WO2014005462A1 - 一种自动样品识别的采样系统及其方法 - Google Patents
一种自动样品识别的采样系统及其方法 Download PDFInfo
- Publication number
- WO2014005462A1 WO2014005462A1 PCT/CN2013/074827 CN2013074827W WO2014005462A1 WO 2014005462 A1 WO2014005462 A1 WO 2014005462A1 CN 2013074827 W CN2013074827 W CN 2013074827W WO 2014005462 A1 WO2014005462 A1 WO 2014005462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sampling
- sample
- nozzle
- arm
- needle
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1009—Characterised by arrangements for controlling the aspiration or dispense of liquids
- G01N35/1011—Control of the position or alignment of the transfer device
Definitions
- This patent relates to the structure of a blood gas electrolyte analyzer sampling rack, and more particularly to a sampling system and method thereof that can automatically sample, identify and clean.
- the blood gas electrolyte analyzer sampling frame is mostly manual, can not be automatically injected and can not be sampled using a variety of sample types, manual injection is required during use, and the outer wall of the sampling needle needs to be manually cleaned after sampling.
- manual sampling racks do not meet existing usage requirements, and manual sampling racks will gradually be replaced by automated sample racks and can be replaced with sample holders of multiple sample types.
- the technical problem to be solved by the present invention is to provide a sample needle capable of using a plurality of sample types and implementing automatic injection and automatic cleaning.
- the instrument can automatically recognize the sample after the sample is inserted into the sample holder during use. Enter sample type, autosample, and automatically clean the sample needle after the test is completed.
- the present invention provides a sampling system for automatic sample identification, comprising: a sampling device, a sample identification device, and a detecting device;
- the sampling device includes: a screw rod, a sampling arm, a sampling needle and a sampling nozzle, the sampling arm is connected to the screw rod, and the sampling needle is fixed on the sampling arm and inserted into the sampling nozzle;
- the sample identification device includes: a rotating cam, a rotating shaft, a swinging roller, a detecting arm, a coupling, and a rotary encoder; the swinging roller is disposed on the rotating cam and connected to the rotating shaft for controlling The detecting arm is swung; the rotating shaft is connected to the rotary encoder through the coupling; the rotating cam is provided with a light blocking plate, and the detecting device is disposed under the light blocking piece;
- the detecting device includes a first optocoupler for detecting an initial position of the sampling needle and a second optocoupler for detecting a position of the detecting arm.
- the present invention adopts the above technical features, and has the advantages that the sampling system can use a plurality of sample types and realize automatic injection, and the instrument can automatically recognize the input after the sample is inserted into the sampling rack by the operator. Type, automatic injection, simple and convenient, and operability.
- the cleaning device is disposed under the nozzle, and includes: a sampling needle movement channel, wherein the sampling needle movement channel is sequentially provided with a first sealing node, a first cavity, a second sealing node, and a second space
- the cavity, the capillary sampling tube sealing node and the mouth casing are connected to the sealing node
- the first cavity is provided with a liquid inlet passage communicating with the first cavity
- the mouth casing is connected with the sealing node and is provided with The liquid discharge channel of the sampling needle moving channel communicates with the liquid.
- the present invention further adopts the above technical features, and has the advantages that the system not only has the functions of automatically identifying the type of the incoming product and the automatic injection, but also self-cleaning the sampling needle, that is, automatically cleaning the sampling needle after the test is completed. Increased usage and further ease of operation.
- a nozzle mounting plate is disposed under the sampling nozzle for supporting the sampling nozzle.
- the present invention further adopts the above technical features, and has the advantages that the sampling position of the sampling needle can be accurately positioned, and the cost is low, the structure is compact, and the technical requirement of good repeatability is easily achieved.
- the sampling device further includes a stepping motor and a driving belt, and the stepping motor drives the screw to rotate by the driving.
- the present invention further employs the above technical features, which has the advantage that the stepper motor rotates the lead screw through the transmission of the drive belt to provide power to the sampling system.
- the sample identification device further includes a deceleration stepping motor for driving the rotating cam to rotate.
- the present invention further adopts the above technical features, and has an advantage in that the stepping motor is rotated by driving the rotating cam to provide power to the sample identification device.
- the detecting device further comprises a main controller, configured to receive a signal of the rotary encoder.
- the present invention further adopts the above technical features, and has an advantage in that after the main controller receives the signal of the rotary encoder, the type of the sample can be compared and judged.
