WO2014025021A9 - オレフィン又はアルコールの転化方法及びプロピレン又は芳香族化合物の製造方法 - Google Patents
オレフィン又はアルコールの転化方法及びプロピレン又は芳香族化合物の製造方法 Download PDFInfo
- Publication number
- WO2014025021A9 WO2014025021A9 PCT/JP2013/071684 JP2013071684W WO2014025021A9 WO 2014025021 A9 WO2014025021 A9 WO 2014025021A9 JP 2013071684 W JP2013071684 W JP 2013071684W WO 2014025021 A9 WO2014025021 A9 WO 2014025021A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- fluidized bed
- mass
- conductive
- reactor
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 65
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 44
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title claims abstract description 44
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 title claims description 20
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 title claims description 20
- 150000001491 aromatic compounds Chemical class 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 309
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 66
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 46
- 239000010457 zeolite Substances 0.000 claims description 43
- 229910021536 Zeolite Inorganic materials 0.000 claims description 42
- 239000000377 silicon dioxide Substances 0.000 claims description 31
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 25
- 239000005977 Ethylene Substances 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 238000012937 correction Methods 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 83
- 239000002245 particle Substances 0.000 description 48
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 27
- 239000002994 raw material Substances 0.000 description 26
- 239000000571 coke Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 17
- 238000007786 electrostatic charging Methods 0.000 description 17
- 239000000843 powder Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000002184 metal Substances 0.000 description 15
- 239000004020 conductor Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 229910001868 water Inorganic materials 0.000 description 14
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000002002 slurry Substances 0.000 description 11
- 238000011049 filling Methods 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000007600 charging Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical group CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012013 faujasite Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 238000011020 pilot scale process Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- 229910017119 AlPO Inorganic materials 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052675 erionite Inorganic materials 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910001657 ferrierite group Inorganic materials 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000004230 steam cracking Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- ATQUFXWBVZUTKO-UHFFFAOYSA-N 1-methylcyclopentene Chemical compound CC1=CCCC1 ATQUFXWBVZUTKO-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- -1 ethylene, propylene, butene Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- 238000009491 slugging Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/04—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
- C07C2/06—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
- C07C2/08—Catalytic processes
- C07C2/12—Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/068—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/31—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/31—Density
- B01J35/32—Bulk density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/084—Decomposition of carbon-containing compounds into carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
- B01J37/105—Hydropyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
- B01J38/30—Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/0055—Separating solid material from the gas/liquid stream using cyclones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/42—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/76—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C6/00—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
- C07C6/02—Metathesis reactions at an unsaturated carbon-to-carbon bond
- C07C6/04—Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/48—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
- C10G3/49—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/54—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
- C10G3/55—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds
- C10G3/57—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds according to the fluidised bed technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/60—Controlling or regulating the processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/0007—Pressure measurement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00584—Controlling the density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00654—Controlling the process by measures relating to the particulate material
- B01J2208/00681—Agglomeration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00734—Controlling static charge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/12—After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/34—Reaction with organic or organometallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/36—Steaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/40—Special temperature treatment, i.e. other than just for template removal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
- B01J38/14—Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D29/00—Producing belts or bands
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/20—Carbon compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
- C10G2300/703—Activation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a method for converting an olefin or alcohol and a method for producing propylene or an aromatic compound.
- Patent Document 1 discloses a method for producing propylene using a zeolite-containing catalyst containing zeolite and silica.
- the charged catalyst is likely to adhere to the inner wall of the reactor.
- the fluidity of the catalyst is greatly reduced, and the reaction results deteriorate.
- the catalyst adhering to the vicinity of the reactor outlet tends to flow out to the reactor outlet piping together with the product gas (accompanied outflow), so that the catalyst loss increases.
- an object of the present invention is to provide an olefin or alcohol conversion method and a propylene or aromatic compound production method in which electrostatic charging of the catalyst or catalyst adhesion to a reactor is suppressed and excellent reaction efficiency can be realized. To do.
- the present invention is as follows. [1] A pretreatment step of obtaining a conductive catalyst by pretreatment for suppressing electrostatic charge of the nonconductive catalyst; Converting the olefin or alcohol by a fluidized bed reaction using the conductive catalyst; A process for converting olefins or alcohols. [2] The olefin or alcohol conversion method according to [1], wherein the pretreatment includes attaching a conductive substance to the nonconductive catalyst. [3] The olefin or alcohol conversion method according to [1] or [2], wherein the pretreatment uses the non-conductive catalyst having a charge adhesion rate of 15% by mass or more.
- [4] The method for converting an olefin or alcohol according to any one of [1] to [3], wherein the non-conductive catalyst includes zeolite and / or silica.
- [5] The olefin or alcohol conversion method according to any one of [2] to [4], wherein the conductive material contains carbon.
- [6] The method for converting an olefin or alcohol according to any one of [1] to [4], wherein the olefin comprises ethylene.
- a method for producing propylene or an aromatic compound, comprising a step of obtaining propylene or an aromatic compound by the conversion method according to any one of [1] to [6].
- the present invention when the olefin or alcohol is converted and the propylene or aromatic compound is produced, electrostatic charging of the catalyst or catalyst adhesion to the reactor is suppressed, and excellent reaction efficiency can be realized.
- FIG. 1 is a schematic diagram of a fluidized bed reaction using a pilot scale fluidized bed reactor.
- FIG. 2 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Example 1.
- FIG. 3 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Example 2.
- FIG. 4 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Example 3.
- FIG. 5 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Comparative Example 1.
- 6 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Comparative Example 2.
- FIG. 7 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Comparative Example 3.
- FIG. 8 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Example 4.
- FIG. 9 is an instruction chart of a differential pressure gauge provided in the fluidized bed reactor of Comparative Example 4.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the present invention is not limited to the following description, and various modifications can be made within the scope of the gist thereof.
- sica refers to silica used as a carrier of a non-conductive catalyst containing zeolite, and does not mean silica constituting zeolite and clay mineral unless otherwise specified.
- alumina refers to alumina used as a support for a non-conductive catalyst containing zeolite, and does not mean alumina constituting zeolite and clay minerals unless otherwise specified.
- the olefin or alcohol conversion method according to the present embodiment includes a pretreatment step of obtaining a conductive catalyst by a pretreatment for suppressing electrostatic charging of a nonconductive catalyst, and a fluidized bed reaction using the conductive catalyst, thereby converting the olefin or alcohol. Converting the alcohol.
- electrostatic charging of the catalyst or catalyst adhesion to the reactor is suppressed, and excellent reaction efficiency can be realized.
- the “fluidized bed reaction” is a reaction in a bed in which the catalyst filled in the reactor is floated (fluidized) by the gas supplied from the lower part of the reactor using the fluidized bed reactor. Is to do.
- the fluidized bed reactor is not particularly limited, but typically includes at least one gas distributor that delivers process feed gas to a predetermined location in the reactor bed, and optionally heat removal or Mention may be made of a vertical cylindrical vessel with an additional internal coil and, if necessary, an external or internal cyclone to minimize entrainment of the catalyst.
- the gas distributor include a gas dispersion plate having a large number of pores.
- a fluidized bed reactor having an extension at the top can be used to reduce the gas velocity.
- the catalyst particles are fluidized with a gas supplied from a gas distributor. Also, intimate contact between the gas and the catalyst particles ensures good heat / mass transfer between the gas phase and the solid phase so that the temperature in the fluidized bed reactor is kept uniform.
- the heat of reaction can be controlled by a coil installed inside the reactor, a water jacket, the fluidizing gas itself, or other heat transfer medium.
- the gas supply rate is controlled within an appropriate range, sufficient flow of the catalyst particles can be ensured, so that the gas and the catalyst tend to be sufficiently mixed. Furthermore, as the gas supply rate is gradually increased, the gas that has only passed through the gap between the catalyst particles becomes bubbles and rises inside the reactor, so that the behavior of the catalyst particles increases. It tends to be pushed up, pushed away or pulled up by bubbles. That is, it can be said that by controlling the gas supply rate within an appropriate range, a good mixed state is obtained and the reaction results tend to be improved.
- the gas supply rate is 0.5 m / sec or more and 2.0 m / sec or less as the gas flow rate inside the reactor. Is preferred.
- FIG. 1 schematically shows an example of a fluidized bed reaction method using a pilot scale fluidized bed reactor.
- the supply gas 7 is supplied from the lower part of the fluidized bed reactor 1 through the gas supply pipe 2, and the catalyst layer 9 fluidized by the supply gas 7 and the supply gas 7 come into contact with each other to react. Is done.
- the fluidized catalyst is separated from the gas by the # 1 cyclone 4 and # 2 cyclone 5 at the top of the reactor, and the separated gas is discharged as the product gas 8 to the reactor downstream pipe 3.
- the differential pressure gauge 6 provided in the fluidized bed reactor 1 is installed for the purpose of confirming the mass of the catalyst accommodated in the fluidized bed reactor and monitoring the stability of the catalyst fluidized state.
- electrostatic charging refers to frictional charging that occurs when two different substances are brought into close contact with each other.
- electrostatic charging is also simply referred to as “charging”.
- the two different materials include two different metals (conductors), two different insulators (for example, wool for clubs), conductors and insulators, and the like.
- the electrostatic charge is specifically based on frictional contact of non-conductive catalyst particles (insulator) with carbon steel (conductor) on the reactor wall. The resulting triboelectric charge can be the subject of evaluation.
- the basic driving force generated by triboelectric charging is derived from the difference in affinity for electrons between the two substances. Substances with higher affinity acquire electrons and become negatively charged. The other substance loses electrons and becomes positively charged. In collisions of solid particles with fluid bed reactor walls, tubes or other metal parts, the amount of charge transferred depends on factors such as the electrical properties of the metal and particles, the degree of contact, and the surface roughness.
- the gas flow rate condition in the reactor is generally operated in the range of 0.2 m / sec to 98 m / sec.
- the olefin or alcohol conversion method of the present embodiment is particularly preferably used in the case where the reaction is carried out under a condition of a gas flow rate of 0.40 m / sec or more using an industrial-scale fluidity reactor.
- non-conductive catalyst refers to a catalyst having a charge adhesion rate of 15% by mass or more in a method for measuring the charge adhesion rate of a catalyst described later.
- the catalyst having a high charge adhesion rate include a catalyst containing zeolite and / or silica as a constituent element.
- Zeolite is preferably used because it exhibits good catalytic activity in olefin production.
- Silica is suitably used as a component (also referred to as a carrier or a binder) for imparting strength as a fluidized bed catalyst.
- the nonconductive catalyst in the present embodiment may have components other than zeolite and silica, such as transition metals and phosphorus compounds, from the viewpoint of improving reaction performance, hydrothermal stability, strength, and the like.
- the non-conductive catalyst is not particularly limited, but it is preferable that the catalyst particles have suitable properties from the viewpoint of achieving a better fluid state in the fluidized bed reaction process.
- p Of the fluidized bed handbook (edited by Japan Powder Industrial Technology Association, Baifukan 1999). No. 16 states, “It is desirable that the mass transfer between the bubbles and the emulsion phase containing the catalyst is sufficiently fast in order to improve the reaction rate and selectivity.
- it is preferable that the bubbles are small and the particles are fine and the surface is smooth. It is said that it should be easy.
- the catalyst particles may be worn or crushed by collision or contact between the catalyst particles, between the catalyst particles and the reactor, between the catalyst particles and the reaction gas, or the like.
- the properties of the fluidized bed reaction catalyst are sufficient mechanical strength to withstand abrasion and crushing. It is preferable to have.
- the content of zeolite in the non-conductive catalyst is preferably in the range of 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, based on the mass of the entire catalyst, from the viewpoint of reactivity and strength. It is the range of the mass% or less.
- the content of zeolite is 10% by mass or more, sufficient catalyst reactivity tends to be ensured, and when it is 90% by mass or less, sufficient catalyst strength tends to be ensured.
- the “conductive catalyst” refers to a non-conductive catalyst having a reduced charge adhesion rate, and a catalyst having a charge adhesion rate of less than 15% by mass in a method for measuring the charge adhesion rate of a catalyst described later. Indicates.
- the conductive catalyst used for the fluidized bed reaction may partially contain a non-conductive catalyst. Moreover, after using a part of nonelectroconductive catalyst for a pre-processing process to make a conductive catalyst, you may mix with a nonconductive catalyst. However, after mixing the non-conductive catalyst, the mixing ratio is appropriately adjusted so that the charge adhesion rate of the entire catalyst is less than 15%.
- conductive substance refers to a substance whose main component is a component having a low electrical resistivity.
- carbon-based conductive materials, metal-based conductive materials, inorganic-based conductive materials, water, antistatic agents (surfactants and the like), and the like can be given as conductive materials.
- the carbon-based conductive material is not particularly limited, and examples thereof include precipitated coke, carbon black, carbon fiber, and graphite.
- the metal conductive material is not particularly limited, and examples thereof include metal fine powder, metal oxide, and metal fiber.
- the inorganic conductive material is not particularly limited, and examples thereof include glass beads and synthetic fibers.
- the “pretreatment step for obtaining a conductive catalyst by suppressing electrostatic charging of the nonconductive catalyst” is not particularly limited as long as it includes suppressing electrostatic charging of the nonconductive catalyst.
- it is a step of suppressing electrostatic charging by imparting physical and chemical conductivity to the catalyst before being subjected to the reaction, and more preferably, a conductive substance is attached to the non-conductive catalyst.
- This is a step of obtaining a conductive catalyst.
- the charge adhesion rate of the non-conductive catalyst can be controlled by adjusting the amount of the conductive substance attached.
- the “pretreatment step of obtaining a conductive catalyst by suppressing electrostatic charging of a nonconductive catalyst” is also simply referred to as “pretreatment step”.
- a method of adhering a conductive substance to a non-conductive catalyst of a molded product by simple mixing, surface coating, kneading or the like can be mentioned.
- the surface coating include deposition, plating, thermal spraying, and coating.
- excess conductive material may be removed as appropriate. For example, a case where only an excess carbonaceous compound (coke) is removed by incineration in a catalyst regeneration step described later is applicable.
- a non-conductive catalyst is evaluated as a conductive catalyst if the charge adhesion rate is reduced to less than 15% by mass in the method for measuring the charge adhesion rate of a catalyst, which will be described later, through the pretreatment step described above.
- the pretreatment step can be performed using, for example, a muffle furnace, a rotary furnace, a tunnel furnace, a tubular furnace, a fluidized firing furnace, a kiln furnace, a fluidized bed reactor, or the like.
- the pretreatment step is performed before the fluidized bed reaction. From the viewpoint of efficiently shifting from the pretreatment step to the fluidized bed reaction, the pretreatment step is the same as the fluidized bed reactor that performs the fluidized bed reaction. Preference is given to using a fluidized bed reactor.
- a fluidized bed reactor 1 for conducting the fluidized bed reaction shown in FIG. 1 is filled with a non-conductive catalyst, and heated hydrocarbon gas is supplied to the fluidized bed reactor 1, and the fluidized bed reactor 1 is heated to 300 to 650 ° C.
- the carbonaceous coke is deposited on the nonconductive catalyst by contacting with the nonconductive catalyst at a temperature of 0.01 to 3.0 MPa ⁇ G.
- the amount of deposited carbonaceous coke can be controlled by monitoring the change in the catalyst mass according to an instruction from the differential pressure gauge 6 provided in the fluidized bed reactor 1.
- the gas supply rate at this time is preferably such that the gas flow rate in the reactor is 0.40 m / sec or less.
- Gas flow rate [m / sec] feed gas flow rate [m 3 / sec] / reactor cross-sectional area [m 2 ]
- Catalyst regeneration process in fluidized bed reaction When a catalyst is used for a long-term reaction, an excessive carbonaceous compound (coke) may be generated on the catalyst, and the catalytic activity may be reduced. Therefore, for the purpose of regenerating (reactivating) the decreased activity of the catalyst, a part or all of the catalyst may be extracted from the reactor, and the coke adhering to the catalyst may be removed by combustion.
- the regenerated catalyst tends to be a non-conductive catalyst. Therefore, it is preferable to appropriately control firing conditions such as temperature and time, incinerate and remove only excess coke, and maintain a charge adhesion rate of less than 15%.
- the regenerated catalyst becomes a non-conductive catalyst, it is preferable that the regenerated catalyst is subjected to a pretreatment step when being returned to the reactor, and is then returned to the reactor after being made a conductive catalyst. Or you may employ
- the olefin or alcohol conversion method in the present embodiment includes a step of bringing the conductive catalyst obtained through the above-described pretreatment step into contact with the olefin or alcohol in a fluidized bed reactor.
- the olefin or alcohol as a raw material preferably has 2 or more and 12 or less carbon atoms. Olefin and alcohol may be used in combination. Moreover, it is more preferable that ethylene is included as an olefin from the same viewpoint.
- the olefin or alcohol that is a reaction raw material does not necessarily have to be highly pure, and may be an industrial grade.
- the reaction raw material used in the olefin or alcohol conversion method in the present embodiment preferably contains 20% by mass or more of ethylene, and more preferably contains 25% by mass or more of ethylene.
- separating and recovering the water contained in a raw material can be skipped, it is preferable.
- the supply ratio of water vapor is preferably 1% by mass or more, more preferably 5% by mass or more because, for example, a reaction raw material obtained by steam cracking or alcohol dehydration reaction is used as the raw material. It is 60 mass% or less, More preferably, it is 10 mass% or more and 50 mass% or less.
- the target product eg, propylene or aromatic compound
- the target product is separated from the reaction product, and the remaining low-boiling component containing ethylene and / or high-boiling component containing butene. It is an example of a preferable embodiment that at least a part of the above is supplied to the fluidized bed reactor as a raw material and recycled.
