[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014010466A1 - 鉄道車両のエネルギ回生及び駆動アシスト装置 - Google Patents

鉄道車両のエネルギ回生及び駆動アシスト装置 Download PDF

Info

Publication number
WO2014010466A1
WO2014010466A1 PCT/JP2013/068106 JP2013068106W WO2014010466A1 WO 2014010466 A1 WO2014010466 A1 WO 2014010466A1 JP 2013068106 W JP2013068106 W JP 2013068106W WO 2014010466 A1 WO2014010466 A1 WO 2014010466A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
pump
information
motor
hydraulic motor
Prior art date
Application number
PCT/JP2013/068106
Other languages
English (en)
French (fr)
Inventor
己喜朗 笹島
梶原 文宏
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2014010466A1 publication Critical patent/WO2014010466A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an apparatus for regenerating energy in a railway vehicle and assisting driving of the railway vehicle, and more particularly to an apparatus for performing energy management.
  • a technology is known that suppresses the consumption of all energy by regenerating power when a brake is operated in a railway vehicle.
  • power regeneration can be performed only by a train driven by an electric motor.
  • it cannot be regenerated.
  • Patent Document 1 proposes a technique in which a capacitor is mounted on a train, regenerative power of an electric motor included in the train is collected in the capacitor, and the electric motor is driven by the collected power. Furthermore, a generator, an electric motor, and a battery are mounted on a diesel car equipped with a diesel engine, the generator is driven by the diesel engine, the electric motor is driven by the electric power of the generator, and the regeneration from the electric motor is performed when the vehicle decelerates.
  • Patent Document 2 proposes a technique for storing electric power in a battery and driving an electric motor using line power stored in the battery. Further, Patent Document 3 discloses a technique in which an electric vehicle is used in combination with a capacitor capable of charging and discharging a large current and a large capacity battery. Patent Document 4 discloses a technique for performing energy management in a high-bridge automobile using a capacitor and a battery.
  • Patent Literatures 1 to 4 By combining the techniques of Patent Literatures 1 to 4, for example, a vehicle including an electric motor, a battery, and a capacitor in a vehicle equipped with an engine, and a technology for performing energy management of these can be considered.
  • the technology of Patent Document 4 discloses that any energy is freely transferred from any device to any other device regardless of the voltage of each of the battery, the capacitor, and the electric motor.
  • the optimum energy management is not performed as a whole, and the proper energy supply which is really necessary is not performed. Therefore, energy saving cannot be achieved even by the above combination technique.
  • An object of the present invention is to provide an energy regeneration and drive assist device that can save energy in a railway vehicle.
  • the energy regeneration and drive assist device for a railway vehicle is installed in the railway vehicle.
  • the railway vehicle includes drive means, which can drive wheels, and the efficiency varies depending on the rotation speed and output torque.
  • drive means for example, an engine or an electric motor can be used as the driving means.
  • Drive assist and regeneration means capable of driving the wheel and recovering kinetic energy from the wheel are provided in the energy regeneration and drive assist device.
  • driving assistance and regenerative means use driving assistance with mechanical energy, regenerating mechanical energy, driving assistance with electrical energy, or regenerating electrical energy. Can do.
  • Control patterns of the driving means and the driving assist and regeneration means are stored in the control device.
  • This control pattern is based on the information on the driving means, the information on the driving assistance and the regenerating means, the information on the traveling route, and the information on the operating pattern, so that the energy balance required for the operation on the entire route is minimized. It is predetermined to become.
  • the control device controls the driving means and the driving assist and regeneration means according to at least the position of the vehicle and the control pattern.
  • information of the drive means there is operation command information such as acceleration or deceleration, for example.
  • As the route information for example, there is altitude information on the route on which the railway vehicle travels.
  • Information on the operation pattern includes, for example, information on how to accelerate the train when leaving the station, how to operate the coast between the stations, and how to slow down toward the station.
  • the drive means according to which position on the control pattern is determined so that the energy balance is minimized on the entire route.
  • Drive assist and regenerative means are controlled. Therefore, compared with the case where the driving means, the driving assistance and the regenerative means are controlled so as to be optimal at each time point during the traveling of the vehicle, the overall energy consumption necessary for the operation (however, the cooling / heating and lighting in the vehicle is reduced). Energy consumption is excluded), and energy saving can be achieved.
  • the control device determines that the energy balance necessary for operation on the entire route is based on the status of the route ahead of the current position of the vehicle and the changed operation pattern. It can be reset to be minimal. For example, when the operation pattern changes, a red light or the like temporarily causes a situation different from the original operation pattern. Even in such a case, the entire energy consumption can be suppressed by resetting the control pattern.
  • the drive assist and regenerative means may include a hydraulic motor and pump, and an accumulator.
  • the driving assistance and regeneration means further includes another hydraulic motor and pump, an electric motor and a generator, and a storage battery that are controlled according to at least the position of the vehicle and the control pattern.
  • the control pattern is further determined based on information on the other hydraulic motor and pump, information on the electric motor and generator, and information on the storage battery.
  • FIG. 1 is a block diagram of an energy regeneration and assist device for a railway vehicle according to an embodiment of the present invention.
  • FIG. 2a is a diagram showing the rotational speed versus torque characteristics of the engine 4 used in the apparatus of FIG.
  • FIG. 2b is a diagram showing the rotational speed versus torque characteristics of the motor / generator 14 used in the apparatus of FIG.
  • FIG. 3 is an explanatory diagram of an optimized operation control pattern in the apparatus of FIG.
  • FIG. 4 is an explanatory diagram of an operating state during initial acceleration in the apparatus of FIG.
  • FIG. 5 is an explanatory diagram of an example of the operating state during acceleration after the initial acceleration in the apparatus of FIG.
  • FIG. 6 is an explanatory diagram of another example of the operating state during acceleration after the initial acceleration in the apparatus of FIG.
  • FIG. 1 is a block diagram of an energy regeneration and assist device for a railway vehicle according to an embodiment of the present invention.
  • FIG. 2a is a diagram showing the rotational speed versus torque characteristics of the engine 4 used
  • FIG. 7 is an explanatory diagram of an example of the operating state during coasting in the apparatus of FIG.
  • FIG. 8 is an explanatory diagram of the operation state of another example during coasting in the apparatus of FIG.
  • FIG. 9 is an explanatory diagram of another example of the operating state during coasting in the apparatus of FIG. 10 is an explanatory diagram of an example of the operating state during deceleration in the apparatus of FIG.
  • FIG. 11 is an explanatory diagram of another example of the operating state during deceleration in the apparatus of FIG.
