[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014073180A1 - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
WO2014073180A1
WO2014073180A1 PCT/JP2013/006362 JP2013006362W WO2014073180A1 WO 2014073180 A1 WO2014073180 A1 WO 2014073180A1 JP 2013006362 W JP2013006362 W JP 2013006362W WO 2014073180 A1 WO2014073180 A1 WO 2014073180A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
yaw angle
angle
turning
state
Prior art date
Application number
PCT/JP2013/006362
Other languages
English (en)
French (fr)
Inventor
影山 雄介
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014545559A priority Critical patent/JP5900643B2/ja
Priority to CN201380054321.3A priority patent/CN105473419B/zh
Priority to EP13853439.1A priority patent/EP2918479B1/en
Priority to US14/437,894 priority patent/US9567003B2/en
Publication of WO2014073180A1 publication Critical patent/WO2014073180A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/196Conjoint control of vehicle sub-units of different type or different function including control of braking systems acting within the driveline, e.g. retarders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw

Definitions

  • the present invention relates to a steering control device for a vehicle that controls a yaw angle during turning braking of the vehicle.
  • a steering control device for a vehicle employs a steer-by-wire (SBW) system in which mechanical connection between a steering wheel and a steered wheel is disconnected.
  • a vehicle employing this steer-by-wire is provided with an actuator capable of adjusting a steering torque for turning a steered wheel based on a steering input to a steering wheel.
  • This actuator is required to maintain a stable vehicle behavior according to the steering state of the steering wheel.
  • the steer-by-wire control system calculates the braking force of each wheel based on the deviation between the target yaw angle calculated based on the steering angle and the actual value, and calculates the calculated braking force.
  • the vehicle behavior is stabilized by controlling the braking force of each wheel based on the power.
  • the steer-by-wire control system stabilizes the behavior of the vehicle during turning braking by controlling the braking force of each wheel.
  • it is necessary to control the braking pressure of the actuator that generates the braking force, which causes a response delay in the pressure control system.
  • An object of the present invention is to properly stabilize the behavior during turning braking of a vehicle by suppressing a response delay with a steering control device.
  • the steering control device detects the vehicle yaw angle deviation before and after braking or acceleration when detecting the braking state or acceleration state of the vehicle during turning.
  • the actuator controls the corners with higher responsiveness than the hydraulic control. For this reason, since the yaw angle change at the time of turning braking is eliminated while improving the response characteristic of the yaw angle control of the vehicle, the response characteristic that stabilizes the vehicle behavior can be improved.
  • the yaw angle before and after braking is controlled by an actuator that can control the yaw angle deviation before and after braking or acceleration at the time of turning braking or acceleration of the vehicle with higher response than the hydraulic control of the yaw angle of the vehicle. Since the change is eliminated, the response delay can be suppressed and the behavior of the vehicle can be stabilized promptly and appropriately.
  • FIG. 1 is a schematic configuration diagram showing an automobile according to a first embodiment of the present invention. It is a perspective view which shows the structure of a suspension apparatus typically. It is a top view which shows the structure of a suspension apparatus typically. It is the partial front view and partial side view which show typically the structure of a suspension apparatus. It is a figure which shows the relationship between the rack stroke at the time of steering, and a rack axial force. It is a figure which shows the locus
  • FIG. 5 is an isoline diagram showing an example of rack axial force distribution at coordinates with a kingpin tilt angle and a scrub radius as axes. It is a figure which shows the analysis result of the rack axial force in the suspension apparatus 1B.
  • FIG. 9 is a schematic plan view showing still another example of a suspension device that can be applied to the present invention.
  • It is a schematic block diagram which shows the motor vehicle which concerns on 6th Embodiment of this invention.
  • It is a block diagram which shows the specific structure of the yaw angle control part in 6th Embodiment of this invention.
  • FIG. 6 is a characteristic diagram showing a target value calculation map representing a relationship between a vehicle speed and a yaw angle with a target rack stroke as a parameter, and is a diagram for explaining a case where a vehicle is oversteered.
  • FIG. 6 is a characteristic diagram showing a target value calculation map representing a relationship between a vehicle speed and a yaw angle with a target rack stroke as a parameter, and is a diagram for explaining a case where the vehicle is understeered.
  • FIG. 5 is a characteristic diagram showing a reference hub lateral force calculation map representing a relationship between a vehicle speed and a hub lateral force with a steering angle as a parameter, and is a diagram for explaining a case where neutral steering is performed when the vehicle is turning.
  • FIG. 48 is a characteristic diagram similar to FIG. 47, illustrating a case where traveling is stabilized when the vehicle travels straight.
  • FIG. 1 is a schematic diagram showing a configuration of a vehicle 1 according to the first embodiment of the present invention.
  • a vehicle 1 includes a vehicle body 1A, a steering wheel 2, an input side steering shaft 3, a steering angle sensor 4 as a steering angle detection unit, a steering torque sensor 5, a steering reaction force actuator 6, and a steering.
  • the vehicle 1 includes a steering actuator 8, a steering actuator angle sensor 9, an output side steering shaft 10, a steering torque sensor 11, a pinion gear 12, a pinion angle sensor 13, and a rack shaft that constitute a steering mechanism. 14, tie rod 15, tie rod axial force sensor 16, and wheels 17FR, 17FL, 17RR, 17RL.
  • the vehicle 1 includes a brake disc 18, a wheel cylinder 19, a pressure control unit 20, a vehicle state parameter acquisition unit 21, wheel speed sensors 24FR, 24FL, 24RR, 24RL, a control / drive circuit unit 26, And a mechanical backup 27.
  • the steering wheel 2 is configured to rotate integrally with the input side steering shaft 3, and transmits a steering input by the driver to the input side steering shaft 3.
  • the input-side steering shaft 3 includes a steering reaction force actuator 6, and applies a steering reaction force by the steering reaction force actuator 6 to the steering input input from the steering wheel 2.
  • the steering angle sensor 4 is provided on the input side steering shaft 3 and detects the rotation angle of the input side steering shaft 3 (that is, the steering input angle to the steering wheel 2 by the driver). Then, the steering angle sensor 4 outputs the detected rotation angle of the input side steering shaft 3 to the control / drive circuit unit 26.
  • the steering torque sensor 5 is installed on the input side steering shaft 3 and detects the rotational torque of the input side steering shaft 3 (that is, the steering input torque to the steering wheel 2). Then, the steering torque sensor 5 outputs the detected rotational torque of the input side steering shaft 3 to the control / drive circuit unit 26.
  • a gear that rotates integrally with the motor shaft meshes with a gear formed in a part of the input-side steering shaft 3, and input by the steering wheel 2 in accordance with an instruction from the control / drive circuit unit 26.
  • a reaction force is applied to the rotation of the side steering shaft 3.
  • the steering reaction force actuator angle sensor 7 detects the rotation angle of the steering reaction force actuator 6 (that is, the rotation angle by the steering input transmitted to the steering reaction force actuator 6), and sends the detected rotation angle to the control / drive circuit unit 26. Output.
  • the steered actuator 8 has a gear that rotates integrally with the motor shaft meshes with a gear formed on a part of the output side steering shaft 10, and the output side steering shaft 10 is moved according to an instruction from the control / drive circuit unit 26. Rotate.
  • the steering actuator angle sensor 9 detects the rotation angle of the steering actuator 8 (that is, the rotation angle output by the steering actuator 8) and outputs the detected rotation angle to the control / drive circuit unit 26. To do.
  • the output side steering shaft 10 includes a steering actuator 8, and transmits the rotation input by the steering actuator 8 to the pinion gear 12.
  • the steering torque sensor 11 is installed on the output side steering shaft 10 and detects the rotational torque of the output side steering shaft 10 (that is, the steering torque of the wheels 17FR and 17FL via the rack shaft 14). Then, the steering torque sensor 11 outputs the detected rotational torque of the output side steering shaft 10 to the control / drive circuit unit 26.
  • the pinion gear 12 meshes with a rack gear formed on the rack shaft 14 and transmits the rotation input from the output side steering shaft 10 to the rack shaft 14.
  • the pinion angle sensor 13 detects the rotation angle of the pinion gear 12 (that is, the turning angle of the wheels 17FR and 17FL output via the rack shaft 14), and controls / detects the detected rotation angle of the pinion gear 12. Output to.
  • the rack shaft 14 has spur teeth that mesh with the pinion gear 12 and converts the rotation of the pinion gear 12 into a linear motion in the vehicle width direction.
  • the tie rod 15 connects both ends of the rack shaft 14 and the knuckle arms of the wheels 17FR and 17FL via ball joints.
  • the tie rod axial force sensor 16 is installed in each of the tie rods 15 installed at both ends of the rack shaft 14 and detects an axial force acting on the tie rod 15.
  • the tie rod axial force sensor 16 outputs the detected axial force of the tie rod 15 to the control / drive circuit unit 26.
  • the wheels 17FR, 17FL, 17RR, and 17RL are configured by attaching tires to tire wheels, and are installed on the vehicle body 1A via the suspension device 1B.
  • the direction of the steered wheels 17FR, 17FL with respect to the vehicle body 1A changes when the knuckle arm is swung by the tie rod 15.
  • the vehicle 1 is provided with a yaw angle sensor 22 a that detects the yaw angle ⁇ of the vehicle 1, and outputs the yaw angle ⁇ detected by the yaw angle sensor 22 a to the control / drive circuit unit 26.
  • the vehicle 1 is provided with a yaw rate sensor 22 b that detects the yaw rate ⁇ of the vehicle 1, and outputs the yaw rate ⁇ detected by the yaw rate sensor 22 b to the control / drive circuit unit 26.
  • the vehicle state parameter acquisition unit 21 acquires the vehicle speed V based on a pulse signal indicating the rotation speed of the wheels output from the wheel speed sensors 24FR, 24FL, 24RR, 24RL. Moreover, the vehicle state parameter acquisition part 21 acquires the slip ratio of each wheel based on the vehicle speed V and the rotational speed of each wheel. Then, the vehicle state parameter acquisition unit 21 outputs the acquired parameters to the control / drive circuit unit 26.
  • the wheel speed sensors 24FR, 24FL, 24RR, 24RL output a pulse signal indicating the rotational speed of each wheel to the vehicle state parameter acquisition unit 21 and the control / drive circuit unit 26.
  • the control / drive circuit unit 26 controls the entire vehicle 1, and based on signals input from sensors installed in each part, the steering reaction force of the input side steering shaft 3, the steering angle of the front wheels, or the mechanical backup 27, various control signals are output to the steering reaction force actuator 6, the steering actuator 8, the mechanical backup 27, or the like.
  • control / drive circuit unit 26 converts the detection value by each sensor into a value according to the purpose of use. For example, the control / drive circuit unit 26 converts the rotation angle detected by the steering reaction force actuator angle sensor 7 into the steering angle ⁇ s, or converts the rotation angle detected by the steering actuator angle sensor 9 into the steered wheels 17FR and 17FL. The turning angle of the pinion gear 12 detected by the pinion angle sensor 13 is converted to the actual turning angle ⁇ r of the steered wheels 17FR and 17FL.
  • control / drive circuit unit 26 includes the rotation angle of the input side steering shaft 3 detected by the steering angle sensor 4, the rotation angle of the steering reaction force actuator 6 detected by the steering reaction force actuator angle sensor 7, and the turning actuator.
  • the rotation angle of the steering actuator 8 detected by the angle sensor 9 and the rotation angle of the pinion gear 12 detected by the pinion angle sensor 13 are monitored, and the occurrence of a failure in the steering system is detected based on these relationships. be able to.
  • the control / drive circuit unit 26 outputs an instruction signal for connecting the input side steering shaft 3 and the output side steering shaft 10 to the mechanical backup 27.
  • the mechanical backup 27 connects the input side steering shaft 3 and the output side steering shaft 10 in accordance with instructions from the control / drive circuit unit 26, and ensures transmission of force from the input side steering shaft 3 to the output side steering shaft 10.
  • the control / drive circuit unit 26 normally instructs the mechanical backup 27 not to connect the input side steering shaft 3 and the output side steering shaft 10. If the steering system needs to perform a steering operation without passing through the steering angle sensor 4, the steering torque sensor 5, the steering actuator 8, and the like due to the occurrence of a failure in the steering system, the input side steering shaft 3 and the output side steering shaft 10 is input.
  • the mechanical backup 27 can be configured by, for example, a cable type steering mechanism or an electromagnetic clutch mechanism.
  • FIG. 2 is a perspective view schematically showing the configuration of the suspension device 1B according to the first embodiment.
  • FIG. 3 is a plan view schematically showing the configuration of the suspension device 1B of FIG.
  • FIG. 4 is a (a) partial front view and (b) partial side view schematically showing the configuration of the suspension device 1B of FIG.
  • the suspension device 1B is an axle having an axle 32 that suspends wheels 17FR and 17FL attached to a wheel hub WH and rotatably supports the wheels 17FR and 17FL.
  • a carrier 33, a plurality of link members arranged in the vehicle body width direction from the support portion on the vehicle body side and connected to the axle carrier 33, and a spring member 34 such as a coil spring are provided.
  • the plurality of link members include a first link (first link member) 37 and a second link (second link member) 38, tie rods (tie rod members) 15, and struts (spring members 34 and shock absorbers) which are lower link members. 40).
  • the suspension device 1B is a strut suspension, and the upper end of the strut ST, in which the spring member 34 and the shock absorber 40 are integrated, is connected to a support portion on the vehicle body located above the axle 32 ( Hereinafter, the upper end of the strut is appropriately referred to as “upper pivot point P1”.
  • the first link 37 and the second link 38 constituting the lower arm connect the lower end of the axle carrier 33 and the support portion on the vehicle body side located below the axle 32.
  • the lower arm is supported at two locations on the vehicle body side and has an A-arm shape that is coupled at one location with the axle 32 side (hereinafter, a connecting portion between the lower arm and the axle member 33 is appropriately referred to as “lower pivot point P2”. Called).
  • a stabilizer 41 is connected between the outer cylinders of the left and right shock absorbers 40.