- the main controller can also control the rotation of the stepper motor and the stepping motor to provide a power source for the entire system.
- the present invention also provides a sampling method, including the following steps:
- Step A The stepping motor rotates, so that the first diaphragm just detects the sampling light blocking piece, and the sampling needle is inserted into the sampling nozzle; at the same time, the deceleration stepping motor rotates to make the second light When the light barrier cannot be detected, the detection arm is below the sampling nozzle.
- Step B the stepping motor rotates to extend the sampling needle to the sampling nozzle, and at the same time, the deceleration stepping motor rotates to cause the detecting arm to touch the sampling needle, and then rotate The encoder rotates to generate a pulse signal, at this time the main controller Receiving the number of rotary encoder pulse signals and defining the number of pulses as the value without the sample;
- Step C inserting the sample into the sampling nozzle, at which time the geared motor rotates to cause the detecting arm to touch the sample to rotate the rotary encoder, and the rotary encoder generates a pulse signal, the main controller The number of this pulse signal is received and compared to determine the type of this sample.
- the sample type of the detection condition is a syringe or a capillary.
- the method further comprises the following cleaning steps:
- Step D the liquid outflow channel and the liquid outflow channel are filled with a cleaning liquid
- Step E the moving structure controls the sampling needle to move into the first cavity, at which time the sampling needle is only sealed by the first sealing node; the cleaning liquid flows out from the liquid outflow channel, and the outer wall of the sampling needle and the mouth of the nozzle are flushed Clean
- Step F The cleaning liquid flows out from the liquid outflow channel, and the outer wall of the sampling needle and the nozzle channel are rinsed clean.
- the apparatus and method for automatically cleaning the sampling needle in the invention can clean the inner wall, the outer wall and the mouth of the sampling needle, and effectively solve the problem that the residual sample on the sampling needle and the nozzle is difficult to be cleaned after sampling, and is effective. Prevents inaccurate instrument test results due to cross-contamination of samples.
- FIG. 1 is a schematic structural view of an embodiment of the present invention
- the initial state and the initial position are automatically restored.
- the process is as follows:
- the stepping motor 3 rotates the timing belt 1 to drive the screw 5 to rotate, and the sampling arm 10 is mounted on the rolling linear guide 4.
- the sampling arm 10 moves linearly when the screw shaft 5 rotates, and the sampling needle 9 is fixed on the sampling arm 10 and inserted in the sampling nozzle 7, and when the sampling is required, the stepping motor 3 rotates
- the rotation of the lead screw 5 causes the sampling arm 10 to drive the sampling needle 9 to move in the sampling nozzle 7.
- the initial position is detected by the first photocoupler 12 during movement, the amount of movement of the sampling needle 9 is controlled, thus realizing the sampling process.
- the retarding stepping motor 17 drives the rotary cam 18 to rotate, and the swinging roller 19 is placed on the rotary cam 18 and coupled to the rotary shaft 20.
- the rotary shaft 20 is fixed to the sample type detecting arm 14 and connected to the rotary encoder 15 through a coupling 16.
- the swinging roller 19 swings within a certain angle to cause the rotary shaft 20 to swing the sample type detecting arm 14 to detect the sample type, and when the sample type detecting arm 14 detects the sample, the rotary encoder 15 is rotated by one. Angle, the rotary encoder 15 recognizes this angular pulse signal reading and sends the reading to the main control board 22, at which time the main control board 22 Read this angle reading to compare and determine the type of this sample. This process completes the sample type detection.
- the stepping motor 3 is rotated so that the first aperture 12 just detects the light blocking plate 11.
- the sampling needle 9 is inserted into the sampling nozzle 7, and this state is the sampling portion "0" position.
- the sample type identification portion decelerates the stepping motor 17 to rotate, so that the state of the sample type detecting arm 14 is "0" when the second photocouple 21 cannot detect the light blocking plate 11, and the sample type detecting arm 14 is at the sampling nozzle. 7 below.
- the stepping motor 3 rotates to cause the sampling needle 9 to extend out of the sampling nozzle 7, and then the sample type identifying portion decelerates the stepping motor 17 to rotate so that the sample type detecting arm 14 hits the sampling needle 9, due to the sample type detecting arm 14 and the rotary encoder 15 is connected, the rotation of the rotary encoder 15 generates a number of pulse signals, at which time the main controller 22 receives the number of pulse signals of the rotary encoder 15 and defines the number of pulses as the value without the sample. Finally, the sample type detecting arm 14 is returned to the initial position, and the sampling needle 9 is returned to the initial position. This completes the restoration of the initial state and the initial position.
