[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014076999A1 - 排気ガス用触媒担体及び排ガス浄化触媒 - Google Patents

排気ガス用触媒担体及び排ガス浄化触媒 Download PDF

Info

Publication number
WO2014076999A1
WO2014076999A1 PCT/JP2013/069136 JP2013069136W WO2014076999A1 WO 2014076999 A1 WO2014076999 A1 WO 2014076999A1 JP 2013069136 W JP2013069136 W JP 2013069136W WO 2014076999 A1 WO2014076999 A1 WO 2014076999A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceria
catalyst
exhaust gas
composite oxide
mass
Prior art date
Application number
PCT/JP2013/069136
Other languages
English (en)
French (fr)
Inventor
央記 法師人
中原 祐之輔
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US14/427,802 priority Critical patent/US9308516B2/en
Priority to CN201380055125.8A priority patent/CN104736240B/zh
Priority to EP13854293.1A priority patent/EP2921226B1/en
Publication of WO2014076999A1 publication Critical patent/WO2014076999A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/735Pyrochlore-type A2B2O7
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst that can be used to purify exhaust gas discharged from an internal combustion engine, and an exhaust gas catalyst carrier having an oxygen storage capacity (OSC: Oxygen Storage Capacity). Also referred to as “OSC material”).
  • OSC oxygen storage capacity
  • OSC material also referred to as “OSC material”.
  • the exhaust gas of automobiles using gasoline as fuel contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx).
  • the hydrocarbon (HC) is oxidized and converted into water and carbon dioxide
  • the carbon monoxide (CO) is oxidized and converted into carbon dioxide
  • the nitrogen oxide (NOx) is reduced and converted into nitrogen. It is necessary to purify each harmful component with a catalyst.
  • a catalyst for treating such exhaust gas hereinafter referred to as “exhaust gas purifying catalyst”
  • a three-way catalyst (TWC) capable of oxidizing and reducing CO, HC and NOx is used. .
  • a refractory oxide porous body having a high specific surface area such as an alumina porous body having a high specific surface area, platinum (Pt), palladium (Pd), rhodium (Rh), etc. It is known to carry a noble metal and carry it on a substrate, for example, a monolithic substrate made of a refractory ceramic or metal honeycomb structure, or on a refractory particle. Yes.
  • the noble metal has the function of oxidizing the hydrocarbons in the exhaust gas into carbon dioxide and water, oxidizing the carbon monoxide into carbon dioxide, and reducing the nitrogen oxides to nitrogen. Therefore, in order to effectively produce the catalytic action for both reactions at the same time, it is preferable to keep the ratio of fuel to air (air-fuel ratio) constant (stoichiometric air-fuel ratio).
  • air-fuel ratio varies greatly depending on the operating conditions such as acceleration, deceleration, low-speed driving, and high-speed driving. Therefore, the air-fuel ratio (A / F) varies depending on the engine operating conditions using an oxygen sensor. Is controlled to be constant.
  • a promoter having an oxygen storage capacity (OSC: Oxygen Storage Capacity) that releases oxygen in a reducing atmosphere and absorbs oxygen in an oxidizing atmosphere
  • OSC oxygen storage capacity
  • OSC Oxygen Storage Capacity
  • ceria cerium oxide, CeO 2
  • ceria-zirconia composite oxide, and the like are known as OSC materials having oxygen storage ability.
  • Ceria exhibits oxygen transfer characteristics with valence change (trivalent ⁇ tetravalent), but solute change of zirconia is further promoted by dissolving zirconia, so ceria-zirconia complex oxidation
  • the technology using materials has been adopted as the mainstream technology of recent exhaust gas purification catalysts.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-296735 discloses a catalyst in which iron oxide is supported on a carrier containing a ceria-zirconia composite oxide.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-160433 discloses a catalyst comprising a composite oxide of at least one metal selected from the group consisting of ceria, zirconia, aluminum, titanium and manganese and iron. It is disclosed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-18322 discloses a catalyst having a structure in which iron oxide is dispersed in a ceria-zirconia composite oxide and is at least partially dissolved.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2009-84061 describes a ceria-zirconia-based composite oxide in which 50% or more of a pyrochlore phase-type ordered arrangement phase remains after heating in the atmosphere at 1000 ° C. for 5 hours. Is disclosed. Further, Patent Document 5 (Japanese Patent Application Laid-Open No. 2011-219329) discloses a ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia, wherein the content ratio of cerium and zirconium in the composite oxide is a molar ratio.
  • Ceria-zirconia composite oxide having a ratio ([cerium]: [zirconium]) in the range of 43:57 to 48:52 and suppressing ceria phase separation, ie, fluorite-type ceria-zirconia composite oxide And an OSC material containing a pyrochlore-type ceria-zirconia composite oxide.
  • the temperature of the catalyst is maintained at about 500 to 600 ° C. during steady running, so that the oxygen-carrying capacity of the ceria-zirconia composite oxide is also easily exhibited.
  • the temperature of the catalyst is low immediately after the engine is started, the ceria-zirconia composite oxide is difficult to activate (low oxygen transfer characteristics), so that it is difficult to exhibit the exhaust gas purification performance effectively.
  • low-temperature characteristics have been adopted from the standpoint of the era, such as the use of an engine stop mechanism (idling stop mechanism) that stops the engine while parked, stopped, or waiting for a signal to save fuel and reduce emissions. In other words, it is required to further improve the OSC ability and the exhaust gas purification performance when starting the engine.
  • an object of the present invention relates to an OSC material containing a ceria-zirconia composite oxide, a new low-temperature characteristic, an excellent OSC ability even at the start of the engine, and an excellent exhaust gas purification ability. Another object is to provide a catalyst carrier for exhaust gas and a catalyst for exhaust gas.
  • the present invention proposes a catalyst carrier for exhaust gas containing fluorite-type ceria-zirconia composite oxide and ceria obtained by phase separation from the fluorite-type ceria-zirconia composite oxide.
  • the exhaust gas catalyst carrier proposed by the present invention can enhance low temperature characteristics as an OSC material, can exhibit excellent OSC performance at the time of engine start, and can exhibit excellent exhaust gas purification performance. .
  • a catalyst carrier (referred to as “the present catalyst carrier”) according to an example of this embodiment includes a fluorite-type ceria-zirconia composite oxide and ceria obtained by phase separation from the fluorite-type ceria-zirconia composite oxide. It is a catalyst carrier containing an OSC material (referred to as “the present OSC material”).
  • fluorite-type ceria-zirconia composite oxide means a fluorite-type ceria-zirconia composite oxide (Ce x Zr 1-x O 2 ) as a solid solution phase in which ceria is not phase - separated. : 0 ⁇ X ⁇ 1)).
  • the peak area ratio A in the present OSC material is in the range of 0.05 to 1.00, excellent OSC ability can be exhibited in a low temperature range, and excellent exhaust gas purification performance can be exhibited. . Therefore, from this point of view, the peak area ratio A in the present OSC material is more preferably 0.05 to 0.50, especially 0.30 or less, especially 0.10 or more or 0.25 or less, Among these, it is more preferable that it is 0.15 or more or 0.25 or less.
  • the content ratio of cerium and zirconium is not particularly limited as long as the fluorite-type ceria-zirconia composite oxide can be formed.
  • the content ratio (molar ratio) of cerium and zirconium can be 10:90 to 70:30, preferably 10:90 to 50:50. Heat resistance is maintained when the content ratio of cerium and zirconium is within the range of 10:90 to 50:50 (13.4: 86.6 to 58.3: 41.7 in terms of mass ratio of oxide).
  • the OSC material may be in the form of particles or other shapes.
  • OSC material Manufacturing method of this OSC material It is important for the OSC material to contain ceria that is phase-separated from the fluorite-type ceria-zirconia composite oxide. This is a state in which ceria formed by phase separation exists on the surface of particles that are solid solutions. Therefore, the mixture of fluorite-type ceria-zirconia composite oxide and ceria particles is different.
  • the manufacturing method of the present OSC material is not particularly limited.
  • a solution obtained by dissolving oxynitrate Zr dihydrate or oxychloride Zr octahydrate with pure water referred to as “Solution 1”
  • Ce nitrate hexahydrate or Ce chloride heptahydrate To a solution obtained by mixing a solution obtained by dissolving with pure water (referred to as “solution 2”), ammonia water or an aqueous solution of sodium hydroxide is dropped at a rate of 10 to 110 mL / min until the pH reaches 8 or more.
  • a hydroxide precursor 1: a portion that becomes a nucleus of CZ
  • solution 3 a solution obtained by dissolving Ce nitrate hexahydrate or Ce chloride heptahydrate with pure water (referred to as “solution 3”).
  • solution 3 a solution obtained by dissolving Ce nitrate hexahydrate or Ce chloride heptahydrate with pure water
  • This precursor 2 is filtered, the residue is dispersed in pure water, and filtered again 4-5 times.
  • the obtained residue is dried at 110-150 ° C. for a whole day and pulverized to 100 mesh or less.
  • ceria phase separated CZ powder that is, the present OSC material, can be obtained by firing at 650 to 850 ° C. for 1 to 10 hours in the air.
