[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014025068A2 - 強化ガラスの製造方法及び強化ガラス基板 - Google Patents

強化ガラスの製造方法及び強化ガラス基板 Download PDF

Info

Publication number
WO2014025068A2
WO2014025068A2 PCT/JP2013/071942 JP2013071942W WO2014025068A2 WO 2014025068 A2 WO2014025068 A2 WO 2014025068A2 JP 2013071942 W JP2013071942 W JP 2013071942W WO 2014025068 A2 WO2014025068 A2 WO 2014025068A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
tempered glass
ion exchange
producing
tempered
Prior art date
Application number
PCT/JP2013/071942
Other languages
English (en)
French (fr)
Other versions
WO2014025068A3 (ja
Inventor
隆 村田
加藤 嘉成
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201380039673.1A priority Critical patent/CN104487396A/zh
Publication of WO2014025068A2 publication Critical patent/WO2014025068A2/ja
Publication of WO2014025068A3 publication Critical patent/WO2014025068A3/ja
Priority to US14/611,610 priority patent/US20150166405A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the present invention relates to a method for producing tempered glass and a tempered glass substrate, and more particularly to a method for producing tempered glass and a tempered glass substrate suitable for cover glasses such as large TVs, digital signage, touch panel displays, electronic blackboards and solar cells.
  • a glass substrate as a protective member.
  • This glass substrate has (1) high mechanical strength, (2) low density, (3) large size, (4) can be supplied in large quantities at low cost, and (5) foam quality. It must be excellent.
  • a glass substrate subjected to ion exchange treatment (so-called tempered glass substrate) has been used (see Patent Document 1 and Non-Patent Document 1).
  • the tempered glass substrate is subjected to an ion exchange treatment by immersing the tempered glass substrate in KNO 3 molten salt.
  • an ion exchange treatment is performed using a strengthening jig that can arrange the glass substrate in the vertical direction. I was going.
  • the glass substrate and the reinforcing jig are in contact at a plurality of points.
  • the present invention has been made in view of the above circumstances, and a technical problem thereof is to provide an ion exchange processing method that hardly generates warp even when a glass substrate is large.
  • the present inventors have found that the temperature of the ion exchange solution is usually sufficiently lower than the strain point of the glass substrate, but a series of ion exchange processes include a preheating step and a slow cooling step. In these processes, the glass substrate is thermally deformed and causes warping. In particular, the larger the glass substrate becomes (and the thinner it becomes), the more easily the problem becomes obvious and the heat of this glass substrate. It is found that the deformation can be improved by the method of supporting the glass substrate during the ion exchange treatment, and is proposed as the present invention.
  • a compression stress layer is formed on the surface of the glass substrate by performing ion exchange treatment in a state where the glass substrate is inclined.
  • FIG. 1 is a conceptual diagram for explaining the inclination angle of the glass substrate G.
  • the angle ⁇ at which the glass substrate G is inclined with respect to the vertical direction is the inclination angle.
  • the method for manufacturing a tempered glass substrate of the present invention it is preferable to perform the ion exchange treatment in a state where the glass substrate is inclined by supporting the glass substrate by an inclined support portion provided in a support jig.
  • the “inclined support portion” refers to a portion that is inclined at an angle corresponding to the inclination angle of the glass substrate and supports the glass substrate, for example.
  • an inclination support part is comprised with a some member from a viewpoint of supporting a glass substrate stably.
  • FIG. 2 shows a first example of the support jig 2 according to the present invention.
  • the support jig 2 includes a frame portion 3 and a plurality of members (a pair of support frame members in the illustrated example) 4 and 5 constituting an inclined support portion.
  • the frame portion 3 has a rectangular parallelepiped shape in which an upper frame 3a and a lower frame 3b having a substantially rectangular shape are connected by four support columns 3c at four corners.
  • the pair of support frame members 4 and 5 has their upper ends connected to the frame member 3aa on one side of the upper frame 3a and their lower ends connected to the frame member 3bb on the other side of the lower frame 3b.
  • the support surface formed by the frame members 4 and 5 has a certain inclination angle within the frame portion 3.
  • the glass substrate G is supported in the state which the edge part (or edge part of a short side) of a long side protrudes 1 mm or more from the outer end of a pair of support frame materials 4 and 5 outside.
  • the inclined posture is maintained by partly contacting the pair of support frame members 4 and 5.
  • the support jig 2 extends vertically downward from a connecting portion between the pair of support frame members 4 and 5 and the frame member 3aa on one side of the upper frame 3a, and the frame member 3ba on one side of the lower frame 3b.
  • the side reinforcing frame members 3ca and 3cb to be connected, the pair of support frame members 4 and 5, and the frame member 3ba on one side of the lower frame 3b extend in the horizontal direction and extend to the other side of the lower frame 3b.
  • Bottom reinforcement frame members 3da and 3db connected to the material 3bb are provided.
  • FIG. 3 shows a second example of the support jig 2 according to the present invention.
  • the support jig 2 shown in FIG. 3 is more than the support jig 2 shown in FIG. 2 and includes a plurality of support frame members 4 and 5 for connecting a pair of support frame members 4 and 5 arranged in parallel with each other (in the illustrated example).
  • Two) connecting frame members 3ea and 3eb are connected in a direction substantially perpendicular to the pair of support frame members 4 and 5.
  • the glass substrate G is stably held in an inclined posture by being supported also by the connecting frame members 3ea and 3eb.
  • the connecting frame members 17 and 18 exist between the upper side and the lower side of the glass substrate G.
  • FIG. 4 shows a third example of the support jig 2 according to the present invention.
  • the support jig 2 shown in FIG. 4 further includes an inclined frame member 3fa between a pair of support frame members 4 and 5 arranged to be spaced apart from each other in parallel to the support jig 2 shown in FIG. Yes.
  • the inclined frame member 3fa is provided so as to connect the upper portion of one support frame member 4 and the bottom portion of the other support frame member 5.
  • the glass substrate G is also supported by the inclined frame member 3fa, so that the glass substrate G is stably held in the inclined posture.
  • FIG. 5 shows a fourth example of the support jig 2 according to the present invention.
  • the support jig 2 shown in FIG. 5 is vertically upward from the connecting portion between the pair of support frame members 4 and 5 and the frame material 3bb on the other side of the lower frame 3b. It further includes side reinforcing frame members 3ga and 3gb that extend and are connected to the frame member 3ab on the other side of the upper frame 3a.
  • the glass substrate G is restricted from moving obliquely downward by the side reinforcing frame members 3ga and 3gb.
  • FIG. 6 shows a fifth example of the support jig 2 according to the present invention.
  • the support jig 2 shown in FIG. 6 further includes a pair of shift prevention frame members 3ha and 3hb as compared with the support jig 2 shown in FIG.
  • the pair of shift preventing frame members 3ha and 3hb extend obliquely upward from the bottom reinforcing frame members 3da and 3db, and are connected to the side reinforcing frame members 3ga and 3gb, respectively. It is connected to the lower end.
  • the glass substrate G is restricted from moving obliquely downward by the pair of shift prevention frame members 3ha and 3hb.
  • FIG. 7 shows a sixth example of the support jig 2 according to the present invention.
  • the support jig 2 shown in FIG. 7 includes a pair of inclined frame members 3ia and 3ib that are inclined and cross each other between the pair of support frame members 4 and 5.
  • one inclined frame member 3 ia connects the bottom of one support frame member 4 and the upper part of the other support frame member 5, and the other inclined frame member 3 ib is connected to the upper part of one support frame member 4.
  • Each is provided so as to connect to the bottom of the other support frame member 5.
  • the glass substrate G is supported stably by these inclined frame members 3ia and 3ib, so that it is stably held by the inclined posture.
  • the support jig 2 that supports the glass substrate G in an inclined state is immersed in an ion exchange solution, whereby an ion exchange treatment of the glass substrate G is performed.
  • the value of (length dimension of the portion where the inclined support portion is in contact with the glass substrate) / (total length of four sides of the glass substrate) is 0.01. The above is preferable.
  • the portion of the inclined support portion that contacts the glass substrate has a radius of curvature.
  • An arc shape of 0.1 mm or more is preferable.
  • the glass substrate is arranged so that the short side or the long side end of the glass substrate protrudes 1 mm or more outward from the inclined support portion. Is preferred.
  • the inclined support portion provided in the support jig is composed of a plurality of members spaced from each other and a connecting member that connects these members.
  • the connecting members are preferably arranged in a direction substantially perpendicular to the members spaced from each other from the viewpoint of reducing the warpage of the central portion of the glass substrate during the ion exchange process.
  • liquid phase temperature means that glass is crushed, passed through a standard sieve 30 mesh (500 ⁇ m sieve opening), and the glass powder remaining in 50 mesh (300 ⁇ m sieve sieve) is placed in a platinum boat, and the temperature gradient The temperature at which crystals are precipitated after being kept in the furnace for 24 hours.
  • liquidus viscosity refers to the viscosity of the glass at the liquidus temperature. The higher the liquidus viscosity and the lower the liquidus temperature, the better the devitrification resistance and the better the moldability of the glass substrate.
  • the method for producing a tempered glass substrate of the present invention preferably forms molten glass into a plate shape by an overflow down draw method. In this way, a glass substrate that is unpolished and has high surface accuracy can be formed.
  • the surface compressive stress value is 300 MPa or more and the stress depth is 10 ⁇ m or more.
  • the “surface compressive stress value” and “stress depth” are the number of interference fringes observed when a sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). And the value calculated from the interval.
  • the manufacturing method of the tempered glass substrate of this invention does not have the process of grind
  • the tempered glass substrate of the present invention is characterized by being produced by the above-described method for producing a tempered glass substrate.
  • the tempered glass substrate of the present invention is a tempered glass substrate having a compressive stress layer on the surface, the long side dimension is 1000 mm or more, the short side dimension is 500 mm or more, and the amount of warpage is 1% or less. It is characterized by being.
  • amount of warpage refers to a value calculated by the formula of W / D ⁇ 100, where W is the maximum amount of warpage measured with a 3D shape measuring machine, and D is the length of the diagonal line of the glass substrate.
  • a glass substrate having a long side dimension of 1000 mm or more and a short side dimension of 500 mm or more is obtained by melting a glass raw material and forming the molten glass into a plate shape. Then, the glass substrate is preheated at a temperature of (ion exchange temperature +50) ° C. to (ion exchange temperature ⁇ 50) ° C. for 10 minutes to 2 hours, and the preheated glass substrate is subjected to ion exchange treatment. By performing this, a compressive stress layer is formed on the surface of the glass substrate.
  • the method for producing a tempered glass substrate according to the present invention obtains a glass substrate having a long side dimension of 1000 mm or more and a short side dimension of 500 mm or more by melting a glass raw material and forming the molten glass into a plate shape. After that, the glass substrate is subjected to ion exchange treatment to form a compressive stress layer on the surface of the glass substrate, and the resulting tempered glass substrate is heated at a temperature of 100 to 400 ° C. for 30 minutes to 4 minutes. It is characterized by slow cooling for a period of time.
  • a glass raw material is put into a continuous melting furnace, and melted and refined at, for example, 1500 to 1600 ° C., and the molten glass is formed into a plate shape. It is preferable to obtain a glass substrate having a side dimension of 500 mm or more and a plate thickness of 0.6 mm or less, and if necessary, the glass substrate is preferably slowly cooled during molding.
  • the density is preferably 2.55 g / cm 3 or less, preferably 2.52 g / cm 3 or less, preferably 2.5 g / cm 3 or less, preferably 2.46 g / cm It is preferable to prepare the glass raw material so that a glass substrate of 3 or less, preferably 2.44 g / cm 3 or less, particularly preferably 2.42 g / cm 3 or less is obtained.
  • a glass substrate can be reduced in weight, so that a density is low.
  • density refers to a value measured by the well-known Archimedes method.
  • the content of SiO 2 , P 2 O 5 , B 2 O 3 is increased, or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 is included. The amount may be reduced.
  • the glass raw material is used so that a glass substrate having a strain point of preferably 500 ° C. or higher, preferably 520 ° C. or higher, preferably 550 ° C. or higher, particularly preferably 570 ° C. or higher is obtained. It is preferable to blend.
  • the higher the strain point the better the heat resistance, and the high temperature heat treatment makes it difficult for the compressive stress layer to disappear.
  • the higher the strain point the less the stress relaxation occurs during the ion exchange process.
  • the content of alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 may be increased, or the content of alkali metal oxide may be reduced.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1650 ° C. or lower, preferably 1610 ° C. or lower, preferably 1600 ° C. or lower, preferably 1580 ° C. or lower, preferably 1550 ° C. or lower.
  • the glass raw material is preferably prepared so that a glass substrate of 1530 ° C. or lower, preferably 1500 ° C. or lower, particularly preferably 1450 ° C. or lower is obtained.
  • the lower the temperature at 10 2.5 dPa ⁇ s the smaller the load on glass manufacturing equipment such as a melting kiln, and the higher the bubble quality of the glass substrate.
  • the temperature at 10 2.5 dPa ⁇ s corresponds to the melting temperature. Therefore, the lower the temperature at 10 2.5 dPa ⁇ s, the more the glass can be melted at a lower temperature.
  • the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 is increased, or SiO 2 , Al The content of 2 O 3 may be reduced.
  • the liquidus temperature is preferably 1200 ° C. or lower, preferably 1150 ° C. or lower, preferably 1130 ° C. or lower, preferably 1100 ° C. or lower, preferably 1075 ° C. or lower, preferably 1050 ° C. or lower.
  • the glass raw material is prepared so that a glass substrate of 1030 ° C. or lower, preferably 1010 ° C. or lower, preferably 1000 ° C. or lower, preferably 950 ° C. or lower, preferably 900 ° C. or lower, particularly preferably 860 ° C. or lower is obtained. It is preferable to do.
  • the content of Na 2 O, K 2 O, B 2 O 3 is increased, Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 What is necessary is just to reduce content.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, preferably 10 4.6 dPa ⁇ s or more, preferably 10 4.8 dPa ⁇ s or more, preferably 10 5.0 dPa ⁇ s or more, preferably 10 5.3 dPa ⁇ s or more, preferably 10 5.5 dPa ⁇ s or more, preferably 10 5.7 dPa ⁇ s or more, preferably 10 6.0 dPa ⁇ s or more.
  • the glass raw material so that a glass substrate of s or more, particularly preferably 10 6.2 dPa ⁇ s or more is obtained.
  • the liquidus temperature is 1075 ° C. or less, if the liquidus viscosity of 10 4.0 dPa ⁇ s or more, it is possible to mold the glass substrate by an overflow down draw method.
  • the content of Na 2 O, K 2 O is increased, or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is decreased. That's fine.
  • the thermal expansion coefficient in the temperature range of 30 to 380 ° C. is preferably 70 to 110 ⁇ 10 ⁇ 7 / ° C., preferably 75 to 100 ⁇ 10 ⁇ 7 / ° C., preferably 80 It is preferable to prepare the glass raw material so that a glass substrate of from 100 to 10 ⁇ 10 ⁇ 7 / ° C., particularly preferably from 85 to 96 ⁇ 10 ⁇ 7 / ° C. can be obtained.
  • the thermal expansion coefficient is easily matched with a member such as a metal or an organic adhesive, and peeling of the member such as a metal or an organic adhesive can be prevented.
  • the thermal expansion coefficient in the temperature range of 30 to 380 ° C.” refers to an average value measured with a dilatometer.
  • the content of alkali metal oxides and alkaline earth metal oxides may be increased.
  • alkali metal oxides and alkaline earth metal oxides may be increased. What is necessary is just to reduce content.
  • a glass raw material is obtained so that a glass substrate having a Young's modulus of preferably 65 GPa or more, preferably 69 GPa or more, preferably 71 GPa or more, preferably 75 GPa or more, particularly preferably 77 GPa or more. Is preferably prepared.
  • the higher the Young's modulus the more difficult it is for the tempered glass substrate to bend.Therefore, when applying an electronic blackboard or the like, even if it is strongly pressed with a pen, finger, etc., the amount of deformation is reduced, and as a result, the tempered glass substrate is on the back side. It becomes easy to prevent a situation in which a display defect occurs due to contact with the liquid crystal element positioned.