- the sample rack 6 can perform sample collection after the initial state recovery is completed. Insert the syringe with the sample into the sampling nozzle 7 first, and then press the "confirm" button on the instrument operation interface to confirm that the sample has been inserted. At this time, the sample type identifying portion decelerates the stepping motor 17 to rotate so that the sample type detecting arm 14 hits the syringe having the sample, and since the sample type detecting arm 14 is coupled with the rotary encoder 15, the rotary encoder 15 is rotated by one. Angle, at this time, the rotary encoder 15 generates a plurality of pulse signals, and the main controller 22 receives the number of the pulse signals and compares and judges the type of the sample.
- the main controller 22 determines that the sample type is a syringe
- the main controller 22 controls the stepping motor 3 of the sampling portion to rotate to insert the sampling needle 9 into the syringe position.
- the sampling needle 9 is returned to the sample test position, and the sample type detecting arm 14 is returned to the initial position, at which time the syringe can be pulled out from the sampling nozzle 7.
- the sampling needle 9 will move to the sampling needle cleaning position 8 and the sampling needle 9 and the sampling nozzle 7 will be automatically cleaned.
- the sampling needle 9 and the sampling nozzle 7 are cleaned, the sampling needle will automatically return to the initial "0". Bits are waiting for the next test. In this way, a sample sampling acquisition process is completed.
- the stepping motor 3 is rotated so that the first aperture 12 just detects the light blocking plate 11.
- the sampling needle 9 is inserted into the sampling nozzle 7, and this state is the sampling portion "0" position.
- the sample type identification portion decelerates the stepping motor 17 to rotate, so that the state of the sample type detecting arm 14 is "0" when the second photocouple 21 cannot detect the light blocking plate 11, and the sample type detecting arm 14 is at the sampling nozzle. 7 below.
- the stepping motor 3 rotates to extend the sampling needle 9 out of the sampling nozzle 7, and the deceleration stepping motor 17 rotates to cause the sample type detecting arm 14 to hit the sampling needle 9.
- the sample type detecting arm 14 Since the sample type detecting arm 14 is connected to the rotary encoder 15, the rotary encoding The rotation of the device 15 produces a number of pulse signals, at which time the main controller 22 receives the number of pulse signals from the rotary encoder 15 and defines the number of pulses as a value when there is no sample. Finally, the sample type detecting arm 14 is returned to the initial position, and the sampling needle 9 is returned to the initial position. This completes the restoration of the initial state and the initial position.
- the sample rack 6 can perform sample collection after the initial state recovery is completed. First insert the capillaries containing the sample into the harvest In the sample nozzle 7, press the "confirm" button on the instrument operation interface to confirm that the sample has been inserted. At this time, the sample type identifying portion decelerates the stepping motor 17 to rotate so that the sample type detecting arm 14 hits the capillaries of the sample, and since the sample type detecting arm 14 is coupled with the rotary encoder 15, the rotary encoder 15 is rotated by an angle. At this time, the rotary encoder 15 generates a plurality of pulse signals, and the main controller 22 receives the number of the pulse signals and compares and judges the type of the sample.
- the main controller 22 determines that the sample type is capillary, and the main controller 22 controls the stepping motor 3 of the sampling portion to rotate so that the sampling needle 9 is inserted into the capillary position.
- the sample needle is returned to the sample test position, and the sample type detecting arm 14 is returned to the initial position, at which time the capillary can be pulled out of the sampling nozzle 7.
- the sampling needle 9 will move to the sampling needle cleaning position 8 and the sampling needle 9 and the sampling nozzle 7 will be automatically cleaned.
- the sampling needle 9 and the sampling nozzle 7 are cleaned, the sampling needle 9 will automatically return to the initial position and wait. Next test. In this way, a sample sampling acquisition process is completed.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
一种自动样品识别的采样系统及其方法,包括采样装置、样品识别装置和检测装置;所述采样装置包括:丝杆(5)、采样臂(10)、采样针(9)和采样接嘴(7),所述采样臂(10)与所述丝杆(5)连接,所述采样针(9)固定于采样臂(10)上,并插入所述采样接嘴(7)中;所述样品识别装置包括:旋转凸轮(18)、转轴(20)、摆动滚子(19)、检测臂(14)、联轴器(16)和旋转编码器(15);所述摆动滚子(19)设置在所述旋转凸轮(18)上,并与所述转轴(20)相连,用于控制所述检测臂(14)摆动;所述转轴(20)通过所述联轴器(16)连接所述旋转编码器(15);所述旋转凸轮(18)上设置有挡光片(11),所述挡光片(11)的下方设有所述检测装置;所述检测装置包括用于检测所述采样针的初始位置的第一光耦(12)和用于检测所述检测臂的位置的第二光耦(21)。
Description
一种自动样品识别的采样系统及其方法 技术领域
[0001] 本专利涉及血气电解质分析仪采样架的结构, 尤其涉及一种可以自动采样、 识别并清 洗的采样系统及其方法。
背景技术
[0002] 目前血气电解质分析仪采样架多为手动形式, 不能自动进样且不能使用多种样品类型 进行采样, 在使用过程中需人工操作进样, 采样完成后还需要手动清洗采样针外壁。 随着仪 器自动化程度要求越来越高手动采样架不能满足现有使用要求, 手动采样架将逐渐被自动采 样架且能够使用多种样品类型的采样架取代。
[0003] 手动采样不能自动进样且不能使用多种样品类型进行采样, 一般的采样系统只能对针 筒或者毛细血管来进行检测,也就是说,同样的采样系统只能采用单一的针筒或者毛细血管, 如果换成另外的类型, 就需要替换采样系统, 这样无疑增加了很多麻烦与成本, 并且在使用 过程中需人工操作进样, 采样完成后还需要手动清洗采样针外壁。 随着仪器自动化程度要求 越来越高手动采样架不能满足现有使用要求, 手动采样架将逐渐被自动采样架且能够使用多 种样品类型的采样架取代。
发明内容
[0004] 本发明所要解决的技术问题是提供一种能够使用多种样品类型并实现自动进样、 自动 清洗采样针, 使用过程中只需操作人员将样品插入采样架后, 仪器就能够自动识别进样品类 型、 自动进样, 在测试完成后自动清洗采样针。
[0005] 本发明提供一种自动样品识别的采样系统, 包括: 采样装置、 样品识别装置和检测装 置;
所述采样装置包括: 丝杆、 采样臂、 采样针和采样接嘴, 所述采样臂与所述丝杆连接, 所述 采样针固定于采样臂上, 并插入于所述采样接嘴中;
所述样品识别装置包括: 旋转凸轮、 转轴、 摆动滚子、 检测臂、 联轴器和旋转编码器; 所述 摆动滚子设置在所述旋转凸轮上, 并与所述转轴相连, 用于控制所述检测臂摆动; 所述转轴 通过所述联轴器连接所述旋转编码器; 所述旋转凸轮上设置有挡光片, 所述其挡光片的下方 设有所述检测装置;
所述检测装置包括用于检测所述采样针的初始位置的第一光耦和用于检测所述检测臂的位置 第二光耦。
[0006] 本发明采用以上技术特征, 其优点在于, 此采样系统能够使用多种样品类型并实现自 动进样, 使用过程中只需操作人员将样品插入采样架后, 仪器就能够自动识别进品类型、 自 动进样, 简单方便, 操作性强。
[0007] 优选的, 所述接嘴下方设置有清洗装置, 包括: 采样针运动通道, 所述采样针运动通 道依次设置有第一密封节点、 第一空腔、 第二密封节点、 第二空腔、 毛细血管采样管密封节 点和接嘴外壳连接密封节点,所述第一空腔下方设置有与所述第一空腔相通的液体进入通道, 所述接嘴外壳连接密封节点处设置有与所述采样针运动通道相通的液体排出通道。
[0008] 本发明进一步采用以上技术特征, 其优点在于, 该系统不仅有自动识别进品类型和自 动进样的功能, 还可以自清洗采样针, 即在测试完了以后自动对采样针进行清洗, 提高了使 用率, 操作进一步方便。
[0009] 优选的, 所述采样接嘴下方设置有接嘴安装板, 用于支撑所述采样接嘴。
[0010] 本发明进一步采用以上技术特征,其优点在于,能够对采样针采样位置进行准确定位, 并且成本低, 结构紧凑, 易于达到重复性好的技术要求。
[0011] 优选的, 所述采样装置还包括步进电机和传动带, 所述步进电机通过所述传动带动所 述丝杆旋转。
[0012] 本发明进一步采用以上技术特征, 其优点在于, 步进电机通过传动带的传动, 使所述 丝杆旋转, 从而为采样系统提供动力。
[0013] 优选的, 所述样品识别装置还包括减速步进电机, 用于带动所述旋转凸轮旋转。
[0014] 本发明进一步采用以上技术特征,其优点在于,减速步进电机通过带动旋转凸轮旋转, 从而为样品识别装置提供动力。
[0015] 优选的, 所述检测装置还包括主控制器, 用于接收旋转编码器的信号。
[0016] 本发明进一步采用以上技术特征, 其优点在于, 主控制器接收旋转编码器的信号后, 可以比较判断此样品的类型。 另外主控制器还可以控制步进电机和减速步进电机的转动, 为 整个系统提供动力来源。
[0017] 本发明还提供了一种采样方法, 包括以下几个步骤:
步骤 A: 所述步进电机转动, 使第一光藕刚好检测到所述采样挡光片, 此时采样针插入在采 样接嘴内; 同时, 所述减速步进电机转动, 使第二光偶不能检测到挡光片时, 此时检测臂在 采样接嘴下方。
[0018] 步骤 B: 所述步进电机转动使所述采样针伸出所述采样接嘴, 同时, 所述减速步进电 机转动使所述检测臂碰到所述采样针, 此时, 旋转编码器转动产生脉冲信号, 此时主控制器
接收旋转编码器脉冲信号的数量并将此脉冲数量定义为无样品时的数值;
步骤 C: 将样品插入采样接嘴内, 此时所述减速电机转动使所述检测臂碰到所述样品, 使所 述旋转编码器转动, 这时旋转编码器会产生脉冲信号, 主控制器接收到此脉冲信号的数量并 进行比较判断此样品的类型。
[0019] 优选的, 所述检测条件的样品类型为针筒或毛细血管。
[0020] 优选的, 所述方法还包括以下清洗步骤:
步骤 D: 所述液体流出通道和所述液体流出通道充入清洗液;
步骤 E: 所述运动结构控制所述采样针运动到第一空腔内, 此时采样针只有第一密封节点密 封; 清洗液从所述液体流出通道流出, 将采样针外壁和接嘴通道冲洗干净;
步骤 F: 清洗液从所述液体流出通道流出, 将采样针外壁和接嘴通道冲洗干净。
[0021] 本发明中的采样针自动清洗的装置和方法可将采样针内壁、 外壁及接嘴都可以清洗干 净, 有效的解决采样后采样针和接嘴上残留样品难以清洗干净的问题, 有效防止因样品交叉 污染引起仪器测试结果不准确的问题。
附图说明
[0022] 图 1是本发明一种实施例的结构示意图;
具体实施方式
[0023] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
实施例 1
如图 1所示, 采样架 6使用时先会自动恢复初始状态及初始位置, 过程如下: 步进电机 3通 过同步带 1转动而带动丝杆 5旋转, 采样臂 10安装于滚动直线导轨 4上并与丝杆 5连接, 当 丝杆 5旋转时采样臂 10作直线运动,而采样针 9固定在采样臂 10上并插入在采样接嘴 7中, 在需要采样时, 步进电机 3转动而带动丝杆 5旋转, 使采样臂 10带动采样针 9在采样接嘴 7 中运动, 运动时通过第一光耦 12检测初始位置来控制采样针 9运动量, 这样就实现了采样过 程。
[0024] 实施例 2
减速步进电机 17带动旋转凸轮 18旋转, 摆动滚子 19放置在旋转凸轮 18上并与转轴 20 连接在一起。 转轴 20与样品类型检测臂 14固定在一起并通过联轴器 16与旋转编码器 15连 接。 当旋转凸轮 18转动时, 摆动滚子 19在一定角度内摆动使转轴 20带动样品类型检测臂 14摆动来探测样品类型, 当样品类型检测臂 14检测到样品时, 会使旋转编码器 15旋转一个 角度, 旋转编码器 15识别此角度脉冲信号读数并将读数送至主控制板 22, 此时主控制板 22
读取此角度读数进行比较判断此样品的类型。 这个过程便完成了样品类型检测。
[0025] 实施例 3:
首先, 步进电机 3转动, 使第一光藕 12刚好检测到挡光片 11, 此时采样针 9插入在采样接 嘴 7内, 此状态为采样部分 " 0"位。 同时样品类型识别部分减速步进电机 17转动, 使第二 光偶 21不能检测到挡光片 11时此状态为样品类型检测臂 14 "0"位, 此时样品类型检测臂 14在采样接嘴 7下方。 接着步进电机 3转动使采样针 9伸出采样接嘴 7, 再样品类型识别部 分减速步进电机 17转动使样品类型检测臂 14碰到采样针 9, 由于样品类型检测臂 14与旋转 编码器 15相连, 旋转编码器 15转动会产生若干个脉冲信号, 此时主控制器 22接收旋转编码 器 15脉冲信号的数量并将此脉冲数量定义为无样品时的数值。 最后样品类型检测臂 14退回 初始位、 采样针 9退回初始位。 这样就完成了恢复初始状态及初始位置。
