WO2014080908A1 - ネガ型感光性樹脂組成物 - Google Patents
ネガ型感光性樹脂組成物 Download PDFInfo
- Publication number
- WO2014080908A1 WO2014080908A1 PCT/JP2013/081169 JP2013081169W WO2014080908A1 WO 2014080908 A1 WO2014080908 A1 WO 2014080908A1 JP 2013081169 W JP2013081169 W JP 2013081169W WO 2014080908 A1 WO2014080908 A1 WO 2014080908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin composition
- photosensitive resin
- negative photosensitive
- meth
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/01—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0047—Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0388—Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0755—Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
Definitions
- the present invention relates to a negative photosensitive resin composition.
- various insulating films and passivation films in a TFT (Thin FILM Transistor) manufacturing process are generally formed by CVD of a highly insulating inorganic material such as silicon carbide, silicon nitride, aluminum oxide, tantalum oxide, or titanium oxide.
- the film is manufactured by the method.
- the CVD method is expensive, a photosensitive organic insulating material that can be manufactured by a photolithography method that is less expensive than the CVD method has been actively studied (Patent Documents 1 to 3).
- Patent Document 4 a transparent insulating film obtained by combining a metal oxide such as titania or zirconia with siloxane or acrylic resin has been studied.
- the conventional photosensitive organic insulating material has a lower dielectric constant than an inorganic material and is inferior in insulating properties. Therefore, when used as an insulating film, the rising voltage of a transistor is increased, or a leakage current is increased. However, the current situation is that there is a problem that leads to a decrease in display performance of the display. Although these problems are improved if the composite material of the metal oxide and the resin described above, such a composite material has low resistance to chemicals in the manufacturing process and high-temperature processing, and deteriorates. It was regarded as a problem.
- the present invention can provide a cured film having properties that are maintained in performance without deterioration of its characteristics even after chemical and high-temperature treatment, and has excellent properties such as high transparency, high dielectric constant, and low leakage current. It is an object of the present invention to provide a possible negative photosensitive resin composition.
- composition comprising a component including an alkali-soluble polyester resin having a radical polymerizable group and an aromatic ring is extremely effective for solving the above problems. Completed the invention.
- the present invention provides a photosensitive resin composition, a transparent cured film, and a thin film transistor substrate described in the following (1) to (6).
- A Metal oxide particles of a metal selected from the group consisting of titanium, barium, hafnium, tantalum, tungsten, yttrium and zirconium,
- B an alkali-soluble polyester resin having a radical polymerizable group and an aromatic ring
- C A negative photosensitive resin composition containing a polyfunctional (meth) acryloyl compound and (D) a photopolymerization initiator.
- R 1 and R 2 are each independently hydrogen, an alkyl or cycloalkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a group in which they are substituted, or R 1 and R 2. Together represent a cycloalkyl group having 2 to 12 carbon atoms, an aromatic ring having 5 to 12 carbon atoms or a group in which they are substituted, and R 3 and R 4 are each independently hydrogen, carbon 2 Represents an alkyl group of ⁇ 12, an aryl group of 6 to 20 carbon atoms or a group in which they are substituted, and n and m each independently represents an integer of 0 to 10.) (3) (E) The negative photosensitive resin composition in any one of the above, containing an alkoxysilane or polysiloxane having 4 or more alkoxy groups.
- a cured film obtained from any of the above negative photosensitive resin compositions obtained from any of the above negative photosensitive resin compositions.
- a TFT substrate comprising the above cured film.
- a method for producing a thin film transistor substrate comprising a step of applying any of the above negative photosensitive resin compositions and forming a pattern through exposure and development.
- the negative photosensitive resin composition of the present invention even when immersed in a chemical, the adhesion with the substrate is not impaired, the film characteristics are not deteriorated due to the penetration of the chemical, and a transparent having a high dielectric constant and insulating property is obtained. An insulating film is obtained. Further, a thin film transistor substrate having a transparent insulating film having a high dielectric constant and insulation can be manufactured.
- the negative photosensitive resin composition of the present invention comprises (A) metal oxide particles of a metal selected from the group consisting of titanium, barium, hafnium, tantalum, tungsten, yttrium and zirconium, (B) a radical polymerizable group and an aromatic It contains an alkali-soluble polyester resin having a ring, (C) a polyfunctional (meth) acryloyl compound, and (D) a photopolymerization initiator.
- the negative photosensitive resin composition of the present invention contains (A) metal oxide particles of a metal selected from the group consisting of titanium, barium, hafnium, tantalum, tungsten, yttrium and zirconium. These metal oxide particles have a common relative dielectric constant (hereinafter sometimes referred to as ⁇ r ) of 20 or more.
- the metal oxide particles may be a composite metal oxide containing two or more metals included in the metal group.
- the metal oxide particles may be a mixture of metal oxide particles having different compositions.
- the relative dielectric constant of the metal oxide includes a coaxial probe method in which the metal oxide powder can be measured as it is, a parallel plate capacitor method in which the powder is pelletized by pressure forming and sandwiched between two electrodes, and the like.
- These measurement methods can be measured by using an impedance analyzer (such as Agilent 4294A) or an LCR meter (such as Agilent 4285A) and a dedicated jig (such as Agilent 85070E or 16451B / 16453A).
- an impedance analyzer such as Agilent 4294A
- an LCR meter such as Agilent 4285A
- a dedicated jig such as Agilent 85070E or 16451B / 16453A.
- these (A) metal oxide particles include titanium oxide, barium titanate, barium sulfate, barium oxide, hafnium oxide, tantalum oxide, tungsten oxide, yttrium oxide, and zirconium oxide.
- a titanium oxide or a zirconium oxide is still more preferable.
- the number average particle diameter of the metal oxide particles is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. When the particle diameter is small, the transparency of the cured film is improved, and when it is smaller, the homogeneity and insulating properties of the cured film and the like are improved.
- the number average particle diameter is preferably 1 nm or more, and more preferably 3 nm or more. When the size is larger than a certain size, the crystal structure of the metal oxide particles is maintained, the specific dielectric constant as expressed by the theoretical value is exhibited, and the relative dielectric constant of the cured film or the like is improved.
- the metal oxide particles may be surface-modified for the purpose of improving dispersibility in the negative photosensitive resin composition.
- the surface modification include coating with silicon oxide and coating with a surface modifier, which is an organic compound having an alkoxysilyl group, an isocyanate group, or a carboxyl group.
- the surface modifier preferably has a polymerizable unsaturated group in order to form a covalent bond with (B) the alkali-soluble polyester resin or (C) the polyfunctional (meth) acryloyl compound by ultraviolet irradiation.
- the content of the (A) metal oxide particles in the negative photosensitive resin composition of the present invention is sufficient for the hardness and relative dielectric constant of the cured film, etc. It is preferably 10 to 90% by mass.
- Metal oxide particles can be pulverized or dispersed using a disperser such as a bead mill by procuring appropriate particle powder.
- a disperser such as a bead mill by procuring appropriate particle powder.
- commercially available nanoparticle powders include T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; manufactured by Daiichi Rare Element Chemical Co., Ltd.) or STR-100N. (Titanium oxide; manufactured by Sakai Chemical Industry Co., Ltd.).
- the metal oxide particles can also be obtained as a dispersion dispersed in a liquid.
- silicon oxide-titanium oxide particles include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” “TR-520", “Optlake” TR-527, “Optlake” TR-528, “Optlake” TR-529, “Optlake” TR-544 or “Optlake” TR-550 Kogyo Co., Ltd.).
- the negative photosensitive resin composition of the present invention contains (B) an alkali-soluble polyester resin having a radical polymerizable group and an aromatic ring. (B) By containing an alkali-soluble polyester resin, negative photosensitive pattern processability can be imparted to the photosensitive resin composition. More specifically, when the negative photosensitive resin composition is exposed, (B) the alkali-soluble polyester resin and (C) the polyfunctional (meth) acryloyl compound undergo radical polymerization and become a crosslinked polymer. A pattern can be formed by removing the non-exposed portion by subsequent development. In addition, the chemical resistance of the UV cured film after exposure and the thermoset film after curing is improved.
- a cured film or the like can be obtained without impairing the relative dielectric constant, insulation, and adhesion even in the step exposed to a strong acidic or strong alkaline chemical before and after curing. .
- ester groups are highly polar and highly hydrophilic, they tend to cause decomposition reactions such as hydrolysis. Therefore, when a cured film or the like made of an acrylic resin or a polyester resin is immersed in an acid or alkali, film peeling or the like, which is presumed to be caused by the ester bond being decomposed inside the cured film or the like, occurs.
- the content of the (B) alkali-soluble polyester resin in the negative photosensitive resin composition of the present invention is preferably 1 to 80% by mass and more preferably 5 to 50% by mass with respect to all components other than the organic solvent.
- the content of the (C) polyfunctional (meth) acryloyl compound in the negative photosensitive resin composition of the present invention is from 1 to the total amount of the negative photosensitive resin composition in order to improve the hardness of the cured film and the like. 20 mass% is preferable. Further, it is preferably 5 to 50% by mass and more preferably 10 to 40% by mass with respect to all components other than the organic solvent.
- the alkali-soluble polyester is preferably one that is soluble in an aqueous solution of tetramethylammonium hydroxide (TMAH) having a concentration of 0.1% by mass or more at 23 ° C. Furthermore, it is preferable that it is soluble in 1% by mass or more of TMAH aqueous solution, and further it is soluble in 2% or more of TMAH aqueous solution.
- TMAH tetramethylammonium hydroxide
- the following method is exemplified as a method of undergoing a polyaddition reaction between (b1) a polyfunctional epoxy compound and (b2) a polyvalent carboxylic acid compound.
- a catalyst 1.01 to 2 equivalents of (b2) polyvalent carboxylic acid compound is added to (b1) polyfunctional epoxy compound and polyadded. The reaction produces an ester bond.
- (b6) a radical polymerizable group-containing epoxy compound is added to the terminal carboxylic acid moiety.
- (B7) Acid anhydride is added to the hydroxyl group to be formed.
- (b1) polyfunctional epoxy compound is polyadded by adding 1.01 to 2 equivalents to (b2) polyvalent carboxylic acid compound. The reaction produces an ester bond.
- (b5) a radical polymerizable group-containing monobasic acid compound is added to the terminal epoxy site.
- (B7) Acid anhydride is added to the hydroxyl group to be formed.
- the following method is exemplified as a method of undergoing a polyaddition reaction between (b3) a polyol compound and (b4) dianhydride.
- (b3) the polyol compound and (b4) dianhydride are polymerized.
- the reaction produces an ester bond.
- (b6) a radical polymerizable group-containing epoxy compound is added to a part of the generated carboxyl group.
- the radical polymerizable group-containing epoxy compound may not be added.
- Examples of the catalyst used in the polyaddition reaction and the addition reaction include ammonium catalysts such as tetrabutylammonium acetate; amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine; triphenylphosphine And a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
- ammonium catalysts such as tetrabutylammonium acetate
- amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine
- triphenylphosphine triphenylphosphine
- a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
- the polyfunctional epoxy compound is preferably a compound represented by the following general formula (1) in order to improve insulation and chemical resistance of a cured film or the like.
- R 1 and R 2 each independently represent hydrogen, an alkyl or cycloalkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a group in which they are substituted, or R 1 And R 2 together represent a cycloalkyl group having 2 to 12 (preferably 5 to 12) carbon atoms, an aromatic ring having 5 to 12 carbon atoms or a group in which they are substituted, and R 3 and R 4 are Each independently represents hydrogen, an alkyl group having 2 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms or a group in which they are substituted, and n and m each independently represents an integer of 0 to 10 .) R 1 , R 2 , R 3 and R 4 include, for example, a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthy
- Examples of the cyclic structure formed by combining R 1 and R 2 include the following substituents.
- the cyclic structure is preferably a 5- to 7-membered ring.
- polyvalent carboxylic acid compound examples include succinic acid, maleic acid, fumaric acid, itaconic acid, phthalic acid, terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, and 2,2′-biphenyldicarboxylic acid. Or 4,4′-biphenyldicarboxylic acid, but phthalic acid, terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, 2,2 ′ may be used to improve chemical resistance and insulation properties of cured films. -Biphenyl dicarboxylic acid or 4,4'-biphenyl dicarboxylic acid is preferred.
- Examples of the polyol compound include aliphatic alcohol compounds such as ethylene glycol, propylene glycol, butylene glycol, glycerin, trimethylolpropane, and pentaerythritol, 9,9-bis [4- (2-hydroxyethoxy) phenyl].
- Fluorene, (b1) a compound obtained by reaction of a polyfunctional epoxy compound and (b5) a radical polymerizable group-containing monobasic acid compound, or a bisphenol compound represented by the following general formula (2) and (b6) a radical polymerizable group
- An aromatic alcohol compound such as a compound obtained by reaction with the containing epoxy compound can be mentioned. Of these, aromatic alcohol compounds are preferred.
- R 1, R 2, R 3 and R 4 in the general formula (2) is the same as the general formula (1).
- dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 2,3,3 ′, 4′-biphenyl.
- Heptanetetracarboxylic dianhydride bicyclo [3.3.1. ] Tetracarboxylic dianhydride, bicyclo [3.1.1. ] Hept-2-enetetracarboxylic dianhydride, bicyclo [2.2.2. ]
- Aliphatic tetracarboxylic dianhydrides such as octane tetracarboxylic dianhydride or adamantane tetracarboxylic dianhydride may be mentioned. In order to improve chemical resistance and insulation properties of cured films, etc.
- Is pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2 ′, 3,3′-biphenyltetracarboxylic dianhydride is preferred, and in order to improve the transparency of the cured film, cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclo Pentanetetracarboxylic dianhydride or cyclohexanetetracarboxylic dianhydride is preferred.
- Examples of the radically polymerizable group-containing monobasic acid compound include (meth) acrylic acid, succinic acid mono (2- (meth) acryloyloxyethyl), and phthalic acid mono (2- (meth) acryloyloxyethyl). And tetrahydrophthalic acid mono (2- (meth) acryloyloxyethyl) or p-hydroxystyrene.
- radical polymerizable group-containing epoxy compounds examples include glycidyl (meth) acrylate, ⁇ -ethylglycidyl (meth) acrylate, ⁇ -n-propylglycidyl (meth) acrylate, and (meth) acrylic acid ⁇ .
- Examples of the acid anhydride include succinic acid anhydride, maleic acid anhydride, itaconic acid anhydride, phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid monoanhydride, and 2,3-biphenyldicarboxylic acid. Acid anhydride, 3,4-biphenyldicarboxylic acid anhydride, hexahydrophthalic acid anhydride, glutaric acid anhydride, 3-methylphthalic acid anhydride, norbornene dicarboxylic acid anhydride, cyclohexene dicarboxylic acid anhydride or 3-trimethoxysilyl And propyl succinic anhydride.
- the negative photosensitive resin composition of the present invention contains (C) a polyfunctional (meth) acryloyl compound, that is, a compound having two or more acryloyl groups and / or methacryloyl groups in the molecule.
- a negative photosensitive resin composition can be hardened by light irradiation.
- a substance corresponding to both (B) an alkali-soluble polyester resin having a radical polymerizable group and an aromatic ring and (C) a polyfunctional (meth) acryloyl compound is treated as (B).
- polymerizable compounds having two (meth) acryloyl groups in the molecule include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol.
- Examples of the polymerizable compound having three (meth) acryloyl groups in the molecule include trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, and trimethylolpropane alkylene oxide-modified tri (meth) acrylate.
- Examples of the polymerizable compound having four (meth) acryloyl groups in the molecule include pentaerythritol tetra (meth) acrylate, sorbitol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and dipentaerythritol tetrapropionate.
- (Meth) acrylate or ethoxylated pentaerythritol tetra (meth) acrylate may be mentioned.
- Examples of the polymerizable compound having five (meth) acryloyl groups in the molecule include sorbitol penta (meth) acrylate and dipentaerythritol penta (meth) acrylate.
- Examples of the polymerizable compound having six (meth) acryloyl groups in the molecule include dipentaerythritol hexa (meth) acrylate, sorbitol hexa (meth) acrylate, phosphazene alkylene oxide-modified hexa (meth) acrylate or caprolactone-modified diester.
- An example is pentaerythritol hexa (meth) acrylate.
- Examples of the polymerizable compound having seven (meth) acryloyl groups in the molecule include tripentaerythritol heptaacrylate.
- Examples of the polymerizable compound having eight (meth) acryloyl groups in the molecule include tripentaerythritol octaacrylate.
- Examples of commercially available (C) polyfunctional (meth) acryloyl compounds include “Aronix” (registered trademark) M-400, M-404, M-408, M-450, M-305, M-309, M -310, M-315, M-320, M-350, M-360, M-208, M-510, M-520, M-220, M-225, M-233, M-240, M-245 M-260, M-270, M-1100, M-1200, M-1210, M-1310, M-1600, M-221, M-203, TO-924, TO-1270, TO-1231, TO -595, TO-756, TO-1343, TO-902, TO-904, TO-905 or TO-1330 (all manufactured by Toagosei Co., Ltd.), "KAYARAD” (registered trademark) D-310, -330, DPHA, DPCA-20, DPCA-30, DPCA-60, DPCA-120, DN-0075, DN-2475,
- the content of the (C) polyfunctional (meth) acryloyl compound in the negative photosensitive resin composition of the present invention is from 1 to the total amount of the negative photosensitive resin composition in order to improve the hardness of the cured film and the like. 20 mass% is preferable. Further, it is preferably 5 to 50% by mass and more preferably 10 to 40% by mass with respect to all components other than the organic solvent.
- the negative photosensitive resin composition of the present invention needs to contain (D) a photopolymerization initiator.
- the photopolymerization initiator is preferably one that decomposes and / or reacts with light (including short-wave electromagnetic waves such as ultraviolet rays) or electron beams to generate radicals.
- photopolymerization initiator examples include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1 -(4-Morpholin-4-yl-phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,4,6-trimethyl Benzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide, 1-phenyl -1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (Fe Ruthio) -2- (O-benzo
- ⁇ -aminoalkylphenone compounds acylphosphine oxide compounds, oxime ester compounds, benzophenone compounds having an amino group, or benzoic acid ester compounds having an amino group are preferred in order to improve the hardness of a cured film or the like.
- Examples of the ⁇ -aminoalkylphenone compound include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one or 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
- acylphosphine oxide compound examples include 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, or bis (2,6-dimethoxybenzoyl)-(2 , 4,4-trimethylpentyl) -phosphine oxide.
- oxime ester compounds include 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyl).
- benzoic acid ester compound having an amino group examples include ethyl p-dimethylaminobenzoate, 2-ethylhexyl-p-dimethylaminobenzoate, and ethyl p-diethylaminobenzoate.
- the content of the photopolymerization initiator (D) in the negative photosensitive resin composition of the present invention is sufficient for the hardness of the cured film, and prevents the residual photopolymerization initiator from elution, thereby improving the solvent resistance.
- the content is preferably 0.1 to 20 parts by mass with respect to all components other than the organic solvent.
- the negative photosensitive resin composition of the present invention preferably contains (E) an alkoxysilane or polysiloxane having 4 or more alkoxy groups.
- E an alkoxysilane or polysiloxane having 4 or more alkoxy groups.
- alkoxysilane having four or more alkoxy groups examples include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, tetraphenoxysilane, tetramethoxydisiloxane, tetraethoxydisiloxane, and bis (triethoxysilylpropyl) tetrasulfide. , Tris- (3-trimethoxysilylpropyl) isocyanurate, and tris- (3-triethoxysilylpropyl) isocyanurate.
- a mixture of tetrafunctional silane and 9 functional silane is used in order to allow bulky 9 functional silane and tetrafunctional silane with less steric hindrance to react with each other. Is preferred.
- Polysiloxane can be obtained by cohydrolyzate condensation, that is, hydrolysis and partial condensation of a bifunctional or trifunctional alkoxysilane compound.
- alkoxysilane compound constituting the polysiloxane include dimethoxydimethylsilane, diethoxydimethylsilane, dimethoxydiphenylsilane, diethoxydiphenylsilane, dihydroxydiphenylsilane, dimethoxy (methyl) (phenyl) silane, and diethoxy (methyl) (phenyl).
- Silane dimethoxy (methyl) (phenethyl) silane, dicyclopentyldimethoxysilane or cyclohexyldimethoxy (methyl) silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Or 3-acryloxypropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl anhydride Acid, 3-trimethoxysilylethyl succinic anhydride, 3-trimethoxysilylbutyl succinic anhydride, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3- (3,4-epoxy (Cyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxy (C
- the negative photosensitive resin composition of the present invention may contain a polymerization inhibitor in order to adjust the sensitivity to light, for example.
- the polymerization inhibitor include catechols such as phenol, hydroquinone, p-methoxyphenol, benzoquinone, methoxybenzoquinone, 1,2-naphthoquinone, cresol, pt-butylcatechol, alkylphenols, alkylbisphenols, phenothiazine, 2,5-di-t-butylhydroquinone, 2,6-di-t-butylphenol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylene Bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), 2,2'methylenebis (4-methyl-6-t-butylphenol), 4,4'methylenebis (2,6-di-) t-but
- the content of the polymerization inhibitor in the negative photosensitive resin composition of the present invention is preferably 0.000005 to 0.2% by mass with respect to the entire negative photosensitive resin composition, and 0.00005 to 0. More preferably, it is 1%. Further, the content is preferably 0.0001 to 0.5% by mass and more preferably 0.001 to 0.2% by mass with respect to all components other than the organic solvent.
- the negative photosensitive resin composition of the present invention may contain an ultraviolet absorber in order to improve the resolution after development.
- an ultraviolet absorber a benzotriazole-based compound, a benzophenone-based compound, or a triazine-based compound is preferable in order to improve transparency and non-colorability of a cured film or the like.
- benzotriazole compounds examples include 2- (2H benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert-pentylphenol, and 2- (2H benzotriazole).
- benzophenone compounds examples include 2-hydroxy-4-methoxybenzophenone.
- the ultraviolet absorber of the triazine compound examples include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
- the negative photosensitive resin composition of the present invention may contain a solvent.
- the solvent is preferably an alcoholic compound, an ester compound or an ether compound in order to uniformly dissolve each component of the composition.
- examples of the solvent include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diacetone alcohol, ethylene glycol mononormal butyl ether, 2-ethoxyethyl acetate, 1-methoxypropyl-2-acetate, and 3-methoxy-3-methylbutanol.
- 3-methoxy-3-methylbutanol acetate 3-methoxybutyl acetate, 1,3-butylene glycol diacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, ethyl lactate, butyl lactate, ethyl acetoacetate or ⁇ -butyrolactone Is mentioned.
- the negative photosensitive resin composition of the present invention may contain a surfactant.
- the surfactant include silicone surfactants, silicon surfactants such as organopolysiloxanes, fluorine surfactants, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene octylphenyl ether.
- Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate or polyethylene glycol distearate, polyalkylene oxide surfactants, poly (meth) acrylate surfactants, acrylic or methacrylic surfactants
- a surfactant made of a polymer is exemplified.
- Examples of commercially available surfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475 or F477 (all manufactured by Dainippon Ink & Chemicals, Inc.) or NBX- 15 or FTX-218 (both manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, BYK-333, BYK-301, BYK-331, BYK-345 or BYK-307 (all of which are Big Chemie Japan Co., Ltd.) And the like.
- the negative photosensitive resin composition of the present invention may contain additives such as a dissolution inhibitor, a stabilizer, or an antifoaming agent as necessary.
- the solid content concentration of the negative photosensitive resin composition of the present invention may be appropriately determined according to the coating method and the like, but the solid content concentration is generally 1 to 50% by mass or less.
- the following method is exemplified as a representative method for producing the (I) negative photosensitive resin composition of the present invention.
- A A dispersion of metal oxide particles is weighed, and a solvent is added to the dispersion if necessary and stirred.
- D a photopolymerization initiator and other additives are added to a suitable solvent and dissolved by stirring.
- B an alkali-soluble polyester resin and
- C a polyfunctional (meth) acryloyl compound are added and further stirred for 20 minutes to 3 hours. In order to remove foreign substances as necessary, the obtained solution is filtered to obtain a negative photosensitive resin composition.
- the negative photosensitive resin composition of the present invention is applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating or slit coating, A film is formed by prebaking with a heating device such as an oven. Pre-baking is performed at 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
- an exposure tool such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (hereinafter referred to as PLA) to apply light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure dose conversion) to the desired mask. Irradiate through or without.
- the exposure light source is not limited, and ultraviolet rays such as i-line, g-line, or h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, or the like can be used.
- post-exposure baking may be performed by heating the film at 150 to 450 ° C. for about 1 hour using a heating device such as a hot plate or an oven.
- a developing method a method of immersing in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle is preferable.
- the developer include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates, and borates; amines such as 2-diethylaminoethanol, monoethanolamine, and diethanolamine; and tetra Examples thereof include an aqueous solution containing a quaternary ammonium salt such as methylammonium hydroxide or choline.
- the film is preferably rinsed with water, and then dried and baked at 50 to 150 ° C. Thereafter, this film is thermally cured at 120 to 280 ° C. for about 1 hour using a heating device such as a hot plate or an oven to obtain a cured film.
- the thickness of the resulting cured film is preferably 0.1 to 10 ⁇ m. It is preferable that the transmittance of light having a wavelength of 400 nm at a film thickness of 0.3 ⁇ m is 95% or more, the leakage current is 10 ⁇ 6 A / cm 2 or less, and the relative dielectric constant is 6.0 or more.
- the transmittance refers to the transmittance at a wavelength of 400 nm.
- Cured films obtained by curing the negative photosensitive resin composition of the present invention include protective films for touch panels, various hard coat materials, flattening films for TFT, overcoats for color filters, antireflection films, passivation films, etc. It can be used for various protective films and optical filters, insulating films for touch panels, insulating films for TFTs, photo spacers for color filters, gate insulating films for TFTs, etc., but it has high relative dielectric constant, insulation, chemical resistance and resolution. Therefore, it can be particularly suitably used as a gate insulating film for TFT.
- the temperature of the oil bath was set to 120 ° C., and after the temperature in the flask reached 100 ° C., the mixture was stirred for 3 hours, and then the heating was stopped to complete the reaction.
- the flask was cooled with ice and cooled to room temperature, and an anion and a cation exchange resin were added and stirred for 10 hours. Finally, the ion exchange resin was removed by filtration to obtain a silane-modified titania sol (A3).
- the temperature of the oil bath was set to 120 ° C., and after the temperature in the flask reached 100 ° C., the mixture was stirred for 3 hours, and then the heating was stopped to complete the reaction.
- the flask was cooled with ice and cooled to room temperature, and an anion and a cation exchange resin were added and stirred for 10 hours. Finally, the ion exchange resin was removed by filtration to obtain a silane-modified titania sol (A4).
- Polyester resin solutions (B1 to B7) shown in Table 2 were prepared by the following method.
- HHFD hexahydrophthalic anhydride
- TBAA hexahydrophthalic anhydride
- Synthesis Example 13 Synthesis of Polyester Resin Solution (R1) 364 g of PGMEA, 68 g of EG, 296 g of BPTCD and 1.7 g of TBAA were charged into a flask and stirred at 120 ° C. for 5 hours. After cooling to room temperature, 31 g of PGMEA was added to obtain a polyester resin R1 as a PGMEA solution.
- Synthesis Example 14 Synthesis of Polyester Resin Solution (R2) 364 g of PGMEA, 68 g of EG, 199 g of 1,2,3,4-butanetetracarboxylic dianhydride (BTCD) and 1.7 g TBAA were charged into a flask. Stir at 120 ° C. for 5 hours. After cooling to room temperature, 31 g of PGMEA was added to obtain a polyester resin R2 as a PGMEA solution.
- BTCD 1,2,3,4-butanetetracarboxylic dianhydride
- polyester resin B1 solution (45.4 mass% PGMEA solution) was added and stirred. Next, it filtered with a 0.22 micrometer filter, and obtained the negative photosensitive resin composition.
- permeability, the resolution, the insulation, the relative dielectric constant, and the chemical resistance were evaluated by the following methods.
- the composition of the obtained negative photosensitive resin composition (1) is shown in Table 5, and the result of each evaluation is shown in Table 8. In addition, the value in the bracket
- the resin composition was spin-coated on a substrate using a spin coater (1H-360S; manufactured by Mikasa Co., Ltd.) and then heated at 90 ° C. using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.). Prebaking was performed for 2 minutes to prepare a prebaked film having a thickness of 0.40 ⁇ m.
- a glass substrate hereinafter referred to as ITO substrate
- the obtained pre-baked film was exposed to 2000 J / m 2 with a gap of 100 ⁇ m through a gray scale mask having a transmittance of 1 to 60% using PLA as an ultrahigh pressure mercury lamp as a light source.
- TMAH tetramethylammonium hydroxide
- the minimum pattern size after development at the optimum exposure amount was measured and used as the resolution.
- the resin composition was spin-coated on a 5 cm square Tempax glass substrate (manufactured by AGC Techno Glass Co., Ltd.) using a spin coater and then pre-baked at 90 ° C. for 2 minutes using a hot plate.
- a 4-0.6 ⁇ m pre-baked film was prepared.
- the obtained pre-baked film was exposed to 2000 J / m 2 on the whole surface with an ultrahigh pressure mercury lamp, shower-developed with a 2.38% TMAH aqueous solution for 60 seconds using an automatic developing device, and then rinsed with water for 30 seconds. Finally, it was baked for 30 minutes at 230 ° C. in air using an oven (IHPS-222; manufactured by Espec Corp.) to produce a cured film having a film thickness of 0.3 to 0.5 ⁇ m.
- the obtained cured film was measured for a transmittance of 400 nm using an ultraviolet-visible spectrophotometer (UV-260; manufactured by Shimadzu Corporation).
- a pre-baked film having a film thickness of 0.40 ⁇ m was produced by the same method as the evaluation of pattern processability.
- the obtained prebaked film was exposed to 2000 J / m 2 on the entire surface with an ultrahigh pressure mercury lamp, shower-developed with a 2.38 mass% TMAH aqueous solution for 60 seconds using an automatic developing device, and then rinsed with water for 30 seconds.
- the obtained cured film was immersed in a 5.0 mass% oxalic acid aqueous solution for 5 minutes at room temperature, washed with water for 1 minute, and then evaluated for adhesion to the ITO cured film according to JIS K5600-5-6. did.
- the obtained cured film was cut vertically and horizontally at 1 mm intervals using a cutter knife to produce 100 1 mm ⁇ 1 mm squares.
- JIS S6050-passed product JIS S6050-passed product
- a prebaked film having a film thickness of 0.40 ⁇ m was produced by the same method as the evaluation of pattern processability, and the obtained prebaked film was exposed to 2000 J / m 2 with an ultrahigh pressure mercury lamp, and 2.38 using an automatic developing device.
- a 0.40 ⁇ m thick pre-baked film is formed on a 10 cm ⁇ 10 cm ITO substrate in the same manner as the pattern processability evaluation, and a middle bake is performed at 160 ° C. for 5 minutes using a hot plate. did.
- the obtained middle bake film was immersed in a 5 mass% oxalic acid aqueous solution at room temperature for 5 minutes and then washed with water for 1 minute. Next, it was baked in an oven at 230 ° C. for 30 minutes, immersed in a 2.38 mass% TMAH solution at room temperature for 80 seconds, further immersed in 7 mass% aminoethoxyethanol at 70 ° C. for 80 seconds, and then with water. Washed for 1 minute.
- the cured film obtained after immersion in chemicals was measured for film thickness ( ⁇ m) with a surfcom stylus type film thickness measuring device, and then aluminum (purity 99.99% or more) on the cured film with a vacuum deposition device.
- Aluminum purity 99.99% or more on the cured film with a vacuum deposition device.
- Each electrode terminal is brought into contact with aluminum and ITO, and a leakage current (log [A / cm 2 ]) is measured after application for 60 seconds at 15 V using a semiconductor measuring device (KEITHLEY4200-SCS; manufactured by Keithley Instruments). did.
- a measurement sample was prepared by the same method for evaluating the insulation. Each electrode terminal is brought into contact with aluminum and ITO, respectively, and the capacitance at a frequency of 1 MHz in the measurement target region is measured with an impedance analyzer (4294A; manufactured by Agilent Technologies) and a sample holder (16451B; manufactured by Agilent Technologies). ). The relative dielectric constant was calculated as the relative dielectric constant from the dimensions of the capacitance and the measurement target region.
- TFT characteristics evaluation A TFT substrate having the structure shown in FIG. 1 was produced.
- a gate electrode 2 was formed on a glass substrate 1 (thickness 0.7 mm) by vacuum evaporation of chromium with a thickness of 5 nm and then gold with a thickness of 50 nm through a metal mask by a resistance heating method.
- the negative photosensitive resin composition (1) was applied by spin coating, prebaked at 90 ° C. for 2 minutes using a hot plate, and a 0.40 ⁇ m-thick prebaked film was formed. Produced.
- the obtained pre-baked film was fully exposed at 2000 J / m 2 with an ultrahigh pressure mercury lamp, shower-developed with a 2.38% TMAH aqueous solution for 60 seconds using an automatic developing device, and then rinsed with water for 30 seconds. Finally, baking was performed in air at 230 ° C. for 30 minutes using an oven (IHPS-222; manufactured by Espec Corp.) to obtain a gate insulating film having a film thickness of 0.3 ⁇ m. On the substrate on which the gate insulating layer was formed, gold was vacuum-deposited so as to have a thickness of 50 nm. Next, a positive resist solution was dropped and applied using a spinner, and then dried on a hot plate at 90 ° C. to form a resist film.
- IHPS-222 manufactured by Espec Corp.
- the obtained resist film was irradiated with ultraviolet rays through a photomask using an exposure machine. Subsequently, the substrate was immersed in an alkaline aqueous solution, the ultraviolet irradiation part was removed, and a resist film patterned into an electrode shape was obtained. The obtained substrate was dipped in a gold etching solution (Goldetch, standard, manufactured by Aldrich) to dissolve and remove the portion of the gold from which the resist film was removed. The obtained substrate was immersed in acetone, the resist was removed, washed with pure water, and dried on a hot plate at 100 ° C. for 30 minutes. Thus, gold source / drain electrodes 4 and 5 having an electrode width (channel width) of 0.2 mm, an electrode interval (channel length) of 20 ⁇ m, and a thickness of 50 nm were obtained.
- a gold etching solution Goldetch, standard, manufactured by Aldrich
- poly-3-hexylthiophene (P3HT, manufactured by Alducci, regioregular) is applied to the substrate on which the electrode is formed by an inkjet method, and heat treatment is performed at 150 ° C. for 30 minutes in a nitrogen stream on a hot plate.
- P3HT poly-3-hexylthiophene
- heat treatment is performed at 150 ° C. for 30 minutes in a nitrogen stream on a hot plate.
- PIJL-1 manufactured by Cluster Technology Co., Ltd.
- Example 2 to Example 7 A negative photosensitive resin composition was obtained in the same manner as in Example 1, except that (A) the metal oxide particles were changed to A2 to A7 and (B) the alkali-soluble polyester resin was changed to B2, respectively. Evaluation similar to 1 was performed. Table 5 shows the composition of the obtained negative photosensitive resin composition, and Table 8 shows the evaluation results.
- Examples 8 to 12 A negative photosensitive resin composition was obtained in the same manner as in Example 1 in place of the alkali-soluble polyester resins B3 to B7, and evaluated in the same manner as in Example 1.
- Table 6 shows the composition of the obtained negative photosensitive resin composition
- Table 8 shows the evaluation results.
- Example 13 to Example 20> A negative photosensitive resin composition was obtained in the same manner as in Example 1 by adding alkoxysilane or the polysiloxane synthesized in Synthesis Examples 16 and 17, and evaluated in the same manner as in Example 1. .
- Table 7 shows the composition of the obtained negative photosensitive resin composition, and Table 8 shows the evaluation results.
- the cured film obtained from each of the negative photosensitive resin compositions obtained in Examples 1 to 20 has the process characteristics required as an interlayer insulating film and a gate insulating film of TFT. It was something to satisfy.
- the cured film obtained from each of the negative photosensitive resin compositions obtained in Comparative Examples 1 to 3 has chemical resistance required as an interlayer insulating film or a gate insulating film of TFT. However, the characteristics that could withstand the manufacturing process were not satisfied.
- Cured films obtained by curing the negative photosensitive resin composition of the present invention include various hard coat films such as TFT gate insulating films, interlayer insulating films, and touch panel protective films, insulating films for touch sensors, liquid crystals and organic films. It is suitably used for a TFT flattening film, a metal wiring protective film, an insulating film, an antireflection film, an antireflection film, an optical filter, an overcoat for a color filter, a column material, etc. for EL displays.
- hard coat films such as TFT gate insulating films, interlayer insulating films, and touch panel protective films, insulating films for touch sensors, liquid crystals and organic films. It is suitably used for a TFT flattening film, a metal wiring protective film, an insulating film, an antireflection film, an antireflection film, an optical filter, an overcoat for a color filter, a column material, etc. for EL displays.
- Substrate 2 Gate electrode 3: Gate insulating layer 4: Source / drain electrode 5: Source / drain electrode
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Photolithography (AREA)
- Polymerisation Methods In General (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
本発明は、薬品や高温下での処理を経てもその特性が劣化することなく維持され、高透明、高誘電率および低リーク電流において優れた性質を有する硬化膜を得ることが可能な、ネガ型感光性樹脂組成物を提供することを課題とする。その解決手段は、チタン、バリウム、ハフニウム、タンタル、タングステン、イットリウムおよびジルコニウムからなる群から選ばれる金属の金属酸化物粒子、(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂、(C)多官能(メタ)アクリロイル化合物および(D)光重合開始剤を含有する、感光性樹脂組成物である。
Description
本発明は、ネガ型感光性樹脂組成物に関するものである。
近年、ディスプレイ産業やタッチパネル産業の成長と共に、感光性透明材料の重要性が高まっており、液晶ディスプレイの低価格化に伴う製造プロセスの簡略化や、低価格材料への代替が進んでいる。例えば、TFT(Thin FILM Transistor(薄膜トランジスタ))の製造工程における種々の絶縁膜およびパッシベーション膜は、一般に、炭化珪素、窒化珪素、酸化アルミニウム、酸化タンタル又は酸化チタン等の絶縁性の高い無機材料をCVD法により成膜して製造している。しかしながらCVD法は高コストであることから、CVD法と比べて安価なフォトリソグラフィ法による製造が可能な、感光性有機絶縁材料の検討が盛んに行われている(特許文献1~3)。
また、光学部材用途として、チタニアやジルコニアといった金属酸化物と、シロキサンやアクリル樹脂とを複合して得られる透明絶縁膜も検討されている(特許文献4)。
しかしながら、従来の感光性有機絶縁材料は無機材料に比べて誘電率が低く、かつ絶縁性に劣るため、特に絶縁膜として用いる場合にトランジスタの立ち上がり電圧が高くなったり、リーク電流が大きくなったりと、ディスプレイの表示性能低下につながる問題が生じるのが現状であった。上記の金属酸化物と樹脂との複合材料であればこれら問題は改善されるものの、そのような複合材料は、製造工程中における薬品や高温下での処理への耐性が低く、劣化してしまうことが問題視されていた。
そこで本発明は、薬品や高温下での処理を経てもその特性が劣化することなく、性能が維持され、高透明、高誘電率および低リーク電流に優れた性質を有する硬化膜を得ることが可能な、ネガ型感光性樹脂組成物を提供することを課題とする。
そこで本発明者らは、鋭意検討をした結果、ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂をはじめとする成分からなる組成物が上記課題の解決に極めて有効であることを見出し、本発明を完成した。
すなわち、本発明は、以下の(1)~(6)に記載した感光性樹脂組成物、透明硬化膜および薄膜トランジスタ基板を提供する。
(1) (A)チタン、バリウム、ハフニウム、タンタル、タングステン、イットリウムおよびジルコニウムからなる群から選ばれる金属の金属酸化物粒子、(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂、(C)多官能(メタ)アクリロイル化合物および(D)光重合開始剤を含有する、ネガ型感光性樹脂組成物。
(2) 上記アルカリ可溶性ポリエステル樹脂は、下記一般式で表される化学構造を含有する、前記のネガ型感光性樹脂組成物。
(1) (A)チタン、バリウム、ハフニウム、タンタル、タングステン、イットリウムおよびジルコニウムからなる群から選ばれる金属の金属酸化物粒子、(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂、(C)多官能(メタ)アクリロイル化合物および(D)光重合開始剤を含有する、ネガ型感光性樹脂組成物。
(2) 上記アルカリ可溶性ポリエステル樹脂は、下記一般式で表される化学構造を含有する、前記のネガ型感光性樹脂組成物。
(R1およびR2はそれぞれ独立して、水素、炭素数1~12のアルキル基若しくはシクロアルキル基、炭素数6~20のアリール基若しくはそれらが置換された基、又は、R1およびR2が一緒になって、炭素数2~12のシクロアルキル基、炭素数5~12の芳香環若しくはそれらが置換された基を表す。R3およびR4はそれぞれ独立して、水素、炭素数2~12のアルキル基、炭素数6~20のアリール基又はそれらが置換された基を表す。nおよびmはそれぞれ独立して、0~10の整数を表す。)
(3) (E)4つ以上のアルコキシ基を有するアルコキシシラン又はポリシロキサンを含有する、上記いずれかのネガ型感光性樹脂組成物。
(4) 上記いずれかのネガ型感光性樹脂組成物より得られる、硬化膜。
(5) 上記の硬化膜を具備する、TFT基板。
(6) 上記いずれかのネガ型感光性樹脂組成物を塗布し、露光と現像を経てパターンを形成する工程を備える薄膜トランジスタ基板の製造方法。
(3) (E)4つ以上のアルコキシ基を有するアルコキシシラン又はポリシロキサンを含有する、上記いずれかのネガ型感光性樹脂組成物。
(4) 上記いずれかのネガ型感光性樹脂組成物より得られる、硬化膜。
(5) 上記の硬化膜を具備する、TFT基板。
(6) 上記いずれかのネガ型感光性樹脂組成物を塗布し、露光と現像を経てパターンを形成する工程を備える薄膜トランジスタ基板の製造方法。
本発明のネガ型感光性樹脂組成物によれば、薬品に浸漬しても基板との密着を損なわず、薬品の浸透による膜の特性劣化が起こさず、高い誘電率と絶縁性を有する透明な絶縁膜が得られる。さらに高い誘電率と絶縁性を有する透明な絶縁膜を有する薄膜トランジスタ基板を製造できる。
本発明のネガ型感光性樹脂組成物は、(A)チタン、バリウム、ハフニウム、タンタル、タングステン、イットリウムおよびジルコニウムからなる群から選ばれる金属の金属酸化物粒子、(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂、(C)多官能(メタ)アクリロイル化合物および(D)光重合開始剤を含有することを特徴とする。
本発明のネガ型感光性樹脂組成物は、(A)チタン、バリウム、ハフニウム、タンタル、タングステン、イットリウムおよびジルコニウムからなる群から選ばれる金属の金属酸化物粒子を含有する。これらの金属酸化物粒子は比誘電率(以下εrという場合がある)が20以上となることで共通する。ここで、この金属酸化物粒子は、上記金属の群に含まれる2種以上の金属を含む複合金属酸化物であってもよい。またこの金属酸化物粒子は、異なる組成の金属酸化物粒子の混合物であってもよい。金属酸化物の比誘電率は、金属酸化物の粉体をそのまま測定できる同軸プローブ法、粉体を加圧成形でペレット作成し、2つの電極で挟んで測定する平行板コンデンサ法などが挙げられる。これらの測定法は、インピーダンス・アナライザ(Agilent社製4294Aなど)やLCRメータ(Agilent社製4285Aなど)と専用の治具(Agilent社製85070Eまたは16451B/16453Aなど)を用いることで測定できる。
これらの(A)金属酸化物粒子を含有することにより、硬化したネガ型感光性樹脂組成物、すなわち硬化膜等の比誘電率および絶縁性が向上する。これらの(A)金属酸化物粒子としては、例えば、酸化チタン、チタン酸バリウム、硫酸バリウム、酸化バリウム、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化イットリウム又は酸化ジルコニウムが挙げられるが、硬化膜等の比誘電率を向上させるため、比誘電率(εr)が20以上である酸化チタン(εr=115)、酸化ジルコニウム(εr=30)、チタン酸バリウム(εr=400)又は酸化ハフニウム(εr=25)がより好ましい。また、ナノメートルレベルでの分散技術が進んでおり、市販品として入手容易であるため、酸化チタン又は酸化ジルコニウムがさらに好ましい。
(A)金属酸化物粒子の数平均粒子径としては、100nm以下が好ましく、さらに50nm以下、さらに30nm以下好ましい。粒子径が小さいと、硬化膜の透明度が向上し、さらに小さいと硬化膜等の均質性および絶縁性が向上する。数平均粒子径は1nm以上、さらに3nm以上が好ましい。ある大きさ以上であると、金属酸化物粒子の結晶構造が維持されて理論値通りの比誘電率が発現し、硬化膜等の比誘電率が向上する。
(A)金属酸化物粒子は、ネガ型感光性樹脂組成物中における分散性の向上等を目的として、表面修飾が施されていても構わない。表面修飾としては、例えば、酸化ケイ素による被覆や、アルコキシシリル基、イソシアネート基若しくはカルボキシル基を有する有機化合物である、表面修飾剤による被覆が挙げられる。上記の表面修飾剤は、紫外線照射によって(B)アルカリ可溶性ポリエステル樹脂又は(C)多官能(メタ)アクリロイル化合物と共有結合を形成させるため、重合性不飽和基を有することが好ましい。
本発明のネガ型感光性樹脂組成物中の(A)金属酸化物粒子の含有量は、硬化膜等の硬度および比誘電率を十分なものとするため、有機溶媒以外の全成分に対して10~90質量%であることが好ましい。
(A)金属酸化物粒子は適当な粒子の粉体を調達し、ビーズミル等の分散機を用いて粉砕又は分散することができる。市販品のナノ粒子粉体としては、例えば、T-BTO-020RF(チタン酸バリウム;戸田工業株式会社製)、UEP-100(酸化ジルコニウム;第一稀元素化学工業株式会社製)又はSTR-100N(酸化チタン;堺化学工業株式会社製)が挙げられる。
また、(A)金属酸化物粒子は、液中に分散した分散体としても入手することができる。酸化ケイ素-酸化チタン粒子としては、例えば、“オプトレイク”(登録商標)TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-544又は“オプトレイク”TR-550(いずれも日揮触媒化成工業(株)製)が挙げられる。酸化ジルコニウム粒子としては、例えば、“バイラール”登録商標Zr-C20(平均粒径=20nm;多木化学(株)製)、ZSL-10A(平均粒径=60-100nm;第一稀元素株式会社製)、“ナノユース”(登録商標)OZ-30M(平均粒径=7nm;日産化学工業(株)製)、SZR-M(堺化学(株)製)又はHXU-120JC(住友大阪セメント(株)製)が挙げられる。
本発明のネガ型感光性樹脂組成物は、(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂を含有する。(B)アルカリ可溶性ポリエステル樹脂を含有することにより、感光性樹脂組成物にネガ型感光性のパターン加工性を付与することができる。より具体的には、ネガ型感光性樹脂組成物が露光されると、(B)アルカリ可溶性ポリエステル樹脂と(C)多官能(メタ)アクリロイル化合物とがラジカル重合し、架橋したポリマーとなるため、その後の現像で非露光部を除去することにより、パターンを形成できる。また、露光後のUV硬化膜およびキュア後の熱硬化膜の耐薬品性が向上する。より具体的には、キュア前およびキュア後において、強酸性又は強アルカリ性の薬品にさらされる工程においても、比誘電率、絶縁性および密着性が損なわれることなく、硬化膜等を得ることができる。一般に、エステル基は高極性で親水性が高いため、加水分解等の分解反応を起こしやすい。したがって、アクリル樹脂やポリエステル樹脂からなる硬化膜等を酸やアルカリに浸漬すると、硬化膜等の内部でエステル結合が分解することに起因すると推測される、膜剥れ等が発生してしまう。(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂を含有することにより得られる効果の作用機序は明らかでないが、芳香環によるエステル基の分解性の低下と、ラジカル重合性基の重合による膜密度の向上とが、薬品の浸透による分解を抑制したものと考えられる。
本発明のネガ型感光性樹脂組成物中の(B)アルカリ可溶性ポリエステル樹脂の含有量は、有機溶媒以外の全成分に対して1~80質量%が好ましく、5~50質量%がより好ましい。含有量が1質量%以上であると、十分なアルカリ現像性が得られ、未露光部の残渣や地汚れが生じにくい。含有量が80質量%以下であると、現像時の膜剥れ等が生じにくい。本発明のネガ型感光性樹脂組成物中の(C)多官能(メタ)アクリロイル化合物の含有量は、硬化膜等の硬度を向上させるため、ネガ型感光性樹脂組成物全体に対して1~20質量%が好ましい。また、有機溶媒以外の全成分に対して5~50質量%であることが好ましく、10~40質量%であることがより好ましい。
アルカリ可溶性ポリエステルは23℃で0.1質量%以上の濃度のテトラメチルアンモニウムヒドロオキサイド(TMAH)水溶液に可溶であるものが好ましい。さらに1%質量%以上のTMAH水溶液に可溶であること、さらに2%以上のTMAH水溶液に可溶であることが好ましい。
本発明における(B)アルカリ可溶性ポリエステル樹脂の合成方法としては、合成が容易であり、副反応が少ないことから、(b1)多官能エポキシ化合物と(b2)多価カルボン酸化合物との重付加反応、又は、(b3)ポリオール化合物と(b4)二酸無水物との重付加反応、を経る方法が好ましい。(b3)ポリオール化合物としては、ラジカル重合性基および芳香環を導入し易いことから、(b1)多官能エポキシ化合物と(b5)ラジカル重合性基含有一塩基酸化合物との反応により得られたものが好ましい。
(b1)多官能エポキシ化合物と(b2)多価カルボン酸化合物との重付加反応を経る方法としては以下の方法が例示される。触媒の存在下、(b2)多価カルボン酸化合物を(b1)多官能エポキシ化合物に対して1.01~2当量加えて重付加させる。その反応によりエステル結合が生じる。その後、末端のカルボン酸部位に(b6)ラジカル重合性基含有エポキシ化合物を付加させる。生成する水酸基に(b7)酸無水物を付加させる。別の方法としては、触媒の存在下、(b1)多官能エポキシ化合物を(b2)多価カルボン酸化合物に対して1.01~2当量加えて重付加させる。その反応によりエステル結合が生じる。その後、末端のエポキシ部位に(b5)ラジカル重合性基含有一塩基酸化合物を付加させる。生成する水酸基に(b7)酸無水物を付加させる。
(b3)ポリオール化合物と(b4)二酸無水物との重付加反応を経る方法としては、以下の方法が例示される。触媒の存在下、(b3)ポリオール化合物と(b4)二酸無水物とを重合させる。その反応によりエステル結合が生じる。その後、生成するカルボキシル基の一部に(b6)ラジカル重合性基含有エポキシ化合物を付加させる。なお、(b3)ポリオール化合物がラジカル重合性基を有する場合には、ラジカル重合性基含有エポキシ化合物を付加させなくとも構わない。
重付加反応および付加反応に用いる触媒としては、例えば、テトラブチルアンモニウムアセテート等のアンモニウム系触媒;2,4,6-トリス(ジメチルアミノメチル)フェノール若しくはジメチルベンジルアミン等のアミノ系触媒;トリフェニルホスフィン等のリン系触媒;およびアセチルアセトネートクロム若しくは塩化クロム等のクロム系触媒等が挙げられる。
(b1)多官能エポキシ化合物としては、硬化膜等の絶縁性および耐薬品性を向上させるため、下記一般式(1)で表される化合物が好ましい。
(R1およびR2はそれぞれ独立して、水素、炭素数1~12のアルキル基若しくはシクロアルキル基、炭素数6~20のアリール基若しくはそれらが置換された基を表すか、又は、R1およびR2が一緒になって、炭素数2~12(好ましくは5~12)のシクロアルキル基、炭素数5~12の芳香環もしくはそれらが置換された基を表す。R3およびR4はそれぞれ独立して、水素、炭素数2~12のアルキル基、炭素数6~20のアリール基もしくはそれらが置換された基を表す。nおよびmはそれぞれ独立して、0~10の整数を表す。)
R1、R2、R3およびR4としては、例えば、メチル基、エチル基、プロピル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、o-トリル基若しくはビフェニル基又は以下に示す置換基が挙げられる。
R1、R2、R3およびR4としては、例えば、メチル基、エチル基、プロピル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、o-トリル基若しくはビフェニル基又は以下に示す置換基が挙げられる。
R1およびR2が一緒になって形成した環状構造としては、例えば、以下に示す置換基が挙げられるが、環状構造は5~7員環が好ましい。
(ここで、式中の*の炭素は、式(1)において、R1およびR2が結合していた炭素を表す。)
(b1)多官能エポキシ化合物としては、例えば、以下に示す化合物が挙げられる。
(b1)多官能エポキシ化合物としては、例えば、以下に示す化合物が挙げられる。
(b2)多価カルボン酸化合物としては、例えば、コハク酸、マレイン酸、フマル酸、イタコン酸、フタル酸、テレフタル酸、イソフタル酸、トリメリット酸、ピロメリット酸、2,2’-ビフェニルジカルボン酸又は4,4’-ビフェニルジカルボン酸が挙げられるが、硬化膜等の耐薬品性および絶縁性を向上させるため、フタル酸、テレフタル酸、イソフタル酸、トリメリット酸、ピロメリット酸、2,2’-ビフェニルジカルボン酸又は4,4’-ビフェニルジカルボン酸が好ましい。
(b3)ポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、グリセリン、トリメチロールプロパン若しくはペンタエリスリトール等の脂肪族アルコール化合物、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、(b1)多官能エポキシ化合物と(b5)ラジカル重合性基含有一塩基酸化合物との反応により得られる化合物又は下記一般式(2)で表されるビスフェノール化合物と(b6)ラジカル重合性基含有エポキシ化合物との反応により得られる化合物等の芳香族アルコール化合物が挙げられる。なかでも芳香族アルコール化合物が好ましい。なお、一般式(2)におけるR1、R2、R3およびR4は、一般式(1)と同じである。
(b4)二酸無水物としては、例えば、ピロメリット酸二酸無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二酸無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二酸無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二酸無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二酸無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二酸無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二酸無水物、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン二酸無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二酸無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二酸無水物、ビス(3,4-ジカルボキシフェニル)メタン二酸無水物、ビス(2,3-ジカルボキシフェニル)メタン二酸無水物、ビス(3,4-ジカルボキシフェニル)スルホン二酸無水物、ビス(3,4-ジカルボキシフェニル)エーテル二酸無水物、1,2,5,6-ナフタレンテトラカルボン酸二酸無水物、2,3,6,7-ナフタレンテトラカルボン酸二酸無水物、2,3,5,6-ピリジンテトラカルボン酸二酸無水物若しくは3,4,9,10-ペリレンテトラカルボン酸二酸無水物等の芳香族テトラカルボン酸二酸無水物、ブタンテトラカルボン酸二酸無水物、シクロブタンテトラカルボン酸二酸無水物、1,2,3,4-シクロペンタンテトラカルボン酸二酸無水物、シクロヘキサンテトラカルボン酸二酸無水物、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸二酸無水物、ビシクロ[3.3.1.]テトラカルボン酸二酸無水物、ビシクロ[3.1.1.]ヘプト-2-エンテトラカルボン酸二酸無水物、ビシクロ[2.2.2.]オクタンテトラカルボン酸二酸無水物又はアダマタンテトラカルボン酸二酸無水物等の脂肪族テトラカルボン酸二酸無水物が挙げられるが、硬化膜等の耐薬品性および絶縁性を向上させるためには、ピロメリット酸二酸無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二酸無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二酸無水物又は2,2’,3,3’-ビフェニルテトラカルボン酸二酸無水物が好ましく、硬化膜等の透明性を向上させるためには、シクロブタンテトラカルボン酸二酸無水物、1,2,3,4-シクロペンタンテトラカルボン酸二酸無水物又はシクロヘキサンテトラカルボン酸二酸無水物が好ましい。
(b5)ラジカル重合性基含有一塩基酸化合物としては、例えば、(メタ)アクリル酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)、テトラヒドロフタル酸モノ(2-(メタ)アクリロイルオキシエチル)又はp-ヒドロキシスチレン等が挙げられる。
(b6)ラジカル重合性基含有エポキシ化合物としては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸α-エチルグリシジル、(メタ)アクリル酸α-n-プロピルグリシジル、(メタ)アクリル酸α-n-ブチルグリシジル、(メタ)アクリル酸3,4-エポキシブチル、(メタ)アクリル酸3,4-エポキシヘプチル、(メタ)アクリル酸α-エチル-6,7-エポキシヘプチル、ブチルビニルエーテル、ブチルアリルエーテル、2-ヒドロキシエチルビニルエーテル、2-ヒドロキシエチルアリルエーテル、シクロヘキサンビニルエーテル、シクロヘキサンアリルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシブチルアリルエーテル、アリルグリシジルエーテル、ビニルグリシジルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル、2,3-ジグリシジルオキシメチルスチレン、2,4-ジグリシジルオキシメチルスチレン、2,5-ジグリシジルオキシメチルスチレン、2,6-ジグリシジルオキシメチルスチレン、2,3,4-トリグリシジルオキシメチルスチレン、2,3,5-トリグリシジルオキシメチルスチレン、2,3,6-トリグリシジルオキシメチルスチレン、3,4,5-トリグリシジルオキシメチルスチレン又は2,4,6-トリグリシジルオキシメチルスチレンが挙げられる。
(b7)酸無水物としては、例えば、コハク酸無水物、マレイン酸無水物、イタコン酸無水物、フタル酸無水物、トリメリット酸無水物、ピロメリット酸一無水物、2,3-ビフェニルジカルボン酸無水物、3,4-ビフェニルジカルボン酸無水物、ヘキサヒドロフタル酸無水物、グルタル酸無水物、3-メチルフタル酸無水物、ノルボルネンジカルボン酸無水物、シクロヘキセンジカルボン酸無水物又は3-トリメトキシシリルプロピルコハク酸無水物が挙げられる。
本発明のネガ型感光性樹脂組成物は、(C)多官能(メタ)アクリロイル化合物、すなわち、分子内に2以上のアクリロイル基および/又はメタアクリロイル基を有する化合物を含有する。この(C)多官能(メタ)アクリロイル化合物を含有することにより、光照射によってネガ型感光性樹脂組成物を硬化させることができる。なお本発明では、(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂にも(C)多官能(メタ)アクリロイル化合物にも該当する物質は(B)として取り扱うことにする。
分子内に2つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2,4-ジメチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオール(メタ)アクリレート、エトキシ化シクロヘキサンメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングルコールジ(メタ)アクリレート、トリエチレングルコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレート、ジプロピレングルコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2-エチル-2-ブチル-ブタンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、オリゴプロピレングリコールジ(メタ)アクリレート、2-エチル-2-ブチル-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ビス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3-メチルフェニル]フルオレン、(2-アクリロイルオキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレン又は9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレンが挙げられる。
分子内に3つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスルトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、グリセリントリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、イソシアヌル酸アルキレンオキサイド変性トリ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ヒドロキシピバルアルデヒド変性ジメチロールプロパントリ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート又はエトキシ化グリセリントリアクリレートが挙げられる。
分子内に4つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート又はエトキシ化ペンタエリスリトールテトラ(メタ)アクリレートが挙げられる。
分子内に5つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、ソルビトールペンタ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
分子内に6つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、フォスファゼンのアルキレンオキサイド変性ヘキサ(メタ)アクリレート又はカプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。
分子内に7つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、トリペンタエリスリトールヘプタアクリレートが挙げられる。
分子内に8つの(メタ)アクリロイル基を有する重合性化合物としては、例えば、トリペンタエリスリトールオクタアクリレートが挙げられる。
市販品の(C)多官能(メタ)アクリロイル化合物としては、例えば、“アロニックス”(登録商標)M-400、M-404、M-408、M-450、M-305、M-309、M-310、M-315、M-320、M-350、M-360、M-208、M-510、M-520、M-220、M-225、M-233、M-240、M-245、M-260、M-270、M-1100、M-1200、M-1210、M-1310、M-1600、M-221、M-203、TO-924、TO-1270、TO-1231、TO-595、TO-756、TO-1343、TO-902、TO-904、TO-905若しくはTO-1330(いずれも東亞合成株式会社製)、“KAYARAD”(登録商標)D-310、D-330、DPHA、DPCA-20、DPCA-30、DPCA-60、DPCA-120、DN-0075、DN-2475、SR-295、SR-355、SR-399E、SR-494、SR-9041、SR-368、SR-415、SR-444、SR-454、SR-492、SR-499、SR-502、SR-9020、SR-9035、SR-111、SR-212、SR-213、SR-230、SR-259、SR-268、SR-272、SR-344、SR-349、SR-601、SR-602、SR-610、SR-9003、PET-30、T-1420、GPO-303、TC-120S、HDDA、NPGDA、TPGDA、PEG400DA、MANDA、HX-220、HX-620、R-551、R-712、R-167、R-526、R-551、R-712、R-604、R-684、TMPTA、THE-330、TPA-320、TPA-330、KSHDDA、KS-TPGDA若しくはKS-TMPTA(いずれも日本化薬株式会社製)、ライトアクリレート PE-4A、DPE-6A若しくはDTMP-4A(共栄社化学株式会社製)、ビスコート#802(大阪有機化学工業株式会社製;トリペンタエリスリトールオクタアクリレートおよびトリペンタエリスリトールヘプタアクリレートの混合物)が挙げられる。
本発明のネガ型感光性樹脂組成物中の(C)多官能(メタ)アクリロイル化合物の含有量は、硬化膜等の硬度を向上させるため、ネガ型感光性樹脂組成物全体に対して1~20質量%が好ましい。また、有機溶媒以外の全成分に対して5~50質量%であることが好ましく、10~40質量%であることがより好ましい。
本発明のネガ型感光性樹脂組成物は、(D)光重合開始剤を含有することを必要とする。(D)光重合開始剤は、光(紫外線等の短波長の電磁波を含む)又は電子線により分解および/又は反応し、ラジカルを発生させるものが好ましい。そのような光重合開始剤としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイド、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート、p-ジエチルアミノ安息香酸エチル、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロフォスフェイト(1-)、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、4-ベンゾイル-4-メチルフェニルケトン、ジベンジルケトン、フルオレノン、2,3-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニル-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、ベンジルメトキシエチルアセタール、アントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、ナフタレンスルフォニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイル又はエオシン若しくはメチレンブルー等の光還元性の色素とアスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられる。なかでも硬化膜等の硬度を向上させるため、α-アミノアルキルフェノン化合物、アシルホスフィンオキサイド化合物、オキシムエステル化合物、アミノ基を有するベンゾフェノン化合物又はアミノ基を有する安息香酸エステル化合物が好ましい。
α-アミノアルキルフェノン化合物としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン又は2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1が挙げられる。アシルホスフィンオキサイド化合物としては、例えば、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド又はビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドが挙げられる。オキシムエステル化合物としては例えば、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム又はエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)が挙げられる。アミノ基を有するベンゾフェノン化合物としては、例えば、4,4-ビス(ジメチルアミノ)ベンゾフェノン又は4,4-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。アミノ基を有する安息香酸エステル化合物としては、例えば、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート又はp-ジエチルアミノ安息香酸エチルが挙げられる。
本発明のネガ型感光性樹脂組成物中の(D)光重合開始剤の含有量は、硬化膜の硬度を十分なものとし、かつ残留した光重合開始剤の溶出を防いで耐溶媒性を向上させるため、有機溶媒以外の全成分に対して0.1~20質量部であることが好ましい。
本発明のネガ型感光性樹脂組成物は、(E)4つ以上のアルコキシ基を有するアルコキシシラン又はポリシロキサンを含有することが好ましい。これらのシラン化合物を含有することにより、硬化膜等の耐薬品性および金属基板への密着性が向上する。この効果は、アルコキシシリル基と基板との相互作用によるものではなく、金属酸化物粒子の表面のヒドロキシル基と、アルコキシシリル基が反応することによる架橋構造の構築によるものと考えられる。
4つ以上のアルコキシ基を有するアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシラン、テトラメトキシジシロキサン、テトラエトキシジシロキサン、ビス(トリエトキシシリルプロピル)テトラスルフィド、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレートが挙げられる。硬化膜の耐薬品性の向上の観点から、嵩高い9官能性シランと立体障害の少ない4官能性シランとを相互に反応させるようにするため、4官能性シランと9官能性シランとの混合物が好ましい。
ポリシロキサンは2官能あるいは3官能のアルコキシシラン化合物を共加水分解物縮合、すなわち、加水分解および部分縮合させることにより得ることができる。ポリシロキサンを構成するアルコキシシラン化合物としては、例えば、ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジヒドロキシジフェニルシラン、ジメトキシ(メチル)(フェニル)シラン、ジエトキシ(メチル)(フェニル)シラン、ジメトキシ(メチル)(フェネチル)シラン、ジシクロペンチルジメトキシシラン又はシクロヘキシルジメトキシ(メチル)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン又は3-アクリロキシプロピルトリエトキシシラン、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸、3-トリメトキシシリルエチル無水コハク酸、3-トリメトキシシリルブチル無水コハク酸、3-グリシジロキシプロピルトリメトキシシラン、3-グリシジロキシプロピルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、フェネチルトリメトキシシラン、ナフチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、フェネチルトリエトキシシラン、ナフチルトリエトキシシラン、テトラメトキシシラン又はテトラエトキシシランが挙げられる。
本発明のネガ型感光性樹脂組成物は、例えば光に対する感度を調節するため、重合禁止剤を含有しても構わない。重合禁止剤としては、例えば、フェノール、ハイドロキノン、p-メトキシフェノール、ベンゾキノン、メトキシベンゾキノン、1,2-ナフトキノン、クレゾール、p-t-ブチルカテコール等のカテコール類、アルキルフェノール類、アルキルビスフェノール類、フェノチアジン、2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチルフェノール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、2,2’メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’ブチリデンビス(3-メチル-6-t-ブチルフェノール)、2,6-ビス(2’-ヒドロキシ-3’-t-ブチル-5’-メチルベンジル)4-メチルフェノール、1,1,3-トリス(2’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3’-5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、トリエチレングリコールビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジメチル-6-t-ブチルフェノール、2-t-ブチル-4-メトキシフェノール等のフェノール類、6-t-ブチル-m-クレゾール、2,6-ジ-t-ブチル-p-クレゾール、2-t-ブチルハイドロキノン、メチレンブルー、ジメチルジチオカルバミン酸銅塩、ジエチルジチオカルバミン酸銅塩、ジプロピルジチオカルバミン酸銅塩、ジブチルジチオカルバミン酸銅塩、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール若しくはホスファイト類これら化合物と空気等の酸素含有ガスとの併用が挙げられる。本発明のネガ型感光性樹脂組成物中の重合禁止剤含有量は、ネガ型感光性樹脂組成物全体に対して0.000005~0.2質量%であることが好ましく、0.00005~0.1%であることがより好ましい。また、有機溶媒以外の全成分に対して0.0001~0.5質量%が好ましく、0.001~0.2質量%がより好ましい。
本発明のネガ型感光性樹脂組成物は、現像後の解像度を向上させるため、紫外線吸収剤を含有しても構わない。紫外線吸収剤としては、硬化膜等の透明性および非着色性を向上させるため、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物又はトリアジン系化合物が好ましい。
ベンゾトリアゾール系化合物としては、例えば、2-(2Hベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール、2-(2Hベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール又は2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールが挙げられる。ベンゾフェノン系化合物としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノンが挙げられる。トリアジン系化合物の紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールが挙げられる。
本発明のネガ型感光性樹脂組成物は溶媒を含有しても構わない。溶媒としては組成物の各成分を均一に溶解するため、アルコール性化合物、エステル系化合物又はエーテル系化合物が好ましい。溶媒としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ダイアセトンアルコール、エチレングリコールモノノルマルブチルエーテル、酢酸2-エトキシエチル、1-メトキシプロピル-2-アセテート、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブタノールアセテート、3-メトキシブチルアセテート、1,3-ブチレングリコルジアセテート,エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、乳酸エチル、乳酸ブチル、アセト酢酸エチル又はγ―ブチロラクトンが挙げられる。
本発明のネガ型感光性樹脂組成物は、界面活性剤を含有しても構わない。界面活性剤としては、例えば、シリコーン系界面活性剤、オルガノポリシロキサン系等のケイ素系界面活性剤、フッ素系界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウリレート若しくはポリエチレングリコールジステアレート等のノニオン系界面活性剤ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤又はアクリル系若しくはメタクリル系の重合物からなる界面活性剤が挙げられる。市販品の界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475若しくはF477(いずれも大日本インキ化学工業(株)製)又はNBX-15若しくはFTX-218(いずれも(株)ネオス製)等のフッ素系界面活性剤、BYK-333、BYK-301、BYK-331、BYK-345若しくはBYK-307(いずれもビックケミー・ジャパン(株)製)等のシリコーン系界面活性剤が挙げられる。
本発明のネガ型感光性樹脂組成物は、必要に応じて、溶解抑止剤、安定剤又は消泡剤等の添加剤を含有しても構わない。
本発明のネガ型感光性樹脂組成物の固形分濃度は、塗布方法等に応じて適宜決定すればよいが、固形分濃度を1~50質量%以下とすることが一般的である。
本発明の(I)ネガ型感光性樹脂組成物の代表的な製造方法については以下の方法が例示される。(A)金属酸化物粒子の分散液を秤量し、そこに必要に応じて溶媒を加えて撹拌する。その混合物に(D)光重合開始剤と他の添加剤を適当な溶媒に加え、撹拌して溶解させる。その後、(B)アルカリ可溶性ポリエステル樹脂および(C)多官能(メタ)アクリロイル化合物を加えさらに20分~3時間撹拌する。必要に応じて異物を除去するため、得られた溶液をろ過し、ネガ型感光性樹脂組成物が得られる。
本発明のネガ型感光性樹脂組成物を用いた硬化膜の形成方法について、例を挙げて説明する。
本発明のネガ型感光性樹脂組成物を、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング又はスリットコーティング等の公知の方法によって下地基板上に塗布し、ホットプレート又はオーブン等の加熱装置でプリベークし、膜を形成する。プリベークは、50~150℃で30秒~30分間行い、プリベーク後の膜厚は、0.1~15μmとすることが好ましい。
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(以下、PLA)等の露光機を用いて、10~4000J/m2程度(波長365nm露光量換算)の光を所望のマスクを介して又は介さずに照射する。露光光源に制限はなく、i線、g線若しくはh線等の紫外線、KrF(波長248nm)レーザー又はArF(波長193nm)レーザー等を用いることができる。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、150~450℃で1時間程度加熱する露光後ベークを行っても構わない。
パターニング露光後、現像により非露光部が溶解し、ネガ型パターンを得ることができる。現像方法としては、シャワー、ディッピング又はパドル等の方法で、現像液に5秒~10分間浸漬する方法が好ましい。現像液としては、例えば、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩若しくはホウ酸塩等の無機アルカリ;2-ジエチルアミノエタノール、モノエタノールアミン若しくはジエタノールアミン等のアミン類;およびテトラメチルアンモニウムヒドロキサイド若しくはコリン等の4級アンモニウム塩を含む水溶液が挙げられる。現像後は、膜を水でリンスすることが好ましく、続いて50~150℃で乾燥ベークを行ってもよい。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、120~280℃で1時間程度熱硬化することにより、硬化膜が得られる。
得られる硬化膜の膜厚は、0.1~10μmが好ましい。膜厚0.3μmにおける波長400nmの光の透過率は95%以上、リーク電流は10-6A/cm2以下、比誘電率は6.0以上であることが好ましい。なお、ここで透過率は、波長400nmにおける透過率をいう。
本発明のネガ型感光性樹脂組成物を硬化して得られる硬化膜は、タッチパネル用保護膜、各種ハードコート材、TFT用平坦化膜、カラーフィルター用オーバーコート、反射防止フィルム、パッシベーション膜等の各種保護膜および光学フィルター、タッチパネル用絶縁膜、TFT用絶縁膜、カラーフィルター用フォトスペーサー、TFT用ゲート絶縁膜等に用いることができるが、高い比誘電率、絶縁性、耐薬品性および解像度を有することから、TFT用ゲート絶縁膜として特に好適に用いることができる。
以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。
用いた溶媒の略記は以下のとおりである。
DAA : ダイアセトンアルコール
PGMEA : プロピレングリコールモノメチルエーテルアセテート
THFA : テトラヒドロフルフリルアルコール
MEK : メチルエチルケトン
TMAH : テトラメチルアンモニウムヒドロオキサイド
また、金属酸化物粒子として、(A1)ジルコニアナノ粒子(SZR-K;堺化学工業株式会社製、εr=30)、チタニアナノ粒子(“オプトレイク”TR-550;触媒化成株式会社製、εr=115)およびチタン酸バリウムナノ粒子(T-BTO-020RF;戸田工業(株)製;平均1次粒子径20nm、εr=400)を用いた。また、表1に示す配合の金属酸化物粒子の分散体(A2~A6)を調整した。
DAA : ダイアセトンアルコール
PGMEA : プロピレングリコールモノメチルエーテルアセテート
THFA : テトラヒドロフルフリルアルコール
MEK : メチルエチルケトン
TMAH : テトラメチルアンモニウムヒドロオキサイド
また、金属酸化物粒子として、(A1)ジルコニアナノ粒子(SZR-K;堺化学工業株式会社製、εr=30)、チタニアナノ粒子(“オプトレイク”TR-550;触媒化成株式会社製、εr=115)およびチタン酸バリウムナノ粒子(T-BTO-020RF;戸田工業(株)製;平均1次粒子径20nm、εr=400)を用いた。また、表1に示す配合の金属酸化物粒子の分散体(A2~A6)を調整した。
<合成例1> ジルコニア分散体(A2)の調整
113gのDAA、1.36gのメチルトリメトキシシラン(KBM-13;信越化学製;以下、Me)、3.70gのエポキシシクロヘキシルプロピルトリメトキシシラン(KBM-303;信越化学製;以下、Epo)、4.69gのアクリロイルプロピルトリメトキシシラン(KBM-5103;信越化学製;以下、Ac)、0.99gのフェニルトリメトキシシラン(KBM-103(商品名);信越化学製;以下、Ph)、0.021gのリン酸および2.70gの精製水、を仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、138gの(A1)ジルコニアナノ粒子を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に反応を止めた。反応終了後、フラスコを氷冷して常温まで冷まし、陰イオン交換樹脂を加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾ジルコニアゾル(A2)を得た。
113gのDAA、1.36gのメチルトリメトキシシラン(KBM-13;信越化学製;以下、Me)、3.70gのエポキシシクロヘキシルプロピルトリメトキシシラン(KBM-303;信越化学製;以下、Epo)、4.69gのアクリロイルプロピルトリメトキシシラン(KBM-5103;信越化学製;以下、Ac)、0.99gのフェニルトリメトキシシラン(KBM-103(商品名);信越化学製;以下、Ph)、0.021gのリン酸および2.70gの精製水、を仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、138gの(A1)ジルコニアナノ粒子を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に反応を止めた。反応終了後、フラスコを氷冷して常温まで冷まし、陰イオン交換樹脂を加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾ジルコニアゾル(A2)を得た。
<合成例2> 酸化チタンの分散体(A3)の調整
14.3gのメタノール、1.36gのMe、3.54gのEpo、4.69gのAc、0.99gのPh、リン酸0.021gおよび精製水2.70gを仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、197gの“オプトレイク”TR-550と111gのDAAとの混合物を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰および陽イオン交換樹脂をそれぞれ加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタニアゾル(A3)を得た。
14.3gのメタノール、1.36gのMe、3.54gのEpo、4.69gのAc、0.99gのPh、リン酸0.021gおよび精製水2.70gを仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、197gの“オプトレイク”TR-550と111gのDAAとの混合物を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰および陽イオン交換樹脂をそれぞれ加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタニアゾル(A3)を得た。
<合成例3> 酸化チタンの分散体(A4)の調整
14.3gのメタノール、2.04gのMe、3.54gのEpo、4.69gのAc、リン酸0.021gおよび精製水2.70gを仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、197g“オプトレイク”TR-550と111gのDAAとの混合物を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰および陽イオン交換樹脂をそれぞれ加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタニアゾル(A4)を得た。
14.3gのメタノール、2.04gのMe、3.54gのEpo、4.69gのAc、リン酸0.021gおよび精製水2.70gを仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、197g“オプトレイク”TR-550と111gのDAAとの混合物を約30分間かけて滴下した。滴下終了から1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰および陽イオン交換樹脂をそれぞれ加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタニアゾル(A4)を得た。
<合成例4> チタン酸バリウム分散体(A5)の調整
340gのTHFA、5gの2-アクリロイロキシエチル-フタル酸(HOA-MPL;共栄社化学製)および97gのチタン酸バリウム粒子(T-BTO-020RF;戸田工業(株)製;平均1次粒子径20nm)を混合した。次に、ビーズミル(ウルトラアペックスミルUAM-015;寿工業(株)製)のベッセル内に400gのジルコニアビーズ((株)ニッカトー製;YTZボール;寸法φ0.05mm)を充填し、ローターを回転させながら、上記混合液をベッセル内に送液、循環させて無機粒子の分散を行った。ローターの周速を9.5m/sとして2時間分散し、チタン酸バリウムTHFAゾルを得た。
340gのTHFA、5gの2-アクリロイロキシエチル-フタル酸(HOA-MPL;共栄社化学製)および97gのチタン酸バリウム粒子(T-BTO-020RF;戸田工業(株)製;平均1次粒子径20nm)を混合した。次に、ビーズミル(ウルトラアペックスミルUAM-015;寿工業(株)製)のベッセル内に400gのジルコニアビーズ((株)ニッカトー製;YTZボール;寸法φ0.05mm)を充填し、ローターを回転させながら、上記混合液をベッセル内に送液、循環させて無機粒子の分散を行った。ローターの周速を9.5m/sとして2時間分散し、チタン酸バリウムTHFAゾルを得た。
131gの上記のチタン酸バリウムゾル、22gのTHFA、14.3gのメタノール、1.36gのMe、3.54gのEpo、Ac4.69gのAc、0.99gのPh、リン酸0.021gおよび精製水2.70gをフラスコ仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し、1時間撹拌した。1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰イオン交換樹脂を加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタン酸バリウムゾル(A5)を得た。
<合成例5> チタン酸バリウム分散体(A6)の調整
340gのTHFA、5gの2-アクリロイロキシエチル-フタル酸、97gのチタン酸バリウム粒子を混合した。次に、ビーズミルのベッセル内に400gのジルコニアビーズを充填し、ローターを回転させながら、上記混合液をベッセル内に送液、循環させて無機粒子の分散を行った。ローターの周速を9.5m/sとして2時間分散し、チタン酸バリウムTHFAゾルを得た。
340gのTHFA、5gの2-アクリロイロキシエチル-フタル酸、97gのチタン酸バリウム粒子を混合した。次に、ビーズミルのベッセル内に400gのジルコニアビーズを充填し、ローターを回転させながら、上記混合液をベッセル内に送液、循環させて無機粒子の分散を行った。ローターの周速を9.5m/sとして2時間分散し、チタン酸バリウムTHFAゾルを得た。
131gの上記のチタン酸バリウムゾル、22gのTHFA、14.3gのメタノール、2.04gのMe、3.54gのEpo、4.69gのAc、リン酸0.021gおよび精製水2.70gをフラスコに仕込み、オイルバス中40℃で1時間撹拌した。次に、オイルバスの温度を70℃に設定し約1時間撹拌した。1時間後、オイルバスの温度を120℃に設定し、フラスコ内の温度が100℃に到達してから3時間撹拌した後に加熱を止めて反応を終了した。反応終了後、フラスコを氷冷して常温まで冷まし、陰イオン交換樹脂を加えて10時間撹拌した。最後に、イオン交換樹脂をろ過して取り除き、シラン修飾チタン酸バリウムゾル(A6)を得た。
表2に示すポリエステル樹脂溶液(B1~B7)を以下に示す方法で調製した。
<合成例6> ポリエステル樹脂(B1)の合成
264gのPGMEA、68gのエチレングリコール(以下、EG)、296gのビフェニルテトラカルボン酸二無水物(以下、BPTCD)および1.7gのテトラブチルアンモニウムアセテート(以下、TBAA)をフラスコに仕込み、120℃で5時間撹拌し、さらに、272gのグリシジルメタクリレート(30質量%PGMEA溶液)および2gのtert-ブチルカテコール2gを加え、120℃で6時間撹拌した。室温まで冷却した後、215gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B1を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=8300であった。
264gのPGMEA、68gのエチレングリコール(以下、EG)、296gのビフェニルテトラカルボン酸二無水物(以下、BPTCD)および1.7gのテトラブチルアンモニウムアセテート(以下、TBAA)をフラスコに仕込み、120℃で5時間撹拌し、さらに、272gのグリシジルメタクリレート(30質量%PGMEA溶液)および2gのtert-ブチルカテコール2gを加え、120℃で6時間撹拌した。室温まで冷却した後、215gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B1を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=8300であった。
<合成例7> ポリエステル樹脂溶液(B2)の合成
195gのPGMEA、92gのビフェノール(以下、BP)、142gのグリシジルメタクリレート(以下、GMA)、1.6gのTBAAおよび2gのtert-ブチルカテコールを仕込み、120℃で6時間撹拌した。そこへ291gのPGMEA、296gのBPTCDおよび0.5gTBAAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、264gのPGMEA溶液としてPGMEAを加えて、ポリエステル樹脂B2を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5800であった。
195gのPGMEA、92gのビフェノール(以下、BP)、142gのグリシジルメタクリレート(以下、GMA)、1.6gのTBAAおよび2gのtert-ブチルカテコールを仕込み、120℃で6時間撹拌した。そこへ291gのPGMEA、296gのBPTCDおよび0.5gTBAAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、264gのPGMEA溶液としてPGMEAを加えて、ポリエステル樹脂B2を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5800であった。
<合成例8> ポリエステル樹脂溶液(B3)の合成
491gのPGMEA、175gの9,9-ビス(4-ヒドロキシフェニル)フルオレン(以下、BPFL)、142gのGMA、1.8gのTBAAおよび2gのtert-ブチルカテコールをフラスコに仕込み、120℃で8時間撹拌した。そこへ210gのPGMEA、220gのピロメリット酸ニ無水物(以下、BTCD)および0.6gのTBAAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、PGMEA171gを加えて、PGMEA溶液としてポリエステル樹脂B2を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=7600であった。
491gのPGMEA、175gの9,9-ビス(4-ヒドロキシフェニル)フルオレン(以下、BPFL)、142gのGMA、1.8gのTBAAおよび2gのtert-ブチルカテコールをフラスコに仕込み、120℃で8時間撹拌した。そこへ210gのPGMEA、220gのピロメリット酸ニ無水物(以下、BTCD)および0.6gのTBAAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、PGMEA171gを加えて、PGMEA溶液としてポリエステル樹脂B2を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=7600であった。
<合成例9> ポリエステル樹脂溶液(B4)の合成
171gのビスフェノールAグリシジルエーテル(以下、BPPGG)、71gのアクリル酸(以下、AcA)、1.6gのTBAA、1.3gのtert-ブチルカテコールおよび342gのPGMEAを仕込み、120℃で9時間撹拌した。そこへ174gのBPTCDおよび165gのPGMEAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、242gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B4を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=6200であった。
171gのビスフェノールAグリシジルエーテル(以下、BPPGG)、71gのアクリル酸(以下、AcA)、1.6gのTBAA、1.3gのtert-ブチルカテコールおよび342gのPGMEAを仕込み、120℃で9時間撹拌した。そこへ174gのBPTCDおよび165gのPGMEAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、242gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B4を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=6200であった。
<合成例10> ポリエステル樹脂溶液(B5)の合成
461gの9,9-ビス(4-グリシジルオキシフェニル)フルオレン(オグソールPG100;大阪ガスケミカル社製)、72gのAcA、1.6gのテトラブチルアンモニウムアセテート、1.3gの2,6-ジ-tert-ブチルカテコールおよび542gのPGMEAをフラスコに仕込み、120℃で9時間撹拌した。そこへ174gのBPTCDおよび265gのPGMEAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、253gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B4を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5700であった。
461gの9,9-ビス(4-グリシジルオキシフェニル)フルオレン(オグソールPG100;大阪ガスケミカル社製)、72gのAcA、1.6gのテトラブチルアンモニウムアセテート、1.3gの2,6-ジ-tert-ブチルカテコールおよび542gのPGMEAをフラスコに仕込み、120℃で9時間撹拌した。そこへ174gのBPTCDおよび265gのPGMEAを仕込み、120℃で5時間撹拌した。室温まで冷却した後、253gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B4を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5700であった。
<合成例11> ポリエステル樹脂溶液(B6)の合成
153gの1,1-ビス(4-(2,3-エポキシプロピルオキシ)フェニル)-3-フェニルインダン(以下、BEOPI)、33gのイソフタル酸(以下、IFA)、1.1gのTBAAおよび244gのPGMEAを仕込み、110℃で4時間撹拌した。室温まで冷却した後、43gのAcAおよび1.0gのTBAAおよび2.0gのtert-ブチルカテコールを加えて120℃で5時間撹拌した。室温まで冷却した後、123gのヘキサヒドロフタル酸無水物(以下、HHFD)および1.9gのTBAAを加えて110℃で3時間撹拌した。108gのGMAを加えて120℃で5時間撹拌した。室温まで冷却した後、265gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B6を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5000であった。
153gの1,1-ビス(4-(2,3-エポキシプロピルオキシ)フェニル)-3-フェニルインダン(以下、BEOPI)、33gのイソフタル酸(以下、IFA)、1.1gのTBAAおよび244gのPGMEAを仕込み、110℃で4時間撹拌した。室温まで冷却した後、43gのAcAおよび1.0gのTBAAおよび2.0gのtert-ブチルカテコールを加えて120℃で5時間撹拌した。室温まで冷却した後、123gのヘキサヒドロフタル酸無水物(以下、HHFD)および1.9gのTBAAを加えて110℃で3時間撹拌した。108gのGMAを加えて120℃で5時間撹拌した。室温まで冷却した後、265gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂B6を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5000であった。
<合成例12> ポリエステル樹脂溶液(B7)の合成
115gの1,1-ビス(4-(2,3-エポキシプロピルオキシ)フェニル)-3,5-ジフェニルインダン(以下、BEODPI)、240gのPGMEA、0.4gのtert-ブチルカテコール、3.7gのベンジルトリエチルアンモニウムクロリドおよび31gのAcAをフラスコに加えて120℃まで昇温し、3時間保持した。50℃以下まで冷却し、66gのBPTCDおよび0.2gのテトラブチルアンモニウムブロミドを加えて120℃まで昇温し、3時間撹拌後、80℃まで冷却した。その後、9gのトリメリット酸無水物(以下、TD)を加えて120℃まで昇温し、2時間撹拌後、40℃以下まで冷却した。さらに、94gのPGMEA溶液を加えてPGMEA溶液としてポリエステル樹脂B7を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5500であった。
115gの1,1-ビス(4-(2,3-エポキシプロピルオキシ)フェニル)-3,5-ジフェニルインダン(以下、BEODPI)、240gのPGMEA、0.4gのtert-ブチルカテコール、3.7gのベンジルトリエチルアンモニウムクロリドおよび31gのAcAをフラスコに加えて120℃まで昇温し、3時間保持した。50℃以下まで冷却し、66gのBPTCDおよび0.2gのテトラブチルアンモニウムブロミドを加えて120℃まで昇温し、3時間撹拌後、80℃まで冷却した。その後、9gのトリメリット酸無水物(以下、TD)を加えて120℃まで昇温し、2時間撹拌後、40℃以下まで冷却した。さらに、94gのPGMEA溶液を加えてPGMEA溶液としてポリエステル樹脂B7を得た。GPC法により測定されるポリスチレン換算での重量平均分子量はMw=5500であった。
<合成例13> ポリエステル樹脂溶液(R1)の合成
364gのPGMEA、68gのEG、296gのBPTCDおよび1.7gのTBAAをフラスコに仕込み、120℃で5時間撹拌した。室温まで冷却した後、31gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂R1を得た。
364gのPGMEA、68gのEG、296gのBPTCDおよび1.7gのTBAAをフラスコに仕込み、120℃で5時間撹拌した。室温まで冷却した後、31gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂R1を得た。
<合成例14> ポリエステル樹脂溶液(R2)の合成
364gのPGMEA、68gのEG、199gの1,2,3,4-ブタンテトラカルボン酸二無水物(BTCD)および1.7gTBAAをフラスコに仕込み、120℃で5時間撹拌した。室温まで冷却した後、31gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂R2を得た。
364gのPGMEA、68gのEG、199gの1,2,3,4-ブタンテトラカルボン酸二無水物(BTCD)および1.7gTBAAをフラスコに仕込み、120℃で5時間撹拌した。室温まで冷却した後、31gのPGMEAを加えて、PGMEA溶液としてポリエステル樹脂R2を得た。
<合成例15> アクリル樹脂溶液(R3)の合成
500mLのフラスコに、1gの2,2’-アゾビス(イソブチロニトリル)、50gのPGMEAを仕込み、その後、23.0gのメタクリル酸(MA)、31.5gのベンジルメタクリレート(BMA)および32.8gのトリシクロ[5.2.1.02,6]デカン-8-イルメタクリレート(TCDMA)をさらに仕込んだ。室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液に12.7gのメタクリル酸グリシジル(GMA)、1gのジメチルベンジルアミン、0.2gのp-メトキシフェノールおよび100gのPGMEAを添加し、90℃で4時間加熱撹拌した。反応終了後、付加触媒を除去するために反応溶液を1規定のギ酸水溶液で分液抽出処理し、硫酸マグネシウムで乾燥後、固形分濃度が40質量%になるようにPGMEAを加えて、PGMEA溶液としてアクリル樹脂R3を得た。
500mLのフラスコに、1gの2,2’-アゾビス(イソブチロニトリル)、50gのPGMEAを仕込み、その後、23.0gのメタクリル酸(MA)、31.5gのベンジルメタクリレート(BMA)および32.8gのトリシクロ[5.2.1.02,6]デカン-8-イルメタクリレート(TCDMA)をさらに仕込んだ。室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液に12.7gのメタクリル酸グリシジル(GMA)、1gのジメチルベンジルアミン、0.2gのp-メトキシフェノールおよび100gのPGMEAを添加し、90℃で4時間加熱撹拌した。反応終了後、付加触媒を除去するために反応溶液を1規定のギ酸水溶液で分液抽出処理し、硫酸マグネシウムで乾燥後、固形分濃度が40質量%になるようにPGMEAを加えて、PGMEA溶液としてアクリル樹脂R3を得た。
<合成例16> シロキサン樹脂溶液(E1)の合成
73.25gのジメトキシジフェニルシラン(DPhTMS)(0.30モル)、93.72gの3-アクリロキシプロピルトリメトキシシラン(AcTMS)(0.40モル)、26.26gの3-トリメトキシシリルプロピル無水コハク酸(SucTMS)(0.1モル)、38.89gのフェニルトリメトキシシラン(PhTMS)(0.20モル)および156.52gのプロピレングリコールモノメチルエーテルアセテートを、500mLの三ツ口フラスコに仕込んだ。溶液を室温で撹拌しながら、54.0gの水に2.0gのリン酸を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分撹拌した後、オイルバスを70℃に設定して30分間加熱し、さらにオイルバスを110℃にまで昇温した。昇温開始3時間後に、反応を終了した。このとき、溶液の内温はオイルバスの設定より5℃程度低い温度まで上昇した。反応中に生成するメタノールや消費されなかった水は、蒸留により取り除いた。得られたポリシロキサンのプロピレングリコールモノメチルエーテルアセテート溶液が、ポリマー濃度が50質量%となるようにプロピレングリコールモノメチルエーテルアセテートを加えて、シロキサン樹脂溶液(E1)を得た。
73.25gのジメトキシジフェニルシラン(DPhTMS)(0.30モル)、93.72gの3-アクリロキシプロピルトリメトキシシラン(AcTMS)(0.40モル)、26.26gの3-トリメトキシシリルプロピル無水コハク酸(SucTMS)(0.1モル)、38.89gのフェニルトリメトキシシラン(PhTMS)(0.20モル)および156.52gのプロピレングリコールモノメチルエーテルアセテートを、500mLの三ツ口フラスコに仕込んだ。溶液を室温で撹拌しながら、54.0gの水に2.0gのリン酸を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分撹拌した後、オイルバスを70℃に設定して30分間加熱し、さらにオイルバスを110℃にまで昇温した。昇温開始3時間後に、反応を終了した。このとき、溶液の内温はオイルバスの設定より5℃程度低い温度まで上昇した。反応中に生成するメタノールや消費されなかった水は、蒸留により取り除いた。得られたポリシロキサンのプロピレングリコールモノメチルエーテルアセテート溶液が、ポリマー濃度が50質量%となるようにプロピレングリコールモノメチルエーテルアセテートを加えて、シロキサン樹脂溶液(E1)を得た。
<合成例17> シロキサン樹脂溶液(E2)の合成
最初に三ツ口フラスコに仕込むものを、36.06gのジメトキシジメチルシラン(DMeDMS)(0.30モル)、46.86gの3-アクリロキシプロピルトリメトキシシラン(0.20モル)、13.12gの3-トリメトキシシリルプロピル無水コハク酸(0.05モル)、87.50gのフェニルトリメトキシシラン(0.45モル)および145.06gのプロピレングリコールモノメチルエーテルアセテートとした以外は、合成例16と同様にして合成を行いシロキサン樹脂溶液(E2)を得た。
最初に三ツ口フラスコに仕込むものを、36.06gのジメトキシジメチルシラン(DMeDMS)(0.30モル)、46.86gの3-アクリロキシプロピルトリメトキシシラン(0.20モル)、13.12gの3-トリメトキシシリルプロピル無水コハク酸(0.05モル)、87.50gのフェニルトリメトキシシラン(0.45モル)および145.06gのプロピレングリコールモノメチルエーテルアセテートとした以外は、合成例16と同様にして合成を行いシロキサン樹脂溶液(E2)を得た。
表4中の括弧内の%はポリマー中のシラン化合物の質量%を示す。
各実施例および比較例における多官能(メタ)アクリロイル化合物としては、ジペンタエリスリトールヘキサアクリレート(“カヤラッド”(登録商標)DPHA;新日本化薬製)を光ラジカル重合開始剤としては、オキシムエステル構造を有する化合物である、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](“イルガキュア”(登録商標)OXE-01;BASF製)およびエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(“イルガキュア”(登録商標)OXE-02;BASF製)を用いた。界面活性剤としては、BYK-333(ビッグケミー・ジャパン製)を用い、重合禁止剤としては、IRGANOX245(BASF製)を用いた。
<実施例1>
黄色灯下にて、3.071gの(A1)ジルコニアナノ粒子(ジルコニアナノ粒子のMEK30質量%分散液)を、4.675gのDAAおよび0.491gのPGMEAで希釈し、0.0287gの“イルガキュア”(登録商標)OXE-01および0.0287gの“イルガキュア”(登録商標)OXE-02、0.0072gの重合禁止剤、0.287gの“カヤラッド”(登録商標)(ジペンタエリスリトールヘキサアクリレートのPGMEA50質量%溶液;新日本化薬製)、0.300gの界面活性剤(BYK-333のPGMEA1質量%溶液(濃度100ppmに相当))を加え、撹拌した。さらに、0.736gのポリエステル樹脂B1溶液(45.4質量%PGMEA溶液)を加えて撹拌した。次に、0.22μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物を得た。得られたネガ型感光性樹脂組成物について、下記方法で透過率、解像度、絶縁性、比誘電率および耐薬品性を評価した。得られたネガ型感光性樹脂組成物(1)の組成を表5に、各評価の結果を表8に、それぞれ示す。なお、表5中の括弧内の値は質量%を示す。
黄色灯下にて、3.071gの(A1)ジルコニアナノ粒子(ジルコニアナノ粒子のMEK30質量%分散液)を、4.675gのDAAおよび0.491gのPGMEAで希釈し、0.0287gの“イルガキュア”(登録商標)OXE-01および0.0287gの“イルガキュア”(登録商標)OXE-02、0.0072gの重合禁止剤、0.287gの“カヤラッド”(登録商標)(ジペンタエリスリトールヘキサアクリレートのPGMEA50質量%溶液;新日本化薬製)、0.300gの界面活性剤(BYK-333のPGMEA1質量%溶液(濃度100ppmに相当))を加え、撹拌した。さらに、0.736gのポリエステル樹脂B1溶液(45.4質量%PGMEA溶液)を加えて撹拌した。次に、0.22μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物を得た。得られたネガ型感光性樹脂組成物について、下記方法で透過率、解像度、絶縁性、比誘電率および耐薬品性を評価した。得られたネガ型感光性樹脂組成物(1)の組成を表5に、各評価の結果を表8に、それぞれ示す。なお、表5中の括弧内の値は質量%を示す。
(解像度の評価)
樹脂組成物を基板上にスピンコーター(1H-360S;ミカサ(株)製)を用いてスピンコートした後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて90℃で2分間プリベークし、膜厚0.40μmのプリベーク膜を作製した。基板としては、ITO薄膜が施されたガラス基板(以下、ITO基板)を用いた。得られたプリベーク膜に、PLAを用いて超高圧水銀灯を光源として、1~60%までの透過率を有するグレースケールマスクを介して、100μmのギャップで2000J/m2露光した。その後、自動現像装置(AD-2000;滝沢産業(株)製)を用いて、2.38質量%水酸化テトラメチルアンモニウム(以下、TMAH)水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。露光および現像後、100μmのラインアンドスペースパターンを1対1の幅に形成する露光量を、最適露光量とした。露光量はI線照度計で測定した。
樹脂組成物を基板上にスピンコーター(1H-360S;ミカサ(株)製)を用いてスピンコートした後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて90℃で2分間プリベークし、膜厚0.40μmのプリベーク膜を作製した。基板としては、ITO薄膜が施されたガラス基板(以下、ITO基板)を用いた。得られたプリベーク膜に、PLAを用いて超高圧水銀灯を光源として、1~60%までの透過率を有するグレースケールマスクを介して、100μmのギャップで2000J/m2露光した。その後、自動現像装置(AD-2000;滝沢産業(株)製)を用いて、2.38質量%水酸化テトラメチルアンモニウム(以下、TMAH)水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。露光および現像後、100μmのラインアンドスペースパターンを1対1の幅に形成する露光量を、最適露光量とした。露光量はI線照度計で測定した。
最適露光量における現像後の最小パターン寸法を測定し、これを解像度とした。
(透過率の評価)
樹脂組成物を5cm角のテンパックスガラス基板(AGCテクノグラス(株)製)上に、スピンコーターを用いてスピンコートした後、ホットプレートを用いて90℃で2分間プリベークし、膜厚0.4-0.6μmのプリベーク膜を作製した。得られたプリベーク膜を超高圧水銀灯で2000J/m2全面露光し、自動現像装置を用いて、2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。最後にオーブン(IHPS-222;エスペック(株)製)を用いて空気中230℃で30分間ベークして、膜厚0.3ないし0.5μmの硬化膜を作製した。
樹脂組成物を5cm角のテンパックスガラス基板(AGCテクノグラス(株)製)上に、スピンコーターを用いてスピンコートした後、ホットプレートを用いて90℃で2分間プリベークし、膜厚0.4-0.6μmのプリベーク膜を作製した。得られたプリベーク膜を超高圧水銀灯で2000J/m2全面露光し、自動現像装置を用いて、2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。最後にオーブン(IHPS-222;エスペック(株)製)を用いて空気中230℃で30分間ベークして、膜厚0.3ないし0.5μmの硬化膜を作製した。
得られた硬化膜について、紫外-可視分光光度計(UV-260;島津製作所(株)製)を用いて、400nmの透過率を測定した。
(熱硬化前の耐薬品性評価)
パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜を超高圧水銀灯で2000J/m2全面露光し、自動現像装置を用いて2.38質量%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。得られた硬化膜を5.0質量%のシュウ酸水溶液に5分間室温で浸漬し、1分間水で洗浄してから、JIS K5600-5-6に準じてITO硬化膜への接着性を評価した。
パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜を超高圧水銀灯で2000J/m2全面露光し、自動現像装置を用いて2.38質量%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。得られた硬化膜を5.0質量%のシュウ酸水溶液に5分間室温で浸漬し、1分間水で洗浄してから、JIS K5600-5-6に準じてITO硬化膜への接着性を評価した。
より具体的には、得られた硬化膜を、カッターナイフを用いて1mm間隔で縦横に切断して1mm×1mmのマス目を100個作製した。全てのマス目が覆われるようにセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を貼り付け、消しゴム(JIS S6050合格品)で擦って密着させた。セロハン粘着テープの一端を持ち、これを基板に対して直角を保ちながら瞬間的に剥離した後のマス目の残存数を確認し、剥離したマス目の割合すなわち剥離面積比率を求めた。以下の評価基準に基づき、剥離面積比率を5段階に区分し、3以上を合格とした。
5 : 剥離面積比率 = 0%
4 : 剥離面積比率 = <5%
3 : 剥離面積比率 = 5~ 14%
2 : 剥離面積比率 = 15~ 34%
1 : 剥離面積比率 = 35~ 64%
0 : 剥離面積比率 = 65~100%
(熱硬化後の耐薬品性評価)
パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製し、得られたプリベーク膜を超高圧水銀灯で2000J/m2全面露光し、自動現像装置を用いて2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で1分間リンスした。得られた硬化膜を230℃で30分間ベークした。この試料を2.38質量%TMAH水溶液に80秒間室温で浸漬し、また別の試料を7質量%アミノエトキシエタノール水溶液に80秒間70℃で浸漬し、それぞれの試料を1分間水で洗浄してから、JIS K5600-5-6に準じてITO硬化膜への接着性を評価した。
5 : 剥離面積比率 = 0%
4 : 剥離面積比率 = <5%
3 : 剥離面積比率 = 5~ 14%
2 : 剥離面積比率 = 15~ 34%
1 : 剥離面積比率 = 35~ 64%
0 : 剥離面積比率 = 65~100%
(熱硬化後の耐薬品性評価)
パターン加工性の評価と同様の方法で、膜厚0.40μmのプリベーク膜を作製し、得られたプリベーク膜を超高圧水銀灯で2000J/m2全面露光し、自動現像装置を用いて2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で1分間リンスした。得られた硬化膜を230℃で30分間ベークした。この試料を2.38質量%TMAH水溶液に80秒間室温で浸漬し、また別の試料を7質量%アミノエトキシエタノール水溶液に80秒間70℃で浸漬し、それぞれの試料を1分間水で洗浄してから、JIS K5600-5-6に準じてITO硬化膜への接着性を評価した。
(絶縁性の評価)
パターン加工性の評価と同様の方法で、10cm×10cmのITO基板上に膜厚0.40μmのプリベーク膜を作製し、ホットプレートを用いて160℃で5分間のミドルベークを行い、ミドルベーク膜を作製した。得られたミドルベーク膜を、5質量%シュウ酸水溶液に室温で5分間浸漬させてから、水で1分間洗浄した。次に、230℃のオーブンで30分間ベークし、2.38質量%TMAH溶液に室温で80秒間に浸漬し、さらに、7質量%のアミノエトキシエタノールに70℃で80秒間浸漬した後、水で1分間洗浄した。得られた薬品浸漬後の硬化膜を、サーフコム触針式膜厚測定装置にて膜厚(μm)を測定した後、硬化膜上に真空蒸着装置にて、アルミニウム(純度99.99%以上)を約1cm2の面積に蒸着し、測定サンプルを得た。
パターン加工性の評価と同様の方法で、10cm×10cmのITO基板上に膜厚0.40μmのプリベーク膜を作製し、ホットプレートを用いて160℃で5分間のミドルベークを行い、ミドルベーク膜を作製した。得られたミドルベーク膜を、5質量%シュウ酸水溶液に室温で5分間浸漬させてから、水で1分間洗浄した。次に、230℃のオーブンで30分間ベークし、2.38質量%TMAH溶液に室温で80秒間に浸漬し、さらに、7質量%のアミノエトキシエタノールに70℃で80秒間浸漬した後、水で1分間洗浄した。得られた薬品浸漬後の硬化膜を、サーフコム触針式膜厚測定装置にて膜厚(μm)を測定した後、硬化膜上に真空蒸着装置にて、アルミニウム(純度99.99%以上)を約1cm2の面積に蒸着し、測定サンプルを得た。
各電極端子を、アルミニウムとITOとにそれぞれ接触させ、半導体測定装置(KEITHLEY4200-SCS;ケースレーインスツルメンツ社製)を用いて15Vで60秒印加後のリーク電流(log[A/cm2])を測定した。
(比誘電率の評価)
絶縁性の評価の同様の方法で、測定サンプルを作製した。各電極端子をアルミニウムとITOとにそれぞれ接触させ、測定対象領域の周波数1MHzにおける静電容量をインピーダンスアナライザー(4294A;アジレントテクノロージー(株)製)およびサンプルホルダー(16451B;アジレントテクノロージー(株)製)を用いて測定した。比誘電率は静電容量と測定対象領域との寸法から、比誘電率として算出した。
絶縁性の評価の同様の方法で、測定サンプルを作製した。各電極端子をアルミニウムとITOとにそれぞれ接触させ、測定対象領域の周波数1MHzにおける静電容量をインピーダンスアナライザー(4294A;アジレントテクノロージー(株)製)およびサンプルホルダー(16451B;アジレントテクノロージー(株)製)を用いて測定した。比誘電率は静電容量と測定対象領域との寸法から、比誘電率として算出した。
(TFTの特性評価)
図1に示す構造のTFT基板を作製した。ガラス製の基板1(厚み0.7mm)上に、抵抗加熱法により、メタルマスクを介して、クロムを厚み5nm、続いて金を厚み50nmで真空蒸着し、ゲート電極2を形成した。次に上記(解像度の評価)と同様に、ネガ型感光性樹脂組成物(1)をスピンコート塗布し、ホットプレートを用いて90℃で2分間プリベークし、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜を超高圧水銀灯で2000J/m2で全面露光し、自動現像装置を用いて、2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。最後にオーブン(IHPS-222;エスペック(株)製)を用いて空気中230℃で30分間ベークして、膜厚0.3μmのゲート絶縁膜を得て、それをゲート絶縁層3とした。このゲート絶縁層が形成された基板上に、金を厚み50nmになるように真空蒸着した。次に、ポジ型レジスト溶液を滴下し、スピナーを用いて塗布した後、90℃のホットプレートで乾燥し、レジスト膜を形成した。得られたレジスト膜に対して、露光機を用いて、フォトマスクを通して紫外線照射を行った。続いて、基板をアルカリ水溶液に浸漬し、紫外線照射部を除去し、電極形状にパターン加工されたレジスト膜を得た。得られた基板を金エッチング液(アルドリッチ社製、Goldetchant,standard)中に浸漬し、レジスト膜が除去された部分の金を溶解・除去した。得られた基板をアセトン中に浸漬し、レジストを除去した後、純水で洗浄し、100℃のホットプレートで30分間乾燥した。このようにして、電極の幅(チャネル幅)0.2mm、電極の間隔(チャネル長)20μm、厚み50nmの金ソースドレイン電極4、5を得た。
図1に示す構造のTFT基板を作製した。ガラス製の基板1(厚み0.7mm)上に、抵抗加熱法により、メタルマスクを介して、クロムを厚み5nm、続いて金を厚み50nmで真空蒸着し、ゲート電極2を形成した。次に上記(解像度の評価)と同様に、ネガ型感光性樹脂組成物(1)をスピンコート塗布し、ホットプレートを用いて90℃で2分間プリベークし、膜厚0.40μmのプリベーク膜を作製した。得られたプリベーク膜を超高圧水銀灯で2000J/m2で全面露光し、自動現像装置を用いて、2.38%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。最後にオーブン(IHPS-222;エスペック(株)製)を用いて空気中230℃で30分間ベークして、膜厚0.3μmのゲート絶縁膜を得て、それをゲート絶縁層3とした。このゲート絶縁層が形成された基板上に、金を厚み50nmになるように真空蒸着した。次に、ポジ型レジスト溶液を滴下し、スピナーを用いて塗布した後、90℃のホットプレートで乾燥し、レジスト膜を形成した。得られたレジスト膜に対して、露光機を用いて、フォトマスクを通して紫外線照射を行った。続いて、基板をアルカリ水溶液に浸漬し、紫外線照射部を除去し、電極形状にパターン加工されたレジスト膜を得た。得られた基板を金エッチング液(アルドリッチ社製、Goldetchant,standard)中に浸漬し、レジスト膜が除去された部分の金を溶解・除去した。得られた基板をアセトン中に浸漬し、レジストを除去した後、純水で洗浄し、100℃のホットプレートで30分間乾燥した。このようにして、電極の幅(チャネル幅)0.2mm、電極の間隔(チャネル長)20μm、厚み50nmの金ソースドレイン電極4、5を得た。
次に、電極が形成された基板上に、ポリ-3-ヘキシルチオフェン(P3HT、アルドッチ社製、レジオレギュラー)をインクジェット法により塗布し、ホットプレート上で窒素気流下、150℃、30分間の熱処理を行い、P3HT膜6をチャネル層とするFETを作製した。この際、インクジェット装置に、簡易吐出実験セットPIJL-1(クラスターテクノロジー株式会社製)を用いた。
次に、上記FETのゲート電圧を+30から-30Vへ掃引したときのI-Vカーブにおいて、電流Iの値が急激に起ち上がる値(Von)を読みとった。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ株式会社製)を用い、大気中で測定した。評価結果を表8に示す。
<実施例2~実施例7>
(A)金属酸化物粒子をA2~A7に、(B)アルカリ可溶性ポリエステル樹脂をB2にそれぞれ変えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表5に、評価結果を表8に、それぞれ示す。
(A)金属酸化物粒子をA2~A7に、(B)アルカリ可溶性ポリエステル樹脂をB2にそれぞれ変えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表5に、評価結果を表8に、それぞれ示す。
<実施例8~実施例12>
(B)アルカリ可溶性ポリエステル樹脂B3~B7に変えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表6に、評価結果を表8に、それぞれ示す。
(B)アルカリ可溶性ポリエステル樹脂B3~B7に変えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表6に、評価結果を表8に、それぞれ示す。
表6中の括弧内の値は質量%濃度を示す。
<実施例13~実施例20>
(E)アルコキシシラン又は合成例16および17で合成したポリシロキサンを加えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表7に、評価結果を表8に、それぞれ示す。
(E)アルコキシシラン又は合成例16および17で合成したポリシロキサンを加えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表7に、評価結果を表8に、それぞれ示す。
表7中の括弧内の値は質量%濃度を示す。
表8の結果から明らかなように、実施例1~20で得られた各ネガ型感光性樹脂組成物より得られる硬化膜は、TFTの層間絶縁膜やゲート絶縁膜として要求される工程特性を満たすものであった。
<比較例1~3>
(B)アルカリ可溶性ポリエステル樹脂を、ラジカル重合性基又は芳香環を有しない構造を有するポリエステル樹脂R1ポリエステル樹脂R2又はアクリル樹脂R3に変えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表8に、評価結果を表9に、それぞれ示す。
(B)アルカリ可溶性ポリエステル樹脂を、ラジカル重合性基又は芳香環を有しない構造を有するポリエステル樹脂R1ポリエステル樹脂R2又はアクリル樹脂R3に変えて、実施例1と同様の方法で、ネガ型感光性樹脂組成物をそれぞれ得て、実施例1と同様の評価をした。得られたネガ型感光性樹脂組成物の組成を表8に、評価結果を表9に、それぞれ示す。
表9中の括弧内の値は質量%濃度を示す。
表10の結果から明らかなように、比較例1~3で得られた各ネガ型感光性樹脂組成物より得られる硬化膜は、TFTの層間絶縁膜やゲート絶縁膜として要求される耐薬品性に乏しく、製造工程に耐えうる特性を満足していなかった。
本発明のネガ型感光性樹脂組成物を硬化して得られる硬化膜は、TFTのゲート絶縁膜、層間絶縁膜、タッチパネルの保護膜等の各種ハードコート膜、タッチセンサー用絶縁膜、液晶や有機ELディスプレイのTFT用平坦化膜、金属配線保護膜、絶縁膜、反射防止膜、反射防止フィルム、光学フィルター、カラーフィルター用オーバーコート、柱材等に好適に用いられる。
1:基板
2:ゲート電極
3:ゲート絶縁層
4:ソースドレイン電極
5:ソースドレイン電極
2:ゲート電極
3:ゲート絶縁層
4:ソースドレイン電極
5:ソースドレイン電極
Claims (6)
- (A)チタン、バリウム、ハフニウム、タンタル、タングステン、イットリウムおよびジルコニウムからなる群から選ばれる金属の金属酸化物粒子、
(B)ラジカル重合性基および芳香環を有するアルカリ可溶性ポリエステル樹脂、
(C)多官能(メタ)アクリロイル化合物および
(D)光重合開始剤
を含有する、ネガ型感光性樹脂組成物。 - (E)4つ以上のアルコキシ基を有するアルコキシシラン又はポリシロキサンを含有する、請求項1又は2記載のネガ型感光性樹脂組成物。
- 請求項1~3のいずれかのネガ型感光性樹脂組成物より得られる硬化膜。
- 請求項4記載の硬化膜を具備する、TFT基板。
- 請求項1~3のいずれかのネガ型感光性樹脂組成物を塗布し、露光と現像を経てパターンを形成する工程を備える薄膜トランジスタ基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013554699A JPWO2014080908A1 (ja) | 2012-11-26 | 2013-11-19 | ネガ型感光性樹脂組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257208 | 2012-11-26 | ||
JP2012-257208 | 2012-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014080908A1 true WO2014080908A1 (ja) | 2014-05-30 |
Family
ID=50776088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081169 WO2014080908A1 (ja) | 2012-11-26 | 2013-11-19 | ネガ型感光性樹脂組成物 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2014080908A1 (ja) |
TW (1) | TWI567495B (ja) |
WO (1) | WO2014080908A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196469A (ja) * | 2013-03-06 | 2014-10-16 | 株式会社Adeka | 光硬化性組成物 |
CN105022227A (zh) * | 2014-05-02 | 2015-11-04 | 富士胶片株式会社 | 硬化性组合物、硬化物的制造方法、硬化物、硬化膜及显示装置 |
CN105223775A (zh) * | 2014-07-04 | 2016-01-06 | 富士胶片株式会社 | 硬化性组合物、硬化膜的制造方法、硬化膜、以及触摸屏及显示装置 |
CN105278246A (zh) * | 2014-07-04 | 2016-01-27 | 富士胶片株式会社 | 硬化性组合物、硬化膜的制造方法、硬化膜、触摸屏及显示装置 |
JP2016014849A (ja) * | 2014-06-12 | 2016-01-28 | Jsr株式会社 | 感放射線性樹脂組成物、絶縁膜および表示素子 |
WO2016152295A1 (ja) * | 2015-03-23 | 2016-09-29 | Jsr株式会社 | 重合体、樹脂組成物及び樹脂成形体 |
JP2017020000A (ja) * | 2015-06-15 | 2017-01-26 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 湿式剥離性シリコン含有反射防止剤 |
CN111373325A (zh) * | 2017-11-21 | 2020-07-03 | 东丽株式会社 | 硅氧烷树脂组合物、固化膜及显示装置 |
CN111527450A (zh) * | 2018-01-18 | 2020-08-11 | 旭化成株式会社 | 感光性树脂层叠体及其制造方法 |
WO2024210146A1 (ja) * | 2023-04-06 | 2024-10-10 | 株式会社レゾナック | 感光性樹脂フィルム、プリント配線板及び半導体パッケージ |
WO2024214603A1 (ja) * | 2023-04-10 | 2024-10-17 | 三洋化成工業株式会社 | 活性エネルギー線硬化性組成物及びその硬化物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3492510A4 (en) * | 2016-07-28 | 2020-03-04 | JSR Corporation | POLYMER, COMPOSITION, MOLDED ARTICLE, CURED AND LAMINATE PRODUCT |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004069754A (ja) * | 2002-08-01 | 2004-03-04 | Tokyo Ohka Kogyo Co Ltd | 光重合性黒色組成物及び黒色パターンの形成方法 |
JP2010138251A (ja) * | 2008-12-10 | 2010-06-24 | Fujifilm Corp | 分散組成物、重合性組成物、遮光性カラーフィルタ、固体撮像素子、および液晶表示装置 |
JP2011116943A (ja) * | 2009-10-28 | 2011-06-16 | Nagase Chemtex Corp | 複合樹脂組成物 |
JP2011151164A (ja) * | 2010-01-21 | 2011-08-04 | Jsr Corp | 感光性組成物、光学部材、光電変換素子および光電変換素子の製造方法 |
JP2013238837A (ja) * | 2011-11-21 | 2013-11-28 | Toyo Ink Sc Holdings Co Ltd | 感光性ドライフィルム、ならびにそれを用いた保護膜およびタッチパネル用絶縁膜 |
JP2013237804A (ja) * | 2012-05-16 | 2013-11-28 | Mitsubishi Chemicals Corp | 無機化合物分散液、硬化性樹脂組成物、硬化物、tftアクティブマトリックス基板、液晶表示装置及び分散液の製造方法 |
-
2013
- 2013-11-19 WO PCT/JP2013/081169 patent/WO2014080908A1/ja active Application Filing
- 2013-11-19 JP JP2013554699A patent/JPWO2014080908A1/ja active Pending
- 2013-11-25 TW TW102142808A patent/TWI567495B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004069754A (ja) * | 2002-08-01 | 2004-03-04 | Tokyo Ohka Kogyo Co Ltd | 光重合性黒色組成物及び黒色パターンの形成方法 |
JP2010138251A (ja) * | 2008-12-10 | 2010-06-24 | Fujifilm Corp | 分散組成物、重合性組成物、遮光性カラーフィルタ、固体撮像素子、および液晶表示装置 |
JP2011116943A (ja) * | 2009-10-28 | 2011-06-16 | Nagase Chemtex Corp | 複合樹脂組成物 |
JP2011151164A (ja) * | 2010-01-21 | 2011-08-04 | Jsr Corp | 感光性組成物、光学部材、光電変換素子および光電変換素子の製造方法 |
JP2013238837A (ja) * | 2011-11-21 | 2013-11-28 | Toyo Ink Sc Holdings Co Ltd | 感光性ドライフィルム、ならびにそれを用いた保護膜およびタッチパネル用絶縁膜 |
JP2013237804A (ja) * | 2012-05-16 | 2013-11-28 | Mitsubishi Chemicals Corp | 無機化合物分散液、硬化性樹脂組成物、硬化物、tftアクティブマトリックス基板、液晶表示装置及び分散液の製造方法 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196469A (ja) * | 2013-03-06 | 2014-10-16 | 株式会社Adeka | 光硬化性組成物 |
CN105022227A (zh) * | 2014-05-02 | 2015-11-04 | 富士胶片株式会社 | 硬化性组合物、硬化物的制造方法、硬化物、硬化膜及显示装置 |
JP2015212329A (ja) * | 2014-05-02 | 2015-11-26 | 富士フイルム株式会社 | 硬化性組成物、硬化物の製造方法、硬化物、硬化膜、及び、表示装置 |
JP2016014849A (ja) * | 2014-06-12 | 2016-01-28 | Jsr株式会社 | 感放射線性樹脂組成物、絶縁膜および表示素子 |
CN105223775A (zh) * | 2014-07-04 | 2016-01-06 | 富士胶片株式会社 | 硬化性组合物、硬化膜的制造方法、硬化膜、以及触摸屏及显示装置 |
CN105278246A (zh) * | 2014-07-04 | 2016-01-27 | 富士胶片株式会社 | 硬化性组合物、硬化膜的制造方法、硬化膜、触摸屏及显示装置 |
CN105223775B (zh) * | 2014-07-04 | 2020-03-13 | 富士胶片株式会社 | 硬化性组合物、硬化膜的制造方法、硬化膜、以及触摸屏及显示装置 |
CN105278246B (zh) * | 2014-07-04 | 2020-03-13 | 富士胶片株式会社 | 硬化性组合物、硬化膜的制造方法、硬化膜、触摸屏及显示装置 |
WO2016152295A1 (ja) * | 2015-03-23 | 2016-09-29 | Jsr株式会社 | 重合体、樹脂組成物及び樹脂成形体 |
JPWO2016152295A1 (ja) * | 2015-03-23 | 2018-02-15 | Jsr株式会社 | 重合体、樹脂組成物及び樹脂成形体 |
KR20170129124A (ko) * | 2015-03-23 | 2017-11-24 | 제이에스알 가부시끼가이샤 | 중합체, 수지 조성물 및 수지 성형체 |
EP3275917A4 (en) * | 2015-03-23 | 2018-09-05 | JSR Corporation | Polymer, resin composition, and resin molded article |
KR102590795B1 (ko) * | 2015-03-23 | 2023-10-19 | 제이에스알 가부시끼가이샤 | 중합체, 수지 조성물 및 수지 성형체 |
US10031420B2 (en) | 2015-06-15 | 2018-07-24 | Rohm And Haas Electronic Materials Llc | Wet-strippable silicon-containing antireflectant |
JP2018173657A (ja) * | 2015-06-15 | 2018-11-08 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 湿式剥離性シリコン含有反射防止剤 |
JP2017020000A (ja) * | 2015-06-15 | 2017-01-26 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 湿式剥離性シリコン含有反射防止剤 |
CN111373325A (zh) * | 2017-11-21 | 2020-07-03 | 东丽株式会社 | 硅氧烷树脂组合物、固化膜及显示装置 |
CN111373325B (zh) * | 2017-11-21 | 2023-10-17 | 东丽株式会社 | 硅氧烷树脂组合物、固化膜及显示装置 |
CN111527450A (zh) * | 2018-01-18 | 2020-08-11 | 旭化成株式会社 | 感光性树脂层叠体及其制造方法 |
CN111527450B (zh) * | 2018-01-18 | 2023-08-08 | 旭化成株式会社 | 感光性树脂层叠体及其制造方法 |
WO2024210146A1 (ja) * | 2023-04-06 | 2024-10-10 | 株式会社レゾナック | 感光性樹脂フィルム、プリント配線板及び半導体パッケージ |
WO2024214603A1 (ja) * | 2023-04-10 | 2024-10-17 | 三洋化成工業株式会社 | 活性エネルギー線硬化性組成物及びその硬化物 |
Also Published As
Publication number | Publication date |
---|---|
TWI567495B (zh) | 2017-01-21 |
JPWO2014080908A1 (ja) | 2017-01-05 |
TW201426187A (zh) | 2014-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014080908A1 (ja) | ネガ型感光性樹脂組成物 | |
JP5589387B2 (ja) | シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜 | |
JP5212571B2 (ja) | タッチパネル部材 | |
JP6126855B2 (ja) | エネルギー線硬化性樹脂組成物 | |
JP6826325B2 (ja) | 感光性樹脂組成物、硬化膜、積層体、タッチパネル用部材及び硬化膜の製造方法 | |
WO2013146130A1 (ja) | シランカップリング剤、感光性樹脂組成物、硬化膜及びタッチパネル部材 | |
JP5407210B2 (ja) | シロキサン樹脂組成物およびそれを用いた硬化膜 | |
WO2016052323A1 (ja) | ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ | |
JP6323007B2 (ja) | 感光性樹脂組成物、導電性配線保護膜及びタッチパネル部材 | |
JP5671936B2 (ja) | ネガ型感光性樹脂組成物およびそれを用いた硬化膜 | |
EP3098653A1 (en) | Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated cmos image sensor | |
JP2016072246A (ja) | ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ | |
WO2015046134A1 (ja) | 光インプリント用硬化性組成物及びパターン形成方法 | |
TW201500470A (zh) | 絕緣材料用組成物 | |
JP7119390B2 (ja) | ネガ型感光性樹脂組成物およびそれを用いた硬化膜 | |
JP2019053266A (ja) | 感光性樹脂組成物、硬化膜及びその製造方法 | |
JP2018120069A (ja) | ネガ型感光性樹脂組成物、硬化膜およびタッチパネル部材 | |
JP2019117259A (ja) | 感光性樹脂組成物、硬化膜及びその製造方法 | |
JP2017187754A (ja) | ネガ型シロキサン樹脂組成物、フォトスペーサー、カラーフィルター基板および液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013554699 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13857231 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13857231 Country of ref document: EP Kind code of ref document: A1 |