[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014097784A1 - 撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステム - Google Patents

撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステム Download PDF

Info

Publication number
WO2014097784A1
WO2014097784A1 PCT/JP2013/080781 JP2013080781W WO2014097784A1 WO 2014097784 A1 WO2014097784 A1 WO 2014097784A1 JP 2013080781 W JP2013080781 W JP 2013080781W WO 2014097784 A1 WO2014097784 A1 WO 2014097784A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
lens
sensitivity
focus
focus detection
Prior art date
Application number
PCT/JP2013/080781
Other languages
English (en)
French (fr)
Inventor
伊藤 一弥
圭悟 松尾
Original Assignee
オリンパスイメージング株式会社
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスイメージング株式会社, オリンパス株式会社 filed Critical オリンパスイメージング株式会社
Priority to CN201380066381.7A priority Critical patent/CN104871059B/zh
Priority to EP13866237.4A priority patent/EP2937725B1/en
Publication of WO2014097784A1 publication Critical patent/WO2014097784A1/ja
Priority to US14/727,052 priority patent/US9473693B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Definitions

  • the present invention relates to a photographing apparatus having an autofocus function, a method for calculating information for focus control, and a camera system.
  • imaging apparatus employs an imaging element that incorporates a focus detection pixel (hereinafter referred to as an AF pixel) in addition to an imaging pixel (ordinary pixel) for image construction, and uses a pupil division phase difference method.
  • an AF pixel focus detection pixel
  • a high-speed autofocus is possible by generating an AF signal for focusing and performing focusing on an image signal by these various AF pixels (hereinafter referred to as AF calculation or correlation calculation).
  • AF calculation parameter In the AF calculation for obtaining the amount of focus shift (defocus amount) according to the use state of the lens, the interval (two image intervals) on the light-receiving surface of a plurality of images with different light fluxes and various parameters (hereinafter referred to as AF calculation parameters) , AF calculation parameter) is performed.
  • AF calculation parameters are set in the AF calculation in consideration of AF pixels near the lens optical axis. For this reason, there is a problem in that the AF calculation accuracy using the AF pixel shifted from the lens optical axis is low, and the AF accuracy may be lowered.
  • the present invention provides a photographing apparatus capable of performing high-precision focus processing even when AF pixels at any position on a light receiving surface are used with a simple configuration, a method for calculating information for focus control, and a camera
  • the purpose is to provide a system.
  • An imaging device can be mounted with a lens unit, and in an imaging device having a body part through which an imaging light beam is guided from the lens unit, an imaging element having an imaging pixel and a focus detection pixel; Based on the storage unit that holds the sensitivity characteristic information of the pixel for focus detection and information on the incident angle and angle range of the imaging light beam from the lens unit, and the information read from the storage unit A control amount calculation unit that calculates information for focus control.
  • an imaging device is an imaging device having a lens unit that guides an imaging light beam and a body unit on which the lens unit can be mounted, an imaging element having an imaging pixel and a focus detection pixel, and an imaging
  • a first storage unit that holds information about an incident angle and an angle range of a light beam; and focus control obtained based on information on sensitivity characteristics of the focus detection pixel and information on the incident angle and angle range.
  • a second storage unit for storing information corresponding to the information on the incident angle and the angle range, and the second storage unit for the focus control based on the information read from the first storage unit.
  • a control amount output unit that reads out information and outputs focus control information.
  • a method for calculating information for focus control comprising: a body portion having an imaging element including a plurality of pairs of focus detection pixels that receive a pair of light beams obtained by dividing a photographing light beam into pupils;
  • Information on sensitivity characteristics of the focus detection pixels is read out, and light fluxes incident on the pair of focus detection pixels are respectively determined based on the information on the incident angle and the angle range and the sensitivity characteristics of the focus detection pixels.
  • Information for focus control is calculated by calculating the interval between the center of gravity positions.
  • a camera system including a lens unit that guides a photographic light beam and a body unit on which the lens unit can be mounted, an imaging device having an imaging pixel and a focus detection pixel, and the lens.
  • a first storage unit that holds information on the incident angle and angle range of the imaging light beam, and a second storage unit that holds information on sensitivity characteristics of the focus detection pixels.
  • a storage unit; and a control amount calculation unit that calculates information for focus control based on the information read from the first and second storage units.
  • FIG. 1 is a block diagram showing a photographing device according to a first embodiment of the present invention.
  • 6 is an explanatory diagram for explaining an effective aperture (correction F value) and an imaging beam incident angle ⁇ c that is a center direction of an imaging beam with respect to an incident beam incident on an AF pixel having an image height X.
  • An explanatory view for explaining information held in memory. 6 is a flowchart for explaining camera control in the present embodiment.
  • FIG. 1 is a block diagram showing a photographing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the relationship between the F value (F number) and the interval between two images in the pupil division phase difference method.
  • FIG. 2A shows an example when the F value is large
  • FIG. 2B shows an example when the F value is small.
  • FIG. 2 shows a state in which the right light beam 41R and the left light beam 41L are incident on the imaging surface 42 by the pupil division phase difference method.
  • a diaphragm is drawn on the optical axis in the vicinity of the lens for the purpose of explaining the principle.
  • each optical path from the subject is divided into, for example, the right direction and the left direction at the exit pupil, and a light beam from the right direction (right light beam) and a light beam from the left direction (left light beam) are obtained.
  • Incident light is incident on the imaging surface (light receiving surface) of the image sensor.
  • a pixel that receives a right light beam (hereinafter referred to as an R pixel) and a pixel that receives a left light beam (hereinafter referred to as an L pixel) are configured in the image sensor, and the right light beam and the left light beam are respectively transmitted to the R pixel and the L pixel.
  • the right image 43R by the right light beam 41R incident through the lens 40 is obtained by the R pixel
  • the left image 43L by the left light beam 41L is obtained by the L pixel.
  • the shift amount and the shift direction of the right image 43R and the left image 43L on the imaging surface 42 correspond to the defocus amount and the defocus direction.
  • the distance on the imaging surface 42 between the principal ray 44R of the right beam 41R and the principal ray 44L of the left beam 41L is the two-image interval A1 (filled arrow), and the two-image interval A1 is the distance from the imaging surface 42 to the focal point 45. It is proportional to (defocus amount).
  • the proportionality coefficient is AF sensitivity
  • the AF sensitivity in FIG. 2A is ⁇ 1
  • the defocus amount can be calculated by obtaining the AF sensitivity.
  • the AF sensitivity can be obtained from AF calculation parameters based on the characteristics of the lens and the image sensor.
  • FIG. 2 (b) shows an example in which the effective aperture of the lens 40 is changed with respect to FIG. 2 (a).
  • 2B shows an example in which the defocus amount Def in FIG. 2B matches the defocus amount Def in FIG.
  • FIG. 2A and 2B show that even when the defocus amount Def is constant, the interval between two images changes according to FNo. That is, the example of FIG. 2 shows that the AF sensitivity changes according to FNo, and it is possible to use effective aperture information, for example, F value as an AF calculation parameter for obtaining the AF sensitivity. . That is, in the example of FIG. 2, the defocus amount can be calculated from the information of the two image intervals and the F value.
  • the F value is defined by the ray on the optical axis. Therefore, in the present embodiment, information on the corrected F value (CF value) obtained by correcting the F value in accordance with the image height is used as an AF calculation parameter to represent the effective aperture of the light beam with respect to the AF pixel located outside the optical axis. It has come to be used as.
  • FIG. 3 is an explanatory diagram for explaining the sensitivity characteristic of the AF pixel.
  • FIG. 3A shows the range of the incident angle (ray incident angle ⁇ x) in the pupil division direction of the light beam (imaging light beam) incident on the light receiving surface.
  • the light incident angle ⁇ x is expressed as an angle in the positive and negative direction between the axis perpendicular to the light receiving surface and the light incident angle, with the axis perpendicular to the light receiving surface being 0 degrees.
  • the horizontal axis represents the light incident angle ⁇
  • the vertical axis represents sensitivity.
  • the characteristics of the light receiving sensitivity of the pixels are indicated by a solid line L and a broken line R, respectively.
  • the off-axis light beam may have an inclination with respect to the optical axis.
  • an appropriate AF sensitivity cannot be obtained only by using the corrected F value indicating the width of the light beam, and a value indicating the inclination of the light beam is also required.
  • the AF calculation parameter is set in consideration of the angle range and the angle characteristic of the imaging light beam.
  • the corrected F value corresponding to the image height but also the sensitivity information of the L and R pixels and the L and R pixels are incident as AF calculation parameters for obtaining an appropriate AF sensitivity.
  • Information on the angle range of the imaging light beam is used.
  • FIG. 5 and 6 are explanatory diagrams for explaining the relationship between the angle range of the imaging light flux and the AF sensitivity.