  • FIG. 12 is an explanatory diagram of an individual optimization operation control pattern in the apparatus of FIG.
  • FIG. 13 is an explanatory diagram when the optimized operation control pattern changes in the middle of the apparatus of FIG.
  • the energy regeneration and drive assist device drives a wheel 2 of a railway vehicle with drive means, for example, an engine 4 as shown in FIG.
  • an engine 4 for example, a diesel engine can be used.
  • the wheel 2 driven by the engine 4 may be provided on a specific axle among a plurality of axles included in the railway vehicle.
  • an engine 4 may be provided for each of a plurality of axles, and the wheels 2 of each axle may be driven by the engine 4 of each axle.
  • the wheel 2 is driven by the hydraulic motor / pump 6 when the hydraulic motor / pump 6 that forms part of the drive assist and regenerative means operates as a hydraulic motor. Further, the hydraulic motor / pump 6 is regeneratively driven by the wheel 2 and also operates as a hydraulic pump. When operating as a hydraulic pump, the mechanical energy generated by the hydraulic motor / pump 6 is accumulated as pressure in an accumulator 8 that forms part of the drive assist and regenerative means. The accumulator 8 can recover a large amount of energy in a short time, but has a small capacity. Further, when the hydraulic motor / pump 6 operates as a motor, the wheel 2 can be driven by pressure energy accumulated in the accumulator 8. The hydraulic motor / pump 6 is coupled to the reservoir 10. Excess oil is automatically supplied from the hydraulic motor / pump 6 to the reservoir 10. When oil shortage occurs in the hydraulic motor / pump 6, the oil is automatically supplied from the reservoir 10 to the hydraulic motor / pump 6.
  • Another hydraulic motor / pump 12 that forms part of the driving assistance and regenerative means functions as a pump, and the hydraulic motor / pump 6 is operated as a hydraulic motor so that the hydraulic motor / pump 6 drives the wheel 2. is there.
  • the hydraulic motor / pump 6 functions as a hydraulic pump by the rotation of the wheel 2 and drives the hydraulic motor pump 12 as a hydraulic motor.
  • the motor / generator 14 When the hydraulic motor / pump 12 operates as a pump, an electric motor and a generator, for example, the motor / generator 14 operates as a motor for driving the hydraulic motor / pump 12.
  • the motor / generator 14 When the hydraulic motor / pump 12 operates as a hydraulic motor, the motor / generator 14 operates as a generator, and the energy generated by the generator, that is, electric power, is stored in a storage means, for example, a battery 16.
  • the motor / generator 14 operates as a motor by the stored power of the battery 16.
  • the battery 16 takes a long time compared to the accumulator 8, but can recover a large amount of energy.
  • the control device 18 includes speed information indicating the current speed of the rail vehicle from the speed sensor 20, voltage information indicating the current voltage of the battery 16 from the voltage detector 22, and current pressure of the accumulator 8 from the pressure sensor 24. , Pressure information indicating the current position of the railway vehicle from the GPS 26, and altitude information indicating the current height of the railway vehicle from the altimeter 28. Furthermore, current driving command information from the operating means 30 operated by the driver of the railway vehicle, for example, an acceleration command, a deceleration command, and a constant velocity command are also supplied.
  • the control device 18 controls each of the above-described devices based on the various information and a control pattern that is determined in advance and stored in the control device 18, for example, a specific route-corresponding optimum operation control pattern.
  • the wheel 2 is also provided with braking means for braking, for example, an air breaker, but is not shown.
  • the engine 4 has the most efficient rotation speed and torque, as shown in FIG. 2b. Therefore, if the vehicle is operated only in accordance with a predetermined operation pattern of the railway vehicle, the efficiency of the engine 4 and the motor / generator 14 is deteriorated.
  • the optimum operation pattern for a specific route uses the energy collected by the accumulator 8 and the battery 16 to increase the efficiency of the engine 4 and the motor / generator 14 and to provide the energy necessary to operate from the first station to the last station. It is set to be minimized.
  • FIG. 3 shows an example of the altitude of each station on a certain route, the operation pattern of the railway vehicle, and the optimum operation control pattern corresponding to the specific route.
  • Station A to Station F There are six stations, Station A to Station F, on this route.
  • From station B to the next station C is a gentle uphill climb, and the distance is approximately the same as between stations A and B.
  • From station C to the next station D is a steep uphill climb, and the distance is almost the same as between stations A and B.
  • the steep downhill slope from station D to the next station E is shorter than the distance between stations C and D. From station E to the final station F, the slope is gentle and the distance is the longest.
  • the speed is to accelerate to a predetermined constant speed when leaving any station, maintain the constant speed, decelerate when approaching the next station, and arrive at the next station.
  • the time required for acceleration and the time required for deceleration are both shown as constant.
  • the engine 4 is operated or stopped, and then the hydraulic motor / pump 6 is operated as a motor, pumped, or stopped.
  • the motor / generator 14 also operates the motor, operates the generator, or stops it.
  • the pressure energy accumulated in the accumulator 8 is supplied to the hydraulic motor / pump 6 as shown in FIG. To do.
  • the hydraulic motor pump 6 is operated as a motor by the energy of the accumulator 8 to drive the wheel 2 and the wheel 4 is also driven by the engine 4.
  • the energy of the battery 16 is supplied to the motor / generator 14 as shown in FIG. 8, and the motor / generator 14 is operated as a motor.
  • the motor / generator 14 of this motor operation operates the hydraulic motor / pump 12 as a pump.
  • the hydraulic motor / pump 6 operates as a motor by the hydraulic motor / pump 12 of the pump operation to drive the wheels 2. This may be added as an aid in the case of driving wheels by the engine 4. It may also be used during acceleration.
  • the pressure energy accumulated in the accumulator 8 is supplied to the hydraulic motor / pump 6 as shown in FIG. 9, and the hydraulic motor / pump 6 is operated as a motor to drive the wheels 2. To do. This may also be added as an auxiliary in the case of driving wheels by the engine 4.
  • the rotational energy of the wheel 2 is supplied to the hydraulic motor / pump 6 operating as a pump as shown in FIG. 10 and the rotational energy of the wheel 2 is accumulated in the accumulator 8. To do. Thereby, the rotational energy of the wheel 2 can be absorbed in a short time. However, the capacity of the recovered energy is smaller than when energy is stored in the battery 16.
  • the rotational energy of the wheel 2 is supplied to the hydraulic motor / pump 6 operating as a pump as shown in FIG.
  • the hydraulic motor / pump 12 is operated as a motor by the hydraulic motor / pump 6 operating as a pump.