  • SiO 2 is a component that forms a network of glass.
  • the content of SiO 2 is preferably 40 to 80%, 45 to 80%, 55 to 75%, 60 to 75%, particularly 60 to 70%. If the content of SiO 2 is too large, the meltability and moldability are likely to be lowered, and the thermal expansion coefficient is too low, so that it is difficult to match the thermal expansion coefficient with the surrounding materials. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify. Moreover, the thermal expansion coefficient becomes too high, and the thermal shock resistance of the tempered glass substrate tends to be lowered.
  • Al 2 O 3 is a component that enhances ion exchange performance. It is also a component that increases the strain point and Young's modulus.
  • the content of Al 2 O 3 is preferably 5 to 15%. When the content of Al 2 O 3 is too large, devitrification crystal glass becomes easy to precipitate, it is difficult to forming by an overflow down draw method and the like. In addition, the thermal expansion coefficient becomes too low, and it becomes difficult to match the thermal expansion coefficient with the surrounding material, and the high-temperature viscosity becomes high, so that the meltability is easily lowered. On the other hand, when the content of Al 2 O 3 is too small, resulting is a possibility which can not be sufficiently exhibited ion exchange performance.
  • the lower limit range of Al 2 O 3 is preferably 6% or more, preferably 7% or more, preferably 8% or more, preferably 9% or more, particularly preferably 10% or more, and the upper limit range is preferably 14% or less. Preferably it is 13% or less, Preferably it is 12% or less, Preferably it is 11.5% or less.
  • B 2 O 3 is a component that lowers the high temperature viscosity and density and increases the ion exchange performance, particularly the compressive stress value. Furthermore, it has the effect of stabilizing the glass, making it difficult to precipitate crystals, and lowering the liquidus temperature.
  • the content of B 2 O 3 is preferably 0 to 8%, preferably 0 to 5%, preferably 0 to 3%, preferably 0 to 2%, particularly preferably 0 to 1%.
  • Li 2 O is an ion exchange component and a component that lowers the high-temperature viscosity and improves the meltability and moldability.
  • Li 2 O is a component that increases the Young's modulus.
  • Li 2 O has a high effect of increasing the compressive stress value among alkali metal oxides.
  • the thermal expansion coefficient becomes too high, and the thermal shock resistance of the tempered glass substrate is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials.
  • the low-temperature viscosity is excessively lowered, and stress relaxation is likely to occur. On the contrary, the compressive stress value may be reduced.
  • the content of Li 2 O is preferably 0 to 10%, preferably 0 to 5%, preferably 0 to 1%, preferably 0 to 0.5%, preferably 0 to 0.1%. Most preferably, it is not contained, that is, it is suppressed to less than 0.01%.
  • Na 2 O is an ion exchange component and a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O is also a component that improves devitrification resistance.
  • the content of Na 2 O is preferably 5 to 20%, preferably 8 to 20%, preferably 8.5 to 20%, preferably 10 to 18%, preferably 10 to 16%, preferably 11 to 16%. %, Preferably 12 to 16%, particularly preferably 13 to 16%.
  • the thermal expansion coefficient becomes too high, the thermal shock resistance may decrease the tempered glass substrate, the peripheral material and the coefficient of thermal expansion is hardly consistent.
  • K 2 O has an effect of promoting ion exchange, and has a high effect of increasing the stress depth among alkali metal oxides. Moreover, there exists an effect which reduces a high temperature viscosity and improves a meltability and a moldability. Furthermore, K 2 O is also a component that improves devitrification resistance. However, when the content of K 2 O is too large, the thermal expansion coefficient becomes high, the thermal shock resistance may decrease the tempered glass substrate, the peripheral material and the coefficient of thermal expansion is hardly consistent. Furthermore, there is a tendency that the strain point is excessively lowered, the balance of the glass composition is lacking, and the devitrification resistance is lowered.
  • the upper limit range of the content of K 2 O is preferably 20% or less, preferably 10% or less, preferably 8% or less, preferably 6% or less, preferably 5% or less, particularly preferably 4% or less.
  • the lower limit range is preferably 0.1% or more, preferably 0.5% or more, preferably 1% or more, preferably 2% or more, particularly preferably 2.5% or more. .
  • the content of the alkali metal oxide R 2 O (R is one or more selected from Li, Na, and K) is too large, the glass tends to be devitrified, and the thermal expansion coefficient becomes too high. Further, the thermal shock resistance of the tempered glass substrate is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding material. In addition, the strain point is excessively lowered, making it difficult to ensure a high compressive stress value. Furthermore, the viscosity near the liquidus temperature may decrease, making it difficult to ensure a high liquidus viscosity. On the other hand, when the content of R 2 O is too small, the ion exchange performance and meltability is liable to decrease. Therefore, the content of R 2 O is preferably 10 to 25%, preferably 13 to 22%, preferably 15 to 20%, particularly preferably 16.5 to 20%.
  • the molar ratio K 2 O / Na 2 O is preferably 0.1 to 0.8, preferably 0.2 to 0.8, preferably 0.2 to 0.5, particularly preferably 0.2 to 0. 4.
  • the stress depth tends to decrease.
  • the resulting compressive stress value decreases or the glass composition is not balanced, and the glass is easily devitrified. Become.
  • MgO is a component that lowers the viscosity at high temperature to increase meltability and formability, and increases the strain point and Young's modulus.
  • MgO is highly effective in increasing ion exchange performance.
  • the content of MgO is preferably 0 to 10%, preferably 0 to 6%, particularly preferably 0 to 4%.
  • the total amount of Al 2 O 3 and MgO is preferably 8 to 16.5%.
  • the total amount of Al 2 O 3 and MgO decreases, the ion exchange performance tends to decrease.
  • the total amount of Al 2 O 3 and MgO increases, the devitrification resistance and the moldability tend to be lowered. Therefore, the total amount of Al 2 O 3 and MgO is preferably 8 to 16%, particularly preferably 8 to 14%.
  • the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is preferably 1 to 3 , 1.4 to 3 , 1.5 to 2.5, particularly preferably 1.8 to 2.5. .
  • the molar ratio Na 2 O / Al 2 O 3 is preferably 1 to 3, preferably 1.2 to 3, particularly preferably 1.2 to 2.5.
  • the molar ratio MgO / Al 2 O 3 is preferably 0 to 1, 0 to 0.7, particularly preferably 0 to 0.5. If it does in this way, devitrification resistance can be improved effectively.
  • CaO is a component that lowers the viscosity at high temperature to increase meltability and formability, and increases the strain point and Young's modulus.
  • CaO is highly effective in improving ion exchange performance.
  • the CaO content is preferably 0 to 6%, preferably 0 to 5%, preferably 0 to 4%, particularly preferably 0 to 2%.
  • the content of CaO increases, the density and thermal expansion coefficient increase, the glass tends to devitrify, and the ion exchange performance tends to decrease.
  • the total amount of MgO and CaO is preferably 0 to 7%, preferably 0 to 6%, preferably 0 to 5%, preferably 0 to 4%, particularly preferably 0 to 3%.
  • the total amount of MgO and CaO is increased, the ion exchange performance is improved, but the devitrification resistance is deteriorated, and the density and the thermal expansion coefficient are too high.
  • SrO and BaO are components that lower the high-temperature viscosity, increase the meltability and moldability, and increase the strain point and Young's modulus.
  • the content of SrO is preferably 0 to 6%, preferably 0 to 3%, preferably 0 to 1.5%, preferably 0 to 1%, preferably 0 to 0.5%, particularly preferably 0 to 0.2%.
  • the content of BaO is preferably 0 to 3%, preferably 0 to 1.5%, preferably 0 to 1%, preferably 0 to 0.5%, particularly preferably 0 to 0.2%.
  • the total amount of SrO and BaO is preferably 0-6%, preferably 0-3%, preferably 0-2.5%, preferably 0-2%, preferably 0-1%, particularly preferably 0- 0.2%. If it does in this way, ion exchange performance can be improved effectively.
  • the content of the alkaline earth metal oxide R′O (R ′ is one or more selected from Mg, Ca, Sr, Ba) increases, the density and thermal expansion coefficient increase and the devitrification resistance decreases. In addition to being easy to do, ion exchange performance tends to be lowered. Therefore, the content of R′O is preferably 0 to 10%, preferably 0 to 8%, preferably 0 to 7%, preferably 0 to 6%, particularly preferably 0 to 4%.
  • ZnO is a component that enhances the ion exchange performance, and is particularly effective in increasing the compressive stress value. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity. However, when the content of ZnO increases, the glass tends to undergo phase separation, devitrification decreases, the density increases, and the stress depth tends to decrease. Therefore, the content of ZnO is preferably 0 to 6%, preferably 0 to 5%, preferably 0 to 3%, particularly preferably 0 to 1%.
  • the mass ratio R′O / R 2 O is preferably 0.5 or less, preferably 0.3 or less, and particularly preferably 0.2 or less.
  • TiO 2 is a component that enhances ion exchange performance. Moreover, although there exists an effect which reduces a high temperature viscosity, when there is too much the content, glass will color or it will become easy to devitrify. Therefore, the content of TiO 2 is preferably 0 to 3%, preferably 0 to 1%, preferably 0 to 0.8%, preferably 0 to 0.5%, particularly preferably 0 to 0.1%. It is.
  • ZrO 2 has the effect of remarkably increasing the ion exchange performance and increasing the viscosity and strain point in the vicinity of the liquid phase viscosity, but if its content is too large, the devitrification resistance may be significantly reduced. Therefore, the content of ZrO 2 is preferably 0 to 10%, preferably 0 to 5%, preferably 0 to 3%, preferably 0.001 to 3%, preferably 0.1 to 3%, preferably It is 1 to 3%, particularly preferably 1.5 to 3%.
  • Reagents may be used as the TiO 2 source and the ZrO 2 source, or they may be contained from impurities contained in the glass raw material or the like.
  • SnO 2 is a component that enhances the ion exchange performance. However, when the content of SnO 2 increases, devitrification due to SnO 2 occurs or glass tends to be colored. Therefore, the SnO 2 content is preferably 0.01 to 6%, preferably 0.01 to 3%, and particularly preferably 0.1 to 1%.
  • P 2 O 5 is a component that enhances ion exchange performance, and in particular, a component that increases the stress depth. However, when the content of P 2 O 5 is increased, the glass is phase-separated and the water resistance is liable to be lowered.
  • the content of P 2 O 5 is preferably 0 to 10%, preferably 0 to 3%, preferably 0 to 1%, particularly preferably 0 to 0.5%.
  • one or two or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , F, Cl, and SO 3 may be added in an amount of 0 to 3%.
  • SO 3 + Cl is the total amount of SO 3 and Cl.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Young's modulus.
  • the cost of the glass raw material itself is high, and if it is contained in a large amount, the devitrification resistance tends to decrease. Therefore, the rare earth oxide content is preferably 0 to 3%, preferably 0 to 2%, preferably 0 to 1%, preferably 0 to 0.5%, particularly preferably 0 to 0.1%. is there.
  • Transition metal oxides such as CoO 3 and NiO are components that strongly color the glass and lower the transmittance of the glass substrate.
  • the content of the transition metal oxide is preferably 0 to 0.5%, preferably 0 to 0.1%, particularly preferably 0 to 0.05%.
  • substantially no As 2 O 3 , PbO, or F is contained. In view of environmental considerations, it is also preferable that substantially no PbO or Bi 2 O 3 is contained.
  • substantially does not contain means that the impurity level is allowed to be mixed. Specifically, the content is less than 0.1%.
  • Favorable glass composition ranges can be obtained by appropriately selecting a suitable content range of each component.
  • examples of more suitable glass composition ranges are as follows.
  • Na 2 O / Al 2 O 3 is 1.2 to 3
  • MgO / Al 2 O 3 is 0 to 1
  • K 2 O / Na 2 O is 0.2 to 0.5, substantially As A glass composition not containing 2 O 3 , PbO, F, BaO.
  • An overflow down draw method is preferable as a method for forming molten glass into a plate shape.
  • the reason for this is that, in the case of the overflow down draw method, the surface to be the surface of the glass substrate does not come into contact with the bowl-like refractory, and is molded in a free surface state. This is because it can be molded.
  • the overflow down draw method is to melt the molten glass from both sides of the heat-resistant bowl-like structure and draw the overflowed molten glass downward while joining at the lower end of the bowl-like structure. This is a method for producing a glass substrate.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as the dimensions and surface accuracy of the glass substrate can be set to a desired state and the quality usable for the glass substrate can be realized.
  • the method of applying force with respect to a glass substrate is not limited, either.
  • a method may be employed in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass substrate, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass substrate. You may employ
  • a method of forming molten glass into a plate shape various methods can be employed in addition to the overflow downdraw method.
  • a downdraw method slot down method, redraw method, etc.
  • a float method a float method
  • a rollout method a press method, etc.
  • the plate thickness is preferably 0.6 mm or less, preferably 0.55 mm or less, preferably 0.5 mm or less, preferably 0.4 mm or less, particularly preferably 0.3 mm or less.
  • a glass substrate is formed so that As the plate thickness of the glass substrate is smaller, the glass substrate can be reduced in weight.
  • thickness reduction of a glass substrate can be achieved easily.
  • the glass substrate is molded so that the long side dimension is 1000 mm or more (preferably 1200 mm or more, preferably 1500 mm or more, preferably 1800 mm or more, particularly preferably 2000 mm or more).
  • the long side dimension of the glass substrate is larger, it is suitable for a cover glass of a large TV, digital signage, touch panel display, electronic blackboard, solar cell or the like.
  • the effect of this invention becomes large relatively, so that the long side dimension of a glass substrate is large.
  • the glass substrate is formed so that the short side dimension is 500 mm or more (preferably 800 mm or more, preferably 1000 mm or more, preferably 1200 mm or more, particularly preferably 1500 mm or more).
  • the short side dimension of the glass substrate is larger, it is suitable for a cover glass of a large TV, digital signage, touch panel display, electronic blackboard, solar cell or the like.
  • the effect of this invention becomes relatively large, so that the short side dimension of a glass substrate is large.
  • the method for producing a tempered glass substrate of the present invention preferably does not include a step of polishing the surface (particularly the effective surface) of the glass substrate.
  • the average surface roughness (Ra) of the unpolished surface is preferably 10 mm or less, preferably 5 mm or less, and particularly preferably 2 mm or less.
  • the average surface roughness (Ra) of the surface may be measured by a method based on SEMI D7-97 “Measurement method of surface roughness of FPD glass substrate”.
  • the theoretical strength of glass is inherently very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass substrate in a post-molding process such as a polishing process.
  • a glass substrate may be formed by an overflow down draw method.
  • the method for producing a tempered glass substrate of the present invention is characterized in that an ion exchange treatment is performed in a state where the glass substrate is inclined to form a compressive stress layer on the surface of the glass substrate.
  • the inclination angle is preferably 0.1 ° or more, preferably 0.3 ° or more, preferably 0.5 ° or more, preferably 1 ° or more, preferably 1.3 ° or more, preferably 1.6 °.
  • the angle is preferably 2 ° or more, particularly preferably 3 ° or more.
  • the inclination angle is preferably 30 ° or less, preferably 25 ° or less, preferably 20 ° or less, preferably 15 ° or less, and particularly preferably 12 ° or less.
  • the method for producing a tempered glass substrate of the present invention it is preferable to perform ion exchange treatment in a state where the glass substrate is inclined using a support jig having an inclined support portion.
  • the inclined support portion of the support jig makes it easy to incline the glass substrate and keeps the inclined posture of the glass substrate.
  • the value of (the length dimension of the portion where the inclined support portion is in contact with the glass substrate) / (the total length dimension of the four sides of the glass substrate) is preferably 0.01 or more. , Preferably 0.1 or more, preferably 0.3 or more, preferably 0.5 or more, preferably 0.7 or more, preferably 0.9 or more, preferably 0.95 or more, particularly preferably 1 or more. . If it does in this way, in an ion exchange process, it will become difficult to deform
  • the value of (the length dimension of the portion where the inclined support portion is in contact with the glass substrate) / (the sum of the length dimensions of the four sides of the glass substrate) is preferably 10 or less, preferably 8 or less, preferably 6 or less, preferably 5 or less, preferably 4 or less, particularly preferably 3 or less.
  • the portion of the support jig that contacts the glass substrate of the inclined support portion has an arc shape.
  • the radius of curvature of the arc shape is preferably 0.1 mm or more, preferably 0.2 mm or more, preferably 0.5 mm or more, preferably 1 mm or more, preferably 2 mm or more, preferably 5 mm or more, particularly preferably 10 mm or more.