  • the phase separation ratio of ceria can be adjusted by adjusting the amount of the solution 3 (ceria phase separation portion) added to the precursor 1 (the portion serving as the nucleus of CZ).
  • the phase separation rate of ceria can also be adjusted by adjusting the content ratio (molar ratio) of cerium and zirconium, the firing temperature, the firing time, the dropping speed, and the like.
  • the present catalyst carrier preferably contains an OSC material containing a pyrochlore-type ceria-zirconia composite oxide (Ce 2 Zr 2 O 7 ) in addition to the present OSC material.
  • a pyrochlore-type ceria-zirconia composite oxide Ce 2 Zr 2 O 7
  • the OSC ability in the low temperature range not only the OSC ability in the low temperature range but also the OSC ability in the high temperature range can be enhanced, so that high exhaust gas purification ability can be exhibited in the low temperature range and the high temperature range. it can.
  • the pyrochlore-type ceria-zirconia composite oxide is a crystalline phase that does not precipitate unless the atomic arrangement of “—Ce—O—Zr—O—Ce—” is more regular than the fluorite-type ceria-zirconia composite oxide, Since this regularity is high, it is considered that the valence change of Ce is more likely to be activated, and the oxygen transfer capability of the catalyst support in a high temperature range can be further enhanced.
  • the content of the pyrochlore-type ceria-zirconia composite oxide the phase separation fluorite-type ceria-zirconia composite oxide and the pyrochlore-type ceria-zirconia composite oxide in each catalyst layer, for example, the catalyst layer B described later, are used.
  • the pyrochlore-type ceria-zirconia composite oxide is preferably contained so that the mass ratio thereof is 20:50 to 65: 5. By containing the pyrochlore-type ceria-zirconia composite oxide at such a ratio, it is possible to exhibit even more excellent high temperature characteristics as an OSC material.
  • the mass ratio of the fluorite-type ceria-zirconia composite oxide to the pyrochlore-type ceria-zirconia composite oxide is preferably 20:50 to 65: 5, particularly 35:35 to 65: 5, In particular, it is more preferably 35:35 to 53:17.
  • the pyrochlore-type ceria-zirconia composite oxide may be in the form of particles or other shapes.
  • a catalyst composition according to an example of this embodiment includes the present catalyst carrier and a catalytically active component, and, if necessary, other catalyst carriers, binders, Stabilizers and the like can be included.
  • catalytic active ingredient examples include palladium (Pd), platinum, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, osmium, strontium, etc., one or two of these. Combinations of the above can be used. Among these, palladium (Pd), platinum (Pt), and rhodium (Rh) are preferable, and it is preferable to use one or a combination of two or more thereof.
  • the present catalyst composition preferably contains another catalyst carrier in addition to the present catalyst carrier, if necessary.
  • Other catalyst supports include inorganic porous materials, such as porous bodies of compounds selected from the group consisting of silica, alumina and titania compounds, more specifically, for example, alumina, silica, silica-alumina, alumino-silicates
  • Other carrier components such as a porous body made of a compound selected from alumina-zirconia, alumina-chromia and alumina-ceria may be included. One or a combination of two or more of these can be used.
  • the catalyst composition preferably contains a stabilizer as necessary.
  • the stabilizer include alkaline earth metals and alkali metals. Of these, one or more metals selected from the group consisting of magnesium, barium, boron, thorium, hafnium, silicon, calcium, and strontium can be selected.
  • barium is preferable from the viewpoint that the temperature at which PdOx is reduced is highest, that is, it is difficult to reduce.
  • the catalyst composition preferably contains a binder as necessary.
  • a binder component an inorganic binder, for example, an aqueous solution such as alumina sol can be used.
  • the present catalyst composition can contain other components as required.
  • a catalyst according to an example of this embodiment (referred to as “the present catalyst”) is formed into an appropriate shape such as a pellet, and can be used alone as a catalyst, or supported on a base material made of ceramics or a metal material. It can also be used as a modified form.
  • the present catalyst composition specifically, the catalyst active component, the present catalyst carrier, another catalyst carrier, a stabilizing material, a binder and water are mixed and stirred to form a slurry.
  • a substrate such as a body can be wash coated and baked to form a catalyst layer on the surface of the substrate.
  • the material of the base material examples include refractory materials such as ceramics and metal materials.
  • Materials for the ceramic substrate include refractory ceramic materials such as cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, spojumen, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, Examples thereof include zircon, petalite, alpha alumina, and aluminosilicates.
  • the material of the metal substrate can include refractory metals such as other suitable corrosion resistant alloys based on stainless steel or iron.
  • the shape of the substrate examples include a honeycomb shape, a pellet shape, and a spherical shape.
  • honeycomb material for example, cordierite material such as ceramics can be used.
  • a honeycomb made of a metal material such as ferritic stainless steel can also be used.
  • a honeycomb-shaped substrate for example, a monolith type substrate having a large number of parallel and fine gas flow passages, that is, channels, can be used so that fluid flows through the substrate.
  • the catalyst layer can be formed by coating the inner wall surface of each channel of the monolith substrate with the catalyst composition by wash coating or the like.
  • the catalyst layer formed using the present catalyst composition may be a single layer or a multilayer of two or more layers. Moreover, you may provide catalyst layers other than the catalyst layer formed using this catalyst composition. “Catalyst layer” means a layer having gas adsorption action or gas purification catalytic action, and if it contains a catalytically active component, it is applicable because it has a gas purification catalytic action, but does not necessarily contain a catalytically active ingredient. It does not have to be.
  • two or more catalyst layers may be stacked in the vertical direction, or two or more catalyst layers may be arranged in the exhaust gas flow direction to form a catalyst layer. Also good.
  • a layer that is not a catalyst layer for example, a layer made of porous refractory inorganic oxide powder, or a layer made of porous refractory inorganic oxide powder and a promoter component, between the catalyst layer and the catalyst layer.
  • a configuration including a catalyst layer A containing Pt or Rh or both and a catalyst layer B containing Pd and the present catalyst carrier can be mentioned.
  • a configuration in which the catalyst layer B and the catalyst layer A are provided in this order can also be mentioned, or the catalyst layer B and the catalyst layer A are provided in this order on the substrate.
  • the thing of composition can also be mentioned.
  • the lower catalyst layer B mainly bears the exchange of oxygen and exhibits excellent HC purification performance.
  • the catalyst layer A which suppresses the poisoning of Pd in the catalyst layer B and exhibits excellent CO and NOx purification performance.
  • the catalyst layer A As a preferable composition of the catalyst layer A, it can be formed so as to contain Pt, Rh, or both, an inorganic porous material, and, if necessary, an OSC material.
  • the catalyst layer B it can be formed so as to contain, in addition to Pd, the present catalyst carrier and, if necessary, an inorganic porous material.
  • Pd is supported on each of the inorganic porous materials such as the OSC material and alumina. Will be.
  • the supported amount of Pd with respect to the ceria phase-separated CeO 2 —ZrO 2 composite oxide (100 parts by mass) is 0.3 parts by mass or more, particularly 0.7 to 2.1 parts by mass, of which 1 The amount is preferably 0.0 to 2.1 parts by mass, and more preferably 1.3 to 2.1 parts by mass.
  • Pd is 0.2 parts by mass or more with respect to 100 parts by mass of the pyrochlore type ceria-zirconia composite oxide in the catalyst layer B.
  • the content is preferably 0.2 to 1.7 parts by mass, more preferably 0.2 to 1.3 parts by mass, and even more preferably 0.2 to 1.0 parts by mass.
  • Example 1 69.4% by mass of ceria phase-separated CeO 2 —ZrO 2 -based composite oxide, 25.0% by mass of Al 2 O 3 as an inorganic porous material powder, and 5.6% by mass of an inorganic binder are mixed.
  • the lower layer supporting material composition is prepared, and an amount of Pd nitrate solution corresponding to 1.2 parts by mass in terms of Pd metal is added to the lower layer supporting material composition with respect to 100 parts by mass of the total mass of the lower layer supporting material composition. To obtain a Pd-containing slurry for forming the lower layer.
  • an upper layer supporting material composition was prepared, and a Pt nitrate solution in an amount corresponding to 0.3 part by mass in terms of Pt metal with respect to a total mass of 100 parts by mass of these upper layer supporting material compositions, also in terms of Rh metal An amount of Rh nitric acid solution corresponding to 0.3 part by mass was added to the upper layer support material composition to obtain a Pt / Rh-containing slurry for upper layer formation.
  • the Pd-containing slurry for forming the lower layer was applied to a cordierite honeycomb substrate (flow-through carrier, 645 cc, cell density: 900 cell / inch 2 , cell wall thickness: 2.5 mil) of ⁇ 93 mm ⁇ L95 mm-900 cells.
  • the lower layer was formed by applying and then drying and baking at 500 ° C. for 1 hour. At this time, the Pd coating amount in the lower layer was 56.7 g / cft, and the washcoat amount was 182 g / L.
  • the Pt / Rh-containing slurry for forming the upper layer is applied onto the lower layer of the cordierite honeycomb substrate on which the lower layer has been applied and formed as described above, followed by drying and firing at 500 ° C. for 1 hour.
  • a catalyst (sample).
  • the Pt coating amount in the upper layer was 5.7 g / cft
  • the Rh coating amount was 5.7 g / cft
  • the washcoat amount was 70.4 g / L.
  • the ceria phase-separated CeO 2 —ZrO 2 -based composite oxide used in this example was produced as follows. At this time, the mass ratio between the precursor 1 and the solution 3 was adjusted to adjust the phase separation rate of ceria.
  • solution 1 A solution obtained by dissolving oxynitrate Zr dihydrate or oxychloride Zr octahydrate with pure water (referred to as “solution 1”) and Ce nitrate hexahydrate or Ce heptahydrate pure water
  • solution 2 A solution prepared by dissolving the solution (referred to as “solution 2”) was added with aqueous solution of ammonia or aqueous sodium hydroxide dropwise at a liquid feed rate of 20 mL / min until a pH of 8 or higher.
  • Precursor 1 part which becomes a nucleus of CZ
  • solution 3 a solution obtained by dissolving Ce nitrate hexahydrate or Ce chloride heptahydrate with pure water (referred to as “solution 3”: ceria).
  • the phase separation part (partly reacts with the previous CZ nucleus to form a solid solution)) is added and mixed so that the solid content mass of the solution 3 is 5% by mass with respect to the solid content mass of the precursor 1
  • ammonia water or an aqueous Na hydroxide solution was added dropwise at a liquid feed rate of 20 mL / min until the pH reached 8 or more to obtain a hydroxide (precursor 2).
  • the process of filtering the precursor 2, dispersing the residue in pure water, and filtering again is repeated 4 to 5 times, and then the obtained residue is dried at 120 ° C. all day and night, and pulverized to 100 mesh or less. And then calcined in the atmosphere at 800 ° C. for 5 hours to obtain a ceria phase-separated CZ powder.
  • cerium: zirconium (molar ratio) of the obtained ceria phase-separated CZ powder was 30:70.
  • Example 2 Regarding the method for preparing the blended ceria phase-separated CeO 2 —ZrO 2 composite oxide, the amount of the solution 3 added to the aqueous solution in which the precursor 1 was dispersed was changed. That is, the ceria phase separation ratio in the ceria phase-separated CeO 2 —ZrO 2 composite oxide is adjusted by adjusting the solid content mass of the solution 3 to 10 to 50% by mass with respect to the solid content mass of the precursor 1.
  • a ceria phase-separated CeO 2 —ZrO 2 -based composite oxide was obtained in the same manner as in Example 1 except that it was changed. Further, a catalyst (sample) was produced in the same manner as in Example 1 except that the ceria phase-separated CeO 2 —ZrO 2 composite oxide produced in this way was used.
  • Example 1 Regarding the method for preparing the blended ceria phase-separated CeO 2 —ZrO 2 composite oxide, the amount of the solution 3 added to the aqueous solution in which the precursor 1 was dispersed was changed. That is, the solid content mass of the solution 3 with respect to the solid content mass of the precursor 1 was adjusted and added so that it might become 0 mass%. That is, a catalyst (sample) was prepared in the same manner as in Example 1 except that the precursor 1 was directly subjected to the filtration step without adding the solution 3.
  • phase-separated CZ means a ceria phase-separated CeO 2 —ZrO 2 -based composite oxide, that is, a fluorite-type ceria-zirconia composite oxide containing phase-separated ceria
  • the “addition amount of the phase separation CZ” in the lower layer catalyst structure is the content of the phase separation CZ in the lower layer support material
  • “Py-CZ” means the pyrochlore type ceria-zirconia composite oxide
  • Fluorite CZ means a fluorite-type ceria-zirconia composite oxide containing no phase-separated ceria.
  • “Lower layer supporting material” means a material excluding an active component (for example, Pd) among materials constituting the lower layer, and “lower layer supporting material total mass” means a total amount of these lower layer supporting materials. is there.
  • “Upper layer supporting material” means a material excluding active components (for example, Pt, Rh, etc.) among materials constituting the upper layer, and “upper layer supporting material total mass” means the total amount of these upper layer supporting materials. Meaning. Further, the amount of each material indicates the content unless otherwise specified.
  • the numerical value in () in the table means mass% with respect to the total mass of each layer supporting material.
  • the numerical value in () of the added amount of PdRh or Pt means the mass part of the supported amount of these active ingredients with respect to the total mass of each layer supporting material 100 mass
  • the numerical value in () of the Pd supported amount of each constituent material is , Means a mass part of the amount of Pd supported with respect to 100 parts by mass of each constituent material. The same applies to the tables described later.
  • Example 1 ⁇ Exhaust gas treatment performance test> Install the catalyst (sample) obtained in Examples and Comparative Examples so that the exhaust gas flows along the cell direction of the honeycomb substrate, drive the engine under the following durability conditions, and after the honeycomb catalyst flows by the following measurement method The amount of exhaust gas component was measured. And in the table
  • Example 9-12 Based on Example 4 with the highest evaluation among Examples 1-8 above, the “addition amount of phase-separated CZ” and “inorganic porous Al 2 O 3 ” were changed as shown in Table 2 for comparison. did. Otherwise, a catalyst (sample) was prepared in the same manner as in Example 4.
  • the content of the ceria phase-separated CeO 2 —ZrO 2 -based composite oxide (phase-separated CZ) with respect to 100 parts by mass of the lower layer supporting material is preferably 55 to 85 parts by mass.
  • Example 13-16 Using Example 4 as a reference, a pyrochlore-type ceria-zirconia composite oxide (Py-CZ) was blended and compared.
  • a pyrochlore type ceria-zirconia composite oxide (Py-CZ) is blended, and a ceria phase-separated CeO 2 —ZrO 2 composite oxide and a pyrochlore type CeO 2 —ZrO 2 are mixed.
  • the Pd-containing slurry for lower layer formation was obtained in the same manner as in Example 4 except that the blending amount of both was changed as shown in Table 5 so that the total amount with the system composite oxide was 69.4% by mass. . Except for this point, a catalyst (sample) was prepared in the same manner as in Example 4.
  • the ceria phase-separated CeO 2 —ZrO 2 -based composite oxide (“phase-separated CZ” in the table) and the pyrochlore-type CeO
  • the mass ratio with the 2- ZrO 2 composite oxide (“Py-CZ” in the table) is 20:50 to 65: 5, particularly 35:35 to 65: 5, and particularly 35:35 to 53:17. It was found that it is preferable to contain a pyrochlore-type CeO 2 —ZrO 2 -based composite oxide so that
  • Example 17 A catalyst was prepared in the same manner as in Example 14 except that the upper layer was combined with pyrochlore-type ceria-zirconia composite oxide (Py-CZ).
  • Example 18-20 A catalyst (sample) was prepared in the same manner as in Example 13 except that the total mass of the lower layer supporting material in Example 13 was changed as shown in Table 9.
  • the total mass of the lower layer supporting material was preferably 110 to 220 g / L, and more preferably 140 g / L or more or 180 g / L or more.
  • Example 21 Ceria phase separation type CeO 2 -ZrO 2 -based composite oxide 100 parts by weight, was added to the Pd nitrate solution corresponding to 2.1 mass parts in terms of a Pd metal, ceria component phase type CeO 2 -ZrO 2 -based composite oxide was loaded with Pd to obtain a phase-separated CZ / Pd-containing slurry. 100 parts by mass of pyrochlore-type CeO 2 —ZrO 2 composite oxide is added to a Pd nitrate solution equivalent to 0.2 parts by mass in terms of Pd metal, and Pd is supported on the pyrochlore-type CeO 2 —ZrO 2 composite oxide.
  • the above-mentioned phase-separated CZ ⁇ Pd-containing slurry, Py-CZ ⁇ Pd-containing slurry and inorganic porous Al 2 O 3 ⁇ Pd-containing slurry are used as solid content mass. They were mixed at a mass ratio of 65/180, 60/180, and 45/180, respectively, and an inorganic binder was added at a mass ratio of 10/180 to the mixed slurry to obtain a Pd-containing slurry for lower layer formation. About a point other than this, it carried out similarly to Example 4, and produced the catalyst (sample).
  • Example 22-25 As shown in Table 11, except that the amount of Pd supported on the ceria phase-separated CeO 2 —ZrO 2 composite oxide and the amount of Pd supported on the pyrochlore CeO 2 —ZrO 2 composite oxide were changed.
  • a catalyst (sample) was prepared in the same manner as in Example 21.
  • the supported amount of Pd with respect to the ceria phase-separated CeO 2 —ZrO 2 composite oxide is 0.3 parts by mass or more, particularly 0.7 to 2.1 parts by mass, and of these, 1.0 It was found that the content was preferably -2.1 parts by mass, and more preferably 1.3-2.1 parts by mass.
  • the supported amount of Pd with respect to the pyrochlore-type CeO 2 —ZrO 2 -based composite oxide (100 parts by mass) is 0.2 parts by mass or more, particularly 0.2 to 1.7 parts by mass, and among these, 0.2 to 1 It was found that the content was preferably 3 parts by mass, and more preferably 0.2 to 1.0 part by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 セリア-ジルコニア複合酸化物を含有するOSC材に関し、低温特性を高めて、エンジンスタート時においても優れたOSC能を発揮し、優れた排ガス浄化性を発揮し得る、新たな排気ガス用触媒担体を提供する。 蛍石型セリア-ジルコニア複合酸化物と、該蛍石型セリア-ジルコニア複合酸化物から分相化してなるセリアとを含有する排気ガス用触媒担体を提案する。

Description

排気ガス用触媒担体及び排ガス浄化触媒
 本発明は、内燃機関から排出される排気ガスを浄化するために用いることができる排ガス浄化触媒、並びに、酸素ストレージ能(OSC:Oxygen Storage Capacity)を有する排気ガス用触媒担体(本発明においては「OSC材」とも称する)に関する。
 ガソリンを燃料とする自動車の排気ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれる。前記炭化水素(HC)は酸化して水と二酸化炭素に転化させ、前記一酸化炭素(CO)は酸化して二酸化炭素に転化させ、前記窒素酸化物(NOx)は還元して窒素に転化させ、それぞれの有害成分を触媒で浄化する必要がある。
 このような排気ガスを処理するための触媒(以下「排ガス浄化触媒」と称する)として、CO、HC及びNOxを酸化還元することができる三元触媒(Three way catalysts:TWC)が用いられている。
 このような三元触媒としては、高い比表面積を有する耐火性酸化物多孔質体、例えば高い比表面積を有するアルミナ多孔質体に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造で出来ているモノリス型(monolithic)基材に担持したり、或いは、耐火性粒子に担持したりしたものが知られている。
 三元触媒において、貴金属は、排気ガス中の炭化水素を酸化して二酸化炭素と水に変換し、一酸化炭素を酸化して二酸化炭素に変換する一方、窒素酸化物を窒素まで還元する機能を有しており、この両反応に対する触媒作用を同時に有効に生じさせるためには、燃料と空気の比(空燃比)を一定に(理論空燃比に)保つのが好ましい。
 自動車等の内燃機関は、加速、減速、低速走行、高速走行等の運転状況に応じて空燃比は大きく変化するため、酸素センサーを用いてエンジンの作動条件によって変動する空燃比(A/F)を一定に制御している。しかし、このように空燃比(A/F)を制御するだけでは、触媒が十分に浄化触媒性能を発揮することができないため、触媒自身にも空燃比(A/F)を制御する作用が求められる。そこで、空燃比の変化に起因して発生する触媒の浄化性能の低下を触媒自体の化学的作用により防止する目的で、触媒活性成分である貴金属に助触媒を加えた触媒が用いられている。
 このような助触媒として、還元雰囲気では酸素を放出し、酸化雰囲気では酸素を吸収する酸素ストレージ能(OSC:Oxygen Storage Capacity)を有する助触媒(OSC材)が知られている。例えばセリア(酸化セリウム、CeO2)や、セリア-ジルコニア複合酸化物などが、酸素ストレージ能を有するOSC材として知られている。
 セリアは、価数変化(3価⇔4価)に伴い、酸素の授受特性が発現するが、ジルコニアを固溶することで、セリアの価数変化をより促進されるため、セリア-ジルコニア複合酸化物を用いた技術は、最近の排ガス浄化触媒の主流技術として採用されている。
 セリア-ジルコニア複合酸化物に関しては、例えば特許文献1(特開2005-296735号公報)には、セリア-ジルコニア複合酸化物を含有する担体上に酸化鉄を担持してなる触媒が開示されている。
 また、特許文献2(特開2004-160433号公報)には、セリア、ジルコニア、アルミニウム、チタン及びマンガンからなる群より選択される少なくとも1種の金属と、鉄との複合酸化物からなる触媒が開示されている。
 特許文献3(特開2008-18322号公報)には、酸化鉄がセリア-ジルコニア複合酸化物に分散して少なくとも部分的に固溶してなる構成の触媒が開示されている。
 特許文献4(特開2009-84061号公報)には、大気中、1000℃の温度条件で5時間加熱後にパイロクロア相型の規則配列相が50%以上残存しているセリア-ジルコニア系複合酸化物が開示されている。
 さらに特許文献5(特開2011-219329号公報)には、セリア及びジルコニアの複合酸化物を含むセリア-ジルコニア系複合酸化物であって、前記複合酸化物におけるセリウムとジルコニウムとの含有比率がモル比([セリウム]:[ジルコニウム])で43:57~48:52の範囲にあり、セリアの分相を抑制してなるセリア-ジルコニア系複合酸化物、すなわち蛍石型セリア-ジルコニア複合酸化物と、パイロクロア型セリア-ジルコニア複合酸化物とを含有するOSC材が開示されている。
特開2005-296735号公報 特開2004-160433号公報 特開2008-18322号公報 特開2009-84061号公報 特開2011-219329号公報
 自動車に関して言えば、定常走行時においては、触媒の温度は500~600℃程度に維持されるため、セリア-ジルコニア複合酸化物の酸素授受能力も発現しやすい。しかし、エンジン始動直後は触媒の温度が低いため、セリア-ジルコニア複合酸化物が活性化しにくい(酸素授受特性が低い)ことから、有効に排ガス浄化性能を発揮するのが難しいとされている。
 しかしながら近年、燃料節約や排出ガス削減のため、駐停車や信号待ちなどの間にエンジンを停止させる停車時エンジン停止機構(アイドリングストップ機構)が採用されるなど、時代背景的にみても、低温特性、言い換えるならば、エンジンスタート時のOSC能及び排ガス浄化性をさらに高めることが求められている。
 そこで本発明の目的は、セリア-ジルコニア複合酸化物を含有するOSC材に関し、低温特性を高めて、エンジンスタート時においても優れたOSC能を発揮し、優れた排ガス浄化性を発揮し得る、新たな排気ガス用触媒担体並びに排ガス用触媒を提供することにある。
 本発明は、蛍石型セリア-ジルコニア複合酸化物と、該蛍石型セリア-ジルコニア複合酸化物から分相化してなるセリアとを含有する排気ガス用触媒担体を提案する。
 本発明が提案する排気ガス用触媒担体は、OSC材としての低温特性を高めることができ、エンジンスタート時において優れたOSC能を発揮することができ、優れた排ガス浄化性能を発揮することができる。
 次に、本発明を実施するための形態例について説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
<本触媒担体>
 本実施形態の一例に係る触媒担体(「本触媒担体」と称する)は、蛍石型セリア-ジルコニア複合酸化物と、該蛍石型セリア-ジルコニア複合酸化物から分相化してなるセリアとを含有するOSC材(「本OSC材」と称する)を含む触媒担体である。
 なお、前記「蛍石型セリア-ジルコニア複合酸化物」とは、セリアが分相化していない固溶相としての蛍石型セリア-ジルコニア複合酸化物(CeZr1-x(式中:0<X<1))の意味である。
 また、「セリアが分相化している」とは、X線回折測定において、2θ=28.5°に帰属する回折ピークと、2θ=29.0~30.0°との間に帰属する回折ピークの両方が存在している状態である。
 本OSC材において、蛍石型セリア-ジルコニア複合酸化物に対する分相化してなるセリアの含有割合に関しては、X線回折測定により得られるCuKα線を用いたX線回折パターンから求められる2θ=29.0~30.0°の間の回折ピーク(すなわち、2θ=29~30°の間にピークトップをもつ回折ピーク)に対する、2θ=28.5°の回折ピークのピーク面積比(以下「ピーク面積比A」と称する)を指標として示すことができる。
 すなわち、2θ=28.5°の回折ピークは、分相化してなるセリア(CeO)の(111)面に帰属し、2θ=29.0~30.0°の間の回折ピークは、固溶相としての蛍石型セリア-ジルコニア複合酸化物(CeZr1-x(式中:0<X<1))の(111)面に帰属するため、前記ピーク面積比Aは、蛍石型セリア-ジルコニア複合酸化物に対する分相化してなるセリアの含有割合の指標として示すことができる。よって、本発明では、前記ピーク面積比Aを「分相率」とも称する。
 そして、本OSC材におけるピーク面積比Aは、0.05~1.00の範囲であれば、低温域において優れたOSC能を発揮することができ、優れた排ガス浄化性能を発揮することができる。
 よって、かかる観点から、本OSC材における前記ピーク面積比Aは、0.05~0.50であるのがより一層好ましく、中でも0.30以下、中でも特に0.10以上或いは0.25以下、その中でも0.15以上或いは0.25以下であるのがさらに好ましい。
 本OSC材において、セリウムとジルコニウムの含有比率は、蛍石型セリア-ジルコニア複合酸化物ができる範囲であれば特に限定するものではない。目安としては、セリウムとジルコニウムの含有比率(モル比)で10:90~70:30を挙げることができ、好ましくは10:90~50:50である。セリウムとジルコニウムの含有比率が10:90~50:50(酸化物の質量比率に換算すると13.4:86.6~58.3:41.7)の範囲内であれば、耐熱性を保持しつつ、触媒活性成分、特にパラジウム(Pd)の凝集を抑制することができるから好ましい。
 本OSC材は、粒子状であっても、他の形状であってもよい。
(本OSC材の製法)
 本OSC材は、蛍石型セリア-ジルコニア複合酸化物を製造する過程で、それから分相化してなるセリアを含有することが重要であり、イメージとしては、蛍石型セリア-ジルコニア複合酸化物の固溶体である粒子の表面に、分相化してなるセリアが存在している状態である。よって、蛍石型セリア-ジルコニア複合酸化物と、セリア粒子との混合物とは異なるものである。
 本OSC材の製造方法は、特に限定するものではない。例えばオキシ硝酸Zr二水和物若しくはオキシ塩化Zr八水和物を純水で溶解させて得た溶液(「溶液1」と称する)と、硝酸Ce六水和物若しくは塩化Ce七水和物を純水で溶解させて得た溶液(「溶液2」と称する)とを混合した溶液に、アンモニア水若しくは水酸化Na水溶液を、pHが8以上になるまで10~110mL/minの速度で滴下させて水酸化物(前駆体1:CZの核となる部分)を得る。
 この前駆体1が分散した水溶液を40~80℃に加熱させたところに、硝酸Ce六水和物若しくは塩化Ce七水和物を純水で溶解させて得た溶液(「溶液3」と称する:セリア分相部分(一部は先のCZ核と反応して固溶する))を、前駆体1の固形分質量に対して溶液3の固形分質量が5~50質量%となるように加えて混合し、さらにアンモニア水若しくは水酸化Na水溶液をpHが8以上になるまで70~110mL/minの送液速度で滴下させて水酸化物(前駆体2)を得る。
 この前駆体2をろ過し、残渣を純水中に分散させ、再びろ過する工程を4~5回繰り返した後、得られた残渣を110~150℃で一昼夜乾燥させ、100メッシュ以下に粉砕処理を施した後、大気中で650~850℃にて1時間~10時間焼成してセリア分相型CZ粉末、すなわち本OSC材を得ることができる。
 この際、上記前駆体1(CZの核となる部分)に加える溶液3(セリア分相部分)の量を調整することでセリアの分相率を調整することができる。また、セリウムとジルコニウムの含有比率(モル比)、焼成温度、焼成時間、滴下速度などを調整することによっても、セリアの分相率を調整することができる。
(パイロクロア型セリア-ジルコニア複合酸化物の混合)
 本触媒担体は、本OSC材のほかに、パイロクロア型セリア-ジルコニア複合酸化物(CeZr)を含有するOSC材を含有するのが好ましい。
 パイロクロア型セリア-ジルコニア複合酸化物を含有することで、低温域におけるOSC能ばかりか、高温域におけるOSC能までも高めることができるから、低温域及び高温域において高い排ガス浄化能を発揮することができる。
 パイロクロア型セリア-ジルコニア複合酸化物は、蛍石型セリア-ジルコニア複合酸化物よりも「-Ce-O-Zr-O-Ce-」の原子配列が規則的にならないと析出しない結晶相であり、この規則性が高いためCeの価数変化がより活性化しやすいと考えられ、本触媒担体の高温域での酸素授受能力をさらに高めることができる。
 この際、パイロクロア型セリア-ジルコニア複合酸化物の含有量に関しては、各触媒層において、例えば後述する触媒層Bにおいて、分相蛍石型セリア-ジルコニア複合酸化物とパイロクロア型セリア-ジルコニア複合酸化物との質量比率が20:50~65:5となるように、パイロクロア型セリア-ジルコニア複合酸化物を含有するのが好ましい。
 かかる割合でパイロクロア型セリア-ジルコニア複合酸化物を含有することにより、OSC材としてより一層優れた高温特性を発揮することができる。
 よって、かかる観点から、蛍石型セリア-ジルコニア複合酸化物とパイロクロア型セリア-ジルコニア複合酸化物との質量比率は20:50~65:5が好ましく、中でも35:35~65:5、その中でも特に35:35~53:17であるのがより好ましい。
 なお、パイロクロア型セリア-ジルコニア複合酸化物は、粒子状であっても、他の形状であってもよい。
<本触媒組成物>
 本実施形態の一例に係る触媒組成物(「本触媒組成物」と称する)は、上記本触媒担体と、触媒活性成分とを含むものであり、必要に応じて、他の触媒担体、バインダー、安定化材などを含むことができる。
(触媒活性成分)
 触媒活性成分としては、例えばパラジウム(Pd)、白金、ロジウム、金、銀、ルテニウム、イリジウム、ニッケル、セリウム、コバルト、銅、オスミウム、ストロンチウム等を挙げることができ、これらのうちの一種又は2種以上の組み合わせを用いることができる。
 中でも好ましくは、パラジウム(Pd)、白金(Pt)及びロジウム(Rh)であり、これらのうちの一種又は2種以上の組み合わせを用いるのが好ましい。
(他の触媒担体)
 本触媒組成物は、必要に応じて、本触媒担体のほかに、他の触媒担体を含むのが好ましい。
 他の触媒担体としては、無機多孔質、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質体、より具体的には、例えばアルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート類、アルミナ-ジルコニア、アルミナ-クロミアおよびアルミナ-セリアから選択される化合物からなる多孔質体などの他の担体成分を含んでいてもよい。これらのうちの一種又は2種以上の組み合わせを用いることができる。
(安定剤)
 本触媒組成物は、必要に応じて、安定剤を含むのが好ましい。
 安定剤としては、例えばアルカリ土類金属やアルカリ金属を挙げることができる。中でも、マグネシウム、バリウム、ホウ素、トリウム、ハフニウム、ケイ素、カルシウムおよびストロンチウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。その中でも、PdOxが還元される温度が一番高い、つまり還元されにくいという観点から、バリウムが好ましい。
(バインダー)
 本触媒組成物は、必要に応じて、バインダーを含むのが好ましい。
 バインダ-成分としては、無機系バインダー、例えばアルミナゾル等の水溶性溶液を使用することができる。
 本触媒組成物は、必要に応じて他の成分を含有することができる。
<本触媒>
 本実施形態の一例に係る触媒(「本触媒」と称する)は、ペレット状などの適宜形状に成形され、単独で触媒として用いることもできるし、また、セラミックス又は金属材料からなる基材に担持された形態として用いることもできる。
 例えば、本触媒組成物、具体的には、触媒活性成分、本触媒担体、他の触媒担体、安定化材、バインダー及び水を混合・撹拌してスラリーとし、得られたスラリーを、例えばセラミックハニカム体などの基材にウオッシュコートし、これを焼成して、基材表面に触媒層を形成するようにして製造することができる。
(基材)
 上記の基材の材質としては、セラミックス等の耐火性材料や金属材料を挙げることができる。セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト-アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ-シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
 基材の形状は、ハニカム状、ペレット状、球状を挙げることができる。
 ハニカム材料としては、例えばセラミックス等のコージェライト質のものを用いることができる。また、フェライト系ステンレス等の金属材料からなるハニカムを用いることもできる。
 ハニカム形状の基材を用いる場合、例えば基材内部を流体が流通するように、基材内部に平行で微細な気体流通路、すなわちチャンネルを多数有するモノリス型基材を使用することができる。この際、モノリス型基材の各チャンネル内壁表面に、触媒組成物をウォッシュコートなどによってコートして触媒層を形成することができる。
(触媒層)
 本触媒組成物を用いて形成する触媒層は、単層であっても、二層以上の多層であってもよい。また、本触媒組成物を用いて形成する触媒層以外の触媒層を備えていてもよい。
 「触媒層」とは、ガス吸着作用乃至ガス浄化触媒作用を有する層を意味し、触媒活性成分を含有していればガス浄化触媒作用を有するから該当するが、必ずしも触媒活性成分を含有していなくてもよい。
 触媒層を二層以上の多層に形成する場合、上下方向に二層以上の触媒層を積層してもよいし、また、排気ガスの流通方向に二層以上配列して触媒層を形成してもよい。
 これらの際、触媒層と触媒層の間に、触媒層ではない層、例えば多孔質耐火性無機酸化物粉体からなる層や、多孔質耐火性無機酸化物粉体及び助触媒成分からなる層などの層が存在していてもよい。
 本触媒の好ましい構成例としては、Pt又はRh又はこれら両方を含有する触媒層Aと、Pd及び本触媒担体を含有する触媒層Bと、を備えた構成のものを挙げることができる。
 この際、排気ガスの流通方向において、触媒層B、触媒層Aの順に設けてなる構成のものを挙げることもできるし、又、基材上に触媒層B、触媒層Aの順に設けてなる構成のものを挙げることもできる。
 基材上に触媒層B、触媒層Aの順に設けてなる構成の触媒に関しては、下層である触媒層Bが主に酸素の授受を負担すると共に、優れたHCの浄化性能を発揮し、上層である触媒層Aが、触媒層B中のPdの被毒を抑制すると共に、優れたCO及びNOxの浄化性能を発揮する。
 触媒層Aの好ましい組成としては、Pt又はRh又はこれら両方のほか、無機多孔質体、必要に応じてOSC材などを含有するように形成することができる。
 触媒層Bの好ましい組成としては、Pdのほか、本触媒担体、必要に応じて無機多孔質体などを含有するように形成することができる。
 この際、触媒層Bにおいては、本OSC材、パイロクロア型セリア-ジルコニア複合酸化物を含有するOSC材を含有する場合には該OSC材、アルミナ等の無機多孔質体のそれぞれにPdが担持されることになる。
 触媒層Bにおいて、セリア分相型CeO2-ZrO2系複合酸化物(100質量部)に対するPdの担持量は0.3質量部以上、特に0.7~2.1質量部、その中でも1.0~2.1質量部であるのが好ましく、その中でも特に1.3~2.1質量部であるのがさらに好ましい。
 触媒層Bにパイロクロア型セリア-ジルコニア複合酸化物を配合する場合には、触媒層B中のパイロクロア型セリア-ジルコニア複合酸化物100質量部に対して、Pdを0.2質量部以上、中でも0.2~1.7質量部、その中でも0.2~1.3質量部、さらに0.2~1.0質量部の割合で含有するのが好ましい。
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
(実施例1)
 セリア分相型CeO2-ZrO2系複合酸化物69.4質量%と、無機多孔質体粉末としてのAl2325.0質量%と、無機系バインダー5.6質量%とを混合して下層担持材料組成物を調製し、これら下層担持材料組成物の総質量100質量部に対して、Pdメタル換算で1.2質量部に相当する量の硝酸Pd溶液を前記下層担持材料組成物に添加し、下層形成用Pd含有スラリーを得た。
 他方、ホタル石型CeO2-ZrO2系複合酸化物45.0質量%と、無機多孔質体粉末としてのAl2345.0質量%と、無機系バインダー7.0質量%とを混合して上層担持材料組成物を調製し、これら上層担持材料組成物の総質量100質量部に対して、Ptメタル換算で0.3質量部に相当する量の硝酸Pt溶液と、同じくRhメタル換算で0.3質量部に相当する量の硝酸Rh溶液とを、前記上層担持材料組成物に添加し、上層形成用Pt・Rh含有スラリーを得た。
 そして、前記下層形成用Pd含有スラリーを、Φ93mm×L95mm-900セルのコージェライト製ハニカム基材(フロースルー型担体、645cc、セル密度:900cell/inch、セル壁の厚み:2.5mil)に塗布し、次いで乾燥及び500℃で1時間焼成処理を施して下層を形成した。この際、下層におけるPd塗布量は56.7g/cft、ウォッシュコート量は182g/Lであった。
 次に、上記の如く下層を塗布形成したコージェライト製ハニカム基材の該下層上に、前記上層形成用Pt・Rh含有スラリーを塗布し、次いで乾燥及び500℃で1時間焼成処理を施して上層を形成し、触媒(サンプル)を作製した。この際、上層におけるPt塗布量は5.7g/cft、Rh塗布量は5.7g/cft、ウォッシュコート量は70.4g/Lであった。
 なお、本実施例で使用した上記セリア分相型CeO2-ZrO2系複合酸化物は、次のように作製した。この際、前駆体1と溶液3の質量比を調整して、セリアの分相率を調整した。
 セリアの分相率は、X線回折測定により得られるCuKα線を用いたX線回折パターンから求められる2θ=29.5°の回折ピークに対する、2θ=28.5°の回折ピークのピーク面積比の意味である。