  • FIG. 5 shows an AF pixel on the optical axis
  • FIG. 6 shows an AF pixel outside the optical axis.
  • an imaging light beam in an angle range indicated by a thick broken line enters the AF pixel on the optical axis.
  • the imaging light flux is symmetrical with respect to the optical axis, and the angle difference between the maximum incident angle and the minimum incident angle corresponds to the F value.
  • the maximum incident angle and the minimum incident angle of the imaging light beam in the AF pixel outside the optical axis shift according to the image height as shown in FIG. Become.
  • the angle difference between the maximum incident angle and the minimum incident angle of the imaging light beam in this case corresponds to a corrected F value corrected according to the image height, although not shown in FIG. Therefore, by using the correction F value and the incident angle of the light beam passing through the center of the imaging light beam (hereinafter referred to as the imaging light beam incident angle), information on the maximum incident angle and the minimum incident angle of the imaging light beam can be obtained. Obtainable.
  • the range of the light beam incident on the AF pixel is obtained by using the correction F value and the information on the incident angle of the imaged light beam (the center direction of the imaged light beam).
  • the AF sensitivity is obtained.
  • the incident angle of the imaging light beam incident on the light receiving surface at a predetermined image height is affected by the aberration of the optical system between the stop and the light receiving surface, and therefore differs for each optical system. Therefore, in the present embodiment, information on the incident angle of the formed light beam corresponding to the image height of the light receiving surface obtained in the optical system is used as the AF calculation parameter.
  • FIG. 7 is an explanatory diagram for explaining an effective aperture (corrected F value) and an imaging beam incident angle ⁇ c which is the center direction of the imaging beam with respect to an incident beam incident on an AF pixel having an image height X.
  • FIG. 7A shows the angle range of the pupil viewed from the image height X.
  • the light incident angle on the light receiving surface corresponds to the position of the intersection of the light beam passing through the center of the imaging light beam (broken line in FIG. 7B) and the optical axis on a one-to-one basis.
  • the change ratio of this position is relatively small with respect to the change ratio of the imaging light beam incident angle ⁇ c. For this reason, it is possible to perform high-precision control with a relatively small number of bits by using information on this position instead of information on the incident angle of incident light beam ⁇ c.
  • this position that is, a position where a straight line passing through the center of the imaging light beam intersects the optical axis is referred to as a corrected exit pupil position (CEXPI).
  • CEXPI corrected exit pupil position
  • the exit pupil position which is usually defined as a paraxial amount, may be different.
  • the corrected exit pupil position (CEXPI) can be expressed by the following equation (1)
  • the corrected F value (CF value) can be expressed by the following equation (2).
  • the corrected F pupil value (CF value) corrected according to the image height and the corrected exit pupil position (CEXPI) corrected according to the image height are used as the AF calculation parameters. Since these pieces of information have different values for each optical system, information from the optical system is used. Further, since the corrected exit pupil position (CEXPI) may be infinite depending on the value of the imaging light beam incident angle ⁇ c, the reciprocal value of the corrected exit pupil position (CEXPI) may be used as the AF calculation parameter.
  • the AF calculation parameter on the lens side of the camera the correction F value corrected according to the image height and the corrected exit pupil position (CEXPI) information corrected according to the image height are used.
  • the sensitivity characteristic of the AF pixel is used as the AF calculation parameter on the side.
  • the AF calculation parameter on the lens side is a value specific to the lens side based on the optical design
  • the AF calculation parameter on the body side is a value specific to the body side based on the design of the image sensor. Therefore, by holding these AF calculation parameters on the lens side and the body side, respectively, even when the types on the lens side and the body side change, the AF calculation parameters on the lens side and the body side can be used. High precision AF calculation is possible regardless of the image height.
  • FIG. 8 is an explanatory diagram for explaining the relationship between the sensitivity of the AF pixel with an off-axis image height X, the incident angle range of the imaging light beam, and the AF sensitivity.
  • a solid line L indicates the light receiving sensitivity of the L pixel
  • a broken line R indicates the light receiving sensitivity of the R pixel.
  • FIG. 8 shows that the imaging light beam is incident in the angle range corresponding to the correction F value with the imaging light beam incident angle ⁇ c as the center.
  • the amount of light received by the L pixel can be indicated by the hatched portion in FIG.
  • the amount of light received by the R pixel can be indicated by the hatched portion in FIG. It can be considered that the barycentric position in the hatched area in FIG. 8A corresponds to the incident direction of the left light beam, and the barycentric position in the hatched area in FIG. 8B corresponds to the incident direction of the right light beam.
  • the angular interval between these barycentric positions (the barycentric angle interval) is considered to be proportional to the AF sensitivity.
  • the center-of-gravity angle interval can be expressed by the following equation (3)
  • the AF sensitivity can be expressed by the following equation (4).
  • FIG. 8 shows the light receiving sensitivity of the AF pixel having a predetermined image height
  • the light receiving sensitivity of the AF pixel also changes depending on the image height. Therefore, on the body side, it is better to hold and use information on the light receiving sensitivity of the AF pixel for each image height.
  • the area of the hatched area in FIGS. 8A and 8B corresponds to the amount of light received by each of the L and R pixels. If there is a difference in the amount of light received by the L and R pixels with respect to the same subject, the L image based on the L pixel and the R image based on the R image are different, making it difficult to detect the interval between the two images.
  • the illuminance correction is performed on the L and R image signals in accordance with the area of the hatched area in FIGS. 8A and 8B to facilitate detection of the two-image interval.
  • the area ratio between the area SL of the shaded portion in FIG. 8A and the area SR of the shaded portion in FIG. 8B can be expressed by the following equation (5), and the illuminance correction is performed by the following equation (6). Can show.
  • the photographing apparatus 1 includes a body unit 20 in which main circuits are configured, and a lens unit 10 attached to a housing of the body unit 20.
  • the lens unit 10 may be an interchangeable lens that is detachably attached to the body unit 20.
  • the lens unit 10 is provided with an optical system 11, and the optical system 11 guides an optical image of a subject to the imaging surface of the imaging device 21 of the body unit 20.
  • the optical system 11 has a lens (not shown) and has an autofocus function that is driven by the control unit 13 to focus.
  • the optical system 11 may be driven by the control unit 13 and have a zoom function.
  • a lens having a single focus photographing lens may be adopted as the lens unit 10 a lens having a single focus photographing lens may be adopted.
  • the lens unit 10 includes a memory 12.
  • the memory 12 stores various information related to the lens unit 10, for example, information related to the aperture position, aperture diameter, exit pupil position, exit pupil diameter, focus lens position, vignetting according to image height and direction, and the like. .
  • the memory 12 holds information on the reciprocal of the corrected F value (CF value) and the corrected exit pupil position (CEXPI) corrected according to the image height as AF calculation parameters.
  • the body unit 20 can acquire information on AF sensitivity.
  • FIG. 9 is an explanatory diagram for explaining information held in the memory 12.
  • the memory 12 stores information on the corrected F value (CF value) and the reciprocal of the corrected exit pupil position (1 / CEXPI) for each image height X in accordance with each lens state.
  • FIG. 9 shows only three types of image heights for the sake of simplification of the drawing, but in reality, information on a large number of image heights is stored in consideration of the assumed AF pixel arrangement.
  • the lens state corresponds to the focus state, the zoom state, the aperture state, and the like, and information on a large number of states is stored.
  • the body part 20 has an image sensor 21 constituted by an image sensor such as a CMOS sensor.
  • the image sensor 21 has a light receiving surface that receives the light of the subject from the lens unit 10.
  • the optical image of the subject from the lens unit 10 is formed on the light receiving surface.
  • the image sensor 21 includes the normal pixel (N), L pixel, and R pixel described above.
  • the image sensor 21 photoelectrically converts an optical image from the subject and outputs the photoelectric conversion result to the signal extraction unit 22.
  • the signal extraction unit 22 extracts and outputs an image signal from the output of the image sensor 21.
  • the image signal includes not only the image signal based on the output of the normal pixel (N) but also the L image signal based on the output of the L pixel and the R image signal based on the output of the R pixel.
  • the signal extraction unit 22 outputs the captured image signal to the image processing unit 23 and outputs an L image signal and an R image signal based on the output of the AF pixel to the illuminance correction unit 28.
  • the image processing unit 23 performs predetermined signal processing, such as color signal generation processing, matrix conversion processing, and other various signal processing, on the image signal from the signal extraction unit 22.
  • the image processing unit 23 can display the captured image by giving the processed image signal to the display unit 24. Further, the image processing unit 23 can provide the recording unit 25 with the image information obtained by performing the encoding process on the processed image signal and compressing the processed image signal for recording.
  • a card interface can be adopted as the recording unit 25, and the recording unit 25 can record image information, audio information, and the like on a memory card or the like. Further, the recording unit 25 can read out image information and audio information recorded in the recording medium and supply them to the image processing unit 23. The image processing unit 23 can decode the image information and the audio information from the recording unit 25 to obtain an image signal and an audio signal.
  • the display unit 24 can display a captured image from the image sensor 21 and a reproduced image from the recording unit 25 from the image processing unit 23 and display these images. Further, the display unit 24 can be controlled by the control unit 31 to display a menu display or the like for operating the photographing device 1.
  • the control unit 31 controls each part of the body unit 20.
  • the control unit 31 detects a user operation on various switches provided on the housing of the body unit 20, for example, a switch for shooting mode setting, a release button for performing shooting, and the like. Can be controlled.
  • a main body memory 27 holds information on sensitivity characteristics corresponding to the image height of each AF pixel as an AF calculation parameter.
  • the image height correction unit 26 reads out the AF calculation parameters held in the memory 12 and the AF calculation parameters held in the main body memory 27 to generate AF sensitivity information according to the image height, and according to the image height. Information for correcting illuminance is generated.
  • the image height correction unit 26 is based on the information on the sensitivity of the AF pixel and the information on the corrected exit pupil position (CEXPI) and the correction F value (CF value).
  • the AF sensitivity is calculated based on the difference between the gravity center positions, and is output to the lens control amount calculation unit 30. Further, the image height correction unit 26 obtains an illuminance correction control value based on the ratio of the area of the hatched area of the L pixel and the R pixel in FIG.
  • the illuminance correction unit 28 corrects the L image signal and the R image signal from the signal extraction unit 22 based on the illuminance correction control value, and then outputs them to the two-image interval calculation unit 29.
  • the two-image interval calculation unit 29 calculates the two-image interval from the L image signal and the R image signal whose illuminance has been corrected, and outputs the two-image interval to the lens control amount calculation unit 30.
  • the lens control amount calculation unit 30 calculates the defocus amount by using the information on the two image intervals from the two image interval calculation unit 29 and the AF sensitivity from the image height correction unit 26. Since the AF sensitivity information corresponds to the image height, the lens control amount calculation unit 30 can accurately determine the defocus amount even when the two-image interval is obtained using off-axis AF pixels. Can be calculated.
  • the lens control amount calculation unit 30 outputs the obtained defocus amount to the control unit 13 of the lens unit 10.
  • the control unit 13 performs a focusing operation by controlling the optical system based on the given defocus amount.
  • FIG. 10 is a flowchart for explaining camera control in the present embodiment.
  • the control unit 31 When the imaging apparatus 1 is powered on, the control unit 31 performs lens communication in step S1 of FIG.
  • the image height correction unit 26 of the body unit 20 reads AF calculation parameters from the memory 12 of the lens unit 10.
  • the control unit 31 causes the display unit 24 to display a captured image (through image) in a live view based on the image signal from the image sensor 21.
  • the control unit 31 calculates the illuminance correction control value in the next step S3, and calculates the AF sensitivity in step S4.
  • the image height correction unit 26 reads information on the sensitivity of the AF pixel for each image height from the main body memory 27, and uses the information on the corrected exit pupil position (CEXPI) and the correction F value (CF value) read from the memory 12. For example, the illuminance correction control value is obtained by the above equations (5) and (6).
  • the image height correction unit 26 uses, for example, the above (3), (4) using the information on the sensitivity of the AF pixel for each image height, the information on the corrected exit pupil position (CEXPI), and the corrected F value (CF value). ) To obtain the AF sensitivity.
  • the control unit 31 determines whether or not the first release operation in which the release button is half-pressed in the next step S5. Until the first release is performed, the processes in steps S1 to S4 are repeated. When the first release is performed, the control unit 31 instructs reading of AF pixels (step S6).
  • the illuminance correction unit 28 reads the L image signal and the R image signal from the signal extraction unit 22, and performs illuminance correction using the illuminance correction control value calculated by the image height correction unit 26 (step S7).
  • the L image signal and the R image signal whose illuminance has been corrected are supplied to the two-image interval calculation unit 29, and the two-image interval is calculated.
  • Information on the two-image interval is supplied to the lens control amount calculation unit 30, and the lens control amount calculation unit 30 calculates the defocus amount based on the two-image interval and the AF sensitivity in step S8.
  • the AF sensitivity information used by the lens control amount calculation unit 30 for the AF calculation is calculated for each image height by the image height correction unit 26, and a highly accurate defocus amount can be obtained regardless of the image height. .
  • the lens control amount calculation unit 30 transmits the obtained defocus amount to the control unit 13 of the lens unit 10 (step S9). Using this defocus amount information, the control unit 13 drives the optical system 11 to perform a focusing operation.
  • the control unit 31 determines whether or not a second release operation for fully pressing the release button is performed in step S10.
  • the controller 31 detects a first release operation in step S11. That is, the standby state for detecting that the second release operation is performed after the first release is made by the determination in steps S10 and S11.
  • the process returns from step S11 to step S1, and the processes after step S1 are repeated.
  • step S10 determines in step S10 that the second release operation has been performed after the first release
  • the control unit 31 proceeds to step S12 and performs shooting.
  • a focusing operation using the AF sensitivity corrected according to the image height is performed, and the subject can be shot in a surely focused state.
  • the corrected F value (CF value) corrected according to the image height the corrected exit pupil position (CEXPI) corrected according to the image height, and the sensitivity of the AF pixel for each image height.
  • the AF sensitivity is calculated based on the information to obtain the defocus amount, and high-precision focus control is possible regardless of the image height of the AF pixel.
  • information on the corrected F value (CF value) and corrected exit pupil position (CEXPI) determined according to the lens side characteristics is stored on the lens side, and the sensitivity of the AF pixel determined according to the body side characteristics is stored. Information is stored on the body side, and high-precision AF calculation can be performed regardless of the image height even when the types on the lens side and the body side change. In this way, with a simple configuration, high-precision focus processing is possible even when AF pixels at any position on the light receiving surface are used.
  • FIG. 11 is an explanatory diagram showing an AF sensitivity table employed in the second embodiment of the present invention.
  • the hardware configuration of this embodiment is the same as that shown in FIG. This embodiment is different from the first embodiment only in that the image height correction unit 26 obtains the AF sensitivity using the AF sensitivity table stored in the main body memory 27.
  • the image height correction unit 26 corrects the correction F value (CF value) corrected according to the image height, the corrected exit pupil position (CEXPI) corrected according to the image height, and the image height.
  • the AF sensitivity was calculated based on the sensitivity information of each AF pixel.
  • the main body memory 27 holds this calculation result as an AF sensitivity table. Therefore, the image height correction unit 26 may read the AF sensitivity stored in the AF sensitivity table based on the information of the corrected F value (CF value) and the corrected exit pupil position (CEXPI) (or the reciprocal thereof).
  • the AF sensitivity table stores information on AF sensitivities ⁇ 1-15 to ⁇ 22 + 3 corresponding to information on the reciprocals of the corrected F value (CF value) and the corrected exit pupil position (CEXPI).
  • 1000 / CEXPI represents a value obtained by multiplying the reciprocal of the corrected exit pupil position (CEXPI) by 1000.
  • a table having reciprocal information of the corrected F value (CF value) and the corrected exit pupil position (CEXPI) for each image height is stored for each lens state.
  • CF value corrected F value
  • CEXPI corrected exit pupil position
  • the sensitivity distribution of the AF pixel and the angle range of the imaging light beam are described only in the pupil division direction that is the ⁇ x direction shown in FIG. FIG. 12 shows this state, and the light beam that has passed through the pupil is shifted from the optical axis to the outside of the axis in the pupil division direction.
  • the imaging light beam is also shifted in the ⁇ y direction, two dimensions are considered for the sensitivity distribution of the AF pixel and the angular range of the imaging light beam.
  • the AF sensitivity may be obtained in consideration of the distortion of the imaging light beam off the axis.
  • a digital camera has been described as an apparatus for photographing.
  • the camera may be a digital single lens reflex camera or a compact digital camera, such as a video camera or a movie camera.
  • a camera for moving images may be used, and a camera built in a portable information terminal (PDA: Personal Digital Assist) such as a mobile phone or a smartphone may of course be used.
  • PDA Personal Digital Assist
  • industrial and medical optical instruments such as endoscopes and microscopes may be used.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, you may delete some components of all the components shown by embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

