[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014033859A1 - Connector and flexible wiring board - Google Patents

Connector and flexible wiring board Download PDF

Info

Publication number
WO2014033859A1
WO2014033859A1 PCT/JP2012/071865 JP2012071865W WO2014033859A1 WO 2014033859 A1 WO2014033859 A1 WO 2014033859A1 JP 2012071865 W JP2012071865 W JP 2012071865W WO 2014033859 A1 WO2014033859 A1 WO 2014033859A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
resin layer
flexible substrate
resin
acrylate
Prior art date
Application number
PCT/JP2012/071865
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 一雅
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2012/071865 priority Critical patent/WO2014033859A1/en
Priority to PCT/JP2013/064266 priority patent/WO2014034197A1/en
Priority to CN201380042026.6A priority patent/CN104521069B/en
Priority to KR1020157000322A priority patent/KR102190760B1/en
Priority to JP2014532836A priority patent/JP6444734B2/en
Publication of WO2014033859A1 publication Critical patent/WO2014033859A1/en
Priority to JP2017126602A priority patent/JP6481716B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/77Coupling devices for flexible printed circuits, flat or ribbon cables or like structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/117Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit

Definitions

  • the present invention relates to a connector and a flexible wiring board.
  • Flexible wiring boards are composed of base materials such as polyimide, conductor materials, adhesives and coverlays, and are incorporated into mobile phones, video cameras and laptop computers in recent years as electronic devices become lighter and thinner. Yes. Since a flexible wiring board has low rigidity, it is generally mounted in a state where a reinforcing member (reinforcing plate) is attached to a mounting portion of an electronic component and a connector portion (for example, Patent Document 1).
  • a reinforcing member reinforcing plate
  • a metal plate such as a polyester film, a stainless steel plate and an aluminum plate, ceramics, and a glass cloth base epoxy resin laminated plate are used.
  • a thick polyimide film excellent in punching workability, heat resistance and workability has become the mainstream of the connector reinforcing plate.
  • a reinforcement board is affixed on the base material on the surface side opposite to the wiring terminal arrange
  • Patent Document 1 and Non-Patent Document 1 that have a polyethylene terephthalate film or a polyimide film as a reinforcing plate sometimes cannot be smoothly inserted into the mating connector.
  • an object of the present invention is to provide a connector having a smooth insertion property and a flexible wiring board having the connector.
  • the present invention relates to a connector on the plug-in side that is used to connect the wiring by plugging into the connector on the mating side.
  • the connector according to the present invention is flexible on the side opposite to the flexible base, the wiring terminal disposed on one side of the flexible base, and the wiring terminal of the flexible base.
  • the end of the resin layer on the distal end side of the connector may have a surface forming a convex curved surface that curves from the facing surface toward the flexible substrate.
  • the end of the resin layer on the distal end side of the connector has a surface forming a convex curved surface that curves from the facing surface facing the flexible substrate toward the flexible substrate.
  • the resin layer may further contain an inorganic filler.
  • the inorganic filler may be silica particles, for example.
  • the content of the inorganic filler in the resin layer may be 30 to 70% by volume with respect to the volume of the resin layer.
  • the flexible substrate may be a polyester substrate or a polyimide substrate.
  • the thickness of the flexible substrate may be 75 ⁇ m or less.
  • the initial tensile elastic modulus at 25 ° C. of the resin layer may be 0.3 to 3.0 GPa.
  • the resin layer may have a thickness of 50 to 500 ⁇ m.
  • the present invention also relates to a flexible wiring board comprising the above connector, a circuit flexible substrate, and a circuit provided on the circuit flexible substrate and connected to a wiring terminal of the connector.
  • the flexible substrate for the connector and the flexible substrate for the circuit may be the same substrate, or the flexible substrate for the connector and another flexible substrate for the circuit It may be connected.
  • FIG. 2 is an end view taken along the line II-II ′ of the connector shown in FIG. 1. It is an end view which shows the modification of the shape of a resin layer. It is process drawing which shows one Embodiment of the manufacturing method of a connector. It is a schematic explanatory drawing which shows the method of the durability test of a connector.
  • FIG. 1 is a schematic diagram showing an embodiment of a connector.
  • FIG. 2 is an end view taken along the line II-II ′ of FIG.
  • a connector 10 shown in FIGS. 1 and 2 includes a flexible substrate 2, a wiring terminal 1 disposed on one surface side of the flexible substrate 2, and a wiring terminal 1 of the flexible substrate 2. Is composed of a resin layer 3 disposed on the end of the flexible substrate 2 on the opposite surface side. The rigidity of the flexible substrate 2 is increased in the portion in contact with the resin layer 3 as compared with the case where the resin layer 3 is not formed.
  • the connector 10 is a plug-in side connector that is used to connect a wiring by being plugged into a mating connector. By inserting the tip of the connector 10 into the mating connector, for example, a state in which transmission is possible by mechanical and electrical (electronic) connection is obtained. The connector 10 can be safely and easily detached and attached as necessary.
  • FIG. 2 shows the circuit flexible substrate 52 and the circuit 51 provided on the circuit flexible substrate 52 together with the connector 10.
  • the circuit 51 is connected to the wiring terminal 1 of the connector 10.
  • the flexible wiring board 100 is configured by the connector 10, the circuit flexible substrate 52, and the circuit 51.
  • the connector flexible substrate 2 and the circuit flexible substrate 52 may be the same single substrate or may be separate substrates connected to each other.
  • the flexible substrate 2 is not particularly limited as long as it exhibits a foldable flexibility. From the viewpoint of toughness, the flexible substrate 2 is a polyester substrate (polyester film) or a polyimide substrate (polyimide film). The polyimide base material (polyimide film) may be sufficient from the point of toughness and heat resistance. The thickness of the flexible substrate 2 may be 75 ⁇ m or less from the viewpoint of bendability. The thickness of the flexible substrate 2 may be 10 ⁇ m or more.
  • the wiring terminal 1 is a conductor layer formed from a conductor such as metal, for example.
  • the thickness of the wiring terminal 1 may be 5 to 40 ⁇ m.
  • the resin layer 3 usually contains a cured product of the curable resin composition as a resin. Details of the curable resin composition used to form the resin layer 3 will be described later.
  • the resin layer 3 has a facing surface 6 that faces the flexible substrate 2.
  • An end 3 a of the resin layer 3 on the distal end side of the connector 10 (side of the portion to be inserted into the mating connector) is curved from the facing surface 6 toward the flexible substrate 2 and directed toward the outside of the resin layer 3. It has the surface 7 which forms the convex curved surface which is convex. Since the surface 7 of the end portion 3a of the resin layer 3 forms a convex curved surface, the resistance at the time of inserting into the mating connector is reduced, and a smooth insertion property is obtained.
  • the end of the resin layer 3 opposite to the tip of the connector 10 also has a surface curved from the facing surface 6 toward the flexible substrate 2 to form a convex curved surface.
  • the surface of the end opposite to the tip of the connector 10 does not have to form a convex curved surface.
  • the edge part of the resin layer 3 of the side side of the connector 10 may have the surface which curves toward the flexible base material 2 from the opposing surface 6, and forms the convex curve.
  • the surface of the end portion 3a of the resin layer 3 (the surface of the portion that is not in contact with the flexible base material 2) only needs to form a convex curved surface.
  • the edge part 3a of the resin layer 3 may have the surface which forms the plane which follows the perpendicular of the main surface of a flexible base material like embodiment of FIG. (A), (b) of FIG. 3 is an end view which shows the modification of the shape of a resin layer.
  • the entire side surface of the end portion 3a of the resin layer 3 on the distal end side of the connector forms a convex curved surface.
  • the thickness of the resin layer 3 may be 50 to 500 ⁇ m, 70 to 300 ⁇ m, or 75 to 200 ⁇ m. When the thickness of the resin layer 3 is within these ranges, the resin layer can be easily formed. Further, since the resin layer 3 is not easily bent, particularly excellent connector shape retention is obtained.
  • the length of the resin layer 3 in the connector insertion direction may be, for example, 3 to 30 mm.
  • the resin layer 3 may be provided over the entire width direction of the flexible base material, or may be provided only in a partial region in the width direction as long as necessary rigidity is obtained.
  • the initial tensile elastic modulus at 25 ° C. of the resin layer 3 may be 0.3 to 3.0 GPa, 0.5 to 2.5 GPa, or 1.0 to 2.2 GPa. When the initial tensile elastic modulus of the resin layer 3 is within these ranges, cracks in the resin layer 3 are unlikely to occur, and a further excellent insertion property can be obtained.
  • the initial tensile elastic modulus at 25 ° C. of the resin layer 3 is obtained from the maximum value of the tangential slope of the stress-displacement curve obtained when a tensile stress is applied to the strip-shaped resin layer at a tension speed of 50 mm / min. Can do.
  • the strip-shaped resin layer can be prepared, for example, by cutting out from a plate-shaped resin layer formed by curing a curable resin composition described below. Details of the method for measuring the initial tensile elastic modulus will be described in detail in Examples described later.
  • the initial tensile elastic modulus within the above numerical range can be achieved, for example, by a resin layer further containing an inorganic filler in addition to the resin.
  • the inorganic filler in the resin layer 3 may be composed of one kind of particle or may be composed of a combination of two or more kinds of particles.
  • the average particle size of the inorganic filler may be 1 to 100 ⁇ m, 1 to 50 ⁇ m, 1 to 20 ⁇ m, or 1.5 to 10 ⁇ m.
  • the inorganic filler may be a mixture of plural kinds of fillers having different average particle diameters. Thereby, the space filling rate by an inorganic filler can be raised.
  • the average particle diameter of the inorganic filler is an arithmetic average of the particle diameters (maximum diameters) of the plurality of inorganic fillers observed by observing the resin layer 3 with a scanning electron microscope (Scanning Electron Microscope), for example, at a magnification of 1000 times. .
  • the number of inorganic fillers whose particle diameter is measured to determine the average particle diameter is, for example, 50 or more.
  • the content of the inorganic filler in the resin layer 3 is 30 to 70% by volume, 40 to 65% by volume, or 50 to 65% by volume with respect to the volume of the resin layer 3 in terms of the strength of the resin layer and the initial tensile elastic modulus. There may be.
  • the content of the inorganic filler in the resin layer 3 is 40 to 85% by mass, 45 to 80% by mass, or 50 to 80% by mass with respect to the mass of the resin layer 3 in terms of the strength of the resin layer and the initial tensile elastic modulus. %.
  • the inorganic filler may be silica particles.
  • the silica particles are not particularly limited, and may be, for example, spherical silica, crushed silica refined by pulverization, dry silica, or wet silica.
  • the surface of the resin layer 3 becomes smooth, and a smooth insertion property is obtained. In addition, more excellent wear resistance and crack resistance can be obtained.
  • the spherical silica particles can be obtained, for example, by a sol-gel method.
  • the average particle size of the spherical silica particles may be 0.05 to 50 ⁇ m, 0.1 to 50 ⁇ m, 0.2 to 30 ⁇ m, or 0.5 to 20 ⁇ m.
  • the spherical silica particles only need to have a substantially spherical shape (see JIS Z2500: 2000), and are not necessarily spherical.
  • the ratio (DL) / (DS) of the major axis (DL) and minor axis (DS) of the particles may be 1.0 to 1.2. .
  • spherical silica particles examples include MSR-2212, MSR-SC3, MSR-SC4, MSR-3512, MSR-FC208 (above, trade name, manufactured by Tatsumori Co., Ltd.), Excelica (trade name, manufactured by Tokuyama Corporation), SO-E1.
  • Silica particles may be surface-treated.
  • Examples of the surface treating agent used for surface treating silica particles include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxy.
  • Silane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimeth Sisilane, n-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane triethoxysilane, n-2- (aminoethyl) -3-aminopropyltrimethoxysilane, n-2- (aminoethyl) -3-aminopropyltrimethoxys
  • the step of providing the wiring terminal 1 on one surface side of the flexible base material 2 and the resin layer 3 on the surface side opposite to the wiring terminal 1 of the flexible base material 2 are formed. And a process including the steps.
  • the wiring terminal 1 may be provided before the resin layer 3 is formed, or may be provided after the resin layer 3 is formed.
  • the resin layer 3 can be formed by, for example, a method including a step of applying a curable resin composition and, if necessary, a liquid composition (liquid ink) containing an inorganic filler to a flexible substrate.
  • a liquid composition liquid ink
  • a rigid resin layer can be formed by a simple process.
  • the thickness of the resin layer can be easily and precisely controlled by a method such as printing. Therefore, products with different thickness specifications can be efficiently manufactured.
  • a resin layer can be formed very efficiently at any position on the flexible substrate without manual operation. Furthermore, a resin layer excellent in reflow resistance can be formed.
  • FIG. 4 is a process diagram showing an embodiment of a method for forming the resin layer 3 using the liquid composition 5.
  • a liquid composition 5 containing a curable resin composition and a metal mask 4 having an opening 4a are prepared (see FIG. 4A).
  • the liquid composition 5 may contain a solvent in which the curable resin composition is dissolved or dispersed.
  • the liquid composition 5 is filled in the opening 4a of the metal mask 4 and printed on the flexible substrate 2 (see FIG. 4B).
  • the method of applying the liquid composition can be appropriately selected from screen printing, bar coater and the like in addition to printing using a metal mask.
  • the solvent is removed from the coated liquid composition 5 by a method such as heating to form an uncured resin layer 3 (see FIG. 4C).
  • a method such as heating to form an uncured resin layer 3 (see FIG. 4C).
  • the resin layer 3 containing a cured product of the curable resin composition as a resin is formed.
  • Curing of the curable resin composition can be performed, for example, by heating or light irradiation.
  • the metal mask 4 can be removed after the curable resin composition is cured. According to the method in which the liquid composition is applied and cured, it is possible to easily form a resin layer having an end portion on which a convex curved surface is formed.
  • the solvent removal (drying) and curing temperature may be 50 to 250 ° C., 80 to 200 ° C., or 100 to 190 ° C.
  • the resin layer 3 can be disposed on the end of the flexible substrate 2 by punching the flexible substrate 2 (see FIG. 4D).
  • the liquid composition 5 may contain, for example, a curable resin composition, the above-described inorganic filler, and a solvent.
  • a curable resin composition is comprised from components other than a solvent and an inorganic filler among the liquid compositions 5, for example, contains the curable resin hardened
  • the curable resin includes, for example, one kind or two or more kinds of epoxy resins.
  • a thermoplastic resin contains 1 type, or 2 or more types of acrylic resins (polymer of an acrylic monomer), for example.
  • the epoxy resin is, for example, a polyglycidyl ether obtained by reacting a polyhydric phenol such as bisphenol A, a novolac type phenol resin and an orthocresol novolac type phenol resin, or a polyhydric alcohol such as 1,4-butanediol and epichlorohydrin.
  • Polyglycidyl esters obtained by reacting polybasic acids such as phthalic acid and hexahydrophthalic acid with epichlorohydrin, N-glycidyl derivatives of compounds having amino groups, amide groups, or heterocyclic nitrogen bases, and alicyclic rings Selected from the formula epoxy resins. Since it has high compatibility with the acrylic resin, a biphenyl aralkyl type epoxy resin can be selected.
  • the curable resin may contain an epoxy resin curing agent.
  • the curing agent can be selected from, for example, dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, and polyfunctional phenols (phenolic resins) such as phenol novolac and cresol novolac.
  • the phenol resin may contain a phenol type, bisphenol A type, cresol novolac type, or aminotriazine novolac type phenol resin.
  • One or both of the cresol novolak type and aminotriazine novolak type phenol resins can be selected from the viewpoint of compatibility with the acrylic resin.
  • the aminotriazine novolac type phenolic resin has a structural unit represented by the following structural formula (I).
  • R represents a hydrogen atom or a methyl group
  • n represents an integer of 1 to 30.
  • the curable resin may contain a high molecular weight component for the purpose of improving the heat resistance of the resin layer.
  • the molecular weight of the component constituting the curable resin is usually 3000 or less.
  • the curable resin may contain an accelerator for the purpose of accelerating the curing reaction.
  • an accelerator for the purpose of accelerating the curing reaction.
  • the kind and compounding quantity of an accelerator are not specifically limited. For example, one or more selected from imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts and the like are used.
  • the acrylic resin is generally a copolymer containing a polymerizable monomer containing two or more acrylic monomers having an acrylic group or a methacryl group as a monomer unit.
  • the acrylic resin can be manufactured at low cost by selecting various combinations from commercially available acrylic monomers according to desired properties.
  • the acrylic resin is excellent in that it can easily dry the printed liquid composition because it has good solubility in a low-boiling ketone solvent.
  • the acrylic monomer used for producing the acrylic resin is not particularly limited.
  • the acrylic resin include acrylonitrile, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, pentyl acrylate, N-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, dodecyl acrylate, octadecyl acrylate, butoxyethyl acrylate, phenyl acrylate, benzyl acrylate, naphthyl acrylate, cyclohexyl acrylate, isobornyl acrylate , Norbornylmethyl acrylate, tricycloacrylate [5.2.1.
  • dec-8-yl (dicyclopentanyl acrylate), tricycloacrylate [5.2.1. O2,6 ] dec-4-methyl, adamantyl acrylate, isobornyl acrylate, norbornyl acrylate, tricyclohexyl acrylate [5.2.1. O 2,6 ] dec-8-yl, tricyclohexyl acrylate [5.2.1.
  • O2,6 dec-8-yl (dicyclopentanyl methacrylate) and tricyclomethacrylate [5.2.1.
  • One or two or more acrylic monomers selected from methacrylic acid esters such as O 2,6 ] deca 4-methyl are included as monomer units.
  • the acrylic monomer constituting the acrylic resin may contain a monomer having a functional group.
  • the monomer having a functional group includes at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, an amide group, and an epoxy group, and at least one polymerizable carbon-carbon 2. It may have a double bond.
  • Specific examples of the monomer having a functional group include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, and itaconic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate.
  • Hydroxyl group-containing monomers such as 2-hydroxypropyl methacrylate and N-methylol methacrylamide, (o-, m-, p-) hydroxystyrene, acid anhydride group-containing monomers such as maleic anhydride, diethylaminoacrylate Amino group-containing monomers such as ethyl and diethylaminoethyl methacrylate, and glycidyl acrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ -n-propyl acrylate, 3,4-epoxybutyl acrylate, methacrylic acid-3, 4-epoxybutyl Acrylic acid-4,5-epoxypentyl, acrylic acid-6,7-epoxyheptyl, methacrylic acid-6,7-epoxyheptyl, acrylic acid-3-methyl-4-epoxybutyl, methacrylate-3-methyl- 3,4-epoxybutyl
  • the acrylic resin When the acrylic resin has a glycidyl group, the heat resistance of the resin layer is further improved. Therefore, the acrylic resin may contain glycidyl methacrylate or glycidyl acrylate as a monomer unit. Based on the amount of all polymerizable monomers constituting the acrylic resin, the content of glycidyl methacrylate or glycidyl acrylate may be 0.5 to 10% by mass, 1 to 8% by mass, or 2 to 5% by mass. Good.
  • the acrylic resin may contain alkyl acrylate as a monomer from the viewpoint of adhesiveness between the flexible substrate and the resin layer.
  • the alkyl group of the alkyl acrylate may have 1 to 12 or 2 to 10 carbon atoms. Based on the amount of all polymerizable monomers constituting the acrylic resin, the content of the alkyl acrylate may be 50 to 99% by mass, 60 to 98% by mass, or 70 to 96% by mass.
  • the alkyl acrylate is selected from, for example, ethyl acrylate and butyl acrylate.
  • the acrylic resin may contain acrylonitrile or methacrylonitrile as a monomer unit from the viewpoint of toughness and adhesiveness. Based on the amount of all polymerizable monomers constituting the acrylic resin, the content of acrylonitrile or methacrylonitrile may be 0.5 to 10% by mass, 1 to 8% by mass, or 2 to 5% by mass. Good.
  • the acrylic resin may further contain another monomer copolymerized with the acrylic monomer.
  • Other monomers include, for example, 4-vinylpyridine, 2-vinylpyridine, ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -fluorostyrene, ⁇ -chlorostyrene, ⁇ -bromostyrene, fluorostyrene, chlorostyrene, bromostyrene , Aromatic vinyl compounds such as methylstyrene, methoxystyrene and styrene, and N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N-butylmaleimide, Ni-butylmaleimide , Nt-butylmaleimide, N-laurylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N-phenylmaleimide, and other N-
  • the weight average molecular weight of the acrylic resin may be 150,000 to 1.8 million, 400,000 to 1.5 million, or 500,000 to 1.4 million.
  • the weight average molecular weight of the acrylic resin is 150,000 or more, the viscosity of the liquid composition is high and the liquid composition can exhibit thixotropy.
  • the weight average molecular weight of the acrylic resin is 1.8 million or less, the solubility in a solvent is improved, and the concentration of solid content in the liquid composition is easily increased.
  • concentration of the solid content of the liquid composition is high, it is less necessary to consider the control of the film thickness of the coated liquid composition and the reduction of the film pressure due to drying shrinkage.
  • the glass transition temperature (Tg) of the acrylic resin may be ⁇ 50 to 100 ° C., ⁇ 45 to 20 ° C., or ⁇ 40 ° C. to 5 ° C.
  • Tg of the acrylic resin composed of n kinds of monomers can be calculated by the following calculation formula (FOX formula).
  • Tg (° C.) ⁇ 1 / (W 1 / Tg 1 + W 2 / Tg 2 +... + W i / Tg i +... + W n / Tg n ) ⁇ -273
  • Tg i (K) shows a glass transition temperature of the homopolymer of each monomer
  • W i represents the weight fraction of each monomer
  • W 1 + W 2 + ... + W i + ... W n 1.
  • thermoplastic resin for example, acrylic resin
  • the curable resin for example, epoxy resin
  • the curing agent for example, phenol resin
  • the thermoplastic resin content is 40 to 90% by weight, 50 to 85% by weight. %, Or 60 to 80% by weight.
  • the total of the glycidyl group of the acrylic resin and the epoxy group of the epoxy resin and the amount of the hydroxyl group of the phenol resin may be substantially equivalent.
  • the liquid composition 5 can be prepared, for example, by a method in which each component constituting the curable resin composition and, if necessary, a solvent are mixed and stirred.
  • the liquid composition 5 may be prepared using a slurry obtained by dispersing the inorganic filler in an organic solvent containing a surface treating agent in advance.
  • the liquid composition can also be obtained by preparing in advance a mixture of components of a curable resin composition containing a curable resin, and mixing this mixture with an inorganic filler slurry.
  • the solvent used for dissolving or dispersing the curable resin composition and the inorganic filler is selected from ketone solvents such as methyl ethyl ketone and cyclohexanone. From the viewpoint of printability, cyclohexanone can be selected.
  • Production Examples 2-7 A liquid composition was obtained in the same manner as in Production Example 1 except that the materials shown in Tables 1 and 2 were used in the mixing ratios shown in the table.
  • the acrylic resin compounding amount, the epoxy resin compounding amount, and the phenol resin compounding amount shown in Tables 1 and 2 are ratios based on the total amount of the acrylic resin, the epoxy resin, and the phenol resin.
  • the weight average molecular weight of the acrylic resin was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Silica particles F05-12 crushed silica, trade name manufactured by Fukushima Ceramics Co., Ltd.
  • SO-25R spherical silica, trade name manufactured by Admatechs Co., Ltd. 5.
  • Surface treatment agent (silane coupling agent) KBM573 N-phenyl-3-aminopropyltrimethoxysilane, trade name manufactured by Shin-Etsu Silicon Co., Ltd.
  • the liquid composition was applied to a release-treated PET (polyethylene terephthalate) film using a bar coater so that the thickness after drying was 125 ⁇ m.
  • the applied liquid composition was dried by heating at 130 ° C. for 10 minutes, and then cured by heating at 185 ° C. for 30 minutes.
  • the release-treated PET film After removing the release-treated PET film, the cured product was punched out to a width of 10 mm and a length of 100 mm to obtain a test piece.
  • This test piece was subjected to a tensile test using an EZ tester (Autograph EZ-S manufactured by Shimadzu Corporation) at a tensile speed of 50 mm / min to obtain a stress-displacement curve.
  • Initial tensile elastic modulus (Pa) maximum value of slope of tangent line of stress-displacement curve (N / m) ⁇ [displacement (m) / cross-sectional area of cured product (m 2 )]
  • Example 1 A copper foil of a polyimide substrate (thickness 25 ⁇ m) / copper foil (thickness 18 ⁇ m) laminate (Espanex, trade name, manufactured by Nippon Steel Chemical Co., Ltd.) was processed by photolithography to form a wiring terminal pattern. .
  • the liquid composition of Production Example 1 was printed on the surface of the polyimide substrate opposite to the wiring terminals using a metal mask.
  • the printed liquid composition is dried by heating at 130 ° C. for 10 minutes, and further cured by heating at 185 ° C. for 60 minutes to form a resin layer having a length of 30 mm from the end of the polyimide substrate and a thickness of 75 ⁇ m.
  • a connector test piece (width 10 mm, length 100 mm) having a resin layer was obtained.
  • the edge part of the resin layer which has a substantially rectangular main surface had the surface which forms the convex curve which curves toward the polyimide base material from the opposing surface which opposes a polyimide base material.
  • Examples 2-12 A connector having a resin layer in the same manner as in Example 1 except that the liquid composition of each production example was used and the thickness of the polyimide base material or the thickness of the resin layer was changed as shown in Tables 3 and 4.
  • a test piece was prepared. In any of the test pieces, the end portion of the resin layer had a surface forming a convex curved surface that curves toward the polyimide base material from the facing surface facing the polyimide base material.
  • Comparative Example 1 Similar to the example, a wiring terminal pattern was formed on a polyimide substrate (thickness 50 ⁇ m).
  • a polyimide film (UPILEX 75S, Ube Industries, Ltd. product name) with a thickness of 75 ⁇ m via a 30 ⁇ m thickness adhesive film (Hybon 10-850, product name, manufactured by Hitachi Chemical Co., Ltd.) on the surface opposite to the wiring terminal of the polyimide substrate.
  • the end of the polyimide film affixed to the polyimide substrate has a facing surface facing the polyimide substrate and a side surface along the perpendicular of the polyimide substrate, and the facing surface and the side surface intersect at a right angle. It was.
  • FIG. 5 is a schematic explanatory view showing a method of a durability test of the connector.
  • test piece 10 After inserting about 10 mm of the test piece 10 into the gap in the direction A parallel to the aluminum plate, the operation of pulling out was repeated up to 30 times. The abnormality of the test piece 10 was visually observed, and the number of times until an abnormality such as peeling, cracking, or bending occurred was recorded.
  • the liquid composition was applied to a polyimide film (Upilex 50S, Ube Industries, Ltd. product name) using a bar coater so that the thickness after drying was 125 ⁇ m.
  • the applied liquid composition was dried by heating at 130 ° C. for 10 minutes and then cured by heating at 185 ° C. for 30 minutes to obtain a sample for adhesion evaluation.
  • 10 grids of 2 mm width were cut with a cutter knife, and 10 grids with a width of 2 mm were made so as to intersect at right angles.
  • Cellotape registered trademark
  • SYMBOLS 1 Wiring terminal, 2 ... Flexible base material, 3 ... Resin layer, 3a ... End part of resin layer 3, 4 ... Metal mask, 4a ... Opening part, 5 ... Liquid composition, 6 ... Opposite surface, 7 ... Surface forming convex curved surface, 10 ... connector, 20 ... digital micrometer, 21 ... spindle, 22 ... anvil, 31, 32 ... aluminum plate, 51 ... circuit, 52 ... flexible substrate for circuit, 100 ... flexible wiring Board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structure Of Printed Boards (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

Disclosed is a plug-in connector that is inserted into an opponent connector to connect a wire. The connector includes a flexible base material, a wiring terminal that is arranged on one surface of the flexible base material, and a resin layer including a resin, which is arranged at the end of the flexible base material on the surface opposite the wiring terminal of the flexible base material, the resin layer having an opposite surface opposing the flexible base material. The end of the resin layer at the end of the connector has a convex curved surface that is curved from the opposite surface to the flexible base material.

Description

コネクタ及びフレキシブル配線板Connectors and flexible wiring boards
 本発明は、コネクタ及びフレキシブル配線板に関する。 The present invention relates to a connector and a flexible wiring board.
 従来、片面、両面又は多層の各種プリント配線板が、産業機器又は民生機器の分野で広く使用されている。電子機器においては1枚のプリント配線板だけが使用されていることは少なく、例えば、機能別に分けられた複数のプリント配線板が使用されている。通常、複数の配線板間は各種コネクタで接続される。 Conventionally, various printed wiring boards of single side, double side or multilayer have been widely used in the field of industrial equipment or consumer equipment. In electronic devices, only one printed wiring board is rarely used. For example, a plurality of printed wiring boards divided by function are used. Usually, a plurality of wiring boards are connected by various connectors.
 フレキシブル配線板は、ポリイミド等のベース材料、導体材料、接着剤及びカバーレイを基本材料として構成され、電子機器の軽薄短小化に伴い、近年の携帯電話、ビデオカメラ及びノートパソコンなどに組み込まれている。フレキシブル配線板は、剛性が低いため、一般に、電子部品の搭載部分、及びコネクタ部分に補強用部材(補強板)が貼り付けられた状態で実装されている(例えば特許文献1)。 Flexible wiring boards are composed of base materials such as polyimide, conductor materials, adhesives and coverlays, and are incorporated into mobile phones, video cameras and laptop computers in recent years as electronic devices become lighter and thinner. Yes. Since a flexible wiring board has low rigidity, it is generally mounted in a state where a reinforcing member (reinforcing plate) is attached to a mounting portion of an electronic component and a connector portion (for example, Patent Document 1).
 フレキシブル配線板の補強板としては、ポリエステルフィルム、ステンレス板及びアルミ板などの金属板、セラミックス、並びにガラスクロス基材エポキシ樹脂積層板などが使用されている。しかし、打ち抜き加工性、耐熱性及び加工性に優れる厚手のポリイミドフィルムが、コネクタの補強板の主流となっている。補強板は、基材の一方の面に配置された配線端子と反対の面側の基材上に接着剤を介して貼り付けられる。(例えば非特許文献1を参照)。 As the reinforcing plate of the flexible wiring board, a metal plate such as a polyester film, a stainless steel plate and an aluminum plate, ceramics, and a glass cloth base epoxy resin laminated plate are used. However, a thick polyimide film excellent in punching workability, heat resistance and workability has become the mainstream of the connector reinforcing plate. A reinforcement board is affixed on the base material on the surface side opposite to the wiring terminal arrange | positioned at one surface of a base material via an adhesive agent. (For example, refer nonpatent literature 1).
特開2005-51177号JP 2005-51177 A
 しかしながら、特許文献1及び非特許文献1に記載されている、ポリエチレンテレフタレートフィルム又はポリイミドフィルムを補強板として有するコネクタでは、相手側のコネクタへの差し込みがスムーズにできない場合があった。 However, the connectors described in Patent Document 1 and Non-Patent Document 1 that have a polyethylene terephthalate film or a polyimide film as a reinforcing plate sometimes cannot be smoothly inserted into the mating connector.
 そこで、本発明は、滑らかな差し込み性を有するコネクタ及びこれを備えたフレキシブル配線板を提供すること目的とする。 Therefore, an object of the present invention is to provide a connector having a smooth insertion property and a flexible wiring board having the connector.
 本発明は、相手側のコネクタに差し込まれて配線を接続するために用いられる差し込み側のコネクタに関する。本発明に係るコネクタは、可撓性基材と、可撓性基材の一方の面側に配置された配線端子と、可撓性基材の配線端子とは反対の面側で可撓性基材の端部上に配置され、可撓性基材と対向する対向面を有する、樹脂を含む樹脂層と、を備えている。樹脂層の当該コネクタの先端側の端部は、対向面から可撓性基材に向かって湾曲する凸曲面を形成している表面を有していてもよい。 The present invention relates to a connector on the plug-in side that is used to connect the wiring by plugging into the connector on the mating side. The connector according to the present invention is flexible on the side opposite to the flexible base, the wiring terminal disposed on one side of the flexible base, and the wiring terminal of the flexible base. And a resin layer including a resin that is disposed on an end portion of the substrate and has a facing surface facing the flexible substrate. The end of the resin layer on the distal end side of the connector may have a surface forming a convex curved surface that curves from the facing surface toward the flexible substrate.
 上記樹脂層の当該コネクタの先端側の端部が、可撓性基材と対向する対向面から可撓性基材に向かって湾曲する凸曲面を形成している表面を有していることから、当該コネクタを相手側のコネクタに差し込むときの抵抗感が減少し、十分に滑らかな差し込み性が得られる。 The end of the resin layer on the distal end side of the connector has a surface forming a convex curved surface that curves from the facing surface facing the flexible substrate toward the flexible substrate. The feeling of resistance when the connector is inserted into the mating connector is reduced, and a sufficiently smooth insertion property can be obtained.
 上記樹脂層は、無機フィラーを更に含んでいてもよい。無機フィラーは、例えばシリカ粒子であってもよい。上記樹脂層における無機フィラーの含有量は、上記樹脂層の体積に対して30~70体積%であってもよい。 The resin layer may further contain an inorganic filler. The inorganic filler may be silica particles, for example. The content of the inorganic filler in the resin layer may be 30 to 70% by volume with respect to the volume of the resin layer.
 可撓性基材は、ポリエステル基材又はポリイミド基材であってもよい。可撓性基材の厚みは、75μm以下であってもよい。 The flexible substrate may be a polyester substrate or a polyimide substrate. The thickness of the flexible substrate may be 75 μm or less.
 上記樹脂層の25℃における初期引張り弾性率は、0.3~3.0GPaであってもよい。上記樹脂層の厚みは、50~500μmであってもよい。 The initial tensile elastic modulus at 25 ° C. of the resin layer may be 0.3 to 3.0 GPa. The resin layer may have a thickness of 50 to 500 μm.
 本発明はまた、上記コネクタと、回路用可撓性基材と、回路用可撓性基材上に設けられ、コネクタの配線端子に接続された回路と、を備えるフレキシブル配線板に関する。コネクタの可撓性基材と回路用可撓性基材とが同一の1枚の基材であってもよいし、コネクタの可撓性基材と別の回路用可撓性基材とが連結されていてもよい。 The present invention also relates to a flexible wiring board comprising the above connector, a circuit flexible substrate, and a circuit provided on the circuit flexible substrate and connected to a wiring terminal of the connector. The flexible substrate for the connector and the flexible substrate for the circuit may be the same substrate, or the flexible substrate for the connector and another flexible substrate for the circuit It may be connected.
 本発明によれば、滑らかな差し込み性を有するコネクタ及びこれを備えたフレキシブル配線板を提供することができる。 According to the present invention, it is possible to provide a connector having a smooth insertion property and a flexible wiring board provided with the connector.
コネクタの一実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a connector. 図1に示すコネクタのII-II’線に沿う端面図である。FIG. 2 is an end view taken along the line II-II ′ of the connector shown in FIG. 1. 樹脂層の形状の変形例を示す端面図である。It is an end view which shows the modification of the shape of a resin layer. コネクタの製造方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method of a connector. コネクタの耐久性試験の方法を示す概略説明図である。It is a schematic explanatory drawing which shows the method of the durability test of a connector.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書に記載される全ての構成は、本発明の趣旨を逸脱しない範囲で任意に組み合わせることができる。例えば、本明細書に記載される数値範囲の上限値及び下限値、並びに実施例に記載される数値から任意に選択される数値を上限値又は下限値として用いて、各種特性に関する数値範囲を規定することができる。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. All the configurations described in the present specification can be arbitrarily combined without departing from the spirit of the present invention. For example, the upper and lower limits of the numerical ranges described in this specification, and numerical values arbitrarily selected from the numerical values described in the examples are used as the upper and lower limits, and the numerical ranges relating to various characteristics are defined. can do.
 図1は、コネクタの一実施形態を示す模式図である。図2は、図1のII-II’線に沿う端面図である。図1、図2に示すコネクタ10は、可撓性基材2と、可撓性基材2の一方の面側に配置された配線端子1と、可撓性基材2の配線端子1とは反対の面側で可撓性基材2の端部上に配置された樹脂層3とから構成される。可撓性基材2の剛性は、樹脂層3と接している部分において、樹脂層3が形成されていないときと比較して高められている。コネクタ10は、相手側のコネクタに差し込まれて配線を接続するために用いられる差し込み側のコネクタである。コネクタ10の先端を相手側のコネクタに差し込むことで、例えば、機械的、かつ電気(電子)的な接続によって伝送可能となる状態が得られる。コネクタ10は、必要に応じて安全、かつ簡単に脱着できる。 FIG. 1 is a schematic diagram showing an embodiment of a connector. FIG. 2 is an end view taken along the line II-II ′ of FIG. A connector 10 shown in FIGS. 1 and 2 includes a flexible substrate 2, a wiring terminal 1 disposed on one surface side of the flexible substrate 2, and a wiring terminal 1 of the flexible substrate 2. Is composed of a resin layer 3 disposed on the end of the flexible substrate 2 on the opposite surface side. The rigidity of the flexible substrate 2 is increased in the portion in contact with the resin layer 3 as compared with the case where the resin layer 3 is not formed. The connector 10 is a plug-in side connector that is used to connect a wiring by being plugged into a mating connector. By inserting the tip of the connector 10 into the mating connector, for example, a state in which transmission is possible by mechanical and electrical (electronic) connection is obtained. The connector 10 can be safely and easily detached and attached as necessary.
 図2には、回路用可撓性基材52及び回路用可撓性基材52上に設けられた回路51が、コネクタ10とともに図示されている。回路51は、コネクタ10の配線端子1に接続されている。コネクタ10、回路用可撓性基材52及び回路51により、フレキシブル配線板100が構成される。コネクタの可撓性基材2及び回路用可撓性基材52は、同一の1枚の基材であってもよく、互いに連結された別々の基材であってもよい。 FIG. 2 shows the circuit flexible substrate 52 and the circuit 51 provided on the circuit flexible substrate 52 together with the connector 10. The circuit 51 is connected to the wiring terminal 1 of the connector 10. The flexible wiring board 100 is configured by the connector 10, the circuit flexible substrate 52, and the circuit 51. The connector flexible substrate 2 and the circuit flexible substrate 52 may be the same single substrate or may be separate substrates connected to each other.
 可撓性基材2は、折り曲げ可能な柔軟性を示すものであれば、特に限定はされないが、強靭性の点から、ポリエステル基材(ポリエステルフィルム)又はポリイミド基材(ポリイミドフィルム)であってもよく、強靭性と耐熱性の点から、ポリイミド基材(ポリイミドフィルム)であってもよい。可撓性基材2の厚みは、折り曲げ性の点から、75μm以下であってもよい。可撓性基材2の厚みは、10μm以上であってもよい。 The flexible substrate 2 is not particularly limited as long as it exhibits a foldable flexibility. From the viewpoint of toughness, the flexible substrate 2 is a polyester substrate (polyester film) or a polyimide substrate (polyimide film). The polyimide base material (polyimide film) may be sufficient from the point of toughness and heat resistance. The thickness of the flexible substrate 2 may be 75 μm or less from the viewpoint of bendability. The thickness of the flexible substrate 2 may be 10 μm or more.
 配線端子1は、例えば、金属等の導体から形成された導体層である。配線端子1の厚みは、5~40μmであってもよい。 The wiring terminal 1 is a conductor layer formed from a conductor such as metal, for example. The thickness of the wiring terminal 1 may be 5 to 40 μm.
 樹脂層3は、通常、硬化性樹脂組成物の硬化物を樹脂として含む。樹脂層3を形成するために用いられる硬化性樹脂組成物の詳細については後述される。 The resin layer 3 usually contains a cured product of the curable resin composition as a resin. Details of the curable resin composition used to form the resin layer 3 will be described later.
 樹脂層3は、可撓性基材2と対向する対向面6を有している。樹脂層3のコネクタ10の先端側(相手側のコネクタに差し込む部分の側)の端部3aは、対向面6から可撓性基材2に向かって湾曲し、樹脂層3の外側に向けて凸である凸曲面を形成している表面7を有する。樹脂層3の端部3aの表面7が凸曲面を形成することで、相手側のコネクタに差し込む際の抵抗が減少し、滑らかな差し込み性が得られる。 The resin layer 3 has a facing surface 6 that faces the flexible substrate 2. An end 3 a of the resin layer 3 on the distal end side of the connector 10 (side of the portion to be inserted into the mating connector) is curved from the facing surface 6 toward the flexible substrate 2 and directed toward the outside of the resin layer 3. It has the surface 7 which forms the convex curved surface which is convex. Since the surface 7 of the end portion 3a of the resin layer 3 forms a convex curved surface, the resistance at the time of inserting into the mating connector is reduced, and a smooth insertion property is obtained.
 本実施形態に係るコネクタにおいて、樹脂層3のコネクタ10の先端とは反対側の端部も、対向面6から可撓性基材2に向かって湾曲して凸曲面を形成している表面を有している。ただし、コネクタ10の先端とは反対側の端部の表面は、凸曲面を形成していなくてもよい。また、コネクタ10の側方側の樹脂層3の端部が、対向面6から可撓性基材2に向かって湾曲して凸曲面を形成している表面を有していてもよい。 In the connector according to the present embodiment, the end of the resin layer 3 opposite to the tip of the connector 10 also has a surface curved from the facing surface 6 toward the flexible substrate 2 to form a convex curved surface. Have. However, the surface of the end opposite to the tip of the connector 10 does not have to form a convex curved surface. Moreover, the edge part of the resin layer 3 of the side side of the connector 10 may have the surface which curves toward the flexible base material 2 from the opposing surface 6, and forms the convex curve.
 樹脂層3の端部3aの表面(可撓性基材2に接していない部分の表面)は、その一部又は全体が凸曲面を形成していればよい。樹脂層3の端部3aは、図2の実施形態のように、可撓性基材の主面の垂線に沿う平面を形成する表面を有していてもよい。図3の(a)、(b)は、樹脂層の形状の変形例を示す端面図である。図3の(b)に示す実施形態の場合、樹脂層3の端部3aの、コネクタの先端側の側面全体が、凸曲面を形成している。 The surface of the end portion 3a of the resin layer 3 (the surface of the portion that is not in contact with the flexible base material 2) only needs to form a convex curved surface. The edge part 3a of the resin layer 3 may have the surface which forms the plane which follows the perpendicular of the main surface of a flexible base material like embodiment of FIG. (A), (b) of FIG. 3 is an end view which shows the modification of the shape of a resin layer. In the case of the embodiment shown in FIG. 3B, the entire side surface of the end portion 3a of the resin layer 3 on the distal end side of the connector forms a convex curved surface.
 樹脂層3の厚みは、50~500μm、70~300μm、又は75~200μmであってもよい。樹脂層3の厚みがこれら範囲内であると、樹脂層の形成が容易である。また、樹脂層3が簡単に屈曲しないため、特に優れたコネクタの形状保持性が得られる。樹脂層3のコネクタの差し込み方向における長さは、例えば、3~30mmであってもよい。樹脂層3は、可撓性基材の幅方向の全体にわたって設けられていてもよいし、必要な剛性が得られる範囲で、幅方向における一部の領域にのみ設けられていてもよい。 The thickness of the resin layer 3 may be 50 to 500 μm, 70 to 300 μm, or 75 to 200 μm. When the thickness of the resin layer 3 is within these ranges, the resin layer can be easily formed. Further, since the resin layer 3 is not easily bent, particularly excellent connector shape retention is obtained. The length of the resin layer 3 in the connector insertion direction may be, for example, 3 to 30 mm. The resin layer 3 may be provided over the entire width direction of the flexible base material, or may be provided only in a partial region in the width direction as long as necessary rigidity is obtained.
 樹脂層3の25℃における初期引張り弾性率は、0.3~3.0GPa、0.5~2.5GPa、又は1.0~2.2GPaであってもよい。樹脂層3の初期引張り弾性率がこれら範囲内であると、樹脂層3のクラックが発生し難く、かつより一層優れた差し込み性が得られる。 The initial tensile elastic modulus at 25 ° C. of the resin layer 3 may be 0.3 to 3.0 GPa, 0.5 to 2.5 GPa, or 1.0 to 2.2 GPa. When the initial tensile elastic modulus of the resin layer 3 is within these ranges, cracks in the resin layer 3 are unlikely to occur, and a further excellent insertion property can be obtained.
 樹脂層3の25℃における初期引張り弾性率は、短冊状の樹脂層に対して引張り速度50mm/分で引張応力を加えたときに得られる応力-変位曲線の接線の傾きの最大値から求めることができる。短冊状の樹脂層は、例えば、後述の硬化性樹脂組成物を硬化して形成される板状の樹脂層から切り出すことにより、準備することができる。初期引張弾性率の測定方法の詳細は、後述の実施例において詳細に説明される。 The initial tensile elastic modulus at 25 ° C. of the resin layer 3 is obtained from the maximum value of the tangential slope of the stress-displacement curve obtained when a tensile stress is applied to the strip-shaped resin layer at a tension speed of 50 mm / min. Can do. The strip-shaped resin layer can be prepared, for example, by cutting out from a plate-shaped resin layer formed by curing a curable resin composition described below. Details of the method for measuring the initial tensile elastic modulus will be described in detail in Examples described later.
 上記数値範囲内の初期引張り弾性率は、例えば、樹脂に加えて無機フィラーを更に含有する樹脂層によって達成することができる。 The initial tensile elastic modulus within the above numerical range can be achieved, for example, by a resin layer further containing an inorganic filler in addition to the resin.
 樹脂層3中の無機フィラーは、1種の粒子から構成されていてもよいし、2種以上の粒子の組み合わせから構成されていてもよい。無機フィラーの平均粒子径は、1~100μm、1~50μm、1~20μm、又は1.5~10μmであってもよい。無機フィラーは、平均粒子径の異なる複数種のフィラーの混合物であってもよい。これにより、無機フィラーによる空間充填率を高めることができる。 The inorganic filler in the resin layer 3 may be composed of one kind of particle or may be composed of a combination of two or more kinds of particles. The average particle size of the inorganic filler may be 1 to 100 μm, 1 to 50 μm, 1 to 20 μm, or 1.5 to 10 μm. The inorganic filler may be a mixture of plural kinds of fillers having different average particle diameters. Thereby, the space filling rate by an inorganic filler can be raised.
 無機フィラーの平均粒子径は、樹脂層3を走査型電子顕微鏡(Scanning Electron Microscope)により、例えば倍率1000倍で観察し、観察された複数の無機フィラーの粒子径(最大径)の算術平均である。平均粒子径を求めるために粒子径が測定される無機フィラーの数は、例えば50個以上である。 The average particle diameter of the inorganic filler is an arithmetic average of the particle diameters (maximum diameters) of the plurality of inorganic fillers observed by observing the resin layer 3 with a scanning electron microscope (Scanning Electron Microscope), for example, at a magnification of 1000 times. . The number of inorganic fillers whose particle diameter is measured to determine the average particle diameter is, for example, 50 or more.
 樹脂層3における無機フィラーの含有量は、樹脂層の強度と初期引張り弾性率の点から樹脂層3の体積に対して30~70体積%、40~65体積%、又は50~65体積%であってもよい。また、樹脂層3における無機フィラーの含有量は、樹脂層の強度と初期引張り弾性率の点から樹脂層3の質量に対して40~85質量%、45~80質量%、又は50~80質量%であってもよい。 The content of the inorganic filler in the resin layer 3 is 30 to 70% by volume, 40 to 65% by volume, or 50 to 65% by volume with respect to the volume of the resin layer 3 in terms of the strength of the resin layer and the initial tensile elastic modulus. There may be. The content of the inorganic filler in the resin layer 3 is 40 to 85% by mass, 45 to 80% by mass, or 50 to 80% by mass with respect to the mass of the resin layer 3 in terms of the strength of the resin layer and the initial tensile elastic modulus. %.
 無機フィラーは、シリカ粒子であってもよい。シリカ粒子は特に限定はなく、例えば、球状シリカ、粉砕により微細化された破砕シリカ、乾式シリカ又は湿式シリカであってもよい。 The inorganic filler may be silica particles. The silica particles are not particularly limited, and may be, for example, spherical silica, crushed silica refined by pulverization, dry silica, or wet silica.
 球状シリカ粒子を選択した場合、樹脂層3の表面が平滑になり、滑らかな差し込み性が得られる。また、より優れた耐摩耗性及び耐クラック性を得ることもできる。 When spherical silica particles are selected, the surface of the resin layer 3 becomes smooth, and a smooth insertion property is obtained. In addition, more excellent wear resistance and crack resistance can be obtained.
 球状シリカ粒子は、例えばゾルゲル法により得ることができる。球状シリカ粒子の平均粒子径は、0.05~50μm、0.1~50μm、0.2~30μm、又は0.5~20μmであってもよい。 The spherical silica particles can be obtained, for example, by a sol-gel method. The average particle size of the spherical silica particles may be 0.05 to 50 μm, 0.1 to 50 μm, 0.2 to 30 μm, or 0.5 to 20 μm.
 球状シリカ粒子は、ほぼ球に近い形状(JIS Z2500:2000参照)を有していればよく、必ずしも真球状である必要はない。粒子の長径(DL)と短径(DS)との比(DL)/(DS)(球状係数又は真球度と言うことがある。)は、1.0~1.2であってもよい。 The spherical silica particles only need to have a substantially spherical shape (see JIS Z2500: 2000), and are not necessarily spherical. The ratio (DL) / (DS) of the major axis (DL) and minor axis (DS) of the particles (sometimes referred to as spherical coefficient or sphericity) may be 1.0 to 1.2. .
 球状シリカ粒子としては、MSR-2212、MSR-SC3、MSR-SC4、MSR-3512、MSR-FC208(以上、株式会社龍森製商品名)、エクセリカ(株式会社トクヤマ製商品名)、SO-E1、SO-E2、SO-E3、SO-E5、SO-E6、SO-C1、SO-C2、SO-C3、SO-C5、SO-C6、SO-25R(以上、アドマテックス株式会社製商品名)、FB-5D、FB-12D、FB-20D、FB-105、FB-940、FB-9454、FB-950、FB-105FC、FB-870FC、FB-875FC、FB-9454FC、FB-950FC、FB-105FD、FB-970FD、FB-975FD、FB-950FD、FB-300FD、FB-300FD、FB-400FD、FB-400FE、FB-7SDC、FB-5SDC、FB-3SDC(以上、電気化学工業株式会社製商品名)などが挙げられる。 Examples of spherical silica particles include MSR-2212, MSR-SC3, MSR-SC4, MSR-3512, MSR-FC208 (above, trade name, manufactured by Tatsumori Co., Ltd.), Excelica (trade name, manufactured by Tokuyama Corporation), SO-E1. , SO-E2, SO-E3, SO-E5, SO-E6, SO-C1, SO-C2, SO-C3, SO-C5, SO-C6, SO-25R (above, product names manufactured by Admatechs Corporation) ), FB-5D, FB-12D, FB-20D, FB-105, FB-940, FB-9454, FB-950, FB-105FC, FB-870FC, FB-875FC, FB-9454FC, FB-950FC, FB-105FD, FB-970FD, FB-975FD, FB-950FD, FB-300FD, FB-300FD, FB-40 FD, FB-400FE, FB-7SDC, FB-5SDC, FB-3SDC (or more, Denki Kagaku Kogyo trade names Co., Ltd.), and the like.
 シリカ粒子は表面処理されていてもよい。シリカ粒子を表面処理するために用いられる表面処理剤は、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、n-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランリエトキシシラン、n-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、n-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネ―トプロピルトリエトキシシラン、ジメチルシランの重縮合物、ジフェニルシランの重縮合物、及びジメチルシランとジフェニルシランとの共重縮合物からなる群より選ばれる。これらの中で、アクリル樹脂との相溶性の点からN-フェニル-3-アミノプロピルトリメトキシシランを選択することができる。 Silica particles may be surface-treated. Examples of the surface treating agent used for surface treating silica particles include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxy. Silane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimeth Sisilane, n-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane triethoxysilane, n-2- (aminoethyl) -3-aminopropyltrimethoxysilane, n-2- (aminoethyl) -3- Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyl Trimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane Bis (triethoxysilane) Propyl) tetrasulfide, 3 isocyanate - DOO triethoxysilane, polycondensate of dimethyl silane, polycondensate of diphenylsilane, and selected from the group consisting of co-polycondensate of dimethyl silane and diphenyl silane. Among these, N-phenyl-3-aminopropyltrimethoxysilane can be selected from the viewpoint of compatibility with the acrylic resin.
 コネクタ10は、例えば、可撓性基材2の一方の面側に配線端子1を設ける工程と、可撓性基材2の配線端子1とは反対側の面側に樹脂層3を形成する工程と、を含む方法により製造することができる。配線端子1は、樹脂層3を形成する前に設けられてもよく、樹脂層3を形成した後に設けられてもよい。 In the connector 10, for example, the step of providing the wiring terminal 1 on one surface side of the flexible base material 2 and the resin layer 3 on the surface side opposite to the wiring terminal 1 of the flexible base material 2 are formed. And a process including the steps. The wiring terminal 1 may be provided before the resin layer 3 is formed, or may be provided after the resin layer 3 is formed.
 樹脂層3は、例えば、硬化性樹脂組成物及び必要に応じて無機フィラーを含む液状組成物(液状インキ)を可撓性基材に塗工する工程を含む方法により形成することができる。このような液状組成物を用いた方法によれば、簡便な工程で剛直な樹脂層を形成することができる。樹脂層の厚みは、印刷等の方法によって容易に精密に制御することができる。そのため、厚みの仕様の異なる製品を効率的に製造できる。また、印刷等の方法によれば、可撓性基材上の任意の位置に、手作業によることなく、非常に効率的に樹脂層を形成することができる。さらには、耐リフロー性にも優れた樹脂層を形成することができる。 The resin layer 3 can be formed by, for example, a method including a step of applying a curable resin composition and, if necessary, a liquid composition (liquid ink) containing an inorganic filler to a flexible substrate. According to the method using such a liquid composition, a rigid resin layer can be formed by a simple process. The thickness of the resin layer can be easily and precisely controlled by a method such as printing. Therefore, products with different thickness specifications can be efficiently manufactured. In addition, according to a method such as printing, a resin layer can be formed very efficiently at any position on the flexible substrate without manual operation. Furthermore, a resin layer excellent in reflow resistance can be formed.
 図4は、液状組成物5を用いて樹脂層3を形成する方法の一実施形態を示す工程図である。まず、硬化性樹脂組成物を含む液状組成物5と、開口部4aを有するメタルマスク4とを用意する(図4(a)参照)。液状組成物5は、硬化性樹脂組成物が溶解又は分散する溶剤を含んでいてもよい。 FIG. 4 is a process diagram showing an embodiment of a method for forming the resin layer 3 using the liquid composition 5. First, a liquid composition 5 containing a curable resin composition and a metal mask 4 having an opening 4a are prepared (see FIG. 4A). The liquid composition 5 may contain a solvent in which the curable resin composition is dissolved or dispersed.
 次に、メタルマスク4の開口部4aに液状組成物5を充填し、可撓性基材2に印刷する(図4(b)参照)。液状組成物を塗工する方法は、メタルマスクを用いた印刷の他、スクリーン印刷、バーコーター等から適宜選択することができる。 Next, the liquid composition 5 is filled in the opening 4a of the metal mask 4 and printed on the flexible substrate 2 (see FIG. 4B). The method of applying the liquid composition can be appropriately selected from screen printing, bar coater and the like in addition to printing using a metal mask.
 塗工された液状組成物5から、必要により加熱等の方法により溶剤が除去されて、未硬化の樹脂層3が形成される(図4(c)参照)。未硬化の樹脂層3中の硬化性樹脂組成物を硬化することにより、硬化性樹脂組成物の硬化物を樹脂として含む樹脂層3が形成される。硬化性樹脂組成物の硬化は、例えば、加熱又は光照射により行うことができる。メタルマスク4は、硬化性樹脂組成物の硬化の後、取り外すことができる。液状組成物の塗工及び硬化を経た方法によれば、凸曲面が形成された端部を有する樹脂層を容易に形成させることができる。 If necessary, the solvent is removed from the coated liquid composition 5 by a method such as heating to form an uncured resin layer 3 (see FIG. 4C). By curing the curable resin composition in the uncured resin layer 3, the resin layer 3 containing a cured product of the curable resin composition as a resin is formed. Curing of the curable resin composition can be performed, for example, by heating or light irradiation. The metal mask 4 can be removed after the curable resin composition is cured. According to the method in which the liquid composition is applied and cured, it is possible to easily form a resin layer having an end portion on which a convex curved surface is formed.
 溶剤の除去(乾燥)及び硬化の温度は、50~250℃、80~200℃、又は100~190℃であってもよい。 The solvent removal (drying) and curing temperature may be 50 to 250 ° C., 80 to 200 ° C., or 100 to 190 ° C.
 例えば、可撓性基材2を打ち抜き加工することにより、樹脂層3を可撓性基材2の端部上に配置することができる(図4(d)参照)。 For example, the resin layer 3 can be disposed on the end of the flexible substrate 2 by punching the flexible substrate 2 (see FIG. 4D).
 液状組成物5は、例えば、硬化性樹脂組成物と、上述の無機フィラーと、溶剤とを含有していてもよい。硬化性樹脂組成物は、液状組成物5のうち溶剤及び無機フィラー以外の成分から構成され、例えば、熱及び/又は光により硬化する硬化性樹脂と、熱可塑性樹脂とを含有する。硬化性樹脂は、例えば1種又は2種以上のエポキシ樹脂を含む。熱可塑性樹脂は、例えば、1種又は2種以上のアクリル樹脂(アクリルモノマーの重合体)を含む。 The liquid composition 5 may contain, for example, a curable resin composition, the above-described inorganic filler, and a solvent. A curable resin composition is comprised from components other than a solvent and an inorganic filler among the liquid compositions 5, for example, contains the curable resin hardened | cured with a heat | fever and / or light, and a thermoplastic resin. The curable resin includes, for example, one kind or two or more kinds of epoxy resins. A thermoplastic resin contains 1 type, or 2 or more types of acrylic resins (polymer of an acrylic monomer), for example.
 エポキシ樹脂は、例えば、ビスフェノールA、ノボラック型フェノール樹脂及びオルトクレゾールノボラック型フェノール樹脂等の多価フェノール、又は1,4-ブタンジオール等の多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル、フタル酸及びヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンとを反応させて得られるポリグリシジルエステル、アミノ基、アミド基、又は複素環式窒素塩基を有する化合物のN-グリシジル誘導体、並びに脂環式エポキシ樹脂から選ばれる。アクリル樹脂との高い相溶性を有することから、ビフェニルアラルキル型エポキシ樹脂を選択することができる。 The epoxy resin is, for example, a polyglycidyl ether obtained by reacting a polyhydric phenol such as bisphenol A, a novolac type phenol resin and an orthocresol novolac type phenol resin, or a polyhydric alcohol such as 1,4-butanediol and epichlorohydrin. Polyglycidyl esters obtained by reacting polybasic acids such as phthalic acid and hexahydrophthalic acid with epichlorohydrin, N-glycidyl derivatives of compounds having amino groups, amide groups, or heterocyclic nitrogen bases, and alicyclic rings Selected from the formula epoxy resins. Since it has high compatibility with the acrylic resin, a biphenyl aralkyl type epoxy resin can be selected.
 硬化性樹脂は、エポキシ樹脂の硬化剤を含んでいてもよい。硬化剤は、例えば、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、並びにフェノールノボラック及びクレゾールノボラック等の多官能性フェノール(フェノール樹脂)から選ぶことができる。 The curable resin may contain an epoxy resin curing agent. The curing agent can be selected from, for example, dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, and polyfunctional phenols (phenolic resins) such as phenol novolac and cresol novolac.
 フェノール樹脂は、フェノール型、ビスフェノールA型、クレゾールノボラック型、又はアミノトリアジンノボラック型のフェノール樹脂を含んでいてもよい。アクリル樹脂との相溶性の点からクレゾールノボラック型及びアミノトリアジンノボラック型のフェノール樹脂のうち一方又は両方を選択することができる。アミノトリアジンノボラック型フェノール樹脂は、下記の構造式(I)で表される構造単位を有する。 The phenol resin may contain a phenol type, bisphenol A type, cresol novolac type, or aminotriazine novolac type phenol resin. One or both of the cresol novolak type and aminotriazine novolak type phenol resins can be selected from the viewpoint of compatibility with the acrylic resin. The aminotriazine novolac type phenolic resin has a structural unit represented by the following structural formula (I).
Figure JPOXMLDOC01-appb-C000001
[式(I)中、Rは水素原子又はメチル基を示し、nは1~30の整数を示す。]
Figure JPOXMLDOC01-appb-C000001
[In the formula (I), R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 30. ]
 硬化性樹脂は、樹脂層の耐熱性の向上を目的に、高分子量成分を含んでいてもよい。ただし、硬化性樹脂を構成する成分の分子量は、通常、3000以下である。 The curable resin may contain a high molecular weight component for the purpose of improving the heat resistance of the resin layer. However, the molecular weight of the component constituting the curable resin is usually 3000 or less.
 硬化性樹脂は、硬化反応を促進させる目的で、促進剤を含んでいてもよい。促進剤の種類及び配合量は特に限定されない。例えばイミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等から選ばれる1種又は2種以上が用いられる。 The curable resin may contain an accelerator for the purpose of accelerating the curing reaction. The kind and compounding quantity of an accelerator are not specifically limited. For example, one or more selected from imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts and the like are used.
 アクリル樹脂は、一般に、アクリル基又はメタクリル基を有する2種以上のアクリルモノマーを含む重合性モノマーをモノマー単位として含む共重合体である。アクリル樹脂は、所望の特性に応じて市販のアクリルモノマーから種々の組合せを選択して、安価に製造することができる。アクリル樹脂は、低沸点のケトン系溶剤に対して良好な溶解性を有することから、印刷された液状組成物を容易に乾燥できるという点でも優れている。 The acrylic resin is generally a copolymer containing a polymerizable monomer containing two or more acrylic monomers having an acrylic group or a methacryl group as a monomer unit. The acrylic resin can be manufactured at low cost by selecting various combinations from commercially available acrylic monomers according to desired properties. The acrylic resin is excellent in that it can easily dry the printed liquid composition because it has good solubility in a low-boiling ketone solvent.
 アクリル樹脂を製造するために用いられるアクリルモノマーは、特に限定されない。アクリル樹脂は、例えば、アクリロニトリル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸ペンチル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸オクタデシル、アクリル酸ブトキシエチル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸ナフチル、アクリル酸シクロヘキシル、アクリル酸イソボルニル、アクリル酸ノルボルニルメチル、アクリル酸トリシクロ[5.2.1.O2,6]デカ-8-イル(ジシクロペンタニルアクリレート)、アクリル酸トリシクロ[5.2.1.O2,6]デカ-4-メチル、アクリル酸アダマンチル、アクリル酸イソボルニル、アクリル酸ノルボルニル、アクリル酸トリシクロヘキシル[5.2.1.O2,6]デカ-8-イル、アクリル酸トリシクロヘキシル[5.2.1.O2,6]デカ-4-メチル、及びアクリル酸アダマンチル等のアクリル酸エステル、並びに、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸ペンチル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸オクタデシル、メタクリル酸ブトキシエチル、メタクリル酸フェニル、メタクリル酸ナフチル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸メチルシクロヘキシル、メタクリル酸トリシクロヘキシル、メタクリル酸ノルボルニル、メタクリル酸ノルボルニルメチル、メタクリル酸イソボルニル、メタクリル酸ボルニル、メタクリル酸メンチル、メタクリル酸アダマンチル、メタクリル酸トリシクロ[5.2.1.O2,6]デカ-8-イル(ジシクロペンタニルメタクリレート)、及びメタクリル酸トリシクロ[5.2.1.O2,6]デカー4-メチル等のメタクリル酸エステルから選ばれる1種又は2種以上のアクリルモノマーをモノマー単位として含む。 The acrylic monomer used for producing the acrylic resin is not particularly limited. Examples of the acrylic resin include acrylonitrile, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, pentyl acrylate, N-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, dodecyl acrylate, octadecyl acrylate, butoxyethyl acrylate, phenyl acrylate, benzyl acrylate, naphthyl acrylate, cyclohexyl acrylate, isobornyl acrylate , Norbornylmethyl acrylate, tricycloacrylate [5.2.1. O 2,6 ] dec-8-yl (dicyclopentanyl acrylate), tricycloacrylate [5.2.1. O2,6 ] dec-4-methyl, adamantyl acrylate, isobornyl acrylate, norbornyl acrylate, tricyclohexyl acrylate [5.2.1. O 2,6 ] dec-8-yl, tricyclohexyl acrylate [5.2.1. Acrylic acid esters such as O 2,6 ] dec-4-methyl and adamantyl acrylate, and ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate T-butyl methacrylate, pentyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, butoxyethyl methacrylate, phenyl methacrylate, naphthyl methacrylate, Cyclopentyl methacrylate, cyclohexyl methacrylate, methyl cyclohexyl methacrylate, tricyclohexyl methacrylate, norbornyl methacrylate, norbornyl methyl methacrylate, isobornyl methacrylate, Acrylic acid bornyl, menthyl methacrylate, adamantyl methacrylate, tricyclo [5.2.1. O2,6 ] dec-8-yl (dicyclopentanyl methacrylate) and tricyclomethacrylate [5.2.1. One or two or more acrylic monomers selected from methacrylic acid esters such as O 2,6 ] deca 4-methyl are included as monomer units.
 本実施形態に係る樹脂層の耐熱性及び接着性の点から、アクリル樹脂を構成するアクリルモノマーは、官能基を有するモノマーを含んでいてもよい。官能基を有するモノマーは、カルボキシル基、ヒドロキシル基、酸無水物基、アミノ基、アミド基及びエポキシ基からなる群より選ばれる少なくとも1種の官能基と、少なくとも1つの重合性の炭素-炭素2重結合とを有していてもよい。官能基を有するモノマーの具体例としては、アクリル酸、メタクリル酸、及びイタコン酸等のカルボキシル基含有モノマー、アクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシプロピル、及びN-メチロールメタクリルアミド、(o-,m-,p-)ヒドロキシスチレン等のヒドロキシル基含有モノマー、無水マレイン酸等の酸無水物基含有モノマー、アクリル酸ジエチルアミノエチル、及びメタクリル酸ジエチルアミノエチル等のアミノ基含有モノマー、並びにアクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-4,5-エポキシペンチル、アクリル酸-6,7-エポキシヘプチル、メタクリル酸-6,7-エポキシヘプチル、アクリル酸-3-メチル-4-エポキシブチル、メタクリル酸-3-メチル-3,4-エポキシブチル、アクリル酸-4-メチル-4,5-エポキシペンチル、メタクリル酸-4-メチル-4,5-エポキシペンチル、アクリル酸-5-メチル-5,6-エポキシヘキシル、アクリル酸-β-メチルグリシジル、メタクリル酸-β-メチルグリシジル、α-エチルアクリル酸-β-メチルグリシジル、アクリル酸-3-メチル-3,4-エポキシブチル、メタクリル酸-3-メチル-3,4-エポキシブチル、アクリル酸-4-メチル-4,5-エポキシペンチル、メタクリル酸-4-メチル-4,5-エポキシペンチル、アクリル酸-5-メチル、6-エポキシヘキシル、及びメタクリル酸-5-メチル-5,6-エポキシヘキシル等のエポキシ基含有モノマーが挙げられる。これらは単独で、又は2種以上を組み合わせて用いることができる。 From the viewpoint of heat resistance and adhesiveness of the resin layer according to this embodiment, the acrylic monomer constituting the acrylic resin may contain a monomer having a functional group. The monomer having a functional group includes at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, an amide group, and an epoxy group, and at least one polymerizable carbon-carbon 2. It may have a double bond. Specific examples of the monomer having a functional group include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, and itaconic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate. Hydroxyl group-containing monomers such as 2-hydroxypropyl methacrylate and N-methylol methacrylamide, (o-, m-, p-) hydroxystyrene, acid anhydride group-containing monomers such as maleic anhydride, diethylaminoacrylate Amino group-containing monomers such as ethyl and diethylaminoethyl methacrylate, and glycidyl acrylate, glycidyl α-ethyl acrylate, glycidyl α-n-propyl acrylate, 3,4-epoxybutyl acrylate, methacrylic acid-3, 4-epoxybutyl Acrylic acid-4,5-epoxypentyl, acrylic acid-6,7-epoxyheptyl, methacrylic acid-6,7-epoxyheptyl, acrylic acid-3-methyl-4-epoxybutyl, methacrylate-3-methyl- 3,4-epoxybutyl, 4-methyl-4,5-epoxypentyl acrylate, 4-methyl-4,5-epoxypentyl methacrylate, 5-methyl-5,6-epoxyhexyl acrylate, acrylic Acid-β-methylglycidyl, methacrylate-β-methylglycidyl, α-ethylacrylic acid-β-methylglycidyl, acrylate-3-methyl-3,4-epoxybutyl, methacrylate-3-methyl-3,4 -Epoxybutyl, 4-methyl-4,5-epoxypentyl acrylate, 4-methyl-4,5-epoxy methacrylate Pentyl, methyl-5-acrylic acid, 6-epoxy-hexyl, and include epoxy group-containing monomers such as methacrylic acid methyl-5,6-epoxy-hexyl. These can be used alone or in combination of two or more.
 アクリル樹脂がグリシジル基を有することにより、樹脂層の耐熱性が更に高められる。そのため、アクリル樹脂は、グリシジルメタクリレート又はグリシジルアクリレートをモノマー単位として含んでいてもよい。アクリル樹脂を構成する全ての重合性モノマーの量を基準として、グリシジルメタクリレート又はグリシジルアクリレートの含有割合は、0.5~10質量%、1~8質量%、又は2~5質量%であってもよい。 When the acrylic resin has a glycidyl group, the heat resistance of the resin layer is further improved. Therefore, the acrylic resin may contain glycidyl methacrylate or glycidyl acrylate as a monomer unit. Based on the amount of all polymerizable monomers constituting the acrylic resin, the content of glycidyl methacrylate or glycidyl acrylate may be 0.5 to 10% by mass, 1 to 8% by mass, or 2 to 5% by mass. Good.
 アクリル樹脂は、可撓性基材と樹脂層の接着性の点から、アルキルアクリレートをモノマーとして含んでいてもよい。アルキルアクリレートのアルキル基の炭素数は、1~12又は2~10であってもよい。アクリル樹脂を構成する全ての重合性モノマーの量を基準として、アルキルアクリレートの含有割合は、50~99質量%、60~98質量%、又は70~96質量%であってもよい。アルキルアクリレートは、例えば、エチルアクリレート及びブチルアクリレートから選ばれる。 The acrylic resin may contain alkyl acrylate as a monomer from the viewpoint of adhesiveness between the flexible substrate and the resin layer. The alkyl group of the alkyl acrylate may have 1 to 12 or 2 to 10 carbon atoms. Based on the amount of all polymerizable monomers constituting the acrylic resin, the content of the alkyl acrylate may be 50 to 99% by mass, 60 to 98% by mass, or 70 to 96% by mass. The alkyl acrylate is selected from, for example, ethyl acrylate and butyl acrylate.
 アクリル樹脂は、強靭性及び接着性の観点から、アクリロニトリル又はメタクリロニトリルをモノマー単位として含んでいてもよい。アクリル樹脂を構成する全ての重合性モノマーの量を基準として、アクリロニトリル又はメタクリロニトリルの含有割合は、0.5~10質量%、1~8質量%、又は2~5質量%であってもよい。 The acrylic resin may contain acrylonitrile or methacrylonitrile as a monomer unit from the viewpoint of toughness and adhesiveness. Based on the amount of all polymerizable monomers constituting the acrylic resin, the content of acrylonitrile or methacrylonitrile may be 0.5 to 10% by mass, 1 to 8% by mass, or 2 to 5% by mass. Good.
 アクリル樹脂は、アクリルモノマーと共重合する他のモノマーを更に含んでいてもよい。他のモノマーは、例えば、4-ビニルピリジン、2-ビニルピリジン、α-メチルスチレン、α-エチルスチレン、α-フルオロスチレン、α-クロルスチレン、α-ブロモスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン、メチルスチレン、メトキシスチレン、及びスチレン等の芳香族ビニル化合物、並びにN-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-i-プロピルマレイミド、N-ブチルマレイミド、N-i-ブチルマレイミド、N-t-ブチルマレイミド、N-ラウリルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、及びN-フェニルマレイミド等のN-置換マレイミド類から選ばれる少なくとも1種の化合物である。 The acrylic resin may further contain another monomer copolymerized with the acrylic monomer. Other monomers include, for example, 4-vinylpyridine, 2-vinylpyridine, α-methylstyrene, α-ethylstyrene, α-fluorostyrene, α-chlorostyrene, α-bromostyrene, fluorostyrene, chlorostyrene, bromostyrene , Aromatic vinyl compounds such as methylstyrene, methoxystyrene and styrene, and N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N-butylmaleimide, Ni-butylmaleimide , Nt-butylmaleimide, N-laurylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N-phenylmaleimide, and other N-substituted maleimides.
 アクリル樹脂の重量平均分子量は、15万~180万、40万~150万、又は50万~140万であってもよい。アクリル樹脂の重量平均分子量が15万以上であると、液状組成物の粘度が高く、液状組成物がチキソ性を発現できる。アクリル樹脂の重量平均分子量が180万以下であると、溶剤への溶解性が向上し、液状組成物における固形分の濃度を高めることが容易となる。液状組成物の固形分の濃度が高いと、塗工された液状組成物の膜厚の制御、及び乾燥収縮による膜圧の減少を考慮する必要性が低くなる。 The weight average molecular weight of the acrylic resin may be 150,000 to 1.8 million, 400,000 to 1.5 million, or 500,000 to 1.4 million. When the weight average molecular weight of the acrylic resin is 150,000 or more, the viscosity of the liquid composition is high and the liquid composition can exhibit thixotropy. When the weight average molecular weight of the acrylic resin is 1.8 million or less, the solubility in a solvent is improved, and the concentration of solid content in the liquid composition is easily increased. When the concentration of the solid content of the liquid composition is high, it is less necessary to consider the control of the film thickness of the coated liquid composition and the reduction of the film pressure due to drying shrinkage.
 アクリル樹脂のガラス転移温度(Tg)は-50~100℃、-45~20℃、又は-40℃~5℃であってもよい。n種のモノマーから構成されるアクリル樹脂のTgは、以下の計算式(FOX式)により算出することができる。
Tg(℃)={1/(W/Tg+W/Tg+…+W/Tg+…+W/Tg)}-273
 上記FOX式において、Tg(K)は、各モノマーのホモポリマーのガラス転移温度を示し、Wは、各モノマーの質量分率を示し、W+W+…+W+…W=1である。
The glass transition temperature (Tg) of the acrylic resin may be −50 to 100 ° C., −45 to 20 ° C., or −40 ° C. to 5 ° C. Tg of the acrylic resin composed of n kinds of monomers can be calculated by the following calculation formula (FOX formula).
Tg (° C.) = {1 / (W 1 / Tg 1 + W 2 / Tg 2 +... + W i / Tg i +... + W n / Tg n )}-273
In the FOX equation, Tg i (K) shows a glass transition temperature of the homopolymer of each monomer, W i represents the weight fraction of each monomer, W 1 + W 2 + ... + W i + ... W n = 1.
 例えば、グリシジルメタクリレートを5質量%、アクリロニトリルを5質量%、エチルアクリレートを85質量%、及びブチルアクリレートを5質量%の割合で共重合して得られるアクリル樹脂のガラス転移温度(Tg)は以下のように算出される。
Tg={1/(0.05/319+0.05/498+0.85/251+0.05/219)}-273=-14.7℃
For example, the glass transition temperature (Tg) of an acrylic resin obtained by copolymerizing 5% by mass of glycidyl methacrylate, 5% by mass of acrylonitrile, 85% by mass of ethyl acrylate, and 5% by mass of butyl acrylate is as follows: Is calculated as follows.
Tg = {1 / (0.05 / 319 + 0.05 / 498 + 0.85 / 251 + 0.05 / 219)}-273 = −14.7 ° C.
 熱可塑性樹脂(例えばアクリル樹脂)、硬化性樹脂(例えばエポキシ樹脂)及び硬化剤(例えばフェノール樹脂)の合計質量を基準として、熱可塑性樹脂の含有割合は、40~90重量%、50~85重量%、又は60~80重量%であってもよい。このときアクリル樹脂のグリシジル基及びエポキシ樹脂のエポキシ基の合計と、フェノール樹脂の水酸基量は、実質的に当量であってもよい。 Based on the total mass of the thermoplastic resin (for example, acrylic resin), the curable resin (for example, epoxy resin), and the curing agent (for example, phenol resin), the thermoplastic resin content is 40 to 90% by weight, 50 to 85% by weight. %, Or 60 to 80% by weight. At this time, the total of the glycidyl group of the acrylic resin and the epoxy group of the epoxy resin and the amount of the hydroxyl group of the phenol resin may be substantially equivalent.
 液状組成物5は、例えば、硬化性樹脂組成物を構成する各成分と、必要により溶剤とを混合し、攪拌する方法により、調製することができる。液状組成物5が無機フィラーを含む場合、予め表面処理剤を含む有機溶剤中に無機フィラーを分散して得たスラリーを用いて液状組成物を調製してもよい。また、硬化性樹脂を含む硬化性樹脂組成物の成分の混合物を予め準備し、この混合物と、無機フィラーのスラリーとを混合して、液状組成物を得ることもできる。 The liquid composition 5 can be prepared, for example, by a method in which each component constituting the curable resin composition and, if necessary, a solvent are mixed and stirred. When the liquid composition 5 contains an inorganic filler, the liquid composition may be prepared using a slurry obtained by dispersing the inorganic filler in an organic solvent containing a surface treating agent in advance. Moreover, the liquid composition can also be obtained by preparing in advance a mixture of components of a curable resin composition containing a curable resin, and mixing this mixture with an inorganic filler slurry.
 硬化性樹脂組成物及び無機フィラーを溶解又は分散するために用いられる溶剤は、例えば、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤から選ばれる。印刷性の観点から、シクロヘキサノンを選択することができる。 The solvent used for dissolving or dispersing the curable resin composition and the inorganic filler is selected from ketone solvents such as methyl ethyl ketone and cyclohexanone. From the viewpoint of printability, cyclohexanone can be selected.
 以下に実施例を挙げて本発明についてより具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.
製造例1
 シクロヘキサノン129gにN-フェニル-3-アミノプロピルトリメトキシシラン(KBM573、信越シリコ-ン株式会社製商品名)3.0gを溶解したのち、球状シリカ粒子としてアドマファインSO-25R(アドマテック株式会社製商品名)300gを撹拌しながら加え、全量を加えた後さらに室温で1時間撹拌した。エポキシ樹脂としてNC-3000H(日本化薬株式会社製商品名)のシクロヘキサノン溶液(固形分50質量%)27.6g、フェノール樹脂としてLA-3018(大日本インキ株式会社製商品名)のプロピレングリコールモノメチルエーテル溶液(固形分60質量%)18.7g、2-エチル-4-メチルイミダゾール(2E4MZ、四国化成株式会社製商品名)0.42gを加えて、さらに30分撹拌したのち、アクリル樹脂としてグリシジルメタクリレート、アクリロニトリル、エチルアクリレート及びブチルアクリレート共重合体(重量平均分子量61万、エポキシ当量2869)のシクロヘキサノン溶液(固形分24.9質量%)301gを加えてボールミルで12時間撹拌混合し、液状組成物を得た。
Production Example 1
After dissolving 3.0 g of N-phenyl-3-aminopropyltrimethoxysilane (KBM573, trade name manufactured by Shin-Etsu Silicon Co., Ltd.) in 129 g of cyclohexanone, Admafine SO-25R (product of Admatech Co., Ltd.) is used as spherical silica particles. Name) 300 g was added with stirring, and after adding the entire amount, the mixture was further stirred at room temperature for 1 hour. 27.6 g of cyclohexanone solution (solid content 50 mass%) of NC-3000H (trade name, manufactured by Nippon Kayaku Co., Ltd.) as an epoxy resin, and propylene glycol monomethyl of LA-3018 (trade name, manufactured by Dainippon Ink Co., Ltd.) as a phenol resin After adding 18.7 g of ether solution (solid content 60% by mass) and 0.42 g of 2-ethyl-4-methylimidazole (2E4MZ, trade name, manufactured by Shikoku Kasei Co., Ltd.), the mixture was further stirred for 30 minutes, and then glycidyl as an acrylic resin. Add 301 g of a cyclohexanone solution (solid content 24.9% by mass) of a copolymer of methacrylate, acrylonitrile, ethyl acrylate and butyl acrylate (weight average molecular weight 610,000, epoxy equivalent 2869) and stir and mix in a ball mill for 12 hours to obtain a liquid composition Got.
製造例2~7
 表1及び2に示す各材料を、表に示される配合比で用いたこと以外は製造例1と同様にして、液状組成物を得た。表1及び2に示すアクリル樹脂配合量、エポキシ樹脂配合量及びフェノール樹脂配合量は、アクリル樹脂、エポキシ樹脂及びフェノール樹脂の合計量を基準とする比率である。
Production Examples 2-7
A liquid composition was obtained in the same manner as in Production Example 1 except that the materials shown in Tables 1 and 2 were used in the mixing ratios shown in the table. The acrylic resin compounding amount, the epoxy resin compounding amount, and the phenol resin compounding amount shown in Tables 1 and 2 are ratios based on the total amount of the acrylic resin, the epoxy resin, and the phenol resin.
 アクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B[東ソー株式会社製、商品名])を用いて3次式で近似して作成した。GPCの条件は、以下に示す。
装置:(ポンプ:L-2130型[株式会社日立ハイテクノロジーズ製])、
(検出器:L-2490型RI[株式会社日立ハイテクノロジーズ製])、
(カラムオーブン:L-2350[株式会社日立ハイテクノロジーズ製])
カラム:Gelpack GL-A100M(日立化成工業株式会社製商品名)
カラムサイズ:10.7mmI.D×300mm
溶離液:テトラヒドロフラン
試料濃度:10mg/2mL
注入量:200μL
流量:2.05mL/分
測定温度:25℃
The weight average molecular weight of the acrylic resin was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC). A calibration curve was prepared by approximating with a cubic equation using a standard polystyrene 5-sample set (PStQuick MP-H, PStQuick B [trade name, manufactured by Tosoh Corporation]). The GPC conditions are shown below.
Equipment: (Pump: L-2130 type [manufactured by Hitachi High-Technologies Corporation]),
(Detector: L-2490 type RI [manufactured by Hitachi High-Technologies Corporation]),
(Column oven: L-2350 [manufactured by Hitachi High-Technologies Corporation])
Column: Gelpack GL-A100M (trade name, manufactured by Hitachi Chemical Co., Ltd.)
Column size: 10.7 mmI. D x 300mm
Eluent: Tetrahydrofuran Sample concentration: 10 mg / 2 mL
Injection volume: 200 μL
Flow rate: 2.05 mL / min Measurement temperature: 25 ° C
 表1及び表2に示される各材料の詳細は以下の通りである。
1.アクリル樹脂
・GMA/AN/EA/BA:グリシジルメタクリレート、アクリロニトリル、エチルアクリレート及びブチルアクリレートの共重合体
2.エポキシ樹脂
・NC-3000H:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製商品名、エポキシ当量290)
3.フェノール樹脂
・LA-3018:アミノトリアジンノボラック型フェノール樹脂(大日本インキ株式会社製商品名、水酸基当量151、窒素含有量18%)
4.シリカ粒子
・F05-12:破砕シリカ、福島窯業株式会社製商品名
・SO-25R:球状シリカ、アドマテックス株式会社製商品名
5.表面処理剤(シランカップリング剤)
・KBM573:N-フェニル-3-アミノプロピルトリメトキシシラン、信越シリコ-ン株式会社製商品名
Details of each material shown in Table 1 and Table 2 are as follows.
1. 1. Acrylic resin / GMA / AN / EA / BA: copolymer of glycidyl methacrylate, acrylonitrile, ethyl acrylate and butyl acrylate Epoxy resin / NC-3000H: Biphenyl aralkyl type epoxy resin (trade name, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 290)
3. Phenolic resin / LA-3018: Aminotriazine novolac type phenolic resin (Dainippon Ink Co., Ltd., trade name, hydroxyl group equivalent 151, nitrogen content 18%)
4). Silica particles F05-12: crushed silica, trade name manufactured by Fukushima Ceramics Co., Ltd. SO-25R: spherical silica, trade name manufactured by Admatechs Co., Ltd. 5. Surface treatment agent (silane coupling agent)
KBM573: N-phenyl-3-aminopropyltrimethoxysilane, trade name manufactured by Shin-Etsu Silicon Co., Ltd.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(樹脂層の機械特性)
 離型処理PET(ポリエチレンテレフタレート)フィルムに、乾燥後の厚みが125μmになるようにバーコーターを用いて液状組成物を塗布した。塗布された液状組成物を130℃で10分間の加熱により乾燥した後、185℃で30分間の加熱により硬化させた。離型処理PETフィルムをはがしてから、硬化物を幅10mm、長さ100mmに打ち抜いて、試験片を得た。この試験片をEZテスター(株式会社島津製作所製オートグラフEZ-S)を用いて引張り速度50mm/分で長手方向に引っ張る引張試験を行い、応力-変位曲線を得た。応力負荷を開始してから立ち上がり初期における、応力-変位曲線の接線の傾きの最大値を求め、その値から下記式に従って初期引張り弾性率を求めた。
初期引張り弾性率(Pa)=応力-変位曲線の接線の傾きの最大値(N/m)×[変位(m)/硬化物の断面積(m)]
(Mechanical properties of the resin layer)
The liquid composition was applied to a release-treated PET (polyethylene terephthalate) film using a bar coater so that the thickness after drying was 125 μm. The applied liquid composition was dried by heating at 130 ° C. for 10 minutes, and then cured by heating at 185 ° C. for 30 minutes. After removing the release-treated PET film, the cured product was punched out to a width of 10 mm and a length of 100 mm to obtain a test piece. This test piece was subjected to a tensile test using an EZ tester (Autograph EZ-S manufactured by Shimadzu Corporation) at a tensile speed of 50 mm / min to obtain a stress-displacement curve. The maximum value of the tangential slope of the stress-displacement curve at the initial rise after the stress load was started was determined, and the initial tensile elastic modulus was determined from the value according to the following formula.
Initial tensile elastic modulus (Pa) = maximum value of slope of tangent line of stress-displacement curve (N / m) × [displacement (m) / cross-sectional area of cured product (m 2 )]
実施例1
 ポリイミド基材(厚み25μm)/銅箔(厚み18μm)の積層体(エスパネックス、新日鐵化学株式会社製商品名)の銅箔を、フォトリソグラフィーにより加工して、配線端子のパターンを形成した。ポリイミド基材の配線端子とは反対側の面に、メタルマスクを用いて製造例1の液状組成物を印刷した。印刷された液状組成物を130℃で10分の加熱により乾燥した後、さらに185℃で60分の加熱により硬化して、ポリイミド基材の端部からの長さ30mm、厚み75μmの樹脂層を形成させて、樹脂層を有するコネクタの試験片(幅10mm、長さ100mm)を得た。略矩形の主面を有する樹脂層の端部は、ポリイミド基材と対向する対向面からポリイミド基材に向けて湾曲する凸曲面を形成する表面を有していた。
Example 1
A copper foil of a polyimide substrate (thickness 25 μm) / copper foil (thickness 18 μm) laminate (Espanex, trade name, manufactured by Nippon Steel Chemical Co., Ltd.) was processed by photolithography to form a wiring terminal pattern. . The liquid composition of Production Example 1 was printed on the surface of the polyimide substrate opposite to the wiring terminals using a metal mask. The printed liquid composition is dried by heating at 130 ° C. for 10 minutes, and further cured by heating at 185 ° C. for 60 minutes to form a resin layer having a length of 30 mm from the end of the polyimide substrate and a thickness of 75 μm. Thus, a connector test piece (width 10 mm, length 100 mm) having a resin layer was obtained. The edge part of the resin layer which has a substantially rectangular main surface had the surface which forms the convex curve which curves toward the polyimide base material from the opposing surface which opposes a polyimide base material.
実施例2~12
 各製造例の液状組成物を用い、ポリイミド基材の厚み、又は樹脂層の厚みを表3及び表4に示すように変更したこと以外は、実施例1と同様にして、樹脂層を有するコネクタの試験片を作製した。いずれの試験片においても、樹脂層の端部が、ポリイミド基材と対向する対向面からポリイミド基材に向けて湾曲する凸曲面を形成する表面を有していた。
Examples 2-12
A connector having a resin layer in the same manner as in Example 1 except that the liquid composition of each production example was used and the thickness of the polyimide base material or the thickness of the resin layer was changed as shown in Tables 3 and 4. A test piece was prepared. In any of the test pieces, the end portion of the resin layer had a surface forming a convex curved surface that curves toward the polyimide base material from the facing surface facing the polyimide base material.
比較例1
 実施例と同様に、ポリイミド基材(厚み50μm)上に配線端子のパターンを形成した。ポリイミド基材の配線端子とは反対側の面に厚み30μmの接着フィルム(ハイボン10-850、日立化成株式会社製商品名)を介して厚み75μmのポリイミドフィルム(ユーピレックス75S、宇部興産株式会社製品名)を貼り付け、幅10mm、長さ100mmの短冊状に切り出し、比較用のコネクタの試験片を得た。ポリイミド基材に貼り付けられたポリイミドフィルムの端部は、ポリイミド基材と対向する対向面と、ポリイミド基材の垂線に沿う側面とを有しており、対向面と側面とが直角に交わっていた。
Comparative Example 1
Similar to the example, a wiring terminal pattern was formed on a polyimide substrate (thickness 50 μm). A polyimide film (UPILEX 75S, Ube Industries, Ltd. product name) with a thickness of 75 μm via a 30 μm thickness adhesive film (Hybon 10-850, product name, manufactured by Hitachi Chemical Co., Ltd.) on the surface opposite to the wiring terminal of the polyimide substrate. ) Was cut out into a strip shape having a width of 10 mm and a length of 100 mm to obtain a test piece of a connector for comparison. The end of the polyimide film affixed to the polyimide substrate has a facing surface facing the polyimide substrate and a side surface along the perpendicular of the polyimide substrate, and the facing surface and the side surface intersect at a right angle. It was.
(評価)
(折り曲げ性)
 幅10mmの試験片の端部を天秤に押し付けることにより、端部から490mN(50gf)の荷重を加えた。荷重が加えられたときに、試験片が屈曲しなかった場合を「A」、試験片が屈曲したり、樹脂層が破断した場合を「C」と判定した。
(Evaluation)
(Bendability)
A load of 490 mN (50 gf) was applied from the end by pressing the end of a 10 mm wide test piece against the balance. When a load was applied, the case where the test piece did not bend was determined as “A”, and the case where the test piece was bent or the resin layer was broken was determined as “C”.
(耐リフロー性)
 コネクタの試験片を2枚の金網の間に挟み、1.2m/分の速度で移動させながら、基板表面温度の最高温度が260℃で、その温度が10秒間維持される加熱プロファイルのコンベア型リフロー試験により、試験片を3回処理した。処理後、外観の目視によりポリイミド基材/樹脂層間のふくれ及びはがれの有無を確認した。ふくれ及びはがれが発生しなかった場合を「A」、ふくれ及び/又ははがれが発生した場合を「C」と判定した。
(Reflow resistance)
A conveyor type with a heating profile in which the maximum temperature of the substrate surface is 260 ° C. and the temperature is maintained for 10 seconds while the test piece of the connector is sandwiched between two wire meshes and moved at a speed of 1.2 m / min. The test piece was processed three times by the reflow test. After the treatment, the presence or absence of blistering and peeling between the polyimide base material / resin layer was confirmed by visual inspection. The case where no blistering and peeling occurred was determined as “A”, and the case where blistering and / or peeling occurred was determined as “C”.
(コネクタの耐久性試験)
 図5は、コネクタの耐久性試験の方法を示す概略説明図である。デジタルマイクロメータ20(株式会社ミツトヨ製MDC-25SB)の測定部分であるスピンドル21、アンビル22それぞれに接着剤で固定された厚さ1mmの鏡面仕上げアルミニウム板31,32を、抜き差し耐久性評価用の治具として用いた。対向する2枚のアルミニウム板31,32の隙間を、デジタルマイクロメータ20により、試験片の厚みと同等、-15μm、又は+15μmに設定して、試験を行った。アルミニウム板に対して平行な向きAで隙間に試験片10を約10mm挿入した後、引き抜く操作を最大30回繰り返した。試験片10の異常を目視により観察し、剥がれ、割れ、折れなどの異常が発生するまでの回数を記録した。
(Durability test of connectors)
FIG. 5 is a schematic explanatory view showing a method of a durability test of the connector. The mirror finished aluminum plates 31 and 32 having a thickness of 1 mm fixed to the spindle 21 and the anvil 22 respectively, which are measurement parts of the digital micrometer 20 (MDC-25SB manufactured by Mitutoyo Corporation), are used for evaluating insertion and removal durability. Used as a jig. The test was performed by setting the gap between the two aluminum plates 31 and 32 facing each other with the digital micrometer 20 to be equal to the thickness of the test piece, −15 μm, or +15 μm. After inserting about 10 mm of the test piece 10 into the gap in the direction A parallel to the aluminum plate, the operation of pulling out was repeated up to 30 times. The abnormality of the test piece 10 was visually observed, and the number of times until an abnormality such as peeling, cracking, or bending occurred was recorded.
(ポリイミド基材と樹脂層との接着性)
 ポリイミドフィルム(ユーピレックス50S、宇部興産株式会社製品名)に、乾燥後の厚みが125μmになるように、液状組成物をバーコーターを用いて塗布した。塗布した液状組成物を130℃で10分間の加熱により乾燥した後、185℃で30分間の加熱により硬化させて、接着性評価用の試料を得た。試料の樹脂層に、カッターナイフにより2mm幅に10本、これと直角に交差するように2mm幅で10本の碁盤目の切り込みを入れた。そこにセロテープ(登録商標)を張った後、これを引き剥がし、樹脂層の剥がれの有無を確認した。剥がれが発生しなかった場合を「A」、剥がれが発生した場合を「C」と判定した。
(Adhesiveness between polyimide substrate and resin layer)
The liquid composition was applied to a polyimide film (Upilex 50S, Ube Industries, Ltd. product name) using a bar coater so that the thickness after drying was 125 μm. The applied liquid composition was dried by heating at 130 ° C. for 10 minutes and then cured by heating at 185 ° C. for 30 minutes to obtain a sample for adhesion evaluation. In the resin layer of the sample, 10 grids of 2 mm width were cut with a cutter knife, and 10 grids with a width of 2 mm were made so as to intersect at right angles. Cellotape (registered trademark) was stretched there, and then peeled off to confirm whether the resin layer was peeled off. The case where peeling did not occur was determined as “A”, and the case where peeling occurred was determined as “C”.
(結果)
 評価結果を表3及び表4に示す。実施例では、いずれポリイミド基材と樹脂層が良好であり、耐リフロー性も問題なかった。コネクタの折り曲げ性に関して、いずれの実施例でも490mN(50gf)の荷重に対して試験片が屈曲することはなかった。
 コネクタの耐久性試験に関して、実施例では試験片の滑らかな抜き差しが可能であり、30回の抜き差しを行っても異常の発生は観察されなかった。比較例の場合、試験片の抜き差しの抵抗が強く、隙間が試験片と同等(173μm)又は-15μm(158μm)のときに、30回未満の抜き差しの時点で異常の発生が観察された。
(result)
The evaluation results are shown in Tables 3 and 4. In Examples, the polyimide base material and the resin layer were good, and there was no problem with reflow resistance. Regarding the bendability of the connector, in any of the examples, the test piece did not bend against a load of 490 mN (50 gf).
Regarding the durability test of the connector, in the example, the test piece could be smoothly inserted and removed, and no abnormality was observed even after 30 insertions and removals. In the case of the comparative example, when the resistance of insertion / extraction of the test piece was strong and the gap was equal to that of the test piece (173 μm) or −15 μm (158 μm), the occurrence of abnormality was observed at the time of insertion / removal less than 30 times.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1…配線端子、2…可撓性基材、3…樹脂層、3a…樹脂層3の端部、4…メタルマスク、4a…開口部、5…液状組成物、6…対向面、7…凸曲面を形成する表面、10…コネクタ、20…デジタルマイクロメータ、21…スピンドル、22…アンビル、31,32…アルミニウム板、51…回路、52…回路用可撓性基材、100…フレキシブル配線板。 DESCRIPTION OF SYMBOLS 1 ... Wiring terminal, 2 ... Flexible base material, 3 ... Resin layer, 3a ... End part of resin layer 3, 4 ... Metal mask, 4a ... Opening part, 5 ... Liquid composition, 6 ... Opposite surface, 7 ... Surface forming convex curved surface, 10 ... connector, 20 ... digital micrometer, 21 ... spindle, 22 ... anvil, 31, 32 ... aluminum plate, 51 ... circuit, 52 ... flexible substrate for circuit, 100 ... flexible wiring Board.

Claims (9)

  1.  相手側のコネクタに差し込まれて配線を接続するために用いられる差し込み側のコネクタであって、
     可撓性基材と、
     前記可撓性基材の一方の面側に配置された配線端子と、
     前記可撓性基材の前記配線端子とは反対の面側で前記可撓性基材の端部上に配置され、前記可撓性基材と対向する対向面を有する、樹脂を含む樹脂層と、
    を備え、
     前記樹脂層の当該コネクタの先端側の端部が、前記対向面から前記可撓性基材に向かって湾曲する凸曲面を形成している表面を有する、コネクタ。
    A connector on the plug-in side that is used to connect the wiring by plugging into the connector on the mating side,
    A flexible substrate;
    A wiring terminal disposed on one surface side of the flexible substrate;
    A resin layer containing a resin, which is disposed on an end portion of the flexible substrate on a surface opposite to the wiring terminal of the flexible substrate, and has a facing surface facing the flexible substrate. When,
    With
    The connector which has the surface in which the edge part of the front end side of the said connector of the said resin layer forms the convex curve which curves toward the said flexible base material from the said opposing surface.
  2.  前記樹脂層が、無機フィラーを更に含む、請求項1に記載のコネクタ。 The connector according to claim 1, wherein the resin layer further contains an inorganic filler.
  3.  前記無機フィラーが、シリカ粒子である、請求項2に記載のコネクタ。 The connector according to claim 2, wherein the inorganic filler is silica particles.
  4.  前記樹脂層における前記無機フィラーの含有量が、前記樹脂層の体積に対して30~70体積%である、請求項2又は3に記載のコネクタ。 4. The connector according to claim 2, wherein the content of the inorganic filler in the resin layer is 30 to 70% by volume with respect to the volume of the resin layer.
  5.  前記可撓性基材が、ポリエステル基材又はポリイミド基材である、請求項1~4のいずれか一項に記載のコネクタ。 The connector according to any one of claims 1 to 4, wherein the flexible substrate is a polyester substrate or a polyimide substrate.
  6.  前記可撓性基材の厚みが、75μm以下である、請求項1~5のいずれか一項に記載のコネクタ。 The connector according to any one of claims 1 to 5, wherein the flexible substrate has a thickness of 75 µm or less.
  7.  前記樹脂層の25℃における初期引張り弾性率が、0.3~3.0GPaである、請求項1~6のいずれか一項に記載のコネクタ。 The connector according to any one of claims 1 to 6, wherein an initial tensile elastic modulus at 25 ° C of the resin layer is 0.3 to 3.0 GPa.
  8.  前記樹脂層の厚みが、50~500μmである、請求項1~7のいずれか一項に記載のコネクタ。 The connector according to any one of claims 1 to 7, wherein the resin layer has a thickness of 50 to 500 µm.
  9.  請求項1~8のいずれか一項に記載のコネクタと、
     回路用可撓性基材と、
     前記回路用可撓性基材上に設けられ、前記コネクタの配線端子に接続された回路と、
    を備え、
     前記コネクタの可撓性基材と前記回路用可撓性基材とが同一の1枚の基材である、又は、前記コネクタの可撓性基材と別の前記回路用可撓性基材とが連結されている、フレキシブル配線板。
    A connector according to any one of claims 1 to 8,
    A flexible substrate for circuits;
    A circuit provided on the flexible substrate for the circuit and connected to a wiring terminal of the connector;
    With
    The flexible substrate for the connector and the flexible substrate for circuit are the same substrate, or the flexible substrate for circuit different from the flexible substrate for the connector And a flexible wiring board.
PCT/JP2012/071865 2012-08-29 2012-08-29 Connector and flexible wiring board WO2014033859A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/071865 WO2014033859A1 (en) 2012-08-29 2012-08-29 Connector and flexible wiring board
PCT/JP2013/064266 WO2014034197A1 (en) 2012-08-29 2013-05-22 Connector and flexible wiring board
CN201380042026.6A CN104521069B (en) 2012-08-29 2013-05-22 connector and flexible wiring board
KR1020157000322A KR102190760B1 (en) 2012-08-29 2013-05-22 Connector and flexible wiring board
JP2014532836A JP6444734B2 (en) 2012-08-29 2013-05-22 Connectors and flexible wiring boards
JP2017126602A JP6481716B2 (en) 2012-08-29 2017-06-28 Connector and flexible wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071865 WO2014033859A1 (en) 2012-08-29 2012-08-29 Connector and flexible wiring board

Publications (1)

Publication Number Publication Date
WO2014033859A1 true WO2014033859A1 (en) 2014-03-06

Family

ID=50182709

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/071865 WO2014033859A1 (en) 2012-08-29 2012-08-29 Connector and flexible wiring board
PCT/JP2013/064266 WO2014034197A1 (en) 2012-08-29 2013-05-22 Connector and flexible wiring board

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064266 WO2014034197A1 (en) 2012-08-29 2013-05-22 Connector and flexible wiring board

Country Status (4)

Country Link
JP (2) JP6444734B2 (en)
KR (1) KR102190760B1 (en)
CN (1) CN104521069B (en)
WO (2) WO2014033859A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004818A (en) * 2014-06-13 2016-01-12 日立化成株式会社 Resin composition for printing and printed wiring board
CN109587932A (en) * 2018-12-06 2019-04-05 李建波 A kind of novel reinforcement steel disc and its processing technology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196715A (en) * 2000-01-13 2001-07-19 Fuji Photo Optical Co Ltd Connection structure for flexible printing board
JP2005051177A (en) * 2003-07-31 2005-02-24 Sony Corp Flexible wiring board
JP2007273655A (en) * 2006-03-31 2007-10-18 Fujikura Ltd Flexible flat circuit board and manufacturing method therefor
JP2008186719A (en) * 2007-01-30 2008-08-14 Sumitomo Electric Ind Ltd Harness, harness with connector, and harness connected unit
JP2011009271A (en) * 2009-06-23 2011-01-13 Fujikura Ltd Printed wiring board and method for manufacturing the same
JP2012142184A (en) * 2010-12-28 2012-07-26 Fujitsu Component Ltd Plug and connector device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260534A (en) * 1996-03-21 1997-10-03 Oki Electric Ind Co Ltd Flip chip mounting board and ic card using the same
JP2000151033A (en) * 1998-11-16 2000-05-30 Matsushita Electric Ind Co Ltd Wiring board, manufacture thereof, and method of mounting the same to apparatus
JP2000306621A (en) * 1999-04-15 2000-11-02 Molex Inc Connector
JP4195619B2 (en) * 2003-01-20 2008-12-10 株式会社フジクラ Multilayer wiring board and manufacturing method thereof
CN1592537A (en) * 2003-08-26 2005-03-09 华生科技股份有限公司 Flexible printed circuitboard
US7205483B2 (en) * 2004-03-19 2007-04-17 Matsushita Electric Industrial Co., Ltd. Flexible substrate having interlaminar junctions, and process for producing the same
US7321496B2 (en) * 2004-03-19 2008-01-22 Matsushita Electric Industrial Co., Ltd. Flexible substrate, multilayer flexible substrate and process for producing the same
JP4330486B2 (en) * 2004-05-07 2009-09-16 日東電工株式会社 Method for manufacturing double-sided printed wiring board
JP2006005001A (en) * 2004-06-15 2006-01-05 Toshiba Corp Wiring board, magnetic disk device, and method for manufacturing the wiring board
JP2007109499A (en) * 2005-10-13 2007-04-26 Fujitsu Ltd Contact member, connector, substrate, and connector system
JP4904084B2 (en) * 2006-05-18 2012-03-28 互応化学工業株式会社 Printed wiring board with terminal portion and manufacturing method thereof
JP2012049219A (en) * 2010-08-25 2012-03-08 Fujitsu Ltd Electronic device
JP2012114232A (en) * 2010-11-24 2012-06-14 Kaneka Corp Flexible printed circuit board with built-in reinforcing plate and method of manufacturing flexible printed circuit board with built-in reinforcing plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196715A (en) * 2000-01-13 2001-07-19 Fuji Photo Optical Co Ltd Connection structure for flexible printing board
JP2005051177A (en) * 2003-07-31 2005-02-24 Sony Corp Flexible wiring board
JP2007273655A (en) * 2006-03-31 2007-10-18 Fujikura Ltd Flexible flat circuit board and manufacturing method therefor
JP2008186719A (en) * 2007-01-30 2008-08-14 Sumitomo Electric Ind Ltd Harness, harness with connector, and harness connected unit
JP2011009271A (en) * 2009-06-23 2011-01-13 Fujikura Ltd Printed wiring board and method for manufacturing the same
JP2012142184A (en) * 2010-12-28 2012-07-26 Fujitsu Component Ltd Plug and connector device

Also Published As

Publication number Publication date
KR102190760B1 (en) 2020-12-14
CN104521069B (en) 2017-02-22
JPWO2014034197A1 (en) 2016-08-08
JP6481716B2 (en) 2019-03-13
CN104521069A (en) 2015-04-15
JP2017201708A (en) 2017-11-09
WO2014034197A1 (en) 2014-03-06
KR20150048104A (en) 2015-05-06
JP6444734B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
KR101685775B1 (en) Polymer powder, curable resin composition, and cured product thereof
JP3904798B2 (en) Anisotropic conductive paste
WO2000060614A1 (en) Anisotropically conductive paste
JP5426511B2 (en) Epoxy resin composition sheet for sealing and hollow device sealed using the same
US10251265B2 (en) Pregreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
JP5200386B2 (en) Adhesive sheet for electronic materials
JP6007910B2 (en) Liquid ink
WO2012073360A1 (en) Insulating sheet and laminated structure
JP6481716B2 (en) Connector and flexible wiring board
JP2009167396A (en) Adhesive composition, copper-clad laminate plate using the same, cover-lay film and adhesive sheet
JP2009132879A (en) Adhesive composition and cover-lay film using the same
KR101359831B1 (en) Bonding sheet
JP2017188667A (en) Insulating material and electronic component
JP2017019900A (en) Adhesive composition, adhesive film, metal foil with resin and metal base substrate
JP6217895B2 (en) Curable resin composition
JP2009007531A (en) Resin/filler composite material and printed wiring board using the same
WO2015178393A1 (en) Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon
JP2016004818A (en) Resin composition for printing and printed wiring board
JP2009203261A (en) Thermally conductive material, heat dissipation substrate using it, and manufacturing method of heat dissipation substrate
JP6079086B2 (en) Connector manufacturing method
JP6478088B2 (en) Prepreg with primer layer for plating process and method for producing multilayer printed wiring board using the same
JP2008081681A (en) Epoxy-based adhesive, coverlay, prepreg, metal-clad laminate and printed wiring board
WO2023157542A1 (en) Resin composition
WO2023214522A1 (en) Laminate, method for producing laminate, and method for producing connection structure
JP2009253213A (en) Adhesive composition for flexible printed wiring board, adhesive film for flexible printed wiring board using the adhesive composition, and cover ray film for flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP