WO2014073419A1 - メタクロレイン及びメタクリル酸の製造方法 - Google Patents
メタクロレイン及びメタクリル酸の製造方法 Download PDFInfo
- Publication number
- WO2014073419A1 WO2014073419A1 PCT/JP2013/079250 JP2013079250W WO2014073419A1 WO 2014073419 A1 WO2014073419 A1 WO 2014073419A1 JP 2013079250 W JP2013079250 W JP 2013079250W WO 2014073419 A1 WO2014073419 A1 WO 2014073419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- temperature
- methacrylic acid
- catalyst
- methacrolein
- Prior art date
Links
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 title claims abstract description 79
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 338
- 239000003054 catalyst Substances 0.000 claims abstract description 114
- 239000002994 raw material Substances 0.000 claims abstract description 77
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims abstract description 60
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims abstract description 49
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 39
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 230000004913 activation Effects 0.000 claims abstract description 35
- 230000003647 oxidation Effects 0.000 claims abstract description 32
- 230000003197 catalytic effect Effects 0.000 claims abstract description 26
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims abstract description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 17
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 17
- 239000011733 molybdenum Substances 0.000 claims abstract description 17
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 230000000630 rising effect Effects 0.000 claims abstract 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000011133 lead Substances 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052701 rubidium Inorganic materials 0.000 claims description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052716 thallium Inorganic materials 0.000 claims description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 239000007789 gas Substances 0.000 description 20
- 239000012071 phase Substances 0.000 description 20
- 238000010304 firing Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 239000012495 reaction gas Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000000465 moulding Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000012808 vapor phase Substances 0.000 description 8
- 238000001354 calcination Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000009790 rate-determining step (RDS) Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/37—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Definitions
- the present invention uses molecular oxygen in the presence of a catalyst in the presence of a catalyst selected from the group consisting of isobutylene, tert-butyl alcohol (hereinafter also referred to as TBA) and methyl-tert-butyl ether (hereinafter also referred to as MTBE).
- TBA tert-butyl alcohol
- MTBE methyl-tert-butyl ether
- a method for producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of isobutylene, tert-butyl alcohol or methyl-tert-butyl ether over a catalyst containing molybdenum, bismuth and iron as essential components is widely known and industrially used. It is also used. This reaction is carried out in the range of 300 to 400 ° C. using, for example, a fixed bed multitubular reactor.
- the catalyst used for such a gas phase catalytic oxidation reaction is used for a relatively long period of time, so that the reaction rate of the raw material decreases with time. For this reason, in order to maintain the reaction rate of a raw material, the method of operating by raising reaction temperature is performed.
- Patent Document 1 discloses a method of regenerating a catalyst whose activity has been reduced by use at 380 to 540 ° C. in an atmosphere substantially composed of air.
- Patent Document 2 when the boundary temperature of the activation energy of the reaction for producing methacrolein and methacrylic acid using a catalyst is T (° C.), the reaction is started at a temperature of T-3 (° C.) or less.
- T boundary temperature of the activation energy of the reaction for producing methacrolein and methacrylic acid using a catalyst
- T temperature of T-3
- a method is disclosed in which the reaction is continued while raising the reaction temperature as the catalyst activity decreases, and at least one activation treatment is performed on the catalyst before the reaction temperature becomes higher than T.
- Patent Document 3 when the boundary temperature of the activation energy of the reaction is TA (° C.), the reaction rate of the raw material is made constant in the temperature range of TA-15 (° C.) or more and TA (° C.) or less.
- a method of controlling by changing the reaction pressure or the molar ratio of oxygen and raw material is disclosed.
- An object of the present invention is to provide a method for producing methacrolein and methacrylic acid, which can improve the yield of methacrolein and methacrylic acid.
- the method for producing methacrolein and methacrylic acid according to the present invention is selected from the group consisting of isobutylene, tert-butyl alcohol and methyl-tert-butyl ether using a fixed bed reactor in the presence of a catalyst containing molybdenum, bismuth and iron.
- a process for producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of at least one raw material with molecular oxygen When the boundary temperature of the activation energy of the oxidation reaction is TA (° C.), the reaction is started from less than the reaction temperature TA (° C.) and controlled while raising the reaction temperature so that the reaction rate of the raw material becomes constant.
- the yield of methacrolein and methacrylic acid can be improved.
- the catalyst used in the present invention is not particularly limited as long as it contains molybdenum, bismuth and iron, but preferably has a composition represented by the following formula (1).
- the catalyst according to the present invention may be a complex oxide.
- Mo, Bi, Fe, Si, and O show molybdenum, bismuth, iron, silicon, and oxygen, respectively.
- M represents at least one element selected from the group consisting of cobalt and nickel.
- X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc.
- Y represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium.
- Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
- a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element.
- a 12
- b 0.01 to 3
- c 0.01 to 5
- d 1-12
- h 0-20
- i is an oxygen atom necessary to satisfy the valence of each component It is a ratio.
- the composition of the catalyst is a value calculated from the amount of raw material charged for each element.
- the method for producing the catalyst according to the present invention is not particularly limited, and various methods can be applied. For example, there is a method in which an aqueous slurry containing at least molybdenum, bismuth and iron is dried, pulverized and shaped as necessary, and then heat-treated to obtain a catalyst.
- the method for producing an aqueous slurry containing at least molybdenum, bismuth and iron is not particularly limited, and various methods such as a coprecipitation method and an oxide mixing method can be used.
- the raw material of the catalyst component used for producing the aqueous slurry is not particularly limited, and oxides, chlorides, hydroxides, sulfates, nitrates, carbonates, acetates, ammonium salts, or mixtures thereof of each element. Can be used.
- oxides, chlorides, hydroxides, sulfates, nitrates, carbonates, acetates, ammonium salts, or mixtures thereof of each element. can be used.
- a raw material of molybdenum, ammonium paramolybdate, molybdenum trioxide, or the like can be used.
- Bismuth oxide, bismuth nitrate, or the like can be used as a bismuth raw material.
- As a raw material of iron, ferric nitrate, ferric oxide and the like can be used. These may use 1 type and may use 2 or more types together.
- the method of drying the aqueous slurry is not particularly limited, and for example, a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, and evaporation to dryness.
- pulverize a lump-like dried material are mentioned.
- the inlet temperature is preferably 100 to 500 ° C, more preferably 110 to 300 ° C.
- the outlet temperature is preferably 100 to 300 ° C, more preferably 105 to 200 ° C.
- the dried powder thus obtained may contain a salt such as nitric acid derived from the catalyst raw material.
- a salt such as nitric acid derived from the catalyst raw material.
- the salt when the dry powder is fired after molding, the salt may decompose and the strength of the molded product may decrease. For this reason, it is preferable to perform baking after drying.
- Primary calcination may be performed for the purpose of detaching the salt, and secondary calcination may be performed to form a final catalytically active site structure after molding described later. Further, primary firing and secondary firing may be performed, and then molding may be performed.
- the primary firing and the secondary firing may be performed together in one firing, or may be performed separately.
- the firing conditions are not particularly limited, and known conditions can be applied. For example, it can be carried out at a firing temperature of 200 to 600 ° C.
- the primary firing temperature is preferably 200 to 400 ° C, more preferably 250 to 350 ° C.
- the primary firing time is preferably 0.5 to 2 hours.
- the secondary firing temperature is preferably 400 to 550 ° C, more preferably 500 ° C to 520 ° C.
- the secondary firing time is preferably 2 to 5 hours.
- the molding method of the dry powder before or after firing is not particularly limited, and various molding methods such as tableting molding, extrusion molding, and supporting on a carrier can be used.
- inorganic materials such as graphite and diatomaceous earth are used for the purpose of controlling the specific surface area, pore volume and pore distribution of molded products, increasing mechanical strength, and improving handling properties during molding.
- Compounds, glass fibers, inorganic fibers such as ceramic fibers and carbon fibers, and organic binders such as methyl cellulose, ethyl cellulose, carboxyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, and hydroxypropyl methyl cellulose may be added. These may use 1 type and may use 2 or more types together.
- the shape of the molded product is not particularly limited, and may be, for example, a spherical shape, a cylindrical shape, a ring shape, or a star shape.
- silica, alumina, silica-alumina, magnesia, titania, silicon carbide or the like can be used as the carrier. These may use 1 type and may use 2 or more types together.
- the method for producing methacrolein and methacrylic acid according to the present invention is selected from the group consisting of isobutylene, tert-butyl alcohol and methyl-tert-butyl ether using a fixed bed reactor in the presence of a catalyst containing molybdenum, bismuth and iron.
- the reaction is started from less than the reaction temperature TA (° C.), controlled while increasing the reaction temperature so that the reaction rate of the raw material becomes constant, and the reaction is terminated at a reaction temperature exceeding TA (° C.).
- the present inventors use at least one raw material selected from the group consisting of isobutylene, tert-butyl alcohol and methyl-tert-butyl ether using a fixed bed reactor in the presence of a catalyst containing molybdenum, bismuth and iron.
- a catalyst containing molybdenum, bismuth and iron containing molybdenum, bismuth and iron.
- the boundary temperature TA (° C.) of the activation energy is obtained as follows. First, a catalyst is filled in a reaction tube equipped with a heat medium bath, and the introduction temperature (reaction temperature) of the heat medium into the heat medium bath is changed in the range of 315 to 375 ° C. at intervals of 2 to 5 ° C. Obtain the reaction rate of the raw material.
- the reaction rate is obtained by the following equation.
- K (SV) ⁇ (1 / ⁇ ) ⁇ ln [100 / (100 ⁇ X)] (K represents the reaction rate constant, SV represents the space velocity, ⁇ represents the packing density of the catalyst, and X represents the reaction rate (%) of the raw material.)
- 1 / T is plotted on the horizontal axis and lnK is plotted on the vertical axis, and each data is plotted. Then, two approximate straight lines are drawn to determine the inclination.
- 1 / T represents the reciprocal of the introduction temperature (reaction temperature, absolute temperature) of the heat medium into the heat medium bath of the reaction tube
- lnK represents the natural logarithm of the reaction rate constant.
- the approximate straight line can be obtained by the method of least squares.
- the value obtained by multiplying the absolute value of the slope of the obtained approximate line by the gas constant is the activation energy to be obtained, and the reciprocal of the abscissa of the intersection of the two approximate lines is the boundary temperature TA of the activation energy to be obtained.
- the boundary temperature TA is obtained using isobutylene as a reaction raw material. This is because even when TBA is used instead of isobutylene as a reaction raw material, TBA is rapidly decomposed into isobutylene and water on a catalyst containing molybdenum, bismuth and iron. Is the same as the oxidation reaction of isobutylene. Therefore, even when TBA is used as the reaction raw material, the boundary temperature TA of the activation energy of the reaction when isobutylene is used as the raw material can be used as it is.
- MTBE when used as a raw material, it can be considered that it is the same as the oxidation reaction of isobutylene as with TBA, and the boundary temperature TA of the activation energy of the reaction when isobutylene is used as the raw material can be used as it is.
- At least one raw material selected from the group consisting of isobutylene, TBA and MTBE is vapor-phase contacted with molecular oxygen using a fixed bed reactor in the presence of a catalyst containing molybdenum, bismuth and iron. Oxidize to produce methacrolein and methacrylic acid.
- a reaction gas containing the raw material and molecular oxygen is passed through a reaction tube filled with a catalyst.
- the reaction is started from less than the reaction temperature TA (° C.).
- TA ° C.
- a single-tube type equipped with one reaction tube may be used, but it is preferable to use a multi-tube type reactor equipped with a plurality of reaction tubes industrially.
- a multi-tube heat exchanger having a general heat transfer coefficient of 5 to 250 W / (m 2 ⁇ K) is generally used.
- the reaction rate of the raw material is constant throughout the reaction from the viewpoint of easy management and the subsequent purification of the product.
- the target reaction rate (hereinafter referred to as the target reaction rate) when making the reaction rate constant can be appropriately determined depending on the characteristics of the catalyst (selectivity of the target product with respect to the target reaction rate, etc.). It is preferably 0.0% or more and 99.9% or less, more preferably 92.0% or more and 99.5% or less. By making the reaction rate 90.0% or more, the yield of methacrolein and the like is improved.
- the reaction rate is assumed to be constant.
- TBA and / or MTBE is used as the raw material, these raw materials are promptly decomposed into isobutylene on a catalyst containing molybdenum, bismuth and iron, so the reaction rate of the raw material is equal to the reaction rate of isobutylene.
- the catalyst may be used after diluting with an inert material such as silica, alumina, silica-alumina, magnesia, titania, silicon carbide or the like, if necessary. These may use 1 type and may use 2 or more types together.
- the average of the heating rate until the reaction temperature reaches TA is A (° C./hr), and the average of the heating rate at the reaction temperature exceeding TA is B (° C./hr).
- a / B is preferably 0.06 to 0.17, more preferably 0.07 to 0.16, and still more preferably 0.08 to 0.15.
- the reaction temperature when A / B is less than 0.05, the reaction temperature may be longer at a temperature lower than the activation energy boundary temperature TA (° C.).
- the yield (selectivity) of rain etc. is unfavorable.
- the range where A / B exceeds 0.18 the period of using the catalyst at a high temperature exceeding the activation energy boundary temperature TA (° C.) becomes long, so the yield (selectivity) of methacrolein and the like is high.
- the range of increase in the reaction temperature for maintaining the reaction rate becomes larger than in the temperature region where the reaction temperature is lower than TA (° C.).
- the catalyst activity, reaction pressure, molar ratio of molecular oxygen to raw material (O / R), contact time, etc. are adjusted as appropriate. It can be carried out. Details will be described later. Since the reaction can be performed under certain conditions, the reaction pressure and the molar ratio of molecular oxygen to the raw material (O / R) are not changed from the values set at the start of the reaction. It is preferable to adjust to produce methacrolein or the like so that A / B is in the above range.
- A is preferably 1.00 ⁇ 10 ⁇ 4 (° C./hr) or more and 9.00 ⁇ 10 ⁇ 4 (° C./hr) or less, and is 1.10 ⁇ 10 ⁇ 4 ( More preferably, it is not less than 1.90 ⁇ 10 ⁇ 4 (° C./hr) and not less than 1.20 ⁇ 10 ⁇ 4 (° C./hr) and not less than 8.80 ⁇ 10 ⁇ 3 (° C./hr). hr) or less. If A is too small, it will be used for a long time at a low reaction temperature, which may be disadvantageous from the viewpoint of methacrolein yield.
- B is preferably 5.00 ⁇ 10 ⁇ 4 (° C./hr) or more and 2.00 ⁇ 10 ⁇ 2 (° C./hr) or less, and is preferably 1.00 ⁇ 10 ⁇ 3 ( More preferably, it is not less than °C ⁇ hr) and not more than 1.00 ⁇ 10 ⁇ 2 (° C./hr).
- a and B are values calculated by the following formulas.
- a (° C./hr) (TA (° C.) ⁇ Reaction start temperature (° C.)) / (Time from reaction start until reaction temperature reaches TA (hr))
- B (° C./hr) (reaction completion temperature (° C.) ⁇ TA (° C.)) / (Time from reaction temperature reaching TA until reaction completion (hr)).
- the activity of the catalyst decreases with time, it is controlled while raising the reaction temperature so that the reaction rate of the raw material becomes constant. Therefore, unless the reaction conditions are changed drastically, the reaction temperature is not lowered during the reaction.
- C (hr) is the time from the start of the reaction until the reaction temperature reaches TA (° C.)
- D (hr) is the time from the reaction temperature reaching TA (° C.) to the end of the reaction.
- C / D) is more preferably 2.3 to 8.0, and more preferably 2.6 to 5.0.
- C / D is less than 2.0, the reaction period is lower than the activation energy boundary temperature TA (° C.), so the period of use becomes longer, so the yield (selectivity) of methacrolein and the like decreases. There is a case.
- C is preferably 12800 (hr) or more and 39800 (hr) or less, and 13300 (hr) or more and 38400 (from the viewpoint of yield (selectivity) and lifetime of methacrolein and the like. hr) or less.
- D is preferably 1590 (hr) or more and 11600 (hr) or less, more preferably 2150 (hr) or more and 10600 (hr) or less.
- the period of use of the catalyst which is the sum of C and D (C + D)
- C + D can be set as appropriate depending on the characteristics of the catalyst used (such as activity and resistance to deterioration). ) Or less, more preferably 21900 (hr) or more and 39420 (hr) or less.
- C + D is 17520 (hr) or more
- the catalyst cost per unit mass of the produced methacrolein or the like is lowered, which is economically advantageous.
- C + D is 43800 (hr) or less
- the catalyst can be used in a reaction temperature region where the yield (selectivity) of methacrolein or the like is good, which is economically advantageous.
- the temperature for starting the reaction is preferably TA-15 (° C.) or higher and TA-5 (° C.) or lower, preferably TA-13 (° C.) or higher, TA- It is more preferably 7 (° C.) or less, and further preferably TA-12 (° C.) or more and TA-8 (° C.) or less.
- reaction start temperature to TA-5 (° C.) or less
- TA-5 ° C.
- the catalyst life is increased.
- the reaction end temperature can be set according to the usage status of the catalyst.
- the reaction end temperature may be a temperature at which the rate of temperature increase increases and the reaction rate of the raw material cannot be kept constant.
- the yield tends to improve as the reaction temperature increases.
- the yield is improved depending on the characteristics of the catalyst used, but is within the range until the reaction temperature reaches TA + 10 (° C.), TA + 10 (° C.) or higher, TA + 30 (° C.) or lower. Then, the yield is almost the same, and when TA + 50 (° C.) or more, the yield tends to decrease.
- the reaction end temperature is preferably TA + 10 (° C.) or higher and TA + 50 (° C.) or lower, TA + 10 (° C.) or higher, TA + 30 (° C.).
- TA + 10 (° C.) or higher TA + 10 (° C.) or higher
- a nighter it is common to use a nighter as a heating medium for controlling the reaction temperature provided in the fixed bed reactor. Since the decomposition temperature of niter is about 400 ° C., the reaction end temperature is preferably 400 ° C. or lower.
- the adjustment of the catalyst activity is as follows: (1) a method of changing the calcination conditions, (2) a method of changing the type and / or amount of alkali metal, (3) Examples of the method for preparing the mixed slurry include a method of changing the mixing time of the solution or dispersion containing the catalyst component, the stirring conditions during heating or aging, and the like.
- the adjustment of the catalyst activity is preferably carried out by (1) a method of changing calcination conditions. Specifically, the firing temperature, firing time, presence / absence of primary firing, firing time before and after molding, and the like can be mentioned.
- the reaction pressure is preferably 20 kPaG or more and 200 kPaG or less as an average pressure of the inlet pressure and the outlet pressure of the reaction tube (gauge pressure: the following pressure displays are all gauge pressures), preferably 50 kPaG or more and 150 kPaG. The following is more preferable.
- the molar ratio (O / R) between molecular oxygen and the raw material is preferably 0.5 or more and 3.0 or less, and more preferably 1.0 or more and 2.5 or less.
- the contact time is preferably 1.5 seconds or more and 15 seconds or less, and more preferably 2.5 seconds or more and 10 seconds or less.
- the concentration of the raw material in the reaction gas can be appropriately determined from the range of known conditions, but is preferably 1 to 10% by volume.
- air is economical to use air as the molecular oxygen source, but if necessary, air enriched with pure oxygen can also be used.
- the reaction gas preferably contains an inert gas such as nitrogen for dilution. Further, the reaction gas may contain water vapor.
- reaction product was analyzed by gas chromatography.
- reaction rate of isobutylene as a raw material and the selectivity of the produced methacrolein and methacrylic acid are defined as follows. E represents the number of moles of the reacted raw material, F represents the number of moles of the supplied raw material, G represents the number of moles of produced methacrolein, and H represents the number of moles of produced methacrylic acid.
- Raw material reaction rate (%) E / F ⁇ 100
- Selectivity of methacrolein (%) G / E ⁇ 100
- Methacrylic acid selectivity (%) H / E ⁇ 100.
- the average reaction rate, average methacrolein selectivity, and average methacrylic acid selectivity were measured every 24 hours by measuring the reaction rate of the raw material, the selectivity of methacrolein, and the selectivity of methacrylic acid. It is the value which calculated the average until.
- Example 1 Manufacture of catalyst
- 6000 parts of pure water 3000 parts of ammonium paramolybdate were dissolved. Subsequently, while stirring this solution, 74.4 parts of ammonium paratungstate, 138.0 parts of cesium nitrate, 164.4 parts of antimony trioxide and 198.0 parts of bismuth trioxide were added and heated to 50 ° C. ( A liquid).
- 1258.8 parts of ferric nitrate 1258.8 parts of ferric nitrate, 453.0 parts of nickel nitrate, 2719.8 parts of cobalt nitrate, 187.8 parts of lead nitrate, and 33.6 parts of 85% phosphoric acid.
- solution B Sequentially added and dissolved, and heated to 30 ° C. (solution B). Under stirring, liquid B was added to liquid A to obtain an aqueous slurry, which was aged at 90 ° C. for 2 hours. Then, after heating up to 103 degreeC and concentrating for 1 hour, the dry powder was obtained using the spray dryer. The obtained dry powder was first calcined at 300 ° C. for 1 hour, and then secondary calcined at 510 ° C. for 3 hours to obtain a catalyst calcined powder.
- the composition of elements other than oxygen in the obtained catalyst was Mo 12 Bi 0.6 Fe 2.2 Co 6.6 Ni 1.1 Pb 0.4 P 0.2 W 0.2 Sb 0.8 Cs 0.5 .
- the composition of the catalyst is a value calculated from the amount of raw material charged for each element.
- reaction activation energy boundary temperature TA 2000 g of the obtained catalyst was packed into a stainless steel reaction tube having an internal diameter of 27.5 mm and a height of 4 m, which has a heat medium bath outside. Subsequently, a reaction gas composed of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through the catalyst layer at a reaction pressure of 100 kPaG and a contact time of 3.5 seconds. The reaction temperature (the temperature at which the heat medium is introduced into the heat medium bath) is changed within a range of 315 to 375 ° C.
- the boundary temperature TA (° C.) of the activation energy was 330 ° C.
- the activation energy at a temperature lower than TA was 105 kJ / mol
- the activation energy at a temperature higher than TA was 36 kJ / mol.
- the target reaction rate of the raw material is 95%, and when the reaction rate decreases due to a decrease in catalyst activity over time, the reaction rate is kept almost constant by increasing the reaction temperature (the temperature at which the heating medium is introduced into the heating medium bath). It was. By this method, gas phase catalytic oxidation of isobutylene was performed until the reaction temperature reached 360 ° C.
- the time C (hr) from the start of the reaction until the reaction temperature reaches TA is 16900 hr
- the time D (hr) from the reaction temperature reaching the TA to the end of the reaction is 5600 hr
- C / D is 3.0. It was.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 13.
- the average reaction rate of isobutylene during the catalyst use period was 95.1%, the average selectivity of methacrolein was 87.8%, the average selectivity of methacrylic acid was 5.5%, and the average yield of the total of methacrolein and methacrylic acid was The rate was 88.7%.
- the results are shown in Table 1.
- Example 2 (Production of methacrolein and methacrylic acid)
- the reaction tube used in Example 1 was charged with 2150 g of the obtained catalyst.
- a reaction gas comprising 5% by volume of isobutylene (reaction raw material), 11% by volume of oxygen, 10% by volume of water vapor and 74% by volume of nitrogen was passed through the catalyst layer at a reaction pressure of 100 kPaG and a contact time of 4.8 seconds.
- the target reaction rate of the raw material was 95%, and gas phase catalytic oxidation of isobutylene was performed in the same manner as in Example 1.
- the reaction start temperature of isobutylene gas phase catalytic oxidation was 318 ° C., but the time C (hr) until the reaction temperature reached TA was 20300 hr, which was longer than that in Example 1. Therefore, the target reaction rate is not changed at 95%, but the reaction temperature reaches 360 ° C. by changing the oxygen concentration in the reaction temperature region exceeding TA to 10% by volume, the nitrogen concentration to 75% by volume, and the reaction pressure to 85 kPaG.
- the reaction was carried out until The time D (hr) from when the reaction temperature reached TA to the end of the reaction was 2200 hr, and C / D was 9.2. In addition, the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 04.
- the average reaction rate of isobutylene during the catalyst use period is 95.4%
- the average selectivity of methacrolein is 86.0%
- the average selectivity of methacrylic acid is 4.8%.
- the average yield of the total of methacrolein and methacrylic acid is as follows. The rate was 86.6%.
- the results are shown in Table 1.
- the yield of methacrolein and methacrylic acid decreased due to the longer period of use at low reaction temperatures.
- the reaction start temperature of isobutylene gas phase catalytic oxidation was 318 ° C., but the time C (hr) until the reaction temperature reached TA was 13000 hr, which was shorter than that in Example 1. Therefore, the target reaction rate is not changed at 95%, the oxygen concentration in the reaction temperature region exceeding TA is changed to 12 vol%, the nitrogen concentration is changed to 73 vol%, the reaction pressure is changed to 115 kPaG, and the reaction temperature reaches 360 ° C.
- the reaction was carried out until The time D (hr) from when the reaction temperature reached TA to the end of the reaction was 7000 hr, and C / D was 1.9.
- the overall reaction period was 20000 hr, which was shorter than that of Example 1.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 22
- the average reaction rate of isobutylene during the catalyst use period was 95.2%
- the average selectivity of methacrolein was 86.8%
- the average selectivity of methacrylic acid was 5.1%
- the average yield of the total of methacrolein and methacrylic acid was The rate was 87.5%.
- Table 1 The results are shown in Table 1.
- the temperature increase rate A until the reaction temperature reaches TA is large, and the same period as in Example 1 despite the fact that the molar ratio of molecular oxygen to isobutylene and the reaction pressure were increased in the reaction temperature range exceeding TA.
- the catalyst could not be used. Moreover, the yields of methacrolein and methacrylic acid were also reduced.
- the reaction start temperature of isobutylene gas phase catalytic oxidation was 318 ° C., but the time C (hr) until the reaction temperature reached TA was 13000 hr, which was shorter than that in Example 1. Therefore, the oxygen concentration in the reaction temperature region exceeding TA is changed to 12 vol%, the nitrogen concentration is 73 vol%, the reaction pressure is changed to 115 kPaG, and the target reaction rate is set to 90.0% so as not to shorten the entire reaction period.
- the reaction was carried out until the reaction temperature reached 360 ° C.
- the time D (hr) from when the reaction temperature reached TA to the end of the reaction was 9500 hr, and C / D was 1.4.
- the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 29.
- the average reaction rate of isobutylene during the catalyst use period was 93.1%
- the average selectivity of methacrolein was 87.5%
- the average selectivity of methacrylic acid was 5.2%
- the average yield of the total of methacrolein and methacrylic acid was The rate was 86.3%.
- Table 1 The results are shown in Table 1.
- the rate of temperature rise A until the reaction temperature reaches TA is large, and in the reaction temperature region exceeding TA, the molar ratio of molecular oxygen to isobutylene and the reaction pressure are increased, and the target reaction rate is not decreased. Since the catalyst could not be used for the same period, the yield of methacrolein and methacrylic acid decreased.
- Example 2 (Production of methacrolein and methacrylic acid)
- the reaction tube used in Example 1 was charged with 2150 g of the catalyst produced in Comparative Example 1.
- a reaction gas comprising 5% by volume of isobutylene (reaction raw material), 10.5% by volume of oxygen, 10% by volume of water vapor and 74.5% by volume of nitrogen passes through the catalyst layer at a reaction pressure of 95 kPaG and a contact time of 4.8 seconds.
- the target reaction rate of the raw material was 95%, and gas phase catalytic oxidation of isobutylene was performed in the same manner as in Example 1.
- the reaction start temperature of gas phase catalytic oxidation of isobutylene was 320 ° C.
- the time C (hr) from the start of the reaction until the reaction temperature reaches TA is 18500 hr
- the time D (hr) from the reaction temperature reaching the TA to the end of the reaction is 4000 hr
- C / D is 4.6. It was.
- the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 07.
- the average reaction rate of isobutylene during the catalyst use period is 95.0%, the average selectivity of methacrolein is 87.5%, the average selectivity of methacrylic acid is 5.2%, and the average yield of the total of methacrolein and methacrylic acid is The rate was 88.1%.
- the results are shown in Table 1.
- Example 3 (Production of methacrolein and methacrylic acid)
- the reaction tube used in Example 1 was charged with 2150 g of the catalyst produced in Comparative Example 1.
- a reaction gas consisting of 5% by volume of isobutylene (reaction raw material), 10% by volume of oxygen, 10% by volume of water vapor and 75% by volume of nitrogen was passed through the catalyst layer at a reaction pressure of 90 kPaG and a contact time of 4.8 seconds.
- the target reaction rate of the raw material was 95%, and gas phase catalytic oxidation of isobutylene was performed in the same manner as in Example 1.
- the reaction start temperature of gas phase catalytic oxidation of isobutylene was 321 ° C.
- the time C (hr) until the reaction temperature reached TA was 16500 hr
- the time D (hr) from when the reaction temperature reached TA to the end of the reaction was 6000 hr
- C / D was 2.8.
- the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 11.
- the average reaction rate of isobutylene during the catalyst use period was 95.3%
- the average selectivity of methacrolein was 87.6%
- the average selectivity of methacrylic acid was 5.4%
- the average yield of the total of methacrolein and methacrylic acid was The rate was 88.6%.
- Table 1 The results are shown in Table 1.
- Example 4 (Production of methacrolein and methacrylic acid) 1850 g of the catalyst produced in Comparative Example 2 was charged into the reaction tube used in Example 1. Subsequently, a reaction gas comprising 5% by volume of isobutylene (reaction raw material), 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through the catalyst layer at a reaction pressure of 110 kPaG and a contact time of 4.2 seconds. The target reaction rate of the raw material was 95%, and gas phase catalytic oxidation of isobutylene was performed in the same manner as in Example 1.
- the reaction start temperature of gas phase catalytic oxidation of isobutylene was 315 ° C.
- the time C (hr) until the reaction temperature reached TA was 17100 hr
- the time D (hr) from when the reaction temperature reached TA to the end of the reaction was 5400 hr
- C / D was 3.2.
- the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 16.
- the average reaction rate of isobutylene during the catalyst use period is 95.0%
- the average selectivity of methacrolein is 87.5%
- the average selectivity of methacrylic acid is 5.2%
- the average yield of the total of methacrolein and methacrylic acid is The rate was 88.1%.
- Table 1 The results are shown in Table 1.
- Example 5 (Production of methacrolein and methacrylic acid)
- the reaction tube used in Example 1 was charged with 2000 g of the catalyst produced in Example 1. Subsequently, gas phase catalytic oxidation was performed in the same manner as in Example 1 except that the raw material was changed to TBA.
- the target reaction rate of the raw material was considered that TBA decomposes 100% into isobutylene, and the target reaction rate of isobutylene was 95%.
- the reaction start temperature of vapor phase contact oxidation was 318 ° C.
- the time C (hr) until the reaction temperature reached TA was 16600 hr
- the time D (hr) from when the reaction temperature reached TA to the end of the reaction was 5900 hr
- C / D was 2.8.
- the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 14.
- the average reaction rate of TBA during the catalyst use period is 100% (the average reaction rate of isobutylene is 95.0%), the average selectivity of methacrolein is 88.0%, the average selectivity of methacrylic acid is 5.6%, The total average yield of rain and methacrylic acid was 88.9%.
- Table 1 shows the average reaction rate of isobutylene when TBA is considered to decompose into 100% isobutylene.
- Example 6 (Production of methacrolein and methacrylic acid)
- the reaction tube used in Example 1 was charged with 2000 g of the catalyst produced in Example 1. Subsequently, vapor phase contact oxidation was performed in the same manner as in Example 1 except that the raw material was changed to TBA and the reaction gas pressure was changed to 105 kPaG.
- the target reaction rate of the raw material was considered that TBA decomposes 100% into isobutylene, and the target reaction rate of isobutylene was 95%.
- the reaction start temperature of vapor phase contact oxidation was 317 ° C.
- the time C (hr) required for the reaction temperature to reach TA was 18100 hr.
- the target reaction rate is not changed at 95%, the oxygen concentration in the reaction temperature region exceeding TA is 10.5 vol%, the nitrogen concentration is 74.5 vol%, and the reaction pressure is not changed without changing the reaction pressure.
- the reaction was carried out until 360 ° C was reached.
- the time D (hr) from when the reaction temperature reached TA to the end of the reaction was 4400 hr, and C / D was 4.1.
- the period of the whole reaction was the same as Example 1 at 22500 hr.
- the ratio A / B between the average A (° C./hr) of the rate of temperature rise until the reaction temperature reaches TA and the average B (° C./hr) of the rate of temperature rise at the reaction temperature exceeding TA is 0. 11.
- the average reaction rate of TBA during the catalyst use period is 100% (the average reaction rate of isobutylene is 95.2%), the average selectivity of methacrolein is 87.4%, and the average selectivity of methacrylic acid is 5.5%.
- the total average yield of rain and methacrylic acid was 88.4%.
- Table 1 shows the average reaction rate of isobutylene when TBA is considered to decompose into 100% isobutylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
前記酸化反応の活性化エネルギーの境界温度をTA(℃)とする場合、前記反応を反応温度TA(℃)未満から開始し、前記原料の反応率が一定になるように反応温度を上げながら制御し、TA(℃)をこえる反応温度で反応を終了し、
反応温度がTAに到達するまでの昇温速度の平均をA(℃/hr)、TAをこえる反応温度における昇温速度の平均をB(℃/hr)とする場合、AとBとの比が、(A/B)=0.05~0.18である。
本発明において使用する触媒は、モリブデン、ビスマス及び鉄を含めば特に限定されないが、下記式(1)で表される組成を有することが好ましい。また、本発明に係る触媒は複合酸化物であってもよい。
前記式(1)中、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群から選択される少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群から選択される少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群から選択される少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは、各元素の原子比率を表し、a=12のとき、b=0.01~3、c=0.01~5、d=1~12、e=0~8、f=0~5、g=0.001~2、h=0~20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。なお、該触媒の組成は各元素の原料仕込み量から算出した値である。
本発明に係るメタクロレイン及びメタクリル酸の製造方法は、モリブデン、ビスマス及び鉄を含む触媒の存在下、固定床反応器を用いてイソブチレン、tert-ブチルアルコール及びメチル-tert-ブチルエーテルからなる群から選択される少なくとも1種の原料を分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造する方法であって、前記酸化反応の活性化エネルギーの境界温度をTA(℃)とする場合、前記反応を反応温度TA(℃)未満から開始し、前記原料の反応率が一定になるように反応温度を上げながら制御し、TA(℃)をこえる反応温度で反応を終了し、反応温度がTAに到達するまでの昇温速度の平均をA(℃/hr)、TAをこえる反応温度における昇温速度の平均をB(℃/hr)とする場合、AとBとの比が、(A/B)=0.05~0.18である。
(Mは反応した原料のモル数、Nは供給した原料のモル数を表す。)
続いて、以下の式により反応速度定数を求める。
(Kは反応速度定数、SVは空間速度、ρは触媒の充填密度、Xは原料の反応率(%)を表す。)
続いて、横軸に1/Tを、縦軸にlnKをとり、各データをプロットした後、2本の近似直線を引きその傾きを求める。ここで、1/Tは反応管の熱媒浴への熱媒の導入温度(反応温度、絶対温度)の逆数、lnKは反応速度定数の自然対数を表す。近似直線は最小自乗法により求めることができる。得られた近似直線の傾きの絶対値に気体定数を乗じた値が求める活性化エネルギーであり、2本の近似直線の交点の横座標の逆数が求める活性化エネルギーの境界温度TAである。
B(℃/hr)=(反応終了温度(℃)-TA(℃))/(反応温度がTAに到達してから反応終了までの時間(hr))。
メタクロレインの選択率(%)=G/E×100
メタクリル酸の選択率(%) =H/E×100。
(触媒の製造)
純水6000部に、パラモリブデン酸アンモニウム3000部を溶解した。続いて、この溶液を攪拌しながらパラタングステン酸アンモニウム74.4部、硝酸セシウム138.0部、三酸化アンチモン164.4部及び三酸化ビスマス198.0部を加え、50℃に加温した(A液)。これとは別に、純水6000部に、硝酸第二鉄1258.8部、硝酸ニッケル453.0部、硝酸コバルト2719.8部、硝酸鉛187.8部及び85%リン酸33.6部を順次加えて溶解し、30℃に加温した(B液)。攪拌下、A液にB液を加えて水性スラリーを得て、これを90℃で2時間熟成した。その後、103℃まで昇温し1時間濃縮した後、スプレードライヤーを用いて乾燥粉末を得た。得られた乾燥粉末を300℃で1時間一次焼成した後、510℃で3時間二次焼成を行い、触媒焼成粉末を得た。
得られた触媒2000gを、外部に熱媒浴を有する内径27.5mm、高さ4mのステンレス製反応管に充填した。続いて、イソブチレン5容量%、酸素12容量%、水蒸気10容量%及び窒素73容量%からなる反応ガスを反応圧力100kPaG、接触時間3.5秒で触媒層を通過させた。反応温度(熱媒浴への熱媒の導入温度)を315~375℃の範囲で2~5℃間隔で変化させ、イソブチレンの気相接触酸化を行い、各温度におけるイソブチレンの反応率から活性化エネルギーを算出した。その結果、活性化エネルギーの境界温度TA(℃)は330℃であり、TAより低温域での活性化エネルギーは105kJ/mol、TAより高温域での活性化エネルギーは36kJ/molであった。
得られた触媒2000gを、前記TAの決定で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素11容量%、水蒸気10容量%及び窒素74容量%からなる反応ガスを反応圧力100kPaG、接触時間4.5秒で触媒層を通過させた。イソブチレンの気相接触酸化の反応開始温度(熱媒浴初期温度)は318℃とした。原料の目標反応率は95%とし、経時による触媒活性の低下により反応率が低下した場合には反応温度(熱媒浴への熱媒の導入温度)を上げることで反応率をほぼ一定に保った。この方法で、反応温度が360℃に到達するまでイソブチレンの気相接触酸化を行った。
(触媒の製造)
二次焼成温度を512℃に変更した以外は、実施例1と同様の方法で触媒を製造した。
実施例1と同様の方法でTAの測定を行ったところ、TA(℃)は330℃であった。
得られた触媒2150gを、実施例1で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素11容量%、水蒸気10容量%及び窒素74容量%からなる反応ガスを反応圧力100kPaG、接触時間4.8秒で触媒層を通過させた。原料の目標反応率は95%とし、実施例1と同様の方法でイソブチレンの気相接触酸化を行った。
(触媒の製造)
二次焼成温度を508℃に変更した以外は、実施例1と同様の方法で触媒を製造した。
実施例1と同様の方法でTAの測定を行ったところ、TA(℃)は330℃であった。
得られた触媒1850gを、実施例1で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素11容量%、水蒸気10容量%及び窒素74容量%からなる反応ガスを反応圧力100kPaG、接触時間4.2秒で触媒層を通過させた。原料の目標反応率は95%とし、実施例1と同様の方法でイソブチレンの気相接触酸化を行った。
(触媒の製造)
二次焼成温度を508℃に変更した以外は、実施例1と同様の方法で触媒を製造した。
実施例1と同様の方法でTAの測定を行ったところ、TA(℃)は330℃であった。
得られた触媒1850gを、実施例1で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素11容量%、水蒸気10容量%及び窒素74容量%からなる反応ガスを反応圧力100kPaG、接触時間4.2秒で触媒層を通過させた。原料の目標反応率は95%とし、実施例1と同様の方法でイソブチレンの気相接触酸化を行った。
(メタクロレイン及びメタクリル酸の製造)
比較例1で製造した触媒2150gを、実施例1で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素10.5容量%、水蒸気10容量%及び窒素74.5容量%からなる反応ガスを反応圧力95kPaG、接触時間4.8秒で触媒層を通過させた。原料の目標反応率は95%とし、実施例1と同様の方法でイソブチレンの気相接触酸化を行った。なお、イソブチレンの気相接触酸化の反応開始温度は320℃とした。
(メタクロレイン及びメタクリル酸の製造)
比較例1で製造した触媒2150gを、実施例1で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素10容量%、水蒸気10容量%及び窒素75容量%からなる反応ガスを反応圧力90kPaG、接触時間4.8秒で触媒層を通過させた。原料の目標反応率は95%とし、実施例1と同様の方法でイソブチレンの気相接触酸化を行った。
(メタクロレイン及びメタクリル酸の製造)
比較例2で製造した触媒1850gを、実施例1で使用した反応管に充填した。続いて、イソブチレン(反応原料)5容量%、酸素12容量%、水蒸気10容量%及び窒素73容量%からなる反応ガスを反応圧力110kPaG、接触時間4.2秒で触媒層を通過させた。原料の目標反応率は95%とし、実施例1と同様の方法でイソブチレンの気相接触酸化を行った。
(メタクロレイン及びメタクリル酸の製造)
実施例1で製造した触媒2000gを、実施例1で使用した反応管に充填した。続いて、原料をTBAに変更した以外は、実施例1と同様の方法で気相接触酸化を行った。原料の目標反応率は、TBAがイソブチレンに100%分解するとみなし、イソブチレンの目標反応率を95%とした。
(メタクロレイン及びメタクリル酸の製造)
実施例1で製造した触媒2000gを、実施例1で使用した反応管に充填した。続いて、原料をTBAに、反応ガス圧力を105kPaGに変更した以外は、実施例1と同様の方法で気相接触酸化を行った。原料の目標反応率は、TBAがイソブチレンに100%分解するとみなし、イソブチレンの目標反応率を95%とした。
Claims (8)
- モリブデン、ビスマス及び鉄を含む触媒の存在下、固定床反応器を用いてイソブチレン、tert-ブチルアルコール及びメチル-tert-ブチルエーテルからなる群から選択される少なくとも1種の原料を分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造する方法であって、
前記酸化反応の活性化エネルギーの境界温度をTA(℃)とする場合、前記反応を反応温度TA(℃)未満から開始し、前記原料の反応率が一定になるように反応温度を上げながら制御し、TA(℃)をこえる反応温度で反応を終了し、
反応温度がTA(℃)に到達するまでの昇温速度の平均をA(℃/hr)、TA(℃)をこえる反応温度における昇温速度の平均をB(℃/hr)とする場合、AとBとの比が、(A/B)=0.05~0.18であるメタクロレイン及びメタクリル酸の製造方法。 - 前記のAとBとの比が、(A/B)=0.08~0.15である請求項1に記載のメタクロレイン及びメタクリル酸の製造方法。
- Aの値が、1.00×10-4(℃/hr)以上、9.00×10-4(℃/hr)以下である請求項1または2に記載のメタクロレイン及びメタクリル酸の製造方法。
- 反応開始から反応温度がTA(℃)に到達するまでの時間をC(hr)、反応温度がTAに到達してから反応終了までの時間をD(hr)とする場合、CとDとの比が、(C/D)=2.0~9.0である請求項1から3のいずれか1項に記載のメタクロレイン及びメタクリル酸の製造方法。
- 前記CとDとの比が、(C/D)=2.6~5.0である請求項4に記載のメタクロレイン及びメタクリル酸の製造方法。
- 前記反応を開始する温度が、TA-15(℃)以上、TA-5(℃)以下である請求項1から5のいずれか1項に記載のメタクロレイン及びメタクリル酸の製造方法。
- 前記反応を終了する温度が、TA+10(℃)以上、TA+50(℃)以下である請求項1から6のいずれか1項に記載のメタクロレイン及びメタクリル酸の製造方法。
- 前記触媒が下記式(1)で表される組成を有する請求項1から7のいずれか1項に記載のメタクロレイン及びメタクリル酸の製造方法。
MoaBibFecMdXeYfZgSihOi (1)
(式(1)中、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群から選択される少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群から選択される少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群から選択される少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは、各元素の原子比率を表し、a=12のとき、b=0.01~3、c=0.01~5、d=1~12、e=0~8、f=0~5、g=0.001~2、h=0~20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/432,923 US20150274626A1 (en) | 2012-11-07 | 2013-10-29 | Method for producing methacrolein and methacrylic acid |
SG11201502171VA SG11201502171VA (en) | 2012-11-07 | 2013-10-29 | Method for producing methacrolein and methacrylic acid |
JP2013550702A JP6229497B2 (ja) | 2012-11-07 | 2013-10-29 | メタクロレイン及びメタクリル酸の製造方法 |
CN201380057892.2A CN104781221B (zh) | 2012-11-07 | 2013-10-29 | 异丁烯醛和甲基丙烯酸的制造方法 |
KR1020157009116A KR102113992B1 (ko) | 2012-11-07 | 2013-10-29 | 메타크롤레인 및 메타크릴산의 제조 방법 |
SA515360300A SA515360300B1 (ar) | 2012-11-07 | 2015-04-16 | طريقة لإنتاج حمض ميثاكرولين وميثاكريليك |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-245263 | 2012-11-07 | ||
JP2012245263 | 2012-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073419A1 true WO2014073419A1 (ja) | 2014-05-15 |
Family
ID=50684528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079250 WO2014073419A1 (ja) | 2012-11-07 | 2013-10-29 | メタクロレイン及びメタクリル酸の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20150274626A1 (ja) |
JP (1) | JP6229497B2 (ja) |
KR (1) | KR102113992B1 (ja) |
CN (1) | CN104781221B (ja) |
SA (1) | SA515360300B1 (ja) |
SG (1) | SG11201502171VA (ja) |
WO (1) | WO2014073419A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019198763A1 (ja) * | 2018-04-10 | 2019-10-17 | 日本化薬株式会社 | 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒 |
WO2020013064A1 (ja) * | 2018-07-09 | 2020-01-16 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
WO2024135496A1 (ja) * | 2022-12-20 | 2024-06-27 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106582677B (zh) * | 2016-12-01 | 2019-04-23 | 万华化学集团股份有限公司 | 一种多金属复合氧化物催化剂的制备方法及其用途 |
KR102283568B1 (ko) * | 2019-12-20 | 2021-07-28 | 한화토탈 주식회사 | 메타크롤레인 및 메타크릴산 제조를 위한 원료 농축방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11263739A (ja) * | 1997-11-25 | 1999-09-28 | Mitsubishi Rayon Co Ltd | メタクロレイン及びメタクリル酸の製造方法 |
WO2007105523A1 (ja) * | 2006-03-10 | 2007-09-20 | Mitsubishi Rayon Co., Ltd. | 不飽和アルデヒド及び不飽和カルボン酸の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0529502A (ja) | 1991-07-23 | 1993-02-05 | Nec Ic Microcomput Syst Ltd | プリント基板 |
KR100498527B1 (ko) * | 1997-11-25 | 2005-07-01 | 미쯔비시 레이온 가부시끼가이샤 | 메타크롤레인 및 메타크릴산의 제조방법 |
US7045657B2 (en) * | 2002-04-03 | 2006-05-16 | Nippon Shokubai Co., Ltd. | Catalytic gas phase oxidation process |
JP5479803B2 (ja) * | 2009-07-29 | 2014-04-23 | 三菱レイヨン株式会社 | (メタ)アクロレインまたは(メタ)アクリル酸の製造方法 |
-
2013
- 2013-10-29 WO PCT/JP2013/079250 patent/WO2014073419A1/ja active Application Filing
- 2013-10-29 KR KR1020157009116A patent/KR102113992B1/ko active IP Right Grant
- 2013-10-29 US US14/432,923 patent/US20150274626A1/en not_active Abandoned
- 2013-10-29 JP JP2013550702A patent/JP6229497B2/ja active Active
- 2013-10-29 SG SG11201502171VA patent/SG11201502171VA/en unknown
- 2013-10-29 CN CN201380057892.2A patent/CN104781221B/zh active Active
-
2015
- 2015-04-16 SA SA515360300A patent/SA515360300B1/ar unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11263739A (ja) * | 1997-11-25 | 1999-09-28 | Mitsubishi Rayon Co Ltd | メタクロレイン及びメタクリル酸の製造方法 |
WO2007105523A1 (ja) * | 2006-03-10 | 2007-09-20 | Mitsubishi Rayon Co., Ltd. | 不飽和アルデヒド及び不飽和カルボン酸の製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019198763A1 (ja) * | 2018-04-10 | 2019-10-17 | 日本化薬株式会社 | 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒 |
JPWO2019198763A1 (ja) * | 2018-04-10 | 2020-04-30 | 日本化薬株式会社 | 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒 |
US11254634B2 (en) | 2018-04-10 | 2022-02-22 | Nippon Kayaku Kabushiki Kaisha | Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid and catalyst for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid |
WO2020013064A1 (ja) * | 2018-07-09 | 2020-01-16 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
JPWO2020013064A1 (ja) * | 2018-07-09 | 2021-08-05 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
JP7224351B2 (ja) | 2018-07-09 | 2023-02-17 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
WO2024135496A1 (ja) * | 2022-12-20 | 2024-06-27 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102113992B1 (ko) | 2020-05-22 |
JPWO2014073419A1 (ja) | 2016-09-08 |
CN104781221B (zh) | 2016-10-05 |
JP6229497B2 (ja) | 2017-11-15 |
US20150274626A1 (en) | 2015-10-01 |
CN104781221A (zh) | 2015-07-15 |
SG11201502171VA (en) | 2015-05-28 |
SA515360300B1 (ar) | 2017-04-19 |
KR20150081259A (ko) | 2015-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016136882A1 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
KR20160004252A (ko) | 불포화 알데히드 및/또는 불포화 카르복실산 제조용 촉매의 제조 방법, 및 불포화 알데히드 및/또는 불포화 카르복실산의 제조 방법 | |
WO2015008815A1 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP6229497B2 (ja) | メタクロレイン及びメタクリル酸の製造方法 | |
JP6199972B2 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP2012115825A (ja) | メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法 | |
JP2016539936A (ja) | 不飽和アルデヒド及び/又は不飽和カルボン酸の製造法 | |
JP2011092882A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP5680373B2 (ja) | 触媒及びアクリル酸の製造方法 | |
KR102612311B1 (ko) | 아크롤레인, 메타크롤레인, 아크릴산, 또는 메타크릴산의 제조 방법 | |
WO2014014041A1 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP5130562B2 (ja) | メタクロレイン及び/又はメタクリル酸の製造方法 | |
JP5892826B2 (ja) | メタクリル酸の製造方法 | |
JP6504774B2 (ja) | アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法 | |
JP4995718B2 (ja) | 不飽和アルデヒド及び不飽和カルボン酸の製造方法 | |
JP5485013B2 (ja) | メタクリル酸製造用触媒の製造方法 | |
JP2016168588A (ja) | メタクリル酸製造用触媒 | |
JP7156506B2 (ja) | 触媒成形体、メタクロレイン及び/又はメタクリル酸製造用の触媒成形体、並びに、メタクロレイン及び/又はメタクリル酸の製造方法 | |
JP4745653B2 (ja) | メタクリル酸の製造方法 | |
WO2012063771A1 (ja) | メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法 | |
JP4812034B2 (ja) | メタクリル酸製造用触媒の製造方法、メタクリル酸製造用触媒、およびメタクリル酸の製造方法 | |
JP2013091016A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2013086008A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP4301484B2 (ja) | メタクリル酸の製造方法 | |
JP6238354B2 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013550702 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13852452 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14432923 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157009116 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13852452 Country of ref document: EP Kind code of ref document: A1 |