  • the shape of the member which comprises an inclination support part has a preferable column shape. If it does in this way, it will become easy to reduce a contact area with a glass substrate, and it will become difficult to damage a glass substrate in the case of ion exchange processing.
  • the end of the short side or the long side of the glass substrate is 1 mm or more (preferably 2 mm or more, preferably 5 mm) from the inclined support part of the support jig.
  • the glass substrate is preferably disposed so as to protrude outward (particularly preferably 10 mm or more).
  • the protrusion dimension of the short side or long side end of the glass substrate is less than 1 mm from the inclined support portion of the support jig, the shortness of the glass substrate is set when the glass substrate is placed on the support jig. The edge part of the side or the long side and the inclined support part come into contact with each other, and the glass substrate is likely to be cracked.
  • any side of the glass substrate (preferably the long side of the glass substrate) is substantially the same as the inclined support portion in the ion exchange process.
  • the glass substrate is placed on the support jig so as to be parallel, and the end portion of the substantially parallel side is 0 to 0.5 / L (preferably 0.01 / L or more, preferably from the inclined support portion) Is 0.02 / L or more, preferably 0.03 / L or more, preferably 0.05 / L or more, preferably 0.1 / L or more).
  • the separation dimension of the substantially parallel side from the inclined support portion is preferably 0.4 / L or less, preferably 0.35 / L or less, preferably 0.3 / L or less, particularly preferably 0.8. 2 / L or less.
  • the inclined support portion provided on the support jig is composed of a plurality of members spaced apart from each other and a connecting member that connects these members. Moreover, it is preferable to arrange
  • any side of the glass substrate (preferably the short side of the glass substrate) is substantially parallel to the connecting member during the ion exchange process.
  • the glass substrate is placed on the support jig so that the end of the substantially parallel side is 0 to 0.5 / l (preferably 0.01 / l or more, preferably 0 or less) from the connecting member. 0.02 / l or more, preferably 0.03 / l or more, preferably 0.05 / l or more, preferably 0.1 / l or more).
  • the separation dimension from the connecting member of the substantially parallel side is preferably 0.4 / l or less, preferably 0.35 / l or less, preferably 0.3 / l or less, particularly preferably 0.2. / L or less.
  • the surface compressive stress value is 300 MPa or more, preferably 400 MPa or more, preferably 500 MPa or more, preferably 600 MPa or more, preferably 700 MPa or more, particularly preferably 800 MPa or more. It is preferable to perform an ion exchange treatment. As the compressive stress value increases, the mechanical strength of the tempered glass substrate increases. On the other hand, if the compressive stress value becomes extremely large, microcracks are likely to be generated on the surface, and the internal tensile stress value becomes unduly large, which may in turn reduce the mechanical strength of the tempered glass substrate.
  • the compressive stress value is 1200 MPa or less, preferably 1100 MPa or less, particularly preferably 1000 MPa or less.
  • the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO may be increased, or the content of SrO, BaO may be reduced.
  • what is necessary is just to shorten the time immersed in an ion exchange solution, or to lower the temperature of an ion exchange solution.
  • the ion exchange treatment is performed so that the stress depth is 10 ⁇ m or more, preferably 15 ⁇ m or more, preferably 20 ⁇ m or more, preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more. preferable.
  • the stress depth increases, the tempered glass substrate is less likely to break even if the tempered glass substrate is deeply damaged. Further, the variation in mechanical strength is reduced. On the other hand, it becomes difficult to cut the tempered glass substrate.
  • the ion exchange treatment is preferably performed so that the stress depth is 120 ⁇ m or less, preferably 80 ⁇ m or less, preferably 70 ⁇ m or less, preferably 60 ⁇ m or less, and particularly preferably 55 ⁇ m or less.
  • the content of K 2 O or P 2 O 5 may be increased, or the content of SrO or BaO may be reduced.
  • what is necessary is just to lengthen the time immersed in an ion exchange solution, or to raise the temperature of an ion exchange solution.
  • the glass substrate having a residual stress difference between opposing surfaces it is preferable to subject the glass substrate having a residual stress difference between opposing surfaces to 10 MPa or less, preferably 5 MPa or less, preferably 3 MPa or less, particularly preferably 1 MPa or less, by ion exchange treatment.
  • the amount of warpage of the tempered glass substrate increases.
  • the glass substrate may be directly immersed in the ion exchange solution from room temperature, but in order to reduce the amount of warpage of the tempered glass substrate, It is preferable to provide a heating step.
  • the preheating temperature is preferably (ion exchange temperature + 50) ° C. or less, preferably (ion exchange temperature + 40) ° C. or less, preferably (ion exchange temperature + 30) ° C. or less, preferably (ion exchange temperature + 20) ° C. or less, particularly Preferably, it is (ion exchange temperature +10) ° C. or lower.
  • the preheating temperature is preferably (ion exchange temperature ⁇ 50) ° C. or higher, preferably (ion exchange temperature ⁇ 40) or higher, preferably (ion exchange temperature ⁇ 30) ° C. or higher, preferably (ion exchange temperature ⁇ 20). ) C. or higher, particularly preferably (ion exchange temperature ⁇ 10) C. or higher.
  • the preheating time is preferably 10 minutes or more, preferably 20 minutes or more, particularly preferably 30 minutes or more. If the preheating time is too short, it is difficult to ensure the in-plane thermal uniformity of the glass substrate, and as a result, in-plane variation of the tempering characteristics occurs, and the tempered glass substrate tends to be warped. On the other hand, if the preheating time is too long, the preheating step becomes too long, and the production efficiency of the tempered glass substrate tends to be lowered. Therefore, the preheating time is preferably 2 hours or less, preferably 1.5 hours or less, particularly preferably 1 hour or less.
  • the rate of temperature rise is preferably 50 ° C./hour or more, preferably 100 ° C./hour or more, preferably 150 ° C./hour or more, particularly preferably 200 ° C./hour or more.
  • the rate of temperature rise is preferably 500 ° C./hour or less, preferably 450 ° C./hour or less, particularly preferably 400 ° C./hour or less.
  • it is preferable to perform a preheating process in the state which inclined the glass substrate using the said support jig you may perform it in the state which has arrange
  • the minimum temperature of the ion exchange solution is preferably (strain point ⁇ 100) ° C. or less, preferably (strain point ⁇ 120) ° C. or less, preferably (strain point ⁇ 140) ° C. or less, particularly preferably (strain point ⁇ 150).
  • the upper limit temperature is preferably (strain point ⁇ 250) ° C. or higher, preferably (strain point ⁇ 220) ° C. or higher, particularly preferably (strain point ⁇ 200) ° C. or higher.
  • the time of immersion in the ion exchange solution is preferably 2 to 10 hours, particularly preferably 4 to 8 hours.
  • the conditions for the ion exchange treatment may be selected in consideration of the viscosity characteristics of the glass substrate, application, plate thickness, internal tensile stress, and the like.
  • a compressive stress layer can be efficiently formed on the surface of the glass substrate.
  • the lower limit of the temperature lowering rate is preferably 30 ° C./min or more, preferably 50 ° C./min or more, preferably 100 ° C./min or more, preferably 150 ° C./min or more, particularly preferably 200 ° C./min or more,
  • the upper limit of the temperature lowering rate is preferably 500 ° C./min or less, preferably 440 ° C./min or less, particularly preferably 400 ° C./min or less.
  • the tempered glass substrate may be damaged.
  • the tempered glass substrate is thermally deformed due to temperature variations in the surface of the tempered glass substrate, and the influence may cause the thermal deformation to be fixed as warpage.
  • the temperature lowering rate is too slow, the slow cooling process becomes too long, and the production efficiency of the tempered glass substrate tends to be lowered.
  • the slow cooling temperature is preferably 100 ° C. or higher, preferably 150 ° C. or higher, preferably 200 ° C. or higher, particularly preferably 250 ° C. or higher.
  • the annealing temperature is preferably 400 ° C. or lower, preferably 350 ° C. or lower, particularly preferably 300 ° C. or lower.
  • the lower limit of the slow cooling time is preferably 30 minutes or more, particularly preferably 1 hour or more, and the upper limit is preferably 5 hours or less, particularly preferably 4 hours or less.
  • the slow cooling time is too short, it becomes difficult to ensure in-plane heat uniformity of the tempered glass substrate, and the amount of warpage of the tempered glass substrate tends to increase.
  • the slow cooling time is too long, the slow cooling process becomes too long, and the production efficiency of the tempered glass substrate tends to decrease.
  • the tempered glass substrate may be taken out in a room temperature environment and rapidly cooled.
  • the temperature lowering rate after the slow cooling step is preferably 400 ° C./hour or less, preferably 300 ° C./hour or less, preferably 200 ° C./hour or less, preferably 100 ° C./hour or less, preferably 80 ° C./hour or less. Particularly preferably, it is 50 ° C./hour or less.
  • the rate of temperature decrease after the slow cooling step is too slow, the slow cooling step becomes too long, and the production efficiency of the tempered glass substrate tends to decrease.
  • FIG. 8 is a graph showing an example of a temperature profile from the preheating step to the slow cooling step in the method for producing a tempered glass substrate of the present invention.
  • Steps A and B shown in FIG. 8 show a preheating step.
  • Step A shows a state where the temperature is raised from room temperature to the preheating temperature
  • Step B shows a state where the preheating temperature is maintained for a predetermined time.
  • Step C shows the ion exchange temperature and ion exchange time.
  • Steps D and E indicate a slow cooling step.
  • Step D shows a state where the temperature is lowered to the slow cooling temperature
  • Step E shows a state where the temperature is kept at the slow cooling temperature for a predetermined time.
  • Step F shows a state where the temperature is lowered to room temperature after the slow cooling step.
  • cutting to a predetermined size may be performed before the ion exchange treatment, but it is preferable to carry out after the ion exchange treatment because the production cost can be reduced.
  • the tempered glass substrate of the present invention is produced by the method for producing a tempered glass substrate described above. Further, the tempered glass substrate of the present invention is a tempered glass substrate having a compressive stress layer on the surface, the long side dimension is 1000 mm or more, the short side dimension is 500 mm or more, and the warpage amount is 1% or less. It is characterized by.
  • the technical characteristics (preferable structure, effect, etc.) of the tempered glass substrate of the present invention partially overlap with the technical characteristics of the method for manufacturing the tempered glass substrate of the present invention. Therefore, the description of the overlapping part is omitted.
  • the warpage amount is preferably 1% or less, preferably 0.8% or less, preferably 0.5% or less, preferably 0.3% or less, preferably 0.2% or less, Preferably it is 0.1% or less, preferably 0.05% or less, particularly preferably 0.03% or less.
  • the amount of warpage increases, air entrainment occurs when the tempered glass substrate is attached to the display, or the tempered glass substrate is easily peeled off after being attached.
  • Tables 1 to 3 show the glass composition and characteristics of the tempered glass substrate according to the present invention.
  • the display of “not yet” in the table means not measured.
  • Each sample in the table was prepared as follows. First, the glass raw material was prepared so that it might become the glass composition in a table
  • the density is a value measured by a well-known Archimedes method.
  • strain point Ps and the annealing point Ta are values measured based on the method of ASTM C336.
  • the softening point Ts is a value measured based on the method of ASTM C338.
  • the temperatures at 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, and 10 2.5 dPa ⁇ s are values measured by a platinum ball pulling method.
  • the thermal expansion coefficient ⁇ is a value obtained by measuring an average value in a temperature range of 30 to 380 ° C. with a dilatometer.
  • the liquid phase temperature is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), putting the glass powder remaining at 50 mesh (a sieve opening of 300 ⁇ m) in a platinum boat, and keeping it in a temperature gradient furnace for 24 hours. Then, the temperature at which the crystal is deposited is measured.
  • the liquid phase viscosity log ⁇ TL (dPa ⁇ s) is a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method.
  • the Young's modulus and rigidity are values measured by the resonance method.
  • sample No. 1 to 12 have a density of 2.54 g / cm 3 or less, a thermal expansion coefficient of 88 to 100 ⁇ 10 ⁇ 7 / ° C., a liquid phase viscosity of 10 4.6 dPa ⁇ s or more, and a liquid phase viscosity of 10 2.5.
  • the temperature at dPa ⁇ s was 1650 ° C. or lower, which was suitable as a material for the tempered glass substrate.
  • the refractive index of each sample was 1.53, and the optical elastic constant was 28 [(nm / cm) / MPa].
  • the glass composition is not substantially different when viewed as a whole.
  • sample No. 1 to 12 had a compressive stress value of 324 MPa or more and a stress depth of 15 ⁇ m or more.
  • the glass substrate was formed by casting, and then optical polishing was performed before the ion exchange treatment.
  • Sample No. in [Example 1] 10 was used to investigate the influence of the tilt angle of the glass substrate, the position of the tilt support portion, and the position of the connecting member on the warp amount of the tempered glass substrate.
  • FIG. 9 is an explanatory diagram for explaining the experiment of [Example 2], and is a conceptual diagram of the glass substrate G viewed from above. As shown in FIG. 9, the long side dimension of the glass substrate G was L, and the short side dimension of the glass substrate was l. And the space
  • FIG. 10 As is apparent from Table 4 and FIG. 10, it can be seen that if the ion exchange treatment is performed with the glass substrate tilted, the amount of warpage can be reduced within a certain range even if the glass substrate is large and thin. .
  • the six figures shown in FIG. 10 will be described. Below these figures, indicators colored in eight steps from the left side to the right side in the order of dark blue, blue, green, yellow, and red. They are arranged in a straight line in the horizontal direction. Below this straight line of indicators, numerical values of 0, 4, 8, 12, 16, 20, 24, 28, and 32 are written at equal intervals from the left side to the right side (described later). The same applies to FIGS. 11 and 12). These numerical values show values of tensile stress (MPa). When the six figures of FIG.
  • the long side dimension of the glass substrate G is L
  • the short side dimension of the glass substrate G is l.
  • interval of the edge part of the short side of the glass substrate G and a pair of support frame material 4 and 5 of an inclination support part is set to A
  • the edge part of the long side of the glass substrate G, and connection frame material 3ea, 3eb, was set to B.
  • interval A of the edge part (left side edge part in drawing) of the glass substrate G and the support frame material 4 of the one side of an inclination support part, and the edge part (in drawing) the glass substrate G The distance A between the support frame member 5 on the other side of the inclined support portion and the support frame member 5 on the other side of the inclined support portion is the same, and the long side end portion (upper end portion in the drawing) of the glass substrate G and the upper connection frame member 3ea
  • the interval B and the interval B between the long side end portion (lower end portion in the drawing) of the glass substrate G and the lower connecting frame member 3eb are the same.
  • the simulation results are shown in Table 4 and FIG.
  • interval A of the edge part (left side edge part in drawing) of the glass substrate G and the support frame material 4 of the one side of an inclination support part, and the edge part (in drawing) the glass substrate G The distance A between the support frame member 5 on the other side of the inclined support portion and the support frame member 5 on the other side of the inclined support portion is the same, and the long side end portion (upper end portion in the drawing) of the glass substrate G and the upper connection frame member 3ea
  • the interval B and the interval B between the long side end portion (lower end portion in the drawing) of the glass substrate G and the lower connecting frame member 3eb are the same.
  • the simulation results are shown in Table 4 and FIG.
  • the method for producing a tempered glass substrate of the present invention is suitable as a method for producing a cover glass for a large TV, digital signage, touch panel display, electronic blackboard, solar cell, or the like.
  • the method for producing a tempered glass substrate of the present invention is used for applications requiring high mechanical strength, such as window glass, magnetic disk substrates, flat panel display substrates, and solar cell cover glasses.
  • Application to a method for producing a cover glass for a solid-state imaging device is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の強化ガラス基板の製造方法は、ガラス原料を溶融し、板状に成形して、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、ガラス基板を傾斜させた状態でイオン交換処理を行い、ガラス基板の表面に圧縮応力層を形成することを特徴とする。