 オキシ硝酸Zr二水和物もしくはオキシ塩化Zr八水和物を純水で溶解させて得た溶液(「溶液1」と称する)および硝酸Ce六水和物もしくは塩化Ce七水和物を純水で溶解させて得た溶液(「溶液2」と称する)を混合した溶液に、アンモニア水もしくは水酸化Na水溶液をpHが8以上になるまで20mL/minの送液速度で滴下させて水酸化物(前駆体1:CZの核となる部分)を得た。
 この前駆体1が分散した水溶液を55℃に加熱させたところに、硝酸Ce六水和物もしくは塩化Ce七水和物を純水で溶解させて得た溶液(「溶液3」と称する:セリア分相部分(一部は先のCZ核と反応して固溶する))を、前駆体1の固形分質量に対して溶液3の固形分質量が5質量%となるように加えて混合し、さらにアンモニア水もしくは水酸化Na水溶液をpHが8以上になるまで20mL/minの送液速度で滴下させて水酸化物(前駆体2)を得た。
 この前駆体2をろ過し、残渣を純水中に分散させ、再びろ過する工程を4~5回繰り返した後、得られた残渣を120℃で一昼夜乾燥させ、100メッシュ以下に粉砕処理を施した後、大気中で800℃にて5時間焼成してセリア分相型CZ粉末を得た。なお、得られたセリア分相型CZ粉末のセリウム:ジルコニウム(モル比)は30:70であった。
(実施例2~8)
 配合したセリア分相型CeO2-ZrO2系複合酸化物の作製方法に関して、前駆体1が分散した水溶液に対して溶液3を加える量を変更した。すなわち、前駆体1の固形分質量に対する溶液3の固形分質量が10~50質量%となるように調整して、セリア分相型CeO2-ZrO2系複合酸化物におけるセリアの分相率を変化させた以外、実施例1と同様にセリア分相型CeO2-ZrO2系複合酸化物を得た。また、このようにして作製したセリア分相型CeO2-ZrO2系複合酸化物用いた以外、実施例1と同様に、触媒(サンプル)を作製した。
(比較例1)
 配合したセリア分相型CeO2-ZrO2系複合酸化物の作製方法に関して、前駆体1が分散した水溶液に対して溶液3を加える量を変更した。すなわち、前駆体1の固形分質量に対する溶液3の固形分質量が0質量%となるように調整して加えた。つまり、溶液3を添加することなく、前駆体1を直接、ろ過工程に供した以外、実施例1と同様に、触媒(サンプル)を作製した。
Figure JPOXMLDOC01-appb-T000001
 表1において、「分相CZ」とは、セリア分相型CeO2-ZrO2系複合酸化物、すなわち分相化してなるセリアを含有した蛍石型セリア-ジルコニア複合酸化物の意味であり、下層触媒構成における「分相CZの添加量」とは、下層担持材料中の分相CZの含有量であり、「Py-CZ」とは、パイロクロア型セリア-ジルコニア複合酸化物の意味であり、「蛍石CZ」とは、分相化してなるセリアを含有しない蛍石型セリア-ジルコニア複合酸化物の意味である。
 「下層担持材料」とは、下層を構成する材料のうち活性成分(例えばPdなど)を除いた材料の意味であり、「下層担持材料総質量」とはそれら下層担持材料の合計量の意味である。
 「上層担持材料」とは、上層を構成する材料のうち活性成分(例えばPt、Rhなど)を除いた材料の意味であり、「上層担持材料総質量」とはそれら上層担持材料の合計量の意味である。
 また、各材料の量は、特に記載しない限り、含有量を示すものである。
 表中の( )内の数値は各層担持材料総質量に対する質量%を意味する。但し、PdRh又はPt添加量の( )内の数値は、各層担持材料総質量100質量に対するこれら活性成分の担持量の質量部を意味し、各構成材料のPd担持量の( )内の数値は、各構成材料100質量部に対するPd担持量の質量部を意味する。
 これらは、後述する表においても同様である。
<排ガス処理性能試験>
 実施例・比較例で得た触媒(サンプル)を、ハニカム基材のセル方向に沿って排ガスが流通するように設置し、下記耐久条件下でエンジンを駆動させ、下記測定方法によりハニカム触媒流通後の排ガス成分量を測定した。そして、表中には、各実施例・比較例の排ガス成分量を、比較例1の排ガス成分量を100とした場合の相対値で示した。
(耐久条件)
 5~10万キロ走行を想定した劣化処理として、次のような耐久条件を課した。
・耐久用エンジン:乗用NA 2L ガソリンエンジン
・使用ガソリン:市販レギュラーガソリン
・耐久温度・時間:1,000℃×40hrs+650℃×10hrs
・触媒前段空燃比変動:13.5(10sec)→14.6(20sec)→15.5(10sec)の繰り返し
(測定条件)
・評価車輌:軽乗用ガソリン車
・使用ガソリン:認証試験用燃料
・測定モード:JC08Coldモード+JC08Hotモード(:自動車排気ガスの浄化能力を評価する際に用いられる国土交通省が定めた走行テストモード)
・排気ガスの分析機器:HORIBA社製 MEXA7000
・触媒の配置:エンジン直下位置
Figure JPOXMLDOC01-appb-T000002
 蛍石型セリア-ジルコニア複合酸化物をOSC材として使用した比較例1に比べ、セリアが分相化してなる蛍石型セリア-ジルコニア複合酸化物をOSC材として使用した場合(実施例1-8)の方が、OSC材としての低温特性を高めることができ、エンジンスタート時において優れたOSC能を発揮することが分かった。
 また、セリア分相型CeO2-ZrO2系複合酸化物(分相CZ)におけるセリアの分相率は、0.05~1.00、中でも0.05~0.50、中でも特に0.30以下であるのが好ましく、その中でも0.10以上或いは0.25以下、特に0.15以上或いは0.25以下がさらに好ましいことが分かった。
(実施例9-12)
 上記実施例1-8の中で最も評価が高かった実施例4を基準として、「分相CZの添加量」と「無機多孔質Al23」を表2のように変更して比較検討した。それ以外の点では、実施例4と同様に触媒(サンプル)を作製した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 
 この結果、下層担持材料総質量100質量部に対するセリア分相型CeO2-ZrO2系複合酸化物(分相CZ)の含有量は55~85質量部であるのが好ましいことが分かった。
(実施例13-16)
 実施例4を基準とし、これにパイロクロア型セリア-ジルコニア複合酸化物(Py-CZ)を配合して比較検討した。
 下層形成用Pd含有スラリーを作製する際、パイロクロア型セリア-ジルコニア複合酸化物(Py-CZ)を配合すると共に、セリア分相型CeO2-ZrO2系複合酸化物とパイロクロア型CeO2-ZrO2系複合酸化物との合計が69.4質量%となるように、両者の配合量を表5に示したように変更した以外は、実施例4と同様に下層形成用Pd含有スラリーを得た。また、この点以外については、実施例4と同様に触媒(サンプル)を作製した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 この結果、セリア分相型CeO2-ZrO2系複合酸化物にパイロクロア型CeO2-ZrO2系複合酸化物を加えることで、OSC材としての低温特性を高めることができるばかりか、OSC材としての高温特性も高めることができることが分かった。
 この際、パイロクロア型CeO2-ZrO2系複合酸化物の含有量に関しては、下層において、セリア分相型CeO2-ZrO2系複合酸化物(表中の「分相CZ」)とパイロクロア型CeO2-ZrO2系複合酸化物(表中の「Py-CZ」)との質量比率が20:50~65:5、中でも35:35~65:5、その中でも特に35:35~53:17となるように、パイロクロア型CeO2-ZrO2系複合酸化物を含有させるのが好ましいことが分かった。
(実施例17)
 上層にも、パイロクロア型セリア-ジルコニア複合酸化物(Py-CZ)を配合した点を除いて、実施例14と同様に触媒を作製した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 パイロクロア型セリア-ジルコニア複合酸化物(Py-CZ)を上層に配合しても、あまり効果にOSC材としての影響はないため、パイロクロア型セリア-ジルコニア複合酸化物(Py-CZ)を上層に配合しても、配合しなくてもよいことが分かった。
(実施例18-20)
 上記実施例13において、下層担持材料総質量を表9のように変更した以外の点は、実施例13と同様に触媒(サンプル)を作製した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 この結果、下層担持材料総質量は、110~220g/Lであるのが好ましく、中でも140g/L以上或いは180g/L以上であるのがさらに好ましいことが分かった。
(実施例21)
 セリア分相型CeO2-ZrO2系複合酸化物100質量部を、Pdメタル換算で2.1質量部に相当する硝酸Pd溶液に添加し、セリア分相型CeO2-ZrO2系複合酸化物にPdを担持させて、分相CZ・Pd含有スラリーを得た。
 パイロクロア型CeO2-ZrO2系複合酸化物100質量部を、Pdメタル換算で0.2質量部に相当する硝酸Pd溶液に添加し、パイロクロア型CeO2-ZrO2系複合酸化物にPdを担持させて、Py-CZ・Pd含有スラリーを得た。
 また、無機多孔質体粉末としての無機多孔質Al23100質量部を、Pdメタル換算で1.2質量部に相当する硝酸Pd溶液に添加し、無機多孔質Al23にPdを担持させて、Al23・Pd含有スラリーを得た。
 そして、下層担持材料総質量(180g/L)に対して、上記分相CZ・Pd含有スラリー、Py-CZ・Pd含有スラリー及び無機多孔質Al23・Pd含有スラリーを、固形分質量としてそれぞれ65/180、60/180、45/180の質量割合で混合し、さらにこの混合スラリーに対して無機系バインダーを10/180の質量割合で添加し、下層形成用Pd含有スラリーを得た。これ以外の点については、実施例4と同様にして触媒(サンプル)を作製した。
(実施例22-25)
 表11のように、セリア分相型CeO2-ZrO2系複合酸化物に対するPdの担持量、並びに、パイロクロア型CeO2-ZrO2系複合酸化物に対するPdの担持量を変化させた以外、実施例21と同様にして触媒(サンプル)を作製した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 この結果、セリア分相型CeO2-ZrO2系複合酸化物(100質量部)に対するPdの担持量は0.3質量部以上、特に0.7~2.1質量部、その中でも1.0~2.1質量部であるのが好ましく、その中でも特に1.3~2.1質量部であるのがさらに好ましいことが分かった。
 また、パイロクロア型CeO2-ZrO2系複合酸化物(100質量部)に対するPdの担持量は、0.2質量部以上、中でも0.2~1.7質量部、その中でも0.2~1.3質量部、さらに0.2~1.0質量部であるのが好ましいことが分かった。

Claims (7)

  1.  蛍石型セリア-ジルコニア複合酸化物と、該蛍石型セリア-ジルコニア複合酸化物から分相化してなるセリアとを含有する排気ガス用触媒担体。
  2.  X線回折測定により得られるCuKα線を用いたX線回折パターンから求められる2θ=29.0~30.0°の間の回折ピークに対する、2θ=28.5°の回折ピークのピーク面積比が0.05~1.00であることを特徴とする請求項1記載の排気ガス用触媒担体。
  3.  請求項1又は2に記載の排気ガス用触媒担体と、パイロクロア型セリア-ジルコニア複合酸化物を含有する排気ガス用触媒担体とを含有する排気ガス用触媒担体。
  4.  蛍石型セリア-ジルコニア複合酸化物とパイロクロア型セリア-ジルコニア複合酸化物との質量比率が20:50~65:5であることを特徴とする請求項3に記載の排気ガス用触媒担体。
  5.  Pdと、請求項1~4の何れかの排気ガス用触媒担体と、を含有する触媒組成物。
  6.  Pt又はRh又はこれら両方を含有する触媒層Aと、Pdを含有する触媒層Bとを備えた排ガス浄化触媒において、少なくとも触媒層Bは、請求項1~4の何れかの排気ガス用触媒担体を含有する排ガス浄化触媒。
  7.  蛍石型セリア-ジルコニア複合酸化物と分相化してなるセリアの合計量に対して、Pdを0.3~8.0質量%含有することを特徴とする請求項6に記載の排ガス浄化触媒。
      
PCT/JP2013/069136 2012-11-16 2013-07-12 排気ガス用触媒担体及び排ガス浄化触媒 WO2014076999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/427,802 US9308516B2 (en) 2012-11-16 2013-07-12 Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst
CN201380055125.8A CN104736240B (zh) 2012-11-16 2013-07-12 废气用催化剂载体和废气净化催化剂
EP13854293.1A EP2921226B1 (en) 2012-11-16 2013-07-12 Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-252039 2012-11-16
JP2012252039A JP5502971B1 (ja) 2012-11-16 2012-11-16 排気ガス用触媒担体及び排ガス浄化触媒

Publications (1)

Publication Number Publication Date
WO2014076999A1 true WO2014076999A1 (ja) 2014-05-22

Family

ID=50730924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069136 WO2014076999A1 (ja) 2012-11-16 2013-07-12 排気ガス用触媒担体及び排ガス浄化触媒

Country Status (5)

Country Link
US (1) US9308516B2 (ja)
EP (1) EP2921226B1 (ja)
JP (1) JP5502971B1 (ja)
CN (1) CN104736240B (ja)
WO (1) WO2014076999A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210229A (ja) * 2013-04-18 2014-11-13 三井金属鉱業株式会社 排気ガス浄化用触媒組成物及び排気ガス浄化用触媒
JP2018038999A (ja) * 2016-09-05 2018-03-15 トヨタ自動車株式会社 排ガス浄化用触媒

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460817B2 (ja) 2015-02-04 2019-01-30 株式会社キャタラー 排ガス浄化用触媒
US9616386B2 (en) * 2015-03-23 2017-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, NOx storage-reduction catalyst, and method for purifying exhaust gas
WO2017130623A1 (ja) * 2016-01-28 2017-08-03 株式会社キャタラー Pd担持Zr系複合酸化物
US9868087B2 (en) * 2016-03-31 2018-01-16 Toyota Jidosha Kabushiki Kaisha Core-shell oxide material, method for producing the same, and catalyst and method for purification of exhaust gas using the core-shell oxide material
US10058846B2 (en) * 2016-09-05 2018-08-28 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
JP6701581B2 (ja) * 2017-03-02 2020-05-27 株式会社豊田中央研究所 酸素吸放出材
JP6907890B2 (ja) * 2017-11-01 2021-07-21 トヨタ自動車株式会社 排ガス浄化用触媒
JP7255459B2 (ja) * 2019-11-15 2023-04-11 トヨタ自動車株式会社 排ガス浄化用触媒
US11618008B2 (en) * 2020-10-05 2023-04-04 Ford Global Technologies, Llc Precious group metal on pyrochlore-phase ceria zirconia with superior oxygen storage capacity and TWC performance
WO2024225135A1 (ja) * 2023-04-25 2024-10-31 日立造船株式会社 メタン酸化触媒、メタン酸化触媒の製造方法、および、メタンの酸化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121171A (ja) * 1997-04-09 1999-01-26 Degussa Ag 高い温度安定性を有する酸素貯蔵材料及びその製造方法
JP2004160433A (ja) 2002-01-31 2004-06-10 Toyota Central Res & Dev Lab Inc 金属複合体及び排ガス浄化用触媒と排ガス浄化方法
JP2005296735A (ja) 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc 触媒及び触媒の製造方法
JP2008018322A (ja) 2006-07-12 2008-01-31 Toyota Motor Corp 排ガス浄化触媒及びその製造方法
JP2009084061A (ja) 2007-09-27 2009-04-23 Toyota Central R&D Labs Inc セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
WO2010064497A1 (ja) * 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
JP2011219329A (ja) 2010-04-13 2011-11-04 Toyota Central R&D Labs Inc セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
JP2012187457A (ja) * 2011-03-09 2012-10-04 Tayca Corp 窒素酸化物選択還元触媒とその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU595655B2 (en) * 1986-11-04 1990-04-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for the purification of exhaust gas
JPH0644999B2 (ja) * 1988-04-30 1994-06-15 株式会社豊田中央研究所 排気ガス浄化用触媒
WO2004004899A1 (ja) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. 排ガス浄化用触媒の製造方法
WO2006030763A1 (ja) * 2004-09-16 2006-03-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. セリウム-ジルコニウム系複合酸化物、その製造方法、それを用いた酸素吸蔵放出材料、排気ガス浄化触媒、及び排気ガス浄化方法
US8202819B2 (en) * 2007-02-01 2012-06-19 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system to be used in automobile exhaust gas purification apparatus, exhaust gas purification apparatus using the same and exhaust gas purification method
US8852519B2 (en) * 2009-07-09 2014-10-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst and production process thereof
US8833064B2 (en) * 2009-11-06 2014-09-16 Basf Corporation Small engine layered catalyst article and method of making
JP5567923B2 (ja) * 2010-07-23 2014-08-06 トヨタ自動車株式会社 排ガス浄化用触媒
WO2012105454A1 (ja) * 2011-02-01 2012-08-09 株式会社アイシーティー 排ガス浄化用触媒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121171A (ja) * 1997-04-09 1999-01-26 Degussa Ag 高い温度安定性を有する酸素貯蔵材料及びその製造方法
JP2004160433A (ja) 2002-01-31 2004-06-10 Toyota Central Res & Dev Lab Inc 金属複合体及び排ガス浄化用触媒と排ガス浄化方法
JP2005296735A (ja) 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc 触媒及び触媒の製造方法
JP2008018322A (ja) 2006-07-12 2008-01-31 Toyota Motor Corp 排ガス浄化触媒及びその製造方法
JP2009084061A (ja) 2007-09-27 2009-04-23 Toyota Central R&D Labs Inc セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
WO2010064497A1 (ja) * 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
JP2011219329A (ja) 2010-04-13 2011-11-04 Toyota Central R&D Labs Inc セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
JP2012187457A (ja) * 2011-03-09 2012-10-04 Tayca Corp 窒素酸化物選択還元触媒とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2921226A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210229A (ja) * 2013-04-18 2014-11-13 三井金属鉱業株式会社 排気ガス浄化用触媒組成物及び排気ガス浄化用触媒
US9533290B2 (en) 2013-04-18 2017-01-03 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst
JP2018038999A (ja) * 2016-09-05 2018-03-15 トヨタ自動車株式会社 排ガス浄化用触媒

Also Published As

Publication number Publication date
JP2014100614A (ja) 2014-06-05
EP2921226A1 (en) 2015-09-23
US20150224471A1 (en) 2015-08-13
US9308516B2 (en) 2016-04-12
JP5502971B1 (ja) 2014-05-28
EP2921226A4 (en) 2016-07-20
CN104736240A (zh) 2015-06-24
EP2921226B1 (en) 2017-11-22
CN104736240B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5502971B1 (ja) 排気ガス用触媒担体及び排ガス浄化触媒
KR102536415B1 (ko) 층상 자동차 촉매 복합체
JP4911893B2 (ja) 層状触媒複合体
CA2696004C (en) Catalyst compositions
US8950174B2 (en) Catalysts for gasoline lean burn engines with improved NH3-formation activity
US9242242B2 (en) Catalyst for gasoline lean burn engines with improved NO oxidation activity
JP5921387B2 (ja) 排ガス浄化触媒
JP5816648B2 (ja) 排気ガス浄化用触媒組成物及び排気ガス浄化用触媒
WO2010103870A1 (ja) 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
JP2004508186A (ja) 排気ガス浄化用触媒組成物
EP2611535A1 (en) Catalyst for gasoline lean burn engines with improved no oxidation activity
JP6906624B2 (ja) 酸素吸放出材料、触媒、排ガス浄化システム、および排ガス処理方法
WO2012029051A1 (en) Catalyst for gasoline lean burn engines with improved nh3-formation activity
US9358524B2 (en) Catalyst structure for treating exhaust gas
US20100124523A1 (en) Emissions Treatment Catalysts
JP5992192B2 (ja) パラジウム触媒
JP5897047B2 (ja) 触媒担体及び排ガス浄化用触媒
WO2015064385A1 (ja) 排ガス浄化触媒用担体及び排ガス浄化触媒
JP6216234B2 (ja) 排ガス浄化触媒
WO2014034297A1 (ja) 触媒担体及び排ガス浄化用触媒
US20230330653A1 (en) Three-way conversion catalytic article
JP2024104200A (ja) 排ガス浄化用触媒、及びこれを用いた排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427802

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013854293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013854293

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE