WO2014097561A1 - Heat dissipating sheet, heat dissipating apparatus, and method for manufacturing heat dissipating apparatus - Google Patents
Heat dissipating sheet, heat dissipating apparatus, and method for manufacturing heat dissipating apparatus Download PDFInfo
- Publication number
- WO2014097561A1 WO2014097561A1 PCT/JP2013/007139 JP2013007139W WO2014097561A1 WO 2014097561 A1 WO2014097561 A1 WO 2014097561A1 JP 2013007139 W JP2013007139 W JP 2013007139W WO 2014097561 A1 WO2014097561 A1 WO 2014097561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- sheet
- heat dissipation
- heating element
- base material
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 10
- 239000000463 material Substances 0.000 claims abstract description 90
- 239000004020 conductor Substances 0.000 claims abstract description 76
- 230000017525 heat dissipation Effects 0.000 claims description 133
- 230000005855 radiation Effects 0.000 claims description 53
- 239000000758 substrate Substances 0.000 claims description 43
- 238000001816 cooling Methods 0.000 claims description 42
- 238000010438 heat treatment Methods 0.000 claims description 31
- 239000000126 substance Substances 0.000 claims description 23
- 239000000654 additive Substances 0.000 claims description 17
- 230000000996 additive effect Effects 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000000945 filler Substances 0.000 claims description 13
- 238000010292 electrical insulation Methods 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims 2
- 239000012466 permeate Substances 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 57
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 239000003431 cross linking reagent Substances 0.000 description 28
- 239000000498 cooling water Substances 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 125000006850 spacer group Chemical group 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4334—Auxiliary members in encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20436—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
- H05K7/20445—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
- H05K7/20472—Sheet interfaces
- H05K7/20481—Sheet interfaces characterised by the material composition exhibiting specific thermal properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present disclosure relates to a heat dissipation sheet, a heat dissipation device, and a method for manufacturing the heat dissipation device.
- a semiconductor device is provided with a heat radiating sheet in which a sheet-like base material made of porous metal is filled with a heat transfer material, and this heat radiating sheet is disposed between a metal base of a semiconductor module and a heat sink.
- a heat radiating sheet in which a sheet-like base material made of porous metal is filled with a heat transfer material, and this heat radiating sheet is disposed between a metal base of a semiconductor module and a heat sink.
- the metal base and the heat sink are fastened in a state where the heat dissipation sheet is compressed by applying pressure to the heat dissipation sheet by the metal base and the heat sink. For this reason, the heat radiating sheet is plastically deformed according to the unevenness of the metal base and the heat sink. Thereby, the clearance between the metal base and the heat sink via the heat dissipation sheet can be reduced, and the thermal resistance can be lowered.
- the pressure applied to the heat dissipation sheet by the metal base and heat sink is increased, the amount of deformation of the heat dissipation sheet increases, and the heat dissipation sheet deforms along the unevenness of the metal base and the heat sink, but the heat dissipation sheet is distorted. It will occur.
- the heat dissipation sheet is greatly deformed by the pressure applied by the metal base and the heat sink, cracks may occur in the heat dissipation sheet. Such distortion and cracks generated in the heat radiating sheet cause a decrease in electrical insulation of the heat radiating sheet.
- a first object of the present disclosure to provide a heat dissipating sheet that improves heat conductivity, and to provide a heat dissipating device that uses the heat dissipating sheet to improve heat dissipation.
- a second object is to provide a method for manufacturing a heat dissipation device that uses a heat dissipation sheet to enhance heat dissipation.
- the heat dissipation sheet is in the form of a sheet and has a porous substrate having a large number of holes, and has thermal conductivity, and is impregnated in the numerous holes of the porous substrate.
- a heat conductive material, and the heat conductive material can be oozed out of the porous substrate.
- the heat dissipating sheet is disposed between the heating element and the cooling member, a heat conductive material is interposed between the heating element and the porous substrate, and heat conduction is performed between the cooling member and the porous substrate. Sexual substances can be interposed. For this reason, the thermal resistance between the heating element and the porous substrate and the thermal resistance between the cooling member and the porous substrate can be lowered. Therefore, heat transfer from the heating element to the cooling member can be improved.
- the heat-radiation sheet which improved thermal conductivity can be provided.
- the heat dissipation sheet is used in a heat dissipation device including a heat generating element that generates heat and a cooling member that cools the heat generating element.
- the heat radiating sheet is disposed between the heat generating body and the cooling member, and the heat conductive material that has oozed out from the porous base material constituting the heat radiating sheet is between the heat generating body and the porous base material and the cooling member. And between the porous substrate.
- the porous base material has flexibility. Therefore, when the heat radiating sheet is disposed between the heating element and the cooling member, the porous substrate can be deformed according to the shape of the heating element or the cooling member. Therefore, the clearance gap which arises between a heat generating body and a cooling member via a heat radiating sheet can be made small. For this reason, the thermal resistance between the heating element and the porous substrate via the heat dissipation sheet can be further reduced.
- a method of manufacturing a heat dissipation device includes disposing the heat dissipation sheet between a heat generating element that generates heat and a cooling member that cools the heat generating element, And exuding a heat conductive substance from the porous base material to be formed to the heating element side and the cooling member side.
- FIG. 2 is a sectional view taken along line II-II in FIG.
- FIG. 3 is an enlarged view of a portion III in FIG. 2.
- It is a flowchart which shows the manufacturing process of the vehicle-mounted heat dissipation apparatus in the said 1st Embodiment. It is a flowchart which shows the manufacturing process of the vehicle-mounted heat dissipation apparatus in 2nd Embodiment of this indication.
- the on-vehicle heat dissipation device 1 in FIG. 1 is for dissipating heat from the semiconductor switching element 10.
- the semiconductor switching element 10 is a so-called power card, and is applied to an inverter circuit that outputs a three-phase AC voltage to a traveling motor.
- the in-vehicle heat dissipation device 1 includes heat dissipation sheets 20a and 20b as shown in FIG.
- the heat radiation sheet 20a is disposed between the heat sink 13 of the semiconductor switching element 10 and the tube 30a.
- the heat radiation sheet 20b is disposed between the heat sink 14 of the semiconductor switching element 10 and the tube 30b. 2 shows a state where the inside of the semiconductor switching element 10 is transmitted.
- the heat radiation sheet 20a is obtained by impregnating a porous base material 21a formed in a sheet shape with a heat conductive substance.
- the heat dissipation sheet 20b is obtained by impregnating a porous base material 21b formed in a sheet shape with a heat conductive material.
- the porous base materials 21a and 21b are base materials each having a large number of holes.
- the porous base materials 21a and 21b each have flexibility.
- each of the heat radiation sheets 20a and 20b is configured to have flexibility and freely change its shape.
- the porous base materials 21a and 21b are formed so that two adjacent holes communicate with each other among a large number of holes.
- the porous base materials 21a and 21b are made of a resin material such as polytetrafluoroethylene having thermal conductivity and electrical insulation.
- a heat radiation filler is added to the porous base materials 21a and 21b in order to improve thermal conductivity.
- the heat dissipation filler is a fine powder having thermal conductivity and electrical insulation. Specifically, materials such as boron nitride, alanina, and alumina nitride are used as the heat dissipating filler.
- heat radiation sheets 20a and 20b of the present embodiment those having a thickness dimension of 150 ⁇ m to 250 ⁇ m are used.
- the heat conductive material is a fluid material having heat conductivity and electrical insulation.
- the heat conductive material has a viscosity and a high gas passage coefficient.
- silicone is used as the heat conductive material.
- SE1880 (product number) manufactured by Toray Dow Corning Silicone Co., Ltd. is used as the silicone.
- the size of the lower surface of the heat dissipation sheet 20a of the present embodiment is larger than the size of the surface 13a of the heat sink 13.
- the size of the upper surface of the heat dissipation sheet 20b is larger than the size of the back surface 14a of the heat sink 14.
- the tubes 30a and 30b constitute the cooler 50 together with the cooling water pipes 40a and 40b.
- the tubes 30a and 30b are metal pipes for circulating cooling water through the interiors 31a and 31b (see FIG. 2), respectively.
- the cooling water pipes 40a and 40b are arranged so as to be orthogonal to the tubes 30a and 30b.
- the cooling water pipes 40a and 40b are arranged so as to sandwich the semiconductor switching element 10 in the flow direction of the cooling water in the tubes 30a and 30b (see arrow X).
- the cooling water pipe 40a diverts the cooling water that has entered from the inlet 41a to the tubes 30a and 30b as indicated by the chain line arrow A in FIG.
- the cooling water pipe 40b collects the cooling water flowing out from the tubes 30a and 30b and discharges it from the outlet 41b as indicated by a chain line arrow B in FIG.
- the cooling water pipe 40a includes a buckling portion 42a.
- the buckling portion 42a is disposed between the tubes 30a and 30b in the cooling water pipe 40a and is formed in a bellows shape.
- the buckling portion 42a is formed so as to be capable of contracting in the longitudinal direction (vertical direction in the drawing) of the cooling water pipe 40a by the bending thereof.
- the cooling water pipe 40b includes a buckling portion 42b.
- the buckling portion 42b is disposed between the tubes 30a and 30b in the cooling water pipe 40b and is formed in a bellows shape.
- the buckling portion 42b is formed so as to be able to contract in the longitudinal direction (vertical direction in the figure) of the cooling water pipe 40b by the bending thereof.
- the cooling water pipes 40a and 40b and the tubes 30a and 30b of the present embodiment are made of a metal material such as aluminum.
- the semiconductor switching element 10 is formed in a thin plate shape, and as shown in FIG. 2, a semiconductor chip 11, a spacer 12, heat sinks 13 and 14, a plurality of terminals 15 (two terminals in FIG. 2). 15), and a resin mold portion 16.
- the semiconductor chip 11 constitutes a switching element such as an IGBT.
- the semiconductor chip 11 is disposed between the heat sinks 13 and 14.
- the heat sinks 13 and 14 are each formed in a thin plate shape with copper.
- the heat sinks 13 and 14 each release heat generated from the semiconductor chip 11.
- the surface 13a of the heat sink 13 is exposed on the surface side of the resin mold portion 16 (upper side in FIG. 1).
- the back surface 14 a of the heat sink 14 is exposed on the back surface side (the lower side in FIG. 1) of the resin mold portion 16.
- the spacer 12 is formed in a thin plate shape with copper.
- the spacer 12 is disposed between the semiconductor chip 11 and the heat sink 13.
- the plurality of terminals 15 are formed such that the respective leading ends protrude outward from the resin mold portion 16.
- the plurality of terminals 15 and the semiconductor chip 11 are connected by wires 15a.
- the resin mold portion 16 is made of an electrically insulating resin material, and is formed so as to cover the semiconductor chip 11, the spacer 12, the heat sinks 13 and 14, and the plurality of terminals 15.
- the front surface 13a of the heat sink 13 and the back surface 14a of the heat sink 14 of this embodiment are processed and molded flat.
- the upper surface and the lower surface of the tube 30a and the upper surface and the lower surface of the tube 30b are each processed and formed flat.
- the ten-point average roughness (Rz) of the surface 13a of the heat sink 13, the back surface 14a of the heat sink 14, the upper and lower surfaces of the tube 30a, and the upper and lower surfaces of the tube 30b is set to 6.3z to 50z.
- the semiconductor chip 11 and the spacer 12 are connected by a solder layer 17a.
- the semiconductor chip 11 and the heat sink 14 are connected by a solder layer 17b.
- the spacer 12 and the heat sink 13 are connected by a solder layer 17c.
- the size of the surface 13a (heat radiation surface) of the heat sink 13 is smaller than the size of the upper surface of the resin mold portion 16.
- the size of the back surface 14 a (heat radiating surface) of the heat sink 14 is smaller than the size of the bottom surface of the resin mold portion 16.
- the size of the lower surface of the heat dissipation sheet 20 a is smaller than the size of the upper surface of the resin mold portion 16.
- the size of the upper surface of the heat dissipation sheet 20 b is smaller than the size of the lower surface of the resin mold part 16.
- step S100 the semiconductor switching element 10, the heat radiation sheets 20a and 20b, and the cooler 50 are prepared separately. At this time, the cooler 50 is prepared with the buckling portions 42a and 42b extended.
- step S110 the heat radiation sheet 20a, the semiconductor switching element 10, and the heat radiation sheet 20b are arranged between the tubes 30a and 30b.
- the heat dissipation sheet 20a is disposed between the heat sink 13 of the semiconductor switching element 10 and the tube 30a.
- the heat radiating sheet 20a is arranged so as to cover the heat sink 13 from the upper side in FIG.
- a heat radiation sheet 20b is disposed between the heat sink 14 of the semiconductor switching element 10 and the tube 30b. Thereby, the heat radiating sheet 20b is disposed so as to cover the heat sink 14 from the lower side in FIG.
- the semiconductor switching element 10 power card
- the heat radiation sheets 20a and 20b are disposed between the tubes 30b and 30b.
- step S120 the buckling portion 42a of the cooling water pipe 40a and the buckling portion 42b of the cooling water pipe 40b are contracted, respectively. This shortens the distance between the tubes 30a and 30b. For this reason, pressure is applied to the semiconductor switching element 10 and the heat radiation sheets 20a and 20b by the tubes 30a and 30b.
- the heat dissipation sheet 20a is compressed in the thickness direction by the heat sink 13 of the semiconductor switching element 10 and the tube 30a.
- a heat conductive substance oozes out from the porous base material 21a of the heat radiating sheet 20a to the heat sink 13 side and the tube 30a side.
- the heat conductive material that oozes out from the porous base material 21a of the heat dissipation sheet 20a to the heat sink 13 side can fill the gap between the porous base material 21a and the heat sink 13 by capillary action.
- the heat conductive material that oozes out from the porous base material 21a of the heat dissipation sheet 20a to the tube 30a side can fill the gap between the porous base material 21a and the tube 30a.
- the heat radiation sheet 20b is compressed in the plate thickness direction by the heat sink 14 and the tube 30b.
- the heat conductive material oozes out from the porous base material 21b of the heat dissipation sheet 20b to the heat sink 14 side and the tube 30b side.
- the heat conductive substance which oozes out from the porous base material 21b of the heat radiating sheet 20b to the heat sink 14 side fills a gap between the porous base material 21b of the heat radiating sheet 20b and the heat sink 14 by a capillary phenomenon.
- the thermally conductive material that has oozed out from the porous base material 21b of the heat radiating sheet 20b toward the tube 30b can fill the gap between the porous base material 21b of the heat radiating sheet 20b and the tube 30b.
- step S130 in order to prevent the buckling portions 42a and 41b from extending, the tubes 30a and 30b are sandwiched and fixed between the tubes 30a and 30b by a fixing member. Thereby, between the tubes 30a and 30b, the heat radiating sheets 20a and 20b are maintained in a compressed state. Thus, the in-vehicle heat dissipation device 1 is completed.
- the semiconductor switching element 10 when the semiconductor chip 11 performs switching operation, the semiconductor chip 11 generates heat as a heating element. At this time, heat generated from the semiconductor chip 11 is transmitted to the heat sink 13 through the solder layer 17a, the spacer 12, and the solder layer 17c. Along with this, heat is transferred from the heat sink 13 to the tube 30a through the heat dissipation sheet 20a. Therefore, in the tube 30a, the heat transmitted through the heat dissipation sheet 20a is exhausted to the cooling water. Thus, the tube 30a can cool the semiconductor switching element 10.
- heat generated from the semiconductor chip 11 is transmitted to the heat sink 14 through the solder layer 17b. At this time, heat is transmitted from the heat sink 14 to the tube 30b through the heat dissipation sheet 20b. Accordingly, in the tube 30b, the heat transmitted through the heat dissipation sheet 20b is exhausted to the cooling water. Thus, the tube 30b can cool the semiconductor switching element 10.
- the heat dissipation sheet 20a is disposed between the heat sink 13 and the tube 30a.
- the porous substrate 21a of the heat dissipation sheet 20a is compressed in the plate thickness direction by the heat sink 13 and the tube 30a.
- the heat conductive material that oozes out from the porous substrate 21a due to the compression of the porous substrate 21a is between the porous substrate 21a and the heat sink 14, and between the porous substrate 21a and the tube 30a.
- concave portions are formed as processing marks on the surface 13a of the heat sink 13 and the lower surface of the tube 30a.
- the processing trace can be filled with a heat conductive material. That is, the gap between the heat dissipation sheet 20a and the heat sink 13 and the gap between the heat dissipation sheet 20a and the tube 30a can be filled with the heat conductive material. For this reason, the thermal resistance between the heat sink 13 and the tube 30a via the heat radiation sheet 20a can be lowered.
- the processing mark is an uneven portion formed when the heat sink 13 or the tube 30a is formed by metal processing.
- the heat dissipation sheet 20b is disposed between the heat sink 14 and the tube 30b.
- the porous substrate 21b of the heat dissipation sheet 20b is compressed in the thickness direction by the heat sink 14 and the tube 30b.
- the heat conductive material that oozes out from the porous base material 21b due to the compression of the porous base material 21b is between the porous base material 21b and the heat sink 14, and between the porous base material 21b and the tube 30b.
- the processing marks are formed on the surface 14a of the heat sink 14 and the upper surface of the tube 30b, the processing marks can be filled with the heat conductive material. That is, the gap between the heat dissipation sheet 20b and the heat sink 14 and the gap between the heat dissipation sheet 20b and the tube 30b can be filled with the heat conductive material. For this reason, the thermal resistance between the heat sink 14 and the tube 30b via the heat dissipation sheet 20b can be lowered.
- the thermal resistance between the semiconductor switching element 10 and the tubes 30a and 30b can be lowered. Therefore, the heat dissipation of the semiconductor switching element 10 can be improved.
- the heat dissipation sheet 20a of this embodiment has flexibility. For this reason, the heat dissipation sheet 20a can be deformed in conformity with the shapes of the heat sink 13 and the tube 30a. Therefore, for example, as shown in FIG. 3, when a curved recess 50 is formed in the tube 30 a and a recess 51 is formed as a processing mark of the heat sink 13, the recess 50 of the tube 30 a and The heat radiation sheet 20 a can be deformed in accordance with the recess 51 of the heat sink 13. Therefore, the gap between the heat sink 13 and the heat dissipation sheet 20a and the gap between the heat dissipation sheet 20a and the tube 30a can be reduced.
- the heat radiation sheet 20 is deformed according to the shape of the heat sink 13 and the tube 30a, and the heat conductive material radiates heat in the recess 51 of the heat sink 13 or in the gap between the heat radiation sheet 20a and the tube 30a as indicated by the thick line arrows.
- seat 20a is shown.
- the heat radiating sheet 20b has flexibility like the heat radiating sheet 20a. For this reason, the heat dissipation sheet 20b is deformed along the shape of the heat sink 14 or the tube 30b. For this reason, the gap which arises between the heat sink 14 and the tube 30b can be made small like the case of the heat radiating sheet 20a.
- the heat conductive material constituting the heat radiation sheets 20a and 20b of the present embodiment has a viscosity in advance as described above. For this reason, it can prevent that a heat conductive substance is extruded from between the thermal radiation sheet
- the porous base materials 21a and 21b of the heat radiation sheets 20a and 20b of the present embodiment have a structure in which two adjacent holes are in communication with each other. For this reason, the heat radiating sheets 20a and 20b can pass the gas through a plurality of holes communicated among a large number of holes.
- the thermally conductive material has a high gas passage coefficient. Therefore, even if gas is generated from the heat dissipation sheets 20a and 20b, the gas can be discharged to the outside through the porous base materials 21a and 21b and the heat conductive material.
- the porous base materials 21a and 21b and the heat conductive material of the heat radiation sheets 20a and 20b of the present embodiment have electrical insulation.
- the heat radiation sheets 20a and 20b have electrical insulation. Therefore, electrical insulation between the semiconductor chip 11 and the tube 30a can be ensured by the heat dissipation sheet 20a. Furthermore, the electrical insulation between the semiconductor chip 11 and the tube 30b can be ensured by the heat dissipation sheet 20b. Therefore, it is not necessary to provide an electrical insulating member other than the heat radiation sheets 20a and 20b. For this reason, the increase in the number of parts can be suppressed.
- the cracks and peeling marks are the starting points of dielectric breakdown. Can be.
- the thermally conductive material that has exuded from the porous base materials 21a and 21b can fill the cracks generated in the porous base materials 21a and 21b and the peeling trace of the heat radiation filler. For this reason, even if it is a case where the defect of the porous base materials 21a and 21b, such as a crack and a peeling trace, was not discovered by the inspection of a manufacturing process, the said heat conductive substance can repair the said defect.
- the heat conductive material is not cured, and the heat conductive material maintains viscosity. For this reason, for example, even if the heat radiating sheet 20a is arranged on the surface 13a of the heat sink 13 (or the lower surface of the tube 30a), the heat radiating sheet 20a can be peeled off from the heat sink 13 on which the heat radiating sheet 20a is arranged. For this reason, the heat radiating sheet 20 a can be disposed on the heat sink 13 again. That is, even if the heat dissipation sheet 20a is once attached to the heat sink 13 or the tube 30a, the heat dissipation sheet 20a can be attached again.
- the heat radiation sheet 20b has the same effect as the heat radiation sheet 20a.
- (Second Embodiment) In the first embodiment, the example using the heat radiation sheet 20a in which the porous base material 21a is impregnated with the heat conductive material having viscosity in advance has been described. A heat radiating sheet 20a formed by impregnating the porous base material 21a with a low thermal conductive material is prepared, and when the heat radiating sheet 20a is assembled between the heat sink 13 and the tube 30a, the heat radiating sheet 20a is thermally conductive. An example of attaching a cross-linking agent that increases the viscosity of a substance will be described.
- a heat radiating sheet 20a is prepared by impregnating the porous base material 21a with a heat conductive material having low viscosity.
- a heat radiating sheet 20b prepared by impregnating the porous base material 21b with a heat conductive material having low viscosity is prepared.
- CY52-276A & B (product number) manufactured by Toray Dow Corning Silicone Co., Ltd. is used as the heat conductive material impregnated in the porous base materials 21a and 21b and the crosslinking agent (additive).
- CY52-276A & B is composed of a main agent and an auxiliary agent that causes a cross-linking reaction to the main agent.
- a main agent can be used as a heat conductive substance.
- the main agent contains a catalyst that accelerates the reaction rate of the crosslinking reaction.
- An auxiliary agent can be used as a crosslinking agent.
- FIG. 5 is a flowchart showing a manufacturing process of the in-vehicle heat dissipation device of the present embodiment.
- FIG. 5 includes a preparation step (step S100A) in place of the preparation step (step S100) and a cross-linking agent adhesion / placement step (step S110A) in place of the arrangement step (step S110) in the flowchart of FIG. .
- step S100A the semiconductor switching element 10, the cooler 50, and the heat radiation sheets 20a and 20b impregnated with the heat conductive material having low viscosity are separately prepared.
- step S110A the semiconductor switching element 10 is disposed between the tubes 30a and 30b.
- a cross-linking agent additive
- the lower surface of the heat radiating sheet 20a is disposed on the surface 13a with the cross-linking agent
- the upper surface of the heat radiating sheet 20a is disposed on the lower surface of the tube 30a.
- a crosslinking agent adheres to the porous base material 21a of the heat dissipation sheet 20a.
- the crosslinking reaction by the crosslinking agent starts in the heat conductive material impregnated in the porous substrate 21a. Thereby, hardening of a heat conductive substance is started.
- a crosslinking agent is attached to the back surface 14a of the heat sink 14, and the upper surface of the heat radiation sheet 20b is disposed on the back surface 14a with the crosslinking agent.
- the lower surface of the heat radiating sheet 20b is disposed on the upper surface.
- step S120 the buckling part 42a of the cooling water pipe 40a and the buckling part 42b of the cooling water pipe 40b are contracted, respectively, so that the semiconductor switching element 10 and the heat radiation sheets 20a, 20b are contracted. Apply pressure to.
- the porous base material 21a of the heat dissipation sheet 20a is compressed.
- the heat conductive material that has oozed out of the porous base material 21 a fills the gap between the porous base material 21 a and the heat sink 13.
- the thermally conductive material that has oozed out of the porous substrate 21a can fill the gap between the porous substrate 21a and the tube 30a.
- the porous substrate 21b of the heat dissipation sheet 20b is compressed.
- the heat conductive substance which oozes out from the porous base material 21 b can fill a gap between the porous base material 21 b and the heat sink 14.
- the thermally conductive material that has oozed out of the porous substrate 21b can fill the gap between the porous substrate 21b and the tube 30b.
- step S130 the space between the tubes 30a and 30b is fixed by a fixing member.
- a fixing member This completes the assembly of the in-vehicle heat dissipation device 1.
- the vehicle-mounted heat radiator 1 will be made to stand by for a predetermined period. For example, when the in-vehicle heat radiating device 1 is made to stand by in an environment at a room temperature of 25 degrees, it is necessary to place the in-vehicle heat radiating device 1 in the room for about 20 hours.
- the heat dissipation sheet 20a when the heat dissipation sheet 20a is assembled between the heat sink 13 and the tube 30a, and when the heat dissipation sheet 20b is assembled between the heat sink 14 and the tube 30b, the heat dissipation sheets 20a and 20b A cross-linking agent (ie, an additive) that increases the viscosity of the thermally conductive material is deposited. In connection with this, hardening of a heat conductive substance can be started.
- a cross-linking agent ie, an additive
- the viscosity of the heat conductive material can be increased in a state of being disposed between the tubes 30a and 30b. Therefore, similarly to the first embodiment, a heat conductive material can be held between the heat sink 13 and the tube 30a via the heat dissipation sheet 20a. A thermally conductive material can be held between the heat sink 14 and the tube 30b via the heat dissipation sheet 20b.
- the size of the upper surface of the heat dissipation sheet 20b may be larger than the size of the lower surface of the resin mold portion 16.
- a cross-linking agent is attached to the surface 13a of the heat sink 13, and the lower surface of the heat dissipation sheet 20a is attached to the surface 13a with the cross-linking agent.
- the following (1) and (2) may be used.
- the following (3) and (4) may be used in order to adhere the crosslinking agent to the porous base material 21b of the heat radiation sheet 20b.
- the example in which the vehicle-mounted heat dissipation device 1 is used as the heat dissipation device of the present disclosure has been described, but instead of this, the heat dissipation device of the present disclosure other than the vehicle-mounted heat dissipation device 1 You may use for this heat dissipation device.
- the heat sink sheets 20a and 20b are formed by the tubes 30a and 30b by contracting the buckling portions 42a and 41b of the cooling water pipes 40a and 40b to shorten the space between the tubes 30a and 30b.
- the heat radiation sheets 20a and 20b may be compressed by fixing the tube 30a and 30b with a fastening member such as a screw.
- the example in which the semiconductor switching element 10 is used as the heating element has been described.
- a member other than the semiconductor switching element 10 may be used as the heating element.
- the space between the porous base material 21a and the heat sink 13 (or the tube 30a) is filled with a heat conductive material having viscosity.
- the space between the porous substrate 21a and the heat sink 13 (or the tube 30a) may be filled with the heat conductive material. That is, the space between the porous substrate 21a and the heat sink 13 (or the tube 30a) may be filled with a liquid heat conductive material having low viscosity.
- the space between the porous substrate 21b and the heat sink 14 (or the tube 30b) may be filled with a liquid heat conductive material having low viscosity.
- the heat dissipating sheet 20a when the heat dissipating sheet 20a is disposed between the heat sink 13 and the tube 30a, the heat dissipating sheet 20a is added with an additive that causes a reaction to give adhesiveness to the heat conductive material. May be attached. As a result, the thermally conductive material becomes adhesive due to the reaction of the additive. This thermally conductive material having adhesiveness adheres between the heat radiation sheet 20a and the heat sink 13, and also adheres between the heat radiation sheet 20a and the tube 30a.
- the thermally conductive material having adhesiveness adheres between the heat dissipation sheet 20b and the heat sink 14, and also adheres between the heat dissipation sheet 20b and the tube 30b.
- CY52-276A & B product number
- a main agent thermalally conductive substance
- a cross-linking agent additive
- Gelesr Geest
- DMS-T21 100cSr.silicone fluid
- SIS6964.0-S45 siliconca powder
- SN3260 DBTL tin catalyst
- a mixture obtained by mixing DMS-S45 (silnolSfluid), SIS6964.0-S45 (silica ⁇ powder), PSI-021 (erthlsilicare) at a mixing ratio of 70%, 28%, and 2% is used as a crosslinking agent.
- DMS-T21, SIS6964.0-S45, SN3260, DMS-S45, SIS6964.0-S45, and PSI-021 indicate the product numbers of Gelres.
- the thermal radiation filler added to the heat conductive material is a fine powder having heat conductivity and electrical insulation. Specifically, materials such as boron nitride, alanina, and alumina nitride are used as the heat dissipating filler.
- porous base materials 21a and 21b a material to which a heat dissipating filler has been added in advance may be used, and a material to which a heat dissipating filler has been added in advance may be used as a thermally conductive substance.
- the heat dissipation sheet 20a is disposed on the front surface side (upper side in FIG. 1) of the semiconductor switching element 10, and the heat dissipation sheet is disposed on the rear surface side (lower side in FIG. 1) of the semiconductor switching element 10.
- positioned 20b was demonstrated, you may arrange
- the semiconductor switching element 10 using the heat sinks 13 and 14 in which the heat sink 13 is abolished and only the heat sink 14 is exposed on the lower surface side of the resin mold portion 16 is used,
- the heat radiation sheet 20b is disposed only on the side.
- the semiconductor switching element 10 and the tube 30b are fixed by fastening screws or the like in a state where the heat dissipation sheet 20b is interposed between the semiconductor switching element 10 and the tube 30b.
- the porous base material 21b of the heat radiating sheet 20b is compressed by the heat sink 14 and the tube 30b, and the heat conductive material can be oozed out.
- the exuding heat conductive material can fill the gap between the heat radiation sheet 20b and the heat sink 14 and the gap between the heat radiation sheet 20b and the tube 30b with the heat conductive material.
- the example in which the tubes 30a and 30b are used as the cooling members has been described.
- the radiation fins that promote the heat radiation of the tubes 30a and 30b may be used as the cooling members. Good.
- the heat conductive material oozes from the porous base material 21a to the heat sink 13 side and the tube 30a side by compression of the porous base material 21a of the heat dissipation sheet 20a.
- the heat conductive material may ooze out from the porous base material 21a to the heat sink 13 side and the tube 30a side by its own weight.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
A heat dissipating sheet (20a) is disposed between a heat sink (13) of a semiconductor switching element (10), and a tube (30a). A porous base material (21a) of the heat dissipating sheet (20a) is compressed by means of the heat sink (13) and the tube (30a). A heat conductive material oozed out from the inside of the porous base material (21a) due to the compression of the porous base material (21a) is present between the porous base material (21a) and the heat sink (13) of the semiconductor switching element (10), and between the porous base material (21a) and the tube (30a). A gap between the heat dissipating sheet (20a) and the heat sink (13), and a gap between the heat dissipating sheet (20a) and the tube (30a) can be filled with the heat conductive material, and heat resistance between the heat sink (13) and the tube (30a) can be reduced.
Description
本開示は、2012年12月21日に出願された日本出願番号2012-279923号に基づくもので、ここにその記載内容を援用する。
This disclosure is based on Japanese Patent Application No. 2012-279923 filed on December 21, 2012, the contents of which are incorporated herein by reference.
本開示は、放熱シート、放熱装置、および放熱装置の製造方法に関するものである。
The present disclosure relates to a heat dissipation sheet, a heat dissipation device, and a method for manufacturing the heat dissipation device.
従来、半導体装置では、多孔質金属からなるシート状基材に伝熱性浸透物質が充填されてなる放熱シートを備え、この放熱シートが半導体モジュールの金属ベースとヒートシンクとの間に配置されているものがある。(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a semiconductor device is provided with a heat radiating sheet in which a sheet-like base material made of porous metal is filled with a heat transfer material, and this heat radiating sheet is disposed between a metal base of a semiconductor module and a heat sink. There is. (For example, refer to Patent Document 1).
このものにおいては、金属ベースとヒートシンクとによって放熱シートに圧力を加えて放熱シートを圧縮した状態で金属ベースとヒートシンクとが締結されている。このため、放熱シートが金属ベースやヒートシンクの凹凸に応じて塑性変形する。これにより、放熱シートを介する金属ベースおよびヒートシンクの間の隙間を減らして熱抵抗を下げることができる。
In this case, the metal base and the heat sink are fastened in a state where the heat dissipation sheet is compressed by applying pressure to the heat dissipation sheet by the metal base and the heat sink. For this reason, the heat radiating sheet is plastically deformed according to the unevenness of the metal base and the heat sink. Thereby, the clearance between the metal base and the heat sink via the heat dissipation sheet can be reduced, and the thermal resistance can be lowered.
上記特許文献1の半導体装置では、熱伝導性を向上するために、放熱シートとしてその厚み寸法を小さくしたものを用いると、上述の如く、圧力によって放熱シートが塑性変形しても、その変形量が不足して、その塑性変形した放熱シートが金属ベースやヒートシンクの凹凸に沿った形状にならない。
In the semiconductor device of the above-mentioned patent document 1, in order to improve thermal conductivity, when a heat dissipation sheet having a reduced thickness is used, even if the heat dissipation sheet is plastically deformed by pressure as described above, the deformation amount Is insufficient, and the plastically deformed heat dissipation sheet does not have a shape along the irregularities of the metal base or heat sink.
このため、放熱シートと金属ベースとの間に隙間が生じ、放熱シートとヒートシンクとの間に隙間が生じてしまう。したがって、放熱シートと金属ベースとの間の熱抵抗が大きくなり、また放熱シートとヒートシンクとの間の熱抵抗が大きくなる。
For this reason, a gap is generated between the heat dissipation sheet and the metal base, and a gap is generated between the heat dissipation sheet and the heat sink. Accordingly, the thermal resistance between the heat dissipation sheet and the metal base is increased, and the thermal resistance between the heat dissipation sheet and the heat sink is increased.
一方、金属ベースとヒートシンクとによって放熱シートに加える圧力を大きくすると、放熱シートの変形量が大きくなり、放熱シートが金属ベースの凹凸やヒートシンクの凹凸に沿うように変形するものの、放熱シートに歪みが生じてしまう。これに加えて、金属ベースとヒートシンクとによって加わる圧力によって放熱シートが大きく変形すると、放熱シートにクラックが発生する場合がある。このような放熱シートに生じる歪みやクラックは、放熱シートの電気絶縁性の低下を招くことになる。
On the other hand, if the pressure applied to the heat dissipation sheet by the metal base and heat sink is increased, the amount of deformation of the heat dissipation sheet increases, and the heat dissipation sheet deforms along the unevenness of the metal base and the heat sink, but the heat dissipation sheet is distorted. It will occur. In addition, if the heat dissipation sheet is greatly deformed by the pressure applied by the metal base and the heat sink, cracks may occur in the heat dissipation sheet. Such distortion and cracks generated in the heat radiating sheet cause a decrease in electrical insulation of the heat radiating sheet.
そこで、歪みやクラックの発生を抑制するために、放熱シートの弾性率を下げて、放熱シートを大きく変形させることも考えられるものの、弾性率の低下によって放熱シートの材料強度が低くなる。このため、放熱シートの厚み寸法を大きくする必要がある。したがって、熱伝導性を向上することができない。
Therefore, in order to suppress the occurrence of distortion and cracks, it is conceivable to lower the elastic modulus of the heat dissipating sheet and greatly deform the heat dissipating sheet, but the material strength of the heat dissipating sheet decreases due to the decrease in the elastic modulus. For this reason, it is necessary to enlarge the thickness dimension of a thermal radiation sheet. Therefore, thermal conductivity cannot be improved.
本開示は上記点に鑑みて、熱伝導性を向上するようにした放熱シートを提供することを第1の目的とし、放熱シートを用いて放熱性を高めるようにした放熱装置を提供することを第2の目的とし、放熱シートを用いて放熱性を高めるようにした放熱装置の製造方法を提供することを第3の目的とする。
In view of the above points, it is a first object of the present disclosure to provide a heat dissipating sheet that improves heat conductivity, and to provide a heat dissipating device that uses the heat dissipating sheet to improve heat dissipation. A second object is to provide a method for manufacturing a heat dissipation device that uses a heat dissipation sheet to enhance heat dissipation.
本開示の第一の態様によれば、放熱シートは、シート状で、多数の孔を有する多孔質基材と、熱伝導性を有して、多孔質基材の多数の孔内に含浸されている熱伝導性物質と、を備え、前記多孔質基材内から前記熱伝導性物質が染み出ることが可能に構成されている。
According to the first aspect of the present disclosure, the heat dissipation sheet is in the form of a sheet and has a porous substrate having a large number of holes, and has thermal conductivity, and is impregnated in the numerous holes of the porous substrate. A heat conductive material, and the heat conductive material can be oozed out of the porous substrate.
上記放熱シートは、例えば、発熱体および冷却部材の間に配置すれば、発熱体および多孔質基材の間に熱伝導性物質を介在させ、かつ冷却部材および多孔質基材の間に熱伝導性物質を介在させることができる。このため、発熱体および多孔質基材の間の熱抵抗と冷却部材および多孔質基材の間の熱抵抗とを下げることができる。したがって、発熱体から冷却部材への熱伝達性を高めることができる。このように、熱伝導性を向上するようにした放熱シートを提供することができる。
For example, if the heat dissipating sheet is disposed between the heating element and the cooling member, a heat conductive material is interposed between the heating element and the porous substrate, and heat conduction is performed between the cooling member and the porous substrate. Sexual substances can be interposed. For this reason, the thermal resistance between the heating element and the porous substrate and the thermal resistance between the cooling member and the porous substrate can be lowered. Therefore, heat transfer from the heating element to the cooling member can be improved. Thus, the heat-radiation sheet which improved thermal conductivity can be provided.
例えば、上記放熱シートは、熱を発生する発熱体と、発熱体を冷却する冷却部材を備える放熱装置に用いられる。この場合、放熱シートは、発熱体および冷却部材の間に配置され、放熱シートを構成する多孔質基材内から染み出た熱伝導性物質が、発熱体および多孔質基材の間と冷却部材および多孔質基材の間とに介在する。
For example, the heat dissipation sheet is used in a heat dissipation device including a heat generating element that generates heat and a cooling member that cools the heat generating element. In this case, the heat radiating sheet is disposed between the heat generating body and the cooling member, and the heat conductive material that has oozed out from the porous base material constituting the heat radiating sheet is between the heat generating body and the porous base material and the cooling member. And between the porous substrate.
したがって、放熱シートを用いて放熱性を高めるようにした放熱装置を提供することができる。
Therefore, it is possible to provide a heat dissipation device that uses a heat dissipation sheet to improve heat dissipation.
本開示の第二の態様によれば、第一の態様における放熱シートにおいて、多孔質基材は、柔軟性を備える。したがって、放熱シートを発熱体および冷却部材の間に配置した場合に、発熱体、或いは冷却部材の形状に合わせて多孔質基材が変形することができる。よって、放熱シートを介して発熱体および冷却部材の間を生じる隙間を小さくすることができる。このため、放熱シートを介する発熱体および多孔質基材の間の熱抵抗をより一層下げることができる。
According to the second aspect of the present disclosure, in the heat dissipation sheet according to the first aspect, the porous base material has flexibility. Therefore, when the heat radiating sheet is disposed between the heating element and the cooling member, the porous substrate can be deformed according to the shape of the heating element or the cooling member. Therefore, the clearance gap which arises between a heat generating body and a cooling member via a heat radiating sheet can be made small. For this reason, the thermal resistance between the heating element and the porous substrate via the heat dissipation sheet can be further reduced.
本開示の第三の態様によれば、放熱装置の製造方法は、熱を発生する発熱体と、発熱体を冷却する冷却部材との間に、上記放熱シートを配置することと、放熱シートを構成する多孔質基材内から発熱体側と冷却部材側とに熱伝導性物質を染み出させることと、を備える。
According to the third aspect of the present disclosure, a method of manufacturing a heat dissipation device includes disposing the heat dissipation sheet between a heat generating element that generates heat and a cooling member that cools the heat generating element, And exuding a heat conductive substance from the porous base material to be formed to the heating element side and the cooling member side.
したがって、放熱シートを用いて放熱性を高めるようにした放熱装置の製造方法を提供することができる。
Therefore, it is possible to provide a method for manufacturing a heat dissipation device that uses a heat dissipation sheet to improve heat dissipation.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態における車載用放熱装置の正面図である。
図1中II-II断面図である。
図2中のIIIの部分の拡大図である。
上記第1実施形態における車載用放熱装置の製造工程を示すフローチャートである。
本開示の第2実施形態における車載用放熱装置の製造工程を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
It is a front view of the vehicle-mounted heat dissipation apparatus in 1st Embodiment of this indication. FIG. 2 is a sectional view taken along line II-II in FIG. FIG. 3 is an enlarged view of a portion III in FIG. 2. It is a flowchart which shows the manufacturing process of the vehicle-mounted heat dissipation apparatus in the said 1st Embodiment. It is a flowchart which shows the manufacturing process of the vehicle-mounted heat dissipation apparatus in 2nd Embodiment of this indication.
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.
(第1実施形態)
図1の車載用放熱装置1は、半導体スイッチング素子10から放熱させるためのものである。半導体スイッチング素子10は、いわゆるパワーカードであって、走行用電動機に対して三相交流電圧を出力するインバータ回路に適用されるものである。 (First embodiment)
The on-vehicle heat dissipation device 1 in FIG. 1 is for dissipating heat from thesemiconductor switching element 10. The semiconductor switching element 10 is a so-called power card, and is applied to an inverter circuit that outputs a three-phase AC voltage to a traveling motor.
図1の車載用放熱装置1は、半導体スイッチング素子10から放熱させるためのものである。半導体スイッチング素子10は、いわゆるパワーカードであって、走行用電動機に対して三相交流電圧を出力するインバータ回路に適用されるものである。 (First embodiment)
The on-vehicle heat dissipation device 1 in FIG. 1 is for dissipating heat from the
具体的には、車載用放熱装置1は、図2に示すように、放熱シート20a、20bを備える。放熱シート20aは、半導体スイッチング素子10のヒートシンク13とチューブ30aとの間に配置されている。放熱シート20bは、半導体スイッチング素子10のヒートシンク14とチューブ30bとの間に配置されている。なお、図2において、半導体スイッチング素子10の内部を透過した状態を示している。
Specifically, the in-vehicle heat dissipation device 1 includes heat dissipation sheets 20a and 20b as shown in FIG. The heat radiation sheet 20a is disposed between the heat sink 13 of the semiconductor switching element 10 and the tube 30a. The heat radiation sheet 20b is disposed between the heat sink 14 of the semiconductor switching element 10 and the tube 30b. 2 shows a state where the inside of the semiconductor switching element 10 is transmitted.
放熱シート20aは、シート状に形成されている多孔質基材21aに熱伝導性物質が含浸されているものである。放熱シート20bは、シート状に形成されている多孔質基材21bに熱伝導性物質が含浸されているものである。多孔質基材21a、21bは、それぞれ、多数の孔を有する基材である。
The heat radiation sheet 20a is obtained by impregnating a porous base material 21a formed in a sheet shape with a heat conductive substance. The heat dissipation sheet 20b is obtained by impregnating a porous base material 21b formed in a sheet shape with a heat conductive material. The porous base materials 21a and 21b are base materials each having a large number of holes.
多孔質基材21a、21bは、それぞれ、柔軟性を有する。このことにより、放熱シート20a、20bは、それぞれ、柔軟性を有して形状を自在に変更可能に構成されていることになる。
The porous base materials 21a and 21b each have flexibility. Thus, each of the heat radiation sheets 20a and 20b is configured to have flexibility and freely change its shape.
多孔質基材21a、21bは、多数の孔のうち隣接する2つの孔は連通するように形成されている。多孔質基材21a、21bは、熱伝導性および電気絶縁性を有するポリテトラフルオロエチレン等の樹脂材料からなるものである。
The porous base materials 21a and 21b are formed so that two adjacent holes communicate with each other among a large number of holes. The porous base materials 21a and 21b are made of a resin material such as polytetrafluoroethylene having thermal conductivity and electrical insulation.
本実施形態の多孔質基材21a、21bには、熱伝導性を向上するために放熱フィラーが添加されている。放熱フィラーは、熱伝導性および電気絶縁性を有する微粉末である。具体的には、放熱フィラーとしては、窒化ホウ素、アルニナ、窒化アルミナ等の材料が用いられる。
In the present embodiment, a heat radiation filler is added to the porous base materials 21a and 21b in order to improve thermal conductivity. The heat dissipation filler is a fine powder having thermal conductivity and electrical insulation. Specifically, materials such as boron nitride, alanina, and alumina nitride are used as the heat dissipating filler.
本実施形態の放熱シート20a、20bとしては、その厚み寸法が150μm~250μmのものが用いられる。
As the heat radiation sheets 20a and 20b of the present embodiment, those having a thickness dimension of 150 μm to 250 μm are used.
熱伝導性物質は、熱伝導性、および電気絶縁性を有する流動性物質である。これに加えて、熱伝導性物質は、予め粘性および高い気体通過係数性を有する。本実施形態では、熱伝導性物質としては、例えば、シリコーンが用いられる。当該シリコーンとしては、東レ・ダウコーニング・シリコーン株式会社製のSE1880(製品番号)が用いられる。
The heat conductive material is a fluid material having heat conductivity and electrical insulation. In addition, the heat conductive material has a viscosity and a high gas passage coefficient. In the present embodiment, for example, silicone is used as the heat conductive material. SE1880 (product number) manufactured by Toray Dow Corning Silicone Co., Ltd. is used as the silicone.
本実施形態の放熱シート20aの下面のサイズは、ヒートシンク13の表面13aのサイズよりも大きい。放熱シート20bの上面のサイズは、ヒートシンク14の裏面14aのサイズよりも大きい。
The size of the lower surface of the heat dissipation sheet 20a of the present embodiment is larger than the size of the surface 13a of the heat sink 13. The size of the upper surface of the heat dissipation sheet 20b is larger than the size of the back surface 14a of the heat sink 14.
図1に示すように、チューブ30a、30bは、冷却水配管40a、40bとともに冷却器50を構成するものである。チューブ30a、30bは、それぞれ、その内部31a、31b(図2参照)に冷却水を流通させる金属製の配管である。
As shown in FIG. 1, the tubes 30a and 30b constitute the cooler 50 together with the cooling water pipes 40a and 40b. The tubes 30a and 30b are metal pipes for circulating cooling water through the interiors 31a and 31b (see FIG. 2), respectively.
冷却水配管40a、40bは、チューブ30a、30bに対して直交するように配置されている。冷却水配管40a、40bは、チューブ30a、30b内の冷却水の流れ方向(矢印X参照)において、半導体スイッチング素子10を挟むように配置されている。
The cooling water pipes 40a and 40b are arranged so as to be orthogonal to the tubes 30a and 30b. The cooling water pipes 40a and 40b are arranged so as to sandwich the semiconductor switching element 10 in the flow direction of the cooling water in the tubes 30a and 30b (see arrow X).
冷却水配管40aは、図1中の鎖線矢印Aのように、入口41aから入った冷却水をチューブ30a、30bに対して分流する。冷却水配管40bは、図1中の鎖線矢印Bのように、チューブ30a、30bから流れ出る冷却水を集合させて出口41bから排出する。
The cooling water pipe 40a diverts the cooling water that has entered from the inlet 41a to the tubes 30a and 30b as indicated by the chain line arrow A in FIG. The cooling water pipe 40b collects the cooling water flowing out from the tubes 30a and 30b and discharges it from the outlet 41b as indicated by a chain line arrow B in FIG.
冷却水配管40aは、座屈部42aを備える。座屈部42aは、冷却水配管40aのうちチューブ30a、30bの間に配置されて、蛇腹状に形成されている。座屈部42aは、その撓みによって冷却水配管40aの長手方向(図中上下方向)に収縮が可能に形成されている。
The cooling water pipe 40a includes a buckling portion 42a. The buckling portion 42a is disposed between the tubes 30a and 30b in the cooling water pipe 40a and is formed in a bellows shape. The buckling portion 42a is formed so as to be capable of contracting in the longitudinal direction (vertical direction in the drawing) of the cooling water pipe 40a by the bending thereof.
冷却水配管40bは、座屈部42bを備える。座屈部42bは、冷却水配管40bのうちチューブ30a、30bの間に配置されて、蛇腹状に形成されている。座屈部42bは、その撓みによって冷却水配管40bの長手方向(図中上下方向)に収縮が可能に形成されている。
The cooling water pipe 40b includes a buckling portion 42b. The buckling portion 42b is disposed between the tubes 30a and 30b in the cooling water pipe 40b and is formed in a bellows shape. The buckling portion 42b is formed so as to be able to contract in the longitudinal direction (vertical direction in the figure) of the cooling water pipe 40b by the bending thereof.
本実施形態の冷却水配管40a、40b、およびチューブ30a、30bは、アルミニウム等の金属材料からなるものである。
The cooling water pipes 40a and 40b and the tubes 30a and 30b of the present embodiment are made of a metal material such as aluminum.
半導体スイッチング素子10は、薄板状に形成されているものであって、図2に示すように、半導体チップ11、スペーサ12、ヒートシンク13、14、複数本のターミナル15(図2中2本のターミナル15を示す)、および樹脂モールド部16から構成されている。
The semiconductor switching element 10 is formed in a thin plate shape, and as shown in FIG. 2, a semiconductor chip 11, a spacer 12, heat sinks 13 and 14, a plurality of terminals 15 (two terminals in FIG. 2). 15), and a resin mold portion 16.
半導体チップ11は、例えばIGBTなどのスイッチング素子を構成する。半導体チップ11は、ヒートシンク13、14の間に配置されている。ヒートシンク13、14は、それぞれ、銅によって薄板状に形成されている。ヒートシンク13、14は、それぞれ、半導体チップ11から発生する熱を放出する。ヒートシンク13の表面13aが樹脂モールド部16の表面側(図1中上側)に露出している。
The semiconductor chip 11 constitutes a switching element such as an IGBT. The semiconductor chip 11 is disposed between the heat sinks 13 and 14. The heat sinks 13 and 14 are each formed in a thin plate shape with copper. The heat sinks 13 and 14 each release heat generated from the semiconductor chip 11. The surface 13a of the heat sink 13 is exposed on the surface side of the resin mold portion 16 (upper side in FIG. 1).
ヒートシンク14の裏面14aが樹脂モールド部16の裏面側(図1中下側)に露出している。スペーサ12は、銅によって薄板状に形成されている。スペーサ12は、半導体チップ11およびヒートシンク13の間に配置されている。複数本のターミナル15は、それぞれの先端側が樹脂モールド部16から外側に突出するように形成されている。複数本のターミナル15と半導体チップ11との間は、それぞれ、ワイヤ15aによって接続されている。樹脂モールド部16は、電気絶縁性樹脂材料からなるもので、半導体チップ11、スペーサ12、およびヒートシンク13、14、および複数本のターミナル15を覆うように形成されている。
The back surface 14 a of the heat sink 14 is exposed on the back surface side (the lower side in FIG. 1) of the resin mold portion 16. The spacer 12 is formed in a thin plate shape with copper. The spacer 12 is disposed between the semiconductor chip 11 and the heat sink 13. The plurality of terminals 15 are formed such that the respective leading ends protrude outward from the resin mold portion 16. The plurality of terminals 15 and the semiconductor chip 11 are connected by wires 15a. The resin mold portion 16 is made of an electrically insulating resin material, and is formed so as to cover the semiconductor chip 11, the spacer 12, the heat sinks 13 and 14, and the plurality of terminals 15.
本実施形態のヒートシンク13の表面13a、およびヒートシンク14の裏面14aは、平らに加工成形されている。同様に、チューブ30aの上面、下面、およびチューブ30bの上面、下面は、それぞれ、平らに加工成形されている。ヒートシンク13の表面13a、ヒートシンク14の裏面14a、チューブ30aの上面、下面、およびチューブ30bの上面、下面のそれぞれの十点平均粗さ(Rz)は、6.3z~50zに設定されている。
The front surface 13a of the heat sink 13 and the back surface 14a of the heat sink 14 of this embodiment are processed and molded flat. Similarly, the upper surface and the lower surface of the tube 30a and the upper surface and the lower surface of the tube 30b are each processed and formed flat. The ten-point average roughness (Rz) of the surface 13a of the heat sink 13, the back surface 14a of the heat sink 14, the upper and lower surfaces of the tube 30a, and the upper and lower surfaces of the tube 30b is set to 6.3z to 50z.
なお、半導体チップ11およびスペーサ12の間は、半田層17aによって接続されている。半導体チップ11およびヒートシンク14の間は、半田層17bによって接続されている。スペーサ12およびヒートシンク13の間は、半田層17cによって接続されている。
The semiconductor chip 11 and the spacer 12 are connected by a solder layer 17a. The semiconductor chip 11 and the heat sink 14 are connected by a solder layer 17b. The spacer 12 and the heat sink 13 are connected by a solder layer 17c.
本実施形態では、ヒートシンク13の表面13a(放熱面)のサイズは、樹脂モールド部16の上面のサイズよりも小さい。ヒートシンク14の裏面14a(放熱面)のサイズは、樹脂モールド部16の下面のサイズよりも小さい。そして、放熱シート20aの下面のサイズは、樹脂モールド部16の上面のサイズよりも小さい。放熱シート20bの上面のサイズは、樹脂モールド部16の下面のサイズよりも小さい。
In the present embodiment, the size of the surface 13a (heat radiation surface) of the heat sink 13 is smaller than the size of the upper surface of the resin mold portion 16. The size of the back surface 14 a (heat radiating surface) of the heat sink 14 is smaller than the size of the bottom surface of the resin mold portion 16. The size of the lower surface of the heat dissipation sheet 20 a is smaller than the size of the upper surface of the resin mold portion 16. The size of the upper surface of the heat dissipation sheet 20 b is smaller than the size of the lower surface of the resin mold part 16.
次に、本実施形態の車載用放熱装置1の製造方法について図4を参照して説明する。
Next, a method for manufacturing the on-vehicle heat dissipation device 1 of the present embodiment will be described with reference to FIG.
まず、準備工程(ステップS100)において、半導体スイッチング素子10、放熱シート20a、20b、および冷却器50を、それぞれ、別々に用意する。
このとき、冷却器50としては、座屈部42a、42bが伸びた状態のものを用意する。 First, in the preparation step (step S100), thesemiconductor switching element 10, the heat radiation sheets 20a and 20b, and the cooler 50 are prepared separately.
At this time, the cooler 50 is prepared with the buckling portions 42a and 42b extended.
このとき、冷却器50としては、座屈部42a、42bが伸びた状態のものを用意する。 First, in the preparation step (step S100), the
At this time, the cooler 50 is prepared with the buckling
次の配置工程(ステップS110)において、チューブ30a、30bの間に、放熱シート20a、半導体スイッチング素子10、および放熱シート20bを配置する。具体的には、半導体スイッチング素子10のヒートシンク13とチューブ30aとの間に放熱シート20aを配置する。これにより、放熱シート20aがヒートシンク13を図1中上側から覆うように配置されることになる。
In the next arrangement step (step S110), the heat radiation sheet 20a, the semiconductor switching element 10, and the heat radiation sheet 20b are arranged between the tubes 30a and 30b. Specifically, the heat dissipation sheet 20a is disposed between the heat sink 13 of the semiconductor switching element 10 and the tube 30a. Thereby, the heat radiating sheet 20a is arranged so as to cover the heat sink 13 from the upper side in FIG.
さらに、半導体スイッチング素子10のヒートシンク14とチューブ30bとの間に放熱シート20bを配置する。これにより、放熱シート20bがヒートシンク14を図1中下側から覆うように配置されることになる。
Furthermore, a heat radiation sheet 20b is disposed between the heat sink 14 of the semiconductor switching element 10 and the tube 30b. Thereby, the heat radiating sheet 20b is disposed so as to cover the heat sink 14 from the lower side in FIG.
これにより、半導体スイッチング素子10(パワーカード)および放熱シート20a、20bがチューブ30b、30bの間に配置されることになる。
Thereby, the semiconductor switching element 10 (power card) and the heat radiation sheets 20a and 20b are disposed between the tubes 30b and 30b.
次の染み出し工程(ステップS120)において、冷却水配管40aの座屈部42aと冷却水配管40bの座屈部42bとをそれぞれ収縮させる。これにより、チューブ30a、30bの間の距離が短くなる。このため、チューブ30a、30bによって、半導体スイッチング素子10および放熱シート20a、20bに対して圧力が加わる。
In the next leaching process (step S120), the buckling portion 42a of the cooling water pipe 40a and the buckling portion 42b of the cooling water pipe 40b are contracted, respectively. This shortens the distance between the tubes 30a and 30b. For this reason, pressure is applied to the semiconductor switching element 10 and the heat radiation sheets 20a and 20b by the tubes 30a and 30b.
したがって、放熱シート20aは、半導体スイッチング素子10のヒートシンク13とチューブ30aとによって板厚方向に圧縮される。これに伴って、放熱シート20aの多孔質基材21aからヒートシンク13側とチューブ30a側とに熱伝導性物質が染み出る。このとき、放熱シート20aの多孔質基材21aからヒートシンク13側に染み出た熱伝導性物質は、毛細管現象で、多孔質基材21aとヒートシンク13との間の隙間を埋めることができる。これに加えて、放熱シート20aの多孔質基材21aからチューブ30a側に染み出た熱伝導性物質は、多孔質基材21aとチューブ30aとの間の隙間を埋めることができる。
Therefore, the heat dissipation sheet 20a is compressed in the thickness direction by the heat sink 13 of the semiconductor switching element 10 and the tube 30a. In connection with this, a heat conductive substance oozes out from the porous base material 21a of the heat radiating sheet 20a to the heat sink 13 side and the tube 30a side. At this time, the heat conductive material that oozes out from the porous base material 21a of the heat dissipation sheet 20a to the heat sink 13 side can fill the gap between the porous base material 21a and the heat sink 13 by capillary action. In addition to this, the heat conductive material that oozes out from the porous base material 21a of the heat dissipation sheet 20a to the tube 30a side can fill the gap between the porous base material 21a and the tube 30a.
これに加えて、放熱シート20bは、ヒートシンク14とチューブ30bとによって板厚方向に圧縮される。このとき、放熱シート20bの多孔質基材21bからヒートシンク14側とチューブ30b側とに熱伝導性物質が染み出る。このため、放熱シート20bの多孔質基材21bからヒートシンク14側に染み出た熱伝導性物質は、毛細管現象で、放熱シート20bの多孔質基材21bとヒートシンク14との間の隙間を埋めることができる。さらに、放熱シート20bの多孔質基材21bからチューブ30b側に染み出た熱伝導性物質は、放熱シート20bの多孔質基材21bとチューブ30bとの間の隙間を埋めることができる。
In addition to this, the heat radiation sheet 20b is compressed in the plate thickness direction by the heat sink 14 and the tube 30b. At this time, the heat conductive material oozes out from the porous base material 21b of the heat dissipation sheet 20b to the heat sink 14 side and the tube 30b side. For this reason, the heat conductive substance which oozes out from the porous base material 21b of the heat radiating sheet 20b to the heat sink 14 side fills a gap between the porous base material 21b of the heat radiating sheet 20b and the heat sink 14 by a capillary phenomenon. Can do. Furthermore, the thermally conductive material that has oozed out from the porous base material 21b of the heat radiating sheet 20b toward the tube 30b can fill the gap between the porous base material 21b of the heat radiating sheet 20b and the tube 30b.
次の固定工程(ステップS130)において、座屈部42a、41bが伸びることを防止するために、固定部材によってチューブ30a、30bを挟み込んでチューブ30a、30bの間を保持固定する。これにより、チューブ30a、30bの間において、放熱シート20a、20bが圧縮した状態で維持されることになる。以上により、車載用放熱装置1が完成することになる。
In the next fixing step (step S130), in order to prevent the buckling portions 42a and 41b from extending, the tubes 30a and 30b are sandwiched and fixed between the tubes 30a and 30b by a fixing member. Thereby, between the tubes 30a and 30b, the heat radiating sheets 20a and 20b are maintained in a compressed state. Thus, the in-vehicle heat dissipation device 1 is completed.
次に、本実施形態の車載用放熱装置1の作動について説明する。
Next, the operation of the in-vehicle heat dissipation device 1 of this embodiment will be described.
まず、半導体スイッチング素子10において、半導体チップ11がスイッチング作動する際に半導体チップ11が発熱体として熱を発生する。このとき、半導体チップ11から発生した熱が半田層17a、スペーサ12、および半田層17cを通してヒートシンク13に伝わる。これに伴って、ヒートシンク13から、放熱シート20aを通してチューブ30aに熱が伝わる。よって、チューブ30aにおいて、放熱シート20aを通して伝わった熱が冷却水に排熱される。このことにより、チューブ30aが半導体スイッチング素子10を冷却することができる。
First, in the semiconductor switching element 10, when the semiconductor chip 11 performs switching operation, the semiconductor chip 11 generates heat as a heating element. At this time, heat generated from the semiconductor chip 11 is transmitted to the heat sink 13 through the solder layer 17a, the spacer 12, and the solder layer 17c. Along with this, heat is transferred from the heat sink 13 to the tube 30a through the heat dissipation sheet 20a. Therefore, in the tube 30a, the heat transmitted through the heat dissipation sheet 20a is exhausted to the cooling water. Thus, the tube 30a can cool the semiconductor switching element 10.
また、半導体チップ11から発生した熱が半田層17bを通してヒートシンク14に伝わる。このとき、ヒートシンク14から、放熱シート20bを通してチューブ30bに熱が伝わる。これに伴い、チューブ30bにおいて、放熱シート20bを通して伝わった熱が冷却水に排熱される。このことにより、チューブ30bが半導体スイッチング素子10を冷却することができる。
Further, heat generated from the semiconductor chip 11 is transmitted to the heat sink 14 through the solder layer 17b. At this time, heat is transmitted from the heat sink 14 to the tube 30b through the heat dissipation sheet 20b. Accordingly, in the tube 30b, the heat transmitted through the heat dissipation sheet 20b is exhausted to the cooling water. Thus, the tube 30b can cool the semiconductor switching element 10.
以上説明した本実施形態によれば、放熱シート20aは、ヒートシンク13とチューブ30aとの間に配置されている。放熱シート20aの多孔質基材21aは、ヒートシンク13とチューブ30aとによってその板厚方向に圧縮されている。多孔質基材21aの圧縮に伴って多孔質基材21a内から染み出た熱伝導性物質が多孔質基材21aとヒートシンク14との間と多孔質基材21aとチューブ30aとの間とに介在している。
According to the present embodiment described above, the heat dissipation sheet 20a is disposed between the heat sink 13 and the tube 30a. The porous substrate 21a of the heat dissipation sheet 20a is compressed in the plate thickness direction by the heat sink 13 and the tube 30a. The heat conductive material that oozes out from the porous substrate 21a due to the compression of the porous substrate 21a is between the porous substrate 21a and the heat sink 14, and between the porous substrate 21a and the tube 30a. Intervene.
ここで、ヒートシンク13の表面13a、およびチューブ30aの下面には、加工痕として凹部が形成されている。
Here, concave portions are formed as processing marks on the surface 13a of the heat sink 13 and the lower surface of the tube 30a.
これに対して、本実施形態では、加工痕を熱伝導性物質で埋めることができる。つまり、放熱シート20aとヒートシンク13との間の隙間と放熱シート20aとチューブ30aとの間の隙間とをそれぞれ熱伝導性物質で埋めることができる。このため、放熱シート20aを介したヒートシンク13とチューブ30aとの間の熱抵抗を下げることができる。加工痕とは、ヒートシンク13やチューブ30aを金属加工により成形する際に形成される凹凸部のことである。
In contrast, in this embodiment, the processing trace can be filled with a heat conductive material. That is, the gap between the heat dissipation sheet 20a and the heat sink 13 and the gap between the heat dissipation sheet 20a and the tube 30a can be filled with the heat conductive material. For this reason, the thermal resistance between the heat sink 13 and the tube 30a via the heat radiation sheet 20a can be lowered. The processing mark is an uneven portion formed when the heat sink 13 or the tube 30a is formed by metal processing.
放熱シート20bは、ヒートシンク14とチューブ30bとの間に配置されている。放熱シート20bの多孔質基材21bは、ヒートシンク14とチューブ30bとによってその板厚方向に圧縮されている。多孔質基材21bの圧縮に伴って多孔質基材21b内から染み出た熱伝導性物質が多孔質基材21bとヒートシンク14との間と多孔質基材21bとチューブ30bとの間とに介在している。
The heat dissipation sheet 20b is disposed between the heat sink 14 and the tube 30b. The porous substrate 21b of the heat dissipation sheet 20b is compressed in the thickness direction by the heat sink 14 and the tube 30b. The heat conductive material that oozes out from the porous base material 21b due to the compression of the porous base material 21b is between the porous base material 21b and the heat sink 14, and between the porous base material 21b and the tube 30b. Intervene.
ここで、ヒートシンク14の表面14a、およびチューブ30bの上面には、加工痕が形成されているものの、加工痕を熱伝導性物質で埋めることができる。つまり、放熱シート20bとヒートシンク14との間の隙間と放熱シート20bとチューブ30bとの間の隙間とをそれぞれ熱伝導性物質で埋めることができる。このため、放熱シート20bを介したヒートシンク14とチューブ30bとの間の熱抵抗を下げることができる。
Here, although the processing marks are formed on the surface 14a of the heat sink 14 and the upper surface of the tube 30b, the processing marks can be filled with the heat conductive material. That is, the gap between the heat dissipation sheet 20b and the heat sink 14 and the gap between the heat dissipation sheet 20b and the tube 30b can be filled with the heat conductive material. For this reason, the thermal resistance between the heat sink 14 and the tube 30b via the heat dissipation sheet 20b can be lowered.
以上により、半導体スイッチング素子10とチューブ30a、30bとの間の熱抵抗を下げることができる。したがって、半導体スイッチング素子10の放熱性を高めることができる。
As described above, the thermal resistance between the semiconductor switching element 10 and the tubes 30a and 30b can be lowered. Therefore, the heat dissipation of the semiconductor switching element 10 can be improved.
本実施形態の放熱シート20aは、柔軟性を有している。このため、放熱シート20aは、ヒートシンク13およびチューブ30aの形状に適応して変形することができる。このため、例えば、図3に示すように、チューブ30aに湾曲状の凹み50が形成されて、かつヒートシンク13の加工痕として凹部51が形成されている場合には、チューブ30aの凹み50、およびヒートシンク13の凹部51に合わせて放熱シート20aを変形させることができる。よって、ヒートシンク13および放熱シート20aの隙間、および放熱シート20aおよびチューブ30aの間の隙間をそれぞれ小さくすることができる。
The heat dissipation sheet 20a of this embodiment has flexibility. For this reason, the heat dissipation sheet 20a can be deformed in conformity with the shapes of the heat sink 13 and the tube 30a. Therefore, for example, as shown in FIG. 3, when a curved recess 50 is formed in the tube 30 a and a recess 51 is formed as a processing mark of the heat sink 13, the recess 50 of the tube 30 a and The heat radiation sheet 20 a can be deformed in accordance with the recess 51 of the heat sink 13. Therefore, the gap between the heat sink 13 and the heat dissipation sheet 20a and the gap between the heat dissipation sheet 20a and the tube 30a can be reduced.
図3は、ヒートシンク13およびチューブ30aの形状に合わせて放熱シート20が変形して、ヒートシンク13の凹部51内や放熱シート20aおよびチューブ30aの隙間に熱伝導性物質が太線の矢印のように放熱シート20aから移動する例を示している。
In FIG. 3, the heat radiation sheet 20 is deformed according to the shape of the heat sink 13 and the tube 30a, and the heat conductive material radiates heat in the recess 51 of the heat sink 13 or in the gap between the heat radiation sheet 20a and the tube 30a as indicated by the thick line arrows. The example which moves from the sheet | seat 20a is shown.
放熱シート20bは、放熱シート20aと同様、柔軟性を有している。このため、放熱シート20bは、ヒートシンク14やチューブ30bの形状に沿って変形する。このため、放熱シート20aの場合と同様に、ヒートシンク14およびチューブ30bの間に生じる隙間を小さくすることができる。
The heat radiating sheet 20b has flexibility like the heat radiating sheet 20a. For this reason, the heat dissipation sheet 20b is deformed along the shape of the heat sink 14 or the tube 30b. For this reason, the gap which arises between the heat sink 14 and the tube 30b can be made small like the case of the heat radiating sheet 20a.
本実施形態の放熱シート20a、20bを構成する熱伝導性物質は、上述の如く、予め粘性を有する。このため、冷熱サイクルや毛細管現象によって放熱シート20aとヒートシンク13との間から熱伝導性物質が押し出されることを防ぐことができる。つまり、熱伝導性物質の粘性によって、放熱シート20aとヒートシンク13との間と保持され得る。同様の理由で、放熱シート20aとチューブ30aとの間とに熱伝導性物質が保持される。放熱シート20bとヒートシンク14との間、および放熱シート20bとチューブ30bとの間にも、それぞれ、熱伝導性物質が保持される。したがって、半導体スイッチング素子10とチューブ30a、30bとの間の熱抵抗を低い状態で維持することができる。
The heat conductive material constituting the heat radiation sheets 20a and 20b of the present embodiment has a viscosity in advance as described above. For this reason, it can prevent that a heat conductive substance is extruded from between the thermal radiation sheet | seat 20a and the heat sink 13 by a cooling-heat cycle or a capillary phenomenon. That is, the heat conductive material can be held between the heat dissipation sheet 20a and the heat sink 13 by the viscosity of the heat conductive material. For the same reason, the heat conductive material is held between the heat radiation sheet 20a and the tube 30a. Thermally conductive materials are also held between the heat dissipation sheet 20b and the heat sink 14 and between the heat dissipation sheet 20b and the tube 30b. Therefore, the thermal resistance between the semiconductor switching element 10 and the tubes 30a and 30b can be maintained in a low state.
本実施形態の放熱シート20a、20bの多孔質基材21a、21bは、上述の如く、多数の孔のうち隣接する2つの孔は連通した構造になっている。このため、放熱シート20a、20bは、多数の孔のうち連通した複数の孔を通して気体を通過させることができる。これに加えて、熱伝導性物質は、高い気体通過係数を有する。したがって、放熱シート20a、20b内からガスが発生しても、多孔質基材21a、21bや熱伝導性物質を通して外側にガスを排出することができる。
As described above, the porous base materials 21a and 21b of the heat radiation sheets 20a and 20b of the present embodiment have a structure in which two adjacent holes are in communication with each other. For this reason, the heat radiating sheets 20a and 20b can pass the gas through a plurality of holes communicated among a large number of holes. In addition to this, the thermally conductive material has a high gas passage coefficient. Therefore, even if gas is generated from the heat dissipation sheets 20a and 20b, the gas can be discharged to the outside through the porous base materials 21a and 21b and the heat conductive material.
本実施形態の放熱シート20a、20bの多孔質基材21a、21b、および熱伝導性物質は、電気絶縁性を有している。このため、放熱シート20a、20bが電気絶縁性を有することになる。したがって、放熱シート20aによって半導体チップ11とチューブ30aとの間の電気絶縁性を確保することができる。さらに、放熱シート20bによって半導体チップ11とチューブ30bとの間の電気絶縁性を確保することができる。したがって、放熱シート20a、20b以外に電気絶縁部材を設ける必要がない。このため、部品点数の増加を抑えることができる。
The porous base materials 21a and 21b and the heat conductive material of the heat radiation sheets 20a and 20b of the present embodiment have electrical insulation. For this reason, the heat radiation sheets 20a and 20b have electrical insulation. Therefore, electrical insulation between the semiconductor chip 11 and the tube 30a can be ensured by the heat dissipation sheet 20a. Furthermore, the electrical insulation between the semiconductor chip 11 and the tube 30b can be ensured by the heat dissipation sheet 20b. Therefore, it is not necessary to provide an electrical insulating member other than the heat radiation sheets 20a and 20b. For this reason, the increase in the number of parts can be suppressed.
また、多孔質基材21a、21bにクラックが生じたり、多孔質基材21a、21bから放熱フィラーが剥離して剥離跡として空所が形成されると、クラックや剥離跡が絶縁破壊の起点になり得る。
In addition, when cracks are generated in the porous base materials 21a and 21b, or when the heat radiation filler is peeled off from the porous base materials 21a and 21b and voids are formed as peeling marks, the cracks and peeling marks are the starting points of dielectric breakdown. Can be.
これに対して、本実施形態では、多孔質基材21a、21bから染み出た熱伝導性物質が多孔質基材21a、21bに生じたクラックや放熱フィラーの剥離跡を埋めることができる。このため、クラックや剥離跡といった多孔質基材21a、21bの欠陥を製造工程の検査で発見できなかった場合であっても、当該欠陥を熱伝導性物質が修復することができる。
On the other hand, in this embodiment, the thermally conductive material that has exuded from the porous base materials 21a and 21b can fill the cracks generated in the porous base materials 21a and 21b and the peeling trace of the heat radiation filler. For this reason, even if it is a case where the defect of the porous base materials 21a and 21b, such as a crack and a peeling trace, was not discovered by the inspection of a manufacturing process, the said heat conductive substance can repair the said defect.
本実施形態の放熱シート20a、20bでは、熱伝導性物質を硬化させていなく、熱伝導性物質が粘性を保持している。このため、例えば、放熱シート20aをヒートシンク13の表面13a(或いは、チューブ30aの下面)に配置しても、この放熱シート20aを配置したヒートシンク13から放熱シート20aを剥がすことができる。このため、放熱シート20aをヒートシンク13に再び配置することができる。つまり、放熱シート20aをヒートシンク13やチューブ30aに一旦貼り付けても、この放熱シート20aを再度、貼り直すことができる。放熱シート20bも放熱シート20aと同様の効果がある。
(第2実施形態)
上記第1実施形態では、予め粘性を持った熱伝導性物質を多孔質基材21aに含浸されてなる放熱シート20aを用いた例について説明したが、これに代えて、本実施形態では、粘性が低い熱伝導性物質を多孔質基材21aに含浸されてなる放熱シート20aを用意し、この放熱シート20aをヒートシンク13とチューブ30aとの間に組み付ける際に放熱シート20aに対して熱伝導性物質の粘性を高める架橋剤を付着する例について説明する。 In the heat radiating sheets 20a and 20b of the present embodiment, the heat conductive material is not cured, and the heat conductive material maintains viscosity. For this reason, for example, even if the heat radiating sheet 20a is arranged on the surface 13a of the heat sink 13 (or the lower surface of the tube 30a), the heat radiating sheet 20a can be peeled off from the heat sink 13 on which the heat radiating sheet 20a is arranged. For this reason, the heat radiating sheet 20 a can be disposed on the heat sink 13 again. That is, even if the heat dissipation sheet 20a is once attached to the heat sink 13 or the tube 30a, the heat dissipation sheet 20a can be attached again. The heat radiation sheet 20b has the same effect as the heat radiation sheet 20a.
(Second Embodiment)
In the first embodiment, the example using theheat radiation sheet 20a in which the porous base material 21a is impregnated with the heat conductive material having viscosity in advance has been described. A heat radiating sheet 20a formed by impregnating the porous base material 21a with a low thermal conductive material is prepared, and when the heat radiating sheet 20a is assembled between the heat sink 13 and the tube 30a, the heat radiating sheet 20a is thermally conductive. An example of attaching a cross-linking agent that increases the viscosity of a substance will be described.
(第2実施形態)
上記第1実施形態では、予め粘性を持った熱伝導性物質を多孔質基材21aに含浸されてなる放熱シート20aを用いた例について説明したが、これに代えて、本実施形態では、粘性が低い熱伝導性物質を多孔質基材21aに含浸されてなる放熱シート20aを用意し、この放熱シート20aをヒートシンク13とチューブ30aとの間に組み付ける際に放熱シート20aに対して熱伝導性物質の粘性を高める架橋剤を付着する例について説明する。 In the
(Second Embodiment)
In the first embodiment, the example using the
本実施形態では、粘性が低い熱伝導性物質を多孔質基材21aに含浸されてなる放熱シート20aを用意する。同様に、粘性が低い熱伝導性物質を多孔質基材21bに含浸されてなる放熱シート20bを用意する。
In the present embodiment, a heat radiating sheet 20a is prepared by impregnating the porous base material 21a with a heat conductive material having low viscosity. Similarly, a heat radiating sheet 20b prepared by impregnating the porous base material 21b with a heat conductive material having low viscosity is prepared.
多孔質基材21a、21bに含浸されている熱伝導性物質、および架橋剤(添加剤)として、例えば、東レ・ダウコーニング・シリコーン株式会社製のCY52-276A&B(製品番号)を用いる。
For example, CY52-276A & B (product number) manufactured by Toray Dow Corning Silicone Co., Ltd. is used as the heat conductive material impregnated in the porous base materials 21a and 21b and the crosslinking agent (additive).
ここで、CY52-276A&Bは、主剤、および主剤に架橋反応を起こさせる副剤から構成される。熱伝導性物質として主剤を用いることができる。主剤には、架橋反応の反応速度を速める触媒が含まれている。架橋剤として副剤を用いることができる。
Here, CY52-276A & B is composed of a main agent and an auxiliary agent that causes a cross-linking reaction to the main agent. A main agent can be used as a heat conductive substance. The main agent contains a catalyst that accelerates the reaction rate of the crosslinking reaction. An auxiliary agent can be used as a crosslinking agent.
次に、本実施形態の車載用放熱装置の製造工程について説明する。図5は、本実施形態の車載用放熱装置の製造工程を示すフローチャートである。
図5は、図4のフローチャートにおいて、準備工程(ステップS100)に代わる準備工程(ステップS100A)と、配置工程(ステップS110)に代わる架橋剤付着・配置工程(ステップS110A)を備えたものである。 Next, the manufacturing process of the vehicle-mounted heat dissipation device of this embodiment will be described. FIG. 5 is a flowchart showing a manufacturing process of the in-vehicle heat dissipation device of the present embodiment.
FIG. 5 includes a preparation step (step S100A) in place of the preparation step (step S100) and a cross-linking agent adhesion / placement step (step S110A) in place of the arrangement step (step S110) in the flowchart of FIG. .
図5は、図4のフローチャートにおいて、準備工程(ステップS100)に代わる準備工程(ステップS100A)と、配置工程(ステップS110)に代わる架橋剤付着・配置工程(ステップS110A)を備えたものである。 Next, the manufacturing process of the vehicle-mounted heat dissipation device of this embodiment will be described. FIG. 5 is a flowchart showing a manufacturing process of the in-vehicle heat dissipation device of the present embodiment.
FIG. 5 includes a preparation step (step S100A) in place of the preparation step (step S100) and a cross-linking agent adhesion / placement step (step S110A) in place of the arrangement step (step S110) in the flowchart of FIG. .
まず、準備工程(ステップS100A)では、半導体スイッチング素子10、冷却器50、および粘性が低い熱伝導性物質を含浸されてなる放熱シート20a、20bを、別々に用意する。
First, in the preparation step (step S100A), the semiconductor switching element 10, the cooler 50, and the heat radiation sheets 20a and 20b impregnated with the heat conductive material having low viscosity are separately prepared.
次に、架橋剤付着・配置工程(ステップS110A)では、チューブ30a、30bの間に半導体スイッチング素子10を配置する。この際に、ヒートシンク13の表面13aに架橋剤(添加剤)を付け、この架橋剤が付いた表面13aに放熱シート20aの下面を配置し、チューブ30aの下面に放熱シート20aの上面を配置する。このことにより、放熱シート20aの多孔質基材21aに架橋剤が付着する。このため、多孔質基材21aに含浸されている熱伝導性物質において架橋剤による架橋反応が始まる。これにより、熱伝導性物質の硬化が開始される。
Next, in the cross-linking agent adhesion / arrangement step (step S110A), the semiconductor switching element 10 is disposed between the tubes 30a and 30b. At this time, a cross-linking agent (additive) is attached to the surface 13a of the heat sink 13, the lower surface of the heat radiating sheet 20a is disposed on the surface 13a with the cross-linking agent, and the upper surface of the heat radiating sheet 20a is disposed on the lower surface of the tube 30a. . Thereby, a crosslinking agent adheres to the porous base material 21a of the heat dissipation sheet 20a. For this reason, the crosslinking reaction by the crosslinking agent starts in the heat conductive material impregnated in the porous substrate 21a. Thereby, hardening of a heat conductive substance is started.
さらに、チューブ30a、30bの間に半導体スイッチング素子10を配置する際に、ヒートシンク14の裏面14aに架橋剤を付け、この架橋剤が付いた裏面14aに放熱シート20bの上面を配置し、チューブ30bの上面に放熱シート20bの下面を配置する。このことにより、放熱シート20aの多孔質基材21aに架橋剤が付着する。このため、多孔質基材21bに含浸されている熱伝導性物質において架橋剤による架橋反応が始まる。これにより、熱伝導性物質の硬化が開始される。
Further, when the semiconductor switching element 10 is disposed between the tubes 30a and 30b, a crosslinking agent is attached to the back surface 14a of the heat sink 14, and the upper surface of the heat radiation sheet 20b is disposed on the back surface 14a with the crosslinking agent. The lower surface of the heat radiating sheet 20b is disposed on the upper surface. Thereby, a crosslinking agent adheres to the porous base material 21a of the heat dissipation sheet 20a. For this reason, the crosslinking reaction by the crosslinking agent starts in the heat conductive material impregnated in the porous substrate 21b. Thereby, hardening of a heat conductive substance is started.
以上により、チューブ30a、30bの間に放熱シート20a、20bを配置する際に、多孔質基材21a、21bに含浸されている熱伝導性物質の硬化が開始されることになる。
As described above, when the heat radiation sheets 20a and 20b are disposed between the tubes 30a and 30b, curing of the heat conductive material impregnated in the porous base materials 21a and 21b is started.
その後、次の染み出し工程(ステップS120)において、冷却水配管40aの座屈部42aと冷却水配管40bの座屈部42bとをそれぞれ収縮させることにより、半導体スイッチング素子10および放熱シート20a、20bに対して圧力を加える。
Thereafter, in the next seepage process (step S120), the buckling part 42a of the cooling water pipe 40a and the buckling part 42b of the cooling water pipe 40b are contracted, respectively, so that the semiconductor switching element 10 and the heat radiation sheets 20a, 20b are contracted. Apply pressure to.
したがって、上記第1実施形態と同様に、放熱シート20aの多孔質基材21aが圧縮される。これに伴って、多孔質基材21aから染み出た熱伝導性物質は、多孔質基材21aとヒートシンク13との間の隙間を埋める。これに加えて、多孔質基材21aから染み出た熱伝導性物質は、多孔質基材21aとチューブ30aとの間の隙間を埋めることができる。
Therefore, as in the first embodiment, the porous base material 21a of the heat dissipation sheet 20a is compressed. Along with this, the heat conductive material that has oozed out of the porous base material 21 a fills the gap between the porous base material 21 a and the heat sink 13. In addition to this, the thermally conductive material that has oozed out of the porous substrate 21a can fill the gap between the porous substrate 21a and the tube 30a.
また、放熱シート20bの多孔質基材21bが圧縮される。このため、多孔質基材21bから染み出た熱伝導性物質は、多孔質基材21bとヒートシンク14との間の隙間を埋めることができる。さらに、多孔質基材21bから染み出た熱伝導性物質は、多孔質基材21bとチューブ30bとの間の隙間を埋めることができる。
Also, the porous substrate 21b of the heat dissipation sheet 20b is compressed. For this reason, the heat conductive substance which oozes out from the porous base material 21 b can fill a gap between the porous base material 21 b and the heat sink 14. Furthermore, the thermally conductive material that has oozed out of the porous substrate 21b can fill the gap between the porous substrate 21b and the tube 30b.
次の固定工程(ステップS130)において、チューブ30a、30bの間を固定部材によって固定する。以上により、車載用放熱装置1の組み付けが終了する。その後、熱伝導性物質を硬化して熱伝導性物質の粘性を高めるために、所定期間の間、車載用放熱装置1を待機させることになる。例えば、室温25度の環境下で車載用放熱装置1を待機させる場合には、20時間ほど車載用放熱装置1を室内で待機させることが必要になる。
In the next fixing step (step S130), the space between the tubes 30a and 30b is fixed by a fixing member. This completes the assembly of the in-vehicle heat dissipation device 1. Then, in order to harden a heat conductive substance and to raise the viscosity of a heat conductive substance, the vehicle-mounted heat radiator 1 will be made to stand by for a predetermined period. For example, when the in-vehicle heat radiating device 1 is made to stand by in an environment at a room temperature of 25 degrees, it is necessary to place the in-vehicle heat radiating device 1 in the room for about 20 hours.
以上説明した本実施形態によれば、放熱シート20aをヒートシンク13とチューブ30aとの間に組み付け、放熱シート20bをヒートシンク14とチューブ30bとの間に組み付ける際に、放熱シート20a、20bに対して熱伝導性物質の粘性を高める架橋剤(すなわち、添加剤)を付着する。これに伴って、熱伝導性物質の硬化を開始することができる。その後、組み付けが完了した車載用放熱装置1を必要時間待機させることにより、車載用放熱装置1において、チューブ30a、30bとの間に配置した状態で、熱伝導性物質の粘性を高めることができる。したがって、上記第1実施形態と同様に、放熱シート20aを介するヒートシンク13とチューブ30aとの間に熱伝導性物質を保持し得る。放熱シート20bを介するヒートシンク14とチューブ30bとの間に熱伝導性物質を保持し得る。
According to this embodiment described above, when the heat dissipation sheet 20a is assembled between the heat sink 13 and the tube 30a, and when the heat dissipation sheet 20b is assembled between the heat sink 14 and the tube 30b, the heat dissipation sheets 20a and 20b A cross-linking agent (ie, an additive) that increases the viscosity of the thermally conductive material is deposited. In connection with this, hardening of a heat conductive substance can be started. Thereafter, by waiting the in-vehicle heat dissipation device 1 that has been assembled for a necessary time, in the in-vehicle heat dissipation device 1, the viscosity of the heat conductive material can be increased in a state of being disposed between the tubes 30a and 30b. . Therefore, similarly to the first embodiment, a heat conductive material can be held between the heat sink 13 and the tube 30a via the heat dissipation sheet 20a. A thermally conductive material can be held between the heat sink 14 and the tube 30b via the heat dissipation sheet 20b.
(他の実施形態)
上記第1、2の実施形態では、放熱シート20aの下面のサイズを樹脂モールド部16の上面のサイズよりも小さくした例について説明したが、これに限らず、放熱シート20aの下面のサイズを樹脂モールド部16の上面のサイズよりも大きくしてもよい。 (Other embodiments)
In the first and second embodiments, the example in which the size of the lower surface of theheat radiating sheet 20a is made smaller than the size of the upper surface of the resin mold portion 16 has been described. The size may be larger than the size of the upper surface of the mold part 16.
上記第1、2の実施形態では、放熱シート20aの下面のサイズを樹脂モールド部16の上面のサイズよりも小さくした例について説明したが、これに限らず、放熱シート20aの下面のサイズを樹脂モールド部16の上面のサイズよりも大きくしてもよい。 (Other embodiments)
In the first and second embodiments, the example in which the size of the lower surface of the
同様に、放熱シート20bの上面のサイズを、樹脂モールド部16の下面のサイズよりも大きくしてもよい。
Similarly, the size of the upper surface of the heat dissipation sheet 20b may be larger than the size of the lower surface of the resin mold portion 16.
上記第2の実施形態では、チューブ30a、30bの間に半導体スイッチング素子10を配置する際に、ヒートシンク13の表面13aに架橋剤を付け、この架橋剤が付いた表面13aに放熱シート20aの下面を配置して、放熱シート20aの多孔質基材21aに架橋剤を付着させる例について説明したが、これに代えて、次の(1)、(2)のようにしてもよい。
In the second embodiment, when the semiconductor switching element 10 is disposed between the tubes 30a and 30b, a cross-linking agent is attached to the surface 13a of the heat sink 13, and the lower surface of the heat dissipation sheet 20a is attached to the surface 13a with the cross-linking agent. However, instead of this, the following (1) and (2) may be used.
(1)チューブ30a、30bの間に半導体スイッチング素子10を配置する際に、チューブ30aの下面に架橋剤を付け、チューブ30aの下面のうち架橋剤が付いた部分に放熱シート20aの上面を配置して、ヒートシンク13の表面13aに放熱シート20aの下面を配置する。これにより、放熱シート20aの多孔質基材21aに架橋剤を付着させる。
(1) When the semiconductor switching element 10 is disposed between the tubes 30a and 30b, a cross-linking agent is attached to the lower surface of the tube 30a, and the upper surface of the heat dissipation sheet 20a is disposed on a portion of the lower surface of the tube 30a with the cross-linking agent. Then, the lower surface of the heat dissipation sheet 20 a is disposed on the surface 13 a of the heat sink 13. Thereby, a crosslinking agent is made to adhere to the porous base material 21a of the heat-radiation sheet 20a.
(2)チューブ30a、30bの間に半導体スイッチング素子10を配置する際に、放熱シート20aに対して直接架橋剤を付ける。
(2) When the semiconductor switching element 10 is disposed between the tubes 30a and 30b, a crosslinking agent is directly applied to the heat dissipation sheet 20a.
同様に、放熱シート20bの多孔質基材21bに架橋剤を付着させるために、次の(3)、(4)のようにしてもよい。
Similarly, the following (3) and (4) may be used in order to adhere the crosslinking agent to the porous base material 21b of the heat radiation sheet 20b.
(3)チューブ30a、30bの間に半導体スイッチング素子10を配置する際に、チューブ30bの上面に架橋剤を付け、チューブ30bの上面のうち架橋剤が付いた部分に放熱シート20bの下面を配置して、ヒートシンク14の下面に放熱シート20bの上面を配置する。これにより、放熱シート20bの多孔質基材21bに架橋剤を付着させてもよい。
(3) When the semiconductor switching element 10 is arranged between the tubes 30a and 30b, a crosslinking agent is attached to the upper surface of the tube 30b, and the lower surface of the heat dissipation sheet 20b is arranged on the portion of the upper surface of the tube 30b with the crosslinking agent. Then, the upper surface of the heat dissipation sheet 20 b is disposed on the lower surface of the heat sink 14. Thereby, you may make a crosslinking agent adhere to the porous base material 21b of the thermal radiation sheet 20b.
(4)チューブ30a、30bの間に半導体スイッチング素子10を配置する際に、放熱シート20bに対して直接架橋剤を付ける。
(4) When the semiconductor switching element 10 is disposed between the tubes 30a and 30b, a crosslinking agent is directly applied to the heat dissipation sheet 20b.
上記第1、第2の実施形態では、本開示の放熱装置として車載用放熱装置1を用いた例について説明したが、これに代えて、本開示の放熱装置として車載用放熱装置1以外の他の放熱装置に用いてもよい。
In the first and second embodiments, the example in which the vehicle-mounted heat dissipation device 1 is used as the heat dissipation device of the present disclosure has been described, but instead of this, the heat dissipation device of the present disclosure other than the vehicle-mounted heat dissipation device 1 You may use for this heat dissipation device.
上記第1、第2の実施形態では、冷却水配管40a、40bの座屈部42a、41bを収縮させてチューブ30a、30bの間を短くすることにより、チューブ30a、30bによって放熱シート20a、20bを圧縮させる例について説明したが、これに代えて、チューブ30a、30bの間をネジ等の締結部材によって固定することによって放熱シート20a、20bを圧縮させるようにしてもよい。
In the first and second embodiments, the heat sink sheets 20a and 20b are formed by the tubes 30a and 30b by contracting the buckling portions 42a and 41b of the cooling water pipes 40a and 40b to shorten the space between the tubes 30a and 30b. However, instead of this, the heat radiation sheets 20a and 20b may be compressed by fixing the tube 30a and 30b with a fastening member such as a screw.
上記第1、第2の実施形態では、発熱体として半導体スイッチング素子10を用いた例について説明したが、これに代えて、半導体スイッチング素子10以外の部材を発熱体として用いてもよい。
In the first and second embodiments, the example in which the semiconductor switching element 10 is used as the heating element has been described. However, instead of this, a member other than the semiconductor switching element 10 may be used as the heating element.
上記第1の実施形態では、粘性を有する熱伝導性物質によって多孔質基材21aとヒートシンク13(或いは、チューブ30a)との間を埋める例について説明したが、これに限らず、粘性が低い液状の熱伝導性物質によって多孔質基材21aとヒートシンク13(或いは、チューブ30a)との間を埋めるようにしてもよい。つまり、粘性が低い液状の熱伝導性物質によって多孔質基材21aとヒートシンク13(或いは、チューブ30a)との間を埋めるようにしてもよい。
In the first embodiment, the example in which the space between the porous base material 21a and the heat sink 13 (or the tube 30a) is filled with a heat conductive material having viscosity has been described. The space between the porous substrate 21a and the heat sink 13 (or the tube 30a) may be filled with the heat conductive material. That is, the space between the porous substrate 21a and the heat sink 13 (or the tube 30a) may be filled with a liquid heat conductive material having low viscosity.
同様に、粘性が低い液状の熱伝導性物質によって多孔質基材21bとヒートシンク14(或いは、チューブ30b)との間を埋めるようにしてもよい。
Similarly, the space between the porous substrate 21b and the heat sink 14 (or the tube 30b) may be filled with a liquid heat conductive material having low viscosity.
上記第1、第2の実施形態において、放熱シート20aをヒートシンク13とチューブ30aとの間に配置する際に、熱伝導性物質に接着性を持たせる反応を起こさせる添加剤を放熱シート20aに付けてもよい。これにより、熱伝導性物質が添加剤の反応によって接着性を持つようになる。この接着性を持った熱伝導性物質が放熱シート20aとヒートシンク13との間を接着し、かつ放熱シート20aとチューブ30aとの間を接着する。
In the first and second embodiments, when the heat dissipating sheet 20a is disposed between the heat sink 13 and the tube 30a, the heat dissipating sheet 20a is added with an additive that causes a reaction to give adhesiveness to the heat conductive material. May be attached. As a result, the thermally conductive material becomes adhesive due to the reaction of the additive. This thermally conductive material having adhesiveness adheres between the heat radiation sheet 20a and the heat sink 13, and also adheres between the heat radiation sheet 20a and the tube 30a.
同様に、放熱シート20bをヒートシンク14とチューブ30bとの間に配置する際に、熱伝導性物質に接着性を持たせる反応を起こさせる添加剤を放熱シート20bに付けてもよい。これにより、この接着性を持った熱伝導性物質が放熱シート20bとヒートシンク14との間を接着し、かつ放熱シート20bとチューブ30bとの間を接着する。
Similarly, when the heat radiation sheet 20b is disposed between the heat sink 14 and the tube 30b, an additive that causes a reaction to give adhesiveness to the heat conductive material may be attached to the heat radiation sheet 20b. As a result, the thermally conductive material having adhesiveness adheres between the heat dissipation sheet 20b and the heat sink 14, and also adheres between the heat dissipation sheet 20b and the tube 30b.
上記第2実施形態では、多孔質基材21a、21bに含浸されている熱伝導性物質、および架橋剤として、例えば、東レ・ダウコーニング・シリコーン株式会社製のCY52-276A&B(製品番号)を用いた例について説明したが、これに代えて、米国、Gelesr(ゲレスト)社製の製品を用いて主剤(熱伝導性物質)、および架橋剤(添加剤)を生成してもよい。
In the second embodiment, for example, CY52-276A & B (product number) manufactured by Toray Dow Corning Silicone Co., Ltd. is used as the heat conductive material impregnated in the porous base materials 21a and 21b and the crosslinking agent. However, instead of this, a main agent (thermally conductive substance) and a cross-linking agent (additive) may be generated using a product manufactured by Gelesr (Gerest), USA.
具体的には、DMS-T21(100cSr.silicone fluid)、SIS6964.0-S45(silica powder)、SN3260(DBTL tin catalyst)を50%、45%、5%の混合比で混合したものを主剤(熱伝導性物質)とする。
Specifically, DMS-T21 (100cSr.silicone fluid), SIS6964.0-S45 (silica powder), SN3260 (DBTL tin catalyst) mixed at a mixing ratio of 50%, 45%, 5% Thermally conductive material).
また、DMS-S45(silnol fluid)、SIS6964.0-S45(silica powder)、PSI-021(erthlsilicare)を70%、28%、2%の混合比で混合したものを架橋剤とする。
Also, a mixture obtained by mixing DMS-S45 (silnolSfluid), SIS6964.0-S45 (silica 、 powder), PSI-021 (erthlsilicare) at a mixing ratio of 70%, 28%, and 2% is used as a crosslinking agent.
なお、DMS-T21、SIS6964.0-S45、SN3260、DMS-S45、SIS6964.0-S45、PSI-021は、それぞれ、Gelesr社の製品番号を示している。
DMS-T21, SIS6964.0-S45, SN3260, DMS-S45, SIS6964.0-S45, and PSI-021 indicate the product numbers of Gelres.
上記第1、第2の実施形態では、多孔質基材21a、21bとして、放熱フィラーが添加されたものを用いた例について説明したが、これに代えて、熱伝導性物質として、予め放熱フィラーが添加されたものを用いてもよい。熱伝導性物質に添加される放熱フィラーは、熱伝導性および電気絶縁性を有する微粉末である。具体的には、放熱フィラーとしては、窒化ホウ素、アルニナ、窒化アルミナ等の材料が用いられる。
In the said 1st, 2nd embodiment, although the example using the thing to which the thermal radiation filler was added was demonstrated as the porous base materials 21a and 21b, it replaces with this, and as a heat conductive substance, it is beforehand thermal radiation filler. Those added with may also be used. The heat radiation filler added to the heat conductive material is a fine powder having heat conductivity and electrical insulation. Specifically, materials such as boron nitride, alanina, and alumina nitride are used as the heat dissipating filler.
或いは、多孔質基材21a、21bとして、予め放熱フィラーが添加されたものを用い、かつ熱伝導性物質として、予め放熱フィラーが添加されたものを用いてもよい。
Alternatively, as the porous base materials 21a and 21b, a material to which a heat dissipating filler has been added in advance may be used, and a material to which a heat dissipating filler has been added in advance may be used as a thermally conductive substance.
上記第1、第2の実施形態では、半導体スイッチング素子10の表面側(図1中上側)に放熱シート20aに配置し、かつ半導体スイッチング素子10の裏面側(図1中下側)に放熱シート20bを配置した例について説明したが、これに限らず、半導体スイッチング素子10の表面側および裏面側のうち、一方側にのみ放熱シートを配置してもよい。
In the first and second embodiments, the heat dissipation sheet 20a is disposed on the front surface side (upper side in FIG. 1) of the semiconductor switching element 10, and the heat dissipation sheet is disposed on the rear surface side (lower side in FIG. 1) of the semiconductor switching element 10. Although the example which has arrange | positioned 20b was demonstrated, you may arrange | position a thermal radiation sheet only to one side among the surface side and the back surface side of the semiconductor switching element 10 not only in this.
例えば、半導体スイッチング素子10として、ヒートシンク13、14のうちヒートシンク13が廃止されてヒートシンク14だけが樹脂モールド部16の下面側に露出しているものを用いる場合には、裏面側(図1中下側)にのみ放熱シート20bを配置する。そして、半導体スイッチング素子10とチューブ30bとの間に放熱シート20bが介在した状態で、半導体スイッチング素子10とチューブ30bとの間をネジ等の締結によって固定する。これにより、放熱シート20bの多孔質基材21bは、ヒートシンク14とチューブ30bとによって、圧縮されて、熱伝導性物質を染み出させることができる。この染み出た熱伝導性物質は、放熱シート20bとヒートシンク14との間の隙間と放熱シート20bとチューブ30bとの間の隙間とを熱伝導性物質で埋めることができる。
For example, when the semiconductor switching element 10 using the heat sinks 13 and 14 in which the heat sink 13 is abolished and only the heat sink 14 is exposed on the lower surface side of the resin mold portion 16 is used, The heat radiation sheet 20b is disposed only on the side. Then, the semiconductor switching element 10 and the tube 30b are fixed by fastening screws or the like in a state where the heat dissipation sheet 20b is interposed between the semiconductor switching element 10 and the tube 30b. Thereby, the porous base material 21b of the heat radiating sheet 20b is compressed by the heat sink 14 and the tube 30b, and the heat conductive material can be oozed out. The exuding heat conductive material can fill the gap between the heat radiation sheet 20b and the heat sink 14 and the gap between the heat radiation sheet 20b and the tube 30b with the heat conductive material.
上記第1、第2の実施形態では、冷却部材としてチューブ30a、30bを用いた例について説明したが、これに代えて、チューブ30a、30bの放熱を促進する放熱フィンを冷却部材として用いてもよい。
In the first and second embodiments, the example in which the tubes 30a and 30b are used as the cooling members has been described. However, instead of this, the radiation fins that promote the heat radiation of the tubes 30a and 30b may be used as the cooling members. Good.
上記第1、第2の実施形態では、放熱シート20aの多孔質基材21aの圧縮により多孔質基材21aから熱伝導性物質がヒートシンク13側とチューブ30a側とに染み出るようにした例について説明したが、これに代えて、多孔質基材21aから熱伝導性物質がその自重でヒートシンク13側とチューブ30a側とに染み出るようにしてもよい。
In the first and second embodiments described above, the heat conductive material oozes from the porous base material 21a to the heat sink 13 side and the tube 30a side by compression of the porous base material 21a of the heat dissipation sheet 20a. As described above, instead of this, the heat conductive material may ooze out from the porous base material 21a to the heat sink 13 side and the tube 30a side by its own weight.
なお、本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.
Claims (24)
- シート状で、多数の孔を有する多孔質基材(21a、21b)と、
熱伝導性を有して、前記多孔質基材の多数の孔内に含浸されている熱伝導性物質と、を備え、
前記多孔質基材内から前記熱伝導性物質が染み出ることが可能に構成されている放熱シート。 A sheet-like porous substrate (21a, 21b) having a large number of pores;
A thermal conductive material having thermal conductivity and impregnated in a number of pores of the porous substrate;
A heat dissipating sheet configured to allow the heat conductive material to ooze out from the porous base material. - 前記多孔質基材は、柔軟性を備える請求項1に記載の放熱シート。 The heat dissipation sheet according to claim 1, wherein the porous substrate has flexibility.
- 前記熱伝導性物質は、電気絶縁性を有している請求項1または2に記載の放熱シート。 The heat-dissipating sheet according to claim 1 or 2, wherein the thermally conductive substance has electrical insulation.
- 前記多孔質基材は、樹脂材料によって形成されている請求項1ないし3のいずれか1つに記載の放熱シート。 The heat dissipation sheet according to any one of claims 1 to 3, wherein the porous base material is formed of a resin material.
- 前記熱伝導性物質は、熱伝導性を有するフィラーが添加されたものである請求項1ないし4のいずれか1つに記載の放熱シート。 The heat-dissipating sheet according to any one of claims 1 to 4, wherein the heat-conducting substance is added with a filler having heat-conductivity.
- 前記多孔質基材は、熱伝導性を有するフィラーが添加されたものである請求項1ないし5のいずれか1つに記載の放熱シート。 The heat-dissipating sheet according to any one of claims 1 to 5, wherein the porous substrate is added with a filler having thermal conductivity.
- 前記多孔質基材は、前記多数の孔のうち隣接する孔が連通してこの連通した孔を通して気体を透過させる構造になっている請求項1ないし6のいずれか1つに記載の放熱シート。 The heat radiating sheet according to any one of claims 1 to 6, wherein the porous base material has a structure in which adjacent holes among the plurality of holes communicate with each other and allow gas to permeate through the communicated holes.
- 前記熱伝導性物質は、気体を透過させる気体透過性を有する物質である請求項1ないし7のいずれか1つに記載の放熱シート。 The heat-dissipating sheet according to any one of claims 1 to 7, wherein the thermally conductive material is a gas-permeable material that allows gas to pass therethrough.
- 前記多孔質基材は、その圧縮によって前記熱伝導性物質を染み出させることが可能に構成されている請求項1ないし8のいずれか1つに記載の放熱シート。 The heat dissipation sheet according to any one of claims 1 to 8, wherein the porous base material is configured to be able to exude the heat conductive material by being compressed.
- 前記熱伝導性物質は、予め粘性を有している請求項1ないし9のいずれか1つに記載の放熱シート。 The heat-radiating sheet according to any one of claims 1 to 9, wherein the thermally conductive substance has a viscosity in advance.
- 熱を発生する発熱体(10)を冷却する冷却部材(30a、30b)と、
請求項1ないし9のいずれか1つに記載の放熱シート(20a、20b)と、を備え、
前記放熱シートは、前記発熱体および前記冷却部材の間に配置されており、
前記放熱シートを構成する多孔質基材内から染み出た熱伝導性物質が、前記発熱体および前記多孔質基材の間と前記冷却部材および前記多孔質基材の間とに介在する放熱装置。 Cooling members (30a, 30b) for cooling the heating element (10) that generates heat;
A heat dissipation sheet (20a, 20b) according to any one of claims 1 to 9,
The heat dissipating sheet is disposed between the heating element and the cooling member,
A heat dissipating device in which a heat conductive material oozing out from a porous base material constituting the heat radiating sheet is interposed between the heating element and the porous base material and between the cooling member and the porous base material. . - 前記多孔質基材には、予め粘性を有する熱伝導性物質が含浸されていることを特徴とする請求項11に記載の放熱装置。 The heat dissipating device according to claim 11, wherein the porous base material is impregnated with a viscous heat conductive material in advance.
- 前記熱伝導性物質は、前記発熱体および前記冷却部材の間に前記放熱シートが配置される際に前記放熱シートに付けられる添加剤によって粘性が高められたものである請求項11または12に記載の放熱装置。 The viscosity of the thermally conductive material is increased by an additive attached to the heat dissipation sheet when the heat dissipation sheet is disposed between the heating element and the cooling member. Heat dissipation device.
- 前記添加剤は、前記発熱体および前記冷却部材の間に前記放熱シートが配置される際に前記放熱シートに直接付けられたものである請求項13に記載の放熱装置。 The heat dissipation device according to claim 13, wherein the additive is directly attached to the heat dissipation sheet when the heat dissipation sheet is disposed between the heating element and the cooling member.
- 前記発熱体および前記冷却部材の間に前記放熱シートを配置する際に、前記発熱体および前記冷却部材のうち一方の部材に前記添加剤を付け、前記一方の部材のうち前記添加剤が付いた部分に前記放熱シートを配置することにより、前記放熱シートに前記添加剤が付けられるようになっているものである請求項13に記載の放熱装置。 When arranging the heat dissipation sheet between the heating element and the cooling member, the additive is attached to one member of the heating element and the cooling member, and the additive is attached to the one member. The heat dissipating device according to claim 13, wherein the additive is attached to the heat dissipating sheet by disposing the heat dissipating sheet in a portion.
- 前記冷却部材は、第1、第2の冷却部材を有し、
前記放熱シートは、第1、第2の放熱シートを有し、
前記第1、第2の冷却部材の間に前記発熱体が配置されており、
前記第1の放熱シートは、前記発熱体および前記第1の冷却部材の間に配置されており、
前記第2の放熱シートは、前記発熱体および前記第2の冷却部材の間に配置されている請求項11ないし15のいずれか1つに記載の放熱装置。 The cooling member has first and second cooling members,
The heat dissipating sheet has first and second heat dissipating sheets,
The heating element is disposed between the first and second cooling members;
The first heat dissipation sheet is disposed between the heating element and the first cooling member,
The heat dissipation device according to any one of claims 11 to 15, wherein the second heat dissipation sheet is disposed between the heating element and the second cooling member. - 前記第1の放熱シートを構成する第1の多孔質基材、および前記第2の放熱シートを構成する第2の多孔質基材は、それぞれ、前記第1、第2の冷却部材によって圧縮されており、
前記第1の多孔質基材の圧縮に伴って前記第1の多孔質基材から染み出た熱伝導性物質が、前記発熱体および前記第1の多孔質基材の間と前記第1の冷却部材および前記第1の多孔質基材の間とに介在し、
前記第2の多孔質基材の圧縮に伴って前記第2の多孔質基材から染み出た熱伝導性物質が、前記発熱体および前記第2の多孔質基材の間と前記第2の冷却部材および前記第2の多孔質基材の間とに介在する請求項16に記載の放熱装置。 The first porous substrate constituting the first heat radiating sheet and the second porous substrate constituting the second heat radiating sheet are compressed by the first and second cooling members, respectively. And
The heat conductive material that oozes out of the first porous substrate as the first porous substrate is compressed is between the heating element and the first porous substrate and between the first porous substrate and the first porous substrate. Interposed between the cooling member and the first porous substrate,
The heat conductive material that oozes out from the second porous base material as the second porous base material is compressed is between the heating element and the second porous base material and between the second porous base material and the second porous base material. The heat dissipating device according to claim 16, which is interposed between a cooling member and the second porous substrate. - 熱を発生する発熱体(10)と、前記発熱体を冷却する冷却部材(30a、30b)との間に、請求項1ないし9のいずれか1つに記載の放熱シート(20a、20b)を配置すること(S110)と、
前記放熱シートを構成する多孔質基材内から前記発熱体側と前記冷却部材側とに熱伝導性物質を染み出させること(S120)と、を備える放熱装置の製造方法。 The heat dissipating sheet (20a, 20b) according to any one of claims 1 to 9 is provided between a heat generating element (10) that generates heat and a cooling member (30a, 30b) that cools the heat generating element. Arranging (S110);
A heat-radiating device manufacturing method comprising: causing a heat conductive substance to ooze out from a porous base material constituting the heat-dissipating sheet to the heating element side and the cooling member side (S120). - 前記多孔質基材には、予め粘性を有する前記熱伝導性物質が含浸されている請求項18に記載の放熱装置の製造方法。 The method for manufacturing a heat dissipation device according to claim 18, wherein the porous base material is impregnated with the thermally conductive substance having viscosity in advance.
- 前記配置することでは、前記発熱体および前記冷却部材の間に前記放熱シートを配置する際に、前記熱伝導性物質の粘性を高める添加剤を前記放熱シートに付ける請求項19に記載の放熱装置の製造方法。 The heat dissipating device according to claim 19, wherein when disposing the heat dissipating sheet between the heating element and the cooling member, the heat dissipating sheet is provided with an additive for increasing the viscosity of the heat conductive material. Manufacturing method.
- 前記配置することでは、前記発熱体および前記冷却部材の間に前記放熱シートを配置する際に、前記添加剤を前記放熱シートに直接付ける請求項20に記載の放熱装置の製造方法。 21. The method of manufacturing a heat radiating device according to claim 20, wherein, when the heat radiating sheet is disposed between the heating element and the cooling member, the additive is directly attached to the heat radiating sheet.
- 前記配置することでは、前記発熱体および前記冷却部材の間に前記放熱シートを配置する際に、前記発熱体および前記冷却部材のうち一方の部材に前記添加剤を付け、前記一方の部材のうち前記添加剤が付いた部分に前記放熱シートを配置することにより、前記添加剤を前記放熱シートに付ける請求項20に記載の放熱装置の製造方法。 In the arrangement, when the heat dissipating sheet is arranged between the heating element and the cooling member, the additive is added to one member of the heating element and the cooling member. The manufacturing method of the heat radiating device according to claim 20, wherein the heat-dissipating sheet is disposed in a portion with the additive to attach the additive to the heat-dissipating sheet.
- 前記冷却部材は、第1、第2の冷却部材を有し、
前記放熱シートは、第1、第2の放熱シートを有し、
前記配置することでは、前記第1の冷却部材と前記発熱体との間に、前記第1の放熱シートを配置し、かつ前記発熱体に対して前記第1の冷却部材と反対側に配置される前記第2の冷却部材と前記発熱体との間に、前記第2の放熱シートを配置する請求項18ないし22のいずれか1つに記載の放熱装置の製造方法。 The cooling member has first and second cooling members,
The heat dissipating sheet has first and second heat dissipating sheets,
In the arrangement, the first heat radiating sheet is arranged between the first cooling member and the heating element, and is arranged on the side opposite to the first cooling member with respect to the heating element. The method for manufacturing a heat dissipation device according to any one of claims 18 to 22, wherein the second heat dissipation sheet is disposed between the second cooling member and the heating element. - 前記染み出させることでは、前記第1、第2の冷却部材によって前記第1の放熱シートを構成する第1の多孔質基材と前記第2の放熱シートを構成する第2の多孔質基材とをそれぞれ圧縮させることにより、前記第1、第2の多孔質基材内から前記熱伝導性物質を染み出させる請求項23に記載の放熱装置の製造方法。 In the exudation, the first porous substrate constituting the first heat radiation sheet and the second porous substrate constituting the second heat radiation sheet by the first and second cooling members. 24. The method for manufacturing a heat radiating device according to claim 23, wherein the thermal conductive material is oozed out of the first and second porous substrates by compressing each of the first and second porous substrates.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-279923 | 2012-12-21 | ||
JP2012279923 | 2012-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014097561A1 true WO2014097561A1 (en) | 2014-06-26 |
Family
ID=50977924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007139 WO2014097561A1 (en) | 2012-12-21 | 2013-12-05 | Heat dissipating sheet, heat dissipating apparatus, and method for manufacturing heat dissipating apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014140026A (en) |
WO (1) | WO2014097561A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113170602A (en) * | 2019-02-19 | 2021-07-23 | 株式会社高山 | Heat exchanger for cooling vehicle electrical components |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016119360A (en) * | 2014-12-19 | 2016-06-30 | 株式会社デンソー | Electronic device |
JP6483565B2 (en) * | 2015-08-04 | 2019-03-13 | 株式会社Soken | Semiconductor device |
CN111315197A (en) * | 2020-04-02 | 2020-06-19 | 深圳市龙航科技有限公司 | Vehicle-mounted navigator with heat radiation structure |
KR102539336B1 (en) * | 2021-06-07 | 2023-06-01 | 중앙대학교 산학협력단 | Semiconductor device thermal management module and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08509324A (en) * | 1994-02-14 | 1996-10-01 | ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド | Improved thermal conductive boundary material |
JP2010016402A (en) * | 2009-10-07 | 2010-01-21 | Denso Corp | Coolant cooling type both sides cooling semiconductor device |
JP2011096826A (en) * | 2009-10-29 | 2011-05-12 | Fujitsu Ltd | Semiconductor module |
-
2013
- 2013-12-05 WO PCT/JP2013/007139 patent/WO2014097561A1/en active Application Filing
- 2013-12-17 JP JP2013260513A patent/JP2014140026A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08509324A (en) * | 1994-02-14 | 1996-10-01 | ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド | Improved thermal conductive boundary material |
JP2010016402A (en) * | 2009-10-07 | 2010-01-21 | Denso Corp | Coolant cooling type both sides cooling semiconductor device |
JP2011096826A (en) * | 2009-10-29 | 2011-05-12 | Fujitsu Ltd | Semiconductor module |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113170602A (en) * | 2019-02-19 | 2021-07-23 | 株式会社高山 | Heat exchanger for cooling vehicle electrical components |
EP3930435A4 (en) * | 2019-02-19 | 2022-11-30 | Kohsan Co., Ltd. | HEAT EXCHANGER FOR COOLING ELECTRICAL ELEMENTS OF A VEHICLE |
Also Published As
Publication number | Publication date |
---|---|
JP2014140026A (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9171771B2 (en) | Semiconductor unit with cooler | |
CN105742252B (en) | Power module and manufacturing method thereof | |
WO2014097561A1 (en) | Heat dissipating sheet, heat dissipating apparatus, and method for manufacturing heat dissipating apparatus | |
US20140293548A1 (en) | Electric power semiconductor device and method for producing same | |
JP2009536458A (en) | Semiconductor module and manufacturing method thereof | |
CN102456640B (en) | substrate | |
KR20170118883A (en) | Thermal Conductive Sheet and Electronic Device | |
JP2011040565A (en) | Thermal conductive sheet, semiconductor device using the same, and method of manufacturing the same | |
JP5843539B2 (en) | Semiconductor device and method for manufacturing the same | |
EP2020683A1 (en) | Semiconductor device and method for manufacturing same | |
US20140291832A1 (en) | Integrated cooling modules of power semiconductor device | |
WO2013114647A1 (en) | Semiconductor device and method for manufacturing same | |
JP5383599B2 (en) | Manufacturing method of semiconductor module unit | |
JP4284636B2 (en) | Metal substrate | |
US10314208B2 (en) | Cooling device, method for producing a cooling device and power circuit | |
CN109698172A (en) | The manufacturing method of circuit structure and circuit structure | |
US9163886B2 (en) | Method for manufacturing a cooling device for electronic component | |
JP2012138475A (en) | Semiconductor module and method for manufacturing the same | |
CN111615746A (en) | Power electronic module and method of manufacturing a power electronic module | |
JP2012009769A (en) | Resin-encapsulation type electronic control device and manufacturing method therefor | |
JP2011238644A (en) | Method of manufacturing power semiconductor module | |
US10366937B2 (en) | Cooling device, method for producing a cooling device and power circuit | |
JP7059714B2 (en) | Power converter and manufacturing method of power converter | |
CN116864463A (en) | Cooling device of single-tube power device | |
JP2008181922A (en) | Heat-conductive substrate and manufacturing method thereof, and semiconductor device using heat-conductive substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13865486 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13865486 Country of ref document: EP Kind code of ref document: A1 |