  • the hydraulic motor / pump 12 operating as a motor operates the motor / generator 14 as a generator and accumulates the generated power in the battery 16. This is suitable when energy absorption takes a long time, and a large amount of energy is stored in the battery 16.
  • the hydraulic vehicle / pump 6 When departing from the station B, as in the case of the departure from the station A, the hydraulic vehicle / pump 6 is operated by the energy of the accumulator 8 as shown in FIG. However, the time is shortened compared with the acceleration of the station A, and energy is left in the accumulator 8. This is because, as will be described later, when starting from the station C, the gradient is steep, so that the energy of the accumulator 8 is used to the maximum to reduce the burden on the engine 4. Since the acceleration with the energy of the accumulator 8 was stopped in the middle of the acceleration, the acceleration was continued only by the engine 4 as shown in FIG. 6 and when the predetermined speed was reached, only the engine 4 was operated as shown in FIG. As shown in FIG.
  • the motor / generator 14 is operated as a motor
  • the hydraulic motor / pump 12 is operated as a pump
  • the hydraulic / motor pump 6 is operated as a pump.
  • the wheel 2 is driven by operating as a motor. Since the wheels 2 are also driven by the hydraulic motor / pump 6, the burden on the engine 4 is small even when traveling on a sloped point.
  • deceleration is performed by energy accumulation in the accumulator 8 by the pumping operation of the hydraulic motor pump 6.
  • the surplus energy is not stored in the accumulator 8, but the energy of the accumulator 8 is left when accelerating at the station B. The energy is stored in the accumulator 8 to the maximum even if the amount of generated energy is small.
  • the hydraulic motor / pump 6 When leaving the station C, as shown in FIG. 4, the hydraulic motor / pump 6 is driven by the energy of the accumulator 8 to drive the wheels 2 to accelerate the railway vehicle. Next, the engine 4 is accelerated only by the engine 4 as shown in FIG. When accelerating with the hydraulic motor / pump 6, the accumulation of energy in the accumulator 8 is performed to the maximum. Therefore, the burden on the engine 4 in the subsequent acceleration with the engine 4 is a sudden torque that requires a large torque. There is little uphill. When the predetermined speed is reached, only the engine 4 is operated and the coasting operation is performed as shown in FIG. When approaching the station D, in order to decelerate, as shown in FIG.
  • the hydraulic motor / pump 6 is operated as a pump by driving the wheel 2 and the hydraulic motor / pump 12 is operated as a motor as shown in FIG. Operate as a generator and store in battery 16. The amount of energy per short time is small and the amount of energy stored is small. Unlike the deceleration at the stations B and C, the deceleration by the pump operation of the hydraulic motor / pump 6 is not performed. The reason will be described later.
  • the wheel 2 is driven by the motor operation of the hydraulic / motor pump 6 with the energy of the battery 16 shown in FIG. 8, but since the amount of power stored in the battery 16 is small, it is shown in FIG.
  • the acceleration by the engine 4 is also performed at the same time, and the acceleration by the engine 4 is performed for a longer time.
  • the deceleration by charging the battery 16 shown in FIG. This deceleration is continued even after the engine 4 stops driving the wheels 2 in order to keep the speed constant.
  • the wheel 2 When leaving the station E, the wheel 2 is driven by the hydraulic / motor pump 6 by the energy of the accumulator 8 shown in FIG.
  • the engine 4 shown in FIG. 6 runs at a constant speed.
  • energy is stored in the battery 16 by the generator operation of the motor / generator 14 shown in FIG.
  • Energy accumulation in the battery 16 is performed because of the long-term energy Chikusei with a gentle downward slope.
  • the driving of the wheel 2 by the engine 4 is temporarily stopped, and the driving of the wheel 2 by the hydraulic motor 6 is performed a predetermined number of times, for example, a plurality of times.
  • FIG. 12 shows a case where the hydraulic / pump 6 and accumulator 8, the battery 16 and the motor / generator 14 are individually optimized and operated.
  • the energy of the accumulator 6 is not used by the hydraulic motor / pump 6, whereas the energy of the accumulator 6 is used by the hydraulic motor / pump 6 in this individual optimization pattern. Therefore, at the time of deceleration at the station C, since the deceleration is performed on an ascending slope, the energy that can be regenerated from the wheels 2 is small, and the energy cannot be stored in the accumulator 6 fully.
  • the motor operating time of the hydraulic motor / pump 6 at the time of acceleration at the station C is shorter than that in the case of the optimum operation control in FIG.
  • the accumulated energy in the accumulator 8 cannot be sufficiently consumed by the motor operation of the hydraulic motor / pump 6 at the departure of the station E, and the hydraulic motor / pump 6 is operated by the motor when decelerating when reaching the station F. Then, the vehicle is decelerated by the air brake, and wasteful consumption of energy occurs.
  • wasteful consumption of energy occurs, but in the optimum operation control, wasteful consumption of energy does not occur.
  • FIG. 13 shows a case where the optimum operation control in FIG. 3 is changed by the control device 18 as a result of the operation pattern changing in the middle. That is, in a state where the vehicle departs from the station A and travels at a constant speed, the signal changes to a red signal for some reason, decelerates, and travels at a constant speed after deceleration. Since the engine 4 travels at a constant speed only, the engine 4 is temporarily stopped and decelerated by an air brake (not shown). Since this deceleration state is a low speed, the motor / generator 14 is operated as a motor to assist travel.
  • Such a change in the control pattern is caused by the situation of the route ahead of the point where it stopped at the red light, that is, whether there is an uphill or downhill in the future, a changed operation pattern, for example, traveling at a constant speed after deceleration.
  • the control pattern needs to be increased by the battery 16 from the station B, for example, so that the energy balance required for operation on the entire route is minimized based on whether or not the vehicle must be decelerated and decelerated. Therefore, when accelerating from the constant speed after deceleration by the red signal, the control device 18 resets the acceleration by the engine 4 alone.
  • the engine 4 is used as the driving means, but a motor / generator, for example, can be used instead.
  • drive assistance and regeneration means drive assistance and regeneration means for the accumulator 8, hydraulic motor / pump 6 mechanical system, and battery 16, motor / generator 14, hydraulic motor / pumps 12, 6 electrical system drive assistance and Although the regeneration means is provided, only one of them can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

車輪(2)をエンジン(4)が駆動可能で、エンジン(4)は回転数及び出力トルクによって効率が異なる鉄道車両において、油圧モータ/ポンプ(6)とアキュムレータ(8)が車輪(2)を駆動可能で、車輪(2)から運動エネルギを回収可能である。制御装置(18)が、エンジン(4)の情報と、前記駆動補助及び回生手段の情報と、走行する路線の情報と、運行パターンの情報とに基づいて、路線全体でエネルギ収支が最小となるように予め定められた制御パターンを記憶し、エンジン(4)と油圧モータ/ポンプ(6)とアキュムレータ(8)を、少なくとも車両の位置と前記制御パターンとに応じて制御する。

Description

鉄道車両のエネルギ回生及び駆動アシスト装置
 本発明は、鉄道車両においてエネルギを回生すると共に、前記鉄道車両の駆動をアシストする装置に関し、特にエネルギマネージメントを行うものに関する。
 鉄道車両においてブレーキを作動させた時に電力回生することによって全エネルギの消費を押さえる技術が知られている。しかし、電力回生は、電気モータによって駆動される電車でなければ行うことができない。更に、電力回生しようとする電車の近隣に、別の電車が存在しない場合には、電力回生を行うことができない。
 そのため、電車にキャパシタを搭載し、電車が備える電気モータの回生電力をキャパシタに回収し、回収された電力によって電気モータを駆動する技術が、特許文献1に提案されている。更に、ディーゼルエンジンを備えた気動車に発電機と電気モータとバッテリを搭載し、ディーゼルエンジンによって発電機を駆動し、この発電機の電力で電気モータを駆動し、車両の減速時に電気モータからの回生電力をバッテリに蓄電し、このバッテリに蓄電された回線電力も使用して電気モータを駆動する技術が、特許文献2に提案されている。また、電気自動車に、大電流の充放電が可能なキャパシタと、大容量のバッテリとを組み合わせて使用する技術が、特許文献3に開示されている。また、キャパシタとバッテリとを利用したハイブリッジ自動車において、エネルギマネージメントを行う技術が、特許文献4に開示されている。
特開2004-4507号公報 特開2012-01599号公報 特開平5-30608号公報 特開2004-056995号公報
 特許文献1乃至4の技術を組み合わせることによって、例えばエンジンを備えた車両において電気モータ、バッテリ及びキャパシタを備え、これらのエネルギマネージメントを行う技術が考えられる。しかし、特許文献4の技術では、バッテリ、キャパシタ、電気モータそれぞれの電圧がどのようになっていても、任意の装置から別の任意の装置へ任意のエネルギを自由に移送することが開示されているだけであり、全体的に最適なエネルギマネージメントが行われて無く、真に必要とする適切なエネルギ供給が行われていない。従って、上記組合せの技術によっても、省エネルギ化を図れていない。
 本発明は、鉄道車両において省エネルギ化を図ることができるエネルギ回生及び駆動アシスト装置を提供することを目的とする。
 本発明の一態様の鉄道車両のエネルギ回生及び駆動アシスト装置は鉄道車両に設置される。鉄道車両は、駆動手段を備え、この駆動手段は、車輪を駆動可能で、回転数及び出力トルクによって効率が異なる。駆動手段としては、例えばエンジンまたは電気モータを使用することができる。前記車輪を駆動可能で、前記車輪から運動エネルギを回収可能な駆動補助及び回生手段が、前記エネルギ回生及び駆動アシスト装置に設けられている。駆動補助及び回生手段としては、機械的エネルギで駆動補助したり、機械的エネルギを回生したりするものや、電気的エネルギで駆動補助したり、電気的エネルギを回生したりするものを使用することができる。前記駆動手段と前記駆動補助及び回生手段との制御パターンが制御装置に記憶されている。この制御パターンは、前記駆動手段の情報と、前記駆動補助及び回生手段の情報と、走行する路線の情報と、運行パターンの情報とに基づいて、路線全体で運行に必要なエネルギ収支が最小となるように予め定められている。前記制御装置は、前記駆動手段と前記駆動補助及び回生手段を、少なくとも前記車両の位置と前記制御パターンとに応じて制御する。駆動手段の情報としては、例えば加速または減速のような運転指令情報がある。路線の情報としては、例えば鉄道車両が走行する路線の高度情報がある。運行パターンの情報としては、例えば駅からの発車時にどのように加速運行するとか、駅間でどのように惰行運行するか、駅への停車に向けてどのように減速するかの情報がある。
 このように構成した鉄道車両のエネルギ回生及び駆動アシスト装置では、路線全体でエネルギ収支が最小となるように定められた制御パターン上のいずれの位置を車両が走行しているかに応じて、駆動手段、駆動補助及び回生手段を制御する。従って、車両走行中のそれぞれの時点で最適になるように、駆動手段、駆動補助及び回生手段を制御する場合に比較して、運行に必要な全体のエネルギ消費(但し、車内の冷暖房や照明が消費するエネルギは除く。)を抑えることができ、省エネルギ化を図ることができる。
 前記制御装置は、前記運行パターンが変化したとき、前記車両の現在位置より前方の路線の状況と、変化した運行パターンとに基づいて、前記制御パターンを、路線全体で運行に必要なエネルギ収支が最小となるように、再設定するものとすることができる。例えば運行パターンが変化する場合としては、赤信号などで一時的に本来の運行パターンと異なる状況となる場合がある。このような場合でも、制御パターンを再設定することにより、全体のエネルギ消費を抑えることができる。
 前記駆動補助及び回生手段は、油圧モータ及びポンプと、アキュムレータとを、含むものとすることができる。この場合、記駆動補助及び回生手段は、更に、少なくとも前記車両の位置と前記制御パターンとに応じて制御される、別の油圧モータ及びポンプと、電気モータ及び発電機と、蓄電池とを、含み、前記制御パターンは、更に前記別の油圧モータ及びポンプの情報と、前記電気モータ及び発電機の情報と、前記蓄電池の情報とにも基づいて定められている。このように構成すると、例えば短時間で大きなエネルギを回収したり、出力したりする場合には、油圧モータ及びポンプによる油圧を使用し、長時間で大きなエネルギを回収したり、出力したりする場合には、電気モータ及び発電機による電気を使用するので、限られたエネルギ蓄積容量でも、エネルギ収支を最適化することができる。
図1は本発明の一実施形態の鉄道車両のエネルギ回生及びアシスト装置のブロック図である。 図2aは図1の装置において使用されるエンジン4の回転数対トルク特性を示す図である。 図2bは図1の装置において使用されるモータ/ジェネレータ14の回転数対トルク特性を示す図である。 図3は図1の装置における最適化運行制御パターンの説明図である。 図4は図1の装置における初期加速時の動作状態の説明図である。 図5は図1の装置における初期加速時以降の加速時の一例の動作状態の説明図である。 図6は図1の装置における初期加速時以降の加速時の他の例の動作状態の説明図である。 図7は図1の装置における惰行時の一例の動作状態の説明図である。 図8は図1の装置における惰行時の他の例の動作状態の説明図である。 図9は図1の装置における惰行時の別の例の動作状態の説明図である。 図10図1の装置における減速時の一例の動作状態の説明図である。 図11は図1の装置における減速時の他の例の動作状態の説明図である。 図12は図1の装置において個別最適化運行制御パターンの説明図である。 図13は図1の装置において最適化運行制御パターンが途中で変化した場合の説明図である。
 本発明の一実施形態のエネルギ回生及び駆動アシスト装置は、図1に示すように鉄道車両の車輪2を駆動手段、例えばエンジン4で駆動するものである。エンジン4としては、例えばディーゼルエンジンを使用することができる。エンジン4で駆動される車輪2は、鉄道車両が備える複数の車軸のうち、特定の車軸に設けられたものとすることもできる。或いは、複数の車軸ごとにエンジン4を設け、各車軸のエンジン4によって各車軸の車輪2を駆動することもできる。
 車輪2は、駆動補助及び回生手段の一部をなす油圧モータ/ポンプ6が油圧モータとして動作するとき、油圧モータ/ポンプ6によって駆動される。また、油圧モータ/ポンプ6は、車輪2によって回生駆動されて、油圧ポンプとしても動作する。油圧ポンプとして動作している場合、油圧モータ/ポンプ6が発生した機械的エネルギは、駆動補助及び回生手段の一部をなすアキュムレータ8に圧力として蓄積される。アキュムレータ8は、短時間に大きなエネルギを回収できるが、その容量が小さいものである。また、油圧モータ/ポンプ6は、モータとして動作するとき、アキュムレータ8に蓄積された圧力エネルギによって車輪2を駆動することも可能である。油圧モータ/ポンプ6は、リザーバ10に結合されている。油圧モータ/ポンプ6から余剰の油がリザーバ10に自動的に供給され、油圧モータ/ポンプ6で油の不足が生じると、リザーバ10から自動的に油圧モータ/ポンプ6に油が供給される。
 駆動補助及び回生手段の一部をなす別の油圧モータ/ポンプ12がポンプとして機能して、油圧モータ/ポンプ6を油圧モータとして運転させて、油圧モータ/ポンプ6が車輪2を駆動する場合もある。また、油圧モータ/ポンプ6が車輪2の回転によって油圧ポンプとして機能し、油圧モータポンプ12を油圧モータとして駆動する場合もある。
 油圧モータ/ポンプ12がポンプとして動作する場合、電気モータ及び発電機、例えばモータ/ジェネレータ14が油圧モータ/ポンプ12を駆動するモータとして動作する。また、油圧モータ/ポンプ12が油圧モータとして動作する場合、モータ/ジェネレータ14がジェネレータとして動作し、ジェネレータが発電したエネルギ、即ち電力は、蓄電手段、例えばバッテリ16に蓄電される。また、バッテリ16の蓄電電力によって、モータ/ジェネレータ14がモータとして動作する。バッテリ16は、アキュムレータ8と比較して、長時間かかるが、大きなエネルギを回収することができる。
 これらエンジン4、油圧モータ/ポンプ6、12、アキュムレータ8、モータ/ジェネレータ14及びバッテリ16は、制御装置18によって制御される。制御装置18には、速度センサ20からの現在の鉄道車両の速度を表す速度情報、電圧検出器22からの現在のバッテリ16の電圧を表す電圧情報、圧力センサ24からのアキュムレータ8の現在の圧力を表す圧力情報、GPS26からの現在の鉄道車両の走行位置を表す走行位置情報、高度計28からの現在の鉄道車両の高度を表す高度情報が供給されている。さらに、鉄道車両の運転手が操作している操作手段30からの現在の運転指令情報、例えば加速指令、減速指令、等速度指令も供給されている。制御装置18は、これら各種情報と、予め定められ制御装置18が記憶している制御パターン、例えば特定路線対応最適運行制御パターンとに基づいて、上述した各機器を制御する。なお、車輪2には、制動を行うブレーキ手段、例えば空気ブレーも取り付けられているが、図示を省略している。
 このエネルギ回生及びアシスト装置では、エネルギは、エンジン4またはモータ/ジェネレータ14によって鉄道車両が加速または等速度走行しているとき、消費される一方、減速時にアキュムレータ8やバッテリ16によって回収される。エンジン4は、図2aに示すように、モータ/ジェネレータ14は図2bに示すように、最も効率の良い回転数とトルクがある。従って、予め決められている鉄道車両の運転パターンのみに従って運転すると、エンジン4やモータ/ジェネレータ14の効率が悪くなる。特定路線対応最適運行パターンは、アキュムレータ8やバッテリ16に回収されたエネルギを活用して、エンジン4やモータ/ジェネレータ14の効率を高め、かつ始発駅から終着駅まで運行するために必要なエネルギを最小にするように定められている。具体的には、或る路線のどの位置に鉄道車両が存在するとき、その位置の勾配等を参考にしてどのくらいエンジン4やモータ/ジェネレータ14を作動させ、どの位置に鉄道車両が存在するとき、その位置の勾配を参考にして、アキュムレータ8やバッテリ16でエネルギを回収するかを決定するものである。
 図3に、或る路線の各駅の高度、鉄道車両の運行パターン及び特定路線対応最適運行制御パターンとの一例を示す。この路線には、駅A乃至駅Fの6つの駅がある。始発駅である駅Aから次の駅Bまで高度の変化がなく、平坦である。駅Bから次の駅Cまでは緩やかな上り勾配の登り坂で、その距離は駅A、B間とほぼ同じである。駅Cから次の駅Dまでは急峻な上り勾配の登り坂で、その距離は駅A、B間とほぼ同一である。駅Dから次の駅Eまでは急峻な下り勾配の下り坂で、その距離は駅C、D間の距離よりも短い。駅Eから終着の駅Fまでは緩やかな下り勾配で、その距離は、最も長い。
 速度はいずれの駅を出発するときも、予め定められた一定速度まで加速し、その一定速度を維持し、次の駅に近づくと減速して、次の駅に到着するものである。加速に要する時間及び減速に要する時間は、いずれも一定として示してある。
 特定路線対応最適運行制御パターンでは、エンジン4を作動または停止させ、その上で油圧モータ/ポンプ6をモータ動作させたり、ポンプ動作させたり、停止させたりする。モータ/ジェネレータ14もモータ動作させたり、ジェネレータ動作させたり、停止させたりする。この特定路線対応最適運行制御パターンの説明をする前に、エンジン4、油圧モータ/ポンプ6、モータ/ジェネレータ14を、原則的にはどのようなときにどのように動作させるかについて説明する。
 例えば各駅から鉄道車両が出発するときには、加速する必要がある。その加速の初期の段階である初期加速の場合、図4に示すようにアキュムレータ8に蓄積されている圧力エネルギを油圧モータ/ポンプ6に供給し、これをモータとして動作させて、車輪2を駆動する。
 初期加速に続く加速の一例の場合、図5に示すように、アキュムレータ8のエネルギで油圧モータポンプ6をモータとして動作させて、車輪2を駆動すると共に、エンジン4によっても車輪2を駆動する。
 初期加速に続く加速の別の例の場合、図6に示すように、エンジン4のみを動作させて、車輪2を駆動する。
 また、加速によって一定速度となって、その一定速度を維持して駅間を走行する惰行運転の一例の場合も、図7に示すようにエンジン4のみを動作させる。この場合、エンジン4の効率は最もよい。
 惰行運転の他の例である緩やかな上り坂を走行する場合、図8に示すように、バッテリ16のエネルギをモータ/ジェネレータ14に供給し、モータ/ジェネレータ14をモータとして動作させる。このモータ動作のモータ/ジェネレータ14が、油圧モータ/ポンプ12をポンプとして動作させる。ポンプ動作の油圧モータ/ポンプ12によって、油圧モータ/ポンプ6がモータとして動作して、車輪2を駆動する。これは、エンジン4による車輪の駆動の場合に、補助として追加されることがある。また、加速時に使用されることもある。
 惰行運転の別の例の場合、図9に示すようにアキュムレータ8に蓄積されている圧力エネルギを油圧モータ/ポンプ6に供給し、油圧モータ/ポンプ6をモータとして動作させて、車輪2を駆動する。これも、エンジン4による車輪の駆動の場合に、補助として追加されることがある。
 例えば駅に近づいて比較的急速に減速する場合、図10に示すように車輪2の回転エネルギをポンプとして動作している油圧モータ/ポンプ6に供給し、車輪2の回転エネルギをアキュムレータ8に蓄積する。これによって車輪2の回転エネルギが短時間で吸収できる。但し、回収されるエネルギの容量は、バッテリ16にエネルギを蓄積する場合よりも小さい。
 例えば緩やかな下り勾配を長時間かけて減速する場合、図11に示すように車輪2の回転エネルギをポンプとして動作している油圧モータ/ポンプ6に供給する。ポンプ動作している油圧モータ/ポンプ6によって、油圧モータ/ポンプ12をモータとして動作させる。モータとして動作している油圧モータ/ポンプ12が、モータ/ジェネレータ14をジェネレータとして動作させ、発生した電力をバッテリ16に蓄積する。これはエネルギの吸収が長時間にわたる場合に適しており、大きな容量のエネルギをバッテリ16に蓄積である。
 再び、図3において、駅Aから鉄道車両が出発する場合、図4に示したようにアキュムレータ8のエネルギによって油圧モータ/ポンプ6をモータ動作させて、鉄道車両を加速する。なお、アキュムレータ8にはエネルギが既に蓄積されているとする。鉄道車両が一定速度になると、図7に示したようにエンジン4のみを作動させて、惰行運転する。なお、一定速度になるまで加速する際に、アキュムレータ8のエネルギは全て消費されているとする。駅Bに近づいて減速する場合、減速期間が短いので、図10に示すように油圧モータポンプ6のポンプ動作によるアキュムレータ8へのエネルギの蓄積が行われる。
 駅Bから出発する場合、駅Aからの出発のときと同様に、図4に示したようにアキュムレータ8のエネルギによって油圧モータ/ポンプ6をモータ動作させて、鉄道車両を加速する。しかし、その時間は、駅Aの加速の場合と比較して短くされて、アキュムレータ8にエネルギを残している。これは、後述するように、駅Cからの出発する際、勾配が急峻であるので、アキュムレータ8のエネルギを最大限に使用して、エンジン4の負担を減少させるためである。加速の途中でアキュムレータ8のエネルギでの加速を中止したので、続いて図6に示すようにエンジン4のみによって加速を継続し、所定速度となると、図7に示すようにエンジン4のみを動作させて一定速度で鉄道車両を走行させ、かつ図8に示すようにバッテリ16の電力で、モータ/ジェネレータ14をモータとして動作させ、油圧モータ/ポンプ12をポンプとして動作させ、油圧/モータポンプ6をモータとして運転して車輪2を駆動する。油圧モータ/ポンプ6によっても車輪2を駆動しているので、勾配のある地点を走行していても、エンジン4の負担は少ない。駅Cに近づくと、図10に示すように油圧モータポンプ6のポンプ動作によるアキュムレータ8へのエネルギ蓄積によって減速が行われる。駅Bでの減速の際、上り勾配での減速であるので、余りエネルギはアキュムレータ8に蓄積されていないが、駅Bでの加速の際にアキュムレータ8のエネルギを残していたので、駅Cでのアキュムレータ8へのエネルギの蓄積は、発生するエネルギの量が少なくても最大限まで行われる。
 駅Cを出発する際には、図4に示したようにアキュムレータ8のエネルギによって油圧モータ/ポンプ6をモータ動作させて、車輪2を駆動して、鉄道車両を加速する。次に図6に示すようにエンジン4のみによって加速する。油圧モータ/ポンプ6での加速の際、アキュムレータ8へのエネルギの蓄積は最大限に行われているので、それに続くエンジン4での加速におけるエンジン4の負担は、大きなトルクが必要である急な上り勾配であるが少ない。所定速度となると、図7に示すようにエンジン4のみを作動させて、惰行運転する。駅Dに近く付くと、減速するために、図11に示すように車輪2の走行によって油圧モータ/ポンプ6をポンプとして動作させ、油圧モータ/ポンプ12をモータとして動作させ、モータ/ジェネレータ14をジェネレータとして動作させ、バッテリ16に蓄電する。短時間当たりのエネルギ量は少なく、蓄積されるエネルギの量は少ない。駅B、Cでの減速と異なり、油圧モータ/ポンプ6のポンプ動作による減速は行っていない。その理由は後述する。
 駅Dの発車の際には、図8に示すバッテリ16のエネルギでの油圧/モータポンプ6のモータ動作による車輪2の駆動を行うが、バッテリ16への蓄電量が少ないので、図6に示すエンジン4による加速も同時に行い、このエンジン4による加速の方が長い時間行われる。なお、急勾配であるので、一定速度に維持するために、バッテリ16のエネルギによる油圧/モータポンプ6のモータ動作による車輪2の駆動の終了後、図11に示すバッテリ16への充電による減速も行われ、この減速は、速度を一定に維持するために、エンジン4による車輪2の駆動の停止後も継続されている。駅Eに近づくと、減速が必要であるので、図10に示す油圧モータ/ポンプ6からアキュムレータ8へのエネルギ蓄積による減速が行われる。駅Dから駅Eは急峻な下り勾配であるので、駅Dでの減速の際には短時間で車輪2からのエネルギを蓄積する必要がある。駅Dへ到達する際に油圧モータ/ポンプ6によるアキュムレータ8へのエネルギの蓄積を行っていないので、駅Eへの減速時にはアキュムレータ8には蓄積の余裕がある。従って、短時間でアキュムレータ8へエネルギの回収を行える。このようにするため、駅Dへの減速時には、アキュムレータ8へのエネルギ蓄積を行わずに、バッテリ16への蓄積を行った。
 駅Eからの発車の際には、図4に示すアキュムレータ8のエネルギによる油圧/モータポンプ6による車輪2の駆動を行う。所定速度になると、図6に示すエンジン4による一定速度での走行を行う。同時に、図11に示すモータ/ジェネレータ14のジェネレータ動作によるバッテリ16へのエネルギの蓄積が行われる。緩やかな下り勾配での長時間のエネルギ筑西であるので、バッテリ16へのエネルギ蓄積が行われている。但し、エンジン4のよる駆動の途中に、エンジン4による車輪2の駆動を一時的に停止し、油圧モータ6による車輪2の駆動を、所定の回数、例えば複数回にわたって行う。これは、駅Fに到達する際の減速時に、油圧/ポンプ6によるアキュムレータ8へのエネルギ蓄積を行いたいので、そのエネルギ蓄積を行う余裕をアキュムレータ8に作るためである。このようにして、駅Aから駅Fまでの間、最適運行制御が行われる。
 図12は、油圧/ポンプ6及びアキュムレータ8と、バッテリ16及びモータ/ジェネレータ14を個別に最適化して運行した場合を示したもので、図3の最適運行制御では、駅Bからの発車の際に、油圧モータ/ポンプ6でアキュムレータ6のエネルギを全て使用しなかったのに対し、この個別最適化パターンでは、油圧モータ/ポンプ6でアキュムレータ6のエネルギを全て使用している。そのため、駅Cでの減速時には、上り勾配での減速であるので、車輪2から回生可能なエネルギも少なく、アキュムレータ6へエネルギを満杯に蓄積することができない。その結果、駅Cでの加速時の油圧モータ/ポンプ6のモータ動作時間は、図3の最適運行制御の場合よりも短くなり、その分、エンジン4の作動時間が長くなり、エンジン4の負担が大きい。また、駅Dへの減速時、上り勾配での減速であるので、車輪2から回生可能なエネルギも少なく、アキュムレータ8へ蓄積されるエネルギの量は少ないが、駅Dからの発車の際、急峻な下り勾配での発車であるので、油圧モータ/ポンプ6の車輪2の駆動で消費されるアキュムレータ6のエネルギも少ない。その結果、駅Dに到達するために減速する際、油圧モータ/ポンプ6のポンプ動作によるアキュムレータ8へのエネルギの蓄積を行うことができない。そのため、油圧モータ/ポンプ6をモータ動作させた上で、空気ブレーキによって減速せざるを得ず、エネルギの無駄な消費が生じている。同様に駅Eの発車の際の油圧モータ/ポンプ6のモータ動作によってアキュムレータ8への蓄積エネルギの消費が充分に行えず、駅Fへの到達時の減速も、油圧モータ/ポンプ6をモータ動作させた上で、空気ブレーキによって減速しており、エネルギの無駄な消費が生じている。
 このように個別最適化パターンでは、エネルギの無駄な消費が生じるが、最適運行制御では、エネルギの無駄な消費は生じていない。
 図13は、運行パターンが途中で変化した結果、図3の最適運行制御が制御装置18によって変更された場合を示す。即ち、駅Aを出発して等速で走行している状態において、信号がなんらかの原因で赤信号に変化して、減速して減速後も等速度で走行する場合である。エンジン4のみによって等速走行しているので、エンジン4を一旦停止させ、図示していないが空気ブレーキによって減速している。この減速状態は、低速であるので、モータ/ジェネレータ14をモータ動作させて、走行をアシストしている。この場合、アシストとしては、油圧モータ/ポンプ6を使用することも考えられるが、減速している区間が並置であり、後の駅Bからの上り勾配での加速時に比べ、負荷は小さいので、油圧モータ/ポンプ6は使用していない。この減速状態から赤信号が解消され、加速する際、バッテリ16に余裕もあり、モータ/ジェネレータ14によるアシストをすることも考えられるが、駅Bからの緩やかな上りでバッテリ16のエネルギを使用したいので、この加速はエンジン4のみで行っている。以下は、上述した最適運行制御パターンに従って、運行される。このような制御パターンの変更は、赤信号で停止した地点より先の路線の状況、即ち、これから上り勾配があるかとか下り勾配があるかとか、変化した運行パターン、例えば減速後一定速度で走行できるのか、減速を継続し泣けばならないかと等に基づいて、制御パターンを、路線全体で運行に必要なエネルギ収支が最小となるように、例えば駅Bからバッテリ16によって上り勾配を上る必要があるので、赤信号による減速後の等速度から加速する際にはエンジン4のみによる加速とするとかを、制御装置18が再設定する。
 上記の実施形態では、エンジン4を駆動手段として使用したが、これに代えて、例えばモータ/ジェネレータを使用することもできる。また、駆動補助及び回生手段として、アキュムレータ8、油圧モータ/ポンプ6の機械系の駆動補助及び回生手段と、バッテリ16、モータ/ジェネレータ14、油圧モータ/ポンプ12、6の電気系の駆動補助及び回生手段とを設けたが、いずれか一方のみを設けることもできる。
 2 車輪
 4 エンジン(駆動手段)
 6 油圧モータ/ポンプ(駆動補助及び回生手段)
 8 アキュムレータ(駆動補助及び回生手段)
 12 油圧モータ/ポンプ(駆動補助及び回生手段)
 14 モータ/ジェネレータ(駆動補助及び回生手段)
 16 バッテリ(駆動補助及び回生手段)
 18 制御装置

Claims (3)

  1.  車輪を駆動可能で、回転数及び出力トルクによって効率が異なる駆動手段を備えた鉄道車両において、
     前記車輪を駆動可能で、前記車輪から運動エネルギを回収可能な駆動補助及び回生手段と、
     前記駆動手段の情報と、前記駆動補助及び回生手段の情報と、走行する路線の情報と、運行パターンの情報とに基づいて、路線全体で運行に必要なエネルギ収支が最小となるように予め定められた、前記駆動手段と前記駆動補助及び回生手段との制御パターンを記憶し、前記駆動手段と前記駆動補助及び回生手段を、少なくとも前記車両の位置と前記制御パターンとに応じて制御する制御装置とを、
    具備する鉄道車両のエネルギ回生及び駆動アシスト装置。
  2.  請求項1記載の鉄道車両のエネルギ回生及び駆動アシスト装置において、前記制御装置は、前記運行パターンが変化したとき、前記車両の現在位置より前方の路線の状況と、変化した運行パターンとに基づいて、前記制御パターンを、路線全体で運行に必要なエネルギ収支が最小となるように、再設定する
    鉄道車両のエネルギ回生及び駆動アシスト装置。
  3.  請求項1または2記載の鉄道車両のエネルギ回生及び駆動アシスト装置において、前記駆動補助及び回生手段は、油圧モータ及びポンプと、アキュムレータとを、含み、更に、少なくとも前記車両の位置と前記制御パターンとに応じて制御される、別の油圧モータ及びポンプと、電気モータ及びジェネレータと、蓄電池とを、含み、前記制御パターンは、更に前記別の油圧モータ及びポンプの情報と、前記電気モータ及びジェネレータの情報と、前記蓄電池の情報とにも基づいて定められている
    鉄道車両のエネルギ回生及び駆動アシスト装置。
PCT/JP2013/068106 2012-07-09 2013-07-02 鉄道車両のエネルギ回生及び駆動アシスト装置 WO2014010466A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153413 2012-07-09
JP2012-153413 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010466A1 true WO2014010466A1 (ja) 2014-01-16

Family

ID=49915929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068106 WO2014010466A1 (ja) 2012-07-09 2013-07-02 鉄道車両のエネルギ回生及び駆動アシスト装置

Country Status (1)

Country Link
WO (1) WO2014010466A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530860A (ja) * 2013-06-26 2016-09-29 パーカー ハニフィン マニュファクチャリング リミテッド エネルギー効率のよい電気自動車制御システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156765A (ja) * 1993-12-03 1995-06-20 Mitsubishi Motors Corp 制動エネルギ回生装置
JP2001169408A (ja) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2002339840A (ja) * 2001-05-15 2002-11-27 Honda Motor Co Ltd 車両の油圧式エンジン始動装置
JP2007126145A (ja) * 2000-01-14 2007-05-24 Denso Corp ハイブリッド車制御装置
JP2008226511A (ja) * 2007-03-09 2008-09-25 Hitachi Ltd 充放電制御装置及びそれを用いた鉄道車両
JP2009179155A (ja) * 2008-01-30 2009-08-13 Toshiba Corp ハイブリッド鉄道車両
JP2009254069A (ja) * 2008-04-03 2009-10-29 Hitachi Ltd 鉄道車両の制御方法および装置
JP2010254203A (ja) * 2009-04-28 2010-11-11 Hitachi Ltd 動力装置
JP2012111345A (ja) * 2010-11-24 2012-06-14 Toyota Motor Corp 車両制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156765A (ja) * 1993-12-03 1995-06-20 Mitsubishi Motors Corp 制動エネルギ回生装置
JP2001169408A (ja) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2007126145A (ja) * 2000-01-14 2007-05-24 Denso Corp ハイブリッド車制御装置
JP2002339840A (ja) * 2001-05-15 2002-11-27 Honda Motor Co Ltd 車両の油圧式エンジン始動装置
JP2008226511A (ja) * 2007-03-09 2008-09-25 Hitachi Ltd 充放電制御装置及びそれを用いた鉄道車両
JP2009179155A (ja) * 2008-01-30 2009-08-13 Toshiba Corp ハイブリッド鉄道車両
JP2009254069A (ja) * 2008-04-03 2009-10-29 Hitachi Ltd 鉄道車両の制御方法および装置
JP2010254203A (ja) * 2009-04-28 2010-11-11 Hitachi Ltd 動力装置
JP2012111345A (ja) * 2010-11-24 2012-06-14 Toyota Motor Corp 車両制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530860A (ja) * 2013-06-26 2016-09-29 パーカー ハニフィン マニュファクチャリング リミテッド エネルギー効率のよい電気自動車制御システム

Similar Documents

Publication Publication Date Title
JP5992604B2 (ja) ハイブリッド電気車両のエネルギー管理システムおよび燃料節約方法
US7137344B2 (en) Hybrid energy off highway vehicle load control system and method
JP4184879B2 (ja) 鉄道車両駆動システム
CN101954910B (zh) 具有再生制动功能的车辆中的巡航控制系统的操作设备
JP5174999B1 (ja) 列車情報管理装置および機器制御方法
CN104024039B (zh) 车辆和车辆的控制方法
US20070272116A1 (en) Locomotive and rail car braking regeneration and propulsion system and method
KR20100042257A (ko) 하이브리드 전기 추진 시스템
AU2008270512B2 (en) Power supply installation for a railway vehicle
CN101909921A (zh) 用于控制包括至少一个电动机的车辆的再生制动的方法
US11021061B2 (en) Power hybrid integrated management system
JP2009183079A (ja) 鉄道車両駆動装置
JP5512288B2 (ja) ハイブリッド車両補助装備のエネルギー管理
EA031441B1 (ru) Система и способ управления транспортным средством
WO2010133330A1 (en) Multi component propulsion systems for road vehicles
KR20120035120A (ko) 공조 시스템의 에너지 효율적 제어
CN103906652B (zh) 车辆和车辆的控制方法
JP4907262B2 (ja) 電気車両の制御装置
JP2008099461A (ja) 電源制御装置及びそれを用いた鉄道車両
CN107303819B (zh) 车辆的再生制动
WO2014010466A1 (ja) 鉄道車両のエネルギ回生及び駆動アシスト装置
JPH11355911A (ja) 単軌条運搬車の駆動装置
RU2566320C1 (ru) Способ управления комбинированной силовой установкой гибридного транспортного средства
JP2016175496A (ja) ハイブリッド車両及びその制御方法
JP2001136603A (ja) エネルギを回生・再用する鉄道車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP