WO2014076971A1 - ポリエステル樹脂組成物とその製造方法、それを含むカメラモジュール - Google Patents
ポリエステル樹脂組成物とその製造方法、それを含むカメラモジュール Download PDFInfo
- Publication number
- WO2014076971A1 WO2014076971A1 PCT/JP2013/006764 JP2013006764W WO2014076971A1 WO 2014076971 A1 WO2014076971 A1 WO 2014076971A1 JP 2013006764 W JP2013006764 W JP 2013006764W WO 2014076971 A1 WO2014076971 A1 WO 2014076971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester resin
- resin composition
- mass
- parts
- copolymer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/016—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
- C08L23/0884—Epoxide containing esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
Definitions
- the present invention relates to a polyester resin composition, a method for producing the same, and a camera module including the same.
- PCT Polycyclohexanedimethylene terephthalate
- PCT has low toughness, it is brittle, and there is a concern that problems may occur in product use.
- Patent Document 3 As a means for improving toughness, a method of adding an olefin-based elastomer having an epoxy group to polyester has been proposed (for example, see Patent Document 3). In addition, as a means for improving toughness, a method of combining the two techniques for improving the retention stability has been proposed (see, for example, Patent Documents 1 and 2).
- resin materials when used for electrical / electronic equipment component applications, they are generally used as an indicator of resin flame retardancy, according to the flame retardant standard (UL94) of US Underwriters Laboratories (UL). It is required to satisfy flame retardancy (V-0).
- the UL94 standard includes not only the combustion time of the resin during combustion, but also the dripping of fire type (drip). If the resin drip during flame contact in the vertical ignition test, the specified amount installed at the bottom of the test piece It is required that cotton does not ignite by drip. It is required to have good mechanical characteristics while satisfying such high flame retardancy.
- a method of adding a graft copolymer obtained by reacting an olefin-glycidyl (meth) acrylate copolymer with a (meth) acrylic acid ester monomer and an olefin resin to flame-retardant PCT (For example, refer patent document 4), the method (for example refer patent document 2) etc. which add a polyfunctional epoxy compound and an olefin type elastomer are proposed.
- a camera module is a preferred example of an electrical / electronic device part using a resin such as PCT.
- the camera module is an electronic component having a camera function in which a lens is assembled on a CCD (charge coupled device) / CMOS (complementary metal oxide semiconductor) imaging device (image sensor).
- CCD charge coupled device
- CMOS complementary metal oxide semiconductor
- Camera modules are installed in mobile phones, laptop computers, digital cameras, digital video cameras, and the like.
- a CMOS image sensor is mounted on a signal processing chip.
- one or more lenses for forming an optical image on the image sensor, a barrel for holding the lens, a holder for holding the barrel, a substrate for holding the image sensor, and the like See FIG. 1).
- JP-A-6-25517 JP-A-6-16912 Japanese National Patent Publication No. 5-501274 Japanese Patent Laid-Open No. 5-140424 JP 2012-87171 A JP 2009-242456 A JP 2010-286544 A
- a lens is mounted on the barrel, which is a component of the camera module, and the holder is often screwed with the barrel by a screw.
- both the barrel and the holder are required to have high dimensional accuracy at the time of manufacture, and it is also required that the dimensional change caused by the influence of temperature, humidity, etc. does not change greatly depending on the direction (low anisotropy).
- the barrel and holder are also required to shield light having a wavelength in the vicinity of visible light in order to prevent transmission of ambient light.
- the object of the present invention is to improve the mechanical properties and moldability of the polyester resin, and preferably to further improve the flame retardancy.
- Another object of the present invention is that it can be molded into a sliding member such as a camera module member, which is particularly excellent in heat resistance and low particle property and has extremely good dimensional stability (particularly, dimensional change due to moisture absorption). It is to provide a part having a sliding structure such as a thermoplastic resin composition and a camera module including the same.
- a polyester resin composition comprising a polymer (C).
- polyester resin (A) contains 30 to 100 mol% of a dicarboxylic acid component unit derived from terephthalic acid, 0 to 70 mol% of an aromatic dicarboxylic acid component unit other than terephthalic acid, and 4 to 20 carbon atoms.
- the structural unit derived from the olefin contained in the thermoplastic resin (B) includes a structural unit derived from ethylene, and the structural unit having the aromatic hydrocarbon structure includes a structural unit derived from styrene. 2].
- the polyester resin composition according to [8] comprising 1 to 20 parts by mass of a flame retardant aid (F).
- the flame retardant aid (F) comprises antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium antimonate, zinc borate, zinc stannate, zinc phosphate, calcium borate, calcium molybdate.
- An electrical / electronic component comprising an injection molded article of the polyester resin composition according to any one of [1] to [11].
- An automotive mechanism part comprising an injection-molded product of the polyester resin composition according to any one of [1] to [11].
- Polyester resin (A) having a melting point or glass transition temperature of 250 ° C. or higher, a structural unit derived from an olefin, a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester, and a structural unit having a cyclic oxyhydrocarbon structure
- the polyester resin composition for sliding members containing the copolymer (C) which has this.
- the polyester resin composition for sliding members according to [16] further comprising at least one of carbon black (G) and a fibrous inorganic filler (D).
- a dicarboxylic acid component unit in which the polyester resin (A) contains 30 to 100 mol% of a dicarboxylic acid component unit derived from terephthalic acid and 0 to 70 mol% of an aromatic dicarboxylic acid component unit other than terephthalic acid ( The polyester for sliding members according to any one of [16] to [18], comprising a1) and a dialcohol component unit (a2) containing an alicyclic dialcohol component unit having 4 to 20 carbon atoms Resin composition.
- thermoplastic resin (B) having an olefin-derived structural unit and an aromatic hydrocarbon structure and having an intrinsic viscosity [ ⁇ ] measured in decalin at 135 ° C. of 0.04 to 1.0 dl / g Furthermore, the polyester resin composition for sliding members according to any one of [16] to [20]. [22] 0.1 to 10 parts by mass of the thermoplastic resin (B) (however, the sum of (A), (C), (G) and (D) is 100 parts by mass), [21] The polyester resin composition for sliding members as described in 2. [23] The polyester resin composition for sliding members according to [17], wherein the fibrous inorganic filler (D) is at least one selected from wollastonite and calcium titanate.
- polyester resin composition for sliding members according to any one of [16] to [23], wherein the copolymer (C) is an ethylene / methyl acrylate / glycidyl methacrylate copolymer.
- a camera module comprising the polyester resin composition for sliding members according to any one of [16] to [24].
- the present invention it is possible to improve the mechanical properties (strength, toughness or retention stability) of the polyester resin and to improve the moldability (release property or injection fluidity). According to the present invention, it is possible to improve the flame retardancy as well as the mechanical properties and moldability of the polyester resin.
- the present invention is a polyester resin composition excellent in dimensional stability (particularly dimensional change due to moisture absorption) and mechanical properties (including high strength, high elastic modulus, low deflection, etc.) of the molded product. Offer things.
- the molded product has high surface smoothness, the generation of particles from the molded product is suppressed, the molded product has high heat resistance, and can be used even at high temperatures. Therefore, the molded article of the polyester resin composition of the present invention is suitably used as a constituent member of a camera module, particularly a constituent material of a barrel or a holder.
- polyester resin composition As a result of intensive studies to solve the above problems, the present inventors have found that a polyester resin (A), an olefin copolymer (C) having a specific cyclic oxy structure, a polyolefin skeleton, and an aromatic group The idea was to use together with a specific thermoplastic resin (B) having a hydrocarbon structure. As a result, it has been found that a polyester resin composition having good moldability and mechanical properties can be obtained. Furthermore, it has been found that by applying a specific flame retardant formulation, it is possible to achieve a stable V-0 standard that does not cause drip in a combustion test in the UL standard.
- a composition containing a polyester resin (A) having a high melting point or a glass transition temperature and an olefin copolymer (C) having a specific cyclic oxy structure has heat resistance and mechanical properties.
- the present invention has been completed by discovering that it is suitable as a composition for use in sliding members of parts such as camera modules, having excellent low particle properties and dimensional stability.
- the polyester resin composition of the present invention includes a polyester resin (A) and a copolymer (C); if necessary, a thermoplastic resin (B), an inorganic filler (D), a flame retardant (E ), One or more selected from the group consisting of a flame retardant aid (F) and carbon black (G).
- polyester resin (A) The polyester resin (A) has a structure having a dicarboxylic acid component unit (a1) containing a component unit derived from an aromatic dicarboxylic acid and a dialcohol component unit (a2) containing a component unit derived from a dialcohol having an alicyclic skeleton. It is preferable that
- the dicarboxylic acid component unit (a1) constituting the polyester resin (A) comprises 30 to 100 mol% of terephthalic acid component units, 0 to 70 mol% of aromatic dicarboxylic acid component units other than terephthalic acid, and 4 to 4 carbon atoms.
- 20 aliphatic dicarboxylic acid component units are preferably comprised of 0 to 70 mol% (here, the total amount of dicarboxylic acid component units (a1) is 100 mol%).
- the dicarboxylic acid component unit (a1) is preferably 40 to 100 mol% of terephthalic acid component units, preferably 0 to 60 mol% of aromatic dicarboxylic acid component units other than terephthalic acid, and 4 to 20 carbon atoms ( More preferably, it contains 6 to 12) aliphatic dicarboxylic acid component units in an amount of 0 to 60 mol% (the total amount of dicarboxylic acid component units (a1) is 100 mol%).
- aromatic dicarboxylic acid component units other than terephthalic acid include units derived from isophthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid, and combinations thereof.
- the aliphatic dicarboxylic acid component unit is not particularly limited in the number of carbon atoms, but is preferably a unit derived from an aliphatic dicarboxylic acid having 4 to 20 carbon atoms, preferably 6 to 12 carbon atoms.
- aliphatic dicarboxylic acid from which the aliphatic dicarboxylic acid component unit is derived examples include, for example, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
- the dicarboxylic acid component unit (a1) constituting the polyester resin (A) may contain a component unit derived from an alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid.
- the dicarboxylic acid component unit (a1) may contain a small amount, for example, an amount of about 10 mol% or less of the polyvalent carboxylic acid component unit together with the above structural unit.
- Specific examples of such polyvalent carboxylic acid component units include tribasic acids and polybasic acids such as trimellitic acid and pyromellitic acid.
- the dialcohol component unit (a2) constituting the polyester resin (A) preferably contains an alicyclic dialcohol component unit.
- the alicyclic dialcohol component unit preferably includes a dialcohol-derived component unit having an alicyclic hydrocarbon skeleton having 4 to 20 carbon atoms.
- dialcohols having an alicyclic hydrocarbon skeleton include 1,3-cyclopentanediol, 1,3-cyclopentanedimethanol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, and 1,4. Included are alicyclic dialcohols such as -cycloheptanediol and 1,4-cycloheptanedimethanol.
- a component unit derived from a dialcohol having a cyclohexane skeleton is preferable, and a component unit derived from cyclohexanedimethanol is more preferable.
- the ratio of the alicyclic dialcohol component unit (preferably the dialcohol component unit having a cyclohexane skeleton) to the dialcohol component unit (a2) is preferably 60 to 100 mol% (the dialcohol component unit (a2)). ) Is 100 mol%).
- the alicyclic dialcohol has isomers such as cis / trans, but the trans structure is preferred from the viewpoint of heat resistance. Accordingly, the cis / trans ratio is preferably 50/50 to 0/100, more preferably 40/60 to 0/100.
- the dialcohol component unit (a2) may contain an aliphatic dialcohol component unit in addition to the alicyclic dialcohol component unit.
- the aliphatic dialcohol component unit can improve the melt fluidity of the polyester resin (A).
- Specific examples of the aliphatic dialcohol component unit include ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, dodecamethylene glycol and the like.
- the melting point (Tm) or glass transition temperature (Tg) of the polyester resin (A) measured by a differential scanning calorimeter (DSC) is 250 ° C. or higher.
- a preferred lower limit is 270 ° C, more preferably 280 ° C.
- a preferable upper limit value may be 350 ° C, and more preferably 335 ° C.
- the upper limit temperature is not limited in principle, but a melting point or glass transition temperature of 350 ° C. or lower is preferable because decomposition of the polyester resin (A) can be suppressed during melt molding.
- the intrinsic viscosity [ ⁇ ] of the polyester resin (A) is preferably 0.3 to 1.0 dl / g. When the intrinsic viscosity is in such a range, the fluidity during molding of the polyester resin composition can be excellent.
- the intrinsic viscosity of the polyester resin (A) can be adjusted by adjusting the molecular weight of the polyester resin (A). As a method for adjusting the molecular weight of the polyester resin, a known method such as the degree of progress of the polycondensation reaction, an appropriate amount of a monofunctional carboxylic acid, a monofunctional alcohol, or the like can be employed.
- the intrinsic viscosity of the polyester resin (A) is obtained by dissolving the polyester resin (A) in a 50/50 mass% mixed solvent of phenol and tetrachloroethane and using an Ubbelohde viscometer under the conditions of 25 ° C. ⁇ 0.05 ° C. Measure the number of seconds that the sample solution flows down, and the value is calculated by the following formula.
- the polyester resin (A) may be a polyester resin that does not exhibit molten liquid crystallinity.
- the melt liquid crystallinity refers to a characteristic showing optical anisotropy (liquid crystallinity) in the melt phase.
- the molded product of the liquid crystalline polymer is likely to be fibrillated and may easily generate fine particles such as particles.
- the resin composition containing the polyester resin (A) that does not exhibit molten liquid crystallinity can suppress the fibrillation of the molded product, and can also suppress the generation of fine particles such as particles.
- polyester resin composition may contain a plurality of polyester resins (A) having different physical properties as required. Further, other thermoplastic resins may be included within the scope of the object of the present invention.
- Content of the polyester resin (A) in the polyester resin composition of this invention is 100 mass parts of total amounts of a polyester resin (A), a thermoplastic resin (B), a copolymer (C), and an inorganic filler (D).
- the amount is preferably 30 to 85 parts by mass, more preferably 30 to 80 parts by mass. If the content of the polyester resin (A) is in the range between the upper limit value and the lower limit value described above, a resin composition having excellent heat resistance that can withstand the solder reflow process can be obtained without impairing moldability. It is.
- the content of the polyester resin (A) in the polyester resin composition of the present invention is 100 mass of the total amount of the polyester resin (A), the copolymer (C), the carbon black (G), and the inorganic filler (D).
- the amount is preferably 30 to 80 parts by mass, more preferably 35 to 75 parts by mass with respect to parts.
- the copolymer (C) is a copolymer having a structural unit derived from an olefin, a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester, and a structural unit having a cyclic oxyhydrocarbon structure.
- the copolymer (C) reacts with a hydroxyl group or a carbonyl group which is a terminal group of the non-liquid crystalline polyester resin (A), and suppresses a decrease in the molecular weight of the polyester resin (A). Therefore, any elastomer that can improve the toughness of the resin composition can be used without particular limitation.
- Examples of olefins of structural units derived from olefins constituting the copolymer (C) include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene and the like, with ethylene being preferred.
- Examples of ⁇ , ⁇ -unsaturated carboxylic acid esters derived from ⁇ , ⁇ -unsaturated carboxylic acid esters include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, Methacrylic acid esters such as ethyl methacrylate are included, and methyl acrylate is preferred.
- Examples of the structural unit having a cyclic oxyhydrocarbon structure include structural units derived from ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester.
- Examples of the ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester include glycidyl acrylate and glycidyl methacrylate, and glycidyl methacrylate is preferred.
- copolymer (C) for example, an ethylene / methyl acrylate (methyl acrylate) / glycidyl methacrylate copolymer as shown by the following structural formula is preferably used.
- the copolymer (C) represented by the above formula contains 30 to 99% by mass of ethylene units with respect to the total amount (100% by mass) of ethylene units, methyl acrylate units and glycidyl methacrylate units.
- the content is preferably 50 to 95% by mass.
- methyl acrylate units are contained in a proportion of 0 to 60% by mass with respect to the total amount (100% by mass) of ethylene units, methyl acrylate units and glycidyl methacrylate units.
- the content is preferably 0 to 40% by mass.
- the glycidyl methacrylate unit is contained in a proportion of 1 to 30% by mass with respect to the total amount (100% by mass) of ethylene units, methyl acrylate units and glycidyl methacrylate units. Is preferred.
- the copolymer (C) may contain other copolymer components in addition to the above-described copolymer components as long as the reactivity with the polyester resin (A) is not inhibited.
- specific examples of other copolymer components include ⁇ , ⁇ -unsaturated glycidyl ethers such as allyl glycidyl ether, 2-methylallyl glycidyl ether; and styrene, ⁇ -methyl styrene, 4-methyl styrene, 4-methoxy styrene.
- Aromatic vinyl compounds such as chlorostyrene, 2,4-dimethylstyrene; and unsaturated vinyl esters such as vinyl acetate and vinyl propionate.
- an olefin, an ⁇ , ⁇ -unsaturated carboxylic acid ester, and a monomer having a cyclic oxyhydrocarbon structure are subjected to a high pressure radical polymerization method, a solution polymerization method and an emulsion polymerization method.
- a method of copolymerization by such a polymerization method, and a method of graft polymerization of a monomer having a glycidyl group or an ⁇ , ⁇ -unsaturated carboxylic acid ester to a polymer containing an ethylene unit such as polyethylene. Can do.
- Content of the copolymer (C) in the polyester resin composition of this invention is 100 mass of total amounts of a polyester resin (A), a thermoplastic resin (B), a copolymer (C), and an inorganic filler (D).
- the amount is preferably 0.5 to 10 parts by mass with respect to parts. If the content of the copolymer (C) is within the above-mentioned upper limit value and lower limit value, due to sufficient toughness improvement effect and the effect of suppressing the decrease in the molecular weight of the polyester resin (A) when heat-molded at high temperature This is because the mechanical properties of the resin composition are improved.
- the copolymer (C) is contained at a ratio of 10 parts by mass or more, the mechanical strength may be impaired, which is not preferable.
- Content of the copolymer (C) in the polyester resin composition of this invention is 100 mass parts of total amounts of a polyester resin (A), a copolymer (C), carbon black (G), and an inorganic filler (D).
- the content is preferably 0.5 to 5 parts by mass, more preferably 1 to 4 parts by mass.
- content of the copolymer (C) in the polyester resin composition of this invention is 0 with respect to 100 mass parts of total amounts of a polyester resin (A), a thermoplastic resin (B), and a copolymer (C).
- the amount is preferably 1 to 20 parts by mass, and more preferably 0.5 to 10 parts by mass.
- content of the copolymer (C) is a certain level or more, a sufficient toughness improving effect and an effect of suppressing a decrease in the molecular weight of the polyester resin (A) when heat-molded at a high temperature are easily obtained.
- content of a copolymer (C) is below fixed, it can suppress that melt viscosity becomes high too much.
- the polyester resin composition of the present invention contains the copolymer (C) together with the polyester resin (A), the mechanical properties of the molded product are improved.
- the improvement mechanism is not particularly limited, but can be estimated as follows.
- the cyclic oxyhydrocarbon structure (for example, epoxy group) of the copolymer (C) reacts with the hydroxyl group or carboxyl group which is the terminal group of the polyester resin (A)
- the resin component becomes high molecular weight.
- the mechanical strength is improved by suppressing the decrease in molecular weight when heat-molding at a high temperature.
- toughness is improved by the copolymer (C) and polyester resin (A) which are elastomers reacting and reinforcing a resin interface.
- the polyester resin composition of the present invention can contain the polyester resin (A) and the copolymer (C), thereby suppressing drip at the time of flame contact in the UL combustion test. It is thought that this is because the melt tension of the resin composition is improved by the formation of a branched structure by the reaction between the copolymer (C) and the polyester resin (A).
- Thermoplastic resin (B) is a thermoplastic resin having an olefin-derived structural unit and an aromatic hydrocarbon structure.
- the structural unit derived from the olefin of the thermoplastic resin (B) includes a structural unit derived from ethylene; and the structural unit having an aromatic hydrocarbon structure includes a structural unit derived from styrene.
- the thermoplastic resin (B) is preferably a thermoplastic resin having a polyolefin skeleton and an aromatic hydrocarbon structure. That is, the resin composition of the first aspect of the present invention can include a thermoplastic resin containing a polyolefin skeleton and an aromatic hydrocarbon structure as the thermoplastic resin (B). As will be described later, the aromatic hydrocarbon structure can be a structural unit derived from a vinyl compound having an aromatic hydrocarbon structure typified by styrene or the like.
- the thermoplastic resin (B) is a thermoplastic resin having a polyolefin skeleton and an aromatic hydrocarbon structure, and having an intrinsic viscosity [ ⁇ ] measured in decalin at 135 ° C. of 0.04 to 1.0 dl / g. is there.
- the preferable lower limit of this intrinsic viscosity is 0.05 dl / g, more preferably 0.07 dl / g.
- the preferable upper limit is 0.5 dl / g, more preferably 0.2 dl / g. If the intrinsic viscosity is too low, the thermoplastic resin (E) may be more likely to bleed out than necessary from the polyester resin composition for camera modules. In addition, it tends to cause odor and smoke during molding. On the other hand, if the intrinsic viscosity is too high, the effect of improving the melt viscosity (improving injection fluidity) becomes insufficient, and the moldability may be lowered.
- the melt viscosity (mPa ⁇ s) at 140 ° C. of the thermoplastic resin (B) is preferably 10 to 2000 mPa ⁇ s, more preferably 20 to 1500 mPa ⁇ s, and more preferably 30 to 1200 mPa ⁇ s. Particularly preferred. If the melt viscosity at 140 ° C. of the thermoplastic resin (B) is too low, the thermoplastic resin (B) may be more likely to bleed out than necessary from the resin composition. In addition, it tends to cause odor and smoke during molding. On the other hand, if the melt viscosity at 140 ° C. of the thermoplastic resin (B) is too high, the effect of improving the melt viscosity of the resin composition may be insufficient. The viscosity can be measured with a Brookfield viscometer.
- the thermoplastic resin (B) is usually a vinyl compound having an aromatic hydrocarbon structure typified by styrene and the like, and a wax called polyolefin wax (hereinafter sometimes referred to as polyolefin wax (b)). Can be obtained in the presence of a radical generator such as nitrile or peroxide.
- a thermoplastic resin (E) may be referred to as a so-called modified wax.
- the thermoplastic resin (B) is preferably 1 to 900 parts by weight, more preferably 10 to 300 parts by weight of a vinyl compound having an aromatic hydrocarbon structure such as styrene with respect to 100 parts by weight of the polyolefin wax (b). Particularly preferably, 20 to 200 parts by mass are introduced. If the structure derived from the aromatic hydrocarbon is too small, the effect of improving the melt viscosity (improving the injection fluidity) and the effect of improving the dispersibility of the copolymer (C) in the resin composition become insufficient. Sometimes. On the other hand, if there are too many structures derived from aromatic hydrocarbons, the odor may become strong.
- the content ratio of the aromatic hydrocarbon structure of the thermoplastic resin (B) is the preparation ratio of the polyolefin wax (e) and the vinyl compound having an aromatic hydrocarbon structure at the time of preparation, a nuclear magnetic resonance spectrum analyzer of 100 to 600 MHz class It can be identified by conventional methods such as structure identification by (NMR), ratio of absorption intensity between phenyl structure carbon and other carbon, and ratio of absorption intensity between phenyl structure hydrogen and other carbon. Of course, infrared absorption spectrum analysis or the like can also be used in combination for structure identification.
- Specific conditions for NMR measurement include the following conditions.
- 1 H NMR measurement an ECX400 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used, the solvent is deuterated orthodichlorobenzene, the sample concentration is 20 mg / 0.6 mL, the measurement temperature is 120 ° C., the observation nucleus is 1 H (400 MHz), the sequence is a single pulse, the pulse width is 5.12 ⁇ s (45 ° pulse), the repetition time is 7.0 seconds, and the number of integration is 500 times or more.
- the standard chemical shift is 0 ppm for tetramethylsilane hydrogen.
- the same result can be obtained by setting the peak derived from residual hydrogen in deuterated orthodichlorobenzene to 7.10 ppm and setting the standard value for chemical shift. I can do it. Peaks such as 1 H derived from the functional group-containing compound were assigned by a conventional method.
- the measuring device is an ECP500 type nuclear magnetic resonance device manufactured by JEOL Ltd., a mixed solvent of orthodichlorobenzene / heavy benzene (80/20 vol%) as a solvent, a measurement temperature is 120 ° C., and an observation nucleus is 13 C (125 MHz), single pulse proton decoupling, 45 ° pulse, repetition time is 5.5 seconds, integration number is 10,000 times or more, and 27.50 ppm is a standard value for chemical shift. Assignment of various signals is performed based on a conventional method, and quantification can be performed based on an integrated value of signal intensity.
- the functional group content of polymers having different functional group contents is determined by the NMR measurement, and infrared spectroscopy (IR) measurement is performed, a calibration curve is created based on the intensity ratio of a specific peak, and the functional group content is determined based on this result.
- IR infrared spectroscopy
- the type of the vinyl compound having an aromatic hydrocarbon structure is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, and p-methylstyrene. Among these, styrene is preferable.
- polyolefin wax (b) examples include homopolymers of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-decene, or two or more ⁇ -olefins. And ethylene wax, propylene wax, 4-methyl-1-pentene wax and the like. Among these polyolefin waxes, ethylene waxes containing ethylene as a main component are suitable.
- the number average molecular weight of the polyolefin wax (b) is preferably 400 to 12000, more preferably 500 to 5000, and particularly preferably 600 to 2000. If the molecular weight of the polyolefin wax (b) is too low, the thermoplastic resin (B) may easily bleed out more than necessary from the resin composition. On the other hand, if the molecular weight is too high, the effect of improving the melt viscosity of the resin composition may be insufficient.
- the number average molecular weight of the polyolefin wax (b) can be determined by GPC measurement under the following conditions.
- Apparatus Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters) Solvent: o-dichlorobenzene Column: TSKgel column (manufactured by Tosoh Corporation) x 4 Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution Temperature: 140 ° C
- Calibration curve Prepared using commercially available monodisperse standard polystyrene.
- Molecular weight conversion PE conversion / General calibration method
- thermoplastic resin (B) can be obtained by introducing a vinyl compound having an aromatic hydrocarbon structure into the polyolefin wax (b).
- the polyolefin wax (b) is obtained, for example, by polymerizing a corresponding olefin at a low pressure or an intermediate pressure.
- the polymerization catalyst used for the polymerization include JP-A-57-63310, JP-A-58-83006, JP-A-3-706, JP-A-3476793, JP-A-4-218508, Magnesium-supported titanium catalysts described in JP 2003-105022 A, etc., WO 01/53369, WO 01/27124, JP 3-19396 A, or JP 2-41303 A.
- a transition metal-containing olefin polymerization catalyst represented by a metallocene catalyst described in a gazette or the like as a representative example is preferably used.
- the polyolefin wax (b) can also be obtained by thermally decomposing or radically decomposing a corresponding olefin polymer such as polyethylene or polypropylene.
- the content of the thermoplastic resin (B) in the polyester resin composition of the present invention is 100 mass of the total amount of the polyester resin (A), the thermoplastic resin (B), the copolymer (C) and the inorganic filler (D).
- the amount is preferably 0.1 to 10 parts by mass with respect to parts. If the content of the thermoplastic resin (B) is within the above upper and lower limits, the melt viscosity of the resin composition is lowered and the dispersibility of the copolymer (C) in the resin composition is improved. Then, the reaction between the polyester resin (A) and the copolymer (C) easily proceeds uniformly. And, it is because the mechanical strength of the resin composition is improved while maintaining the effect of improving the mold release and injection fluidity inherent to the thermoplastic resin (B). When the thermoplastic resin (B) is contained in a proportion of 10 parts by mass or more, the appearance deteriorates due to bleeding out, and the mechanical properties may be impaired, which is not preferable.
- the content of the thermoplastic resin (B) in the polyester resin composition of the present invention is the total amount of the polyester resin (A), copolymer (C), carbon black (G), and fibrous inorganic filler (D).
- the amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass.
- content of the thermoplastic resin (B) in the polyester resin composition of this invention is 0 with respect to 100 mass parts of total amounts of a polyester resin (A), a thermoplastic resin (B), and a copolymer (C). It is preferably 1 to 15 parts by mass, and more preferably 0.5 to 10 parts by mass.
- content of the thermoplastic resin (B) is a certain level or more, the melt viscosity of the resin composition containing the copolymer (C) is lowered, and the dispersibility of the copolymer (C) is easily increased.
- the content of the thermoplastic resin (B) is below a certain level, bleeding out and deterioration of mechanical properties can be suppressed.
- the total amount of the polyester resin (A), the thermoplastic resin (B) and the copolymer (C) in the polyester resin composition of the present invention is 30 parts by mass or more with respect to 100 parts by mass of the entire resin composition. Is preferable, and it is more preferable that it is 50 mass parts or more.
- the polyester resin composition of the present invention further contains the thermoplastic resin (B) together with the polyester resin (A) and the copolymer (C), whereby the moldability of the resin composition is improved.
- the improvement mechanism is not particularly limited, but can be estimated as follows. When the copolymer (C) and the polyester resin (A) react, a branched polymer is generated. Thereby, the melt viscosity of the resin composition increases. At this time, when the copolymer (C) is not sufficiently dispersed, the melt viscosity is locally increased and further heat is generated locally. For this reason, an excessively branched structure (crosslinking) tends to occur unevenly, resulting in a decrease in injection fluidity and a decrease in releasability due to a decrease in crystallinity of the resin composition.
- the polyester resin composition of the present invention further improves the dispersibility of the copolymer (C) by further including the thermoplastic resin (B) together with the copolymer (C). Yes. Therefore, it is possible to suppress the local viscosity increase of the resin composition and the occurrence of a non-uniform branched structure. Therefore, it is thought that the mold release property and injection fluidity of the resin composition are improved, and the moldability is improved.
- the polyester resin composition of the present invention contains a thermoplastic resin (B) having an aromatic hydrocarbon structure (for example, polystyrene skeleton) together with the copolymer (C), so that a molded article of the polyester resin composition is obtained.
- Improved mechanical properties are not particularly limited, the dispersibility of the copolymer (C) in the resin composition is improved by the action of the thermoplastic resin (B).
- the polyester resin (A) and the copolymer (C ) Reaction easily proceeds uniformly.
- the mechanical strength is improved while maintaining the releasability inherent in the thermoplastic resin (B).
- a uniform branched structure is easily obtained by improving the dispersibility of the copolymer (C), and stable mechanical properties that are not affected by the injection molding time can be obtained.
- inorganic filler (D) A well-known inorganic filler can be used for an inorganic filler (D). Specifically, it is preferable to use an inorganic filler that is in the form of fibers, powders, granules, plates, needles, cloths, or mats and has a high aspect ratio. Specifically, glass fiber, inorganic compound having a carbonyl structure (for example, whisker of carbonate such as calcium carbonate), hydrotalcite, titanate such as potassium titanate, wollastonite, zonotrite, aluminum borate Examples include whiskers, magnesium sulfate whiskers, sepiolite, zinc oxide whiskers, milled fibers, and cut fibers. One of these may be used alone, or two or more may be used in combination.
- a fibrous inorganic filler (also referred to as a fibrous reinforcing material) is preferable, and examples thereof include glass fiber, wollastonite, potassium titanate whisker, calcium carbonate whisker, aluminum borate whisker, magnesium sulfate whisker, Sepiolite, zonotlite, zinc oxide whisker, milled fiber, cut fiber, etc. are included.
- the fibrous inorganic filler may preferably be glass fiber (BG) or an inorganic compound (BW) having a carbonyl structure.
- BG glass fiber
- BW inorganic compound
- These inorganic fillers may be treated with a known compound such as a silicone compound.
- glass fiber treated with a silicone compound is one of preferred embodiments.
- the fibrous inorganic filler may be at least one selected from the group consisting of wollastonite and potassium titanate whiskers. This is because wollastonite and potassium titanate whiskers have a relatively small fiber diameter.
- the fibrous inorganic filler used it is preferable to reduce the size of the fibrous inorganic filler used as much as possible, and it is particularly desirable that the fiber diameter is small.
- One of the factors that deteriorate the surface smoothness of molded products is the difference in shrinkage between the resin component and the fibrous inorganic filler. If the fiber diameter of the fibrous inorganic filler is small, the surface smoothness is impaired. It shows a tendency that is difficult to do.
- a polyester resin composition having high surface smoothness of the molded product is suitable as a polyester resin composition for a camera module as described later, for example.
- the average length of the inorganic filler (D) is preferably 10 mm or less, more preferably 5 mm or less, further preferably 300 ⁇ m or less, particularly preferably 100 ⁇ m or less, and most preferably 50 ⁇ m or less.
- the average length is 300 ⁇ m or less, the dimensional stability of the molded article of the polyester resin composition of the present invention is likely to increase, the anisotropy of dimensional change is low, and the surface smoothness is likely to increase.
- the said resin composition is used as a polyester resin composition for camera modules, generation
- the average length of an inorganic filler (D) Preferably it is 0.1 micrometer, More preferably, it may be 10 micrometers.
- the aspect ratio (L average fiber length / D average fiber diameter) of the inorganic filler (D) is preferably 1 to 500, more preferably 10 to 350, and still more preferably 1 to 100. It is particularly preferably 5 to 70.
- the use of an inorganic filler in such a range is preferable in terms of improving the strength of the molded product and reducing the linear expansion coefficient.
- the inorganic filler (D) may be used in combination of two or more inorganic fillers having different lengths and different aspect ratios.
- the inorganic filler (DL) having a relatively large length and aspect ratio include glass fibers, silicates such as wollastonite (calcium silicate), and titanates such as potassium titanate whiskers. Can be mentioned. Among these, glass fiber is preferable.
- the preferable lower limit of the length of the inorganic filler (DL) is 15 ⁇ m, preferably 30 ⁇ m, more preferably 50 ⁇ m.
- a preferable upper limit is 10 mm, more preferably 8 mm, still more preferably 6 mm, and particularly preferably 5 mm.
- the preferred lower limit is 500 ⁇ m, more preferably 700 ⁇ m, and even more preferably 1 mm.
- the preferred lower limit of the aspect ratio of the inorganic filler (DL) is 20, more preferably 50, and even more preferably 90.
- the preferred upper limit is 500, more preferably 400, and even more preferably 350.
- an inorganic filler (BW) having a carbonyl group can be cited as a preferred example, specifically, calcium carbonate. And carbonate whiskers.
- the aspect ratio of the inorganic filler having a carbonyl group is preferably 1 to 300, more preferably 5 to 200, and still more preferably 10 to 150.
- the content of the inorganic filler (D) in the polyester resin composition of the present invention is 100 mass of the total amount of the polyester resin (A), the thermoplastic resin (B), the copolymer (C) and the inorganic filler (D).
- the amount is preferably 1 to 50 parts by mass, and more preferably 10 to 50 parts by mass with respect to parts. This is because if the content of the inorganic filler (D) is not less than the above lower limit, the molded product tends not to be deformed at the time of injection molding or the solder reflow process. Moreover, if it is below the above-mentioned upper limit, it is because a molded article with favorable moldability and appearance can be obtained.
- the content of the fibrous inorganic filler (D) in the polyester resin composition of the present invention is as follows: polyester resin (A), copolymer (C), carbon black (G), and fibrous inorganic filler (D). Is within the range of 20 to 50 parts by mass and preferably within the range of 25 to 45 parts by mass with respect to 100 parts by mass of the total amount.
- the reflow heat resistance of the resin composition can be increased and the low anisotropy of the molded product can be improved.
- the surface of the molded product is smoothed to improve the low dust property.
- the mechanical strength and heat resistance of the molded product can be increased by further including the inorganic filler (D) in the polyester resin composition of the present invention.
- inorganic fillers (DL) and inorganic fillers (DS) with different lengths and aspect ratios improves the dispersibility of the inorganic filler in the base polymer, and improves the affinity between the base polymer and the inorganic filler. By improving, it is thought that heat resistance, mechanical strength, etc. are improved efficiently.
- Flame retardant (E) The flame retardant (E) can be added for the purpose of reducing the flammability of the resin. Difficult to apply to resin compositions for electrical and electronic parts and surface mount parts that are often required to have high flame resistance and flame resistance such as V-0, as defined by Underwriters Laboratories Standard UL94 A resin composition containing a flame retardant is preferred.
- the flame retardant (E) known ones can be used and are not particularly limited.
- the flame retardant (E) include halogen compounds, phosphate compounds, phosphate ester compounds, metal hydroxide compounds, silicone compounds, nitrogen compounds, and the like. High flame retardant effect can be obtained with a small amount of addition, and high mechanical properties can be obtained.
- Brominated polystyrene, polybrominated styrene, brominated polyphenylene ether, phosphoric acid compound metal salt, phosphazene compound, polyphosphorus It is preferable to use acid melamine. It is more preferable to use brominated polystyrene, polybrominated styrene, or an aluminum salt of a phosphoric acid compound. Especially, it is preferable to use brominated polystyrene or polybrominated styrene as a flame retardant (E).
- Brominated polystyrene which is a flame retardant (E), is a brominated product of polystyrene or poly ⁇ -methylstyrene.
- Brominated polystyrene obtained by polymerizing a styrene or ⁇ -methylstyrene as a raw material to form polystyrene, etc., and further brominated is a bromine atom in which some of the hydrogen atoms bonded to the carbon atoms forming the aromatic ring are bromine atoms.
- the flame retardant (E) is a hydrogen atom in which a part of hydrogen atoms bonded to a carbon atom forming an aromatic ring is substituted with a bromine atom, and bonded to a carbon atom forming an alkyl chain forming the main skeleton of the polymer.
- the atoms are brominated polystyrene that is substantially not substituted with bromine atoms.
- the bromine content of the brominated polystyrene as the flame retardant (E) is preferably 65 to 71% by mass, and more preferably 67 to 71% by mass.
- the hydrogen atom bonded to the carbon atom forming the alkyl chain forming the main skeleton of the polymer is not substantially substituted with a bromine atom.
- the hydrogen atom bonded to the carbon atom forming the alkyl chain forming the main skeleton of the polymer is Of these, the ratio of substitution with bromine atoms is 0 to 0.5% by mass, preferably 0 to 0.2% by mass.
- Such brominated polystyrene has high thermal stability, and further improves the thermal stability of a resin composition obtained by using the polystyrene or a molded product thereof.
- the content of the flame retardant (E) in the polyester resin composition of the present invention is 100 parts by mass of the total amount of the polyester resin (A), the thermoplastic resin (B), the copolymer (C), and the inorganic filler (D).
- the amount is preferably 10 to 40 parts by mass, and more preferably 10 to 30 parts by mass. This is because when the content of the flame retardant (E) is not less than the above lower limit value, stable flame retardancy can be obtained.
- the flame retardant assistant (F) may be any compound that increases the flame retarding action of the flame retardant (E) by blending with the flame retardant (E), and a known one can be used.
- Specific examples of the flame retardant aid (F) include antimony compounds such as antimony trioxide, antimony tetroxide, antimony pentoxide, and sodium antimonate; zinc compounds such as zinc borate, zinc stannate, and zinc phosphate; Calcium acid, calcium molybdate and the like are included. You may use these individually or in combination of 2 or more types. Among these, sodium antimonate, zinc borate, and zinc phosphate are preferable. From the viewpoint of thermal stability during molding, sodium antimonate and zinc borate anhydride (2ZnO.3B 2 O 3 ) are preferred.
- the flame retardant aid (F) is preferably a combination of sodium antimonate (F1) and zinc borate anhydride (2ZnO.3B 2 O 3 ) (F2).
- the UL94-V0 standard can be achieved with a small amount of flame retardant (E).
- the flame retardant aid (F) is a combination of sodium antimonate (F1) and zinc borate anhydride (F2)
- the mass ratio (F1 / F2) is usually 100/0 to 1 / 99, preferably 99/1 to 30/70, and more preferably 90/10 to 50/50.
- the content of the flame retardant aid (F) in the polyester resin composition of the present invention is 100.
- the total amount of the polyester resin (A), the thermoplastic resin (B), the copolymer (C), and the inorganic filler (D) is 100.
- the amount is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to parts by mass. This is because when the content of the flame retardant auxiliary (F) is equal to or higher than the above lower limit value, stable flame retardancy is obtained.
- the content of sodium antimonate (F1) in the polyester resin composition of the present invention is The amount is usually 0 to 20 parts by weight, preferably 0.1 to 20 parts by weight based on 100 parts by weight of the total amount of (A), thermoplastic resin (B), copolymer (C) and inorganic filler (D). 10 parts by mass.
- the content of the zinc borate anhydride (F2) is 100 parts by mass based on the total amount of the polyester resin (A), the thermoplastic resin (B), the copolymer (C), and the inorganic filler (D).
- the amount is usually 0 to 10 parts by mass, preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass.
- the polyester resin composition of the present invention further contains a flame retardant (E) or a flame retardant aid (F)
- a flame retardant (E) or a flame retardant aid (F) good flame retardancy can be imparted to the molded product. That is, by using together a predetermined amount of brominated polystyrene or polybrominated styrene as a flame retardant (E) and a predetermined amount of flame retardant aid (F), the combustion time and after flame time of the resin are shortened. It is considered that a high level of flame retardancy can be imparted. Accordingly, it is considered that stable V-0 characteristics can be obtained by the anti-drip effect by containing the copolymer (C) described above and the specific flame retardant formulation.
- Carbon black (G) For example, when the polyester resin composition of the present invention is used as a polyester resin composition for a camera module, which will be described later, it may further contain carbon black (G). Carbon black (G) can function as a colorant for coloring the resin composition black.
- the type of carbon black (G) is not particularly limited, and generally available materials used for resin coloring can be used. Examples of commercially available products include “# 980B” manufactured by Mitsubishi Chemical Corporation and “REGAL99I” manufactured by Cabot Corporation.
- the content of carbon black (G) in the polyester resin composition of the present invention is 100.
- the total amount of polyester resin (A), copolymer (C), carbon black (G), and fibrous inorganic filler (D) is 100. It is preferably in the range of 0.5 to 5.0 parts by mass, more preferably in the range of 0.8 to 2.0 parts by mass with respect to parts by mass.
- the carbon black (G) is contained in the above range, a camera module constituent member having further excellent light shielding properties can be obtained. Therefore, it is possible to prevent external light from leaking into the image sensor of the camera module through the camera module constituent member.
- the content of carbon black (G) is too high, the moldability of the resin composition may be lowered, or the insulating properties and mechanical characteristics of the molded product may be lowered.
- polyester resin composition of the present invention has the following additives, that is, antioxidants (phenols, amines, sulfurs, phosphoruss, etc.) depending on the use within a range not impairing the effects of the invention.
- Heat stabilizers lactone compounds, vitamin Es, hydroquinones, copper halides, iodine compounds, etc.
- light stabilizers benzotriazoles, triazines, benzophenones, benzoates, hindered amines, ogizanides, etc.
- Other polymers polyolefins, olefin copolymers such as ethylene / propylene copolymer, ethylene / 1-butene copolymer, olefin copolymers such as propylene / 1-butene copolymer, polystyrene, polyamide, polycarbonate , Polyacetal, polysulfone, polyphenylene oxide, fluororesin, silica Corn resin, LCP, etc.), flame retardants (bromine, chlorine, phosphorus, antimony, inorganic, etc.), fluorescent brighteners, plasticizers, thickeners, antistatic agents, release agents, colorants, A pigment, a crystal nucleating agent, and
- thermoplastic resin (B) and the copolymer (C) are preferably from 0 to 10 parts by weight, more preferably from 0 to 5 parts by weight, more preferably from 0 to More preferably, it is 1 part by mass.
- polyester resin composition of the present invention When the polyester resin composition of the present invention is used in combination with other components, the selection of the above additives may be important. For example, when a catalyst or the like is included in other components used in combination, it is obvious that it is preferable to avoid a component or element containing a catalyst poison in the above additive. Examples of additives that are preferably avoided as described above include components containing phosphorus, sulfur, and the like.
- the polyester resin composition of the present invention is excellent in moldability. Moreover, the molded product obtained from the polyester resin composition of the present invention has excellent mechanical properties (strength, toughness) and reflow heat resistance, and is excellent in dimensional stability due to low water absorption. Therefore, the polyester resin composition of the present invention can be preferably used as an application in which such characteristics can be utilized; for example, a material for electric and electronic parts or a material for automobile mechanism parts. That is, a molded product obtained by injection molding the polyester resin composition of the present invention can constitute, for example, an electric / electronic component or an automobile mechanism component.
- the polyester resin (A) contained in the polyester resin composition of the present invention can be a non-liquid crystalline polyester resin (A) that does not exhibit molten liquid crystallinity.
- a polyester resin composition can suppress the fibrillation of the molded product, and can also suppress the generation of fine particles such as particles.
- Such a polyester resin composition is suitable as a polyester resin composition used for sliding members such as electric and electronic parts and automobile mechanism parts, preferably as a polyester resin composition for camera modules.
- polyester resin composition of the present invention is prepared by mixing each of the above components by a known method such as a Henschel mixer, a V blender, a ribbon blender, a tumbler blender or the like, or further uniaxial extrusion after mixing. It can be produced by a granulation or pulverization method after melt-kneading with a machine, multi-screw extruder, kneader, Banbury mixer or the like.
- the melt-kneading is performed at a temperature 5 to 30 ° C. higher than the melting point of the polyester resin (A).
- the preferable lower limit of the melt kneading temperature can be 255 ° C, more preferably 275 ° C, and the preferable upper limit can be 360 ° C, more preferably 340 ° C.
- the molded article of the polyester resin composition of the present invention has good mechanical properties and moldability as described above. Therefore, the molded article of the polyester resin composition of the present invention can be preferably used for various electric and electronic parts, automobile mechanism parts and the like. Among them, the molded article of the polyester resin composition of the present invention can be preferably used as a sliding member in electrical and electronic parts, automobile mechanism parts and the like because it has high surface smoothness and low particle property.
- the sliding member indicates one or more of two or more members that slide relative to each other.
- the sliding includes a screwing operation as shown in FIG.
- the sliding member in the camera module shown in FIG. 1 described later indicates one or both of a barrel and a holder.
- parts that have sliding members include camera modules, electrical equipment, office machine / power equipment bearings, various gears, cams, bearings, end faces of mechanical seals, valve seats, V rings, rod packings, pistons Rings, rotary shafts and sleeves of compressors, pistons, impellers, vanes, rotors, etc. are included. That is, the polyester resin composition of the present invention can be used as a polyester resin composition for sliding members; preferably a polyester resin composition for camera modules.
- the camera module of the present invention is characterized in that the polyester resin composition of the present invention is contained in a part of its constituent parts.
- An example of a camera module is shown in FIG.
- the camera module shown in FIG. 1 is rotated by a substrate 1, an image sensor 2 mounted on the substrate 1, a holder 5 disposed on the substrate 1 so as to surround the image sensor 2, and a spiral portion at the top of the holder 5.
- a cylindrical barrel 4 that can be provided, a lens 3 attached to the barrel 4 inside the cylinder, and an IR filter 6 provided between the lens 3 and the imaging device 2 are provided.
- the image sensor 2 can be a CCD, a CMOS, or the like.
- the light that has passed through the lens 3 enters the image sensor 2 through the IR filter 6.
- the distance between the lens 3 and the image sensor 2 changes, so that the focus of the camera module can be adjusted.
- At least one of the barrel and the holder contains the polyester resin composition of the present invention.
- Both the barrel and the holder may contain the polyester resin composition of the present invention, or only one of them may contain the polyester resin composition of the present invention.
- the barrel and holder may be integrated. You may shape
- the camera module component including the polyester resin composition of the present invention can be obtained by, for example, injection molding the polyester resin composition.
- Polyester resin (A) (Production of polyester resin (A)) Add 0.0037 parts of tetrabutyl titanate to 104.6 parts of dimethyl terephthalate and 94.6 parts of 1,4-cyclohexanedimethanol (cis / trans ratio: 30/70), and heat from 150 ° C. to 300 ° C. over 3 hours and 30 minutes. The temperature was raised to cause a transesterification reaction.
- Resin for comparison Manufacture of polyamide resin
- 4819.4 g (29.01 mol) of terephthalic acid, a mixture of 1,9-diaminononane and 2-methyl-1,8-diaminooctane [former / latter 70/30 (molar ratio)] 4772.4 g (30.15) Mol)
- 241.8 g (1.98 mol) of benzoic acid, 9.8 g of sodium hypophosphite monohydrate and 2.5 liters of distilled water were placed in an autoclave having an internal volume of 20 liters and purged with nitrogen. The mixture was stirred at 100 ° C. for 30 minutes, and the temperature inside the autoclave was increased to 220 ° C. over 2 hours.
- the pressure inside the autoclave was increased to 2 MPa.
- the reaction was continued as it was for 2 hours, then the temperature was raised to 230 ° C., then the temperature was maintained at 230 ° C. for 2 hours, and the reaction was carried out while gradually removing water vapor and keeping the pressure at 2 MPa. Next, the pressure was reduced to 1 MPa over 30 minutes. The reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [ ⁇ ] of 0.14 dl / g.
- Thermoplastic resin (B) (B1) Low molecular weight thermoplastic resin: A mixture of an ethylene polymer wax obtained with a known solid titanium catalyst component and styrene is reacted in the presence of a known radical generator to produce the following low molecular weight thermoplastic resin: (B1) was obtained. Viscosity measured at 135 ° C.
- Inorganic filler (D) Inorganic filler (D1): glass fiber: length 3 mm, aspect ratio 300 (Central Glass Co., Ltd. ECS03-615, silane compound treated product)
- F Flame retardant aid
- F1 Sodium antimonate (Nippon Seiko Co., Ltd., trade name SA-A)
- F2 Zinc borate (BORAX, FIREBRAKE 500)
- Examples 1 to 5 Comparative Examples 1 to 3
- Each component shown in Table 1 was mixed at a mass ratio shown in Table 1. This mixture was put into a twin-screw vented extruder set at a temperature of 300 ° C., and melt kneaded to obtain resin compositions (compounds) of Examples 1 to 5 and Comparative Examples 1 to 3. In addition, mass ratio of each component was made to be 100 mass% in total.
- the physical properties (toughness, retention stability, mold release, injection fluidity) of the obtained resin composition were evaluated by the following methods. The results are shown in Table 1.
- a test piece having a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm was obtained by molding using the following injection molding machine under the following conditions. A mold release agent was used when molding the test piece. This test piece was allowed to stand for 24 hours under a nitrogen atmosphere at a temperature of 23 ° C. Next, a bending test was performed at a temperature of 23 ° C. and a relative humidity of 50% under a bending test machine: ABSCO, AB5, span 26 mm, bending speed 5 mm / min, bending strength, strain amount, elastic modulus, and a test piece thereof. The energy (toughness) required to break down was measured.
- injection fluidity Using a bar flow mold having a width of 10 mm and a thickness of 0.5 mm, injection was performed under the following conditions, and the flow length (mm) of the resin in the mold was measured. In addition, it shows that injection
- Injection molding machine Sodick Plustec, Tupar TR40S3A Injection set pressure: 2000 kg / cm 2 , cylinder set temperature: melting point (Tm) + 10 ° C., mold temperature: 150 ° C.
- Examples 1 to 5 were good in releasability, injection flow length, toughness, and retention stability. Although the reason for this result is not clear, it can be considered as follows in comparison with the comparative example.
- Example 5 and Comparative Example 1 From the results of Example 5 and Comparative Example 1, it was confirmed that the release property and the retention stability were improved by using the low molecular weight plastic resin (B1) and the copolymer (C) in combination. This is because part of the polyester resin (A) is obtained as a result of the copolymer (C) being uniformly dispersed in the resin composition by using the low molecular weight plastic resin (B1) and the copolymer (C) together. This is probably because the formation of a local branched structure by the copolymer (C) was suppressed.
- Comparative Example 1 in which only the copolymer (C) was added, a resin composition with a wide composition distribution was made without suppressing the formation of local branched structures, making it difficult to control the reaction during injection molding. It is thought that it became.
- Example 2 From the results of Example 2 and Comparative Example 2, it was confirmed that the addition of the copolymer (C) improved toughness and retention stability without impairing the injection fluidity and mold release property.
- This result shows that the addition of the copolymer (C) causes the polyester resin (A) and the copolymer (C), which is an elastomer component, to react and become a high molecular weight. This is probably because the resin interface between the polyester resin (A) and the copolymer (C) was reinforced and a sufficient toughness improving effect was obtained in addition to the suppression of the molecular weight decrease of (A).
- the retention stability is improved by combining the low molecular thermoplastic resin (B1) and the copolymer (C) so that the reaction between the polyester resin (A) and the copolymer (C) proceeds uniformly. This is considered to be because the decrease in the molecular weight of the polyester resin (A) is stably suppressed and the variation in mechanical properties due to the residence time is reduced.
- Examples 6 to 11, Comparative Examples 4 to 6 The components shown in Table 2 were mixed at the mass ratio shown in Table 2, and charged into an extruder equipped with a twin screw vent set at a temperature of 300 ° C., and melt-kneaded, and Examples 6 to 11 and Comparative Examples 4 to 6 resin compositions (compounds) were obtained. In addition, mass ratio of each component was made to be 100 mass% in total.
- Examples 6 to 11 were good in releasability, injection flow length, toughness, retention stability, and flame retardancy. Although the reason for such a result is not clear, it can be considered as follows in comparison with the comparative example.
- Example 7 and Comparative Example 4 From the results of Example 7 and Comparative Example 4, it is confirmed that the addition of the copolymer (C) improves toughness and retention stability and also improves flame retardancy by preventing drip. It was done. This result shows that the addition of the copolymer (C) causes the polyester resin (A) and the copolymer (C), which is an elastomer component, to react and become a high molecular weight. This is probably because the resin interface between the polyester resin (A) and the copolymer (C) was reinforced and a sufficient toughness improving effect was obtained in addition to the suppression of the molecular weight decrease of (A).
- the polyester resin (A) has a high molecular weight with a branched structure, it is considered that the melt tension of the resin is improved and contributes to drip prevention.
- the retention stability is improved because the reaction between the polyester resin (A) and the copolymer (C) easily proceeds uniformly by combining the low molecular thermoplastic resin and the copolymer (C). It is considered that the decrease in the molecular weight of the polyester resin (A) was stably suppressed, and the variation in mechanical properties due to the residence time was reduced.
- Comparative Examples 4 and 5 in which only one of the copolymer (C) or the low molecular weight thermoplastic resin (B1) is added, a resin composition having a wide composition distribution is difficult to suppress the formation of local branch structures. As a result, it is considered that reaction control during injection molding has become difficult.
- Example 12 Polyester resin (A1), copolymer (B), carbon black (G), fibrous inorganic filler (D), and thermoplastic resin (E) were mixed using a tumbler blender in the proportions shown in Table 3. .
- the mixture was melt kneaded at a cylinder temperature of 15 ° C higher than the melting point of the resin with a TEX30 ⁇ manufactured by Nippon Steel Works, a twin screw extruder, extruded into a strand, cooled in a water bath, and then the strand was removed with a pelletizer.
- the pellet-shaped composition was obtained by taking up and cutting. That is, it showed good compound properties.
- Example 7 (Examples 13 to 21, Comparative Example 7) A resin composition was prepared in the same manner as in Example 12 except that the composition shown in Table 3 was used.
- the test piece that had been subjected to the humidity conditioning treatment was placed on a glass epoxy substrate having a thickness of 1 mm, and a temperature sensor was placed on the substrate to measure the profile.
- the temperature was raised to 230 ° C. at a predetermined rate.
- a is 270 ° C.
- b is 265 ° C.
- c is 260 ° C.
- d is 255 ° C.
- e 250 ° C.
- the obtained resin composition was 50 mm in MD direction length, 30 mm in TD direction, and 0.6 mm in thickness at a temperature 10 ° C. higher than the melting point of the resin used.
- the test piece was injection molded.
- the mold temperature was 150 ° C.
- a pair of parallel lines having an interval in the MD direction of 40 mm and a pair of parallel line-shaped recesses having an interval in the TD direction of 20 mm was used.
- the distance between the MD direction and the distance between the TD directions of the linear part formed on the test piece is measured, and the shrinkage ratio (ratio immediately after molding) based on the line interval set in the mold is expressed as an equation. It was determined by “(mold dimension ⁇ molded article dimension) / mold dimension”.
- the above sample was conditioned for 96 hours at a temperature of 40 ° C. and a relative humidity of 95%, and the dimensional change of the obtained sample was measured in the MD direction and the TD direction, respectively, and the dimensional change rate (water absorption dimensional change rate).
- the dimensional change rate water absorption dimensional change rate
- the resin composition of Comparative Example 7 contains a polyamide resin and does not contain a polyester resin (A). Therefore, it can be seen that the dimensional change amount of water absorption is large and the dimensional stability (particularly, dimensional stability due to water absorption) is poor.
- the resin compositions of Examples 12 to 21 contain the polyester resin (A). Therefore, it can be seen that the amount of dimensional change in water absorption is small and the dimensional stability is good.
- Examples 12 to 16 are excellent in heat resistance, fluidity, surface smoothness, and light transmittance.
- Example 17 the amount of the fibrous inorganic filler (D) is small, and it can be seen that the heat resistance is slightly lowered.
- Example 18 the amount of the fibrous inorganic filler (D) is large, and it can be seen that the fluidity is slightly lowered.
- Example 19 it can be seen that the fibrous inorganic filler (D) is glass fiber, and the surface smoothness of the molded product is reduced.
- Example 20 contains milled fiber, and it can be seen that the surface smoothness of the molded product is lowered and the dimensional change rate is increased.
- Example 21 since the content of carbon black (G) is small, it can be seen that the light transmittance is increased (the light shielding rate is decreased).
- the polyester resin composition of the present invention has good mechanical properties and moldability as described above. Therefore, the molded article of the polyester resin composition of the present invention can be preferably used for various electric and electronic parts, automobile mechanism parts and the like. Specifically, the polyester resin composition of the present invention is suitable as a molding material for camera module components, in particular, camera module barrels and holders.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Lens Barrels (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
[2] 無機充填材(D)をさらに含む、[1]に記載のポリエステル樹脂組成物。
[3] 前記ポリエステル樹脂(A)30~80質量部と、前記熱可塑性樹脂(B)0.1~10質量部と、前記共重合体(C)0.5~10質量部と、
前記無機充填材(D)1~50質量部とを含む(ただし、(A)、(B)、(C)および(D)の合計は100質量部である)、[2]に記載のポリエステル樹脂組成物。
[4] 前記ポリエステル樹脂(A)が、テレフタル酸から誘導されるジカルボン酸成分単位30~100モル%、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%、および炭素原子数4~20の脂肪族ジカルボン酸成分単位0~70モル%を含むジカルボン酸成分単位(a1)と、炭素原子数4~20の脂環族ジアルコール成分単位および脂肪族ジアルコール成分単位の少なくとも一方を含むジアルコール成分単位(a2)とを含む、[2]に記載のポリエステル樹脂組成物。
[5] 前記ポリエステル樹脂(A)に含まれる前記脂環族ジアルコール成分単位が、シクロヘキサン骨格を有する成分単位である、[4]に記載のポリエステル樹脂組成物。
[6] 前記熱可塑性樹脂(B)に含まれる前記オレフィン由来の構造単位が、エチレン由来の構造単位を含み、前記芳香族炭化水素構造を有する構造単位が、スチレン由来の構造単位を含む、[2]に記載のポリエステル樹脂組成物。
[7] 前記共重合体(C)が、エチレン・メチルアクリレート・グリシジルメタクリレート共重合体である、[1]~[5]のいずれかに記載のポリエステル樹脂組成物。
[8] 臭素化ポリスチレンまたはポリ臭素化スチレン(E)と、難燃助剤(F)とをさらに含む、[1]~[7]のいずれかに記載のポリエステル樹脂組成物。
[9] (A)、(B)、(C)および(D)の合計を100質量部としたときに、前記臭素化ポリスチレンまたはポリ臭素化スチレン(E)を10~40質量部と、前記難燃助剤(F)を1~20質量部とを含む、[8]に記載のポリエステル樹脂組成物。
[10] 前記難燃助剤(F)が、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、ホウ酸亜鉛、スズ酸亜鉛、リン酸亜鉛、ホウ酸カルシウム、モリブデン酸カルシウムからなる群から選択される少なくとも1種類の化合物である、[8]または[9]に記載のポリエステル樹脂組成物。
[11] 前記難燃助剤(F)が、アンチモン酸ナトリウムとホウ酸亜鉛とを含む、[8]~[10]のいずれかに記載のポリエステル樹脂組成物。
[12] [1]~[11]のいずれかに記載のポリエステル樹脂組成物を成形して得られる成形体。
[13] [1]~[11]のいずれかに記載のポリエステル樹脂組成物の射出成形体を含む、電気電子部品。
[14] [1]~[11]のいずれかに記載のポリエステル樹脂組成物の射出成形体を含む、自動車機構部品。
[15] 融点もしくはガラス転移温度が250℃以上であるポリエステル樹脂(A)30~80質量部と、オレフィン由来の構造単位および芳香族炭化水素構造を有し、デカリン中135℃で測定した極限粘度[η]が0.04~1.0dl/gの熱可塑性樹脂(B)0.1~10質量部と、オレフィン由来の構造単位、α、β-不飽和カルボン酸エステル由来の構造単位および環状オキシ炭化水素構造を有する共重合体(C)0.5~10質量部と、無機充填材(D)1~50質量部(ただし、(A)、(B)、(C)および(D)の合計を100質量部とする)とを、ポリエステル樹脂(A)の融点から5℃~30℃高い温度で溶融混練する、ポリエステル樹脂組成物の製造方法。
[17] カーボンブラック(G)および繊維状の無機充填材(D)の少なくとも一つをさらに含む、[16]に記載の摺動部材用ポリエステル樹脂組成物。
[18] 前記ポリエステル樹脂(A)30~80質量部と、前記共重合体(C)0.5~5質量部と、前記カーボンブラック(G)0.5~5質量部と、前記繊維状の無機充填材(D)20~50質量部と、を含む(ただし、(A)、(C)、(G)および(D)の合計は100質量部である)、[16]または[17]に記載の摺動部材用ポリエステル樹脂組成物。
[19] 前記ポリエステル樹脂(A)が、テレフタル酸から誘導されるジカルボン酸成分単位30~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%を含むジカルボン酸成分単位(a1)と、炭素原子数4~20の脂環族ジアルコール成分単位を含むジアルコール成分単位(a2)と、を含む、[16]~[18]のいずれかに記載の摺動部材用ポリエステル樹脂組成物。
[20] 前記ポリエステル樹脂(A)に含まれるジアルコール成分単位(a2)が、シクロヘキサン骨格を有する成分単位を含む、[19]に記載の摺動部材用ポリエステル樹脂組成物。
[21] オレフィン由来の構造単位および芳香族炭化水素構造を有し、かつデカリン中135℃で測定した極限粘度[η]が0.04~1.0dl/gである熱可塑性樹脂(B)をさらに含む、[16]~[20]のいずれかに記載の摺動部材用ポリエステル樹脂組成物。
[22] 前記熱可塑性樹脂(B)を0.1~10質量部含む(ただし、(A)、(C)、(G)および(D)の合計は100質量部である)、[21]に記載の摺動部材用ポリエステル樹脂組成物。
[23] 前記繊維状の無機充填材(D)が、ワラストナイトおよびチタン酸カルシウムから選ばれる少なくとも一種類である、[17]に記載の摺動部材用ポリエステル樹脂組成物。
[24] 前記共重合体(C)が、エチレン・メチルアクリレート・グリシジルメタクリレート共重合体である、[16]~[23]のいずれかに記載の摺動部材用ポリエステル樹脂組成物。
[25] [16]~[24]のいずれかに記載の摺動部材用ポリエステル樹脂組成物を含むカメラモジュール。
本発明者らは上記の課題を解決すべく鋭意検討した結果、ポリエステル樹脂(A)と、特定の環状オキシ構造を有するオレフィン系共重合体(C)と、ポリオレフィン骨格および芳香族炭化水素構造を有する特定の熱可塑性樹脂(B)とを併用することを着想した。その結果、良好な成形性および機械特性を有するポリエステル樹脂組成物が得られることを見出した。さらに、特定の難燃剤処方を適用することで、UL規格における燃焼試験においてドリップが発生しない安定したV-0規格を達成できることを見出した。
ポリエステル樹脂(A)は、芳香族ジカルボン酸由来の成分単位を含むジカルボン酸成分単位(a1)と、脂環状骨格を有するジアルコール由来の成分単位を含むジアルコール成分単位(a2)とを有する構造であることが好ましい。
[η]=ηSP/[C(1+0.205ηSP)]
[η]:極限粘度(dl/g)
ηSP:比粘度
C:試料濃度(g/dl)
t:試料溶液の流下秒数(秒)
t0:溶媒の流下秒数(秒)
ηSP=(t-t0)/t0
共重合体(C)は、オレフィン由来の構造単位と、α,β-不飽和カルボン酸エステル由来の構造単位と、環状オキシ炭化水素構造を有する構造単位とを有する共重合体である。共重合体(C)は、非液晶性ポリエステル樹脂(A)の末端基であるヒドロキシル基もしくはカルボニル基と反応して、ポリエステル樹脂(A)の分子量の低下を抑制する。したがって、樹脂組成物の靱性の向上を図れるエラストマーであれば特に制限なく用いることができる。
熱可塑性樹脂(B)は、オレフィン由来の構造単位と、芳香族炭化水素構造とを有する熱可塑性樹脂である。この場合、熱可塑性樹脂(B)のオレフィン由来の構造単位が、エチレン由来の構造単位を含み;芳香族炭化水素構造を有する構造単位が、スチレン由来の構造単位を含むことが好ましい。
1H NMR測定の場合、日本電子(株)製ECX400型核磁気共鳴装置を用い、溶媒は重水素化オルトジクロロベンゼンとし、試料濃度20mg/0.6mL、測定温度は120℃、観測核は1H(400MHz)、シーケンスはシングルパルス、パルス幅は5.12μ秒(45°パルス)、繰り返し時間は7.0秒、積算回数は500回以上とする条件である。基準のケミカルシフトは、テトラメチルシランの水素を0ppmとするが、例えば、重水素化オルトジクロロベンゼンの残存水素由来のピークを7.10ppmとしてケミカルシフトの基準値とすることでも同様の結果を得ることが出来る。官能基含有化合物由来の1Hなどのピークは、常法によりアサインした。
装置 : ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
溶剤 : o-ジクロロベンゼン
カラム: TSKgelカラム(東ソー社製)×4
流速 : 1.0 ml/分
試料 : 0.15mg/mL o-ジクロロベンゼン溶液
温度 : 140℃
検量線: 市販の単分散標準ポリスチレンを用いて作成。
分子量換算 : PE換算/汎用較正法
ポリスチレン(PS)の係数:KPS=1.38×10-4,aPS=0.70
ポリエチレン(PE)の係数:KPE=5.06×10-4,aPE=0.70
無機充填材(D)は、公知の無機充填材を用いることができる。具体的には、繊維状、粉状、粒状、板状、針状、クロス状またはマット状であり、かつ高いアスペクト比を有する無機充填材を用いることが好ましい。具体的には、ガラス繊維、カルボニル構造を有する無機化合物(例えば、炭酸カルシウムなどの炭酸塩のウィスカーなど)、ハイドロタルサイト、チタン酸カリウム等のチタン酸塩、ワラストナイト、ゾノトライト、ホウ酸アルミニウムウィスカー、硫酸マグネシウムウィスカー、セピオライト、酸化亜鉛ウィスカー、ミルドファイバー、カットファイバーなどを挙げることができる。これらのうちの1種を単独で用いても、2種以上を併用してもよい。
重量平均長さ(Lw)=(Σqi×Li2)/(Σqi×Li)
難燃剤(E)は、樹脂の燃焼性を低下させる目的で添加されうる。アンダーライターズ・ラボラトリーズ・スタンダードUL94で規定されている、V-0といった高い難燃性や耐炎性が要求されることが多い電気電子部品、表面実装部品の樹脂組成物に適用するには、難燃剤を配合した樹脂組成物とすることが好ましい。
難燃助剤(F)は、難燃剤(E)とともに配合されることで、難燃剤(E)の難燃化作用を高めるものであればよく、公知のものを使用することができる。難燃助剤(F)の具体例には、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウムなどのアンチモン化合物;ホウ酸亜鉛、スズ酸亜鉛、リン酸亜鉛などの亜鉛化合物;ホウ酸カルシウム、モリブデン酸カルシウムなどが含まれる。これらを単独または2種類以上を組合せて使用してもよい。これらの中で、アンチモン酸ナトリウム、ホウ酸亜鉛、リン酸亜鉛が好ましい。また成形時の熱安定性の観点からアンチモン酸ナトリウム、ホウ酸亜鉛の無水物(2ZnO・3B2O3)が好ましい。
本発明のポリエステル樹脂組成物は、例えば後述するカメラモジュール用ポリエステル樹脂組成物として用いられる場合、カーボンブラック(G)をさらに含みうる。カーボンブラック(G)は、樹脂組成物を黒色に着色する着色剤として機能しうる。
本発明のポリエステル樹脂組成物は、発明の効果を損なわない範囲で、用途に応じて、以下の添加剤、すなわち、酸化防止剤(フェノール類、アミン類、イオウ類、リン類等)、耐熱安定剤(ラクトン化合物、ビタミンE類、ハイドロキノン類、ハロゲン化銅、ヨウ素化合物等)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ベンゾエート類、ヒンダードアミン類、オギザニリド類等)、他の重合体(ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体等のオレフィン共重合体、プロピレン・1-ブテン共重合体等のオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂、LCP等)、難燃剤(臭素系、塩素系、リン系、アンチモン系、無機系等)、蛍光増白剤、可塑剤、増粘剤、帯電防止剤、離型剤、着色剤、顔料、結晶核剤、種々公知の配合剤を含有することができる。
本発明のポリエステル樹脂組成物は、上記の各成分を、公知の方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダーなどで混合する方法、あるいは混合後さらに一軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練後、造粒あるいは粉砕する方法により製造することができる。
本発明のポリエステル樹脂組成物の成形物は、前述の通り、良好な機械的特性と成形性とを有する。そのため、本発明のポリエステル樹脂組成物の成形物は、種々の電気電子部品や自動車機構部品などに好ましく用いることができる。なかでも、本発明のポリエステル樹脂組成物の成形物は、表面平滑性が高く、低パーティクル性を有しうることから、電気電子部品や自動車機構部品などにおける摺動部材に好ましく用いることができる。
(ポリエステル樹脂(A)の製造)
ジメチルテレフタレート106.2部、1,4-シクロヘキサンジメタノール(シス/トランス比:30/70)94.6部にテトラブチルチタネート0.0037部を加え、150℃から300℃まで3時間30分かけて昇温して、エステル交換反応をさせた。
(ポリアミド樹脂の製造)
テレフタル酸4819.4g(29.01モル)、1,9-ジアミノノナンと2-メチル-1,8-ジアミノオクタンの混合物〔前者/後者=70/30(モル比)〕4772.4g(30.15モル)、安息香酸241.8g(1.98モル)、次亜リン酸ナトリウム一水和物9.8gおよび蒸留水2.5リットルを内容積20リットルのオートクレーブに入れて窒素置換した。この混合物を100℃で30分間攪拌し、2時間かけてオートクレーブ内部の温度を220℃に昇温した。このとき、オートクレーブ内部の圧力は2MPaまで昇圧した。そのまま2時間反応を続けた後、230℃に昇温し、次いで2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2MPaに保ちながら反応させた。次に、30分間かけて圧力を1MPaまで下げた。さらに、1時間反応させて、極限粘度[η]が0.14dl/gのプレポリマーを得た。
(B1)低分子量熱可塑性樹脂:公知の固体状チタン触媒成分で得られたエチレン重合体系ワックスとスチレンとの混合物を公知のラジカル発生剤の存在下に反応させて、以下の低分子量熱可塑性樹脂(B1)を得た。
デカリン中135℃で測定した粘度 :0.10dl/g
140℃での溶融粘度 :1,100mPs・s
スチレン単位含有率 :60質量%
(B2)低分子量熱可塑性樹脂:公知の固体状チタン触媒成分で得られたエチレン重合体系ワックスとスチレンとの混合物を、公知のラジカル発生剤の存在下に反応させて、以下の低分子量熱可塑性樹脂(B2)を得た。
デカリン中135℃で測定した粘度 :0.11dl/g
140℃での溶融粘度 :1,200mPs・s
スチレン単位含有率 :20質量%
(比較用化合物)モンタン酸カルシウム:クラリアント社製 リコモントCaV102
エチレン・メチルアクリレート・グリシジルメタクリレート共重合体(アルケマ社製 ロタダーAX8900)
無機充填材(D1):ガラス繊維:長さ3mm、アスペクト比300(セントラルガラス(株)製ECS03-615、シラン化合物処理品)
無機充填材(D2):ワラストナイト(NYCO社製 NYGLOS 4W)
無機充填材(D3):チタン酸カリウムウィスカー((株) クボタTXAX-MA)
無機充填材(D4):ガラス繊維(日本電気硝子(株)製ECS03T-790DE)
無機充填材(D5):ミルドファイバー(セントラル硝子(株)製EFH-100-31)
(F1)アンチモン酸ナトリウム(日本精鉱(株)製、商品名SA-A)
(F2)ホウ酸亜鉛(BORAX社製,FIREBRAKE 500)
表1に示される各成分を、表1に示される質量比にて混合した。この混合物を温度300℃に設定した二軸ベント付押出機に投入し、溶融混練して実施例1~5、比較例1~3の樹脂組成物(コンパウンド)を得た。なお、各成分の質量比は、合計で100質量%になるようにした。
下記の射出成形機を用い、下記条件で成形して長さ64mm、幅6mm、厚さ0.8mmの試験片を得た。なお、試験片の成形時には離型剤を用いた。この試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン26mm、曲げ速度5mm/分で曲げ試験を行い、曲げ強度、歪量、弾性率、およびその試験片を破壊するのに要するエネルギー(靭性)を測定した。なお、靱性の値が大きいほど靱性が良好であることを示す。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:融点(Tm)+10℃、金型温度:150℃
上記曲げ試験片(長さ64mm、幅6mm、厚さ0.8mm)の射出成形において、射出成形機シリンダー内での滞留時間を1.5分、3分、5分、7分の4条件で曲げ試験片を作製した。そして、上記と同様の曲げ試験を行い、4サンプルの曲げ強度の最大値と最小値の幅がその中間値の±1%未満の場合は1、±2%未満の場合は2、±2%以上の場合を3として評価した。
上記曲げ試験片(長さ64mm、幅6mm、厚さ0.8mm)の射出成形において、離型剤などを用いずに、金型内での冷却時間を変更して成形を行った。そして、下記の条件にて離型できる最小の冷却時間を決定し、離型性の指標とした。なお、冷却時間が短いほど離型性が良好であることを示す。
成形機:(株)ソディック プラステック、ツパールTR40S3A、
成形機シリンダー温度:融点(Tm)+10℃、金型温度:150℃。
幅10mm、厚み0.5mmのバーフロー金型を使用して、下記の条件で射出し、金型内の樹脂の流動長(mm)を測定した。なお、流動長が長いほど射出流動性が良好であることを示す。
射出成形機:(株)ソディック プラステック、ツパールTR40S3A
射出設定圧力:2000kg/cm2、シリンダー設定温度:融点(Tm)+10℃、金型温度:150℃。
表2に示される各成分を、表2に示す質量比にて混合し、温度300℃に設定した二軸ベント付押出機に投入し、溶融混練して実施例6~11、比較例4~6の樹脂組成物(コンパウンド)を得た。なお、各成分の質量比は、合計で100質量%になるようにした。
射出成形で調製した、厚み1/32インチ、幅1/2インチ 、長さ5インチの試験片を用いて、UL94規格(1991年6月18日付のUL Test No.UL94)に準拠して垂直燃焼試験を行い、難燃性を評価した。この際、試験中にドリップが生じるものは「あり」、ドリップが生じないサンプルは「なし」とし、結果を表1に記載した。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:融点(Tm)+10℃、金型温度:150℃。
ポリエステル樹脂(A1)、共重合体(B)、カーボンブラック(G)、繊維状の無機充填材(D)、熱可塑性樹脂(E)を、表3に示す割合でタンブラーブレンダーを用いて混合した。混合物を、二軸押出機(株)日本製鋼所製 TEX30αにてシリンダー温度を樹脂の融点より15℃高い温度で原料を溶融混錬後、ストランド状に押出し、水槽で冷却後、ペレタイザーでストランドを引き取り、カットすることでペレット状組成物を得た。すなわち良好なコンパウンド性を示した。
表3に示す組成とした以外は実施例12と同様にして樹脂組成物を調製した。
下記射出成形機を用い、下記成形条件で調製した長さ64mm、幅6mm、厚さ0.8mmの試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で、曲げ試験機(NTESCO社製 AB5)で、スパン26mm、曲げ速度5mm/分で曲げ試験を行い、試験片の強度、弾性率、およびたわみ量を測定した。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:融点(Tm)+10℃、金型温度:150℃
下記射出成形機を用い、下記の成形条件で調製した長さ64mm、幅6mm、厚さ0.8mmの試験片を、温度40℃、相対湿度95%で96時間調湿した。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:融点(Tm)+10℃、金型温度:150℃
エアーリフローはんだ装置(エイテックテクトロン(株)製AIS-20-82-C)を用いて、図2に示す温度プロファイルのリフロー工程を行った。
幅10mm、厚み0.5mmのバーフロー金型を使用して以下の条件で射出し、金型内の樹脂の流動長(mm)を測定した。
射出成形機:(株)ソディック プラステック、ツパールTR40S3A
射出設定圧力:2000kg/cm2、シリンダー設定温度:融点(Tm)+10℃
金型温度:150℃
得られた樹脂組成物を、住友重機械工業製SE50型成形機を用いて、使用した樹脂の融点より10℃高い温度でMD方向長さ50mm、TD方向長さ30mm、厚さが0.6mmの試験片を射出成形した。金型の温度は150℃とした。用いた金型は、MD方向の間隔が40mmとなる一対の平行線、TD方向の間隔が20mmとなる一対の平行線形状の凹部が形成されている物を用いた。
得られた樹脂組成物を住友重機械工業製SE50型成形機を用いて、使用した樹脂の融点より10℃高い温度で、幅30mm、長さ30mm、厚さが0.3mmの試験片を射出成形した。金型の温度は150℃とした。ブルカーAXS社製表面形状測定(WYKO)「NT1100」を用いて表面粗度を測定した。測定条件として、測定モードをVSI,測定範囲を1.2mm×0.9mm、補正をTiltとした。
得られた樹脂組成物を住友重機械工業製SE50型成形機を用いて、使用した樹脂の融点より10℃高い温度で、幅30mm、長さ30mm、厚さが0.5mmの試験片を射出成形した。金型の温度は150℃とした。日立製分光光度計「U-4000」を用いて得られた平板の波長1000nmでの光透過係数を測定した。
2 撮像素子
3 レンズ
4 バレル
5 ホルダ
6 IRフィルタ
Claims (25)
- 融点もしくはガラス転移温度が250℃以上であるポリエステル樹脂(A)と、
オレフィン由来の構造単位および芳香族炭化水素構造を有し、かつデカリン中135℃で測定した極限粘度[η]が0.04~1.0dl/gの熱可塑性樹脂(B)と、
オレフィン由来の構造単位、α、β-不飽和カルボン酸エステル由来の構造単位および環状オキシ炭化水素構造を有する構造単位を有する共重合体(C)と、を含むポリエステル樹脂組成物。 - 無機充填材(D)をさらに含む、請求項1に記載のポリエステル樹脂組成物。
- 前記ポリエステル樹脂(A)30~80質量部と、
前記熱可塑性樹脂(B)0.1~10質量部と、
前記共重合体(C)0.5~10質量部と、
前記無機充填材(D)1~50質量部とを含む(ただし、(A)、(B)、(C)および(D)の合計は100質量部である)、請求項2に記載のポリエステル樹脂組成物。 - 前記ポリエステル樹脂(A)が、テレフタル酸から誘導されるジカルボン酸成分単位30~100モル%、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%、および炭素原子数4~20の脂肪族ジカルボン酸成分単位0~70モル%を含むジカルボン酸成分単位(a1)と、
炭素原子数4~20の脂環族ジアルコール成分単位および脂肪族ジアルコール成分単位の少なくとも一方を含むジアルコール成分単位(a2)と、を含む、請求項2に記載のポリエステル樹脂組成物。 - 前記ポリエステル樹脂(A)に含まれる前記脂環族ジアルコール成分単位が、シクロヘキサン骨格を有する成分単位である、請求項4に記載のポリエステル樹脂組成物。
- 前記熱可塑性樹脂(B)に含まれる前記オレフィン由来の構造単位が、エチレン由来の構造単位を含み、
前記芳香族炭化水素構造を有する構造単位が、スチレン由来の構造単位を含む、請求項2に記載のポリエステル樹脂組成物。 - 前記共重合体(C)が、エチレン・メチルアクリレート・グリシジルメタクリレート共重合体である、請求項2に記載のポリエステル樹脂組成物。
- 臭素化ポリスチレンまたはポリ臭素化スチレン(E)と、
難燃助剤(F)と、をさらに含む、請求項2に記載のポリエステル樹脂組成物。 - (A)、(B)、(C)および(D)の合計を100質量部としたときに、
前記臭素化ポリスチレンまたはポリ臭素化スチレン(E)を10~40質量部と、
前記難燃助剤(F)を1~20質量部と、を含む、請求項8に記載のポリエステル樹脂組成物。 - 前記難燃助剤(F)が、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、ホウ酸亜鉛、スズ酸亜鉛、リン酸亜鉛、ホウ酸カルシウム、モリブデン酸カルシウムからなる群から選択される少なくとも1種類の化合物である、請求項8に記載のポリエステル樹脂組成物。
- 前記難燃助剤(F)が、アンチモン酸ナトリウムとホウ酸亜鉛とを含む、請求項8に記載のポリエステル樹脂組成物。
- 請求項2に記載のポリエステル樹脂組成物を成形して得られる成形体。
- 請求項2に記載のポリエステル樹脂組成物の射出成形体を含む、電気電子部品。
- 請求項2に記載のポリエステル樹脂組成物の射出成形体を含む、自動車機構部品。
- 融点もしくはガラス転移温度が250℃以上であるポリエステル樹脂(A)30~80質量部と、
オレフィン由来の構造単位および芳香族炭化水素構造を有し、デカリン中135℃で測定した極限粘度[η]が0.04~1.0dl/gの熱可塑性樹脂(B)0.1~10質量部と、
オレフィン由来の構造単位、α、β-不飽和カルボン酸エステル由来の構造単位および環状オキシ炭化水素構造を有する共重合体(C)0.5~10質量部と、
無機充填材(D)1~50質量部(ただし、(A)、(B)、(C)および(D)の合計を100質量部とする)とを、ポリエステル樹脂(A)の融点から5℃~30℃高い温度で溶融混練する、ポリエステル樹脂組成物の製造方法。 - 融点もしくはガラス転移温度が250℃以上であるポリエステル樹脂(A)と、
オレフィン由来の構造単位、α、β-不飽和カルボン酸エステル由来の構造単位および環状オキシ炭化水素構造を有する構造単位を有する共重合体(C)と、を含む、摺動部材用ポリエステル樹脂組成物。 - カーボンブラック(G)および繊維状の無機充填材(D)の少なくとも一つをさらに含む、請求項16に記載の摺動部材用ポリエステル樹脂組成物。
- 前記ポリエステル樹脂(A)30~80質量部と、
前記共重合体(C)0.5~5質量部と、
前記カーボンブラック(G)0.5~5質量部と、
前記繊維状の無機充填材(D)20~50質量部と、を含む(ただし、(A)、(C)、(G)および(D)の合計は100質量部である)、請求項16に記載の摺動部材用ポリエステル樹脂組成物。 - 前記ポリエステル樹脂(A)が、
テレフタル酸から誘導されるジカルボン酸成分単位30~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%を含むジカルボン酸成分単位(a1)と、
炭素原子数4~20の脂環族ジアルコール成分単位を含むジアルコール成分単位(a2)と、を含む、請求項16に記載の摺動部材用ポリエステル樹脂組成物。 - 前記ポリエステル樹脂(A)に含まれるジアルコール成分単位(a2)が、シクロヘキサン骨格を有する成分単位を含む、請求項19に記載の摺動部材用ポリエステル樹脂組成物。
- オレフィン由来の構造単位および芳香族炭化水素構造を有し、かつデカリン中135℃で測定した極限粘度[η]が0.04~1.0dl/gである熱可塑性樹脂(B)をさらに含む、請求項17に記載の摺動部材用ポリエステル樹脂組成物。
- 前記熱可塑性樹脂(B)を0.1~10質量部含む(ただし、(A)、(C)、(G)および(D)の合計は100質量部である)、請求項21に記載の摺動部材用ポリエステル樹脂組成物。
- 前記繊維状の無機充填材(D)が、ワラストナイトおよびチタン酸カルシウムから選ばれる少なくとも一種類である、請求項16に記載の摺動部材用ポリエステル樹脂組成物。
- 前記共重合体(C)が、エチレン・メチルアクリレート・グリシジルメタクリレート共重合体である、請求項16に記載の摺動部材用ポリエステル樹脂組成物。
- 請求項16に記載の摺動部材用ポリエステル樹脂組成物を含むカメラモジュール。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/443,811 US10011715B2 (en) | 2012-11-19 | 2013-11-19 | Polyester resin composition, manufacturing method therefor, and camera module containing said polyester resin composition |
CN201380060036.2A CN104797654B (zh) | 2012-11-19 | 2013-11-19 | 聚酯树脂组合物及其制造方法、含有该聚酯树脂组合物的照相机模块 |
KR1020157013124A KR101821868B1 (ko) | 2012-11-19 | 2013-11-19 | 폴리에스테르 수지 조성물과 그 제조 방법, 그것을 포함하는 카메라 모듈 |
JP2014524218A JP5681331B2 (ja) | 2012-11-19 | 2013-11-19 | ポリエステル樹脂組成物とその製造方法 |
EP13854683.3A EP2921525B1 (en) | 2012-11-19 | 2013-11-19 | Polyester resin composition, manufacturing method therefor, and camera module containing said polyester resin composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012253430 | 2012-11-19 | ||
JP2012-253430 | 2012-11-19 | ||
JP2012255663 | 2012-11-21 | ||
JP2012-255663 | 2012-11-21 | ||
JP2013-140533 | 2013-07-04 | ||
JP2013140533 | 2013-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014076971A1 true WO2014076971A1 (ja) | 2014-05-22 |
Family
ID=50730902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006764 WO2014076971A1 (ja) | 2012-11-19 | 2013-11-19 | ポリエステル樹脂組成物とその製造方法、それを含むカメラモジュール |
Country Status (7)
Country | Link |
---|---|
US (1) | US10011715B2 (ja) |
EP (1) | EP2921525B1 (ja) |
JP (2) | JP5681331B2 (ja) |
KR (1) | KR101821868B1 (ja) |
CN (1) | CN104797654B (ja) |
TW (1) | TWI585151B (ja) |
WO (1) | WO2014076971A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016147962A (ja) * | 2015-02-12 | 2016-08-18 | 三井化学株式会社 | カメラモジュール用ポリエステル樹脂組成物、及びカメラモジュール |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9862809B2 (en) | 2015-07-31 | 2018-01-09 | Ticona Llc | Camera module |
US10407605B2 (en) | 2015-07-31 | 2019-09-10 | Ticona Llc | Thermally conductive polymer composition |
TWI708806B (zh) | 2015-08-17 | 2020-11-01 | 美商堤康那責任有限公司 | 用於相機模組之液晶聚合物組合物 |
JP7092661B2 (ja) * | 2015-09-09 | 2022-06-28 | ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー | 強靱化ポリ(アリールエーテルスルホン)/ポリ(アリールエーテルケトン)ブレンド |
CN107290837B (zh) * | 2016-04-01 | 2019-09-24 | 玉晶光电(厦门)有限公司 | 镜头座、其制作方法及便携式电子装置 |
WO2018070424A1 (ja) * | 2016-10-14 | 2018-04-19 | 三井化学株式会社 | 樹脂組成物および成形体 |
CN110140075B (zh) * | 2016-12-27 | 2024-03-22 | 菱环球聚甲醛株式会社 | 成型品和成型品的制造方法 |
US10633535B2 (en) | 2017-02-06 | 2020-04-28 | Ticona Llc | Polyester polymer compositions |
US11384238B2 (en) | 2018-02-08 | 2022-07-12 | Celanese Sales Germany Gmbh | Polymer composite containing recycled carbon fibers |
CN111741841B (zh) | 2018-02-20 | 2023-05-30 | 提克纳有限责任公司 | 导热聚合物组合物 |
CN115702206B (zh) * | 2020-06-30 | 2023-12-12 | 宝理塑料株式会社 | 耐球轴承滑动磨损构件用液晶性树脂组合物和使用其的耐球轴承滑动磨损构件 |
CN114539927A (zh) * | 2021-10-27 | 2022-05-27 | 深圳市深赛尔股份有限公司 | 一种高耐候性水性风电叶片涂料及其制备方法 |
CN114456550B (zh) * | 2021-12-20 | 2023-11-07 | 金发科技股份有限公司 | 一种聚酯复合材料及其制备方法和应用 |
WO2024122582A1 (ja) * | 2022-12-08 | 2024-06-13 | ポリプラスチックス株式会社 | 液晶性樹脂組成物及びそれを用いたカメラモジュール |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5763310A (en) | 1980-08-13 | 1982-04-16 | Montedison Spa | Ingredient and catalyst for olefin polymerization |
JPS5883006A (ja) | 1981-11-13 | 1983-05-18 | Mitsui Petrochem Ind Ltd | オレフインの重合方法 |
JPH0241303A (ja) | 1988-07-15 | 1990-02-09 | Fina Technol Inc | シンジオタクチツクポリオレフインの製造方法及び触媒 |
JPH03706A (ja) | 1988-09-30 | 1991-01-07 | Himont Inc | オレフィン重合用固体触媒成分および触媒 |
JPH03193796A (ja) | 1989-10-10 | 1991-08-23 | Fina Technol Inc | メタロセン化合物 |
JPH04218508A (ja) | 1990-04-13 | 1992-08-10 | Mitsui Petrochem Ind Ltd | α−オレフィン系重合体の製造方法 |
JPH05501274A (ja) | 1989-10-23 | 1993-03-11 | イーストマン ケミカル カンパニー | 改良された溶融安定性を有するポリ(1,4―シクロヘキシレンジメチレンテレフタレート) |
JPH05140424A (ja) | 1991-07-18 | 1993-06-08 | Nippon G Ii Plast Kk | 耐衝撃性ポリエステル系樹脂組成物 |
JPH0616912A (ja) | 1992-06-30 | 1994-01-25 | Toray Ind Inc | ポリエステル樹脂組成物 |
JPH0625517A (ja) | 1992-06-30 | 1994-02-01 | Toray Ind Inc | ポリエステル樹脂組成物 |
US5731390A (en) * | 1994-11-19 | 1998-03-24 | General Electric Company | Hydrolytic stable glass fiber reinforced polyester resins |
WO2000055256A1 (fr) * | 1999-03-12 | 2000-09-21 | Polyplastics Co., Ltd. | Composition de resine de polyester |
WO2001027124A1 (fr) | 1999-10-08 | 2001-04-19 | Mitsui Chemicals, Inc. | Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine |
WO2001053369A1 (fr) | 2000-01-21 | 2001-07-26 | Mitsui Chemicals, Inc. | Copolymeres blocs d'olefine, procedes de fabrication et utilisation |
JP2002030197A (ja) * | 2000-07-17 | 2002-01-31 | Mitsui Chemicals Inc | 摺動性に優れる熱可塑性樹脂組成物 |
JP2003105022A (ja) | 2001-09-28 | 2003-04-09 | Mitsui Chemicals Inc | α−オレフィン系重合体の製造方法 |
JP3476793B2 (ja) | 1990-04-13 | 2003-12-10 | 三井化学株式会社 | オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法 |
JP2009242456A (ja) | 2008-03-28 | 2009-10-22 | Nippon Oil Corp | カメラモジュール用液晶ポリエステル樹脂組成物 |
JP2010286544A (ja) | 2009-06-09 | 2010-12-24 | Kuraray Co Ltd | カメラモジュールのバレルまたはホルダ |
JP2011529978A (ja) * | 2008-07-30 | 2011-12-15 | ティコナ・エルエルシー | 長期耐熱劣化性の耐衝撃性改質ポリ(シクロヘキシレン−ジメチレン)テレフタレート組成物 |
JP2012087171A (ja) | 2010-10-15 | 2012-05-10 | Jx Nippon Oil & Energy Corp | 液晶ポリエステル樹脂組成物及びカメラモジュール部品 |
JP2012136710A (ja) * | 2005-09-14 | 2012-07-19 | Ticona Llc | ポリ(シクロヘキサンジメタノールテレフタレート)組成物を含む発光ダイオードアセンブリハウジング |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61501270A (ja) * | 1984-02-24 | 1986-06-26 | イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− | 強化熱可塑性ポリエステル組成物 |
CA1268875A (en) * | 1984-07-09 | 1990-05-08 | Takashi Nagai | Polyester composition |
JPH0710947B2 (ja) * | 1985-09-17 | 1995-02-08 | 東レ株式会社 | 芳香族ポリエステル組成物 |
US4713407A (en) * | 1986-01-31 | 1987-12-15 | Idemitsu Petrochemical Co., Ltd. | Flame retardant polyester resin composition |
JPS62241966A (ja) * | 1986-04-14 | 1987-10-22 | Otsuka Chem Co Ltd | 導電性摺動部材用樹脂組成物 |
EP0303172A3 (de) | 1987-08-14 | 1991-05-15 | F. Hoffmann-La Roche Ag | Oxyimino-Cephalosporine |
US5554120A (en) * | 1994-07-25 | 1996-09-10 | Advanced Cardiovascular Systems, Inc. | Polymer blends for use in making medical devices including catheters and balloons for dilatation catheters |
BR9713952A (pt) * | 1996-12-19 | 2000-03-21 | Eastman Chem Co | Composição de moldagem de polìmero, e, artigo de formação termoplástica. |
DE19845289A1 (de) * | 1998-10-01 | 2000-04-06 | Basf Ag | Unverstärkte thermoplastische Formmassen |
KR20030093597A (ko) | 2002-06-03 | 2003-12-11 | 이준복 | 터치스크린이 장착된 다국어 입력이 가능한 키보드 및 그키입력 방법 |
CN1898306A (zh) * | 2003-10-21 | 2007-01-17 | 纳幕尔杜邦公司 | 乙烯共聚物改性的取向聚酯薄膜、带、纤维以及非织造纺织品 |
JP2005316539A (ja) | 2004-04-27 | 2005-11-10 | Mitsubishi Engineering Plastics Corp | ペダル部品 |
JP5382130B2 (ja) * | 2009-11-02 | 2014-01-08 | トヨタ自動車株式会社 | 固体電解質電池の製造方法 |
US20120098160A1 (en) * | 2010-10-22 | 2012-04-26 | Sumitomo Chemical Company, Limited | Process for producing resin molded article |
-
2013
- 2013-11-19 CN CN201380060036.2A patent/CN104797654B/zh not_active Expired - Fee Related
- 2013-11-19 KR KR1020157013124A patent/KR101821868B1/ko active IP Right Grant
- 2013-11-19 WO PCT/JP2013/006764 patent/WO2014076971A1/ja active Application Filing
- 2013-11-19 US US14/443,811 patent/US10011715B2/en not_active Expired - Fee Related
- 2013-11-19 JP JP2014524218A patent/JP5681331B2/ja not_active Expired - Fee Related
- 2013-11-19 TW TW102142129A patent/TWI585151B/zh not_active IP Right Cessation
- 2013-11-19 EP EP13854683.3A patent/EP2921525B1/en not_active Not-in-force
-
2014
- 2014-09-26 JP JP2014197059A patent/JP5909534B2/ja active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5763310A (en) | 1980-08-13 | 1982-04-16 | Montedison Spa | Ingredient and catalyst for olefin polymerization |
JPS5883006A (ja) | 1981-11-13 | 1983-05-18 | Mitsui Petrochem Ind Ltd | オレフインの重合方法 |
JPH0241303A (ja) | 1988-07-15 | 1990-02-09 | Fina Technol Inc | シンジオタクチツクポリオレフインの製造方法及び触媒 |
JPH03706A (ja) | 1988-09-30 | 1991-01-07 | Himont Inc | オレフィン重合用固体触媒成分および触媒 |
JPH03193796A (ja) | 1989-10-10 | 1991-08-23 | Fina Technol Inc | メタロセン化合物 |
JPH05501274A (ja) | 1989-10-23 | 1993-03-11 | イーストマン ケミカル カンパニー | 改良された溶融安定性を有するポリ(1,4―シクロヘキシレンジメチレンテレフタレート) |
JP3476793B2 (ja) | 1990-04-13 | 2003-12-10 | 三井化学株式会社 | オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法 |
JPH04218508A (ja) | 1990-04-13 | 1992-08-10 | Mitsui Petrochem Ind Ltd | α−オレフィン系重合体の製造方法 |
JPH05140424A (ja) | 1991-07-18 | 1993-06-08 | Nippon G Ii Plast Kk | 耐衝撃性ポリエステル系樹脂組成物 |
JPH0616912A (ja) | 1992-06-30 | 1994-01-25 | Toray Ind Inc | ポリエステル樹脂組成物 |
JPH0625517A (ja) | 1992-06-30 | 1994-02-01 | Toray Ind Inc | ポリエステル樹脂組成物 |
US5731390A (en) * | 1994-11-19 | 1998-03-24 | General Electric Company | Hydrolytic stable glass fiber reinforced polyester resins |
WO2000055256A1 (fr) * | 1999-03-12 | 2000-09-21 | Polyplastics Co., Ltd. | Composition de resine de polyester |
WO2001027124A1 (fr) | 1999-10-08 | 2001-04-19 | Mitsui Chemicals, Inc. | Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine |
WO2001053369A1 (fr) | 2000-01-21 | 2001-07-26 | Mitsui Chemicals, Inc. | Copolymeres blocs d'olefine, procedes de fabrication et utilisation |
JP2002030197A (ja) * | 2000-07-17 | 2002-01-31 | Mitsui Chemicals Inc | 摺動性に優れる熱可塑性樹脂組成物 |
JP2003105022A (ja) | 2001-09-28 | 2003-04-09 | Mitsui Chemicals Inc | α−オレフィン系重合体の製造方法 |
JP2012136710A (ja) * | 2005-09-14 | 2012-07-19 | Ticona Llc | ポリ(シクロヘキサンジメタノールテレフタレート)組成物を含む発光ダイオードアセンブリハウジング |
JP2009242456A (ja) | 2008-03-28 | 2009-10-22 | Nippon Oil Corp | カメラモジュール用液晶ポリエステル樹脂組成物 |
JP2011529978A (ja) * | 2008-07-30 | 2011-12-15 | ティコナ・エルエルシー | 長期耐熱劣化性の耐衝撃性改質ポリ(シクロヘキシレン−ジメチレン)テレフタレート組成物 |
JP2010286544A (ja) | 2009-06-09 | 2010-12-24 | Kuraray Co Ltd | カメラモジュールのバレルまたはホルダ |
JP2012087171A (ja) | 2010-10-15 | 2012-05-10 | Jx Nippon Oil & Energy Corp | 液晶ポリエステル樹脂組成物及びカメラモジュール部品 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016147962A (ja) * | 2015-02-12 | 2016-08-18 | 三井化学株式会社 | カメラモジュール用ポリエステル樹脂組成物、及びカメラモジュール |
Also Published As
Publication number | Publication date |
---|---|
TWI585151B (zh) | 2017-06-01 |
US10011715B2 (en) | 2018-07-03 |
JP2015028181A (ja) | 2015-02-12 |
CN104797654B (zh) | 2016-08-24 |
JP5681331B2 (ja) | 2015-03-04 |
JPWO2014076971A1 (ja) | 2017-01-05 |
KR20150074102A (ko) | 2015-07-01 |
EP2921525A4 (en) | 2016-06-29 |
CN104797654A (zh) | 2015-07-22 |
US20150274964A1 (en) | 2015-10-01 |
JP5909534B2 (ja) | 2016-04-26 |
TW201425459A (zh) | 2014-07-01 |
KR101821868B1 (ko) | 2018-01-24 |
EP2921525A1 (en) | 2015-09-23 |
EP2921525B1 (en) | 2017-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5909534B2 (ja) | ポリエステル樹脂組成物およびそれを含むカメラモジュール | |
JP6690530B2 (ja) | 赤外光透過性ポリエステル樹脂組成物 | |
JP6112272B1 (ja) | 熱可塑性ポリエステル樹脂組成物、およびこれを用いた光反射体 | |
JP2012214702A (ja) | 樹脂組成物、及び該樹脂組成物からなる成形体 | |
TW201718761A (zh) | 聚酯樹脂組成物及含有此組成物之光反射體用零件與光反射體 | |
TWI612097B (zh) | 反射材用聚酯樹脂組成物及含有其的反射板 | |
JPWO2016002192A1 (ja) | 反射材用樹脂組成物およびそれを含む反射板 | |
JP2018059044A (ja) | ポリエステル樹脂組成物、反射板の製造方法および発光ダイオード(led)素子の製造方法 | |
JP2007302822A (ja) | ポリフェニレンスルフィド樹脂組成物 | |
WO2014069489A1 (ja) | ポリブチレンテレフタレート樹脂組成物 | |
WO2016133056A1 (ja) | 赤外光透過性ポリエステル樹脂組成物 | |
CN1875072A (zh) | 热塑性树脂组合物及其注塑制品 | |
WO2016002193A1 (ja) | 反射材用ポリエステル樹脂組成物およびそれを含む反射板 | |
JP2016147962A (ja) | カメラモジュール用ポリエステル樹脂組成物、及びカメラモジュール | |
EP3064550B1 (en) | Resin composition | |
JP6540288B2 (ja) | 赤外光透過性ポリエステル樹脂組成物 | |
US11518879B2 (en) | Thermoplastic resin composition and light diffusion sheet produced therefrom | |
JP2019142986A (ja) | 反射材用ポリエステル樹脂組成物および反射材 | |
KR102382266B1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 광확산판 | |
JP2017071729A (ja) | 熱可塑性ポリエステル樹脂組成物、およびこれを用いた光反射体 | |
JP2006169449A (ja) | 耐紫外線用樹脂成形品 | |
JP2018168288A (ja) | 反射材用ポリエステル樹脂組成物及び反射材 | |
KR20170085240A (ko) | 보강 폴리카보네이트 수지 및 이로부터 제조된 성형품 | |
JP2017075208A (ja) | 熱可塑性ポリエステル樹脂組成物、およびこれを用いた光反射体 | |
JP2014132053A (ja) | Led光反射体成形用ポリエステル樹脂組成物およびled光反射体光反射体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014524218 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854683 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157013124 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013854683 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14443811 Country of ref document: US Ref document number: 2013854683 Country of ref document: EP |