- the olefin raw material is not particularly limited, and for example, one obtained by thermal decomposition of ethane, steam cracking, oxidative dehydrogenation reaction, alcohol dehydration reaction, or the like can be used.
- This reaction raw material may contain olefin and paraffin.
- Paraffin is not particularly limited, and examples thereof include methane, ethane, propane, butane, pentane, hexane, heptane, octane, and nonane.
- the olefin is not particularly limited, and examples thereof include ethylene, propylene, butene, pentene, hexene, heptene, octene, and nonene.
- the olefin raw material includes, in addition to the above compounds, cycloparaffins such as cyclopentane, methylcyclopentane and cyclohexane; cycloolefins such as cyclopentene, methylcyclopentene and cyclohexene; dienes such as cyclohexadiene, butadiene, pentadiene and cyclopentadiene; and / or Acetylene such as acetylene or methylacetylene may also be contained.
- cycloparaffins such as cyclopentane, methylcyclopentane and cyclohexane
- cycloolefins such as cyclopentene, methylcyclopentene and cyclohexene
- dienes such as cyclohexadiene, butadiene, pentadiene and cyclopentadiene
- Acetylene such as acetylene or methylacety
- the alcohol raw material may include oxygen-containing compounds such as t-butyl alcohol, methyl-t-butyl ether, diethyl ether, methyl ethyl ether, dimethyl ether, ethanol, and methanol.
- the olefin or alcohol may further contain water, hydrogen, nitrogen, carbon dioxide, or carbon monoxide.
- biomass ethanol obtained from plant resources can be used as the reaction raw material.
- biomass ethanol include ethanol obtained by fermentation of sugarcane, corn, and the like; ethanol obtained from woody resources such as waste wood, thinned wood, rice straw, and agricultural crops.
- the reaction temperature in the fluidized bed reaction is preferably 300 ° C. or higher and 650 ° C. or lower, more preferably 400 ° C. or higher and 600 ° C. or lower, from the viewpoint of producing propylene and aromatic compounds in high yield.
- the reaction pressure is preferably 0.01 MPa ⁇ G or more and 3.0 MPa ⁇ G or less, more preferably 0.05 MPa ⁇ G or more and 1.0 MPa ⁇ G or less.
- the feed rate of the reaction raw materials is preferably 0.1 hr -1 or more 20 hr -1 or less, more preferably 0.5 hr -1 or more 10 hr -1 or less.
- the conversion rate of ethylene can be controlled by adjusting the above reaction conditions when a reaction raw material containing ethylene is used.
- zeolite is crystalline porous aluminosilicate or metallosilicate, and includes phosphate-based porous crystals having the same or similar structure.
- the metallosilicate refers to a zeolite in which some or all of the aluminum atoms constituting the skeleton of the crystalline porous aluminosilicate are substituted with a substitutable element such as Ga, Fe, B, Cr, or Ti.
- a zeolite having a small pore diameter structure having an oxygen 8-membered ring or less
- chabazite (“CHA” is represented by a code that classifies zeolite determined by the International Zeolite Society. The following classification is also used.
- zeolite intermediate pore size (10-membered oxygen ring structures), ferrierite (FER), MCM-22 ( MWW), ZSM-11 (MEL), ZSM-5 (MFI), the AlPO 4 -11 (AEL) cited It is done.
- zeolite with a large pore diameter oxygen 12-membered ring structure
- L type L type
- X type FAU
- Y type FAU
- faujasite FAU
- BEA mordenite
- MOR mordenite
- MOR ZSM-12
- MTW AlPO 4 -5
- UTD-1 DON
- CIT-5 CIT-5
- VPI-5 VFI
- zeolites having a super-large pore diameter structure having an oxygen 14-membered ring or more.
- an intermediate pore size zeolite is preferable.
- metalloaluminosilicate in which a part of aluminum atoms constituting the zeolite skeleton is substituted with elements such as Ga, Fe, B, Cr, Ti, and all the aluminum atoms constituting the zeolite skeleton are all.
- Metallosilicates substituted with the above elements can also be used. In that case, after converting the content of the above element in the metalloaluminosilicate or metallosilicate to the number of moles of alumina, the SiO 2 / Al 2 O 3 (silica / alumina) molar ratio is calculated.
- the non-conductive catalyst in the present embodiment may contain a metal element.
- the non-conductive catalyst can contain at least one metal element selected from the group consisting of metal elements belonging to Group IB of the Periodic Table. That is, a catalyst in which the zeolite in the catalyst contains a cation corresponding to the group IB metal or a catalyst in which the zeolite is supported can be used.
- the method for containing the group IB metal element in the zeolite or the nonconductive catalyst is not particularly limited, and the zeolite or the nonconductive catalyst not containing the group IB metal is treated by a known ion exchange method. Can do.
- a liquid phase ion exchange treatment method a method of solid phase ion exchange treatment by treating an impregnated supported catalyst at a high temperature, and the like can be mentioned.
- the group IB metal is contained in the zeolite or the non-conductive catalyst by the ion exchange method, it is preferable to use a salt of the group IB metal.
- the group IB metal salt include silver nitrate, silver acetate, silver sulfate, copper chloride, copper sulfate, copper nitrate, and gold chloride.
- the nonconductive catalyst in the present embodiment may contain a phosphorus element.
- Phosphorus element has an effect that zeolite suppresses dealumination of zeolite.
- the phosphorus element content is preferably 0.01% by mass or more and 2.0% by mass or less, more preferably 0.01% by mass or more and 1.0% by mass or less, based on the mass of the entire catalyst.
- the phosphorus element content of the catalyst in this embodiment can be measured by a conventional method using a fluorescent X-ray analyzer (manufactured by Rigaku, RIX3000). As measurement conditions at that time, a P-K ⁇ ray can be used, and the tube voltage: 50 kV and the tube current: 50 mA.
- the non-conductive catalyst and the conductive catalyst in the present embodiment preferably contain a silica carrier separately from zeolite.
- the silica carrier those contained in an inorganic porous carrier mainly composed of silica can be used.
- the “inorganic porous carrier mainly composed of silica” means that 60% by mass or more of silica is contained in the inorganic porous carrier.
- said content is a value on the basis of the mass of the whole support
- the inorganic porous carrier may contain clay minerals such as kaolin, zirconia, titania, ceria and the like as the balance other than silica. These contents are preferably 20% by mass or less, more preferably 10% by mass or less, and 0% by mass with respect to the mass of the entire support. That is, silica is particularly preferable as the carrier.
- the silica raw material used as the carrier is not particularly limited, and colloidal silica, water glass (sodium silicate), fumed silica, or the like can be used. It is preferable to use colloidal silica because there are few Na used as catalyst poisons, and handling is easy. From the same viewpoint, it is more preferable to use NH 4 stable colloidal silica.
- the non-conductive catalyst and the conductive catalyst in the present embodiment are preferably spherical from the viewpoint of fluidity and strength.
- the “spherical shape” does not necessarily require “being a true sphere or a shape close to it”, and “is not a shape in which a cavity formed near the center is ruptured, and has no conspicuous protrusions or dents” It means that.
- Spherical catalysts tend to flow smoothly in a fluidized bed reactor and tend to increase in strength, and thus tend to contribute to improved durability.
- evaluation of the above-described spherical shape can be performed by observation of an electron microscope image of the catalyst and measurement of a repose angle of the catalyst described later.
- the electron microscope image of the catalyst is observed by a scanning electron microscope (manufactured by Hitachi, Ltd., trade name “S-”) equipped with an image processing system (manufactured by Asahi Kasei Corporation, high-definition image analysis filing system, trade name “IP-1000”). 800 ").
- the non-conductive catalyst and the conductive catalyst in the present embodiment have a small angle of repose, which is an indicator of the fluidity of the catalyst, and from the viewpoint of exhibiting good fluidity in a fluidized bed reaction, the average particle size may be 20 ⁇ m or more. preferable. Moreover, it is preferable that an average particle diameter is 300 micrometers or less from a viewpoint which a catalyst shows sufficiently large mechanical strength and the whole catalyst particle
- particle diameter and “particle size distribution” mean values measured by a laser diffraction / scattering particle size analyzer.
- the “average particle size” means that the particle size distribution (ratio of particles in a certain particle size interval) of the powdery zeolite-containing catalyst is measured with the above analyzer, and the total volume is 100%. Is the particle diameter at which the accumulation is 50%, that is, the cumulative average diameter (center diameter, median diameter).
- a catalyst containing zeolite and silica as main components has very low electrical conductivity and is easily charged.
- the catalyst particles are very easily charged because they repeatedly undergo friction with the reactor.
- the catalyst adheres to the reactor wall surface, and the catalyst layer height in the reactor becomes unstable.
- the catalyst adhering to the reactor wall easily reaches the cyclone section, which has the function of separating the reaction product gas from the reactor, and the cyclone collection efficiency decreases, and the catalyst flows out of the reactor system. There is a possibility that.
- the catalyst has conductivity, so that the charging adhesion of the catalyst particles to the reactor is suppressed.
- the charge adhesion rate of the catalyst in this embodiment can be measured by the charge adhesion test shown in the examples. If the charge adhesion rate of the catalyst is 15% by mass or less, catalyst adhesion to the reactor, which becomes serious when scaled up, can be effectively suppressed. As a result, the accompanying outflow to the reactor outlet pipe can be effectively suppressed.
- the charge adhesion rate is preferably 10% by mass or less.
- the charge adhesion rate obtained by the charge adhesion test is 15% by mass or more, it is defined as “non-conductive catalyst”, and if it is less than 15% by mass, it is defined as “conductive catalyst”.
- the charge adhesion rate of the conductive catalyst in this embodiment can be controlled by the type or amount of the conductive material to be deposited. For example, a case where carbon coke is attached to a non-conductive catalyst will be described. In order to set the charge adhesion rate to 15% by mass or less, it is preferable to deposit about 4% by mass of carbon with respect to the non-conductive catalyst. Increasing the amount of adhering carbon tends to decrease the charge adhesion rate. In addition, from the viewpoint of sufficiently securing the catalyst activity, the carbon adhesion amount is more preferably 4% by mass or more and 10% by mass or less. The carbon adhesion amount can be evaluated by the method described in Examples described later.
- the repose angle of the non-conductive catalyst and the conductive catalyst in the present embodiment is preferably 20 ° or more and 30 ° or less. When the angle of repose is within this range, the fluidity becomes good, bridging between particles hardly occurs, and the handling property tends to be improved.
- the angle of repose of the catalyst in the present embodiment can be measured by the method shown in the examples.
- the non-conductive catalyst and the conductive catalyst in this embodiment preferably have a bulk density of 0.8 g / cm 3 or more and 1.3 g / cm 3 or less, more preferably 0.8 g / cm 3 or more and 1.2 g / cm. 3 or less, more preferably 0.8 g / cm 3 or more and 0.95 g / cm 3 or less.
- the reaction gas linear velocity is improved, and mass transfer and heat transfer between the catalyst particles and the reaction gas tend to be better.
- the bulk density is 0.8 g / cm 3 or more, there is a tendency that the proportion of distorted particles, cracks, chips, and hollow particles tends to be reduced, and 1.3 g / cm 3 or less. Therefore, it tends to be able to effectively prevent a decrease in chemical performance as a catalyst due to a decrease in specific surface area.
- the bulk density of the catalyst in this embodiment is measured by the method shown in the examples.
- the charge adhesion rate, angle of repose, and bulk density of each example catalyst were measured as follows.
- the charge adhesion test was performed as follows. That is, a jet-type flow device (manufactured by Kako Co., Ltd.) was used as a test device. This device was provided with a 10 ⁇ m pore filter at the gas inlet, and the inner diameter of the device was 48.6 mm and the length was 450 mm. The material of the inner wall facing the measurement system of the jet flow device was SUS316. The charge adhesion rate to the wall surface of the catalyst was determined from the change in the differential pressure of the powder flow part. In advance, the differential pressure at the time when the catalyst powder was introduced for each fixed amount was measured, and a calibration curve was prepared, and the charge adhesion rate was calculated from the amount of decrease in the differential pressure.
- the differential pressure was measured by installing one of the differential pressure introduction pipes at the bottom of the catalyst powder flow section and the other at the top of the catalyst powder separation section.
- the differential pressure gauge an EJA110-DMS2A-20DC / K1 type differential pressure transmitter made by Yokogawa Electric Co., Ltd. capable of measuring a differential pressure from 0 to 2 kPa was used. After 235 g of the catalyst powder dried at 120 ° C. for 2 hours was put into a jet flow apparatus at room temperature, nitrogen was introduced from the gas inlet at 15.3 NL / min. After setting the powder flow part to 65 ° C., the catalyst differential pressure (differential pressure A) was measured. After the introduction of nitrogen gas at 65 ° C.
- [Angle of repose] It measured using the cylinder rotation method repose angle measuring device (made by Tsutsui Richemical Instrument Co., Ltd.). After filling a 500 cc glass sample container (cylindrical measuring bottle) with 250 cc of the catalyst, the side of the cylindrical measuring bottle is in contact with the roller on the roller portion of the measuring instrument, and the cylindrical measuring bottle The center axis of was placed so that it was horizontal. Next, the angle formed by the surface of the powder layer inside the cylindrical measurement bottle with respect to the horizontal plane was measured while rotating the roller part at 2.4 rpm around the central axis of the cylindrical measurement bottle.
- nitric acid manufactured by Wako Pure Chemical Industries, Ltd., containing 60% by mass of nitric acid
- Kodidal silica manufactured by Nalco, silica average particle diameter 5 nm, silica content 15% by mass, Na content 185 ppm
- 100 g of ammonium nitrate manufactured by Wako Pure Chemicals, special grade reagent, solubility in water at 0 ° C. 118 g / 100 g water was added as a water-soluble compound.
- the obtained fired powder was mixed with a 0.1 molar nitric acid aqueous solution to adjust the solid content concentration to 10% by mass, and an ion exchange treatment was performed at 25 ° C. for 1 hour. Thereafter, the ion exchanger powder that had undergone ion exchange was sufficiently washed with water and dried at 120 ° C.
- the charge adhesion rate was measured according to the method described above. As a result, the charge adhesion rate was 28.3% by mass. Moreover, the repose angle of the nonconductive catalyst A1 was 25 °, and the bulk density was 0.92 g / cm 3 .
- Example 4 The adjustment method of the non-conductive catalyst containing zeolite and silica used in Example 4 and Comparative Example 4 is shown below.
- Kodoidal silica (manufactured by Nalco, silica average particle size 12 nm, silica content 34 mass%, Na content 1 ppm) is added to 16.08 kg, nitric acid (manufactured by Wako Pure Chemicals, nitric acid 60 mass% containing reagent) 0.32 kg is added The pH was adjusted to 1.1. Thereafter, 1.84 kg of ammonium nitrate (manufactured by Wako Pure Chemicals, special grade reagent, solubility of 118 g / 100 g water in water at 0 ° C.) was added as a water-soluble compound.
- the charge adhesion rate was measured according to the method described above. As a result, the charge adhesion rate was 25% by mass. Moreover, the repose angle of the nonconductive catalyst A2 was 25 °, and the bulk density was 0.93 g / cm 3 .
- Example 1 In a fluidized bed reactor, 144 kg of the non-conductive catalyst (A1) obtained above was charged, and under conditions of a temperature of 500 to 530 ° C. and a pressure of 0.14 MPa ⁇ G, 30.5 mol% of ethylene, 24.2 mol% of steam, A composition gas of 45.3 mol% nitrogen was supplied to the fluidized bed reactor at a gas flow rate of 0.34 m / sec, and the pretreatment process of the non-conductive catalyst A1 was started.
- the gas supply was stopped and the pretreatment step was completed.
- 153 kg of a catalyst having carbon coke attached at a rate of about 5.9% by mass was obtained.
- thermogravimetric analyzer thermogravimetric analyzer main body: “MTC1000 type” manufactured by Mac Science Co., Ltd., differential thermal balance: “TG-DTA2000 type” manufactured by Mac Science Co., Ltd., thermal analysis system : “WS003” manufactured by Bruker AXS Co., Ltd.
- the catalyst after the pretreatment step was collected and the charge adhesion rate was measured. As a result, it was 6% by mass, and it was confirmed that the catalyst was a conductive catalyst.
- FIG. 2 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction.
- the differential pressure gauge instructions remained stable throughout.
- the reaction product after the elapsed time of 59.5 hours and 72.7 hours under the above conditions was directly introduced into the gas chromatography (TCD, FID detector) from the reactor outlet, and the composition was analyzed. there were.
- the aromatic hydrocarbon here refers to an aromatic hydrocarbon having 6 to 9 carbon atoms (benzene, toluene, xylene, etc.).
- Example 2 In a fluidized bed reactor, 144 kg of the non-conductive catalyst (A1) obtained above was charged, and under conditions of a temperature of 500 to 530 ° C. and a pressure of 0.14 MPa ⁇ G, 30.5 mol% of ethylene, 24.2 mol% of steam, A composition gas of 45.3 mol% nitrogen was supplied to the fluidized bed reactor at a gas flow rate of 0.34 m / sec, and the pretreatment process of the non-conductive catalyst A1 was started.
- the gas supply was stopped and the pretreatment step was completed.
- 152 kg of a catalyst having carbon coke attached at a rate of about 5.1% by mass was obtained.
- the catalyst after the pretreatment step was collected and the charge adhesion rate was measured. As a result, it was 10% by mass, and it was confirmed that the catalyst was a conductive catalyst.
- FIG. 3 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction. As in Example 1, the differential pressure gauge instruction remained stable throughout.
- the result of analyzing the composition by introducing the reaction product after the elapsed time of 53.7 hr and 89.0 hr under the above conditions directly into the gas chromatography (TCD, FID detector) from the reactor outlet is as follows. there were.
- the aromatic hydrocarbon here refers to an aromatic hydrocarbon having 6 to 9 carbon atoms (benzene, toluene, xylene, etc.).
- Example 3 In a fluidized bed reactor, 144 kg of the non-conductive catalyst (A1) obtained above was charged, and under conditions of a temperature of 500 to 530 ° C. and a pressure of 0.14 MPa ⁇ G, 30.5 mol% of ethylene, 24.2 mol% of steam, A composition gas of 45.3 mol% nitrogen was supplied to the fluidized bed reactor at a gas flow rate of 0.34 m / sec, and the pretreatment process of the non-conductive catalyst A1 was started.
- the gas supply was stopped and the pretreatment step was completed.
- 150 kg of catalyst having carbon coke adhered at a rate of about 4.3 mass% was obtained.
- the catalyst after the pretreatment step was collected and the charge adhesion rate was measured. As a result, it was 13.5% by mass, and it was confirmed that the catalyst was a conductive catalyst.
- FIG. 4 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction.
- the result of analyzing the composition by introducing the reaction product after the elapsed time of 47.5 hr under the above conditions and 79.0 hr directly into the gas chromatography (TCD, FID detector) from the reactor outlet is as follows. there were.
- the aromatic hydrocarbon here refers to an aromatic hydrocarbon having 6 to 9 carbon atoms (benzene, toluene, xylene, etc.).
- the catalyst mass became 1.03 times that before the pretreatment, the gas supply was stopped and the pretreatment step was completed.
- 148 kg of a catalyst having carbon coke attached at a rate of about 2.6% by mass was obtained.
- the catalyst after the pretreatment step was collected and the charge adhesion rate was measured, it was 17% by mass, and it was not a conductive catalyst (charge adhesion rate of less than 15% by mass).
- FIG. 5 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction.
- the catalyst mass became 1.02 times that before the pretreatment, the gas supply was stopped and the pretreatment step was completed.
- 147 kg of a catalyst having carbon coke attached at a rate of about 1.8% by mass was obtained.
- the catalyst after the pretreatment step was collected and the charge adhesion rate was measured, it was 20% by mass and was not a conductive catalyst (charge adhesion rate of less than 15% by mass).
- FIG. 6 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction.
- FIG. 7 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction.
- Example 4 A pretreatment step was performed in the same manner as in Example 1 except that the non-conductive catalyst was changed to A2, and 153 kg of a catalyst having carbon coke adhered at a ratio of about 5.9% by mass was obtained. The catalyst after the pretreatment step was collected and the charge adhesion rate was measured. As a result, it was 5% by mass, and it was confirmed that the catalyst was a conductive catalyst.
- the outlet temperature of the pyrolysis reactor is set to 825 ° C.
- the outlet pressure is set to 0.20 MPaG. Then, the ethane decomposition gas obtained by carrying out the thermal decomposition reaction was cooled to 250 ° C.
- FIG. 8 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction of Example 4. The differential pressure gauge instructions remained stable throughout.
- the results of analyzing the composition by introducing the reaction product after 30 hours and 60 hours under the above conditions directly into the gas chromatography (TCD, FID detector) from the reactor outlet were as follows.
- the aromatic hydrocarbon here refers to an aromatic hydrocarbon having 6 to 9 carbon atoms (benzene, toluene, xylene, etc.).
- FIG. 9 shows an instruction chart of the differential pressure gauge during the fluidized bed reaction of Comparative Example 4.
- Example 1 to 4 and Comparative Examples 1 to 4 the results such as the charge adhesion rate of the catalyst subjected to the fluidized bed reaction are shown in Table 1.
- electrostatic charging of the catalyst in the reactor can be suppressed, and adhesion of the catalyst to the reactor can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
すなわち、本発明は以下のとおりである。
[1]
非導電性触媒の静電気帯電を抑制する前処理により導電性触媒を得る前処理工程と、
前記導電性触媒を用いた流動床反応により、オレフィン又はアルコールを転化する工程と、
を有する、オレフィン又はアルコールの転化方法。
[2]
前記前処理が、前記非導電性触媒に導電性物質を付着させることを含む、[1]に記載のオレフィン又はアルコールの転化方法。
[3]
前記前処理が、15質量%以上の帯電付着率を有する前記非導電性触媒を用いる、[1]又は[2]に記載のオレフィン又はアルコールの転化方法。
[4]
前記非導電性触媒が、ゼオライト及び/又はシリカを含む、[1]~[3]のいずれかに記載のオレフィン又はアルコールの転化方法。
[5]
前記導電性物質が、カーボンを含む、[2]~[4]のいずれかに記載のオレフィン又はアルコールの転化方法。
[6]
前記オレフィンが、エチレンを含む、[1]~[4]のいずれかに記載のオレフィン又はアルコールの転化方法。
[7]
[1]~[6]のいずれかに記載の転化方法により、プロピレン又は芳香族化合物を得る工程を含む、プロピレン又は芳香族化合物の製造方法。
本実施形態において「流動床反応」とは、流動床反応器を用いて、反応器下部より供給するガスにより、反応器内部に充填された触媒を浮遊(流動化)させた状態の層で反応を行うものである。上記流動床反応器としては、特に限定されないが、典型的には、反応器の床の中の所定の位置にプロセス供給ガスを送り出す少なくとも1つのガス分配器と、必要に応じて熱の除去又は追加のための内部コイルと、必要に応じて触媒の随伴流出を最小限にするための外部又は内部のサイクロンと、を備える垂直円筒状容器を挙げることができる。ガス分配器としては、例えば、細孔を多数有するガス分散板を挙げることができる。触媒粒子の随伴流出を最小限にする目的で、気体速度を減らすべく、頂部に拡張部を有する流動床反応器を用いることもできる。触媒粒子はガス分配器から供給されるガスで流動化される。また、ガスと触媒粒子との間の密接な接触は、気相と固相の間の良好な熱/物質移動を保証し、その結果、流動床反応器内の温度が均一に保たれる。反応熱は、反応器内部に設置したコイル、水ジャケット、流動化するガス自体、又は他の熱伝達媒体によって制御することができる。
本実施形態において「静電気帯電」とは、二つの異なる物質が密接状態にされる場合に生じる摩擦帯電のことを示す。以下、静電気帯電を単に「帯電」ともいう。二つの異なる物質とは、二つの異なる金属(導体)、二つの異なる絶縁体(例えば、琥珀棒に対するウール)、又は導体と絶縁体等が挙げられる。本実施形態における非導電性触媒を用いた流動床反応の場合、静電気帯電としては、具体的には、反応器壁の炭素鋼(導体)に対する非導電性触媒粒子(絶縁体)の摩擦接触から生じる摩擦帯電を評価対象とすることができる。摩擦帯電により生ずる基本的な推進力の強弱は、二つの物質の間の、電子に対する親和力の違いに由来する。より大きい親和力を有する物質が電子を獲得して負に帯電する。また、他方の物質は、電子を失い、正に帯電する。流動床反応器の壁、管又は他の金属部分との固体粒子の衝突において、移動する電荷量は、当該金属及び粒子の電気的性質、接触の程度、表面粗さ等の要因に依存する。
本実施形態において「非導電性触媒」とは、後述する触媒の帯電付着率測定方法において、帯電付着率が15質量%以上となる触媒を示す。帯電付着率が大きくなる触媒は、その構成要素としてゼオライト及び/又はシリカなどを含む触媒が挙げられる。ゼオライトは、オレフィン製造において良好な触媒活性を示すため、好適に用いられる。また、シリカは、流動床触媒としての強度を付与するための成分(担体、又はバインダーとも言う)として好適に用いられる。本実施形態における非導電性触媒は、反応性能、耐水熱安定性、強度等を改善する観点から、遷移金属やリン化合物など、ゼオライト及びシリカ以外の構成要素を有してもよい。
本実施形態において「導電性触媒」とは、非導電性触媒の帯電付着率が低減されたものを示し、後述する触媒の帯電付着率測定方法において、帯電付着率が15質量%未満となる触媒を示す。
本実施形態において「非導電性触媒の静電気帯電を抑制することにより導電性触媒を得る前処理工程」とは、非導電性触媒の静電気帯電を抑制することを含んでいれば特に限定はされないが、好ましくは、反応に供する前の触媒に対して物理的、化学的に導電性を付与することにより静電気帯電を抑制する工程であり、より好ましくは、非導電性触媒に導電性物質を付着させることにより導電性触媒を得る工程である。導電性物質を非導電性触媒へ付着させる場合、導電性物質の付着量を調整することにより非導電性触媒の帯電付着率を制御することが可能である。以下、「非導電性触媒の静電気帯電を抑制することにより導電性触媒を得る前処理工程」を単に「前処理工程」ともいう。
ガス流速[m/sec]=供給ガス流量[m3/sec]/反応器断面積[m2]
触媒を長期間反応に用いると、その触媒上に過剰な炭素質化合物(コーク)が生成し、触媒活性が低下することがある。よって、触媒の低下した活性を再生(再賦活)する目的で、反応器から触媒の一部又は全量を抜き出し、触媒に付着したコークを燃焼除去する処理を適宜行ってもよい。
本実施形態におけるオレフィン又はアルコールの転化方法は、流動床反応器内で、上述した前処理工程を経て得られた導電性触媒を、オレフィン又はアルコールと接触させる工程を含む。プロピレンや芳香族化合物を高収率で製造する観点から、原料であるオレフィン又はアルコールの炭素数は2以上12以下の範囲にあることが好ましい。オレフィンとアルコールは併用してもよい。また、同様の観点から、オレフィンとしてエチレンを含むことがより好ましい。
本実施形態において「ゼオライト」とは、結晶性多孔質アルミノケイ酸塩、又はメタロケイ酸塩であり、それらと同様又は類似の構造を有するリン酸塩系多孔質結晶も含まれる。なお、メタロケイ酸塩は、結晶性多孔質アルミノケイ酸塩の骨格を構成するアルミニウム原子の一部又は全部がGa、Fe、B、Cr、Ti等の置換可能な元素で置換されたゼオライトを示す。具体的には、小細孔径(酸素8員環以下の構造)のゼオライトとして、チャバザイト(国際ゼオライト学会が定めるゼオライトを構造により分類するコードによる表記で「CHA」。以下同様の分類で表記する。)、エリオナイト(ERI)、A型(LTA)が挙げられる。中間細孔径(酸素10員環構造)のゼオライトとして、フェリエライト(FER)、MCM-22(MWW)、ZSM-11(MEL)、ZSM-5(MFI)、AlPO4-11(AEL)が挙げられる。また、大細孔径(酸素12員環構造)のゼオライトとして、L型(LTL)、X型(FAU)、Y型(FAU)、ホージャサイト(FAU)、β型(BEA)、モルデナイト(MOR)、ZSM-12(MTW)、AlPO4-5(AFI)が挙げられる。更に、超大細孔径(酸素14員環以上の構造)のゼオライトとして、UTD-1(DON)、CIT-5(CFI)、VPI-5(VFI)が挙げられる。上記の中でも、プロピレンの収量を向上させる観点から、中間細孔径ゼオライトが好ましい。
本実施形態における非導電性触媒及び導電性触媒は、触媒の耐摩耗性をより向上させる観点から、ゼオライトとは別に、シリカ担体を含有することが好ましい。シリカ担体としては、シリカを主成分とする無機多孔質担体に含まれるものを用いることができる。「シリカを主成分とする無機多孔質担体」とは、無機多孔質担体中にシリカが60質量%以上含まれることを意味する。なお、上記の含有量は、非導電性触媒及び導電性触媒からゼオライトを除いた成分を担体と称する場合において、当該担体全体の質量を基準とする値である。好ましくは80質量%以上含まれる。無機多孔質担体中に含まれるシリカの量が多い方が、触媒の耐摩耗性が高くなる傾向にあるため好ましい。無機多孔質担体はシリカ以外の残部として、カオリン等の粘土鉱物、ジルコニア、チタニア、セリア等を含んでいてもよい。これらの含有量は担体全体の質量に対して20質量%以下であることが好ましく、10質量%以下であることがより好ましく、0質量%である。すなわち、担体としてはシリカが特に好ましい。
本実施形態における非導電性触媒及び導電性触媒は、流動性及び強度の観点から、球形であることが好ましい。ここで「球形」とは、必ずしも「真球やそれに近い形状であること」を要せず、「中央付近に形成した空洞が破裂したような形状でなく、目立った突起や凹みを有しない」という意味である。ただし、触媒の形状が、一見して真球に近いほど好ましいといえる。球形の触媒は、流動床反応器内で円滑に流動する上、強度が大きくなる傾向を示すため、耐久性の向上にも寄与する傾向にある。なお、上記した球形の評価は、触媒の電子顕微鏡像観察及び後述する触媒の安息角測定により行うことができる。触媒の電子顕微鏡像観察は、画像処理システム(旭化成工業製、高精細画像解析ファイリングシステム、商品名「IP-1000」)を付設した走査型電子顕微鏡(株式会社日立製作所製、商品名「S-800」)を用いて行うことができる。
本実施形態における非導電性触媒及び導電性触媒は、触媒の流動性の指標である安息角が小さく、流動床反応において良好な流動性を示す観点から、平均粒子径が20μm以上であることが好ましい。また、触媒が十分大きな機械的強度を示し、かつ、流動床反応において中心部を含め触媒粒子全体が有効に寄与する観点から、平均粒子径が300μm以下であることが好ましい。なお、触媒の平均粒子径が20μm未満である場合には、流動性を向上させる観点から、全体の80質量%以上の粒子の粒子径が平均粒子径の2倍~0.2倍の粒子径範囲に入るような粒度分布を有することが好ましい。
ゼオライト及びシリカを主な構成成分として含む触媒は、電気導電性が非常に低く、帯電しやすい。特に、流動床での使用においては触媒粒子が反応器との摩擦を繰り返すため非常に帯電しやすい。触媒が帯電すると、触媒が反応器壁面へ付着し、反応器中の触媒層高が不安定になる。また、反応器壁面へ付着した触媒は反応器の反応生成ガスと触媒を分別する機能のあるサイクロン部へ到達し易くなるため、サイクロンの捕集効率が低下し、反応器系外へ触媒が流出してしまう可能性がある。これに対して、本実施形態における導電性物質を含む触媒の場合、触媒が導電性を有するため、触媒粒子の反応器への帯電付着が抑制される。本実施形態における触媒の帯電付着率は、実施例に示す帯電付着試験により測定することができる。触媒の帯電付着率は15質量%以下であれば、スケールアップした際に深刻となる反応器への触媒付着を効果的に抑制することができる。その結果、反応器出口配管への随伴流出を効果的に抑制することができる。なお、触媒の随伴流出をより効果的に抑制する観点から、帯電付着率は10質量%以下であることが好ましい。
本実施形態における非導電性触媒及び導電性触媒は、安息角が、好ましくは20°以上30°以下である。安息角がこの範囲内であると、流動性が良好となり、粒子間のブリッジングが発生しにくく、取り扱い性が向上する傾向にある。本実施形態における触媒の安息角は、実施例に示す方法により測定することができる。
本実施形態において、球状粒子の球状度又は流動状態の指標として触媒のかさ密度を考慮することが好ましい。本実施形態における非導電性触媒及び導電性触媒は、かさ密度が、好ましくは0.8g/cm3以上1.3g/cm3以下、より好ましくは0.8g/cm3以上1.2g/cm3以下、さらに好ましくは0.8g/cm3以上0.95g/cm3以下である。上記範囲のかさ密度を有する触媒は、流動床反応における触媒として用いた際に、反応ガス線速が向上し、触媒粒子と反応ガスとの物質移動・熱伝達がより良好となる傾向にある。特に、かさ密度が0.8g/cm3以上とすることで、歪な形状の粒子や、割れ、欠け、中空の粒子の割合を低減できる傾向にあり、1.3g/cm3以下とすることで、比表面積の低下に起因する触媒としての化学的性能の低下を効果的に防止できる傾向にある。本実施形態における触媒のかさ密度は、実施例に示す方法により測定される。
帯電付着試験を次のように行った。すなわち、試験装置として噴流式流動装置(株式会社互興製作所製)を用いた。この装置は、ガス導入口に10μmのポアメットフィルターが設置されており、当該装置の内径は48.6mm、長さは450mmであった。なお、噴流式流動装置の測定系に面する内壁の材質はSUS316であった。触媒の壁面への帯電付着率は、粉体流動部の差圧の変化から求めた。予め、触媒粉末を一定量毎に導入した際の差圧を測定し、検量線を作成することにより、差圧の低下量から帯電付着率を計算した。差圧の測定法として、より詳細には、差圧導入管の1つは触媒粉体流動部底部に、もう1つは触媒粉体分離部上部に設置して、差圧を測定した。差圧計としては、0~2kPaまでの差圧測定を可能とする、横河電機株式会社製、EJA110-DMS2A-20DC/K1形の差圧伝送器を用いた。120℃で2hr乾燥させた触媒粉末235gを室温下で噴流式流動装置内に投入後、窒素を15.3NL/minでガス導入口から導入した。粉体流動部を65℃とした後、触媒差圧(差圧A)を測定した。65℃で24hr窒素ガス導入を継続した後、触媒差圧(差圧B)を測定した。帯電付着率は、上記のようにして得られた差圧A及びBから、下式にて求めた。
帯電付着率[質量%]=(1-B[kPa]/A[kPa])×100
円筒回転法安息角測定器(筒井理化学器械社製)を用いて測定した。500ccのガラス製試料容器(円筒形測定瓶)に触媒を250cc充填した後、当該容器を測定器のローラー部上に円筒形測定瓶の側面とローラーとが接するように、かつ、円筒形測定瓶の中心軸が水平になるように置いた。次いで、上記ローラー部を円筒形測定瓶の中心軸を中心に2.4rpmで回転させながら、円筒形測定瓶内部の粉体層の表面が水平面に対してなす角度を測定した。
カサ比重測定器(筒井理化化学器械株式会社製 Z-2504-2000)を用いて測定した。カサ比重測定器を水平な場所に設置し、スタンド部に漏斗(オリフィス2.5mmφ)を取り付けた。次いで、円筒形コップ(内径30mm、容積25cm3)の風袋質量(質量A)を測定した。取り付けた漏斗下部の受器台に円筒形コップを設置した。漏斗に触媒を30cc程度静かに充填し、漏斗のオリフィスを通過させた触媒を円筒形コップへ落下させた。触媒が円筒形コップからあふれたら、触媒の落下を停止させ、スライドグラス等を用いて円筒形コップの過量分をすり落とした。円筒形コップの外側に付着した触媒をブラシ等で掃い、その質量(質量B)を精密に秤量した。かさ密度は、得られた質量A及びBから、下式にて求めた。
かさ密度[g/cm3]=(B[g]-A[g])/(円筒形コップ容積25cm3)
上記で得られた非導電性触媒(A1)144kgを流動床反応器に充填し、温度500~530℃、圧力0.14MPa・Gの条件で、エチレン30.5mol%、スチーム24.2mol%、窒素45.3mol%の組成ガスをガス流速0.34m/secで流動床反応器に供給し、非導電性触媒A1の前処理工程を開始した。ガス供給開始直後、差圧計の指示は11.2kPaを示した(11.2[kPa]×101.97[(kg/m2)/kPa]×反応器断面積0.126m2=144[kg](初期充填量))。
エチレン転化率 (質量%) 69.2 69.2
プロピレン収率 (質量%) 22.0 22.6
ブテン収率 (質量%) 13.3 13.6
芳香族炭化水素収率(質量%) 12.2 11.4
上記で得られた非導電性触媒(A1)144kgを流動床反応器に充填し、温度500~530℃、圧力0.14MPa・Gの条件で、エチレン30.5mol%、スチーム24.2mol%、窒素45.3mol%の組成ガスをガス流速0.34m/secで流動床反応器に供給し、非導電性触媒A1の前処理工程を開始した。ガス供給開始直後、差圧計の指示は11.2kPaを示した(11.2[kPa]×101.97[(kg/m2)/kPa]×反応器断面積0.126m2=144[kg](初期充填量))。
エチレン転化率 (質量%) 70.9 68.9
プロピレン収率 (質量%) 22.3 22.3
ブテン収率 (質量%) 13.3 13.2
芳香族炭化水素収率(質量%) 13.3 12.9
上記で得られた非導電性触媒(A1)144kgを流動床反応器に充填し、温度500~530℃、圧力0.14MPa・Gの条件で、エチレン30.5mol%、スチーム24.2mol%、窒素45.3mol%の組成ガスをガス流速0.34m/secで流動床反応器に供給し、非導電性触媒A1の前処理工程を開始した。ガス供給開始直後、差圧計の指示は11.2kPaを示した(11.2[kPa]×101.97[(kg/m2)/kPa]×反応器断面積0.126m2=144[kg](初期充填量))。
エチレン転化率 (質量%) 71.7 73.0
プロピレン収率 (質量%) 22.5 22.6
ブテン収率 (質量%) 13.4 13.4
芳香族炭化水素収率(質量%) 13.4 13.7
上記で得られた非導電性触媒(A1)144kgを流動床反応器に充填し、温度500~530℃、圧力0.14MPa・Gの条件で、エチレン30.5mol%、スチーム24.2mol%、窒素45.3mol%の組成ガスをガス流速0.34m/secで流動床反応器に供給し、非導電性触媒A1の前処理工程を開始した。ガス供給開始直後、差圧計の指示は11.2kPaを示した(11.2[kPa]×101.97[(kg/m2)/kPa]×反応器断面積0.126m2=144[kg](初期充填量))。
上記で得られた非導電性触媒(A1)144kgを流動床反応器に充填し、温度500~530℃、圧力0.14MPa・Gの条件で、エチレン30.5mol%、スチーム24.2mol%、窒素45.3mol%の組成ガスをガス流速0.34m/secで流動床反応器に供給し、非導電性触媒A1の前処理工程を開始した。ガス供給開始直後、差圧計の指示は11.2kPaを示した(11.2[kPa]×101.97[(kg/m2)/kPa]×反応器断面積0.126m2=144[kg](初期充填量))。
上記で得られた非導電性触媒(A1)160kg(差圧指示12.5kPa)を流動床反応器に充填し、温度550℃、圧力0.14MPa・Gの条件で、エチレン30.0mol%、スチーム22.8mol%、窒素47.2mol%の組成ガスをガス流速0.70m/secで流動床反応器に供給し、流動床反応を実施した。
非導電性触媒をA2に変更した以外は、実施例1と同様の方法により前処理工程を行い、炭素コークが約5.9質量%の割合で付着している触媒を153kg得た。上記前処理工程後の触媒を採取し帯電付着率を測定したところ5質量%であり、導電性触媒となっていることを確認した。
エチレン転化率 (質量%) 74.0 73.2
プロピレン収率 (質量%) 24.0 24.8
ブテン収率 (質量%) 11.8 12.4
芳香族炭化水素収率(質量%) 12.3 13.3
非導電性触媒をA2に変更した以外は、比較例1と同様の方法により流動床反応を行った。
2 ガス供給配管
3 反応器後流配管
4 #1サイクロン
5 #2サイクロン
6 差圧計
7 供給ガス
8 製品ガス
9 触媒層
Claims (7)
- 非導電性触媒の静電気帯電を抑制する前処理により導電性触媒を得る前処理工程と、
前記導電性触媒を用いた流動床反応により、オレフィン又はアルコールを転化する工程と、
を有する、オレフィン又はアルコールの転化方法。 - 前記前処理が、前記非導電性触媒に導電性物質を付着させることを含む、請求項1に記載のオレフィン又はアルコールの転化方法。
- [規則91に基づく訂正 08.05.2014]
前記前処理が、15質量%以上の帯電付着率を有する前記非導電性触媒を用いる、請求項1又は2に記載のオレフィン又はアルコールの転化方法。 - 前記非導電性触媒が、ゼオライト及び/又はシリカを含む、請求項1~3のいずれか1項に記載のオレフィン又はアルコールの転化方法。
- 前記導電性物質が、カーボンを含む、請求項2~4のいずれか1項に記載のオレフィン又はアルコールの転化方法。
- 前記オレフィンが、エチレンを含む、請求項1~4のいずれか1項に記載のオレフィン又はアルコールの転化方法。
- 請求項1~6のいずれか1項に記載の転化方法により、プロピレン又は芳香族化合物を得る工程を含む、プロピレン又は芳香族化合物の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015103122/05A RU2599749C2 (ru) | 2012-08-10 | 2013-08-09 | Способ превращения олефина или спирта и способ получения пропилена или ароматического соединения |
BR112015002175-1A BR112015002175B1 (pt) | 2012-08-10 | 2013-08-09 | método para converter uma olefina ou um álcool para produzir propileno ou um composto aromático |
CN201380041317.3A CN104519988B (zh) | 2012-08-10 | 2013-08-09 | 烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法 |
KR1020147036649A KR101653900B1 (ko) | 2012-08-10 | 2013-08-09 | 올레핀 또는 알콜의 전화방법 및 프로필렌 또는 방향족 화합물의 제조 방법 |
US14/419,135 US9573862B2 (en) | 2012-08-10 | 2013-08-09 | Method for converting olefin or alcohol and method for producing propylene or aromatic compound |
JP2014529576A JP5942132B2 (ja) | 2012-08-10 | 2013-08-09 | オレフィン又はアルコールの転化方法及びプロピレン又は芳香族化合物の製造方法 |
EP13827983.1A EP2883604B1 (en) | 2012-08-10 | 2013-08-09 | Olefin or alcohol conversion method and method for producing propylene or aromatic compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-178398 | 2012-08-10 | ||
JP2012178398 | 2012-08-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014025021A1 WO2014025021A1 (ja) | 2014-02-13 |
WO2014025021A9 true WO2014025021A9 (ja) | 2014-08-07 |
Family
ID=50068238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071684 WO2014025021A1 (ja) | 2012-08-10 | 2013-08-09 | オレフィン又はアルコールの転化方法及びプロピレン又は芳香族化合物の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9573862B2 (ja) |
EP (1) | EP2883604B1 (ja) |
JP (1) | JP5942132B2 (ja) |
KR (1) | KR101653900B1 (ja) |
CN (1) | CN104519988B (ja) |
BR (1) | BR112015002175B1 (ja) |
MY (1) | MY170027A (ja) |
RU (1) | RU2599749C2 (ja) |
WO (1) | WO2014025021A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112017014234A2 (pt) * | 2014-12-31 | 2018-03-06 | Ifp Energies Now | processo para a preparação olefinas pela desidratação de álcoois com menores efeitos colaterais compreendendo a adição de compostos contendo enxofre |
WO2017187873A1 (ja) * | 2016-04-28 | 2017-11-02 | 旭化成株式会社 | 芳香族炭化水素含有化合物の製造方法 |
JP6373523B1 (ja) * | 2017-06-19 | 2018-08-15 | 旭化成株式会社 | 化合物の製造方法 |
IT201700074911A1 (it) * | 2017-07-04 | 2019-01-04 | Versalis Spa | Procedimento per la produzione di olefine da alcoli |
JP2019026571A (ja) * | 2017-07-27 | 2019-02-21 | 東ソー株式会社 | 芳香族化合物の製造法 |
WO2019055076A1 (en) * | 2017-09-14 | 2019-03-21 | Exxonmobil Chemical Patents Inc. | METHODS AND SYSTEMS FOR CONVERTING ACYCLIC HYDROCARBONS INTO CYCLOPENTADIENE |
US12077491B2 (en) * | 2019-09-24 | 2024-09-03 | Nova Chemicals (International) S.A. | Steam generation in oxidative dehydrogenation |
KR20240141177A (ko) * | 2022-01-25 | 2024-09-25 | 토탈에너지스 원테크 | 유동층 반응기에서 알코올을 올레핀으로 전환시키는 전기화 공정 |
KR20240131407A (ko) | 2022-01-31 | 2024-08-30 | 아사히 가세이 가부시키가이샤 | 에탄올의 변환 방법 및 그 외 탄화수소의 제조 방법 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU574428B2 (en) | 1983-08-15 | 1988-07-07 | Mobil Oil Corp. | Zeolite modification with boron trifluoride |