Description

強化ガラスの製造方法及び強化ガラス基板
 本発明は、強化ガラスの製造方法及び強化ガラス基板に関し、特に、大型のTV、デジタルサイネージ、タッチパネルディスプレイ、電子黒板、太陽電池等のカバーガラスに好適な強化ガラスの製造方法及び強化ガラス基板に関する。
 電子黒板等のユーザーインターフェースを備えたデバイスは、益々普及する傾向にある。
 これらの用途では、ディスプレイの上で様々な操作が行われるが、その際に、ディスプレイが破損する場合がある。この問題を解決する一つの方法は、保護部材としてガラス基板を用いる方法である。このガラス基板には、(1)高い機械的強度を有すること、(2)低密度であること、(3)大型であること、(4)安価で多量に供給できること、(5)泡品位に優れること等が求められる。特に、(1)の要件を満たすため、従来から、イオン交換処理したガラス基板(所謂、強化ガラス基板)が用いられている(特許文献1、非特許文献1参照)。
 強化ガラス基板は、強化用のガラス基板をKNO溶融塩中に浸漬することにより、イオン交換処理されている。従来まで、ガラス基板の表面全体にKNO溶融塩を接触させると共に、一度に大量の強化ガラス基板を得るために、ガラス基板を鉛直方向に配置し得る強化用冶具を用いて、イオン交換処理を行っていた。この場合、ガラス基板と強化用冶具とは、複数の点で接触している。
特開2006−83045号公報
泉谷徹朗等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451−498
 携帯電話等のように、小型の強化ガラス基板を用いる場合、上記の方法により、適正にイオン交換処理を行うことが可能である。しかし、従来の方法で、大型の強化ガラス基板をイオン交換処理すると、強化ガラス基板に大きな反りが発生してしまう。強化ガラス基板の反り量が大きいと、ディスプレイとの張り合わせの際に、空気を巻き込んだり、接着不良が起こったり、デバイスの生産性が低下するという問題が発生し易くなる。
 そこで、本発明は、上記事情に鑑み成されたものであり、その技術的課題は、ガラス基板が大型であっても、反りを発生させ難いイオン交換処理の方法を提供することである。
 本発明者等は、種々の検討を行った結果、イオン交換溶液の温度は、通常、ガラス基板の歪点より十分に低いが、一連のイオン交換処理には、予備加熱工程や徐冷工程も存在し、これらの工程でガラス基板が熱変形し、反り発生の原因になり、特にガラス基板が大型(及び薄型)になる程、その問題が顕在化し易いことを見出すと共に、このガラス基板の熱変形は、イオン交換処理時におけるガラス基板の支持方法により改善し得ることを見出し、本発明として、提案するものである。すなわち、本発明の強化ガラス基板の製造方法は、ガラス原料を溶融し、その溶融ガラスを板状に成形することにより、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、そのガラス基板を傾斜させた状態でイオン交換処理を行うことにより、ガラス基板の表面に圧縮応力層を形成することを特徴とする。
 第二に、本発明の強化ガラス基板の製造方法は、ガラス基板を鉛直方向に対して0.1~30°傾斜させた状態でイオン交換処理を行うことが好ましい。ここで、図1は、ガラス基板Gの傾斜角度を説明するための概念図である。図1に示す通り、鉛直方向に対して、ガラス基板Gが傾いている角度θが傾斜角度になる。
 第三に、本発明の強化ガラス基板の製造方法は、支持治具に設けた傾斜支持部によりガラス基板を支持させることによって、ガラス基板を傾斜させた状態でイオン交換処理を行うことが好ましい。ここで、「傾斜支持部」は、例えば、ガラス基板の傾斜角度に対応する角度に傾いており、且つガラス基板を支持する部分を指す。なお、傾斜支持部は、ガラス基板を安定に支持する観点から、複数の部材で構成されることが好ましい。
 本発明に係る支持治具の具体例について、以下に説明する。
 図2は、本発明に係る支持治具2の第一の例を示している。図2に示す通り、支持治具2は、枠部3と、傾斜支持部を構成する複数の部材(図例では一対の支持枠材)4、5とを備えている。枠部3は、略矩形状の上枠3a及び下枠3bが四隅部で四本の支柱3cにより連結された直方体状をなしている。一対の支持枠材4、5は、それらの上端が上枠3aの一方側の枠材3aaに連結されると共にそれらの下端が下枠3bの他方側の枠材3bbに連結され、一対の支持枠材4、5によって形成される支持面は、枠部3内で、一定の傾斜角度を有している。そして、ガラス基板Gは、長辺側の端部(または短辺側の端部)が、一対の支持枠材4、5の外方端から1mm以上外側に食み出した状態で支持されると共に、一対の支持枠材4、5と一部接触することにより、傾斜姿勢を保持している。更に、支持治具2は、一対の支持枠材4、5と上枠3aの一方側の枠材3aaとの連結部から鉛直下方向に延びて、下枠3bの一方側の枠材3baと連結する側部補強枠材3ca、3cbと、一対の支持枠材4、5と下枠3bの一方側の枠材3baとの連結部から水平方向に延びて、下枠3bの他方側の枠材3bbと連結する底部補強枠材3da、3dbとを備えている。
 図3は、本発明に係る支持治具2の第二の例を示している。図3に示す支持治具2は、図2に示す支持治具2に比べて、略平行に離間して配列された一対の支持枠材4、5を連結するための複数本(図例では二本)の連結枠材3ea、3ebを更に備えている。連結枠材3ea、3ebは、一対の支持枠材4、5と略垂直な方向に連結されている。ガラス基板Gは、この連結枠材3ea、3ebによっても支持されることにより、傾斜姿勢に安定して保持される。そして、連結枠材17、18は、ガラス基板Gの上辺と下辺との間に存在している。
 図4は、本発明に係る支持治具2の第三の例を示している。図4に示す支持治具2は、図2に示す支持治具2に比べて、略平行に離間して配列された一対の支持枠材4、5の間に傾斜枠材3faを更に備えている。この傾斜枠材3faは、一方の支持枠材4の上部と、他方の支持枠材5の底部とを連結するように設けられている。ガラス基板Gは、傾斜枠材3faによっても支持されることにより、傾斜姿勢に安定して保持される。
 図5は、本発明に係る支持治具2の第四の例を示している。図5に示す支持治具2は、図2に示す支持治具2に比べて、一対の支持枠材4、5と下枠3bの他方側の枠材3bbとの連結部から鉛直上方向に延びて、上枠3aの他方側の枠材3abと連結する側部補強枠材3ga、3gbを更に備えている。ガラス基板Gは、側部補強枠材3ga、3gbにより、斜め下方への移動が規制されている。
 図6は、本発明に係る支持治具2の第五の例を示している。図6に示す支持治具2は、図5に示す支持治具2に比べて、一対のずれ防止枠材3ha、3hbを更に備えている。この一対のずれ防止枠材3ha、3hbは、底部補強枠材3da、3dbから斜め上方に延びて、側部補強枠材3ga、3gbにそれぞれ連結されると共に、一対の支持枠材4、5の下端と連結されている。ガラス基板Gは、一対のずれ防止枠材3ha、3hbにより、斜め下方への移動が規制されている。
 図7は、本発明に係る支持治具2の第六の例を示している。図7に示す支持治具2は、図2に示す支持治具2に比べて、一対の支持枠材4、5の相互間に、互いに傾斜して交差する一対の傾斜枠材3ia、3ibを更に備えている。このうち、一方の傾斜枠材3iaは、一方の支持枠材4の底部と他方の支持枠材5の上部とを連結し、他方の傾斜枠材3ibは、一方の支持枠材4の上部と他方の支持枠材5の底部とを連結するように、それぞれ設けられている。ガラス基板Gは、これらの傾斜枠材3ia、3ibによっても支持されることにより、傾斜姿勢により安定して保持される。
 以上の図2~図7に示すようにガラス基板Gを傾斜状態で支持している支持治具2は、イオン交換溶液中に浸漬されることにより、ガラス基板Gのイオン交換処理が行われる。
 第四に、本発明の強化ガラス基板の製造方法は、(傾斜支持部がガラス基板と接する部分の長さ寸法)/(ガラス基板の4辺の長さ寸法の合計)の値が0.01以上であることが好ましい。
 第五に、本発明の強化ガラス基板の製造方法は、傾斜支持部のガラス基板と接触する部分(傾斜支持部を構成している部材のガラス基板と接触する部分の断面形状)が、曲率半径0.1mm以上の円弧形状であることが好ましい。
 第六に、本発明の強化ガラス基板の製造方法は、ガラス基板の短辺側または長辺側の端部が、傾斜支持部から1mm以上外側に食み出すように、ガラス基板を配置することが好ましい。
 第七に、本発明の強化ガラス基板の製造方法は、支持治具に設けられた傾斜支持部は、相互に離間する複数の部材と、これらの部材を連結する連結部材とから構成されていることが好ましく、連結部材は、イオン交換処理時におけるガラス基板の中央部の反りを軽減する観点から、相互に離間する部材と略垂直な方向に配列されていることが好ましい。
 第八に、本発明の強化ガラス基板の製造方法は、液相温度1200℃以下のガラス基板が得られるように、ガラス原料を調合することが好ましい。ここで、「液相温度」とは、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。
 第九に、本発明の強化ガラス基板の製造方法は、液相粘度104.0dPa・s以上のガラス基板が得られるように、ガラス原料を調合することが好ましい。ここで、「液相粘度」とは、液相温度におけるガラスの粘度を指す。なお、液相粘度が高く、液相温度が低い程、耐失透性が良好になり、またガラス基板の成形性が良好になる。
 第十に、本発明の強化ガラス基板の製造方法は、モル%で、SiO 40~80%、Al 5~15%、B 0~8%、LiO 0~10%、NaO 0~20%、KO 0~20%、MgO 0~10%、Al+MgO 8~16.5%を含有し、モル比で、(LiO+NaO+KO)/Al比が1~3、NaO/Al比が1~3、MgO/Al比が0~1であり、実質的にAs、PbO、Fを含有しないガラス組成になるように、ガラス原料を調合することが好ましい。ここで、「Al+MgO」は、AlとMgOの合量である。「LiO+NaO+KO」は、LiO、NaO及びKOの合量である。
 第十一に、本発明の強化ガラス基板の製造方法は、オーバーフローダウンドロー法で溶融ガラスを板状に成形することが好ましい。このようにすれば、未研磨で表面精度が高いガラス基板を成形することができる。
 第十二に、本発明の強化ガラス基板の製造方法は、相対する表面の残留応力差が10MPa以下になるガラス基板をイオン交換処理することが好ましい。
 第十三に、本発明の強化ガラス基板の製造方法は、表面の圧縮応力値が300MPa以上、且つ応力深さが10μm以上になるように、イオン交換処理を行うことが好ましい。ここで、「表面の圧縮応力値」および「応力深さ」は、表面応力計(例えば、株式会社東芝製FSM−6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。
 第十四に、本発明の強化ガラス基板の製造方法は、ガラス基板の表面を研磨する工程を有しないことが好ましい。このようにすれば、研磨により不可避的に生じる微小欠陥がなくなり、強化ガラス基板の機械的強度を高めることができる。更に、強化ガラス基板の製造コストを低減することができる。
 第十五に、本発明の強化ガラス基板は、上記の強化ガラス基板の製造方法により作製されてなることを特徴とする。
 第十六に、本発明の強化ガラス基板は、表面に圧縮応力層を有する強化ガラス基板であって、長辺寸法が1000mm以上、短辺寸法が500mm以上であり、且つ反り量が1%以下であることを特徴とする。ここで、「反り量」は、3D形状測定機で測定した最大反り量をWとし、ガラス基板の対角線の長さをDとし、W/D×100の式により算出した値を指す。
 第十七に、本発明の強化ガラス基板の製造方法は、ガラス原料を溶融し、その溶融ガラスを板状に成形することにより、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、そのガラス基板を、(イオン交換温度+50)℃~(イオン交換温度−50)℃の温度で10分間~2時間予備加熱し、その予備加熱されたガラス基板に対して、イオン交換処理を行うことにより、ガラス基板の表面に圧縮応力層を形成することを特徴とする。
 第十八に、本発明の強化ガラス基板の製造方法は、ガラス原料を溶融し、その溶融ガラスを板状に成形することにより、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、そのガラス基板に対して、イオン交換処理を行うことにより、ガラス基板の表面に圧縮応力層を形成し、これにより得られた強化ガラス基板を100~400℃の温度で30分間~4時間徐冷することを特徴とする。
ガラス基板の傾斜角度を説明するための概念図である。 本発明に係る支持治具の一例を示す概略図である。 本発明に係る支持治具の一例を示す概略図である。 本発明に係る支持治具の一例を示す概略図である。 本発明に係る支持治具の一例を示す概略図である。 本発明に係る支持治具の一例を示す概略図である。 本発明に係る支持治具の一例を示す概略図である。 本発明の強化ガラス基板の製造方法における予備加熱工程から徐冷工程までの温度プロファイルの一例を示すグラフである。 [実施例2]の実験を説明するための説明図であり、ガラス基板の上方から見た概念図である。 [実験1]の実験のシミュレーション結果を示すデータである。 [実験2]の実験のシミュレーション結果を示すデータである。 [実験3]の実験のシミュレーション結果を示すデータである。
 本発明の強化ガラス基板の製造方法は、ガラス原料を連続溶融炉に投入し、例えば1500~1600℃で溶融、清澄し、この溶融ガラスを板状に成形して、長辺寸法1000mm以上、短辺寸法500mm以上、板厚0.6mm以下のガラス基板を得ることが好ましく、必要に応じて、成形時にガラス基板を徐冷することが好ましい。
 本発明の強化ガラス基板の製造方法において、密度が好ましくは2.55g/cm以下、好ましくは2.52g/cm以下、好ましくは2.5g/cm以下、好ましくは2.46g/cm以下、好ましくは2.44g/cm以下、特に好ましくは2.42g/cm以下のガラス基板が得られるように、ガラス原料を調合することが好ましい。密度が低い程、ガラス基板を軽量化することができる。ここで、「密度」とは、周知のアルキメデス法で測定した値を指す。なお、密度を低下させるには、SiO、P、Bの含有量を増加させたり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO、TiOの含有量を低減すればよい。
 本発明の強化ガラス基板の製造方法において、歪点が好ましくは500℃以上、好ましくは520℃以上、好ましくは550℃以上、特に好ましくは570℃以上のガラス基板が得られるように、ガラス原料を調合することが好ましい。歪点が高い程、耐熱性が向上し、高温の熱処理により、圧縮応力層が消失し難くなる。また、歪点が高い程、イオン交換処理の際に応力緩和が生じ難くなる。歪点を高めるには、アルカリ土類金属酸化物、Al、ZrO、Pの含有量を増加させたり、アルカリ金属酸化物の含有量を低減すればよい。
 本発明の強化ガラス基板の製造方法において、102.5dPa・sにおける温度が好ましくは1650℃以下、好ましくは1610℃以下、好ましくは1600℃以下、好ましくは1580℃以下、好ましくは1550℃以下、好ましくは1530℃以下、好ましくは1500℃以下、特に好ましくは1450℃以下のガラス基板が得られるように、ガラス原料を調合することが好ましい。102.5dPa・sにおける温度が低い程、溶融窯等のガラス製造設備への負荷が小さくなると共に、ガラス基板の泡品位を高めることができる。102.5dPa・sにおける温度が低い程、ガラス基板を安価に製造することができる。なお、102.5dPa・sにおける温度は、溶融温度に相当している。よって、102.5dPa・sにおける温度が低い程、低温でガラスを溶融することができる。なお、102.5dPa・sにおける温度を低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B、TiOの含有量を増加させたり、SiO、Alの含有量を低減すればよい。