 撮影機器は、レンズ部を装着可能であって、レンズ部から結像光束が導かれるボディ部を有する撮影機器において、撮像用の画素及び焦点検出用の画素を有する撮像素子と、上記焦点検出用の画素の感度特性の情報を保持する記憶部と、上記レンズ部から結像光束の入射角度及び角度範囲に関する情報を取得し、該情報と上記記憶部から読み出した情報に基づいてフォーカス制御のための情報を算出する制御量算出部とを具備し、簡単な構成で、レンズ系に拘わらず高精度のフォーカス処理を可能にする。

Description

撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステム
 本発明は、オートフォーカス機能を有する撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステムに関する。
 近年、デジタルカメラなどの撮影機能付き携帯機器(撮影機器)は、オートフォーカス機能を有するものが多い。この種の撮影機器には、画像構成のための撮像用画素(通常画素)以外に、焦点検出用の画素(以下、AF画素という)を内蔵した撮像素子を採用して、瞳分割位相差法によりオートフォーカスを行うものがある。この手法では、瞳を左右方向に分割し、左、右それぞれの瞳を透過した光束を別々に受光する撮像部を有するAF画素を撮像素子に構成する必要がある。これらの各種AF画素による画像信号に対する演算(以下、AF演算又は相関演算という)によって、ピント合わせのためのAF信号を生成してピント合わせを行うことにより、高速なオートフォーカスが可能である。
 ただし、この方法では、瞳位置の異なる光学系に対応できていない。
 レンズの使用状態に応じて、ピントのずれ量(デフォーカス量)を求めるAF演算においては、異なる光束による複数の像の受光面上での間隔(2像間隔)とAF演算の各種パラメータ(以下、AF演算パラメータという)を用いた演算が行われる。
 しかしながら、受光面全域におけるAF演算パラメータを正確に算出することは困難であることから、AF演算にはレンズ光軸近傍のAF画素を考慮したAF演算パラメータが設定される。このため、レンズ光軸からずれたAF画素を用いたAF演算精度は低く、AF精度が低下することがあるという問題があった。
 本発明は、簡単な構成で、受光面のいずれの位置におけるAF画素を用いた場合でも高精度のフォーカス処理を可能にすることができる撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステムを提供することを目的とする。
 本発明に係る撮影機器は、レンズ部を装着可能であって、レンズ部から結像光束が導かれるボディ部を有する撮影機器において、撮像用の画素及び焦点検出用の画素を有する撮像素子と、上記焦点検出用の画素の感度特性の情報を保持する記憶部と、上記レンズ部から結像光束の入射角度及び角度範囲に関する情報を取得し、該情報と上記記憶部から読み出した情報に基づいてフォーカス制御のための情報を算出する制御量算出部とを具備する。
 また、本発明に係る撮影機器は、撮影光束を導くレンズ部と上記レンズ部を装着可能なボディ部を有する撮影機器において、撮像用の画素及び焦点検出用の画素を有する撮像素子と、結像光束の入射角度及び角度範囲に関する情報を保持する第1の記憶部と、上記焦点検出用の画素の感度特性の情報と上記入射角度及び角度範囲に関する情報とに基づいて得られるフォーカス制御のための情報を、上記入射角度及び角度範囲に関する情報に対応して記憶する第2の記憶部と、上記第1の記憶部から読み出した情報に基づいて上記第2の記憶部から上記フォーカス制御のための情報を読み出してフォーカス制御情報を出力する制御量出力部とを具備する。
 また、本発明に係るフォーカス制御のための情報を算出する方法は、撮影光束を瞳分割した一対の光束を受光する一対の焦点検出用の画素を複数対含む撮像素子を有するボディ部と、上記ボディ部に装着可能なレンズ部を有する撮影機器において、フォーカス制御のための情報を算出する方法であって、上記レンズ部から結像光束の入射角度及び角度範囲に関する情報を読み出し、上記ボディ部から上記焦点検出用の画素の感度特性の情報を読み出し、上記入射角度及び角度範囲に関する情報と上記焦点検出用の画素の感度特性に基づいて、上記一対の焦点検出用の画素にそれぞれ入射する光束の重心位置の間隔を算出してフォーカス制御のための情報を算出する。
 また、本発明に係るカメラシステムは、撮影光束を導くレンズ部と上記レンズ部を装着可能なボディ部を有するカメラシステムにおいて、撮像用の画素及び焦点検出用の画素を有する撮像素子と、上記レンズ部に設けられ、結像光束の入射角度及び角度範囲に関する情報を保持する第1の記憶部と、上記ボディ部に設けられ、上記焦点検出用の画素の感度特性の情報を保持する第2の記憶部と、上記第1及び第2の記憶部から読み出した情報に基づいてフォーカス制御のための情報を算出する制御量算出部とを具備する。
本発明の第1の実施の形態に係る撮影機器を示すブロック図。 瞳分割位相差法においてF値(Fナンバー)と2像間隔との関係を説明するための説明図。 AF画素の感度特性を説明するための説明図。 光軸外のAF画素への結像光束の入射角度の状態を説明するための説明図。 光軸上のAF画素について結像光束の角度範囲とAF感度との関係を説明するための説明図。 軸外のAF画素について結像光束の角度範囲とAF感度との関係を説明するための説明図。 像高XのAF画素に入射される入射光束について、有効口径(補正F値)及び結像光束の中心方向である結像光束入射角θcを説明するための説明図。 軸外の像高XのAF画素の感度及び結像光束の入射角度範囲と、AF感度との関係を説明するための説明図。 メモリ12に保持される情報を説明するための説明図。 本実施の形態におけるカメラ制御を説明するためのフローチャート。 本発明の第2の実施の形態において採用されるAF感度テーブルを示す説明図。 画素の感度分布及び結像光束の角度範囲についての方向を説明するための説明図。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。
(第1の実施の形態)
 図1は本発明の第1の実施の形態に係る撮影機器を示すブロック図である。
 先ず、図2乃至図8を参照して、本実施の形態において採用するオートフォーカス(AF)処理について説明する。
 図2は瞳分割位相差法においてF値(Fナンバー)と2像間隔との関係を説明するための説明図である。図2(a)はF値が大きい場合の例を示し、図2(b)はF値が小さい場合の例を示している。図2は瞳分割位相差法による右光束41R及び左光束41Lが撮像面42に入射する様子を示している。図2では原理説明のためレンズ付近の光軸上に絞りが描かれているが、実際には、撮像素子内に光束分割の手段を有する。
 瞳分割位相差法においては、被写体からの各光路を射出瞳において例えば右方向と左方向とに分割して、右方向からの光束(右光束)と左方向からの光束(左光束)とを撮像素子の撮像面(受光面)に入射させる。撮像素子に、右光束を受光する画素(以下、R画素という)と左光束を受光する画素(以下、L画素)とを構成して、右光束と左光束とをR画素とL画素の各撮像面に別々に結像させる。
 図2において、レンズ40を介して入射した右光束41Rによる右画像43RがR画素によって得られ、左光束41Lによる左画像43LがL画素によって得られる。これらの右画像43Rと左画像43Lとの撮像面42上におけるずれ量及びずれの方向がデフォーカス量及びデフォーカス方向に対応する。右光束41Rの主光線44Rと左光束41Lの主光線44Lとの撮像面42上における距離が2像間隔A1(塗り潰し矢印)であり、2像間隔A1は、撮像面42と焦点45までの距離(デフォーカス量)に比例する。この比例係数がAF感度であり、図2(a)におけるAF感度をα1とすると、デフォーカス量Defは、Def=α1×A1で表すことができる。
 2像間隔は、R画素とL画素の出力から得ることができるので、AF感度を求めれば、デフォーカス量を算出することができることになる。AF感度は、レンズや撮像素子の特性に基づくAF演算パラメータから求めることができる。
 図2(b)は図2(a)に対してレンズ40の有効口径を変化させた場合の例を示している。図2(b)におけるデフォーカス量Defは図2(a)におけるデフォーカス量Defに一致した例を示している。図2(b)における2像間隔をA2とし、AF演算パラメータから求めたAF感度をα2とすると、デフォーカス量Defは、Def=α2×A2で表すことができる。
 図2(a),(b)の例は、デフォーカス量Defが一定であっても、2像間隔はFNoに応じて変化することを示している。即ち、図2の例は、AF感度はFNoに応じて変化することを示しており、AF感度を求めるためのAF演算パラメータとして有効口径の情報、例えばF値を用いることができることを示している。即ち、図2の例では、2像間隔とF値の情報からデフォーカス量を算出可能である。
 しかし、F値は光軸上の光線によって定義されている。そこで、本実施の形態においては、光軸外に位置するAF画素に対する光束の有効口径を表すものとして、F値を像高に応じて補正した補正F値(CF値)の情報をAF演算パラメータとして用いるようになっている。
 図3はAF画素の感度特性を説明するための説明図である。図3(a)は受光面に入射する光束(結像光束)の瞳分割方向における入射角度(光線入射角θx)の範囲を示している。
 図3(a)に示すように、光線入射角θxは、受光面に垂直な軸を0度として、受光面に垂直な軸と光線入射角との正負の方向の角度で表す。
 図3(b)は横軸に光線入射角θをとり縦軸に感度をとって、左の瞳を透過した左光束を受光するL画素と、右の瞳を透過した右光束を受光するR画素の受光感度の特性を、実線L及び破線Rにて夫々示している。
 図4のように、軸外光束は、光軸に対し傾きを持つことがある。
 このように、軸外のAF画素を用いたAF演算では、光束の幅を表す補正F値を用いただけでは適正なAF感度を得ることはできず、光束の傾きを示す値も必要となる。
 AF画素の受光感度は、瞳分割方向に角度特性を有しているので、本実施の形態においては、結像光束の角度範囲と角度特性とを考慮して、AF演算パラメータを設定する。即ち、本実施の形態においては、適正なAF感度を得るためのAF演算パラメータとして、像高に対応した補正F値だけでなく、L,R画素の感度の情報及びL,R画素に入射する結像光束の角度範囲に関する情報を用いる。
 図5及び図6は結像光束の角度範囲とAF感度との関係を説明するための説明図である。図5は光軸上のAF画素について示し、図6は光軸外のAF画素について示している。図5に示すように、光軸上のAF画素には、例えば破線太線にて示す角度範囲の結像光束が入射される。この結像光束は、図4に示すように光軸に対して左右対称であり、最大の入射角と最小の入射角との角度差は、F値に対応するものである。
 また、光軸外のAF画素における結像光束の最大の入射角と最小の入射角は、図4に示すように像高に応じてシフトし、例えば図6の破線太線にて示す角度範囲となる。なお、この場合の結像光束の最大の入射角と最小の入射角の角度差は、図4では図示を省略したが正確には、像高に応じて補正した補正F値に対応する。従って、補正F値と、結像光束の中心を通る光線の入射角(以下、結像光束入射角という)とを用いることで、結像光束の最大の入射角と最小の入射角の情報を得ることができる。
 本実施の形態においては、演算を簡単なものとするために、補正F値と結像光束入射角(結像光束の中心方向)の情報を用いて、AF画素に入射する光束の範囲を求め、これにより、AF感度を求めるようになっている。
 この場合において、受光面において所定の像高に入射される結像光束の入射角度は、絞りと受光面間における光学系の収差等の影響を受けるので、光学系毎に異なる。そこで、本実施の形態においては、光学系において得られる、受光面の像高に対応する結像光束入射角の情報をAF演算パラメータとする。
 図7は像高XのAF画素に入射される入射光束について、有効口径(補正F値)及び結像光束の中心方向である結像光束入射角θcを説明するための説明図である。図7(a)は像高Xから見た瞳の角度範囲を示している。像高X方向には、結像光束は、入射角θLからθUの範囲に存在し、その中心が結像光束入射角θcである。
 更に、受光面への光線入射角は、結像光束の中心を通る光線(図7(b)の破線)と光軸との交点の位置と1対1に対応する。この位置の変化の比率は、結像光線入射角θcの変化の比率に対して比較的小さい。このため、結像光束入射角θcの情報に代えてこの位置の情報を用いることで、比較的少ないビット数で高精度の制御が可能である。本実施の形態においては、以後この位置、即ち、結像光束の中心を通る直線が光軸と交わる位置を、補正射出瞳位置(CEXPI)というものとする。なお、通常、近軸量として定義される射出瞳位置とは異なることがある。
 なお、補正射出瞳位置(CEXPI)は下記(1)式によって示すことができ、補正F値(CF値)は下記(2)式によって示すことができる。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
 このように、本実施の形態においては、AF演算パラメータとして、像高に応じて補正した補正F値(CF値)及び像高に応じて補正した補正射出瞳位置(CEXPI)の情報を用いる。これらの情報は、光学系毎に異なる値となるので、光学系からの情報を利用する。また、結像光束入射角θcの値によっては、補正射出瞳位置(CEXPI)が無限遠になることがあるので、補正射出瞳位置(CEXPI)の逆数の値をAF演算パラメータとしてもよい。
 本実施の形態においては、カメラのレンズ側のAF演算パラメータとして、像高に応じて補正した補正F値及び像高に応じて補正した補正射出瞳位置(CEXPI)の情報を用い、カメラのボディ側のAF演算パラメータとして、AF画素の感度特性を用いる。レンズ側のAF演算パラメータは、光学設計に基づいたレンズ側固有の値であり、一方ボディ側のAF演算パラメータは、撮像素子の設計に基づいたボディ側固有の値である。従って、これらのAF演算パラメータをレンズ側及びボディ側で夫々保持することで、レンズ側及びボディ側の種類が夫々変化した場合でも、レンズ側及びボディ側のAF演算パラメータを利用することができ、像高に拘わらず高精度のAF演算が可能となる。
 図8は軸外の像高XのAF画素の感度及び結像光束の入射角度範囲と、AF感度との関係を説明するための説明図である。実線LはL画素の受光感度を示し、破線RはR画素の受光感度を示している。図8の感度特性によって示されるAF画素に、破線太線の角度範囲で結像光束が入射するものとする。即ち、図8は結像光束入射角θcを中心に、補正F値に対応する角度範囲だけ結像光束が入射することを示している。
 L画素の受光量は、図8(a)の斜線部分にて示すことができる。また、R画素の受光量は、図8(b)の斜線部分にて示すことができる。図8(a)の斜線領域の重心位置は左光束の入射方向に相当し、図8(b)の斜線領域の重心位置は右光束の入射方向に相当するものと考えることができる。そして、これらの重心位置間の角度間隔(重心角度間隔)は、AF感度に比例すると考えられる。
 即ち、重心角度間隔は、下記(3)式によって示すことができ、AF感度は下記(4)式によって示すことができる。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 なお、図8は所定像高のAF画素の受光感度を示しているが、像高に応じてAF画素の受光感度も変化する。従って、ボディ側では、各像高毎のAF画素の受光感度の情報を保持して利用するようにした方がよい。
 また、図8(a),(b)の斜線領域の面積は、各L,R画素の受光量に相当する。同一被写体に対するL,R画素の受光量に差があると、L画素に基づくL画像とR画像に基づくR画像とが相違してしまい、2像間隔の検出が困難となってしまう。そこで、図8(a),(b)の斜線領域の面積に応じてL,R画像信号を照度補正することで、2像間隔の検出を容易にするようになっている。なお、図8(a)の斜線部分の面積SLと図8(b)の斜線部分の面積SRとの面積比は下記(5)式によって示すことができ、照度補正は下記(6)式によって示すことができる。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
(回路構成)
 図1に示すように、本実施の形態における撮影機器1は、主要な回路が構成されたボディ部20と、ボディ部20の筐体に取り付けられるレンズ部10によって構成される。なお、レンズ部10は、ボディ部20に着脱自在に取り付けられる交換レンズであってもよい。レンズ部10には光学系11が設けられており、光学系11は被写体の光学像をボディ部20の撮像素子21の撮像面に導くようになっている。光学系11は、図示しないレンズを有しており、制御部13に駆動されて合焦するオートフォーカス機能を備えている。また、光学系11は制御部13に駆動されてズーム機能を有するものであってもよい。なお、レンズ部10としては、単焦点の撮影レンズを有するものを採用してもよい。
 レンズ部10はメモリ12を備えている。メモリ12は、レンズ部10に関する各種情報、例えば、絞り位置、絞り径、射出瞳位置、射出瞳径、フォーカスレンズ位置、像高及び方向に応じたケラレ等に関する情報を記憶するようになっている。
 更に、本実施の形態においては、メモリ12は、AF演算パラメータとして、像高に応じて補正した補正F値(CF値)及び補正射出瞳位置(CEXPI)の逆数の情報を保持する。メモリ12のAF演算パラメータをボディ部20に送信することで、ボディ部20において、AF感度の情報を取得することができるようになっている。
 図9はメモリ12に保持される情報を説明するための説明図である。図9に示すように、メモリ12には、各レンズ状態に応じて、像高X毎に補正F値(CF値)及び補正射出瞳位置の逆数(1/CEXPI)の情報が格納されている。なお、図9は図面の簡略化のために3種類の像高のみを示したが、実際には想定されるAF画素配置を考慮して、多数の像高の情報を記憶する。また、レンズ状態は、フォーカス状態、ズーム状態、絞り状態等に対応したものであり、多数の状態についての情報が記憶されている。
 ボディ部20は、CMOSセンサ等の撮像素子によって構成された撮像素子21を有している。撮像素子21は、レンズ部10からの被写体の光を受光する受光面を有する。レンズ部10からの被写体の光学像は、受光面に結像するようになっている。本実施の形態においては、撮像素子21には、上述した通常画素(N)、L画素及びR画素が構成されている。
 撮像素子21は、被写体からの光学像を光電変換して、光電変換結果を信号抽出部22に出力する。信号抽出部22は、撮像素子21の出力から画像信号を抽出して出力する。なお、この画像信号中には、通常画素(N)の出力に基づく画像信号だけでなく、L画素の出力に基づくL画像信号及びR画素の出力に基づくR画像信号が含まれる。信号抽出部22は取り込んだ画像信号を画像処理部23に出力すると共に、AF画素の出力に基づくL画像信号及びR画像信号を照度補正部28に出力する。
 画像処理部23は、信号抽出部22からの画像信号に対して、所定の信号処理、例えば、色信号生成処理、マトリックス変換処理、その他各種の信号処理を行う。画像処理部23は、処理後の画像信号を表示部24に与えて撮像画像を表示させることができる。また、画像処理部23は、処理後の画像信号を符号化処理を施して圧縮した画像情報を記録部25に与えて記録させることができる。
 記録部25としては例えばカードインターフェースを採用することができ、記録部25はメモリカード等に画像情報や音声情報等を記録可能である。また、記録部25は、記録媒体に記録された画像情報及び音声情報を読み出して画像処理部23に供給することができる。画像処理部23は、記録部25からの画像情報及び音声情報を復号化して、画像信号及び音声信号を得ることができるようになっている。
 表示部24は、撮像素子21からの撮像画像や記録部25からの再生画像が画像処理部23から供給されて、これらの画像表示を行うことができる。また、表示部24は制御部31に制御されて、撮影機器1の操作を行うためのメニュー表示等を表示することもできるようになっている。
 制御部31はボディ部20の各部を制御するようになっている。例えば、制御部31は、ボディ部20の筐体に設けられた各種スイッチ、例えば撮影モード設定等のスイッチや撮影を行うためのレリーズボタン等に対するユーザ操作を検出し、ユーザ操作に基づいて、各部を制御することができるようになっている。
 本実施の形態においては、本体メモリ27が設けられている。本体メモリ27は、AF演算パラメータとして、各AF画素の像高に応じた感度特性に関する情報を保持する。像高補正部26は、メモリ12に保持されたAF演算パラメータ及び本体メモリ27に保持されたAF演算パラメータを読み出して、像高に応じたAF感度の情報を生成すると共に、像高に応じて照度を補正するための情報を生成する。
 即ち、像高補正部26は、AF画素の感度の情報と、補正射出瞳位置(CEXPI)及び補正F値(CF値)の情報とに基づいて、図8のL画素とR画素の斜線領域を求め、重心位置同士の差に基づいてAF感度を算出してレンズ制御量算出部30に出力する。また、像高補正部26は、図8のL画素とR画素の斜線領域の面積の比に基づいて照度補正制御値を求めて照度補正部28に出力する。
 照度補正部28は、信号抽出部22からのL画像信号及びR画像信号を、照度補正制御値に基づいて補正した後、2像間隔演算部29に出力する。2像間隔演算部29は、照度補正されたL画像信号及びR画像信号から2像間隔を求めてレンズ制御量算出部30に出力する。
 レンズ制御量算出部30は、2像間隔演算部29からの2像間隔と、像高補正部26からのAF感度の情報を用いて、デフォーカス量を算出する。AF感度の情報が像高に応じたものとなっているので、レンズ制御量算出部30は、軸外のAF画素を用いて2像間隔が求められている場合でも、高精度にデフォーカス量を算出することができる。
 レンズ制御量算出部30は、求めたデフォーカス量をレンズ部10の制御部13に出力する。制御部13は、与えられたデフォーカス量に基づいて光学系を制御することで、合焦動作を行うようになっている。
 次に、このように構成された実施の形態の作用について図10を参照して説明する。図10は本実施の形態におけるカメラ制御を説明するためのフローチャートである。
 撮影機器1に電源が投入されると、制御部31は、図10のステップS1において、レンズ通信を行う。ボディ部20の像高補正部26は、レンズ部10のメモリ12からAF演算パラメータを読み出す。制御部31は、ステップS2において、撮像素子21からの画像信号に基づいて、表示部24に撮像画像(スルー画)をライブビュー表示させる。制御部31は、次のステップS3において照度補正制御値を算出させ、ステップS4においてAF感度を算出させる。
 像高補正部26は、本体メモリ27から像高毎のAF画素の感度に関する情報を読み出し、メモリ12から読み出した補正射出瞳位置(CEXPI)及び補正F値(CF値)の情報を用いて、例えば、上記(5),(6)式によって照度補正制御値を求める。
 また、像高補正部26は、像高毎のAF画素の感度に関する情報、補正射出瞳位置(CEXPI)及び補正F値(CF値)の情報を用いて、例えば、上記(3),(4)式によってAF感度を求める。
 制御部31は、次のステップS5においてレリーズボタンを半押しするファーストレリーズ操作が行われたか否かを判定する。ファーストレリーズが行われるまで、ステップS1~S4の処理が繰り返される。ファーストレリーズが行われると、制御部31はAF画素の読み込みを指示する(ステップS6)。
 照度補正部28は、信号抽出部22からL画像信号及びR画像信号を読み出し、像高補正部26において算出された照度補正制御値を用いて照度補正を行う(ステップS7)。照度補正されたL画像信号及びR画像信号は、2像間隔演算部29に供給されて、2像間隔が算出される。2像間隔の情報はレンズ制御量算出部30に供給され、レンズ制御量算出部30は、ステップS8において、2像間隔とAF感度とに基づいてデフォーカス量を算出する。
 レンズ制御量算出部30がAF演算に用いたAF感度の情報は、像高補正部26によって像高毎に算出されたものであり、像高に拘わらず、高精度のデフォーカス量が得られる。レンズ制御量算出部30は、求めたデフォーカス量をレンズ部10の制御部13に送信する(ステップS9)。このデフォーカス量の情報を用いて、制御部13は、光学系11を駆動して合焦動作を行う。
 制御部31はステップS10においてレリーズボタンを全押しするセカンドレリーズ操作が行われたか否かを判定する。制御部31はステップS11においてファーストレリーズ操作を検出する。即ち、ステップS10,S11の判定によって、ファーストレリーズ後にセカンドレリーズ操作が行われることを検出する待機状態となる。撮影者がレリーズボタンの半押しを解除すると、ステップS11から処理をステップS1に戻して、ステップS1以降の処理が繰り返される。
 制御部31は、ファーストレリーズ後にセカンドレリーズ操作が行われたことをステップS10において判定すると、処理をステップS12に移行して撮影を行う。撮影時点では、像高に応じて補正されたAF感度を用いた合焦動作が行われており、確実に合焦された状態で被写体を撮影することができる。
 このように本実施の形態においては、像高に応じて補正された補正F値(CF値)、像高に応じて補正された補正射出瞳位置(CEXPI)及び像高毎のAF画素の感度情報に基づいてAF感度を算出してデフォーカス量を求めており、AF画素の像高に拘わらず、高精度のフォーカス制御が可能である。また、レンズ側の特性に応じて決定される補正F値(CF値)及び補正射出瞳位置(CEXPI)の情報をレンズ側に記憶させ、ボディ側の特性に応じて決定されるAF画素の感度情報をボディ側に記憶させており、レンズ側及びボディ側の種類が夫々変化した場合でも、像高に拘わらず高精度のAF演算が可能となる。こうして、簡単な構成で、受光面のいずれの位置におけるAF画素を用いた場合でも高精度のフォーカス処理が可能である。
(第2の実施の形態)
 図11は本発明の第2の実施の形態において採用されるAF感度テーブルを示す説明図である。本実施の形態のハードウェア構成は図1と同様である。本実施の形態は像高補正部26において、本体メモリ27に格納されているAF感度テーブルを用いてAF感度を求める点が第1の実施の形態と異なるのみである。
 第1の実施の形態においては、像高補正部26は、像高に応じて補正された補正F値(CF値)、像高に応じて補正された補正射出瞳位置(CEXPI)及び像高毎のAF画素の感度情報に基づいてAF感度を算出した。本実施の形態においては、本体メモリ27は、この算出結果をAF感度テーブルとして保持する。従って、像高補正部26は、補正F値(CF値)及び補正射出瞳位置(CEXPI)(又はその逆数)の情報に基づいて、AF感度テーブルに記憶されたAF感度を読み出せばよい。
 図11に示すように、AF感度テーブルは、補正F値(CF値)及び補正射出瞳位置(CEXPI)の逆数の情報に対応したAF感度α1-15~α22+3の情報が記憶されている。なお、図11において、1000/CEXPIは、補正射出瞳位置(CEXPI)の逆数を1000倍した値を示している。
 このように、本実施の形態においては、レンズ側において、各レンズ状態毎で、像高毎に補正F値(CF値)及び補正射出瞳位置(CEXPI)の逆数の情報を有するテーブルを記憶し、ボディ側において、補正F値(CF値)及び補正射出瞳位置(CEXPI)の逆数の情報に対応するAF感度の情報を有するAF感度テーブルを記憶させることにより、極めて簡単な構成によって、像高に応じたAF感度及びデフォーカス量の算出が可能である。
 なお、上記各実施の形態においては、説明を簡略化するために、AF画素の感度分布及び結像光束の角度範囲の説明は、図12に示すθx方向である瞳分割方向についてのみ行った。図12はこの状態を示しており、瞳を通過した光束は、光軸から瞳分割方向の軸外にずれている。しかし、実際には、結像光束はθy方向にもずれるので、AF画素の感度分布及び結像光束の角度範囲については2次元を考慮する。更に、軸外における結像光束の歪も考慮して、AF感度を求めてもよい。
 さらに、本発明の各実施形態においては、撮影のための機器として、デジタルカメラを用いて説明したが、カメラとしては、デジタル一眼レフカメラでもコンパクトデジタルカメラでもよく、ビデオカメラ、ムービーカメラのような動画用のカメラでもよく、さらに、携帯電話やスマートフォンなど携帯情報端末(PDA:Personal Digital Assist)等に内蔵されるカメラでも勿論構わない。また、内視鏡、顕微鏡のような産業用、医療用の光学機器でもよい。
 本発明は、上記各実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 なお、特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。また、これらの動作フローを構成する各ステップは、発明の本質に影響しない部分については、適宜省略も可能であることは言うまでもない。

 本出願は、2012年12月20日に日本国に出願された特願2012-278715号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (31)

  1.  レンズ部を装着可能であって、レンズ部から結像光束が導かれるボディ部を有する撮影機器において、
     撮像用の画素及び焦点検出用の画素を有する撮像素子と、
     上記焦点検出用の画素の感度特性の情報を保持する記憶部と、
     上記レンズ部から結像光束の入射角度及び角度範囲に関する情報を取得し、該情報と上記記憶部から読み出した情報に基づいてフォーカス制御のための情報を算出する制御量算出部と
     を具備したことを特徴とする撮影機器。
  2.  上記レンズ部から取得される結像光束の入射角度及び角度範囲に関する情報は、F値を像高に応じて補正して求めた補正F値の情報と射出瞳位置を像高に応じて補正して求めた補正射出瞳位置の情報である
     ことを特徴とする請求項1に記載の撮影機器。
  3.  上記記憶部は、上記感度特性の情報を、像高に対応させて記憶する
     ことを特徴とする請求項1に記載の撮影機器。
  4.  上記制御量算出部は、上記焦点検出用の画素の出力に基づいて求められる位相差検出情報を上記レンズ部のデフォーカス量に変換するためのAF感度を算出する
     ことを特徴とする請求項1に記載の撮影機器。
  5.  上記制御量算出部は、上記焦点検出用の画素の出力の照度分布による影響を補正する補正値を算出する
     ことを特徴とする請求項1´に記載の撮影機器。
  6.  上記レンズ部は、上記入射角度及び角度範囲に関する情報を、上記レンズ部のレンズ状態毎に記憶するレンズ記憶部を有する
     ことを特徴とする請求項1に記載の撮影機器。
  7.  上記レンズ部は、フォーカスレンズとズームレンズと絞りを有し、
     上記レンズ状態は、上記レンズ部のフォーカス状態、ズーム状態、絞り状態に関する情報の少なくともいずれかひとつを含む
     ことを特徴とする請求項6に記載の撮影機器。
  8.  上記感度特性の情報は、上記焦点検出用の画素への光線入射角に対する受光感度を示す
     ことを特徴とする請求項3に記載の撮影機器。
  9.  上記制御量算出部は、上記AF感度を像高に応じて算出する
     ことを特徴とする請求項4に記載の撮影機器。
  10.  上記焦点検出用の画素は、一対の瞳分割された光束を受光する一対の画素を有し、
     上記一対の画素にそれぞれ入射する光束の範囲を求め、上記光束の重心位置の間隔を算出してAF感度を算出する
     ことを特徴とする請求項4に記載の撮影機器。
  11.  上記制御量算出部は、上記補正値を像高に応じて算出する
     ことを特徴とする請求項5に記載の撮影機器。
  12.  撮影光束を導くレンズ部と上記レンズ部を装着可能なボディ部を有する撮影機器において、
     撮像用の画素及び焦点検出用の画素を有する撮像素子と、
     結像光束の入射角度及び角度範囲に関する情報を保持する第1の記憶部と、
     上記焦点検出用の画素の感度特性の情報と上記入射角度及び角度範囲に関する情報とに基づいて得られるフォーカス制御のための情報を、上記入射角度及び角度範囲に関する情報に対応して記憶する第2の記憶部と、
     上記第1の記憶部から読み出した情報に基づいて上記第2の記憶部から上記フォーカス制御のための情報を読み出してフォーカス制御情報を出力する制御量出力部と
     を具備したことを特徴とする撮影機器。
  13.  上記第1の記憶部は、上記入射角度及び角度範囲に関する情報として、F値を像高に応じて補正して求めた補正F値の情報と射出瞳位置を像高に応じて補正して求めた補正射出瞳位置の情報とを記憶する
     ことを特徴とする請求項12記載の撮影機器。
  14.  上記第1の記憶部は、上記入射角度及び角度範囲に関する情報を、上記レンズ部のレンズ状態毎に記憶する
     ことを特徴とする請求項12記載の撮影機器。
  15.  上記レンズ部は、フォーカスレンズとズームレンズと絞りを有し、
     上記レンズ状態は、上記レンズ部のフォーカス状態、ズーム状態、絞り状態に関する情報の少なくともいずれかひとつを含む
     ことを特徴とする請求項14記載の撮影機器。
  16.  上記フォーカス制御のための情報は、上記焦点検出用の画素の出力に基づいて求められる位相差検出情報を上記レンズ部のデフォーカス量に変換するためのAF感度である
     ことを特徴とする請求項12記載の撮影機器。
  17.  上記フォーカス制御のために情報は、上記焦点検出用の画素の出力の照度分布による影響を補正する補正値を算出する
     ことを特徴とする請求項12記載の撮影機器。
  18.  撮影光束を瞳分割した一対の光束を受光する一対の焦点検出用の画素を複数対含む撮像素子を有するボディ部と、上記ボディ部に装着可能なレンズ部を有する撮影機器において、フォーカス制御のための情報を算出する方法であって、
     上記レンズ部から結像光束の入射角度及び角度範囲に関する情報を読み出し、
     上記ボディ部から上記焦点検出用の画素の感度特性の情報を読み出し、
     上記入射角度及び角度範囲に関する情報と上記焦点検出用の画素の感度特性に基づいて、上記一対の焦点検出用の画素にそれぞれ入射する光束の重心位置の間隔を算出してフォーカス制御のための情報を算出する
     ことを特徴とするフォーカス制御のための情報を算出する方法。
  19.  上記入射角度及び角度範囲に関する情報に基づいて上記一対の焦点検出用の画素にそれぞれ入射する光束の範囲を求め、
     上記光束の範囲と上記焦点検出用の画素の感度特性に基づいて上記光束の受光量を求めて上記光束の重心位置を算出する
     ことを特徴とする請求項18のフォーカス制御のための情報を算出する方法。
  20.  上記一対の焦点検出用の画素の像高に応じた上記入射角度及び角度情報に関する情報に基づいて上記一対の焦点検出用の画素にそれぞれ入射する光束の範囲を求め、
     上記一対の焦点検出用の画素の像高に応じた上記一対の焦点検出用の画素の感度特性に基づいて上記光束の受光量を求める。
     ことを特徴とする請求項19のフォーカス制御のための情報を算出する方法。
  21.  撮影光束を導くレンズ部と上記レンズ部を装着可能なボディ部を有するカメラシステムにおいて、
     撮像用の画素及び焦点検出用の画素を有する撮像素子と、
     上記レンズ部に設けられ、結像光束の入射角度及び角度範囲に関する情報を保持する第1の記憶部と、
     上記ボディ部に設けられ、上記焦点検出用の画素の感度特性の情報を保持する第2の記憶部と、
     上記第1及び第2の記憶部から読み出した情報に基づいてフォーカス制御のための情報を算出する制御量算出部と
     を具備したことを特徴とするカメラシステム。
  22.  上記第1の記憶部は、上記入射角度及び角度範囲に関する情報として、F値を像高に応じて補正して求めた補正F値の情報と射出瞳位置を像高に応じて補正して求めた補正射出瞳位置の情報とを記憶する
     ことを特徴とする請求項21に記載のカメラシステム。
  23.  上記第1の記憶部は、上記入射角度及び角度範囲に関する情報を、上記レンズ部のレンズ状態毎に記憶する
     ことを特徴とする請求項21に記載のカメラシステム。
  24.  上記レンズ部は、フォーカスレンズとズームレンズと絞りを有し、
     上記レンズ状態は、上記レンズ部のフォーカス状態、ズーム状態、絞り状態に関する情報の少なくともいずれかひとつを含む
     ことを特徴とする請求項23に記載のカメラシステム。
  25.  上記第2の記憶部は、上記感度特性の情報を、像高に対応させて記憶する
     ことを特徴とする請求項21に記載のカメラシステム。
  26.  上記感度特性の情報は、上記焦点検出用の画素への光線入射角に対する受光感度を示す
     ことを特徴とする請求項25に記載のカメラシステム。
  27.  上記制御量算出部は、上記焦点検出用の画素の出力に基づいて求められる位相差検出情報を上記レンズ部のデフォーカス量に変換するためのAF感度を算出する
     ことを特徴とする請求項21に記載のカメラシステム。
  28.  上記制御量算出部は、上記AF感度を像高に応じて算出する
     ことを特徴とする請求項27記載のカメラシステム。
  29.  上記焦点検出用の画素は、一対の瞳分割された光束を受光する一対の画素を有し、
     上記一対の画素にそれぞれ入射する光束の範囲を求め、上記光束の重心位置の間隔を算出してAF感度を算出する
     ことを特徴とする請求項27記載のカメラシステム。
  30.  上記制御量算出部は、上記焦点検出用の画素の出力の照度分布による影響を補正する補正値を算出する
     ことを特徴とする請求項21記載のカメラシステム。
  31.  上記制御量算出部は、上記補正値を像高に応じて算出する
     ことを特徴とする請求項30記載のカメラシステム。
PCT/JP2013/080781 2012-12-20 2013-11-14 撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステム WO2014097784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380066381.7A CN104871059B (zh) 2012-12-20 2013-11-14 摄影设备、计算用于对焦控制的信息的方法以及相机系统
EP13866237.4A EP2937725B1 (en) 2012-12-20 2013-11-14 Imaging apparatus, method for calculating information for focus control, and camera system
US14/727,052 US9473693B2 (en) 2012-12-20 2015-06-01 Photographic apparatus, camera system and methods for calculating focus control information based on a distance between centers of gravity distributions of light receiving sensitivities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012278715A JP5635584B2 (ja) 2012-12-20 2012-12-20 撮影機器、カメラシステム及びフォーカス制御のための情報を算出する方法
JP2012-278715 2012-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/727,052 Continuation US9473693B2 (en) 2012-12-20 2015-06-01 Photographic apparatus, camera system and methods for calculating focus control information based on a distance between centers of gravity distributions of light receiving sensitivities

Publications (1)

Publication Number Publication Date
WO2014097784A1 true WO2014097784A1 (ja) 2014-06-26

Family

ID=50978128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080781 WO2014097784A1 (ja) 2012-12-20 2013-11-14 撮影機器、フォーカス制御のための情報を算出する方法及びカメラシステム

Country Status (5)

Country Link
US (1) US9473693B2 (ja)
EP (1) EP2937725B1 (ja)
JP (1) JP5635584B2 (ja)
CN (1) CN104871059B (ja)
WO (1) WO2014097784A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072357A (ja) * 2013-10-02 2015-04-16 オリンパス株式会社 焦点調節装置
CN105717608A (zh) * 2014-12-22 2016-06-29 奥林巴斯株式会社 摄影装置以及摄影装置的控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854496B (zh) * 2012-11-22 2017-04-12 富士胶片株式会社 摄像装置、散焦量运算方法及摄像光学系统
JP6263035B2 (ja) * 2013-05-17 2018-01-17 キヤノン株式会社 撮像装置
CN105791763A (zh) * 2016-03-08 2016-07-20 安徽胜佳和电子科技有限公司 智能一体化高速球摄像机
JP6976754B2 (ja) * 2017-07-10 2021-12-08 キヤノン株式会社 画像処理装置および画像処理方法、撮像装置、プログラム
CN111316161B (zh) * 2017-09-28 2021-11-23 富士胶片株式会社 摄像装置、信息获取方法及信息获取程序
CN111133378B (zh) * 2017-09-28 2021-04-23 富士胶片株式会社 摄像装置、信息获取方法及记录介质
JP7237476B2 (ja) * 2018-06-21 2023-03-13 キヤノン株式会社 焦点検出方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211212A (ja) * 1990-01-30 1992-08-03 Nikon Corp 焦点検出装置
JP2007189312A (ja) * 2006-01-11 2007-07-26 Nikon Corp 撮像装置、撮像方法およびカメラ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011742A1 (en) 1990-01-30 1991-08-08 Nikon Corporation Focus detecting device
US5422701A (en) 1990-01-30 1995-06-06 Nikon Corporation Focus detection apparatus
JPH07199052A (ja) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd 焦点検出方法および距離測定方法
JP5458475B2 (ja) * 2007-04-18 2014-04-02 株式会社ニコン 焦点検出装置および撮像装置
JP5374862B2 (ja) * 2007-11-16 2013-12-25 株式会社ニコン 焦点検出装置および撮像装置
JP5169499B2 (ja) * 2008-06-02 2013-03-27 株式会社ニコン 撮像素子および撮像装置
JP5300414B2 (ja) * 2008-10-30 2013-09-25 キヤノン株式会社 カメラ及びカメラシステム
JP5489641B2 (ja) * 2008-11-11 2014-05-14 キヤノン株式会社 焦点検出装置及びその制御方法
JP5302663B2 (ja) * 2008-12-24 2013-10-02 キヤノン株式会社 焦点検出装置及び方法、及び撮像装置
JP5455397B2 (ja) * 2009-03-02 2014-03-26 キヤノン株式会社 光学機器
JP2012008424A (ja) * 2010-06-28 2012-01-12 Olympus Corp 撮像システム
FR2963294B1 (fr) * 2010-07-30 2014-10-10 Faurecia Automotive Ind Dispositif de maintien d'accessoire avec des moyens de reglage, et ensemble associe.
JP5901246B2 (ja) * 2010-12-13 2016-04-06 キヤノン株式会社 撮像装置
JP5473977B2 (ja) * 2011-04-14 2014-04-16 キヤノン株式会社 撮像装置およびカメラシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211212A (ja) * 1990-01-30 1992-08-03 Nikon Corp 焦点検出装置
JP2007189312A (ja) * 2006-01-11 2007-07-26 Nikon Corp 撮像装置、撮像方法およびカメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937725A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072357A (ja) * 2013-10-02 2015-04-16 オリンパス株式会社 焦点調節装置
CN105717608A (zh) * 2014-12-22 2016-06-29 奥林巴斯株式会社 摄影装置以及摄影装置的控制方法
CN105717608B (zh) * 2014-12-22 2018-08-03 奥林巴斯株式会社 摄影装置以及摄影装置的控制方法
CN108718381A (zh) * 2014-12-22 2018-10-30 奥林巴斯株式会社 摄影装置以及摄影装置的控制方法
CN108718381B (zh) * 2014-12-22 2020-07-28 奥林巴斯株式会社 摄影装置以及摄影装置的控制方法

Also Published As

Publication number Publication date
US20150264251A1 (en) 2015-09-17
CN104871059A (zh) 2015-08-26
EP2937725A4 (en) 2016-10-12
EP2937725A1 (en) 2015-10-28
EP2937725B1 (en) 2017-12-27
CN104871059B (zh) 2016-09-14
JP5635584B2 (ja) 2014-12-03
US9473693B2 (en) 2016-10-18
JP2014122993A (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5635584B2 (ja) 撮影機器、カメラシステム及びフォーカス制御のための情報を算出する方法
CN108718381B (zh) 摄影装置以及摄影装置的控制方法
WO2016067648A1 (ja) 焦点調節装置、カメラシステム、および焦点調節方法
JP5653035B2 (ja) 撮像装置、焦点検出方法、および制御方法
US20120268613A1 (en) Image capturing apparatus and control method thereof
WO2015050047A1 (ja) 焦点調節装置、撮影装置、および焦点調節方法
US9344617B2 (en) Image capture apparatus and method of controlling that performs focus detection
JP2009290157A (ja) 撮像素子および撮像装置
JP2015194706A5 (ja)
JP6405163B2 (ja) 焦点検出装置及びその制御方法
JP2010088049A (ja) 撮像装置および画像記録方法
JP6712506B2 (ja) 焦点検出装置および焦点検出方法
WO2020013200A1 (ja) 交換レンズ、及びカメラボディ
KR20100085728A (ko) 촬영장치 및 이를 이용한 초점 검출 방법
JP2015095857A (ja) 撮像装置
JP2014142497A (ja) 撮像装置及びその制御方法
JP2014194502A (ja) 撮像装置および撮像システム
JP2013015561A (ja) 撮像装置
JP2019074634A (ja) 撮像装置
JP2017058563A (ja) 自動焦点調節装置、撮像装置、および自動焦点調節方法
US8340513B2 (en) Camera and method for performing auto-focusing
JP2016218157A (ja) 焦点検出装置及びその制御方法
JP2015159432A (ja) 撮影装置および撮影方法
JP2016085254A (ja) カメラシステム、交換レンズおよびカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013866237

Country of ref document: EP