling the positive electrode active material used as the positive electrode material. can do.
  • the positive electrode active material obtained by the method of the present invention as a positive electrode material of a lithium ion secondary battery, battery characteristics such as battery swelling and charge / discharge efficiency due to gas generation such as CO 2 inside the battery
  • the method of the present invention is suitable for production of a positive electrode material for a lithium ion secondary battery.
  • the cleaning liquid when the cleaning liquid is repeatedly used, not only the amount of the cleaning liquid used but also the amount of the final cleaning waste liquid can be greatly reduced, drastically reducing the cost required for the waste liquid treatment process, As a result, the production cost of the positive electrode active material can be reduced.
  • a lithium compound is accumulated at a high concentration by repeated use of the cleaning liquid, and this lithium compound is very important not only as a raw material of a lithium ion secondary battery but also as a raw material of a positive electrode active material of the battery. It is extremely easy to recover these valuable materials from a waste liquid containing the compound at a high concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】 リチウムイオン二次電池用正極活物質中に含まれるLi2CO3、LiOH等の正極材として不都合なLi化合物を除去し、これを該二次電池の正極材とした場合に該二次電池の放電容量や平均放電電圧の低下がなく、洗浄処理によってもゲル化することがない、上記正極活物質の処理方法を提供する。 【解決手段】 上記正極活物質を、NH3を含む洗浄液によって洗浄した後に固液分離し、固体成分を酸素雰囲気下において600~700℃で焼成する。 上記洗浄液は、伝導度11.6mS/cm以下であり、回収された液体成分を含み、洗浄液として繰り返し使用されたものであってもよい。

Description

リチウムイオン二次電池用正極活物質の処理方法
 本発明は、リチウムイオン二次電池用正極材として使用される正極活物質中に含まれる水酸化リチウムや炭酸リチウム等を除去するための該活物質の処理方法に関する。
 近年、パソコンや携帯電話等の電子機器の小型化、高性能化が急速に進んでおり、これらの電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電容量が大きいリチウムイオン二次電池が幅広く用いられている。
 従来、リチウムイオン二次電池の正極活物質は、コバルトを主成分とするものが主流であった。しかし、コバルトは希少金属であり、高価である。
 そこで、ニッケルを主成分とした正極活物質が注目されている。ニッケルを主成分とする正極活物質は、コバルトを主成分とする正極活物質に比較してコバルトの含有量が少ないため、コストが低い。しかし、ニッケルを主成分とする正極活物質は、未反応残渣や合成時の副生物等である水酸化リチウムや炭酸リチウム等のリチウム化合物が粒子表面や一次粒子間に多く存在している。
 一般的に、炭酸リチウムが多く含まれるリチウムイオン二次電池用正極活物質を電池の正極材として用いた場合、炭酸リチウムが分解して電池内部で炭酸ガスを発生させるために電池内部の圧力が増加し、電池の膨れの発生や充放電効率等の電池特性が低下する。さらに、水酸化リチウムが多く含まれるリチウムイオン二次電池用正極活物質を電池の正極材として用いた場合、正極ペーストのゲル化を誘発し、正極ペーストを塗布する工程が困難となる。
 このような課題を解決するための手法として、正極活物質を水又はリチウムが溶解している水溶液で洗浄する方法(特許文献1)や、アンモニア水、水酸化リチウム水溶液等のpH7以上の水溶液で洗浄する方法(特許文献2)、さらには種々の溶液を用いて洗浄処理する方法がいくつか提案されている。
 しかし、リチウムイオン二次電池用正極活物質を従来から提案されている方法で洗浄処理しても、該正極活物質中に含まれる正極材として不都合な水酸化リチウムや炭酸リチウムの除去は必ずしも十分ではなかった。
 加えて、近年リチウムイオン二次電池の生産量及び用途が拡大していることから(例えば、ソーラー発電用蓄電池、電気自動車や飛行機等の電源用バッテリー等)、大量の正極活物質が必要とされ、これに伴い該活物質の生産工程で発生する大量の廃液を処理しなければならないという問題が新たに発生する。
特開2010-64944号公報 特開2011-100633号公報
 本発明は上記状況に基づいてなされたもので、リチウムイオン二次電池用正極活物質中に含まれる正極材として不都合な水酸化リチウムや炭酸リチウムを十分に除去することができ、これをリチウムイオン二次電池の正極材とした場合に該二次電池の放電容量の低下がなく、また、正極ペーストを一定の条件で保管してもゲル化することがなく、さらには、洗浄処理後の洗浄廃液の処理や該廃液中の有価物の回収が極めて容易な、リチウムイオン二次電池用正極活物質の処理方法を提供する。
 本発明者等は、上記課題を解決するために検討を重ねた結果、正極活物質を先ずアンモニアを含む洗浄液中でスラリー化し洗浄した後、該スラリーを固液分離し、脱水乾燥した固体成分を酸素雰囲気下において所定の温度で焼成することにより、水酸化リチウムや炭酸リチウムの含量を極力低減させた正極活物質が得られ、この正極活物質を正極材とすることにより電池膨れの発生がなく、また充放電特性低下の少ないリチウムイオン二次電池が得られること、さらに一度正極活物質の洗浄を終えて回収された洗浄液を、次回以降の正極活物質の洗浄液として反復使用した場合には、意外にも、新規な洗浄液を用いた場合と同等以上の結果が得られることを見出し、本発明を提案するに至った。
 すなわち、本発明のリチウムイオン二次電池用正極活物質の処理方法は、
(1)上記正極活物質を、アンモニアを含む洗浄液と接触させて洗浄した後に固液分離し、固体成分を酸素雰囲気下において600~700℃で焼成することを特徴とする。
 このとき、上記洗浄液は、(2)伝導度が11.6mS/cm以下であり、(3)回収された液体成分を含んでいてもよく、(4)洗浄液として繰り返し使用されたものを含んでいてもよい。
 (5)さらに本発明のリチウムイオン二次電池用正極活物質の処理方法は、前記(1)~(4)のいずれかに記載の処理方法によって処理されたリチウムイオン二次電池用正極活物質を正極材とするリチウムイオン二次電池の4.25-3.5Vの放電容量が、洗浄前のそれに対して99%以上であることが好ましい。
 本発明の正極活物質の処理方法によれば、正極活物質中に含まれる正極材として不都合な水酸化リチウムや炭酸リチウムの量をともに著しく低減させることができる。
 また、本発明の処理方法によれば、処理された正極活物質をリチウムイオン二次電池用正極材として用いた場合の初回の放電容量や平均放電電圧がともに未処理品の99.5%以上となり、電池膨れの発生がないことに加え、充放電特性の良好なリチウムイオン二次電池を得ることができる。
 さらに、本発明の処理方法では、洗浄液を処理の都度回収して次回の処理の際に洗浄液として反復使用する場合に、新規な洗浄液を使用する場合と同等以上の結果を得ることができ、処理工程のコスト低減効果はもとより、正極材としての性能向上効果をも得ることができる。
 しかも、この方法では、従来の洗浄廃液に比べて、廃液の量が格段に減少することに加え、廃液中の炭酸リチウムや水酸化リチウム等の濃度が格段に高くなっており、廃液の処理が極めて簡略化できるのみならず、廃液中の炭酸リチウムや水酸化リチウム等の有価物をも高効率で回収することができる。
 本発明の処理方法で処理される正極活物質は、正極、負極、セパレータ、リチウム塩を含有する非水電解質等から構成されるリチウムイオン二次電池に使用される。上記正極は、正極板(例えばアルミニウム板等からなる正極集電体)上に正極活物質、導電剤、結着剤を含有した正極合剤を塗布してなるものである。
 本発明の処理方法は、上記の正極活物質(被洗浄正極活物質ともいう)をアンモニアを含む洗浄液中でスラリー化し、このスラリーを十分に撹拌することによって洗浄する。
 洗浄液は、アンモニアを含むいわゆるアンモニア水が用いられる。洗浄液中のアンモニア(NH3)濃度は0.5~10g/Lとするのが好ましい。本発明では、このアンモニア水にエタノール等のアルコールを含有させてもよい。エタノールは水と共沸するため、洗浄操作後の乾燥工程で水の除去が容易になる。アルコール濃度が小さ過ぎればこの効果が得られず、大き過ぎても効果は飽和するため、濃度は50~96重量%とすることが好ましい。
 また、上記洗浄液は、伝導度が大き過ぎると、すなわち前回までの水洗で正極活物質から除去したリチウム化合物の濃度が高すぎると、残存リチウム化合物の除去効果が低下するので、伝導度が11.6mS/cm以下、好ましくは10.6mS/cm以下、より好ましくは10.0mS/cm以下としておくことが適している。
 上記のような洗浄液で洗浄する被洗浄正極活物質の量は、洗浄効率の点で洗浄液の量に対して30~50重量%とするのが好ましい。
 洗浄液中で正極活物質は、スラリーとなり、スラリー状態で十分に攪拌された後、そのまましばらく静置される。この時の撹拌時間としては特に制限はなく、被洗浄正極活物質の量にもよるが少なくとも20分~1時間行えば十分である。撹拌時のスラリーの温度は室温であってもよいし、室温~30℃程度の加温下であってもよい。
 洗浄を終え、静置された被洗浄正極活物質のスラリーは液体成分と固体成分とに分離され、固体成分は乾燥される。
 乾燥を終えた固体成分である被洗浄正極活物質は、酸素、空気等を通気させながら酸素雰囲気下で焼成される。焼成雰囲気は、酸素濃度92~100体積%が好ましい。この時の焼成条件は、加熱に供される固体成分の量にもよるが、600~700℃で、2~8時間とすることが適している。
 上記の洗浄液は新規に調製された洗浄液の外に、上記の固液分離した際の液体成分を回収し、これを次の正極活物質の処理の際の洗浄液として反復使用することができる。この洗浄液は、正極活物質の処理の都度、液体成分として回収し、洗浄液として繰り返し使用することができる。この反復使用する洗浄液により、被洗浄正極活物質を洗浄処理する場合、洗浄液中に徐々に蓄積される(洗浄液中への移行直前まで活物質中に付着していた)炭酸リチウムや水酸化リチウム等による親和性と推測される作用により、新規に調製した洗浄液を使用した場合と同等以上の洗浄効果、すなわち被処理正極活物質中に存在する炭酸リチウム、水酸化リチウム等の正極材として不都合な化合物の量を良好に低減することができる。
 しかも、このような洗浄液により処理された正極活物質を正極材として用いたリチウムイオン二次電池は放電特性の低下が良好に抑制される。
 上記の反復使用する洗浄液のアンモニア濃度、伝導度等は、上記した通りであることは言うまでもなく、このような条件下での洗浄液で正極活物質を処理することにより、該物質中に存在している正極材として使用した場合の不都合な化合物を、低コストで良好に除去することができ、この結果として該物質を使用したリチウムイオン二次電池の電池特性の低下をも良好に抑制することができる。
 しかも、洗浄液を反復使用する本発明の方法によれば、使用済み洗浄液(廃液)の量が激減し、従来の廃液処理に要する工程はもとより、コストも飛躍的に減少する。加えて言えば、該廃液中に蓄積される炭酸リチウムや水酸化リチウム等の有価物の回収も極めて良好に実現できる。
 本発明における被処理正極活物質としては、Ni系複合酸化物が挙げられ、特に好適に処理できる正極活物質は、Ni-Co-Al系複合酸化物である。
〔実施例1〕
 組成がLi1.05Ni0.85Co0.12Al0.032であり、炭酸リチウム(Li2CO3)0.48重量%、水酸化リチウム(LiOH)0.99重量%を含むリチウムイオン二次電池正極活物質を被洗浄正極活物質とし、該物質150gを、アンモニア(NH3)を1g/L含むアンモニア水300mL(以下、“1回目洗浄液”)に添加してスラリーとし、このスラリーを1時間撹拌した後、液体成分と固体成分とに分離した。
 次に、得られた固体成分を減圧乾燥し(134mmHg、140℃で12時間)、乾燥品(以下、“1回目乾燥品”)を得た。1回目乾燥品を電気炉中で酸素ガス(酸素ガス濃度93体積%)を通気しながら、650℃で6時間焼成し、実施例1の正極活物質(以下、“1回目正極活物質”)を得た。
〔実施例2〕
 実施例1で固液分離して得た液体成分に、全量が300mLとなるまで、実施例1で用いたものと同じアンモニア水を加えたものを2回目洗浄液とした。加えた量を表3に示す。該2回目洗浄液を用いる以外は、実施例1と同様にして、実施例1と同じ組成の被洗浄正極活物質を洗浄処理して乾燥品(以下、“2回目乾燥品”)および正極活物質(以下、“2回目正極活物質”)を得た。
 上記2回目洗浄液で処理し、固液分離して得た液体成分を用いる以外は、2回目洗浄液の場合と同様の操作をして3回目洗浄液とし、該3回目洗浄液を用いる以外は、実施例1と同様にして、実施例1と同じ組成の被洗浄正極活物質を洗浄処理して乾燥品(以下、“3回目乾燥品”)および正極活物質(以下、“3回目正極活物質”)を得、
 上記3回目洗浄液で処理し、固液分離して得た液体成分を用いる以外は、3回目洗浄液の場合と同様の操作をして4回目洗浄液とし、該4回目洗浄液を用いる以外は、実施例1と同様にして、実施例1と同じ組成の被洗浄正極活物質を洗浄処理して乾燥品(以下、“4回目乾燥品”)および正極活物質(以下、“4回目正極活物質”)を得、
 以下同様にして、5回目~10回目乾燥品および5回目~10回目正極活物質を得た。
〔参照例〕
 実施例1で用いたものと同じ被洗浄正極活物質で洗浄処理も熱処理も行わないものを未処理活物質とし、
 実施例1で用いたものと同じ被洗浄正極活物質で実施例1、2の洗浄処理のみを行い、熱処理をしないものを乾燥品とし、
 実施例1で用いたものと同じ被洗浄正極活物質で洗浄処理することなく、熱処理のみを行ったものを熱処理のみ活物質とした。
〔評価〕
 実施例1~2、参照例で得た乾燥品(1~10回目乾燥品)、正極活物質(1~10回目正極活物質、未処理活物質、熱処理のみ活物質)につき、次のような評価試験を行った。結果を表1(洗浄後乾燥品)、表2(熱処理品)に示す。
(1)電池試験:以下の方法で行った。
 乾燥品または正極活物質90重量%に、アセチレンブラック7重量%及びPTFE(ポリテトラフルオロエチレン)3重量%を混練して正極材とした。これを70μm厚に延ばし、直径11mmの円板状に打ち抜き、アルミメッシュに圧着して乾燥させて正極とした。
 この正極板を用い金属リチウム箔を負極1:1体積%のLiPF6/PC(プロピレンカーボネイト)+DMC(ジメチルカーボネイト)を非水電解液としてCR2016タイプのコインセル(リチウムイオン二次電池)を作製した。
 前記のようにして作製したコインセル(リチウムイオン二次電池)を20℃で作動させ0.15C(175mAh/gを1Cとして計算)の電流密度でリチウム対極に対して4.25Vまで充電し、更に、4.25Vの一定電圧で電流値が0.001mAになるまで充電した後、0.15Cの電流密度でリチウム対極に対して2.5Vまで放電を行ない、放電容量を得た。
(2)リチウム化合物量:以下の方法で測定した。
 イオン交換水を用いて乾燥品または正極活物質の10重量%懸濁液を調製し、1時間撹拌した後、上澄みを京都電子工業製“電位差自動滴定装置AT-510”を用いて0.1規定の塩酸で第二中和点まで滴定し、滴定量より算出した。
(3)ゲル化試験:以下の方法で行った。
 実際の電池製造時のペースト組成に近似させて、正極活物質75重量%に、アセチレンブラック3重量%、PVdF(ポリビニリデンフロライド)19重量%、NMP(N-メチルピロリドン)3重量%を混合してペーストとした。これを80℃で16時間保管してゲル化の有無を確認し、目視観察でゲル化が全く確認できなかったものを○、ゲル化が確認できたものを×とした。
(4)洗浄液の伝導度:堀場製作所製ES-14を使用して測定した。
(5)回収液中のリチウム元素量:サーモサイエンティフィック社製iCAP6500を使用してICP発光分析法で測定した。
 なお、表3に、実施例1~2で得た液体成分(1回目~10回目洗浄液)の性状と、参考のために水のみ(アンモニア無添加)で実施例1で用いたものと同じリチウムイオン二次電池正極活物質を実施例1と同様にして洗浄処理した後の、液体成分の性状を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から分かるように、洗浄後乾燥したのみで、熱処理していない活物質であっても、洗浄処理していない未洗浄活物質に比べて、炭酸リチウム及び水酸化リチウムの含有(未除去)量は大幅に減少している。
 しかし、表1に示すように、洗浄後乾燥したのみの正極活物質を使用した電池は4.25-3.5Vの放電容量が、洗浄前のそれに対して96%以下である。即ち、全放電容量に対して高電圧領域の占める割合が、洗浄前の正極活物質と比較して低くなっている。高電圧領域の占める割合が少ないと、4.25V-2.5Vまでの放電容量が同じ場合でもエネルギー密度が低くなるため好ましくない。
 なお、アンモニアを含まない水による洗浄でもリチウム化合物の減少効果は得られるものの、表2から分かるように、放電容量及び放電容量比が低い。よって、水のみの洗浄液の繰り返し使用試験は行っていない。
 また、表2から分かるように、表1に示した乾燥後のものを熱処理した結果は、Li2CO3及びLiOHの含有量は1回目正極活物質から10回目正極活物質まで充分な減少効果を得ることができた。しかも、Li2CO3は乾燥後の活物質の挙動とは多少異なり、4回目の減少効果が顕著であり、同様にLiOHは5回目,7回目の減少効果が顕著であった。
 これらの活物質に最も要求される放電容量は、1回目から10回目まで全て新規洗浄液を用いた場合と略同等以上であり、表2から明らかなように、この要求が満たされていることが分かる。また、4.25-3.5Vの放電容量は、アンモニアを含まない水による洗浄以外、洗浄前のそれに対して99%以上だった。従って、表1の結果と合わせて考えると、洗浄処理後は熱処理が必須である。
 但し、8回目から10回目正極活物質は、未洗浄の場合と同様に、ゲル化試験でゲル化が生じた。これは、洗浄液(洗浄後の液体成分)中のリチウム化合物量が多くなったために正極活物質からのリチウム化合物除去効果が低下したことが原因と考えられる。8回目以降は炭酸リチウム量及び水酸化リチウム量が、それ以前より増えていることからも明らかである。なお、表3の結果を合わせると、繰り返し使用する洗浄液(洗浄後の液体成分)の伝導度が11.9mS/cm以上(Li含有量6.5g/L以上)で、残存リチウム化合物が多くなり、ゲル化する傾向となることが明らかである。
〔実施例3〕
 洗浄液の伝導度が11.0mS/cmを超える場合、10.0mS/cm以下になるように調整したものを用いる以外は、実施例2と同じ洗浄処理を行い、8回目、9回目、10回目の洗浄後にそれぞれ回収された各液体成分170mlと、1%アンモニア水溶液130mlを混合して洗浄液とした。これらの洗浄液の伝導度は9.0mS/cmであった。
 これらの洗浄液を用いて、それぞれ洗浄処理を行い、乾燥後熱処理して得られた各正極活物質につき、表2と同様の評価試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、伝導度を10.0mS/cm以下になるように調整した洗浄液を用いれば、リチウム化合物量が少なくなるためゲル化試験でゲル化せず、4.25-3.5Vの放電容量が、洗浄前のそれに対して99%以上である正極活物質が得られる。故に、伝導度を11.6mS/cm以下、好ましくは10.6mS/cm以下、より好ましくは10.0mS/cm以下になるように調整すれば、洗浄液の繰り返し使用回数を増やすことが可能であることが明らかである。
〔実施例4〕
 実施例1で調製した新規なアンモニア水にエタノールを90重量%となるように加えた以外は、実施例1~3と同様にして被洗浄正極活物質の処理を行った。結果を表5に示す。
 この結果は、Li2CO3及びLiOHの含有量は、洗浄後も熱処理後も、表1、表2のものに比して、同等もしくは多くても数%程度少なくなるのみであったが、乾燥時間は、実施例1~3と同等の乾燥状態を得る上で10数%から多くて20%程度もの短縮が可能であった。
Figure JPOXMLDOC01-appb-T000005
 本発明の方法によれば、正極材として用いられる正極活物質をゲル化させることなく、該正極活物質の粒子表面や粒子間に存在する、正極材として不都合なリチウム化合物の量を良好に低減することができる。
 このため、本発明の方法で得られる正極活物質をリチウムイオン二次電池の正極材として使用することによって、電池内部でのCO2等のガス発生による電池の膨れや充放電効率等の電池特性の低下を効果的に抑制することができ、本発明の方法は、リチウムイオン二次電池の正極材の生産のために好適である。
 しかも本発明の方法において、洗浄液を繰り返し使用する場合、洗浄液の使用量はもとより、最終的な洗浄廃液の量をも大幅に減少することができ、該廃液の処理工程に要する費用を激減し、結果として正極活物質の生産コストを低下することができる。
 また、この廃液中には、洗浄液の繰り返し使用によりリチウム化合物が高濃度で蓄積され、該リチウム化合物は、リチウムイオン二次電池の原材料としては勿論、該電池の正極活物質の原材料としても極めて重要な化合物であり、該化合物を高濃度で含む廃液から、これらの有価物を回収することは極めて容易である。

Claims (5)

  1.  リチウムイオン二次電池用正極活物質を、アンモニアを含む洗浄液によって洗浄した後に固液分離し、固体成分を酸素雰囲気下において600~700℃で焼成することを特徴とするリチウムイオン二次電池用正極活物質の処理方法。
  2.  洗浄液が、伝導度11.6mS/cm以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質の処理方法。
  3.  洗浄液が、回収された液体成分を含むことを特徴とする請求項1または2に記載のリチウムイオン二次電池用正極活物質の処理方法。
  4.  洗浄液が、洗浄液として繰り返し使用されたものを含むことを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極活物質の処理方法。
  5.  請求項1~4のいずれか1項に記載の処理方法によって処理されたリチウムイオン二次電池用正極活物質を正極材とするリチウムイオン二次電の4.25-3.5Vの放電容量が、洗浄前のそれに対して99%以上であることを特徴とするリチウムイオン二次電池用正極活物質の処理方法。
PCT/JP2014/056942 2013-03-14 2014-03-14 リチウムイオン二次電池用正極活物質の処理方法 WO2014142314A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480015300.5A CN105190963B (zh) 2013-03-14 2014-03-14 锂离子二次电池用正极活性物质的处理方法
JP2015505603A JP6347776B2 (ja) 2013-03-14 2014-03-14 リチウムイオン二次電池用正極活物質の処理方法
US14/774,286 US9755223B2 (en) 2013-03-14 2014-03-14 Treatment process for a positive electrode active material for lithium-ion secondary battery
DE112014001266.1T DE112014001266T5 (de) 2013-03-14 2014-03-14 Verfahren zur Behandlung eines Aktivmaterials der positiven Elektrode für Lithiumionen-Sekundärbatterien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-051563 2013-03-14
JP2013051563 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014142314A1 true WO2014142314A1 (ja) 2014-09-18

Family

ID=51536961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056942 WO2014142314A1 (ja) 2013-03-14 2014-03-14 リチウムイオン二次電池用正極活物質の処理方法

Country Status (5)

Country Link
US (1) US9755223B2 (ja)
JP (1) JP6347776B2 (ja)
CN (1) CN105190963B (ja)
DE (1) DE112014001266T5 (ja)
WO (1) WO2014142314A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045633A (ja) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2017126519A (ja) * 2016-01-15 2017-07-20 Csエナジーマテリアルズ株式会社 複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017126518A (ja) * 2016-01-15 2017-07-20 Csエナジーマテリアルズ株式会社 複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130409A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130413A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130412A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130414A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 コートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
CN107925078A (zh) * 2015-08-27 2018-04-17 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
KR20190057577A (ko) * 2017-11-20 2019-05-29 에스케이이노베이션 주식회사 리튬 금속 산화물의 제조 방법 및 리튬 이차 전지의 제조 방법
JP2020115485A (ja) * 2020-04-28 2020-07-30 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
JP2020169355A (ja) * 2019-04-03 2020-10-15 住友金属鉱山株式会社 リチウムの回収方法
WO2021070689A1 (ja) * 2019-10-09 2021-04-15 三菱ケミカルエンジニアリング株式会社 洗浄廃液の処理装置および洗浄廃液の処理方法
WO2023037776A1 (ja) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 被覆活物質、被覆活物質の製造方法、正極材料、および電池
US11894554B2 (en) * 2016-08-23 2024-02-06 Samsung Sdi Co., Ltd. Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671915A (zh) * 2017-10-13 2019-04-23 中国科学院物理研究所 一种降低二次电池正极材料pH值的方法及其应用
CN112514119A (zh) * 2018-08-03 2021-03-16 住友金属矿山株式会社 锂离子二次电池用正极活性物质、锂离子二次电池用正极活性物质的制造方法以及锂离子二次电池
WO2020248188A1 (en) * 2019-06-13 2020-12-17 Greenovelty Energy Co. Limited Method of preparing cathode for secondary battery
KR20210145455A (ko) * 2020-05-25 2021-12-02 주식회사 엘지에너지솔루션 양극 스크랩을 이용한 활물질 재사용 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374054A (ja) * 1989-08-14 1991-03-28 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
JP2009032656A (ja) * 2007-02-28 2009-02-12 Sanyo Electric Co Ltd リチウム二次電池用活物質の製造方法、リチウム二次電池用電極の製造方法、リチウム二次電池の製造方法、及びリチウム二次電池用活物質の品質モニタリング方法
JP2009076383A (ja) * 2007-09-21 2009-04-09 Panasonic Corp 非水電解質二次電池およびその製造方法
WO2010116839A1 (ja) * 2009-04-10 2010-10-14 日立マクセル株式会社 電極用活物質、その製造方法、非水二次電池用電極および非水二次電池
JP2011100633A (ja) * 2009-11-06 2011-05-19 Sumitomo Electric Ind Ltd 非水電解質電池用正極活物質とその製造方法および非水電解質電池
JP2012113823A (ja) * 2010-11-19 2012-06-14 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
WO2012141258A1 (ja) * 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2013026199A (ja) * 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2622675A1 (en) 2007-02-28 2008-08-28 Sanyo Electric Co., Ltd. Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
JP5618116B2 (ja) 2008-09-12 2014-11-05 住友金属鉱山株式会社 リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池
JP5859855B2 (ja) * 2008-10-20 2016-02-16 キネテイツク・リミテツド 金属化合物の合成
WO2012048116A2 (en) * 2010-10-06 2012-04-12 Electric Power Research Institute Inc. Ion exchange regeneration and nuclide specific selective processes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374054A (ja) * 1989-08-14 1991-03-28 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
JP2009032656A (ja) * 2007-02-28 2009-02-12 Sanyo Electric Co Ltd リチウム二次電池用活物質の製造方法、リチウム二次電池用電極の製造方法、リチウム二次電池の製造方法、及びリチウム二次電池用活物質の品質モニタリング方法
JP2009076383A (ja) * 2007-09-21 2009-04-09 Panasonic Corp 非水電解質二次電池およびその製造方法
WO2010116839A1 (ja) * 2009-04-10 2010-10-14 日立マクセル株式会社 電極用活物質、その製造方法、非水二次電池用電極および非水二次電池
JP2011100633A (ja) * 2009-11-06 2011-05-19 Sumitomo Electric Ind Ltd 非水電解質電池用正極活物質とその製造方法および非水電解質電池
JP2012113823A (ja) * 2010-11-19 2012-06-14 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
WO2012141258A1 (ja) * 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2013026199A (ja) * 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925078B (zh) * 2015-08-27 2022-02-01 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
CN107925078A (zh) * 2015-08-27 2018-04-17 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
US10586983B2 (en) 2015-08-27 2020-03-10 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP2017045633A (ja) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2017126519A (ja) * 2016-01-15 2017-07-20 Csエナジーマテリアルズ株式会社 複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017126518A (ja) * 2016-01-15 2017-07-20 Csエナジーマテリアルズ株式会社 複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130409A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130413A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130412A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130414A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 コートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
US11894554B2 (en) * 2016-08-23 2024-02-06 Samsung Sdi Co., Ltd. Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR20190057577A (ko) * 2017-11-20 2019-05-29 에스케이이노베이션 주식회사 리튬 금속 산화물의 제조 방법 및 리튬 이차 전지의 제조 방법
KR102431310B1 (ko) * 2017-11-20 2022-08-09 에스케이온 주식회사 리튬 금속 산화물의 제조 방법 및 리튬 이차 전지의 제조 방법
JP2020169355A (ja) * 2019-04-03 2020-10-15 住友金属鉱山株式会社 リチウムの回収方法
JP7375327B2 (ja) 2019-04-03 2023-11-08 住友金属鉱山株式会社 リチウムの回収方法
WO2021070689A1 (ja) * 2019-10-09 2021-04-15 三菱ケミカルエンジニアリング株式会社 洗浄廃液の処理装置および洗浄廃液の処理方法
US12053716B2 (en) 2019-10-09 2024-08-06 Mitsubishi Chemical Engineering Corporation Treatment apparatus for waste cleaning liquid and treatment method for waste cleaning liquid
JP7524010B2 (ja) 2019-10-09 2024-07-29 三菱ケミカルエンジニアリング株式会社 洗浄廃液の処理装置および洗浄廃液の処理方法
JP2020115485A (ja) * 2020-04-28 2020-07-30 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
JP7262419B2 (ja) 2020-04-28 2023-04-21 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
WO2023037776A1 (ja) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 被覆活物質、被覆活物質の製造方法、正極材料、および電池

Also Published As

Publication number Publication date
US9755223B2 (en) 2017-09-05
CN105190963B (zh) 2018-11-13
JPWO2014142314A1 (ja) 2017-02-16
US20160043383A1 (en) 2016-02-11
CN105190963A (zh) 2015-12-23
DE112014001266T5 (de) 2015-12-17
JP6347776B2 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6347776B2 (ja) リチウムイオン二次電池用正極活物質の処理方法
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101878113B1 (ko) 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 상기 정극 활물질을 이용한 비수계 전해질 이차 전지
JP5992016B2 (ja) リチウムイオン電池正極材の改質方法
JP4404928B2 (ja) 被覆正極活物質の製造方法、非水系二次電池用正極の製造方法、及び、非水系二次電池の製造方法
JP6143945B2 (ja) 亜鉛イオン二次電池及びその製造方法
JP6052333B2 (ja) リチウムイオン二次電池用正極材料
JP6724292B2 (ja) 非水系二次電池用正極活物質
JP6733140B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
US20160049700A1 (en) Method for removing copper and aluminum from an electrode material, and process for recycling electrode material from waste lithium-ion batteries
KR101588652B1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
JP7135282B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP6530640B2 (ja) リチウム二次電池用正極活物質の処理方法
JP2017010841A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2022130698A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP5607322B2 (ja) 被覆正極活物質、非水系二次電池用正極、及び、非水系二次電池
JP2015088343A (ja) 非水電解液二次電池用正極活物質の製造方法。
JP5260893B2 (ja) 非水二次電池用負極及びそれを用いた非水二次電池
JP5678826B2 (ja) 非水電解液二次電池用正極活物質の製造方法
CN108448069B (zh) 一种高镍锂离子电池正极材料改性方法
Mou et al. A green recycling method for LiMn2O4 cathode materials by simple heat treatment
CN106356514B (zh) 一种锂电池正极、锂电池及其制备方法
JP7531268B2 (ja) コバルト酸リチウム正極活物質及びそれを用いた二次電池
KR101409973B1 (ko) 1차 입자의 꼭지각의 크기가 조절된 리튬 망간 복합 산화물, 및 이의 제조 방법
WO2024048571A1 (ja) 電極活物質の製造方法、二次電池の製造方法及び二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015300.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505603

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14774286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140012661

Country of ref document: DE

Ref document number: 112014001266

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763031

Country of ref document: EP

Kind code of ref document: A1