[0026] 采样架 6完成初始状态恢复后便可进行样品采集。 先将有样品的针筒插入采样接嘴 7 内, 再在仪器操作界面上按 "确认"键确认已将样品插好。 此时样品类型识别部分减速步 进电机 17转动使样品类型检测臂 14碰到有样品的针筒,由于样品类型检测臂 14与旋转编码 器 15连接在一起, 便会使旋转编码器 15转动一个角度, 这时旋转编码器 15会产生若干个脉 冲信号, 主控制器 22接收到此脉冲信号的数量并进行比较判断此样品的类型。假如此时主控 制器 22判断为样品类型为针筒, 则主控制器 22会控制采样部分的步进电机 3转动使采样针 9插入针筒位置。 吸完样品后采样针 9退回样品测试位置, 样品类型检测臂 14回到初始位, 此时可以将针筒从采样接嘴 7拔出。 待仪器样品测试完毕后采样针 9会移动到采样针清洗位 置 8自动进行采样针 9和采样接嘴 7清洗, 采样针 9和采样接嘴 7清洗完毕后采样针会自动 回到初始 "0"位等待下次测试。 这样, 一次样品采样采集过程完成。
[0027] 实施例 4
首先, 步进电机 3转动, 使第一光藕 12刚好检测到挡光片 11, 此时采样针 9插入在采样接 嘴 7内, 此状态为采样部分 " 0"位。 同时样品类型识别部分减速步进电机 17转动, 使第二 光偶 21不能检测到挡光片 11时此状态为样品类型检测臂 14 "0"位, 此时样品类型检测臂 14在采样接嘴 7下方。接着步进电机 3转动使采样针 9伸出采样接嘴 7, 减速步进电机 17转 动使样品类型检测臂 14碰到采样针 9, 由于样品类型检测臂 14与旋转编码器 15相连, 旋转 编码器 15转动会产生若干个脉冲信号,此时主控制器 22接收旋转编码器 15脉冲信号的数量 并将此脉冲数量定义为无样品时的数值。最后样品类型检测臂 14退回初始位、采样针 9退回 初始位。 这样就完成了恢复初始状态及初始位置。
[0028] 采样架 6完成初始状态恢复后便可进行样品采集。 先将装有样品的毛细血管插入采
样接嘴 7内, 再在仪器操作界面上按 "确认"键确认已将样品插好。 此时样品类型识别部分 减速步进电机 17转动使样品类型检测臂 14碰到样品的毛细血管,由于样品类型检测臂 14与 旋转编码器 15连接在一起, 便会使旋转编码器 15转动一个角度, 这时旋转编码器 15会产生 若干个脉冲信号, 主控制器 22接收到此脉冲信号的数量并进行比较判断此样品的类型。此时 主控制器 22判断为样品类型为毛细血管, 则主控制器 22会控制采样部分的步进电机 3转动 使采样针 9插入毛细血管位置。吸完样品后采样针退回样品测试位置, 样品类型检测臂 14回 到初始位, 此时可以将毛细血管拔出采样接嘴 7。 待仪器样品测试完毕后采样针 9会移动到 采样针清洗位置 8自动进行采样针 9和采样接嘴 7清洗, 采样针 9和采样接嘴 7清洗完毕后 采样针 9会自动回到初始位等待下次测试。 这样, 一次样品采样采集过程完成。
[0029] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在不脱离 本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims
1. 一种自动样品识别的采样系统,其特征在于,包括:采样装置、样品识别装置和检测装置; 所述采样装置包括: 丝杆、 采样臂、 采样针和采样接嘴, 所述采样臂与所述丝杆连接, 所述 采样针固定于采样臂上, 并插入于所述采样接嘴中;
所述样品识别装置包括: 旋转凸轮、 转轴、 摆动滚子、 检测臂、 联轴器和旋转编码器; 所述 摆动滚子设置在所述旋转凸轮上, 并与所述转轴相连, 用于控制所述检测臂摆动; 所述转轴 通过所述联轴器连接所述旋转编码器; 所述旋转凸轮上设置有挡光片, 所述其挡光片的下方 设有所述检测装置;
所述检测装置包括用于检测所述采样针的初始位置的第一光耦和用于检测所述检测臂的位置 第二光耦。
2. 如权利要求 1所述的采样系统, 其特征在于, 所述采样系统还包括清洗装置, 所述清洗装 置包括采样针和接嘴, 所述接嘴内设置有采样针运动通道, 所述采样针运动通道依次设置有 第一密封节点、 第一空腔、 第二密封节点、 第二空腔、 毛细血管采样管密封节点和接嘴外壳 连接密封节点, 所述第一空腔下方设置有与所述第一空腔相通的液体进入通道, 所述接嘴外 壳连接密封节点处设置有与所述采样针运动通道相通的液体排出通道。
3. 如权利要求 1所述的采样系统, 其特征在于, 所述采样接嘴下方设置有用于支撑所述采样 接嘴的接嘴安装板。
4. 如权利要求 1所述的采样系统, 其特征在于, 所述采样装置还包括步进电机和传动带, 所 述步进电机通过所述传动带动所述丝杆旋转。
5. 如权利要求 1所述的采样系统, 其特征在于, 所述样品识别装置还包括用于带动所述旋转 凸轮旋转的减速步进电机,。
6. 如权利要求 1所述的采样系统, 其特征在于, 所述检测装置还包括主控制器, 用于接收所 述旋转编码器的信号。
7. 如权利要求 1至 6任一项所述的采样系统的采样方法, 其特征在于, 包括以下几个步骤: 步骤 A: 所述步进电机转动, 使所述第一光藕刚好检测到所述挡光片, 此时所述采样针插入 在所述采样接嘴内; 同时, 所述减速步进电机转动, 使所述检测臂在采样接嘴下方; 步骤 B: 所述步进电机转动使所述采样针伸出所述采样接嘴, 同时, 所述减速步进电机转动 使所述检测臂碰到所述采样针, 此时, 所述旋转编码器转动产生脉冲信号, 此时所述主控制 器接收所述旋转编码器脉冲信号的数量并将此脉冲数量定义为无样品时的数值;
步骤 C: 将样品插入所述采样接嘴内, 此时所述减速电机转动使所述检测臂碰到所述样品,
使所述旋转编码器转动, 这时所述旋转编码器会产生脉冲信号所述, 主控制器接收到此脉冲 信号的数量并进行比较判断此样品的类型。
8. 如权利要求 7所述的方法, 其特征在于, 所述检测条件的样品类型为针筒或毛细血管。
9. 如权利要求 7或 8所述的方法, 其特征在于, 还包括以下清洗步骤:
步骤 D: 所述液体流出通道和所述液体流出通道充入清洗液;
步骤 E: 所述运动结构控制所述采样针运动到第一空腔内, 此时采样针只有第一密封节点密 封; 清洗液从所述液体流出通道流出, 将采样针外壁和接嘴通道冲洗干净;
步骤 F: 清洗液从所述液体流出通道流出, 将采样针外壁和接嘴通道冲洗干净。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210233219.7A CN102890159B (zh) | 2012-07-06 | 2012-07-06 | 一种自动样品识别的采样系统及其方法 |
CN201210233219.7 | 2012-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014005462A1 true WO2014005462A1 (zh) | 2014-01-09 |
Family
ID=47533724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/074827 WO2014005462A1 (zh) | 2012-07-06 | 2013-04-26 | 一种自动样品识别的采样系统及其方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102890159B (zh) |
WO (1) | WO2014005462A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102890159B (zh) * | 2012-07-06 | 2014-09-03 | 深圳市麦迪聪医疗电子有限公司 | 一种自动样品识别的采样系统及其方法 |
CN104391022B (zh) * | 2014-11-24 | 2017-03-22 | 深圳市希莱恒医用电子有限公司 | 一种新型电解质分析仪测试机构 |
CN115575560A (zh) * | 2021-07-06 | 2023-01-06 | 北京先驱威锋技术开发公司 | 一种滴定样品自动上样机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0843399A (ja) * | 1994-07-26 | 1996-02-16 | Shimadzu Corp | 自動試料注入装置 |
JP2007322317A (ja) * | 2006-06-02 | 2007-12-13 | Olympus Corp | 分析装置 |
CN101285843A (zh) * | 2008-05-29 | 2008-10-15 | 上海安泰分析仪器有限公司 | 一种全自动生化分析仪移液臂组合装置 |
CN201191295Y (zh) * | 2008-05-16 | 2009-02-04 | 镇江奥迪康医疗仪器有限责任公司 | 电解质分析仪进样系统 |
CN102077071A (zh) * | 2008-07-09 | 2011-05-25 | 古河电气工业株式会社 | 试样识别分注装置和试样识别分注方法 |
CN102890159A (zh) * | 2012-07-06 | 2013-01-23 | 深圳市麦迪聪医疗电子有限公司 | 一种自动样品识别的采样系统及其方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5372782A (en) * | 1992-05-29 | 1994-12-13 | Ciba Corning Diagnostics Corp. | Automated sampling device for medical diagnostic instrument |
CN201522496U (zh) * | 2009-10-30 | 2010-07-07 | 沈阳东软医疗系统有限公司 | 一种全自动生化分析仪取样装置 |
CN202661472U (zh) * | 2012-07-06 | 2013-01-09 | 深圳市麦迪聪医疗电子有限公司 | 一种自动样品识别的采样系统 |
-
2012
- 2012-07-06 CN CN201210233219.7A patent/CN102890159B/zh active Active
-
2013
- 2013-04-26 WO PCT/CN2013/074827 patent/WO2014005462A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0843399A (ja) * | 1994-07-26 | 1996-02-16 | Shimadzu Corp | 自動試料注入装置 |
JP2007322317A (ja) * | 2006-06-02 | 2007-12-13 | Olympus Corp | 分析装置 |
CN201191295Y (zh) * | 2008-05-16 | 2009-02-04 | 镇江奥迪康医疗仪器有限责任公司 | 电解质分析仪进样系统 |
CN101285843A (zh) * | 2008-05-29 | 2008-10-15 | 上海安泰分析仪器有限公司 | 一种全自动生化分析仪移液臂组合装置 |
CN102077071A (zh) * | 2008-07-09 | 2011-05-25 | 古河电气工业株式会社 | 试样识别分注装置和试样识别分注方法 |
CN102890159A (zh) * | 2012-07-06 | 2013-01-23 | 深圳市麦迪聪医疗电子有限公司 | 一种自动样品识别的采样系统及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102890159B (zh) | 2014-09-03 |
CN102890159A (zh) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110398599B (zh) | 一种全自动进样血细胞分析测量方法及装置 | |
WO2017128806A1 (zh) | 全自动荧光定量免疫分析仪及检测方法 | |
JP6018828B2 (ja) | 自動分析装置 | |
WO2013031416A1 (ja) | 自動分析装置 | |
US8075840B2 (en) | Automatic multi-purpose analyzer | |
DK173539B1 (da) | Fremgangsmåde og apparat til udtagning af en prøve fra en lukket prøvebeholder | |
JPH0147745B2 (zh) | ||
EP2017625A1 (en) | Automatic analyzer | |
WO2023098148A1 (zh) | 一种魏氏法全自动血沉动态分析仪及检测方法 | |
CN107435363B (zh) | 一种尿检小便斗 | |
CN112630215A (zh) | 一种多反应杯连续测量的发光测量装置及发光测量方法 | |
WO2014005462A1 (zh) | 一种自动样品识别的采样系统及其方法 | |
US20020064481A1 (en) | Automatic analyzer | |
CN110907655B (zh) | 一种全自动血栓弹力图检测设备 | |
CN112557685A (zh) | 一种检测样本分析仪吸样的方法及装置 | |
CN111505202B (zh) | 一种多功能稀释/滴定装置 | |
JP4013203B2 (ja) | 血液等の試料サンプリング装置およびサンプリング方法 | |
JP6463997B2 (ja) | 自動分析装置 | |
CN117647474A (zh) | 一种全自动动态血沉分析装置 | |
CN111426622B (zh) | 一种医学检验用血液检测装置 | |
CN114167044A (zh) | 一种双流路液体检测系统及血气电解质分析仪 | |
CN202661472U (zh) | 一种自动样品识别的采样系统 | |
JPH07294391A (ja) | 分注装置 | |
CN208314001U (zh) | 全自动生物过程分析仪的流路系统 | |
CA2439891A1 (en) | Apparatus and method for processing and testing a biological specimen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13813277 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13813277 Country of ref document: EP Kind code of ref document: A1 |