[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014033372A1 - Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement - Google Patents

Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement Download PDF

Info

Publication number
WO2014033372A1
WO2014033372A1 PCT/FR2012/051969 FR2012051969W WO2014033372A1 WO 2014033372 A1 WO2014033372 A1 WO 2014033372A1 FR 2012051969 W FR2012051969 W FR 2012051969W WO 2014033372 A1 WO2014033372 A1 WO 2014033372A1
Authority
WO
WIPO (PCT)
Prior art keywords
traces
temperature
hot
rolled
sheet
Prior art date
Application number
PCT/FR2012/051969
Other languages
English (en)
Inventor
Pierre-Olivier Santacreu
Claudine MIRAVAL
Saghi SAEDLOU
Original Assignee
Aperam Stainless France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46940548&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014033372(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CN201280076210.8A priority Critical patent/CN104903482B/zh
Priority to EP12766456.3A priority patent/EP2893049B1/fr
Priority to JP2015529088A priority patent/JP2015532681A/ja
Priority to IN1710DEN2015 priority patent/IN2015DN01710A/en
Priority to KR1020157006981A priority patent/KR20150099706A/ko
Priority to US14/425,313 priority patent/US9873924B2/en
Priority to HUE12766456A priority patent/HUE052513T2/hu
Application filed by Aperam Stainless France filed Critical Aperam Stainless France
Priority to SI201231867T priority patent/SI2893049T1/sl
Priority to MX2015002716A priority patent/MX2015002716A/es
Priority to BR112015004633A priority patent/BR112015004633A2/pt
Priority to ES12766456T priority patent/ES2831163T3/es
Priority to CA2883538A priority patent/CA2883538C/fr
Priority to PCT/FR2012/051969 priority patent/WO2014033372A1/fr
Priority to RU2015107432/02A priority patent/RU2603519C2/ru
Publication of WO2014033372A1 publication Critical patent/WO2014033372A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea

Definitions

  • the invention relates to a ferritic stainless steel, its method of manufacture, and its use for the manufacture of mechanically welded parts subjected to high temperatures, such as elements of exhaust lines of internal combustion engines.
  • ferritic stainless steels such as parts located in the hot parts of engine exhaust systems equipped with a urea or ammonia decontamination system (passenger cars, trucks, construction site, agricultural machinery, or maritime transport machinery) ensuring the reduction of nitrogen oxides, one simultaneously seeks:
  • these parts are subjected to temperatures between 150 and 700 ° C, and a projection of a mixture of urea and water (typically 32.5% urea - 67.5% water ), or a mixture of ammonia and water, or pure ammonia.
  • a mixture of urea and water typically 32.5% urea - 67.5% water
  • ammonia and water typically pure ammonia.
  • the decomposition products of urea and ammonia are also likely to degrade parts of the exhaust line.
  • the high temperature mechanical strength must also be adapted to the thermal cycles associated with the engine acceleration and deceleration phases.
  • the metal must have good cold formability to be shaped by bending or hydroforming, as well as good weldability.
  • Ferritic stainless steels containing 17% Cr stabilized with 0.14% titanium and 0.5% niobium are thus known, allowing use up to 950 ° C.
  • Ferritic stainless steels with a lower chromium content are also known, for example steels containing 12% Cr stabilized with 0.2% titanium (type EN 1 455 AISI 409) for maximum temperatures below 850 ° C. steels at 14% Cr stabilized with 0.5% niobium without titanium (type EN 1 .4595) for maximum temperatures below 900 ⁇ . These have a high temperature behavior equivalent to that of previous grades, but a better fitness.
  • the present invention aims to solve the corrosion problems mentioned above. It aims in particular to make available to the users of engines equipped with a system for the removal of exhaust gases with urea or ammonia a ferritic stainless steel which has, compared to the known grades for this purpose, improved resistance to corrosion by a mixture of water, urea and ammonia.
  • This steel must also maintain a good heat resistance, that is to say a high resistance to creep, thermal fatigue and oxidation at periodically varying operating temperatures of up to several hundred ', as well as a cold forming and welding ability equivalent to that of the EN 1 .4509 AISI 441 grade, ie guaranteeing a minimum elongation at break of 28% in tension, for mechanical characteristics in tension typically of 300 MPa for the yield strength Re and 490 MPa for the tensile strength Rm.
  • the subject of the invention is a ferritic stainless steel sheet of composition, expressed in percentages by weight:
  • the invention also relates to two methods of manufacturing a ferritic stainless steel sheet of the above type.
  • the semi-finished product is brought to a temperature greater than ⁇ ⁇ ' ⁇ and lower than 1250 ° C., and the semi-finished product is hot-rolled to obtain a hot-rolled sheet with a thickness of between 2.5 and 6 mm; said cold-rolled sheet is cold-rolled at a temperature below
  • a final annealing of the cold-rolled sheet is carried out at a temperature of between 1000 and 1100 ° C. and for a duration of between 10 seconds and 3 minutes to obtain a completely recrystallized structure with an average grain size of between 25 and 65 ⁇ .
  • the semi-finished product is brought to a temperature above ⁇ ⁇ ' ⁇ and lower than 1250 ° C., preferably between 1180 and 1200,, and the semi-finished product is hot-rolled to obtain a hot-rolled sheet of thickness between 2.5 and 6mm;
  • the hot-rolled sheet is annealed at a temperature of between 1000 and 1100 ° C. and for a period of between 30 seconds and 6 minutes;
  • said hot-rolled sheet is cold rolled at a temperature below 300 ° C. in a single step or in several steps separated by intermediate anneals;
  • a final annealing of the cold-rolled sheet at a temperature of between 1000 and 1100 ° C. and for a duration of between 10 seconds and 3 minutes is carried out in order to obtain a completely recrystallized structure with an average grain size of between 25 and 100.degree. and 65 micrometers.
  • the hot rolling temperature is between 1180 and 1200 ° C.
  • the final annealing temperature is between 1050 and 1090 ⁇ €.
  • the invention also relates to the use of such a steel sheet for the manufacture of parts involving shaping and welding and intended to be subjected to a periodic operating temperature of between ⁇ ⁇ ' ⁇ and 700 ⁇ and a projection of a mixture of water, urea and ammonia or a projection of urea or ammonia.
  • This may include engine exhaust system parts equipped with a catalytic system for reducing nitrogen oxides by injection of urea or ammonia.
  • the invention is based on the use of ferritic stainless steel sheets having the specified composition and structure, which the inventors have discovered are particularly well suited to solving the aforementioned technical problems.
  • the average grain size between 25 and 65 ⁇ is an important feature of the invention, and it is controlled both by the presence of nitrides and carbonitrides of titanium and niobium and by the final annealing performance temperature. .
  • Too small grain size hardens the metal, thus limiting its ability to shape, accelerates the diffusion of nitrogen from the decomposition of urea (since the density of grain boundary is greater than in the case of the invention), and reduces the creep resistance.
  • a too large grain size decreases the resilience of the metal, especially in the welded zones (in particular Heat Affected Zones) and degrades the appearance of the parts after shaping (orange peel).
  • FIG. 1 shows the thermal cycle to which the samples were subjected during the tests which will be described
  • FIG. 2 which shows the sectional micrograph according to its thickness of the first 0.150 mm of a sample of a reference steel after a urea corrosion test
  • FIG. 3 which shows the sectional micrograph according to its thickness of the first 0.150 mm of a sample of a steel according to the invention after a urea corrosion test carried out under the same conditions as for the steel of the figure 2.
  • Manganese improves the adhesion of the oxide layer protecting the metal against corrosion when its content is greater than 0.2%. However, beyond 1%, the kinetics of hot oxidation becomes too fast and a less compact oxide layer develops, formed of spinel and chromine. The manganese content must therefore be contained between these two limits.
  • silicon is a very effective element for increasing the resistance to oxidation during thermal cycling. To fulfill this role, a minimum content of 0.2% is necessary. However, in order not to reduce the hot rolling and cold forming ability, the silicon content must be limited to 1%. Sulfur and phosphorus are important undesirable impurities because they decrease hot ductility and formability. In addition, phosphorus easily segregates at grain boundaries and decreases cohesion. In this respect, the sulfur and phosphorus contents must be less than or equal to 0.01% and 0.04%, respectively. These maximum levels are obtained by a careful choice of raw materials and / or by metallurgical treatments carried out on the liquid metal under development.
  • Chromium is an essential element for the stabilization of the ferritic phase and for the increase of the resistance to oxidation.
  • its minimum content must be greater than or equal to 15% in order to obtain a ferritic structure at all operating temperatures and to obtain good resistance to corrosion. 'oxidation.
  • Its maximum content must not, however, exceed 22%, otherwise the mechanical strength at room temperature may be excessively increased, which reduces the ability to shape, or promote embrittlement by demixing the ferrite around 475 ° C.
  • Nickel is a gamma element that increases the ductility of steel. But in order to maintain a ferritic single-phase structure under all circumstances, its content must be less than or equal to 0.5%. Molybdenum improves resistance to pitting but reduces ductility and formability. This element is therefore not mandatory, and its content is limited to 2%.
  • Copper has a hot-curing effect that could be favorable. Present in excessive quantity, it nevertheless decreases ductility during hot rolling and weldability. As such, the copper content must be less than or equal to 0.5%.
  • Aluminum is an important element of the invention. Indeed, with or without rare earth elements (REE), it improves the resistance to corrosion by urea if one respects the formula Al + 30 x REE ⁇ 0,15%, and if also one realizes a stabilization of metal by titanium and niobium.
  • REE rare earth elements
  • Niobium and titanium are also important elements of the invention. Usually, these elements can be used as stabilizing elements in ferritic stainless steels. Indeed, the phenomenon of sensitization to intergranular corrosion by chromium carbide formation, which has been mentioned above, can be avoided by the addition of elements forming carbonitrides very thermally stable.
  • titanium and nitrogen combine before the solidification of the liquid metal to form TiN; and in the solid state at 1100 ° C titanium carbides and carbonitrides are formed.
  • the carbon and the nitrogen present in solid solution in the metal are reduced as much as possible during its use.
  • Such presence at too high levels would reduce the corrosion resistance of the metal and harden it.
  • a minimum Ti content of 0.16% is required.
  • usually the precipitation of TiN in the liquid metal is considered by steelmakers as a disadvantage in that it can lead to an accumulation of these precipitates on the walls of the nozzles of the casting vessels (pocket, continuous tundish) which may clog these nozzles.
  • TiN improves the structure that develops during solidification by helping to obtain an equiaxed rather than dendritic structure, and thus improve the final grain size homogeneity.
  • the advantages of this precipitation outweigh its disadvantages, which can be minimized by choosing casting conditions reducing the risk of plugging the nozzles.
  • Niobium combines with nitrogen and carbon in the solid state, and stabilizes the metal, just like titanium. Niobium thus stably fixes carbon and nitrogen. But niobium also combines with iron to form intermetallic compounds at the grain boundaries in the range 550 ° C-950 °, ie, Laves Fe 2 Nb phases, which improves the creep resistance in this range. temperature. A minimum of 0.2% niobium content is required to obtain this property. The conditions for obtaining this improvement in creep resistance are also strongly related to the manufacturing method of the invention, in particular the annealing temperatures, and to an average grain size controlled and maintained within the limits of 25 to 65 ⁇ .
  • niobium and titanium it is also necessary to limit the additions of niobium and titanium.
  • the contents of niobium and titanium is greater than 1% by weight, the hardening obtained is too important, the steel is less easily deformable and recrystallization after cold rolling is more difficult.
  • Zirconium would have a stabilizing role close to that of titanium, but is not used deliberately in the invention. Its content is less than 0.01%, and therefore must remain of the order of a residual impurity. An addition of Zr would be expensive, and especially harmful, because the zirconium carbonitrides, by their shape and their large size, strongly reduce the resilience of the metal. Vanadium is a very poor stabilizer in the context of the invention given the low stability of vanadium carbonitrides at high temperature. On the other hand, it improves the ductility of the welds. However, at medium temperatures in a nitrogen atmosphere it promotes the nitriding of the metal surface by diffusion of nitrogen. The content is limited to 0.2%, given the intended application.
  • nitrogen increases the mechanical characteristics. However, nitrogen tends to precipitate at grain boundaries as nitrides, thus reducing corrosion resistance. In order to limit problems of sensitization to intergranular corrosion, the nitrogen content must be less than or equal to 0.03%. In addition the nitrogen content must satisfy the previous relationship binding Ti, Nb, C and N. A minimum of 0.009% nitrogen, however, is necessary for the invention, because it ensures the presence of TiN precipitates, and also the good recrystallization of the cold rolled strip during the final annealing operation to obtain a grain of average size less than 65 microns. A content between 0.010% and 0.020%, for example 0.013%, may be recommended.
  • Cobalt is a hot-curing element that degrades formability.
  • its content must be limited to 0.2% by weight.
  • the tin content must be less than or equal to 0.05%.
  • REE rare earths include a combination of elements such as cerium and lanthanum, among others, and are known to improve the adhesion of oxide layers that make the steel resistant to corrosion. It has also been shown that the rare earths improve the resistance to intergranular corrosion by urea between 150 ° C. and 700 ° C., as in the case of the aluminum already described, and while respecting the relation Al + 30 ⁇ REE ⁇ 0, 15%. In synergy with aluminum and stabilizers, REEs help to limit the diffusion of nitrogen. However, the rare earth content must not exceed 0.1%.
  • the sheet according to the invention can in particular be obtained by the following method: a steel having the above composition is produced;
  • the semi-finished product is carried at a temperature above 1000 ° C. and below 1250 ° C., preferably between 1180 and 1200 ° C., and the semi-finished product is hot-rolled to obtain a hot-rolled sheet of thickness between 2.5 and 6mm;
  • step denotes here a cold rolling comprising either a single pass or a succession of several passes (for example five passes) which are not separated by any intermediate annealing; one can consider, for example, a cold rolling sequence comprising a first series of five passes, then an intermediate annealing, then a second sequence of five passes; typically (these data, which are customary for conventional methods of manufacturing ferritic stainless steel sheets, are not limiting for the definition of the invention), the intermediate anneals separating the steps are carried out between 950 and 1100 * 0 for 30 sec to 6 min;
  • a final annealing of the cold-rolled sheet is carried out at a temperature of between 1000 and 1100 ° C., preferably between 1050 ° and 1090 ° C., and for a period of between 10 seconds and 3 minutes, in order to obtain a completely recrystallized structure with average grain size between 25 and 65 ⁇ .
  • an annealing step can be added between hot rolling and cold rolling. This annealing takes place between 1000 and 1100 ° C for a period of 30 s to 6 min.
  • the cast samples were processed according to the following method.
  • the metal which is initially in the form of a 20 mm thick sheet, is brought to a temperature of 1200 ° C. and is hot rolled in 6 passes to a thickness of 2. , 5 mm.
  • a first annealing of the hot-rolled strip can then be carried out at ⁇ ⁇ ' ⁇ with keeping 1 min 30 sec of the sample at this temperature.
  • Nos. 1 to 11 and some reference examples Nos. 12 and 19 were treated with and without this first annealing, and it was possible to verify that they had, in both cases, very similar final properties.
  • the metal After blasting and pickling, the metal is cold rolled at room temperature, about 20 ° C, in five passes, to a thickness of 1 mm.
  • the metal is annealed at ⁇ ⁇ ' ⁇ with a hold of 1 min 30 sec at this temperature, then stripped.
  • Metal coupons from each casting are subjected to the test procedure A and are then analyzed according to the analysis procedure B which will be described.
  • the urea corrosion phenomenon is revealed by the following test procedure A.
  • the sample is sprayed with a mixture containing 32.5% urea, and 67.5% water (flow rate: 0.17 ml / min), and simultaneously undergoes a thermal cycle between 200 and 800 O, with a triangular signal 120 sec period as shown in Figure 1 by the curve 1.
  • the rise in temperature from 200 to 600 ' ⁇ lasts 40 sec, then the cooling starts as soon as the temperature of 600 ° C is reached and continues until 200 ⁇ for 80 sec.
  • the analysis procedure B after 300 hours of testing, a section of the sample is made by the micro-chainsaw.
  • Electrolytic copper plating of the sample is carried out before coating in a solution of CuSO 4 at 210 g / l and H 2 SO 4 at 30 ml / l; the imposed current density is 0.07 A / cm 2 for 5 minutes, then 0.14 A / cm 2 for 1 minute. This procedure is considered optimal for obtaining good coppering. Electrolytic etching is carried out in a solution of 5% oxalic acid for 15s to 20%. The imposed current density is 60 mA / cm 2 . This procedure B reveals two areas corroded by urea observed under the microscope at magnification x 1000.
  • a homogeneous zone 3 intended to be in contact with the atmosphere, and which consists of a mixture of oxides and nitrides with a maximum thickness of 30 ⁇ obtained after procedures A and B.
  • an intergranular corrosion zone 4 located under the previous layer 3 in the metal, and containing chromium nitride precipitates; the thickness of the intergranular corrosion zone is measured over the entire length of the section (3 cm); the average of the maximum values is carried out and gives the value retained as the thickness of the intergranular corrosion zone of the sample; this can reach 90 ⁇ when the process according to the invention is not used, and is reduced to a few ⁇ in the case of the invention, as will be seen; the objective of the invention is to achieve a thickness of the intergranular corrosion zone of less than 7 ⁇ under the test conditions mentioned, to be assured of not suffering unacceptable damage to the surface of the metal due to fatigue or acid corrosion by the condensates, when used in an exhaust line. Below this zone of intergranular corrosion, the metal is not affected. l f r ana r enc y y ana i
  • the mechanical strength of the welds was evaluated by a tensile test at 300 ' ⁇ .
  • Two samples of the same casting are welded by the MIG / MAG process with a 430LNb wire under the following conditions: 98.5% argon, 1.5% oxygen, voltage: 26 V wire speed: 10m / min, amperage: 250 A, welding speed: 160 5 cm / min, energy: 2.5 kJ / cm (welding procedure C). The result is judged all the more satisfactory as the ratio between the mechanical strength for the welded specimen and the unwelded specimen is close to 100%.
  • welds made on the castings according to the invention have mechanical strengths very comparable to those of the base metal, that is always greater than 80%.
  • the mechanical strength of the welds present in the components of the exhaust line, in particular when they are obtained by the MIG / MAG process, is therefore improved by the invention.
  • a minimum content of 0.2% Nb is a condition to improve the creep resistance and limit the deformation of the parts during their use at high temperature.
  • Table 3 Depth of intergranular corrosion by urea and mechanical strength of welds according to the average grain size of a sample
  • the grain size obtained on the product after the final annealing is a fundamental characteristic for the simultaneous obtaining of all the properties concerned.
  • a grain size too small (5 ⁇ in the example cited) leads to intergranular corrosion by urea which extends over too great a depth.
  • Too large a grain size (200 ⁇ in the example cited) makes it possible to maintain a sufficiently low sensitivity to intergranular corrosion, but it is then the mechanical strength of the welds that becomes unsatisfactory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Tôle d'acier inoxydable ferritique de composition, exprimée en pourcentages pondéraux : traces ≤ C ≤ 0,03%; 0,2% ≤Mn ≤1%; 0,2 % ≤ Si ≤ 1%; traces ≤ S ≤ 0,01%; traces ≤ P ≤ 0,04%; 15% ≤ Cr ≤ 22%; traces ≤ Ni ≤ 0,5%; traces ≤ Mo ≤ 2%; traces ≤ Cu ≤ 0,5%; 0,160% ≤Ti ≤ 1%; 0,02% ≤ Al ≤ 1%; 0,2% ≤ Nb ≤ 1%; traces ≤ V ≤ 0,2%; 0,009% ≤ N ≤ 0,03%; traces ≤ Co ≤ 0,2%; traces ≤ Sn ≤ 0,05%; terres rares (REE) ≤ 0,1%; traces ≤ Zr ≤ 0,01%; le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration; les teneurs en Al et en terres rares (REE) satisfaisant la relation : Al + 30 x REE ≥ 0,15%; les teneurs en Nb, C, N et Ti en % satisfaisant la relation : 1 / [Nb + (7/4) x Ti – 7 x (C + N)] ≤ 3; ladite tôle ayant une structure entièrement recristallisée et une taille moyenne de grain ferritique comprise entre 25 et 65 µm. Procédé de fabrication d'une telle tôle d'acier inoxydable ferritique, et son utilisation pour la fabrication de pièces impliquant une mise en forme et un soudage et destinées à être soumises à une température d'utilisation périodique comprise entre 50° C et 700° C et à une projection d'un mélange d'eau, d'urée et d'ammoniac.

Description

Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement
L'invention concerne un acier inoxydable ferritique, son procédé de fabrication, et son utilisation pour la fabrication de pièces mécano-soudées soumises à des températures élevées, telles que des éléments de lignes d'échappement de moteurs à explosion.
Pour certaines applications des aciers inoxydables ferritiques, telles que les pièces situées dans les parties chaudes des lignes d'échappement de moteurs à explosion équipées d'un système de dépollution à l'urée ou à l'ammoniac (véhicules particuliers, camions, engins de chantier, engins agricoles, ou engins de transports maritimes) assurant la réduction des oxydes d'azote, on recherche simultanément :
- une bonne résistance à l'oxydation ;
- une bonne tenue mécanique à haute température, à savoir la conservation de caractéristiques mécaniques élevées et de bonnes tenues au fluage et à la fatigue thermique ;
- et une bonne tenue à la corrosion par l'urée, l'ammoniac, leurs produits de décomposition.
En effet, ces pièces sont soumises à des températures comprises entre 150 et 700 °C, et à une projection d'un mélange d'urée et d'eau (typiquement 32,5% d'urée - 67,5% d'eau), ou d'un mélange d'ammoniac et d'eau, ou d'ammoniac pur. Les produits de décomposition de l'urée et de l'ammoniac sont également susceptibles de dégrader les pièces de la ligne d'échappement.
La tenue mécanique à haute température doit être également adaptée aux cycles thermiques associés aux phases d'accélérations et de décélérations des moteurs. En outre, le métal doit avoir une bonne formabilité à froid pour être mis en forme par pliage ou par hydroformage, ainsi qu'une bonne soudabilité.
Différentes nuances d'aciers inoxydables ferritiques sont disponibles pour répondre aux exigences spécifiques des différentes zones de la ligne d'échappement. On connaît ainsi des aciers inoxydables ferritiques à 17%Cr stabilisés avec 0,14% de titane et 0,5% de niobium (type EN 1 .4509, AISI 441 ) permettant une utilisation jusqu'à 950 °C.
On connaît également des aciers inoxydables ferritiques à teneur plus faible en chrome, par exemple des aciers à 12% de Cr stabilisés avec 0,2% de titane (type EN 1 .4512 AISI 409) pour des températures maximales inférieures à 850 °C, des aciers à 14% de Cr stabilisés avec 0,5% de niobium sans titane (type EN 1 .4595) pour des températures maximales inférieures à 900^. Ceux-ci présentent une tenue à haute température équivalente à celle des nuances précédentes, mais une meilleure aptitude à la mise en forme.
On connaît enfin, pour les très hautes températures allant jusqu'à 1050°C, ou pour des résistances à la fatigue thermique améliorées, une variante de la nuance EN 1 .4521 AISI 444 à 19%Cr stabilisée avec 0,6% de niobium et contenant 1 ,8% de molybdène (voir le document EP-A-1 818 422). Cependant malgré leurs bonnes propriétés mécaniques à chaud et en oxydation dans une atmosphère classique de gaz d'échappement, les nuances ferritiques citées se corrodent de façon excessive aux joints de grains, en présence d'une projection d'un mélange d'eau, d'urée et d'ammoniac et pour des températures comprises entre 150 et 700 ^. Cela rend ces aciers insuffisamment adaptés à leur utilisation dans les lignes d'échappement équipées de systèmes de dépollution à l'urée ou à l'ammoniac, comme c'est souvent le cas, par exemple, sur les véhicules à moteur Diesel.
On a remarqué, par ailleurs, que les phénomènes de corrosion intergranulaire par l'urée sont aggravés lorsque l'on utilise une nuance austénitique stabilisée ou non (types EN 1 .4301 AISI 304, EN 1 .4541 AISI 321 ou EN 1 .4404 AISI 316L). De telles nuances ne sont donc pas une solution pleinement satisfaisante aux problèmes rencontrés.
La présente invention a pour but de résoudre les problèmes de corrosion évoqués ci-dessus. Elle vise en particulier à mettre à la disposition des utilisateurs de moteurs équipés d'un système de dépollution des gaz d'échappement à l'urée ou à l'ammoniac un acier inoxydable ferritique qui présente, par rapport aux nuances connues à cet effet, une résistance améliorée à la corrosion par un mélange d'eau, d'urée et d'ammoniac. Cet acier doit aussi conserver une bonne tenue à chaud, c'est-à-dire une résistance élevée au fluage, à la fatigue thermique et à l'oxydation à des températures d'utilisation variant périodiquement et pouvant atteindre plusieurs centaines de 'Ό, ainsi qu'une aptitude à la mise en forme à froid et au soudage équivalente à celle de la nuance EN 1 .4509 AISI 441 , c'est à dire garantissant un allongement à la rupture minimum de 28% en traction, pour des caractéristiques mécaniques en traction typiquement de 300 MPa pour la limite d'élasticité Re et 490 MPa pour la résistance en traction Rm.
Enfin, la tenue mécanique des soudures de la ligne d'échappement réalisée avec cet acier doit être excellente. A cet effet, l'invention a pour objet une tôle d'acier inoxydable ferritique de composition, exprimée en pourcentages pondéraux :
- traces < C < 0,03% ;
- 0,2% <Mn <1 % ;
- 0,2 % < Si < 1 % ; - traces < S < 0,01 % ;
- traces < P < 0,04% ;
- 15% < Cr < 22% ;
- traces < Ni < 0,5% ;
- traces < Mo < 2% ; - traces < Cu < 0,5% ;
- 0,160% < Ti < 1 % ;
- 0,02%≤ Al≤ 1 % ;
- 0,2% < Nb < 1 % ;
- traces < V < 0,2% ; - 0,009% < N < 0,03% ; de préférence entre 0,010 et 0,020% ;
- traces < Co < 0,2% ; - traces < Sn < 0,05% ;
- terres rares (REE) < 0,1 % ;
- traces < Zr < 0,01 % ;
- le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration ; les teneurs en Al et en terres rares (REE) satisfaisant la relation :
Al + 30 x REE≥ 0,15% ;
- les teneurs en Nb, C, N et Ti en % satisfaisant la relation :
1 / [Nb + (7/4) x Ti - 7 x (C + N)] < 3 ; ladite tôle ayant une structure entièrement recristallisée et une taille moyenne de grain ferritique comprise entre 25 et 65 μηι.
L'invention a également pour objet deux procédés de fabrication d'une tôle d'acier inoxydable ferritique du type précédent.
Selon un premier procédé : - on élabore un acier ayant la composition précédemment citée ;
- on procède à la coulée d'un demi-produit à partir de cet acier ;
- on porte le demi-produit à une température supérieure à Ι ΟΟΟ'Ό et inférieure à 1250°C, et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud d'épaisseur comprise entre 2,5 et 6mm ; - on lamine à froid ladite tôle laminée à chaud, à une température inférieure à
300 'Ό, en une étape unique ou en plusieurs étapes séparées par des recuits intermédiaires ;
- on exécute un recuit final de la tôle laminée à froid, à une température comprise entre 1000 et 1 100°C et pendant une durée comprise entre 10 secondes et 3 minutes, pour obtenir une structure complètement recristallisée avec une taille de grain moyenne comprise entre 25 et 65 μηι.
Selon un deuxième procédé : - on élabore un acier ayant la composition précédemment citée ;
- on procède à la coulée d'un demi-produit à partir de cet acier ;
- on porte le demi-produit à une température supérieure à Ι ΟΟΟ'Ό et inférieure à 1250°C, de préférence entre 1 180 et 1200 ^, et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud d'épaisseur comprise entre 2,5 et 6mm ;
- on recuit la tôle laminée à chaud à une température comprise entre 1000 et 1 100 °C et pendant une durée comprise entre 30 secondes et 6 minutes ;
- on lamine à froid ladite tôle laminée à chaud, à une température inférieure à 300 'Ό, en une étape unique ou en plusieurs étapes séparées par des recuits intermédiaires ;
- on exécute un recuit final de la tôle laminée à froid à une température comprise entre 1000 et 1 100°C et pendant une durée comprise entre 10 secondes et 3 minutes, pour obtenir une structure complètement recristallisée avec une taille de grain moyenne comprise entre 25 et 65 micromètres. De préférence, dans les deux procédés, la température de laminage à chaud est comprise entre 1 180 et 1200 °C.
De préférence, dans les deux procédés, la température du recuit final est comprise entre 1050 et 1090 <€.
L'invention a également pour objet l'utilisation d'une telle tôle d'acier pour la fabrication de pièces impliquant une mise en forme et un soudage et destinées à être soumises à une température d'utilisation périodique comprise entre Ι δΟ 'Ό et 700 ^ et à une projection d'un mélange d'eau, d'urée et d'ammoniac ou à une projection d'urée ou d'ammoniac.
Il peut s'agir notamment de pièces de lignes d'échappement de moteurs à explosion équipées d'un système catalytique de réduction des oxydes d'azote par injection d'urée ou d'ammoniac.
Comme on l'aura compris, l'invention repose sur l'utilisation de tôles d'acier inoxydable ferritique ayant la composition et la structure spécifiées, dont les inventeurs ont découvert qu'elles étaient particulièrement bien adaptées à la résolution des problèmes techniques précédemment cités. La taille de grain moyenne comprise entre 25 et 65 μηι est une caractéristique importante de l'invention, et elle est contrôlée à la fois par la présence de nitrures et de carbonitrures de titane et de niobium et par la température d'exécution du recuit final.
Une trop faible taille de grain durcit le métal, limitant donc sa capacité de mise en forme, accélère la diffusion de l'azote issu de la décomposition de l'urée (puisque la densité de joint de grain est plus importante que dans le cas de l'invention), et réduit la résistance au fluage.
A l'inverse une taille de grain trop importante diminue la résilience du métal, notamment au niveau des zones soudées (en particulier des Zones Affectées par la Chaleur) et dégrade l'aspect des pièces après mise en forme (peau d'orange).
L'obtention de l'intervalle de taille de grain moyenne selon l'invention évite ces inconvénients.
L'invention va à présent être décrite en détail, en référence aux figures suivantes : - la figure 1 qui montre le cycle thermique auquel les échantillons ont été soumis lors des essais qui seront décrits ;
- la figure 2 qui montre la micrographie en coupe selon son épaisseur des premiers 0,150 mm d'un échantillon d'un acier de référence après un test de corrosion par l'urée ; - la figure 3 qui montre la micrographie en coupe selon son épaisseur des premiers 0,150 mm d'un échantillon d'un acier selon l'invention après un test de corrosion par l'urée effectué dans les mêmes conditions que pour l'acier de la figure 2.
On va d'abord justifier la présence des divers éléments chimiques et leurs gammes de teneurs. Toutes les teneurs sont données en pourcentages pondéraux. Le carbone serait susceptible d'augmenter les caractéristiques mécaniques à haute température, en particulier la résistance au fluage. Cependant, en raison de sa solubilité très faible dans la ferrite, le carbone tend à précipiter sous forme de carbures M23C6 ou M7C3 entre 600 'C et 900 ^ environ, par exemple de carbures de chrome. Cette précipitation, généralement située aux joints de grains, peut conduire à un appauvrissement en chrome au voisinage de ces joints, et donc à une sensibilisation du métal à la corrosion intergranulaire. Cette sensibilisation peut se rencontrer en particulier dans les Zones Affectées par la Chaleur (ZAC), qui ont été réchauffées à très haute température lors d'un soudage. La teneur en carbone doit donc être faible, à savoir limitée à 0,03% pour obtenir une résistance satisfaisante à la corrosion intergranulaire ainsi que pour ne pas diminuer la formabilité. De plus, la teneur en carbone doit satisfaire une relation avec le niobium, le titane et l'azote, comme on l'expliquera plus loin.
Le manganèse améliore l'adhérence de la couche d'oxyde protégeant le métal contre la corrosion, lorsque sa teneur est supérieure à 0,2%. Cependant, au-delà de 1 %, la cinétique d'oxydation à chaud devient trop rapide et une couche d'oxyde moins compacte se développe, formée de spinelle et de chromine. La teneur en manganèse doit donc être contenue entre ces deux limites.
Comme le chrome, le silicium est un élément très efficace pour accroître la résistance à l'oxydation lors de cycles thermiques. Pour assurer ce rôle, une teneur minimale de 0,2% est nécessaire. Cependant, pour ne pas diminuer l'aptitude au laminage à chaud et à la mise en forme à froid, la teneur en silicium doit être limitée à 1 %. Le soufre et le phosphore sont des impuretés indésirables en quantités importantes, car ils diminuent la ductilité à chaud et la formabilité. De plus, le phosphore ségrége facilement aux joints de grains et diminue leur cohésion. A ce titre, les teneurs en soufre et phosphore doivent être respectivement inférieures ou égales à 0,01 % et 0,04%. Ces teneurs maximales sont obtenues par un choix soigneux des matières premières et/ou par des traitements métallurgiques effectués sur le métal liquide en cours d'élaboration.
Le chrome est un élément essentiel pour la stabilisation de la phase ferritique et pour l'augmentation de la résistance à l'oxydation. En liaison avec les autres éléments présents dans l'acier de l'invention, sa teneur minimale doit être supérieure ou égale à 15% afin d'obtenir une structure ferritique à toutes les températures d'utilisation et d'obtenir une bonne résistance à l'oxydation. Sa teneur maximale ne doit pas cependant excéder 22%, sous peine d'augmenter excessivement la résistance mécanique à la température ambiante, ce qui diminue l'aptitude à la mise en forme, ou de favoriser la fragilisation par une démixtion de la ferrite autour de 475°C. Le nickel est un élément gammagène qui augmente la ductilité de l'acier. Mais afin de conserver une structure monophasée ferritique en toutes circonstances, sa teneur doit être inférieure ou égale à 0,5%. Le molybdène améliore la tenue à la corrosion par piqûres, mais il diminue la ductilité et l'aptitude à la mise en forme. Cet élément n'est donc pas obligatoire, et on en limite la teneur à 2%.
Le cuivre a un effet durcissant à chaud qui pourrait être favorable. Présent en quantité excessive, il diminue cependant la ductilité lors du laminage à chaud et la soudabilité. A ce titre, la teneur en cuivre doit donc être inférieure ou égale à 0,5%.
L'aluminium est un élément important de l'invention. En effet, conjointement ou non avec des terres rares (REE), il améliore la résistance à la corrosion par l'urée si on respecte la formule Al + 30 x REE≥ 0,15%, et si par ailleurs on réalise une stabilisation du métal par le titane et le niobium. La synergie entre les éléments Ti, Nb, Al et REE pour la limitation de la diffusion aux joints de grain de l'azote issu, par exemple, de la décomposition de l'urée, est démontrée par les expériences que l'on décrira plus loin.
Par ailleurs l'aluminium, associé ou non aux terres rares, améliore fortement la tenue mécanique des soudures MIG/MAG (meilleure tenue de la ZAC) Cependant cette amélioration n'est observée que pour les inox ferritiques chromo-formeurs c'est à dire contenant moins de 1 % d'aluminium. D'autre part une teneur supérieure à 1 % d'aluminium fragilise fortement la ferrite et diminue grandement ses propriétés de mise en forme à froid. On en limite donc la teneur à 1 %. Une teneur minimale en aluminium de 0,020 est indispensable à l'invention (alors que les REE ne sont pas obligatoires) pour permettre le contrôle de la germination des TiN et donc de la taille de grain.
Le niobium et le titane sont également des éléments importants de l'invention. Usuellement, ces éléments peuvent être utilisés comme éléments stabilisants dans les aciers inoxydables ferritiques. En effet, le phénomène de sensibilisation à la corrosion intergranulaire par formation de carbures de chrome, qui a été mentionné ci-dessus, peut être évité par l'addition d'éléments formant des carbonitrures très stables thermiquement.
En particulier, le titane et l'azote s'associent avant même la solidification du métal liquide pour former des TiN ; et à l'état solide vers 1 100°C, il se forme des carbures et carbonitrures de titane. De cette façon, on réduit le plus possible le carbone et l'azote présents en solution solide dans le métal lors de son utilisation. Une telle présence à des niveaux trop élevés réduirait la tenue à la corrosion du métal et le durcirait. Pour obtenir cet effet de façon suffisante, une teneur minimale en Ti de 0,16% est nécessaire. Il est à noter qu'habituellement, la précipitation des TiN dans le métal liquide est considérée par les aciéristes comme un inconvénient en ce qu'elle peut conduire à une accumulation de ces précipités sur les parois des busettes des récipients de coulée (poche, répartiteur de coulée continue) qui risque de boucher ces busettes. Mais les TiN améliorent la structure qui se développe lors de la solidification en aidant à l'obtention d'une structure équiaxe plutôt que dendritique, et améliorent donc l'homogénéité de taille de grain finale. Dans le cas de l'invention, on considère que les avantages de cette précipitation l'emportent sur ses inconvénients, que l'on pourra minimiser en choisissant des conditions de coulée diminuant les risques de bouchage des busettes.
Le niobium se combine à l'azote et au carbone à l'état solide, et stabilise le métal, tout comme le titane. Le niobium fixe donc de façon stable le carbone et l'azote. Mais le niobium se combine également avec le fer pour former dans l'intervalle 550 °C- 950 ^ des composés intermétalliques aux joints de grain, à savoir des phases de Laves Fe2Nb, ce qui améliore la tenue au fluage dans cet intervalle de température. Une teneur minimale de 0,2% en niobium est nécessaire pour obtenir cette propriété. Les conditions pour obtenir cette amélioration de la résistance au fluage sont aussi fortement liées au procédé de fabrication de l'invention, en particulier les températures de recuit, et à une taille de grain moyenne contrôlée et maintenue dans les limites de 25 à 65 μηι.
Enfin, l'expérience montre que lorsque leurs teneurs en titane et en niobium, associées aux teneurs en carbone et en azote, respectent la relation 1 / [Nb + (7/4) x Ti - 7x (C+N)] < 3, la corrosion par l'urée entre l ôO'C et 700^ est fortement diminuée. On l'explique par la garantie d'avoir une quantité de Ti et Nb encore libres dans le métal permettant d'aider à limiter la diffusion aux joints de grains de l'azote provenant de la décomposition de l'urée. Cette condition seule n'est cependant pas suffisante, et l'ajout d'aluminium ou de terres rares dans les conditions citées par ailleurs est nécessaire.
Cependant, il convient par ailleurs de limiter les additions de niobium et de titane. Lorsque l'une au moins des teneurs en niobium et titane est supérieure à 1 % en poids, le durcissement obtenu est trop important, l'acier est moins facilement déformable et la recristallisation après laminage à froid est plus difficile.
Le zirconium aurait un rôle stabilisant proche de celui du titane, mais n'est pas utilisé de façon délibérée dans l'invention. Sa teneur est inférieure à 0,01 %, et donc doit rester de l'ordre d'une impureté résiduelle. Un ajout de Zr serait coûteux, et surtout néfaste, car les carbonitrures de zirconium, de par leur forme et leur taille importante, réduisent fortement la résilience du métal. Le vanadium est un stabilisant très peu efficace dans le contexte de l'invention compte tenu de la faible stabilité des carbonitrures de vanadium à haute température. En revanche il améliore la ductilité des soudures. Cependant aux moyennes températures dans une atmosphère azotée il favorise la nitruration de la surface du métal par diffusion de l'azote. On en limite la teneur à 0,2%, compte tenu de l'application visée.
Comme le carbone, l'azote augmente les caractéristiques mécaniques. Cependant, l'azote tend à précipiter aux joints de grains sous forme de nitrures, réduisant ainsi la résistance à la corrosion. Afin de limiter les problèmes de sensibilisation à la corrosion intergranulaire, la teneur en azote doit être inférieure ou égale à 0,03%. De plus la teneur en azote doit satisfaire la relation précédente liant Ti, Nb, C et N. Un minimum d'azote de 0,009%, est cependant nécessaire à l'invention, car il garantit la présence des précipités TiN, et aussi la bonne recristallisation de la bande laminée à froid au cours de l'opération de recuit final permettant l'obtention d'un grain de taille moyenne inférieure à 65 microns. Une teneur entre 0,010% et 0,020%, par exemple 0,013%, peut être conseillée.
Le cobalt est un élément durcissant à chaud mais qui dégrade la formabilité. A cet effet sa teneur doit être limitée à 0,2% en poids.
Afin d'éviter les problèmes de forgeabilité à chaud, la teneur en étain doit être inférieure ou égale à 0,05%. Les terres rares REE, regroupent un ensemble d'éléments comme le cérium et le lanthane, entre autres, et sont connues pour améliorer l'adhérence des couches d'oxydes qui rendent l'acier résistant à la corrosion. On a aussi montré que les terres rares améliorent la résistance à la corrosion intergranulaire par l'urée entre 150°C et 700 ^ comme pour le cas de l'aluminium déjà décrit, et en respectant la relation Al + 30 x REE≥ 0,15%. En synergie avec l'aluminium et les stabilisants, les REE contribuent à limiter la diffusion de l'azote. Toutefois, la teneur en terres rares ne doit pas dépasser 0,1 %. Au- delà de cette teneur, l'élaboration du métal serait rendue difficile du fait des réactions des REE avec les réfractaires revêtant la poche de coulée. Ces réactions conduiraient à la formation notable d'oxydes de REE qui dégraderaient la propreté inclusionnaire de l'acier. De plus l'efficacité des REE est suffisante aux teneurs proposées, et aller au-delà ne ferait qu'augmenter inutilement le coût de l'élaboration du fait du prix élevé des REE, et aussi de l'usure accélérée des réfractaires que cela entraînerait.
La tôle selon l'invention peut notamment être obtenue par le procédé suivant : - on élabore un acier ayant la composition précédente ;
- on procède à la coulée d'un demi-produit à partir de cet acier ;
- on porte le demi-produit à une température supérieure à 1000Ό et inférieure à 1250°C, de préférence entre 1 180 et 1200 Ό, et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud d'épaisseur comprise entre 2,5 et 6mm ;
- on lamine à froid ladite tôle laminée à chaud, à une température comprise entre l'ambiante et 300 °C, en une étape unique ou en plusieurs étapes séparées par des recuits intermédiaires ; il doit être entendu que, par le terme d' « étape », on désigne ici un laminage à froid comportant soit une passe unique, soit une succession de plusieurs passes (par exemple cinq passes) qui ne sont séparées par aucun recuit intermédiaire ; on peut envisager, par exemple, une séquence de laminage à froid comportant une première série de cinq passes, puis un recuit intermédiaire, puis une deuxième séquence de cinq passes ; typiquement (ces données, qui sont habituelles pour des procédés classiques de fabrication de tôles d'acier inoxydable ferritique, ne sont pas limitatives pour la définition de l'invention), les recuits intermédiaires séparant les étapes sont exécutés entre 950 et 1 100*0 pendant 30 sec à 6 min ;
- on exécute un recuit final de la tôle laminée à froid, à une température comprise entre 1000 et 1 100°C, de préférence entre 1050 Ό et 1090°C, et pendant une durée comprise entre 10 secondes et 3 minutes, pour obtenir une structure complètement recristallisée avec une taille de grain moyenne comprise entre 25 et 65 μηι.
En variante, on peut ajouter une étape de recuit entre le laminage à chaud et le laminage à froid. Ce recuit a lieu entre 1000 et 1 100 °C pendant une durée de 30 s à 6 min.
On va à présent décrire une série d'expériences démontrant l'intérêt de l'invention. On a étudié des coulées de laboratoire dont les analyses chimiques sont données dans le tableau 1 .
Figure imgf000014_0001
Tableau 1 : Analyses des coulées de laboratoire
Les échantillons coulés ont été transformés selon le procédé suivant.
Par un laminage à chaud, on porte le métal, qui est initialement sous forme d'un larget de 20mm d'épaisseur, à une température de 1200°C, et on le lamine à chaud en 6 passes jusqu'à une épaisseur de 2,5 mm. Selon une variante du procédé selon l'invention, un premier recuit de la bande laminée à chaud peut alors être effectué à Ι ΟδΟ 'Ό avec maintien de 1 min 30 sec de l'échantillon à cette température. Les exemples selon l'invention n °1 à 1 1 et quelques exemples de référence (n °12 et 19) ont été traités avec et sans ce premier recuit, et on a pu vérifier qu'ils avaient, dans les deux cas, des propriétés finales très similaires. L'exécution de ce premier recuit permet d'obtenir une légère amélioration de la formabilité, mais pour l'atteinte des objectifs typiques de l'invention, ce sont les conditions du recuit final qui sont seules déterminantes, en combinaison avec les autres caractéristiques essentielles du procédé et, bien sûr, la composition de l'acier. Les résultats présentés dans les tableaux 2 et 3 correspondent à ceux observés sur les échantillons n'ayant pas subi le premier recuit de la variante qui vient d'être décrite.
Après grenaillage et décapage, on lamine le métal à froid à température ambiante, soit environ 20°C, en cinq passes, jusqu'à une épaisseur de 1 mm.
On recuit le métal à Ι ΟδΟ 'Ό avec maintien de 1 min 30 sec à cette température, puis on le décape. Des coupons de métal issus de chaque coulée sont soumis à la procédure d'essai A et sont ensuite analysés selon la procédure d'analyse B qui vont être décrites.
Le phénomène de corrosion par l'urée est révélé par la procédure d'essai A suivante.
L'échantillon est aspergé par un mélange contenant 32,5% d'urée, et 67,5% d'eau (débit: 0,17ml/min), et subit simultanément un cycle thermique entre 200 et ôOO 'O, avec un signal triangulaire de période 120 sec comme représenté sur la figure 1 par la courbe 1 . La montée en température de 200 à 600 'Ό dure 40 sec, puis le refroidissement débute dès que la température de 600 °C est atteinte et se poursuit jusqu'à 200 ^ pendant 80 sec. Selon la procédure d'analyse B, après 300 h de test, une coupe de l'échantillon est réalisée à la micro-tronçonneuse. Un cuivrage électrolytique de l'échantillon est réalisé, avant enrobage, dans une solution de CuS04 à 210 g/L et H2S04 à 30 ml/l ; la densité de courant imposée est de 0,07 A/cm2 pendant 5 minutes, puis 0,14 A/cm2 pendant 1 minute. Cette procédure est considérée comme optimale pour obtenir un bon cuivrage Une attaque électrolytique est réalisée dans une solution d'acide oxalique à 5% pendant 15s à 20^. La densité de courant imposée est de 60 mA/cm2. Cette procédure B permet de révéler deux zones corrodées par l'urée observées au microscope au grossissement x 1000.
Deux exemples ainsi traités sont présentés :
- la figure 2 montre les premiers 0,150 mm selon l'épaisseur de l'échantillon correspondant à l'échantillon de référence N °28 du tableau 1 ; - la figure 3 montre les premiers 0,150 mm selon l'épaisseur de l'échantillon correspondant à l'échantillon selon l'invention N °2 du Tableau 1 , dont une portion est, de plus, grossie .
Ces échantillons se caractérisent, comme on le voit sur les figures 2 et 3 :
- par la présence à leur surface d'un dépôt de cuivre 2, qui serait, bien sûr, absent d'un produit industriel ;
- par une zone homogène 3 destinée à être en contact avec l'atmosphère, et qui est constituée d'un mélange d'oxydes et de nitrures d'épaisseur maximale de 30 μηι obtenue après les procédures A et B.
- par une zone de corrosion intergranulaire 4 située sous la couche 3 précédente dans le métal, et contenant des précipités de nitrures de chrome ; l'épaisseur de la zone de corrosion intergranulaire est mesurée sur toute la longueur de la coupe (3 cm) ; la moyenne des 15 valeurs maximales est réalisée et donne la valeur retenue comme étant l'épaisseur de la zone de corrosion intergranulaire de l'échantillon ; celle-ci peut atteindre 90 μηι lorsque le procédé selon l'invention n'est pas utilisé, et se réduit à quelques μηι dans le cas de l'invention, comme on le verra ; l'objectif de l'invention est de parvenir à une épaisseur de la zone de corrosion intergranulaire de moins de 7 μηι dans les conditions d'essais citées, pour être assuré de ne pas subir d'endommagement rédhibitoire de la surface du métal dû à la fatigue ou à une corrosion acide par les condensais, lors de son utilisation dans une ligne d'échappement. En dessous de cette zone de corrosion intergranulaire, le métal 5 n'est pas affecté. l fél anarenc yse anai
La résistance mécanique des soudures a été évaluée grâce un test de traction à 300 'Ό. Deux échantillons d'une même coulée sont soudés par le procédé MIG/MAG avec un fil 430LNb selon les conditions suivantes : 98,5% d'argon, 1 ,5% d'oxygène, tension : 26 V vitesse de fil : 10m/min, intensité : 250 A, vitesse de soudage : 160 5 cm/min, énergie : 2,5 kJ/cm (Procédure de soudage C). Le résultat est jugé d'autant plus satisfaisant que le rapport entre la résistance mécanique pour l'éprouvette soudée et pour l'éprouvette non soudée est proche de 100%.
Les résultats des essais effectués sur les divers échantillons sont montrés sur le tableau 2, qui précise aussi si les échantillons testés respectent trois des conditions 10 analytiques particulières requises par l'invention (auquel cas les valeurs sont soulignées).
Coulée Taille des 0,15≤ 0,2≤ Nb 1/[Nb + 7/4 Ti - Corrosion Résistance mécanique grains (μπι) AI+30REE 7*(C+N)]≤3 intergranulaire par des soudures à 300 °C l'urée - épaisseur (% par rapport au métal (pm) de base)
1 27 0,272 0.370 2.10 2 90
2 35 0,207 0,400 2,00 3 90 o 3 49 0,317 0,400 2,04 2 85
4 21 1.772 0.600 1 .50 2 85
5 28 0.740 0.610 1 .44 2 95
6 62 1 ,146 0,380 2,18 4 90 a)
ω
ω 7 45 0,177 0.630 1 .36 2 95 ω 8 55 1 ,150 0.510 1 .24 3 95
9 48 0,167 0.420 1 .86 5 90
10 29 0,246 0,250 0,97 3 95
11 32 0,337 0.260 2.82 3 85
12 5Z 0,021 0.462 2.08 9 65
13 28 0,021 0.398 1 .77 9 50
14 21 0,027 0.650 1 .49 9 65
15 44 0,029 0.440 0.89 9 55
16 62 0,027 0,390 2,28 1 1 60
17 33 0,027 0.600 3,42 21 65
18 45 0,026 0,026 2.76 8 60
19 41 0,028 0,430 4,39 30 65
*
20 28 1 ,244 0,001 2.55 15 60 w 21 46 1.717 0,015 3,39 16 60
22 55 1.214 0,180 7,84 40 55
23 36 0,040 0,016 2,08 13 55
24 26 0,039 0,010 1 .82 8 50
25 42 0,019 0.398 6,38 40 60
26 61 0,025 0,280 3,17 10 55
27 33 1 ,213 0,025 12,35 42 60
28 56 0,031 0,003 7,97 80 65
29 44 0,028 0,023 1 .03 35 60 Tableau 2 : Résultats des essais de corrosion intergranulaire par l'urée et de résistance mécanique des soudures à 300 'Ό
Ce tableau montre que, à conditions de traitement égales, le respect simultané de trois conditions analytiques sur l'analyse proposée est nécessaire pour garantir une attaque intergranulaire sur une épaisseur inférieure à 7μηι:
- 1/[Nb + 7/4 Ti - 7*(C+N)] < 3; - Al + 30 REE≥0,15%;
- Nb≥ 0,2%.
Il montre aussi que les soudures effectuées sur les coulées selon l'invention ont des tenues mécaniques très comparables à celles du métal de base, à savoir toujours supérieures à 80%. La tenue mécanique des soudures présentes dans les composants de la ligne d'échappement, en particulier lorsqu'elles sont obtenues par le procédé MIG/MAG, est donc améliorée par l'invention.
Par ailleurs une teneur minimale de 0,2% de Nb est une condition pour améliorer la tenue au fluage et limiter la déformation des pièces lors de leur utilisation à haute température.
Pour tous les échantillons selon l'invention, les caractéristiques mécaniques en traction trouvées sont équivalentes à celle d'un 1 .4509. En particulier on a vérifié que l'allongement à la rupture A est bien toujours supérieur à 28%. Des expériences supplémentaires conduites notamment sur des échantillons de la coulée N °2 qui respecte les conditions de composition selon l'invention ont permis de démontrer que l'obtention de la structure entièrement recristallisée et de la taille de grains prescrites sont, de plus, indispensables pour la satisfaction des exigences de l'invention. Leurs résultats sont regroupés dans le tableau 3. Taille Température Al + Nb 1/[Nb + 7/4Ti - Corrosion Résistance mécanique moyenne de recuit 30*REE (%) 7*(C + N)] intergranulaire des soudures à 300 °C de grain final ( °C) (%) par l'urée, (% par rapport à celle
(μη) profondeur (μηι) du métal de base)
35 1070 0,207 0,4 2 3 90
5 900 0,207 0,4 2 1 1 90
200 1 150 0,207 0,4 2 2 70
Tableau 3 : Profondeur de la corrosion intergranulaire par l'urée et résistance mécanique des soudures en fonction de la taille de grains moyenne d'un échantillon
On voit donc, d'après le tableau 3, que la taille de grains obtenue sur le produit après le recuit final est une caractéristique fondamentale pour l'obtention simultanée de toutes les propriétés visées. Une taille de grains trop faible (5μηι dans l'exemple cité) conduit à une corrosion intergranulaire par l'urée qui s'étend sur une profondeur trop importante. Une taille de grain trop importante (200 μηι dans l'exemple cité) permet de conserver une sensibilité à la corrosion intergranulaire suffisamment faible, mais c'est alors la résistance mécanique des soudures qui devient insatisfaisante.
Il faut également préciser que lors de la mise en œuvre du procédé selon l'invention, il est envisageable, sans sortir du cadre de l'invention, de pratiquer un ou plusieurs décapages de la tôle, à la suite des traitements thermiques et thermomécaniques effectuées à plus ou moins haute température (laminage à chaud, recuits) si ceux-ci ont été effectués dans une atmosphère oxydante telle que l'air, et ont donc conduit à la formation d'une couche indésirable de calamine à la surface de la tôle. On a vu que de tels décapages ont été pratiqués lors de l'élaboration des exemples ci- dessus. Cette formation de calamine peut être limitée ou évitée lorsque le traitement thermique ou thermomécanique est effectué en atmosphère neutre ou réductrice, comme cela est bien connu. Les propriétés pour lesquelles la tôle selon l'invention est particulièrement avantageuse ne sont pas affectées par l'exécution ou non de tels décapages.

Claims

REVENDICATIONS
1.- Tôle d'acier inoxydable ferritique de composition, exprimée en pourcentages pondéraux : traces < C < 0,03% ; 0,2% <Mn <1% ; 0,2 % < Si < 1% ; traces < S < 0,01% ; traces < P < 0,04% ; 15% < Cr < 22% ; traces < Ni < 0,5% ; traces < Mo < 2% ; traces < Cu < 0,5% ; 0,160% < Ti < 1% ; 0,02% < Al < 1% ; 0,2%<Nb<1% ; traces < V < 0,2% ;
0,009% < N < 0,03% ; de préférence entre 0,010% et 0,020% ; traces < Co < 0,2% ; traces < Sn < 0,05% ; terres rares (REE) < 0,1% ; traces <Zr< 0,01 % ; le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration ; les teneurs en Al et en terres rares (REE) satisfaisant la relation : AI + 30 x REE≥0,15% ; les teneurs en Nb, C, N et Ti en % satisfaisant la relation : 1 / [Nb + (7/4) x Ti - 7 x (C + N)] < 3 ; ladite tôle ayant une structure entièrement recristallisée et une taille moyenne de grain ferritique comprise entre 25 et 65 μηι.
2.- Procédé de fabrication d'une tôle d'acier inoxydable ferritique caractérisé en ce que :
- on élabore un acier ayant la composition selon la revendication 1 ;
- on procède à la coulée d'un demi-produit à partir de cet acier ; - on porte le demi-produit à une température supérieure à Ι ΟΟΟ'Ό et inférieure à
1250°C, et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud d'épaisseur comprise entre 2,5 et 6mm ;
- on lamine à froid ladite tôle laminée à chaud, à une température comprise entre l'ambiante et 300 °C, en une étape unique ou en plusieurs étapes séparées par des recuits intermédiaires ;
- on exécute un recuit final de la tôle laminée à froid, à une température comprise entre 1000 et 1 100°C et pendant une durée comprise entre 10 secondes et 3 minutes, pour obtenir une structure complètement recristallisée avec une taille de grain moyenne comprise entre 25 et 65 μηι.
3.- Procédé de fabrication d'une tôle d'acier inoxydable ferritique caractérisé en ce que :
- on élabore un acier ayant la composition selon la revendication 1 ;
- on procède à la coulée d'un demi-produit à partir de cet acier ;
- on porte le demi-produit à une température supérieure à Ι ΟΟΟ'Ό et inférieure à 1250°C, et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud d'épaisseur comprise entre 2,5 et 6mm ;
- on recuit la tôle laminée à chaud à une température comprise entre 1000 et 1 100 °C et pendant une durée comprise entre 30 secondes et 6 minutes ; - on lamine à froid ladite tôle laminée à chaud, à une température inférieure à 300 'Ό, en une étape unique ou en plusieurs étapes séparées par des recuits intermédiaires ;
- on exécute un recuit final de la tôle laminée à froid à une température comprise entre 1000 et 1 100°C et pendant une durée comprise entre 10 secondes et 3 minutes, pour obtenir une structure complètement recristallisée avec une taille de grain moyenne comprise entre 25 et 65 micromètres.
4.- Procédé selon la revendication 2 ou 3, caractérisé en ce que la température de laminage à chaud est de 1 180 à 1200 °C.
5.- Procédé selon l'une des revendications 2 à 4, caractérisé en ce que la température du recuit final est comprise entre 1050 et 1090°C.
6. - Utilisation d'une tôle d'acier fabriquée par le procédé selon l'une des revendications 2 à 5 pour la fabrication de pièces impliquant une mise en forme et un soudage et destinées à être soumises à une température d'utilisation périodique comprise entre Ι δΟ'Ό et 700 °C et à une projection d'un mélange d'eau, d'urée et d'ammoniac ou à une projection d'urée ou d'ammoniac.
7. - Utilisation selon la revendication 6, caractérisée en ce que lesdites pièces sont des pièces de lignes d'échappement de moteurs à explosion équipées d'un système catalytique de réduction des oxydes d'azote par injection d'urée ou d'ammoniac.
PCT/FR2012/051969 2012-09-03 2012-09-03 Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement WO2014033372A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
RU2015107432/02A RU2603519C2 (ru) 2012-09-03 2012-09-03 Листовая ферритная нержавеющая сталь, способ ее производства и ее применение, особенно в выхлопных системах
HUE12766456A HUE052513T2 (hu) 2012-09-03 2012-09-03 Ferrites rozsdamentes acéllemez, eljárás elõállítására, valamint alkalmazása, különösen kipufogó rendszerekben
JP2015529088A JP2015532681A (ja) 2012-09-03 2012-09-03 フェライト系ステンレス鋼板、その製造方法、および特に排気管での使用
IN1710DEN2015 IN2015DN01710A (fr) 2012-09-03 2012-09-03
SI201231867T SI2893049T1 (sl) 2012-09-03 2012-09-03 Feritna nerjavna jeklena pločevina, postopek za njeno izdelavo in njena uporaba, zlasti v izpušnih vodih
US14/425,313 US9873924B2 (en) 2012-09-03 2012-09-03 Ferritic stainless steel sheet, method for the production thereof, and use of the same, especially in exhaust lines
EP12766456.3A EP2893049B1 (fr) 2012-09-03 2012-09-03 Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement
CN201280076210.8A CN104903482B (zh) 2012-09-03 2012-09-03 铁素体不锈钢板、其制法,及其尤其在排气管路中的应用
KR1020157006981A KR20150099706A (ko) 2012-09-03 2012-09-03 페라이트계 스테인리스 강판, 그 제조 방법, 및 특히 배기 라인에서의 그 사용
MX2015002716A MX2015002716A (es) 2012-09-03 2012-09-03 Hoja de acero inoxidable ferritico, metodo para su produccion, y uso de la misma, especialmente en conductos de escape.
BR112015004633A BR112015004633A2 (pt) 2012-09-03 2012-09-03 chapa de aço inoxidável ferrítico, método para sua produção, e uso da mesma, especialmente em linhas de descarga
ES12766456T ES2831163T3 (es) 2012-09-03 2012-09-03 Chapa de acero inoxidable ferrítico, procedimiento de fabricación y uso del mismo, especialmente en líneas de escape
CA2883538A CA2883538C (fr) 2012-09-03 2012-09-03 Tole d'acier inoxydable ferritique, son procede de fabrication, et son utilisation, notamment dans des lignes d'echappement
PCT/FR2012/051969 WO2014033372A1 (fr) 2012-09-03 2012-09-03 Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2012/051969 WO2014033372A1 (fr) 2012-09-03 2012-09-03 Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement

Publications (1)

Publication Number Publication Date
WO2014033372A1 true WO2014033372A1 (fr) 2014-03-06

Family

ID=46940548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051969 WO2014033372A1 (fr) 2012-09-03 2012-09-03 Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement

Country Status (14)

Country Link
US (1) US9873924B2 (fr)
EP (1) EP2893049B1 (fr)
JP (1) JP2015532681A (fr)
KR (1) KR20150099706A (fr)
CN (1) CN104903482B (fr)
BR (1) BR112015004633A2 (fr)
CA (1) CA2883538C (fr)
ES (1) ES2831163T3 (fr)
HU (1) HUE052513T2 (fr)
IN (1) IN2015DN01710A (fr)
MX (1) MX2015002716A (fr)
RU (1) RU2603519C2 (fr)
SI (1) SI2893049T1 (fr)
WO (1) WO2014033372A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079437A (ja) * 2014-10-14 2016-05-16 山陽特殊製鋼株式会社 耐高温酸化性、高温クリープ強度および高温引張強度に優れたフェライト系ステンレス鋼
WO2017056452A1 (fr) * 2015-09-29 2017-04-06 Jfeスチール株式会社 Acier inoxydable à base de ferrite
KR20170038866A (ko) * 2014-08-29 2017-04-07 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스박 및 그 제조 방법
EP3249067A4 (fr) * 2015-01-19 2018-07-04 Nippon Steel & Sumikin Stainless Steel Corporation Acier inoxydable ferritique pour élément de système d'échappement présentant une excellente résistance à la corrosion après chauffage
EP3369832A4 (fr) * 2015-10-29 2019-05-22 Nippon Steel & Sumikin Stainless Steel Corporation ACIER INOXYDABLE FERRITIQUE CONTENANT DE L'Al POSSÉDANT D'EXCELLENTES CARACTÉRISTIQUES DE FLUAGE, SON PROCÉDÉ DE FABRICATION ET ÉLÉMENT DE PILE À COMBUSTIBLE

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354772B2 (ja) * 2015-04-10 2018-07-11 Jfeスチール株式会社 フェライト系ステンレス鋼
CN105506510A (zh) * 2015-12-03 2016-04-20 浙江腾龙精线有限公司 一种不锈钢丝的生产工艺
CN105673173B (zh) * 2015-12-31 2019-09-03 台州三元车辆净化器有限公司 一种新型高性能材料的排气管及其加工制备工艺
WO2018116792A1 (fr) * 2016-12-21 2018-06-28 Jfeスチール株式会社 Acier inoxydable ferritique
CN109196130A (zh) * 2016-12-27 2019-01-11 本田技研工业株式会社 不锈钢
CN107632388B (zh) 2017-10-24 2024-04-02 歌尔光学科技有限公司 目镜及头戴显示设备
KR102020514B1 (ko) * 2017-12-20 2019-09-10 주식회사 포스코 확관 가공성이 향상된 페라이트계 스테인리스강 및 그 제조방법
RU2699480C1 (ru) * 2018-12-14 2019-09-05 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного проката
US11560605B2 (en) 2019-02-13 2023-01-24 United States Steel Corporation High yield strength steel with mechanical properties maintained or enhanced via thermal treatment optionally provided during galvanization coating operations
CN117165862A (zh) * 2019-07-05 2023-12-05 斯塔米卡邦有限公司 尿素装置中的铁素体钢部件
KR102259806B1 (ko) * 2019-08-05 2021-06-03 주식회사 포스코 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법
DE102020214688A1 (de) * 2020-11-23 2022-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Wasserstoffbeständiger ferritischer Stahl mit Laves-Phase
JP7570243B2 (ja) 2021-01-28 2024-10-21 日鉄ステンレス株式会社 尿素scrシステム用ステンレス鋼製溶接部材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570899A (ja) * 1991-09-17 1993-03-23 Nisshin Steel Co Ltd 溶接部耐食性に優れるフエライト系ステンレス鋼
JPH06279951A (ja) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd 温水器用フェライト系ステンレス鋼
JP2007009290A (ja) * 2005-07-01 2007-01-18 Nisshin Steel Co Ltd 温水容器
EP1818422A1 (fr) 2006-02-08 2007-08-15 Ugine & Alz France Acier inoxydable ferritique dit a 19% de chrome stabilisé au niobium
JP2007302995A (ja) * 2006-04-10 2007-11-22 Nisshin Steel Co Ltd 溶接構造温水容器用フェライト系ステンレス鋼および温水容器
JP2011105976A (ja) * 2009-11-13 2011-06-02 Nisshin Steel Co Ltd 排水管
WO2012133681A1 (fr) * 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Acier inoxydable ferritique présentant une excellente résistance à la corrosion et une excellente résistance mécanique dans des zones de soudure, et structure obtenue par soudage tig

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2033465C1 (ru) * 1991-12-04 1995-04-20 Маркелова Татьяна Александровна Ферритная сталь
EP1225242B1 (fr) 2001-01-18 2004-04-07 JFE Steel Corporation Tôle d'acier ferritique inoxydable ayant une formabilité excellente et son procédé de fabrication
JP2003073782A (ja) * 2001-08-31 2003-03-12 Kawasaki Steel Corp 深絞り性に優れたフェライト系ステンレス鋼板
ITRM20010584A1 (it) * 2001-09-26 2003-03-26 Acciai Speciali Terni Spa Acciaio inossidabile ferritico e suo uso nella fabbricazione di manufatti per impieghi ad elevate temperature.
RU2222633C2 (ru) * 2002-04-29 2004-01-27 Закрытое акционерное общество "Институт биметаллических сплавов" Сталь ферритная коррозионно-стойкая
JP4312653B2 (ja) * 2004-04-28 2009-08-12 新日鐵住金ステンレス株式会社 耐熱性および加工性に優れたフェライト系ステンレス鋼およびその製造方法
EP2133440B1 (fr) * 2007-03-29 2018-01-03 Nisshin Steel Co., Ltd. Acier inoxydable ferritique pour un récipient pour eau chaude avec une structure soudée, et récipient pour eau chaude
JP4949122B2 (ja) * 2007-05-15 2012-06-06 新日鐵住金ステンレス株式会社 耐熱疲労性に優れた自動車排気系用フェライト系ステンレス鋼板
JP5387057B2 (ja) * 2008-03-07 2014-01-15 Jfeスチール株式会社 耐熱性と靭性に優れるフェライト系ステンレス鋼
JP4386144B2 (ja) * 2008-03-07 2009-12-16 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
JP2010202916A (ja) 2009-03-02 2010-09-16 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
KR20120036959A (ko) 2009-07-27 2012-04-18 닛신 세이코 가부시키가이샤 Egr 쿨러용 페라이트계 스테인리스강 및 egr 쿨러
RU2458175C1 (ru) * 2009-08-31 2012-08-10 ДжФЕ СТИЛ КОРПОРЕЙШН Ферритная нержавеющая сталь, характеризующаяся высокой жаростойкостью
JP5600012B2 (ja) 2010-02-09 2014-10-01 日新製鋼株式会社 耐酸化性及び耐二次加工脆性に優れたフェライト系ステンレス鋼、並びに鋼材及び二次加工品
JP5768641B2 (ja) 2010-10-08 2015-08-26 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼およびその製造方法、ならびに固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
US9938598B2 (en) 2011-02-17 2018-04-10 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
US9487849B2 (en) * 2011-11-30 2016-11-08 Jfe Steel Corporation Ferritic stainless steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570899A (ja) * 1991-09-17 1993-03-23 Nisshin Steel Co Ltd 溶接部耐食性に優れるフエライト系ステンレス鋼
JPH06279951A (ja) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd 温水器用フェライト系ステンレス鋼
JP2007009290A (ja) * 2005-07-01 2007-01-18 Nisshin Steel Co Ltd 温水容器
EP1818422A1 (fr) 2006-02-08 2007-08-15 Ugine & Alz France Acier inoxydable ferritique dit a 19% de chrome stabilisé au niobium
JP2007302995A (ja) * 2006-04-10 2007-11-22 Nisshin Steel Co Ltd 溶接構造温水容器用フェライト系ステンレス鋼および温水容器
JP2011105976A (ja) * 2009-11-13 2011-06-02 Nisshin Steel Co Ltd 排水管
WO2012133681A1 (fr) * 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Acier inoxydable ferritique présentant une excellente résistance à la corrosion et une excellente résistance mécanique dans des zones de soudure, et structure obtenue par soudage tig

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038866A (ko) * 2014-08-29 2017-04-07 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스박 및 그 제조 방법
EP3187609A4 (fr) * 2014-08-29 2017-12-06 JFE Steel Corporation Feuille d'acier inoxydable ferritique et son procédé de production
KR101994559B1 (ko) 2014-08-29 2019-06-28 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스박 및 그 제조 방법
JP2016079437A (ja) * 2014-10-14 2016-05-16 山陽特殊製鋼株式会社 耐高温酸化性、高温クリープ強度および高温引張強度に優れたフェライト系ステンレス鋼
EP3249067A4 (fr) * 2015-01-19 2018-07-04 Nippon Steel & Sumikin Stainless Steel Corporation Acier inoxydable ferritique pour élément de système d'échappement présentant une excellente résistance à la corrosion après chauffage
WO2017056452A1 (fr) * 2015-09-29 2017-04-06 Jfeスチール株式会社 Acier inoxydable à base de ferrite
JP6123964B1 (ja) * 2015-09-29 2017-05-10 Jfeスチール株式会社 フェライト系ステンレス鋼
KR20180043359A (ko) * 2015-09-29 2018-04-27 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스강
TWI625398B (zh) * 2015-09-29 2018-06-01 Jfe Steel Corp 肥粒鐵系不銹鋼
KR102067482B1 (ko) 2015-09-29 2020-02-11 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스강
US10975459B2 (en) 2015-09-29 2021-04-13 Jfe Steel Corporation Ferritic stainless steel
EP3369832A4 (fr) * 2015-10-29 2019-05-22 Nippon Steel & Sumikin Stainless Steel Corporation ACIER INOXYDABLE FERRITIQUE CONTENANT DE L'Al POSSÉDANT D'EXCELLENTES CARACTÉRISTIQUES DE FLUAGE, SON PROCÉDÉ DE FABRICATION ET ÉLÉMENT DE PILE À COMBUSTIBLE

Also Published As

Publication number Publication date
CN104903482A (zh) 2015-09-09
CA2883538A1 (fr) 2014-03-06
SI2893049T1 (sl) 2021-03-31
IN2015DN01710A (fr) 2015-05-22
EP2893049B1 (fr) 2020-10-07
JP2015532681A (ja) 2015-11-12
HUE052513T2 (hu) 2021-05-28
KR20150099706A (ko) 2015-09-01
RU2603519C2 (ru) 2016-11-27
MX2015002716A (es) 2015-08-14
US9873924B2 (en) 2018-01-23
ES2831163T3 (es) 2021-06-07
US20160115562A1 (en) 2016-04-28
RU2015107432A (ru) 2016-09-27
BR112015004633A2 (pt) 2017-07-04
CN104903482B (zh) 2017-03-08
CA2883538C (fr) 2019-11-26
EP2893049A1 (fr) 2015-07-15

Similar Documents

Publication Publication Date Title
EP2893049B1 (fr) Tôle d&#39;acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d&#39;échappement
EP1929053B1 (fr) Procede de fabrication d une piece en acier de microstructure multi-phasee
EP2718469B1 (fr) Tôle d&#39;acier laminée à froid et revêtue de zinc ou d&#39;alliage de zinc, procede de fabrication et utilisation d&#39;une telle tôle
CA2239478C (fr) Acier inoxydable austenoferritique a tres bas nickel et presentant un fort allongement en traction
EP1819461B1 (fr) Procede de fabrication de toles d&#39; acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité.
EP1805333A1 (fr) Procede de fabrication de toles d&#39; acier austenitique fer-carbone-manganese et toles ainsi produites
JP4329883B1 (ja) 耐浸炭性金属材料
EP1805341A1 (fr) Procédé de revêtement au trempé à chaud dans un bain de zinc des bandes en acier fer-carbone-manganèse
EP1749895A1 (fr) Procédé de fabrication de tôles d&#39;acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites
EP2855725B1 (fr) Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
CA3071136A1 (fr) Procede de fabrication de toles d&#39;acier pour durcissement sous presse, et pieces obtenues par ce procede
CA2502079C (fr) Procede de fabrication de toles d&#39;acier durcissables par cuisson, toles d&#39;acier et pieces ainsi obtenues
FR2833617A1 (fr) Procede de fabrication de toles laminees a froid a tres haute resistance d&#39;aciers dual phase micro-allies
EP1587963A2 (fr) Acier lamine a chaud a tres haute resistance et procede de fabrication de bandes
WO2006125899A1 (fr) Acier pour coques de sous-marins a soudabilite renforcee
EP1354070A2 (fr) Acier isotrope a haute resistance, procede de fabrication de toles et toles obtenues
FR2495189A1 (fr) Tole d&#39;acier de haute resistance et son procede de fabrication
EP3411509B1 (fr) Compositions d&#39;aciers aux propriétés anti-cokage améliorées
EP3914738A1 (fr) Alliage fer-manganèse à soudabilité améliorée
BE499251A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12766456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2883538

Country of ref document: CA

Ref document number: 2015529088

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/002716

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015107432

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006981

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015004633

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14425313

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112015004633

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150302