 本発明の強化ガラス基板の製造方法において、液相温度が好ましくは1200℃以下、好ましくは1150℃以下、好ましくは1130℃以下、好ましくは1100℃以下、好ましくは1075℃以下、好ましくは1050℃以下、好ましくは1030℃以下、好ましくは1010℃以下、好ましくは1000℃以下、好ましくは950℃以下、好ましくは900℃以下、特に好ましくは860℃以下のガラス基板が得られるように、ガラス原料を調合することが好ましい。なお、液相温度を低下させるには、NaO、KO、Bの含有量を増加させたり、Al、LiO、MgO、ZnO、TiO、ZrOの含有量を低減したりすればよい。
 本発明の強化ガラス基板の製造方法において、液相粘度が好ましくは104.0dPa・s以上、好ましくは104.6dPa・s以上、好ましくは104.8dPa・s以上、好ましくは105.0dPa・s以上、好ましくは105.3dPa・s以上、好ましくは105.5dPa・s以上、好ましくは105.7dPa・s以上、好ましくは106.0dPa・s以上、特に好ましくは106.2dPa・s以上のガラス基板が得られるように、ガラス原料を調合することが好ましい。なお、液相温度が1075℃以下、液相粘度が104.0dPa・s以上であれば、オーバーフローダウンドロー法でガラス基板を成形することが可能になる。液相粘度を上昇させるには、NaO、KOの含有量を増加させたり、Al、LiO、MgO、ZnO、TiO、ZrOの含有量を低減したりすればよい。
 本発明の強化ガラス基板の製造方法において、30~380℃の温度範囲における熱膨張係数が好ましくは70~110×10−7/℃、好ましくは75~100×10−7/℃、好ましくは80~100×10−7/℃、特に好ましくは85~96×10−7/℃のガラス基板が得られるように、ガラス原料を調合することが好ましい。熱膨張係数を上記範囲とすれば、金属、有機系接着剤等の部材と熱膨張係数が整合し易くなり、金属、有機系接着剤等の部材の剥離を防止することができる。ここで、「30~380℃の温度範囲における熱膨張係数」とは、ディラトメーターで測定した平均値を指す。なお、熱膨張係数を上昇させるには、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増加さればよく、逆に低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減すればよい。
 本発明の強化ガラス基板の製造方法において、ヤング率が好ましくは65GPa以上、好ましくは69GPa以上、好ましくは71GPa以上、好ましくは75GPa以上、特に好ましくは77GPa以上のガラス基板が得られるように、ガラス原料を調合することが好ましい。ヤング率が高い程、強化ガラス基板が撓み難くなるため、電子黒板等を適用する場合に、ペンや指等で強く押されても、変形量が小さくなり、結果として、強化ガラス基板が背面に位置する液晶素子に接触して、表示不良が生じる事態を防止し易くなる。
 本発明の強化ガラス基板の製造方法において、モル%で、SiO 40~80%、Al 5~15%、B 0~8%、LiO 0~10%、NaO 0~20%、KO 0~20%、MgO 0~10%、Al+MgO 8~16.5%を含有し、モル比で、(LiO+NaO+KO)/Al比が1.4~3、NaO/Al比が1~3、MgO/Al比が0~1であり、実質的にAs、PbO、Fを含有しないガラス組成になるように、ガラス原料を調合することが好ましい。上記のように、各成分の含有範囲を限定した理由を以下に説明する。なお、各成分の含有範囲の説明において、%表示は、モル%を指す。
 SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は、好ましくは40~80%、45~80%、55~75%、60~75%、特に60~70%である。SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、周辺材料と熱膨張係数が整合し難くなる。一方、SiOの含有量が少な過ぎると、ガラス化し難くなる。また熱膨張係数が高くなり過ぎて、強化ガラス基板の耐熱衝撃性が低下し易くなる。
 Alは、イオン交換性能を高める成分である。また歪点やヤング率を高める成分である。Alの含有量は5~15%が好ましい。Alの含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等による成形が困難になる。また熱膨張係数が低くなり過ぎて、周辺材料と熱膨張係数が整合し難くなり、また高温粘性が高くなり、溶融性が低下し易くなる。一方、Alの含有量が少な過ぎると、イオン交換性能を十分に発揮できない虞が生じる。よって、Alの下限範囲は好ましくは6%以上、好ましくは7%以上、好ましくは8%以上、好ましくは9%以上、特に好ましくは10%以上、上限範囲は好ましくは14%以下、好ましくは13%以下、好ましくは12%以下、好ましくは11.5%以下である。
 Bは、高温粘度や密度を低下させると共に、イオン交換性能、特に圧縮応力値を高める成分である。更に、ガラスを安定化させて、結晶を析出させ難くし、液相温度を低下させる効果がある。しかし、Bが多過ぎると、イオン交換処理によって、ヤケと呼ばれる表面の着色が発生したり、耐水性が低下したり、応力深さが小さくなり易い。よって、Bの含有量は、好ましくは0~8%、好ましくは0~5%、好ましくは0~3%、好ましくは0~2%、特に好ましくは0~1%である。
 LiOは、イオン交換成分であると共に、高温粘度を低下させて、溶融性や成形性を高める成分である。また、LiOは、ヤング率を高める成分である。更に、LiOは、アルカリ金属酸化物の中では、圧縮応力値を大きくする効果が高い。しかし、LiOの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなる。また熱膨張係数が高くなり過ぎて、強化ガラス基板の耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に、低温粘性が低下し過ぎて、応力緩和が起こり易くなり、かえって圧縮応力値が小さくなる場合がある。よって、LiOの含有量は、好ましくは0~10%、好ましくは0~5%、好ましくは0~1%、好ましくは0~0.5%、好ましくは0~0.1%であり、実質的に含有しないこと、つまり0.01%未満に抑えることが最も好ましい。
 NaOは、イオン交換成分であると共に、高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaOは、耐失透性を改善する成分でもある。NaOの含有量は、好ましくは5~20%、好ましくは8~20%、好ましくは8.5~20%、好ましくは10~18%、好ましくは10~16%、好ましくは11~16%、好ましくは12~16%、特に好ましくは13~16%である。NaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、強化ガラス基板の耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また歪点が低下し過ぎたり、ガラス組成のバランスを欠き、かえって耐失透性が低下する傾向がある。一方、NaOの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低くなったり、イオン交換性能が低下し易くなる。
 KOは、イオン交換を促進する効果があり、アルカリ金属酸化物の中では応力深さを大きくする効果が高い。また高温粘度を低下させて、溶融性や成形性を高める効果がある。更に、KOは、耐失透性を改善する成分でもある。しかし、KOの含有量が多過ぎると、熱膨張係数が高くなり、強化ガラス基板の耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に歪点が低下し過ぎたり、ガラス組成のバランスを欠き、かえって耐失透性が低下する傾向がある。よって、KOの含有量の上限範囲は好ましくは20%以下、好ましくは10%以下、好ましくは8%以下、好ましくは6%以下、好ましくは5%以下、特に好ましくは4%以下であり、KOを添加する場合、下限範囲は好ましくは0.1%以上、好ましくは0.5%以上、好ましくは1%以上、好ましくは2%以上、特に好ましくは2.5%以上である。
 アルカリ金属酸化物RO(RはLi、Na、Kから選ばれる1種以上)の含有量が多過ぎると、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、強化ガラス基板の耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また歪点が低下し過ぎて、高い圧縮応力値を確保し難くなる。更に、液相温度付近の粘性が低下して、高い液相粘度を確保し難くなる場合がある。一方、ROの含有量が少な過ぎると、イオン交換性能や溶融性が低下し易くなる。よって、ROの含有量は、好ましくは10~25%、好ましくは13~22%、好ましくは15~20%、特に好ましくは16.5~20%である。
 モル比KO/NaOは、好ましくは0.1~0.8、好ましくは0.2~0.8、好ましくは0.2~0.5、特に好ましくは0.2~0.4である。モル比KO/NaOが小さくなると、応力深さが小さくなり易く、逆に大きくなると、得られる圧縮応力値が低下したり、ガラス組成のバランスを欠いて、ガラスが失透し易くなる。
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が高い。しかし、MgOの含有量が多くなると、密度、熱膨張係数が高くなり、またガラスが失透し易くなる。よって、MgOの含有量は、好ましくは0~10%、好ましくは0~6%、特に好ましくは0~4%である。
 AlとMgOの合量は、8~16.5%が好ましい。AlとMgOの合量が少なくなると、イオン交換性能が低下し易くなる。逆に、AlとMgOの合量が多くなると、耐失透性、成形性が低下し易くなる。よって、AlとMgOの合量は、好ましくは8~16%、特に好ましくは8~14%である。
 モル比(LiO+NaO+KO)/Alは、好ましくは1~3、1.4~3、1.5~2.5、特に好ましくは1.8~2.5である。モル比NaO/Alは、好ましくは1~3、好ましくは1.2~3、特に好ましくは1.2~2.5である。モル比MgO/Alは、好ましくは0~1、0~0.7、特に好ましくは0~0.5である。このようにすれば、耐失透性を効果的に改善することができる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 CaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が高い。CaOの含有量は、好ましくは0~6%、好ましくは0~5%、好ましくは0~4%、特に好ましくは0~2%である。しかし、CaOの含有量が多くなると、密度や熱膨張係数が高くなり、またガラスが失透し易くなったり、更にはイオン交換性能が低下し易くなる。
 MgOとCaOの合量は、好ましくは0~7%、好ましくは0~6%、好ましくは0~5%、好ましくは0~4%、特に好ましくは0~3%である。MgOとCaOの合量が多くなると、イオン交換性能が向上するが、耐失透性が悪化したり、密度や熱膨張係数が高くなり過ぎる。
 SrOとBaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。SrOの含有量は、好ましくは0~6%、好ましくは0~3%、好ましくは0~1.5%、好ましくは0~1%、好ましくは0~0.5%、特に好ましくは0~0.2%である。BaOの含有量は、好ましくは0~3%、好ましくは0~1.5%、好ましくは0~1%、好ましくは0~0.5%、特に好ましくは0~0.2%である。これらの成分が多過ぎると、イオン交換反応が阻害されることに加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。
 SrOとBaOの合量は、好ましくは0~6%、好ましくは0~3%、好ましくは0~2.5%、好ましくは0~2%、好ましくは0~1%、特に好ましくは0~0.2%である。このようにすれば、イオン交換性能を効果的に高めることができる。
 アルカリ土類金属酸化物R’O(R’はMg、Ca、Sr、Baから選ばれる1種以上)の含有量が多くなると、密度や熱膨張係数が高くなったり、耐失透性が低下し易くなることに加えて、イオン交換性能が低下し易くなる。よって、R’Oの含有量は、好ましくは0~10%、好ましくは0~8%、好ましくは0~7%、好ましくは0~6%、特に好ましくは0~4%である。
 ZnOは、イオン交換性能を高める成分であり、特に、圧縮応力値を大きくする効果が高い。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多くなると、ガラスが分相したり、失透性が低下したり、密度が高くなったり、応力深さが小さくなる傾向がある。よって、ZnOの含有量は、好ましくは0~6%、好ましくは0~5%、好ましくは0~3%、特に好ましくは0~1%である。
 質量比R’O/ROが大きくなると、耐失透性が低下し易くなる。よって、質量比R’O/ROは、好ましくは0.5以下、好ましくは0.3以下、特に好ましくは0.2以下である。
 TiOは、イオン交換性能を高める成分である。また高温粘度を低下させる効果があるが、その含有量が多過ぎると、ガラスが着色したり、失透し易くなる。よって、TiOの含有量は、好ましくは0~3%、好ましくは0~1%、好ましくは0~0.8%、好ましくは0~0.5%、特に好ましくは0~0.1%である。
 ZrOは、イオン交換性能を顕著に高めると共に、液相粘度付近の粘性や歪点を高める効果があるが、その含有量が多過ぎると、耐失透性が著しく低下する虞がある。よって、ZrOの含有量は、好ましくは0~10%、好ましくは0~5%、好ましくは0~3%、好ましくは0.001~3%、好ましくは0.1~3%、好ましくは1~3%、特に好ましくは1.5~3%である。
 イオン交換性能向上の観点から、ZrOとTiOを合量で0.1~15%添加することが望ましい。TiO源、ZrO源として試薬を用いてもよく、ガラス原料等に含まれる不純物から含有させてもよい。
 SnOは、イオン交換性能を高める成分であるが、その含有量が多くなると、SnOに起因する失透が発生したり、ガラスが着色し易くなる。よって、SnOの含有量は、好ましくは0.01~6%、好ましくは0.01~3%、特に好ましくは0.1~1%である。
 Pは、イオン交換性能を高める成分であり、特に、応力深さを大きくする成分である。しかし、Pの含有量が多くなると、ガラスが分相したり、耐水性が低下し易くなる。Pの含有量は、好ましくは0~10%、好ましくは0~3%、好ましくは0~1%、特に好ましくは0~0.5%である。
 清澄剤として、As、Sb、CeO、F、Cl、SOの群から選択された一種又は二種以上を0~3%添加してもよい。特に、SO+Cl 0.001~5%、好ましくは0.001~3%を使用することが望ましい。ここで、「SO+Cl」は、SOとClの合量である。
 Nd、La等の希土類酸化物は、ヤング率を高める成分である。しかし、ガラス原料自体のコストが高く、また多量に含有させると、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は、好ましくは0~3%、好ましくは0~2%、好ましくは0~1%、好ましくは0~0.5%、特に好ましくは0~0.1%である。
 CoO、NiO等の遷移金属酸化物は、ガラスを強く着色させて、ガラス基板の透過率を低下させる成分である。特に、タッチパネルディスプレイ用途の場合、遷移金属酸化物の含有量が多くなると、タッチパネルディスプレイの視認性が低下し易くなる。よって、遷移金属酸化物の含有量は、好ましくは0~0.5%、好ましくは0~0.1%、特に好ましくは0~0.05%である。
 環境面の配慮から、実質的にAs、PbO、Fを含有しないことが好ましい。環境面の配慮から、実質的にPbO、Biを含有しないことも好ましい。ここで「実質的に~を含有しない」とは、不純物レベルの混入を許容する趣旨であり、具体的には、その含有量が0.1%未満の場合を指す。
 各成分の好適な含有範囲を適宜選択して、好ましいガラス組成範囲とすることができる。その中でも、より好適なガラス組成範囲の例は、以下の通りである。
 (1)モル%で、SiO 50~80%、Al 8~11%、B 0~3%、LiO 0~4%、NaO 8~20%、KO 0~7.5%、CaO 0~6%、MgO 0~%、SrO 0~6%、BaO 0~6%、ZnO 0~6%、Al+MgO 8~16.5%、CaO+MgO 0~7%を含有し、モル比(LiO+NaO+KO)/Alが1.3~2.5、NaO/Alが1.2~3、MgO/Alが0~1であり、実質的にAs、PbO、F、BaOを含有しないガラス組成。
 (2)モル%で、SiO 55~75%、Al 8~10%、B0~2%、LiO 0~4%、NaO 8.5~20%、KO 3.5~7.5%、MgO 0~6%、CaO 0~6%、SrO 0~1.5%、BaO 0~1.5%、ZnO 0~1%、TiO 0~0.8%、ZrO 0~3%、MgO+Al 8~16%、MgO+CaO 0~7%、モル比(LiO+NaO+KO)/Alが1.8~2.5、NaO/Alが1.2~3、MgO/Alが0~1、KO/NaOが0.2~0.5であり、実質的にAs、PbO、F、BaOを含有しないガラス組成。
 (3)モル%で、SiO 55~75%、Al 8~10%、B 0~2%、LiO 0~4%、NaO 10~16%、KO 3.5~7.5%、MgO 0~4%、CaO 0~4%、SrO 0~1%、BaO 0~1%、ZnO 0~1%、TiO 0~0.5%、ZrO 0~3%、P0~1%、MgO+Al 8~14%、MgO+CaO 0~3%、モル比(LiO+NaO+KO)/Alが1.8~2.5、NaO/Alが1.2~3、MgO/Alが0~0.5、KO/NaOが0.2~0.4であり、実質的にAs、PbO、F、BaOを含有しないガラス組成。
 (4)モル%で、SiO 55~75%、Al 8~10%、B 0~2%、LiO 0~4%、NaO 11~16%、KO 3.5~7.5%、MgO 0~4%、CaO 0~3%、SrO 0~0.5%、BaO 0~0.5%、ZnO 0~1%、TiO 0~0.5%、ZrO 0~3%、P 0~1%、SnO 0.01~2%、MgO+Al 8~14%、MgO+CaO 0~3%、モル比(LiO+NaO+KO)/Alが1.8~2.5、NaO/Alが1.2~2.5、MgO/Alが0~0.5、KO/NaOが0.2~0.4であり、実質的にAs、PbO、F、BaOを含有しないガラス組成。
 (5)モル%で、SiO 40~80%、Al 5~15%、B 0~8%、LiO 0~10%、NaO 5~20%、KO 0.5~20%、MgO 0~10%、Al+MgO 8~16.5%、Sb 0.01~5%を含有し、モル比(LiO+NaO+KO)/Alが1.4~3、NaO/Alが1~3、MgO/Alが0~1であり、実質的にAs、PbO、Fを含有しないガラス組成。
 (6)モル%で、SiO 40~80%、Al 5~15%、B 0~8%、LiO 0~10%、NaO 5~20%、KO 0.5~20%、MgO 0~10%、Al+MgO 8~16.5%、SO 0.001~5%を含有し、モル比(LiO+NaO+KO)/Alが1.4~3、NaO/Alが1~3、MgO/Alが0~1であり、実質的にAs、PbO、Fを含有しないガラス組成。
 (7)モル%で、SiO 45~80%、Al 8~12%、B 0~8%、LiO 0~10%、NaO 5~20%、KO 0.5~20%、CaO 0~6%、MgO 0~6%、Al+MgO 8~16.5%、CaO+MgO 0~7%、SnO+Sb+SO 0.001~10%を含有し、モル比(LiO+NaO+KO)/Alが1.4~3、NaO/Alが1~3、MgO/Alが0~1、KO/NaOが0.1~0.8であり、実質的にAs、PbO、Fを含有しないガラス組成。
 溶融ガラスを板状に成形する方法としては、オーバーフローダウンドロー法が好ましい。その理由は、オーバーフローダウンドロー法の場合、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されることにより、無研磨で表面品位が良好なガラス基板を成形できるからである。ここで、オーバーフローダウンドロー法は、溶融状態のガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を製造する方法である。桶状構造物の構造や材質は、ガラス基板の寸法や表面精度を所望の状態とし、ガラス基板に使用できる品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うために、ガラス基板に対して力を印加する方法も限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラス基板に接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラス基板の端面近傍のみに接触させて延伸する方法を採用してもよい。
 溶融ガラスを板状に成形する方法としては、オーバーフローダウンドロー法以外にも、種々の方法を採用することができる。例えば、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法、ロールアウト法、プレス法等を採用することができる。
 本発明の強化ガラス基板の製造方法において、板厚は、好ましくは0.6mm以下、好ましくは0.55mm以下、好ましくは0.5mm以下、好ましくは0.4mm以下、特に好ましくは0.3mm以下になるように、ガラス基板を成形する。ガラス基板の板厚が小さい程、ガラス基板を軽量化することできる。なお、オーバーフローダウンドロー法でガラス基板を成形すれば、ガラス基板の薄肉化を容易に達成することができる。
 本発明の強化ガラス基板の製造方法は、長辺寸法が1000mm以上(好ましくは1200mm以上、好ましくは1500mm以上、好ましくは1800mm以上、特に好ましくは2000mm以上)になるように、ガラス基板を成形する。ガラス基板の長辺寸法が大きい程、大型のTV、デジタルサイネージ、タッチパネルディスプレイ、電子黒板、太陽電池等のカバーガラスに好適になる。なお、ガラス基板の長辺寸法が大きい程、本発明の効果が相対的に大きくなる。
 本発明の強化ガラス基板の製造方法は、短辺寸法が500mm以上(好ましくは800mm以上、好ましくは1000mm以上、好ましくは1200mm以上、特に好ましくは1500mm以上)になるように、ガラス基板を成形する。ガラス基板の短辺寸法が大きい程、大型のTV、デジタルサイネージ、タッチパネルディスプレイ、電子黒板、太陽電池等のカバーガラスに好適になる。なお、ガラス基板の短辺寸法が大きい程、本発明の効果が相対的に大きくなる。
 本発明の強化ガラス基板の製造方法は、ガラス基板の表面(特に、有効面)を研磨する工程を有しないことが好ましい。未研磨の表面の平均表面粗さ(Ra)は、好ましくは10Å以下、好ましくは5Å以下、特に好ましくは2Å以下である。なお、表面の平均表面粗さ(Ra)は、SEMI D7−97「FPDガラス基板の表面粗さの測定方法」に準拠した方法により測定すればよい。ガラスの理論強度は、本来非常に高いのであるが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス基板の表面にグリフィスフローと呼ばれる小さな欠陥が、成形後の工程、例えば研磨工程等で生じるからである。よって、強化ガラス基板の表面を未研磨とすれば、本来のガラス基板の機械的強度を損ない難くなり、ガラス基板が破壊し難くなる。また、ガラス基板の表面を未研磨とすれば、研磨工程を省略できるため、ガラス基板の製造コストを下げることができる。更に、ガラス基板の両面全体を未研磨とすれば、ガラス基板が更に破壊し難くなる。なお、ガラス基板の切断面から破壊に至る事態を防止するため、ガラス基板の切断面に面取り加工等を施してもよい。なお、未研磨の表面を得るためには、オーバーフローダウンドロー法でガラス基板を成形すればよい。
 本発明の強化ガラス基板の製造方法は、ガラス基板を傾斜させた状態でイオン交換処理を行い、ガラス基板の表面に圧縮応力層を形成することを特徴とする。
 本発明の強化ガラス基板の製造方法において、ガラス基板を鉛直方向に対して0.1~30°傾斜させた状態でイオン交換処理を行うことが好ましい。傾斜角度が小さ過ぎると、大型の強化ガラス基板をイオン交換処理した際に、自重によって、ガラス基板が座屈し変形した状態でイオン交換処理されることになり、強化ガラス基板の反り量が大きくなり易い。よって、傾斜角度は、好ましくは0.1°以上、好ましくは0.3°以上、好ましくは0.5°以上、好ましくは1°以上、好ましくは1.3°以上、好ましくは1.6°以上、好ましくは2°以上、特に好ましくは3°以上である。一方、傾斜角度が大きくなり過ぎると、一回のイオン交換処理において、処理し得るガラス基板の枚数が減少して、強化ガラス基板の生産効率が低下し易くなる。よって、傾斜角度は、好ましくは30°以下、好ましくは25°以下、好ましくは20°以下、好ましくは15°以下、特に好ましくは12°以下である。
 本発明の強化ガラス基板の製造方法において、傾斜支持部を有する支持治具を用いて、ガラス基板を傾斜させた状態でイオン交換処理を行うことが好ましい。支持治具の傾斜支持部により、ガラス基板を傾斜させ易くなると共に、ガラス基板の傾斜姿勢を保持し易くなる。
 本発明の強化ガラス基板の製造方法において、(傾斜支持部がガラス基板と接する部分の長さ寸法)/(ガラス基板の4辺の長さ寸法の合計)の値は、好ましくは0.01以上、好ましくは0.1以上、好ましくは0.3以上、好ましくは0.5以上、好ましくは0.7以上、好ましくは0.9以上、好ましくは0.95以上、特に好ましくは1以上である。このようにすれば、イオン交換処理の際に、ガラス基板が変形し難くなり、結果として、強化ガラス基板の反り量を低減し易くなる。一方、この値が大き過ぎると、ガラス基板とイオン交換溶液が接する面積が小さくなり、イオン交換処理を適正に行うことが困難になる。(傾斜支持部がガラス基板と接する部分の長さ寸法)/(ガラス基板の4辺の長さ寸法の合計)の値は、好ましくは10以下、好ましくは8以下、好ましくは6以下、好ましくは5以下、好ましくは4以下、特に好ましくは3以下である。
 本発明の強化ガラス基板の製造方法において、支持治具の傾斜支持部のガラス基板と接触する部分が、円弧形状であることが好ましい。円弧形状の曲率半径は、好ましくは0.1mm以上、好ましくは0.2mm以上、好ましくは0.5mm以上、好ましくは1mm以上、好ましくは2mm以上、好ましくは5mm以上、特に好ましくは10mm以上である。また、傾斜支持部を構成する部材の形状は、円柱状が好ましい。このようにすれば、ガラス基板との接触面積を低減し易くなり、イオン交換処理の際に、ガラス基板に傷が付き難くなる。
 本発明の強化ガラス基板の製造方法において、イオン交換処理に際し、ガラス基板の短辺側または長辺側の端部が、支持治具の傾斜支持部から1mm以上(好ましくは2mm以上、好ましくは5mm以上、特に好ましくは10mm以上)外側に食み出すように、ガラス基板を配置することが好ましい。ガラス基板の短辺側または長辺側の端部の食み出し寸法が、支持治具の傾斜支持部から1mm未満であると、ガラス基板を支持治具に配置する際に、ガラス基板の短辺側または長辺側の端部と傾斜支持部が接触して、ガラス基板にクラックが発生し易くなる。
 本発明の強化ガラス基板の製造方法において、ガラス基板の長辺寸法をLとした場合、イオン交換処理に際し、ガラス基板の何れかの辺(好ましくはガラス基板の長辺)が傾斜支持部と略平行になるように、ガラス基板を支持治具に配置すると共に、その略平行になる辺の端部が、傾斜支持部から0~0.5/L(好ましくは0.01/L以上、好ましくは0.02/L以上、好ましくは0.03/L以上、好ましくは0.05/L以上、好ましくは0.1/L以上)外側に配置されることが好ましい。このようにすれば、イオン交換処理時において、強化ガラス基板の中央部の反り量を低減し易くなる。一方、その略平行になる辺の端部が、傾斜支持部から離れ過ぎると、その略平行になる辺の端部が変形し易くなる。よって、その略平行になる辺の傾斜支持部からの離反寸法は、好ましくは0.4/L以下、好ましくは0.35/L以下、好ましくは0.3/L以下、特に好ましくは0.2/L以下である。
 本発明の強化ガラス基板の製造方法において、支持治具に設けられた傾斜支持部が、相互に離間する複数の部材と、これらの部材を連結する連結部材とから構成されることが好ましい。また、ガラス基板の何れかの辺が、支持治具の連結部材と略垂直になるように、ガラス基板を支持治具に配置することが好ましい。このようにすれば、イオン交換処理時に、ガラス基板の傾斜姿勢を保持し易くなると共に、強化ガラス基板の中央部の反り量を低減し易くなる。
 本発明の強化ガラス基板の製造方法において、ガラス基板の短辺寸法をlとした場合、イオン交換処理に際し、ガラス基板の何れかの辺(好ましくはガラス基板の短辺)が連結部材と略平行になるように、ガラス基板を支持治具に配置すると共に、その略平行になる辺の端部が、連結部材から0~0.5/l(好ましくは0.01/l以上、好ましくは0.02/l以上、好ましくは0.03/l以上、好ましくは0.05/l以上、好ましくは0.1/l以上)外側に食み出すように配置されることが好ましい。このようにすれば、イオン交換処理時において、強化ガラス基板の中央部の反り量を低減し易くなる。一方、その略平行になる辺の端部が、連結部材から離反し過ぎると、その略平行になる辺の端部が変形し易くなる。よって、その略平行になる辺の連結部材からの離反寸法は、好ましくは0.4/l以下、好ましくは0.35/l以下、好ましくは0.3/l以下、特に好ましくは0.2/l以下である。
 本発明の強化ガラス基板の製造方法において、表面の圧縮応力値が300MPa以上、好ましくは400MPa以上、好ましくは500MPa以上、好ましくは600MPa以上、好ましくは700MPa以上、特に好ましくは800MPa以上になるように、イオン交換処理を行うことが好ましい。圧縮応力値が大きくなるにつれて、強化ガラス基板の機械的強度が高くなる。一方、圧縮応力値が極端に大きくなると、表面にマイクロクラックが発生し易くなり、また内部の引っ張り応力値が不当に大きくなり、かえって強化ガラス基板の機械的強度が低下する虞がある。よって、圧縮応力値が1200MPa以下、好ましくは1100MPa以下、特に好ましくは1000MPa以下になるように、イオン交換処理を行うことが好ましい。なお、圧縮応力値が大きくするには、Al、TiO、ZrO、MgO、ZnOの含有量を増加させたり、SrO、BaOの含有量を低減すればよい。またイオン交換溶液に浸漬させる時間を短くしたり、イオン交換溶液の温度を下げればよい。
 本発明の強化ガラス基板の製造方法において、応力深さが10μm以上、好ましくは15μm以上、好ましくは20μm以上、好ましくは30μm以上、特に好ましくは40μm以上になるように、イオン交換処理を行うことが好ましい。応力深さが大きい程、強化ガラス基板に深い傷が付いても、強化ガラス基板が割れ難くなる。また機械的強度のバラツキが小さくなる。一方、強化ガラス基板を切断し難くなる。よって、応力深さが120μm以下、好ましくは80μm以下、好ましくは70μm以下、好ましくは60μm以下、特に好ましくは55μm以下になるように、イオン交換処理を行うことが好ましい。なお、応力深さを大きくするには、KO、Pの含有量を増加させたり、SrO、BaOの含有量を低減すればよい。またイオン交換溶液に浸漬させる時間を長くしたり、イオン交換溶液の温度を高くすればよい。
 本発明の強化ガラス基板の製造方法において、相対する表面の残留応力差が10MPa以下、好ましくは5MPa以下、好ましくは3MPa以下、特に好ましくは1MPa以下になるガラス基板をイオン交換処理することが好ましい。相対する表面の歪差が大きいガラス基板をイオン交換処理すると、強化ガラス基板の反り量が大きくなる。
 本発明の強化ガラス基板の製造方法において、ガラス基板を室温からイオン交換溶液に直接浸漬してもよいが、強化ガラス基板の反り量を低減する上で、イオン交換溶液に浸漬する前に、予備加熱工程を設けることが好ましい。予備加熱温度は、好ましくは(イオン交換温度+50)℃以下、好ましくは(イオン交換温度+40)℃以下、好ましくは(イオン交換温度+30)℃以下、好ましくは(イオン交換温度+20)℃以下、特に好ましくは(イオン交換温度+10)℃以下である。予備加熱温度が高過ぎると、予備加熱工程が長くなり過ぎて、強化ガラス基板の製造効率が低下し易くなる。一方、予備加熱温度が低過ぎる場合、サーマルショックを避けるためにはイオン交換溶液の温度も低下しなければならず、結果として、所望の強化特性を安定して得ることが困難になる。よって、予備加熱温度は、好ましくは(イオン交換温度−50)℃以上、好ましくは(イオン交換温度−40)以上、好ましくは(イオン交換温度−30)℃以上、好ましくは(イオン交換温度−20)℃以上、特に好ましくは(イオン交換温度−10)℃以上である。
 予備加熱時間は、好ましくは10分間以上、好ましくは20分間以上、特に好ましくは30分間以上である。予備加熱時間が短過ぎると、ガラス基板の面内の均熱性を確保し難くなり、結果として、強化特性の面内バラツキが発生して、強化ガラス基板に反りが発生し易くなる。一方、予備加熱時間が長過ぎると、予備加熱工程が長くなり過ぎて、強化ガラス基板の製造効率が低下し易くなる。よって、予備加熱時間は、好ましくは2時間以下、好ましくは1.5時間以下、特に好ましくは1時間以下である。
 予備加熱工程において、昇温速度は、好ましくは50℃/時以上、好ましくは100℃/時以上、好ましくは150℃/時以上、特に好ましくは200℃/時以上である。昇温速度が速くなる程、予備加熱工程を短縮させることが可能になる。一方、昇温速度が速過ぎると、ガラス基板が破損する虞が生じる。よって、昇温速度は、好ましくは500℃/時以下、好ましくは450℃/時以下、特に好ましくは400℃/時以下である。なお、予備加熱工程は、上記支持治具を用いて、ガラス基板を傾斜させた状態で行うことが好ましいが、ガラス基板を鉛直方向に配置した状態で行ってもよい。
 予備加熱工程後に、ガラス基板をイオン交換溶液に浸漬して、イオン交換処理を行う。イオン交換溶液の下限温度は、好ましくは(歪点−100)℃以下、好ましくは(歪点−120)℃以下、好ましくは(歪点−140)℃以下、特に好ましくは(歪点−150)℃以下であり、上限温度は、好ましくは(歪点−250)℃以上、好ましくは(歪点−220)℃以上、特に好ましくは(歪点−200)℃以上である。イオン交換溶液に浸漬させる時間は、好ましくは2~10時間、特に好ましくは4~8時間である。イオン交換処理の条件は、ガラス基板の粘度特性、用途、板厚、内部の引っ張り応力等を考慮して最適な条件を選択すればよい。イオン交換処理では、KNO溶融塩中のKイオンをガラス基板中のNa成分とイオン交換すると、ガラス基板の表面に圧縮応力層を効率良く形成することができる。
 イオン交換処理後に、徐冷工程を設けることが好ましい。徐冷工程において、イオン交換温度から徐冷温度までの降温速度は、強化ガラス基板の反りを低減するための重要な要素である。この降温速度の下限は、好ましくは30℃/分以上、好ましくは50℃/分以上、好ましくは100℃/分以上、好ましくは150℃/分以上、特に好ましくは200℃/分以上であり、降温速度の上限は、好ましくは500℃/分以下、好ましくは440℃/分以下、特に好ましくは400℃/分以下である。降温速度が速過ぎると、強化ガラス基板が破損する虞が生じる。また急激な冷却によって、強化ガラス基板の面内の温度バラツキにより強化ガラス基板が熱変形し、その影響により、熱変形が反りとして固定化される虞が生じる。一方、降温速度が遅過ぎると、徐冷工程が長くなり過ぎて、強化ガラス基板の製造効率が低下し易くなる。
 徐冷温度は、好ましくは100℃以上、好ましくは150℃以上、好ましくは200℃以上、特に好ましくは250℃以上である。徐冷温度が低過ぎると、強化ガラス基板の反りを低減し難くなることに加えて、強化ガラス基板に付着したイオン交換溶液を取り除き難くなる。一方、徐冷温度が高過ぎると、強化特性が低下したり、強化ガラス基板の反り量が大きくなる傾向がある。よって、徐冷温度は、好ましくは400℃以下、好ましくは350℃以下、特に好ましくは300℃以下である。
 徐冷時間の下限は、好ましくは30分間以上、特に好ましくは1時間以上であり、上限は、好ましくは5時間以下、特に好ましくは4時間以下である。徐冷時間が短過ぎると、強化ガラス基板の面内の均熱性を確保し難くなり、強化ガラス基板の反り量が大きくなる傾向にある。一方、徐冷時間が長過ぎると、徐冷工程が長くなり過ぎて、強化ガラス基板の製造効率が低下し易くなる。なお、徐冷工程では、上記支持治具を用いて、ガラス基板を傾斜させた状態で行うことが好ましいが、ガラス基板を鉛直方向に配置した状態で行ってもよい。
 徐冷工程後に強化ガラス基板を室温環境下に取り出して、急冷してもよい。しかし、過剰な急冷は、強化ガラス基板の反り量を増大させる虞がある。よって、徐冷工程後の降温速度は、好ましくは400℃/時以下、好ましくは300℃/時以下、好ましくは200℃/時以下、好ましくは100℃/時以下、好ましくは80℃/時以下、特に好ましくは50℃/時以下である。一方、徐冷工程後の降温速度が遅過ぎると、徐冷工程が長くなり過ぎて、強化ガラス基板の製造効率が低下し易くなる。
 図8は、本発明の強化ガラス基板の製造方法における予備加熱工程から徐冷工程までの温度プロファイルの一例を示すグラフである。図8に示す工程A、Bは予備加熱工程を示しており、工程Aでは室温から予備加熱温度まで昇温する状態を示しており、工程Bでは予備加熱温度で所定時間保持する状態を示している。工程Cはイオン交換温度、イオン交換時間を示している。工程D、Eは徐冷工程を示している。工程Dでは徐冷温度まで降温する状態を示しており、工程Eでは徐冷温度で所定時間保持する状態を示している。工程Fは、徐冷工程後に室温まで降温する状態を示している。
 本発明の強化ガラス基板の製造方法において、所定サイズに切断するのは、イオン交換処理の前でもよいが、イオン交換処理後に行う方が製造コストを低減し得るため好ましい。
 本発明の強化ガラス基板は、上記の強化ガラス基板の製造方法により作製されてなることを特徴とする。また、本発明の強化ガラス基板は、表面に圧縮応力層を有する強化ガラス基板であって、長辺寸法が1000mm以上、短辺寸法が500mm以上であり、且つ反り量が1%以下であることを特徴とする。ここで、本発明の強化ガラス基板の技術的特徴(好適な構成、効果等)は、本発明の強化ガラス基板の製造方法の技術的特徴と一部重複している。よって、その重複部分については、その説明を省略する。
 本発明の強化ガラス基板において、反り量は、好ましくは1%以下、好ましくは0.8%以下、好ましくは0.5%以下、好ましくは0.3%以下、好ましくは0.2%以下、好ましくは0.1%以下、好ましくは0.05%以下、特に好ましくは0.03%以下である。反り量が大きくなると、ディスプレイに強化ガラス基板を貼り付ける際に空気の巻き込みが発生したり、貼り付け後に強化ガラス基板が剥がれ易くなる。
 以下、本発明を実施例に基づいて説明する。但し、本発明は、以下の実施例に何ら限定されない。以下の実施例は、単なる例示である。
 表1~3は、本発明に係る強化ガラス基板のガラス組成と特性を示すものである。尚、表中の「未」の表示は、未測定を意味している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次のようにして、表中の各試料を作製した。まず、表中のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1580℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して板状に成形した。得られたガラス基板について、種々の特性を評価した。
 密度は、周知のアルキメデス法により、測定した値である。
 歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて、測定した値である。
 軟化点Tsは、ASTM C338の方法に基づいて、測定した値である。
 104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 熱膨張係数αは、ディラトメーターにより、30~380℃の温度範囲における平均値を測定した値である。
 液相温度は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。
 液相粘度logηTL(dPa・s)は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。
 ヤング率及び剛性率は、共振法により測定した値である。
 表1~3から明らかなように、試料No.1~12は、密度が2.54g/cm以下、熱膨張係数が88~100×10−7/℃、液相粘度が104.6dPa・s以上、液相粘度が102.5dPa・sにおける温度が1650℃以下であり、強化ガラス基板の素材として好適であった。
 続いて、各試料の両表面に光学研磨を施した後、No.1~7、11及び12については、430℃のKNO溶液中に4時間浸漬し、またNo.8~10については、460℃のKNO溶液中に6時間浸漬することによって、イオン交換処理を行った。なお、所定の支持治具を用いて、各試料を5°傾斜させた状態でイオン交換処理を行った。イオン交換処理を行った後、各試料の表面を洗浄した後、表面応力計(株式会社東芝製FSM−6000)を用いて、観察される干渉縞の本数とその間隔から表面の圧縮応力値と応力深さを算出した。算出に当たり、各試料の屈折率を1.53、光学弾性定数を28[(nm/cm)/MPa]とした。なお、ガラス基板(未強化ガラス基板)と強化ガラス基板は、表層において微視的にガラス組成が異なっているものの、全体として見た場合、ガラス組成は実質的に相違していない。
 表1~3から明らかなように、試料No.1~12は、圧縮応力値が324MPa以上であり、且つ応力深さが15μm以上であった。
 なお、上記では、本発明の説明の便宜上、流し出しにより、ガラス基板を成形した後、イオン交換処理の前に光学研磨を行った。工業的規模で本発明を実施する場合は、オーバーフローダウンドロー法等でガラス基板を成形し、ガラス基板の両表面が未研磨の状態でイオン交換処理を行うことが望ましい。
 [実施例1]の試料No.10を用いて、ガラス基板の傾斜角度、傾斜支持部の位置及び連結部材の位置が、強化ガラス基板の反り量に及ぼす影響を調査した。
[実験1]
 まず図2に示す支持治具と同様の支持治具(Type A)を用いて、強化ガラス基板(長辺寸法1500mm×短辺寸法1200mm×板厚0.3mm、長辺寸法1500mm×短辺寸法1200mm×板厚0.5mm)の反り量をシミュレーションした。図9は、[実施例2]の実験を説明するための説明図であり、ガラス基板Gを上方から見た概念図である。図9に示す通り、ガラス基板Gの長辺寸法をL、ガラス基板の短辺寸法をlとした。そして、ガラス基板Gの短辺側(長辺側でもよい。以下同様)の端部と、傾斜支持部の一対の支持枠材4、5との間隔をAとした。なお、ガラス基板Gの短辺側の端部(図面で左側の端部)と傾斜支持部の一方側の支持枠材4の間隔Aと、ガラス基板Gの短辺側の端部(図面で右側の端部)と傾斜支持部の他方側の支持枠材5の間隔Aとを同様とした。また、図9では、ガラス基板Gの長辺側(短辺側でもよい。以下同様)の端部と、連結枠材3ea、3ebとの間隔をBとしているが、今回の実験では、これら連結枠材を設けていない傾斜支持部の支持枠材4、5が使用されている。シミュレーションの結果を表4、図10に示す。
Figure JPOXMLDOC01-appb-T000004
 表4、図10から明らかなように、ガラス基板を傾斜させた状態でイオン交換処理を行うと、ガラス基板が大型且つ薄型であっても、反り量を一定範囲内に低減し得ることが分かる。なお、図10に示す六つの図について説明をすると、これらの各図の下方には、左側から右側に向かって、紺色、青色、緑色、黄色、赤色の順に、八段階で着色された指標が横方向に一直線状に並んでいる。そして、この一直線状に並ぶ指標の下方には、左側から右側に向かって、0、4、8、12、16、20、24、28、32という数値が等間隔で記載されている(後述する図11及び図12についても同様)。これらの数値は、引張応力の値(MPa)を示している。この指標を参酌して、図10の六つの図を視た場合、何れの図についても、24MPaを超える引張応力は発生しておらず、大半の領域が低い引張応力の値を示している。この事は、六つの図の全てについて、強化ガラス基板の反り量が小さいことを意味している。
[実験2]
 まず図3に示す支持治具と同様の支持治具(Type B)を用いて、強化ガラス基板(長辺寸法1500mm×短辺寸法1200mm×板厚0.3mm、長辺寸法1500mm×短辺寸法1200mm×板厚0.5mm)の反り量をシミュレーションした。ここで、図9に示す通り、ガラス基板Gの長辺寸法をL、ガラス基板Gの短辺寸法をlとした。そして、ガラス基板Gの短辺側の端部と傾斜支持部の一対の支持枠材4、5との間隔をAとし、ガラス基板Gの長辺側の端部と連結枠材3ea、3ebとの間隔をBとした。なお、ガラス基板Gの短辺側の端部(図面で左側の端部)と傾斜支持部の一方側の支持枠材4の間隔Aと、ガラス基板Gの短辺側の端部(図面で右側の端部)と傾斜支持部の他方側の支持枠材5の間隔Aを同様とし、ガラス基板Gの長辺側の端部(図面で上側の端部)と上側の連結枠材3eaの間隔Bと、ガラス基板Gの長辺側の端部(図面で下側の端部)と下側の連結枠材3ebの間隔Bを同様とした。シミュレーションの結果を表4、図11に示す。
 表4、図11から明らかなように、ガラス基板を傾斜させた状態でイオン交換処理を行うと、ガラス基板が大型且つ薄型であっても、反り量を一定範囲内に低減し得ることが分かる。なお、図11に示された六つの図を視る限りにおいても、既述の着色の指標を参酌すれば、大半の領域が低い引張応力の値を示しているため、これら全ての強化ガラス基板の反り量が小さいことを把握することができる。
[実験3]
 まず図3に示す支持治具と同様の支持治具(Type B)を用いて、強化ガラス基板(長辺寸法1500mm×短辺寸法1200mm×板厚0.3mm、長辺寸法1500mm×短辺寸法1200mm×板厚0.5mm)の反り量をシミュレーションした。ここで、図9に示す通り、ガラス基板Gの長辺寸法をL、ガラス基板Gの短辺寸法をlとした。そして、ガラス基板Gの短辺側の端部と傾斜支持部の一対の支持枠材4、5との間隔をAとし、ガラス基板Gの長辺側の端部と連結枠材3ea、3ebとの間隔をBとした。なお、ガラス基板Gの短辺側の端部(図面で左側の端部)と傾斜支持部の一方側の支持枠材4の間隔Aと、ガラス基板Gの短辺側の端部(図面で右側の端部)と傾斜支持部の他方側の支持枠材5の間隔Aを同様とし、ガラス基板Gの長辺側の端部(図面で上側の端部)と上側の連結枠材3eaの間隔Bと、ガラス基板Gの長辺側の端部(図面で下側の端部)と下側の連結枠材3ebの間隔Bを同様とした。シミュレーションの結果を表4、図12に示す。
 表4、図12から明らかなように、ガラス基板を傾斜させた状態でイオン交換処理を行うと、ガラス基板が大型且つ薄型であっても、反り量を一定範囲内に低減し得ることが分かる。なお、図12に示された六つの図を視る限りにおいても、既述の着色の指標を参酌すれば、大半の領域が低い引張応力の値を示しているため、これら全ての強化ガラス基板の反り量が小さいことを把握することができる。
 なお、ガラス基板を鉛直方向に支持した状態でイオン交換処理を行うと、ガラス基板の僅かに変形した部分を起点にして、自重により座屈し、結果として、反り量が不当な範囲になると考えられる。また、実験1~3では、予備加熱工程と徐冷工程の条件が十分に検討されていないが、強化ガラス基板の反り量を低減するためには、上記のような予備加熱工程と徐冷工程を設けることが望ましい。
 本発明の強化ガラス基板の製造方法は、大型のTV、デジタルサイネージ、タッチパネルディスプレイ、電子黒板、太陽電池等のカバーガラスの製造方法として好適である。また、本発明の強化ガラス基板の製造方法は、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラスの製造方法への応用が期待される。
G ガラス基板
2 支持治具
4、5 傾斜支持部(支持枠材)
3ea、3eb 傾斜支持部(連結枠材)
3ca、3cb 側部補強枠材
3da、3db 底部補強枠材
3ha、3hb ずれ防止枠材

Claims (18)

  1.  ガラス原料を溶融し、その溶融ガラスを板状に成形することにより、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、そのガラス基板を傾斜させた状態でイオン交換処理を行うことにより、ガラス基板の表面に圧縮応力層を形成することを特徴とする強化ガラス基板の製造方法。
  2.  ガラス基板を鉛直方向に対して0.1~30°傾斜させた状態でイオン交換処理を行うことを特徴とする請求項1に記載の強化ガラス基板の製造方法。
  3.  支持治具に設けた傾斜支持部によりガラス基板を支持させることによって、前記ガラス基板を傾斜させた状態でイオン交換処理を行うことを特徴とする請求項1又は2に記載の強化ガラス基板の製造方法。
  4.  (傾斜支持部がガラス基板と接する部分の長さ寸法)/(ガラス基板の4辺の長さ寸法の合計)の値が0.01以上であることを特徴とする請求項3に記載の強化ガラス基板の製造方法。
  5.  傾斜支持部のガラス基板と接触する部分が、曲率半径0.1mm以上の円弧形状であることを特徴とする請求項3又は4に記載の強化ガラス基板の製造方法。
  6.  ガラス基板の短辺側または長辺側の端部が、傾斜支持部から1mm以上外側に食み出すように、ガラス基板を配置することを特徴とする請求項3~5の何れかに記載の強化ガラス基板の製造方法。
  7.  支持治具に設けられた傾斜支持部は、相互に離間する複数の部材と、これらの部材を連結する連結部材とから構成されていることを特徴とする請求項3~6の何れかに記載の強化ガラス基板の製造方法。
  8.  液相温度1200℃以下のガラス基板が得られるように、ガラス原料を調合することを特徴とする請求項1~7の何れかに記載の強化ガラス基板の製造方法。
  9.  液相粘度104.0dPa・s以上のガラス基板が得られるように、ガラス原料を調合することを特徴とする請求項1~8の何れかに記載の強化ガラス基板の製造方法。
  10.  モル%で、SiO 40~80%、Al 5~15%、B 0~8%、LiO 0~10%、NaO 0~20%、KO 0~20%、MgO 0~10%、Al+MgO 8~16.5%を含有し、モル比で、(LiO+NaO+KO)/Al比が1~3、NaO/Al比が1~3、MgO/Al比が0~1であり、実質的にAs、PbO、Fを含有しないガラス組成になるように、ガラス原料を調合することを特徴とする請求項1~9の何れかに記載の強化ガラス基板の製造方法。
  11.  オーバーフローダウンドロー法で前記溶融ガラスを板状に成形することを特徴とする請求項1~10の何れかに記載の強化ガラス基板の製造方法。
  12.  相対する表面の残留応力差が10MPa以下になるガラス基板をイオン交換処理することを特徴とする請求項1~11の何れかに記載の強化ガラス基板の製造方法。
  13.  表面の圧縮応力値が300MPa以上、且つ応力深さが10μm以上になるように、イオン交換処理を行うことを特徴とする請求項1~12の何れかに記載の強化ガラス基板の製造方法。
  14.  ガラス基板の表面を研磨する工程を有しないことを特徴とする請求項1~13の何れかに記載の強化ガラス基板の製造方法。
  15.  請求項1~14の何れかに記載の強化ガラス基板の製造方法により作製されてなることを特徴とする強化ガラス基板。
  16.  表面に圧縮応力層を有する強化ガラス基板であって、長辺寸法が1000mm以上、短辺寸法が500mm以上であり、且つ反り量が1%以下であることを特徴とする強化ガラス基板。
  17.  ガラス原料を溶融し、その溶融ガラスを板状に成形することにより、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、そのガラス基板を、(イオン交換温度+50)℃~(イオン交換温度−50)℃の温度で10分間~2時間予備加熱し、その予備加熱されたガラス基板に対して、イオン交換処理を行うことにより、ガラス基板の表面に圧縮応力層を形成することを特徴とする強化ガラス基板の製造方法。
  18.  ガラス原料を溶融し、その溶融ガラスを板状に成形することにより、長辺寸法1000mm以上、短辺寸法500mm以上のガラス基板を得た後、そのガラス基板に対して、イオン交換処理を行うことにより、ガラス基板の表面に圧縮応力層を形成し、これにより得られた強化ガラス基板を100~400℃の温度で30分間~4時間徐冷することを特徴とする強化ガラス基板の製造方法。
PCT/JP2013/071942 2012-08-09 2013-08-08 強化ガラスの製造方法及び強化ガラス基板 WO2014025068A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380039673.1A CN104487396A (zh) 2012-08-09 2013-08-08 强化玻璃的制造方法及强化玻璃基板
US14/611,610 US20150166405A1 (en) 2012-08-09 2015-02-02 Manufacturing method for tempered glass substrate, and tempered glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176695 2012-08-09
JP2012176695 2012-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/611,610 Continuation-In-Part US20150166405A1 (en) 2012-08-09 2015-02-02 Manufacturing method for tempered glass substrate, and tempered glass substrate

Publications (2)

Publication Number Publication Date
WO2014025068A2 true WO2014025068A2 (ja) 2014-02-13
WO2014025068A3 WO2014025068A3 (ja) 2014-04-17

Family

ID=50068653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071942 WO2014025068A2 (ja) 2012-08-09 2013-08-08 強化ガラスの製造方法及び強化ガラス基板

Country Status (3)

Country Link
US (1) US20150166405A1 (ja)
CN (1) CN104487396A (ja)
WO (1) WO2014025068A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178175A1 (ja) * 2014-05-20 2015-11-26 日本電気硝子株式会社 強化ガラス板及びその製造方法
WO2016060202A1 (ja) * 2014-10-17 2016-04-21 旭硝子株式会社 カバー部材
JP2016160135A (ja) * 2015-03-02 2016-09-05 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JP2016534019A (ja) * 2013-09-13 2016-11-04 コーニング インコーポレイテッド 亀裂発生閾値が高いイオン交換可能なガラス
WO2016190303A1 (ja) * 2015-05-28 2016-12-01 旭硝子株式会社 ガラス基板、および積層基板
US9653308B2 (en) * 2015-08-28 2017-05-16 International Business Machines Corporation Epitaxial lift-off process with guided etching
JPWO2018074198A1 (ja) * 2016-10-21 2019-08-22 Agc株式会社 化学強化ガラス板
US11746045B2 (en) * 2016-03-04 2023-09-05 Corning Incorporated Ion-exchangeable glass with high surface compressive stress

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187365B2 (en) * 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
TWI633073B (zh) * 2013-10-14 2018-08-21 康寧公司 離子交換方法及由彼得到之化學強化玻璃基板
US10315949B2 (en) * 2015-02-26 2019-06-11 Corning Incorporated Fast ion-exchangeable boron-free glasses with low softening point
CN107531554A (zh) * 2015-05-13 2018-01-02 旭硝子株式会社 玻璃板
CN109071315B (zh) 2016-04-29 2022-06-14 肖特玻璃科技(苏州)有限公司 高强度超薄玻璃以及其制造方法
CN105948536B (zh) * 2016-06-16 2019-02-26 深圳市东丽华科技有限公司 单一强化层玻璃及其制备方法
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses
CN110167895B (zh) 2016-11-07 2022-07-15 康宁股份有限公司 低粘度玻璃以及制造方法和系统
KR20220106900A (ko) * 2021-01-22 2022-08-01 삼성디스플레이 주식회사 기판 적재용 카세트 및 이를 이용한 기판 처리 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241845A (ja) * 1986-04-10 1987-10-22 Central Glass Co Ltd ガラス板の保持方法
JP2004161538A (ja) * 2002-11-13 2004-06-10 Central Glass Co Ltd 化学強化ガラスの製造装置
JP2011123924A (ja) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd データ記憶媒体用ガラス基板の製造方法及びガラス基板
JP2011134367A (ja) * 2009-12-22 2011-07-07 Asahi Glass Co Ltd データ記憶媒体用ガラス基板の製造方法及びガラス基板
WO2012073603A1 (ja) * 2010-12-03 2012-06-07 旭硝子株式会社 ディスプレイ装置用化学強化ガラス基板の製造方法
WO2012099002A1 (ja) * 2011-01-18 2012-07-26 日本電気硝子株式会社 強化ガラス及び強化ガラス板
JP2012250905A (ja) * 2011-05-11 2012-12-20 Hoya Corp 電子機器用カバーガラスの製造方法および電子機器用カバーガラスのガラス基板保持具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD69678A (ja) * 1967-04-28
US3589885A (en) * 1969-04-07 1971-06-29 Owens Illinois Inc Glass melting with a refining agent
GB1275653A (en) * 1969-08-15 1972-05-24 Glaverbel Articles of chemically tempered glass
BE792479A (fr) * 1971-12-09 1973-03-30 Nippon Sheet Glass Co Ltd Elimination des substances nocives hors des sels fondus utilises pour le traitement d'echange ionique d'objets en
US4290793A (en) * 1978-12-08 1981-09-22 Liberty Glass Company Fluid bed chemical strengthening of glass objects
US4881866A (en) * 1988-06-21 1989-11-21 Libbey-Owens-Ford Co. Glass handling apparatus
US6536607B1 (en) * 2001-11-15 2003-03-25 Schneider National Inc. Transportable rack
US20040195142A1 (en) * 2003-04-01 2004-10-07 Takayoshi Hayashi Packing of thin glass sheets
US7815056B2 (en) * 2007-05-08 2010-10-19 Corning Incorporated Support apparatus to maintain physical geometry of sheet glass and methods of using same
EP2321230A4 (en) * 2008-07-29 2012-10-10 Corning Inc TWO-STAGE ION EXCHANGE FOR GLASS CHEMICAL REINFORCEMENT
US20100215862A1 (en) * 2009-02-26 2010-08-26 Sinue Gomez Method for forming an opal glass
US8826693B2 (en) * 2010-08-30 2014-09-09 Corning Incorporated Apparatus and method for heat treating a glass substrate
US8835007B2 (en) * 2011-01-19 2014-09-16 Nippon Electric Glass Co., Ltd. Tempered glass and tempered glass sheet
US20130219965A1 (en) * 2012-02-29 2013-08-29 Corning Incorporated Counter-current continuous ion-exchange method for strengthening glass articles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241845A (ja) * 1986-04-10 1987-10-22 Central Glass Co Ltd ガラス板の保持方法
JP2004161538A (ja) * 2002-11-13 2004-06-10 Central Glass Co Ltd 化学強化ガラスの製造装置
JP2011123924A (ja) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd データ記憶媒体用ガラス基板の製造方法及びガラス基板
JP2011134367A (ja) * 2009-12-22 2011-07-07 Asahi Glass Co Ltd データ記憶媒体用ガラス基板の製造方法及びガラス基板
WO2012073603A1 (ja) * 2010-12-03 2012-06-07 旭硝子株式会社 ディスプレイ装置用化学強化ガラス基板の製造方法
WO2012099002A1 (ja) * 2011-01-18 2012-07-26 日本電気硝子株式会社 強化ガラス及び強化ガラス板
JP2012250905A (ja) * 2011-05-11 2012-12-20 Hoya Corp 電子機器用カバーガラスの製造方法および電子機器用カバーガラスのガラス基板保持具

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534019A (ja) * 2013-09-13 2016-11-04 コーニング インコーポレイテッド 亀裂発生閾値が高いイオン交換可能なガラス
US11306019B2 (en) 2013-09-13 2022-04-19 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
JP2016000682A (ja) * 2014-05-20 2016-01-07 日本電気硝子株式会社 強化ガラス板及びその製造方法
WO2015178175A1 (ja) * 2014-05-20 2015-11-26 日本電気硝子株式会社 強化ガラス板及びその製造方法
CN107074639A (zh) * 2014-10-17 2017-08-18 旭硝子株式会社 盖构件
WO2016060202A1 (ja) * 2014-10-17 2016-04-21 旭硝子株式会社 カバー部材
JP2016160135A (ja) * 2015-03-02 2016-09-05 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JPWO2016190303A1 (ja) * 2015-05-28 2018-03-15 旭硝子株式会社 ガラス基板、および積層基板
KR20180013914A (ko) * 2015-05-28 2018-02-07 아사히 가라스 가부시키가이샤 유리 기판 및 적층 기판
US10515864B2 (en) 2015-05-28 2019-12-24 AGC Inc. Glass substrate and laminated substrate
US11114356B2 (en) 2015-05-28 2021-09-07 AGC Inc. Glass substrate and laminated substrate
WO2016190303A1 (ja) * 2015-05-28 2016-12-01 旭硝子株式会社 ガラス基板、および積層基板
KR102515348B1 (ko) 2015-05-28 2023-03-30 에이지씨 가부시키가이샤 유리 기판 및 적층 기판
KR20230044547A (ko) * 2015-05-28 2023-04-04 에이지씨 가부시키가이샤 유리 기판 및 적층 기판
US11715673B2 (en) 2015-05-28 2023-08-01 AGC Inc. Glass substrate and laminated substrate
KR102651767B1 (ko) 2015-05-28 2024-03-28 에이지씨 가부시키가이샤 유리 기판 및 적층 기판
US9865469B2 (en) 2015-08-28 2018-01-09 International Business Machines Corporation Epitaxial lift-off process with guided etching
US9653308B2 (en) * 2015-08-28 2017-05-16 International Business Machines Corporation Epitaxial lift-off process with guided etching
US11746045B2 (en) * 2016-03-04 2023-09-05 Corning Incorporated Ion-exchangeable glass with high surface compressive stress
JPWO2018074198A1 (ja) * 2016-10-21 2019-08-22 Agc株式会社 化学強化ガラス板

Also Published As

Publication number Publication date
US20150166405A1 (en) 2015-06-18
CN104487396A (zh) 2015-04-01
WO2014025068A3 (ja) 2014-04-17

Similar Documents

Publication Publication Date Title
WO2014025068A2 (ja) 強化ガラスの製造方法及び強化ガラス基板
JP5743125B2 (ja) 強化ガラス及び強化ガラス基板
JP5418995B1 (ja) 強化ガラス基板及びその製造方法
JP5365974B2 (ja) 強化ガラス基板及びその製造方法
JP5904426B2 (ja) 強化ガラスおよびその製造方法
JP5875133B2 (ja) 強化ガラス基板
JP6136599B2 (ja) 強化ガラス及び強化ガラス板並びに強化用ガラス
JP5721066B2 (ja) 強化ガラス及び強化ガラス板
JP5339173B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP6300177B2 (ja) 強化ガラスの製造方法
WO2013191200A1 (ja) 強化ガラスの製造方法
WO2013125507A1 (ja) 強化ガラス
JP6187015B2 (ja) 強化ガラスの製造方法及び強化ガラス基板
JP5796905B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827631

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13827631

Country of ref document: EP

Kind code of ref document: A2