JPS6040194A (ja) | 1983-08-15 | 1985-03-02 | モビル オイル コ−ポレ−シヨン | 低級アルコ−ル/エ−テルを炭化水素に変換する改良方法 |
JPH0699328B2 (ja) | 1988-09-29 | 1994-12-07 | ユニオン・カーバイド・コーポレーシヨン | 化学転化方法 |
US5106486A (en) | 1990-02-09 | 1992-04-21 | Ashland Oil, Inc. | Addition of magnetically active moieties for magnetic beneficiation of particulates in fluid bed hydrocarbon processing |
JPH0994460A (ja) | 1995-10-03 | 1997-04-08 | Ube Ind Ltd | 触媒の再生法 |
US6191331B1 (en) * | 1999-07-02 | 2001-02-20 | Uop Llc | Zeolite catalyst precoking method for selective aromatics disproportionation process |
FR2837199B1 (fr) * | 2002-03-15 | 2005-09-16 | Inst Francais Du Petrole | Procede de conversion en plusieurs etapes d'une charge comprenant des olefines a quatre, cinq atomes de carbone ou plus, en vue de produire du propylene |
JP2004345972A (ja) | 2003-05-20 | 2004-12-09 | Asahi Kasei Chemicals Corp | カルボン酸エステルの製造方法 |
JP2005097209A (ja) * | 2003-09-26 | 2005-04-14 | Sumitomo Chemical Co Ltd | プロピレンオキサイドの製造方法 |
US7057083B2 (en) * | 2003-11-12 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Catalyst pretreatment with C4-C7 olefins in an oxygenate to olefins reaction system |
JP4599851B2 (ja) | 2004-02-23 | 2010-12-15 | 三菱化学株式会社 | プロピレンの製造方法 |
CN101279877B (zh) * | 2007-04-04 | 2011-07-20 | 中国石油化工股份有限公司 | 含氧化合物转化过程中提高乙烯、丙烯收率的方法 |
US8502337B2 (en) | 2008-08-05 | 2013-08-06 | Sumitomo Electric Industries, Ltd. | Schottky barrier diode and method for manufacturing Schottky barrier diode |
JP5499918B2 (ja) | 2009-06-05 | 2014-05-21 | 三菱化学株式会社 | 触媒の再生方法 |
JP4877365B2 (ja) | 2009-07-13 | 2012-02-15 | 日立化成工業株式会社 | 回路接続方法 |
CN102470354A (zh) | 2009-08-11 | 2012-05-23 | 三菱化学株式会社 | 催化剂的制造方法 |
CN101695674B (zh) | 2009-11-04 | 2012-04-11 | 兆威兴业有限公司 | 对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法 |
TWI473651B (zh) | 2010-11-25 | 2015-02-21 | Asahi Kasei Chemicals Corp | Silica shaped body, method for producing the same, and production method of propylene using silica molded body |
JP2012120978A (ja) | 2010-12-08 | 2012-06-28 | Tokyo Institute Of Technology | プロピレン製造用触媒およびプロピレンの製造方法 |
JP5711993B2 (ja) | 2011-02-15 | 2015-05-07 | 旭化成ケミカルズ株式会社 | 導電性の流動層反応用触媒及びその製造方法並びにプロピレンの製造方法 |
CN102344329B (zh) * | 2011-08-03 | 2014-10-22 | 上海碧科清洁能源技术有限公司 | 一种由醇和/或醚制烯烃的方法 |
-
2013
- 2013-08-09 BR BR112015002175-1A patent/BR112015002175B1/pt active IP Right Grant
- 2013-08-09 US US14/419,135 patent/US9573862B2/en active Active
- 2013-08-09 RU RU2015103122/05A patent/RU2599749C2/ru active
- 2013-08-09 EP EP13827983.1A patent/EP2883604B1/en active Active
- 2013-08-09 CN CN201380041317.3A patent/CN104519988B/zh active Active
- 2013-08-09 MY MYPI2015700252A patent/MY170027A/en unknown
- 2013-08-09 JP JP2014529576A patent/JP5942132B2/ja active Active
- 2013-08-09 KR KR1020147036649A patent/KR101653900B1/ko active IP Right Grant
- 2013-08-09 WO PCT/JP2013/071684 patent/WO2014025021A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP5942132B2 (ja) | 2016-06-29 |
KR20150022913A (ko) | 2015-03-04 |
JPWO2014025021A1 (ja) | 2016-07-25 |
CN104519988B (zh) | 2017-03-01 |
BR112015002175B1 (pt) | 2021-03-16 |
CN104519988A (zh) | 2015-04-15 |
KR101653900B1 (ko) | 2016-09-02 |
WO2014025021A1 (ja) | 2014-02-13 |
EP2883604A1 (en) | 2015-06-17 |
BR112015002175A2 (pt) | 2017-07-04 |
MY170027A (en) | 2019-06-25 |
EP2883604A4 (en) | 2015-11-04 |
US20150152024A1 (en) | 2015-06-04 |
US9573862B2 (en) | 2017-02-21 |
RU2599749C2 (ru) | 2016-10-10 |
EP2883604B1 (en) | 2020-04-29 |
RU2015103122A (ru) | 2016-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5942132B2 (ja) | オレフィン又はアルコールの転化方法及びプロピレン又は芳香族化合物の製造方法 | |
US9192922B2 (en) | Propylene production process | |
JP5562240B2 (ja) | ゼオライト含有触媒及びその製造方法並びにプロピレンの製造方法 | |
CN101767038B (zh) | 一种甲醇转化制备对二甲苯的催化剂及其制备方法与应用 | |
WO2012036182A1 (ja) | 芳香族炭化水素の製造方法 | |
KR20130100166A (ko) | 실리카 성형체, 그 제조 방법 및 실리카 성형체를 이용한 프로필렌의 제조 방법 | |
WO2012161264A1 (ja) | 単環芳香族炭化水素の製造方法 | |
CN104053504A (zh) | 用于将氧合物转化成芳烃的Ga-和Zn-交换的ZSM-5沸石催化剂的改善性能 | |
JPWO2011013272A1 (ja) | 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法 | |
JP5711993B2 (ja) | 導電性の流動層反応用触媒及びその製造方法並びにプロピレンの製造方法 | |
JP6413823B2 (ja) | ゼオライト成形体 | |
WO2020050092A1 (ja) | キシレンの製造方法 | |
JPH06199707A (ja) | 軽質炭化水素の接触分解方法 | |
JPH06346063A (ja) | 軽質炭化水素の接触変換法 | |
JP6052002B2 (ja) | プロピレン製造用触媒の製造方法及びプロピレンの製造方法 | |
JP2016175038A (ja) | ゼオライト成形体 | |
WO2012091100A1 (ja) | 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法 | |
JP5797545B2 (ja) | 触媒前駆体の熱処理方法、触媒の製造方法、並びにプロピレンの製造方法 | |
TW201313890A (zh) | 製造芳族烴及/或具有4或更少個碳原子的烯烴之方法及製造芳族烴及/或具有4或更少個碳原子的烯烴之裝置 | |
JP5478253B2 (ja) | プロピレンの製造方法 | |
CN102614926A (zh) | 一种微波法直接制备负载固体超强酸催化剂的方法 | |
JP2012140371A (ja) | 単環芳香族炭化水素の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13827983 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014529576 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147036649 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013827983 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14419135 Country of ref document: US Ref document number: IDP00201500648 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015103122 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015002175 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015002175 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150130 |