  • the stabilizer 41 is rotatably supported by a bracket 42 in which a straight portion 41a on the vehicle rear side is fixed to a vehicle body side member.
  • the tie rod 15 is positioned below the axle 32 and connects the rack shaft 14 and the axle member 33.
  • the rack shaft 14 receives a rotational force (steering force) from the steering wheel 2 and is a steering shaft. Generate power. Accordingly, the tie rod 15 applies an axial force in the vehicle width direction to the axle member 33 according to the rotation of the steering wheel 2, and the steered wheels 17FR and 17FL are steered through the axle member 33.
  • the kingpin axis KS connecting the upper pivot point P1 and the lower pivot point P2 of the suspension device 1B in the neutral position of the steering wheel 2, that is, in the state where the steered wheels 17FL and 17FR are in the straight traveling state
  • the road surface contact point of KS is positioned within the tire contact surface.
  • the caster trail is set so as to be located within the tire ground contact surface. More specifically, in the suspension device 1B in the present embodiment, the caster angle is set to a value close to zero, and the kingpin axis KS is set so that the caster trail approaches zero. Thereby, the tire twisting torque at the time of steering can be reduced, and the moment around the kingpin axis KS can be further reduced.
  • the scrub radius is a positive scrub with zero or more. As a result, a caster trail corresponding to the scrub radius is generated with respect to the tire side slip angle at the time of turning, so that straight traveling performance can be ensured.
  • FIG. 5 is a diagram showing the analysis result of the rack axial force in the suspension device 1B according to the present embodiment.
  • the solid line shown in FIG. 5 indicates the rack axial force characteristics in the suspension structure shown in FIGS. 2 to 4 when the caster angle is set to 0 degree, the caster trail is set to 0 mm, and the scrub radius is +10 mm.
  • FIG. 5 also shows a comparative example (broken line) when the setting related to the kingpin axis KS is set in accordance with a structure that does not include a steer-by-wire steering device in the same suspension structure as the suspension device 1B. Show.
  • the rack axial force can be reduced by about 30% compared to the comparative example.
  • setting the caster angle to 0 degrees can improve the suspension rigidity
  • setting the caster trail to 0 mm means that the landing point on the road surface of the kingpin axis KS as shown by reference numeral 3 in FIG. Means to coincide with the tire ground contact center point on the tire ground contact surface, whereby the lateral force reduction effect can be improved.
  • FIG. 10 is a conceptual diagram for explaining the self-aligning torque in the case of a positive scrub.
  • the restoring force (self-aligning torque) acting on the tire increases in proportion to the sum of the caster trail and the pneumatic trail.
  • a distance ⁇ c (see FIG. 10) from the wheel center determined by the position of the foot of the perpendicular line drawn from the grounding point of the kingpin shaft to the straight line in the direction of the side slip angle ⁇ of the tire passing through the tire grounding center. It can be regarded as a caster trail. Therefore, the greater the scrub radius of the positive scrub, the greater the restoring force acting on the tire during turning.
  • the effect on straight running performance due to the caster angle approaching 0 is reduced by using a positive scrub.
  • the steer-by-wire system since the steer-by-wire system is adopted, it is possible to ensure the final straightness by the steered actuator 8.
  • the kingpin inclination angle is 13.8 degrees
  • the caster trail is 0 mm
  • the scrub radius is 5.4 mm (positive scrub)
  • the caster angle is 5.2 degrees
  • the wheel center height is high.
  • the rack axial force can be reduced by about 30%.
  • the suspension lower link moves to the rear of the vehicle at the time of braking, and the lower end of the kingpin moves to the rear of the vehicle at the same time. Therefore, the caster angle has a constant backward inclination.
  • the position of the kingpin is defined as described above. That is, the kingpin lower pivot point (including the virtual pivot) is positioned behind the wheel center, and the kingpin upper pivot point (including the virtual pivot) is positioned behind the lower pivot point.
  • the suspension device 1B At least the neutral position of the steering wheel 2 is set such that the road contact point of the kingpin axis KS is located within the tire contact surface.
  • the caster trail is set to be located within the tire ground contact surface.
  • the kingpin axis KS is set to a positive scrub having a caster angle of 0 degrees, a caster trail of 0 mm, and a scrub radius of 0 mm or more.
  • the kingpin inclination angle is set within a range where the scrub radius can be a positive scrub and a smaller angle (for example, 15 degrees or less).
  • trajectory of the tire ground-contact surface center at the time of steering becomes smaller, and a tire torsion torque can be reduced. Therefore, since the rack axial force can be made smaller, the moment around the kingpin axis KS can be made smaller, and the output of the steered actuator 8 can be reduced. Moreover, the direction of the wheel can be controlled with a smaller force. That is, maneuverability and stability can be improved.
  • the straightness on the suspension structure may be affected by setting the caster angle to 0 degrees and the caster trail to 0 mm.
  • the influence is reduced.
  • the straightness is ensured. That is, maneuverability and stability can be improved.
  • the tilt angle of the kingpin is limited to a certain range (15 degrees or less)
  • the kickback due to the external force from the road surface can be countered by the steering actuator 8, so that the influence on the driver can be avoided. That is, maneuverability and stability can be improved.
  • the suspension geometry in the suspension device 1B will be examined in detail.
  • FIG. 5 is a diagram illustrating the relationship between the rack stroke and the rack axial force during steering.
  • the rack axial force component mainly includes a tire twisting torque and a wheel lifting torque, and of these, the tire twisting torque is dominant. Therefore, the rack axial force can be reduced by reducing the torsional torque of the tire.
  • FIG. 6 is a diagram illustrating a trajectory of the center of the tire ground contact surface at the time of turning.
  • the case where the amount of movement of the center of the tire contact surface at the time of turning is large and the case where it is small are shown together.
  • the rack axial force component in order to reduce the rack axial force, it is effective to minimize the tire twisting torque at the time of turning.
  • the change in the trajectory at the center of the tire contact surface may be made smaller. That is, the tire torsion torque can be minimized by matching the center of the tire contact surface with the kingpin contact point. Specifically, as will be described later, it is effective to make a positive club having a caster trail of 0 mm and a scrub radius of 0 mm or more.
  • FIG. 7 is an isoline diagram showing an example of rack axial force distribution at coordinates with the kingpin tilt angle and the scrub radius as axes.
  • an isoline in the case where the rack axial force is small, medium and large is shown as an example.
  • the kingpin tilt angle increases with respect to tire torsion torque input, the rotational moment increases and the rack axial force increases. Therefore, it is desirable to set the kingpin tilt angle to be smaller than a certain value, but from the relationship with the scrub radius, for example, if the kingpin tilt angle is 15 degrees or less, the rack axial force can be reduced to a desired level.
  • this region (the direction in which the kingpin tilt angle decreases from 15 degrees on the horizontal axis and the direction in which the scrub radius increases from zero on the vertical axis) is a region that is more suitable for setting.
  • the isoline indicating the rack axial force distribution shown in FIG. 7 is approximated as an nth order curve (n is an integer of 2 or more), A value determined by the position of the inflection point (or peak value) of the n-th order curve from the region surrounded by the chain line can be adopted.
  • FIG. 8 is a diagram showing the analysis result of the rack axial force in the suspension device 1B according to the present embodiment.
  • the solid line shown in FIG. 8 indicates the rack axial force characteristics in the suspension structure shown in FIGS. 2 to 4 when the caster angle is set to 0 degree, the caster trail is set to 0 mm, and the scrub radius is +10 mm.
  • FIG. 8 also shows a comparative example (broken line) when the setting related to the kingpin axis is set in accordance with a structure that does not include a steer-by-wire steering device in the same suspension structure as the suspension device 1B. ing. As shown in FIG. 8, when set according to the above examination results, the rack axial force can be reduced by about 30% compared to the comparative example.
  • the road surface landing point of the kingpin axis KS is made to coincide with the tire ground contact center point (adhesion point) O on the tire ground contact surface, and thereby a large lateral force reduction effect can be improved.
  • the grounding point of the kingpin axis KS in the tire grounding surface including the tire grounding center point (adhesion point) O is denoted by reference numerals 2 and 4
  • the grounding point of the kingpin axis KS is denoted by reference numerals 1 and 5.
  • the lateral force can be reduced as compared with the case where the position is deviated from the tire ground contact surface in the front-rear direction.
  • the lateral force is smaller when the grounding point of the kingpin axis KS is closer to the vehicle front side than the tire grounding center point (force point) compared to when the vehicle is behind the tire ground center point (force point). can do.
  • FIG. 10 is a conceptual diagram for explaining the self-aligning torque in the case of a positive scrub.
  • a centrifugal force directed toward the outer side of turning of the vehicle body acts on the tire ground contact center point (force point) O during turning, a lateral force toward the turning center is generated against the centrifugal force.
  • is a side slip angle.
  • the restoring force (self-aligning torque) acting on the tire increases in proportion to the sum of the caster trail and the pneumatic trail.
  • the distance ⁇ c see FIG.
  • the position of the kingpin axis KS is defined as described above. That is, the kingpin lower pivot point (including the virtual pivot) is positioned behind the wheel center, and the kingpin upper pivot point (including the virtual pivot) is positioned forward of the lower pivot point.
  • the control / drive circuit unit 26 includes the steering torque Ts of the input side steering shaft 3 detected by the torque sensor 5, the vehicle speed V acquired by the vehicle state parameter acquisition unit 21, and the steering reaction force actuator.
  • the rotation angle ⁇ mi of the actuator 6 detected by the angle sensor 7 is input.
  • the control / drive circuit unit 26 is provided with a steering control unit 50 shown in FIG.
  • the steering control unit 50 includes a target turning angle calculation unit 51, a steering response setting unit 52, a turning state detection unit 53A, a braking state detection unit 53B, a yaw angle control unit 53C, and an actuator control device 54. .
  • the target turning angle calculation unit 51 receives the vehicle speed V and the rotation angle ⁇ mi, and calculates a target turning angle ⁇ * for driving the turning actuator 8 based on these.
  • the steerable response setting unit 52 includes a straight traveling security unit 55 and a delay control unit 56.
  • the straight travel guarantee unit 55 includes a straight travel complementing unit 55a and a disturbance compensation unit 55b.
  • the rectilinearity complementing unit 55a is based on the vehicle speed V, the actual turning angle ⁇ r of the steered wheels 17FR and 17FL calculated based on the pinion angle detected by the pinion angle sensor 13, and the yaw rate ⁇ detected by the yaw rate sensor 22b.
  • ⁇ c is the caster trail
  • Kf is the cornering power per front wheel
  • is the slip angle at the center of gravity
  • Lf is the distance between the center of gravity of the front wheel
  • Kr is the cornering power per wheel of the rear wheel
  • Lr is after the center of gravity.
  • m is the mass of the vehicle
  • L is the distance between the front and rear wheel shafts.
  • the caster trail ⁇ is set to a value obtained by subtracting the caster trail ⁇ c2 set in the present embodiment from the caster trail ⁇ c0 set in the normal suspension device, whereby the suspension device 1B applied to the present invention. It is possible to calculate the self-aligning torque Tsa to be supplemented that is insufficient.
  • the self-aligning torque Tsa is not limited to the case where it is calculated by the above equation (1), but a lateral acceleration sensor for detecting the lateral acceleration Gy of the vehicle is provided, and based on the lateral acceleration Gy of the vehicle and the yaw rate ⁇ of the vehicle.
  • the lateral force Fy is calculated based on the differential value of the yaw rate ⁇ and the lateral acceleration Gy based on the equation of motion of the vehicle, and can be calculated by multiplying the lateral force Fy by the pneumatic trail ⁇ n.
  • the steering angle detected by the steering angle sensor 4 by measuring the relationship between the steering angle ⁇ s of the steering wheel 2 and the self-aligning torque Tsa using the vehicle speed V as a parameter or by referring to a control map calculated by simulation.
  • the self-aligning torque Tsa can also be calculated based on ⁇ s and the vehicle speed V.
  • the generated torque Th generated at the time of steering by a torque steer phenomenon is estimated based on the left and right driving force difference, and the steering torque Ts detected by the steering torque sensor 5 is estimated. It is also possible to calculate the self-aligning torque Tsa by subtracting the generated torque Th.
  • the self-aligning torque Tsa can be calculated based on the braking force difference between the left and right steered wheels 17FR and 17FL.
  • the disturbance compensator 55b receives the steering torque Ts from the steering torque sensor 5, the rotation angle ⁇ mo from the steering actuator angle sensor 9, and the motor current imr from the motor current detector 64, and the disturbance input to the vehicle.
  • a disturbance compensation value Adis for suppressing these disturbances is calculated by separating and estimating each frequency band.
  • the steering torque Ts that is the steering input by the driver and the steering input by the steering actuator 8 are used as control inputs, and the actual steering is performed.
  • a disturbance is estimated based on a difference between a value obtained by passing the control input through a low-pass filter and a value obtained by passing the control quantity through an inverse characteristic of the model and the low-pass filter.
  • the delay control unit 56 includes a steering start detection unit 56a, a monostable circuit 56b, a gain adjustment unit 56c, and a multiplier 56d.
  • the steering start detection unit 56a detects the timing of right steering or left steering from the state where the neutral position is maintained based on the steering angle ⁇ s detected by the steering angle sensor 4, and indicates the steering start signal SS indicating the steering start from the neutral state. Is output to the monostable circuit 56b.
  • the monostable circuit 56b sends a control start delay signal that is turned on for a predetermined delay time ⁇ (for example, 0.1 second) to the gain adjustment unit 56c based on the steering start signal output from the steering start detection unit 56a. Output.
  • the gain adjustment unit 56c sets the control gain Ga to “0” when the control start delay signal is on, and sets the control gain Ga to “1” when the control start delay signal is off.
  • the set control gain Ga is output to the multiplier 56d.
  • the multiplier 56d receives the straightness ensuring control value ⁇ a output from the straightness ensuring unit 55, multiplies the straightness ensuring control value ⁇ a by the control gain Ga, and outputs the multiplication result from the target turning angle calculating unit 51. Is supplied to the adder 56e to which the target turning angle ⁇ * is input.
  • the delay control unit 56 detects the steering start state in which the right steering or the left steering is performed from the state where the neutral state is maintained by the steering start detection unit 56a, the straight traveling calculated by the straight travel guarantee unit 55 is detected.
  • the straightness ensuring control value is set so that the straightness ensuring control for adding the property ensuring control value ⁇ a to the target turning angle ⁇ * is stopped for a predetermined time set by the monostable circuit 56b, for example, 0.1 second.
  • a control gain Ga to be multiplied by ⁇ a is set to “0”.
  • the gain adjusting unit 56c adds the straight travel guarantee control value ⁇ a to the target turning angle ⁇ * .
  • the control gain Ga is set to “1” so as to start the straight travel guarantee control.
  • the delay control unit 56 does not detect the steering start from the neutral state by the steering start detection unit 56a, so that the output of the monostable circuit 56b maintains the off state.
  • the control gain Ga is set to “1” by the gain adjusting unit 56c.
  • the straightness ensuring control value ⁇ a calculated by the straightness ensuring unit 55 is supplied to the adder 56e as it is.
  • the straight traveling collateral control value ⁇ a is added to the target turning angle ⁇ * to perform the straight traveling collateral control.
  • the turning state detection unit 53A receives the yaw angle ⁇ detected by the yaw angle sensor 22a as the yaw angle detection unit, and determines that the turning state is present when the yaw angle ⁇ exceeds a preset value ⁇ s. .
  • the braking state detection unit 53B receives the braking command signal Sb output to the pressure control unit 20, and determines that the braking state is present when the braking command signal Sb is in the on state.
  • the yaw angle control unit 53C receives the determination results of the turning state detection unit 53A and the braking state detection unit 53B, the yaw angle ⁇ detected by the yaw angle sensor 22a, and the steering angle detected by the steering angle sensor 4.
  • the yaw angle control unit 53C executes the yaw angle control process so that the yaw angles before and after the braking match when the vehicle is in a braking state while turning.
  • This yaw angle control process is executed as a timer interrupt process executed every predetermined time (for example, 1 ⁇ sec), and includes the processes of the turning state detection unit 53A and the braking state detection unit 53B, as shown in FIG. become.
  • this yaw angle control process first, the yaw angle ⁇ 1 detected by the yaw angle sensor 22a in step S1 is read, and this yaw angle ⁇ 1 is stored in the yaw angle storage unit 53b.
  • step S2 it is determined whether or not the absolute value of the read yaw angle ⁇ 1 exceeds the threshold value ⁇ s near zero and the vehicle is turning. If ⁇ 1 ⁇ ⁇ s, the vehicle is not turning. If it is determined that there is not, the current timer interrupt process is terminated and the process returns to the predetermined main program.
  • step S2 when the determination result in step S2 is ⁇ 1> ⁇ s, it is determined that the vehicle is in a turning state, the process proceeds to step S3, the steering angle ⁇ s1 detected by the steering angle sensor 4 is read, and the steering angle ⁇ s1 is steered. After storing in the corner storage unit 53a, the process proceeds to step S4. In this step S4, it is determined whether or not an on-state braking command signal Sb representing a braking state in which the wheel cylinder 19 is operated is input from the braking device mounted in the control / drive unit 26, and the braking command signal Sb.
  • step S5 When the vehicle is in an off state, it is determined that the vehicle is not in a braking state, the current timer interrupt process is terminated and the routine returns to a predetermined main program, and the vehicle is in a braking state when the braking command signal Sb is on. Determination is made and the process proceeds to step S5.
  • step S5 the post-braking steering angle ⁇ s2 detected by the steering angle sensor 4 is read, and then the process proceeds to step S6 and the braking yaw angle ⁇ 2 detected by the yaw angle sensor 22a is read, and then the process proceeds to step S7.
  • step S7 the pre-brake steering angle ⁇ s1 stored in the steering angle storage unit 53a is read, and the absolute value of the value obtained by subtracting the post-brake steering angle ⁇ s2 from the pre-brake steering angle ⁇ s1 is less than the steering angle ⁇ ss near zero. If
  • step S9 the target rack as a target turning amount for generating a toe angle necessary to eliminate the yaw angle deviation ⁇ by referring to the target rack stroke calculation map shown in FIG. 13 based on the yaw angle deviation ⁇ . Stroke Rs * is calculated.
  • the target rack stroke calculation map as shown in FIG.
  • the horizontal axis represents the target rack stroke Rs *
  • the vertical axis represents the yaw angle deviation ( ⁇ 2- ⁇ 1)
  • the yaw angle deviation ( ⁇ 2- ⁇ 1) is
  • the target rack stroke Rs * also increases in the positive direction.
  • the yaw angle deviation ⁇ increases from zero to the negative direction
  • the target rack stroke Rs * also increases in the negative direction.
  • a characteristic line Lr is set.
  • step S10 the process proceeds to step S10, where the calculated target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for the target turning angle ⁇ * generated by the turning actuator 8, and then the process proceeds to step S11.
  • step S12 After the steering angle correction value ⁇ ta is added to the target turning angle ⁇ * , the process proceeds to step S12.
  • step S12 after the yaw angle post-yaw control ⁇ 3 detected by the yaw angle sensor 22a is read, the process proceeds to step S13, and the turning start yaw angle ⁇ 1 stored in the yaw angle storage unit 53b is read.
  • step S7 When the determination result in step S7 is
  • the process of steps S1 and S2 corresponds to the turning state detection unit 53A
  • the process of step S4 corresponds to the braking state detection unit 53B
  • steps S1, S3, and steps S5 to S5 are performed.
  • the process of S13 corresponds to the yaw angle control unit 53C.
  • the actuator control device 54 includes a turning angle deviation calculation unit 61 that calculates a turning angle deviation ⁇ , a turning motor control unit 62, a current deviation calculation unit 63, and a motor current control unit 65.
  • the turning angle deviation calculation unit 61 subtracts the actual turning angle ⁇ r based on the turning actuator angle output from the turning actuator angle sensor 9 from the target steering angle correction value ⁇ * a output from the adder 56e.
  • the steering angle deviation ⁇ is calculated, and the calculated steering angle deviation ⁇ is output to the steered motor control unit 62.
  • the steered motor control unit 62 calculates the drive command current im * of the steered motor 8a constituting the actuator 8 so that the input steered angle deviation ⁇ becomes zero, and the calculated drive command current im * Output to the deviation calculator 63.
  • the current deviation calculation unit 63 subtracts the motor current imr output from the motor current detection unit 64 that detects the motor current supplied to the steered motor 8a constituting the steered actuator 8 from the input drive command current im *.
  • the current deviation ⁇ i is calculated, and the calculated current deviation ⁇ i is output to the motor current control unit 65.
  • the motor current control unit 65 performs feedback control so that the input current deviation ⁇ i becomes zero, that is, the actual motor current imr follows the drive command current im *, and changes the turning motor drive current imr. Output to the rudder motor 8a.
  • the disturbance compensation unit 55b calculates a disturbance compensation value Adis that suppresses the disturbance. Therefore, the disturbance compensation value Adis is also zero when this disturbance is not generated. Further, in yaw angle control unit 53C, since the vehicle is in a straight traveling state and the yaw angle ⁇ 1 is zero instead of the turning state, it is not determined that the vehicle is in a turning traveling state, and the rack stroke for correcting the rack stroke is determined. control also performed without the correction value ⁇ a in the target steering angle [delta] *, the target turning angle correction value obtained by adding the .DELTA.ta [delta] * a is also zero.
  • the turning angle deviation ⁇ output from the turning angle deviation calculating unit 61 of the actuator control device 54 is also zero, and the motor current command value im * output from the turning motor control unit 62 is also zero. Therefore, the motor current imt is not output from the motor current control unit 65, the steered motor 8a maintains the stopped state, the rack shaft 14 maintains the neutral position, and the steered angles ⁇ t of the steered wheels 17FR and 17FL are “0”. Is controlled.
  • the caster trail ⁇ c in the equation (1) is set to a value similar to that of a normal suspension device.
  • the calculated self-aligning torque Tsa can be a value corresponding to the caster trail ⁇ c.
  • the calculated self-aligning torque Tsa is multiplied by the gain Ksa to calculate a straightness correction value Asa, and this straightness correction value Asa is supplied to the delay control unit 56.
  • the steering start detection unit 56a does not detect the start of steering, and the gain adjustment unit 56c sets the gain Ga to “1”. Asa is supplied to the adder 56e as it is.
  • the steering motor 8a constituting the turning actuator 8 is driven and controlled by the actuator control device 54, and the self-aligning torque Tsa is set.
  • Corresponding turning torque is generated and transmitted to the steered wheels 17FR and 17FL via the rack shaft 14 and the tie rod 15.
  • the self-aligning torque Tsa can be generated by the steered wheels 17FR and 17FL, and the shortage of the self-aligning torque to the suspension device 1 can be compensated to ensure straightness of the vehicle.
  • the steering wheel 2 is steered to the right (or left) from the state of maintaining the straight traveling state in which the steering wheel 2 is held at the neutral position, the transition from the straight traveling state to the turning state by steering is performed. Is detected by the steering start detector 56a. For this reason, the control delay signal that is in the ON state for a predetermined time, for example, 0.1 second is output from the monostable circuit 56b to the gain adjusting unit 56c. Accordingly, the gain adjustment unit 56c sets the control gain Ga to “0” while the control delay signal is kept on. For this reason, the multiplication output outputted from the multiplier 56d becomes “0”, and the output of the straightness ensuring control value ⁇ a to the adder 56e is stopped.
  • the control delay signal that is in the ON state for a predetermined time, for example, 0.1 second is output from the monostable circuit 56b to the gain adjusting unit 56c. Accordingly, the gain adjustment unit 56c sets the control gain Ga to “0” while the control delay signal is kept on. For this reason
  • the control gain Ga is set to “0” during the initial response period T1 of 0.1 seconds from the time when the steering is started from the neutral position of the steering wheel 2, the multiplication output output from the multiplier 56d is It becomes “0”, and the straight traveling guarantee control with respect to the target turning angle ⁇ * is stopped as shown by the solid line in FIG. Therefore, the steering angle ⁇ s detected by the steering angle sensor 4 is supplied to the target turning angle calculation unit 51, and the target turning angle ⁇ * calculated by the target turning angle calculation unit 51 is directly calculated as the turning angle deviation. Supplied to the unit 61. For this reason, the turning motor 8a is rotationally driven so as to coincide with the target turning angle ⁇ * . During this time, the straightness guaranteeing control in the straightness guaranteeing part 55 is stopped.
  • the turning by the suspension device 1B in which the road contact point of the kingpin axis KS is set at the contact center position in the tire contact surface and the caster angle is set to zero is started.
  • the caster angle of the suspension device 1B is set to zero.
  • FIG. 14A when the caster angle is zero, the relationship between the caster angle, the steering response, and the steering stability is high, but the steering stability is high. It cannot be ensured, that is, there is a trade-off relationship between the steering response to the caster angle and the steering stability. For this reason, in the initial state where the steering is started from the neutral position, the straight travel guarantee control by the steer-by-wire control is not executed, and the suspension device 1B covers this initial turning.
  • the suspension device 1B has a caster angle of zero and has high steering response as described above. Therefore, as shown by the characteristic line L1 shown by the solid line in FIG. A steering response characteristic (yaw rate) higher than a steering response characteristic (yaw rate) in a vehicle having a general steer-by-wire type steering system indicated by a characteristic line L2 can be obtained. At this time, since the turning angle changes corresponding to the steering angle change caused by the steering of the steering wheel 2 by the driver, the driver does not feel uncomfortable.
  • the middle response period T2 and the late response period T3 as shown by the characteristic line L3 in FIG. 15 (a).
  • the steering response of the vehicle by steering becomes sensitive.
  • a phenomenon of getting inside the vehicle from the middle response period T2 to the later response period T3 becomes large. Therefore, in the first embodiment, as shown in FIG. 15B, for example, 0.1 seconds after the initial response period T1 elapses, the straight traveling configured by the straightness complementation unit 55a and the disturbance compensation unit 55b.
  • the straightness ensuring control with respect to the target turning angle ⁇ * by the property ensuring unit 55 is started stepwise.
  • the steering response of the vehicle by the suspension device 1B is suppressed to prevent the vehicle from wobbling, and the straightness of the suspension device 1B is complemented by the steer-by-wire control as shown by the dotted line in FIG.
  • the steering stability can be ensured.
  • the steering response characteristic is further suppressed by the straightness guaranteeing control by the straightness guaranteeing part 55 even when compared with the general steering response characteristic of the vehicle. And understeer tendency.
  • the characteristic line L1 shown by the solid line in FIG. 15A the steering stability can be improved, and an ideal vehicle turning response characteristic indicated by the characteristic line L1 can be realized.
  • the yaw angle control unit 53C reads the yaw angle ⁇ 1 in step S1 and stores it in the steering angle storage unit 53a in the yaw angle control process of FIG. 12, and then proceeds to step S2.
  • step S3 the pre-braking steering angle ⁇ s1 is read, the pre-braking steering angle ⁇ s1 is stored in the steering angle storage unit 53a, and the timer interruption process is repeated. Yes. Therefore, the yaw angle storage unit 53b updates and stores the pre-braking yaw angle ⁇ 1, and the steering angle storage unit 53a stores the pre-braking steering angle ⁇ s1.
  • the braking device When the brake pedal is depressed in this turning traveling state, the braking device is actuated so that the braking force is applied to the wheels 17FR, 17FL, 17RR, 17RL.
  • the braking command signal Bc output from the control / drive circuit 26 is turned on. Therefore, the yaw angle control unit 53C shifts from step S4 to step S5 in the process of FIG. 12, reads the post-brake steering angle ⁇ s2, and then reads the post-brake yaw angle ⁇ 2 (step S6).
  • the calculated target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for performing yaw angle control corresponding to the target turning angle ⁇ * (step S10), and the converted turning angle correction value ⁇ ta is converted into the target turning angle. It is added to the steering angle ⁇ * and output to the actuator controller 54.
  • the steered actuator 8 is controlled so that the steered wheels 17FR, 17FL are given a toe angle change that eliminates the yaw angle deviation ⁇ before and after braking, and the rack shaft 14 is moved to the target rack stroke Rs * .
  • This stroke is supplied to the steered wheels 17FR and 17FL via the tie rod 15.
  • the toe angle change is made so that the steered wheels 17FR and 17FL face the outside of the turn so as to eliminate the yaw angle deviation ⁇ . Be controlled. For this reason, when the vehicle 1 is turning around the corner as shown in FIG. 16 (b), the amount of movement in the vehicle width direction can be suppressed even when the vehicle is in a braking state, and the travel lane can be maintained. You can travel.
  • the steering actuator 8 is controlled to control the rack stroke of the rack shaft 14 to cause a change in the toe angle, so that the braking pressure on the outer ring side is made larger than the braking pressure on the inner ring side by the braking device.
  • the yaw angle control during turning braking can be performed by the yaw angle control unit 53C provided in the steering control unit 50 constituting the steer-by-wire system.
  • the transverse link and the rack shaft are arranged substantially in parallel and the transverse link is made longer in the vehicle width direction than the rack shaft. It is not necessary to set to.
  • the yaw angle ⁇ 3 is read again, and the yaw angle control is continued until the yaw angle deviation between the yaw angle ⁇ 3 and the pre-braking yaw angle ⁇ 1 becomes equal to or smaller than the set value ⁇ s or the braking state is stopped.
  • the absolute value of the steering angle deviation obtained by subtracting the post-braking steering angle ⁇ s2 from the pre-braking steering angle ⁇ s1 exceeds the set value ⁇ s.
  • the control jumps from S7 to step S12 to stop the yaw angle control for calculating the turning angle correction value ⁇ ta. Therefore, the steering of the steering wheel 2 such as counter steer by the driver is not affected.
  • the vehicle steering apparatus since the caster trail is set in the tire contact surface in the suspension device 1B, the moment around the kingpin axis KS can be further reduced. . Therefore, also in the third embodiment, the steering can be performed with a smaller rack axial force, and the direction of the wheel can be controlled with a smaller force, so that the steering response can be improved.
  • at least the kingpin shaft KS is set so as to pass through the tire ground contact surface, whereby the suspension device 1B itself is configured to improve the steering response, in addition to this.
  • the straightness compensation of the steering characteristic is performed by the straightness guaranteeing part 55 of the steer-by-wire system SBW and disturbance compensation is performed to guarantee the straightness of the suspension device 1B.
  • the steering start detection unit 56a detects the transition from the straight traveling state to the turning state by steering. Is detected. For this reason, the gain Ga is set to “0” for 0.1 seconds by the gain adjusting unit 56c. Therefore, the correction control process for the steering command angle ⁇ * is stopped as shown in FIG. 15B during the initial response period of 0.1 seconds from the time when the steering is started from the neutral position of the steering wheel 2.
  • the rotation angle ⁇ mi of the actuator 6 is supplied to the target turning angle calculation unit 51, and the turning command angle ⁇ * calculated by the target turning angle calculation unit 51 is supplied to the turning angle deviation calculation unit 61 as it is.
  • the turning motor 8a is rotationally driven so as to coincide with the turning command angle ⁇ * .
  • the turning angle correction process in the steer-by-wire control is stopped. Therefore, in the initial response period, the steering by the suspension device in which the road contact point of the kingpin axis KS is set at the contact center position in the tire contact surface and the caster angle is set to zero is started.
  • the caster angle of the suspension device is set to zero.
  • the relationship between the caster angle, the steering response, and the steering stability is high when the caster angle is zero, but the steering stability is ensured. That is, there is a trade-off relationship between steering response to caster angle and steering stability. For this reason, in the initial state in which the steering is started from the neutral position, the steering angle correction processing by the steer-by-wire control is not executed, and the suspension device covers this initial steering.
  • the suspension device has a caster angle of zero and high steering response. Therefore, as shown by a characteristic line L1 shown by a solid line in FIG. A steering response characteristic (yaw angle) higher than a steering response characteristic (yaw angle) in a vehicle having a general steer-by-wire type steering system indicated by L2 can be obtained.
  • the steering response of the vehicle by the steering becomes sensitive in the middle and later periods as indicated by the characteristic line L3 shown by the broken line in FIG. Become.
  • the phenomenon of entrapping the inside of the vehicle from the middle to the latter half of the steering is increased.
  • the steering command angle ⁇ * by the straightness complementation unit 55a and the disturbance compensation unit 55b for example, 0.1 seconds after the initial period elapses .
  • the turning angle correction process for is started stepwise.
  • the steering responsiveness of the vehicle by the suspension device is suppressed to prevent the vehicle from wobbling, and as shown in FIG. 14B, the straightness is complemented by the steer-by-wire control to ensure the steering stability. be able to.
  • the steering response characteristic can be further suppressed and an understeer tendency can be obtained even when compared with the steering response characteristic of a general vehicle.
  • the characteristic line L1 shown by the solid line in FIG. 15A the steering stability can be improved, and the ideal vehicle steering response characteristic indicated by the characteristic line L1 can be realized.
  • the vehicle steering apparatus since the caster trail is set in the tire contact surface in the suspension device 1B, the moment around the kingpin axis KS can be further reduced. . Therefore, the steering can be performed with a smaller rack axial force, and the direction of the wheel can be controlled with a smaller force, so that the steering response can be improved.
  • the suspension device 1B by setting at least the kingpin axis KS to pass through the tire contact surface, the suspension device 1B itself is configured to improve the steering response, and the steer-by-wire system SBW.
  • the straightness compensation unit 55 performs the straightness compensation and disturbance compensation for controlling the steering characteristics.
  • the initial responsiveness is ensured by utilizing the high steering responsiveness of the suspension device itself.
  • the initial period elapses and the middle period starts, it is necessary to emphasize steering stability rather than steering response, and the steering response setting unit 52 of the steer-by-wire system SBW starts control.
  • straightness complementation control high steering responsiveness by the suspension device 1B is suppressed, and steering stability is ensured.
  • the suspension device 1B according to the present embodiment is a strut type, the number of parts can be reduced, and the setting of the kingpin axis KS in the present embodiment can be easily performed.
  • the control / drive circuit 26 including 50 constitutes the steer-by-wire system SBW.
  • the wheels 17FR, 17FL, 17RR, and 17RL correspond to a tire wheel, a tire, and a wheel hub mechanism, and the first link 37, the second link 38, and the shock absorber 40 correspond to a plurality of link members.
  • the first link 37 and the second link 38 constitute a lower arm, and the spring member 34 and the shock absorber 40 constitute a strut member ST.
  • the setting unit 52 may be configured by an arithmetic processing device such as a microcomputer, for example, and the steering control processing shown in FIG. 17 may be executed by this arithmetic processing device.
  • the steering control processing shown in FIG. 17 may be executed by this arithmetic processing device.
  • step S21 the vehicle speed V, the steering angle ⁇ s detected by the steering angle sensor 4, the rotation angle ⁇ mo detected by the actuator rotation angle sensor 9, the steering torque sensor 5 are used.
  • the data necessary for the calculation processing such as the steering torque Ts detected in step 1 is read.
  • step S22 whether or not the steering wheel 2 is steered to the right or left from the state in which the steering wheel 2 holds the neutral position based on the steering angle ⁇ s detected by the steering angle sensor 4 is determined.
  • the process proceeds to step S23.
  • step S23 it is determined whether or not the control flag F indicating the steering start control state is set to “1”.
  • the control flag F is reset to “0”
  • the process proceeds to step S24.
  • the control gain Ga is set to “1”
  • the process proceeds to step S25.
  • the target turning angle ⁇ * is calculated based on the vehicle speed V and the steering angle ⁇ s as in the target turning angle calculation unit 51 described above.
  • the process proceeds to step S26, and the self-aligning torque Tsa is calculated by performing the calculation of the equation (1) in the same manner as the straightness complementing unit 55a described above, and a predetermined gain Ksa is added to the self-aligning torque Tsa.
  • the self-aligning torque control value Asa is calculated by multiplication.
  • step S27 the process proceeds to step S27, and the disturbance input to the vehicle is determined for each frequency band based on the motor rotation angle ⁇ mo from the steering actuator angle sensor 9, the steering torque Ts, and the motor current imr detected by the motor current detection unit 64.
  • the disturbance compensation value Adis for suppressing these disturbances is calculated.
  • step S28 the target turning angle after addition is performed by performing the calculation of the following equation (2) based on the target turning angle ⁇ * , the self-aligning torque control value Asa, and the disturbance compensation value Adis.
  • ⁇ * a is calculated.
  • ⁇ * a ⁇ * + Ga (Asa + Adis) (2)
  • step S29 where the post-addition target turning angle ⁇ * a calculated in step S28 is output to the turning angle deviation calculating unit 61 in FIG. 11, and then the process returns to step S21.
  • the determination result in step S22 is the steering start state
  • step S30 the control flag F is set to “1”, and then the process proceeds to step S31.
  • step S31 it is determined whether a preset delay time (for example, 0.1 second) has elapsed. At this time, when the delay time has not elapsed, the process proceeds to step S32, the control gain Ga is set to “0”, then the process proceeds to step S25, and the target turning angle ⁇ * is calculated.
  • a preset delay time for example, 0.1 second
  • step S31 determines whether a predetermined delay time (for example, 0.1 second) has elapsed. If the determination result in step S31 indicates that a predetermined delay time (for example, 0.1 second) has elapsed, the process proceeds to step S33, the control flag F is reset to “0”, and then the process proceeds to step S24. Thus, the control gain Ga is set to “1”. Also in the steering control calculation process shown in FIG. 17, when the steering wheel 2 is not in the steering start state in which the steering is started from the neutral position to the right or left, the target turning angle ⁇ * is set to the self-adjusting angle. Straightness ensuring control is performed in which the straightness ensuring control value ⁇ a obtained by adding the lining torque control value Asa and the disturbance compensation value Adis is added to the target turning angle ⁇ * .
  • a predetermined delay time for example, 0.1 second
  • the control gain Ga is set until the preset delay time elapses. Since it is set to “0”, the straight travel guarantee control is stopped. For this reason, only the target turning angle ⁇ * is output to the turning angle deviation calculating unit 61, whereby the turning motor 8 a constituting the turning actuator 8 is rotationally driven. For this reason, the high turning response of the suspension device itself is set as the initial turning response, and the high turning response can be obtained.
  • the control gain Ga is set to “1”, so that the compliance steering control value Ac, the self-aligning torque control value Asa, and the disturbance compensation value Adis are added to the target turning angle ⁇ * .
  • the turning motor 8a constituting the turning actuator 8 is rotationally driven by a value obtained by adding the straight travel guarantee ensuring control value ⁇ a to the target turning angle ⁇ * . For this reason, the high steering response of the suspension device 1B is suppressed, and the straightness of the suspension device 1B is ensured, and an ideal steering response characteristic can be obtained.
  • step S25 corresponds to the target turning angle calculation unit 51
  • step S26 corresponds to the straightness complementing unit 55a
  • steps S25 to S28 are performed to the straightness guaranteeing unit 55.
  • steps S22 to S24 and S30 to S33 correspond to the delay control unit 56
  • the processes of steps S22 to 33 correspond to the steering response setting unit 52.
  • the steering control device detects a displacement of the steering angle when the steering wheel is steered, and controls an actuator that operates a steering mechanism that steers the steered wheels separated from the steering wheel based on the detection result.
  • a steer-by-wire system a yaw angle detector that detects the yaw angle of the vehicle, a steering angle detector that detects the steering angle of the steering wheel, a turning state detector that detects the vehicle turning state, and a braking state of the vehicle
  • the yaw angle deviation before and after braking is suppressed.
  • the yaw angle control unit controls an actuator that can control the yaw angle of the vehicle with higher responsiveness than the hydraulic control so as to suppress the yaw angle deviation before and after the braking at the time of braking in the turning traveling state of the vehicle. Can do. Therefore, it is possible to increase the responsiveness to suppress the yaw angle deviation as compared with the case of controlling the braking pressure to suppress the yaw angle deviation, and to improve the steering stability by understeering the vehicle. The amount of movement in the vehicle width direction can be suppressed.
  • the yoke control unit detects a target turning to suppress a yaw angle deviation before and after braking when the turning state detection unit detects a turning state of the vehicle and the braking state detection unit detects a braking state of the vehicle.
  • a steering amount is calculated, and the actuator is controlled so as to be the calculated target turning amount.
  • the yaw angle control unit calculates the target turning amount that suppresses the yaw angle deviation before and after braking during braking when the vehicle is turning, and controls the actuator so that the calculated target turning amount is obtained.
  • a change in the steering amount that suppresses the angular deviation can be generated.
  • the yaw angle control unit can control the turning amount of the steered wheels to give a change in toe angle, and as a basic characteristic of the suspension device, the longitudinal force toe characteristic is ensured. There is no need, and the suspension device can be simplified and lightened.
  • the yaw angle control unit is configured to detect the braking state before and after the braking state detected by the steering angle detection unit when a braking state of the vehicle is detected by the braking state detection unit. The control of the actuator is stopped. For this reason, when the driver starts the yaw angle control that suppresses the yaw angle when the vehicle enters the turning braking state, when the driver steers the steering wheel such as the counter steer, the yaw angle control is stopped and the driver is stopped. Priority can be given to steering control by steering. Therefore, steering such as counter-steering by the driver can be performed accurately.
  • the suspension device on the front wheel side is set so that the kingpin shaft passes through the tire contact surface when the steering wheel is in the neutral position.
  • the steered control unit includes a rectilinearity ensuring unit that ensures rectilinearity of the suspension device.
  • the straight travel guarantee part is configured by a steer-by-wire system including a steering actuator and an actuator control device, it is not necessary to provide the straight travel guarantee part independently, and the configuration is simplified. can do.
  • the straightness guaranteeing part 55 of the steering response setting part 52 serves as the main straightness guaranteeing part and the actuator control device 54 serves as the secondary straightness guaranteeing part.
  • the straightness of the suspension device can be reliably ensured.
  • the delay control unit delays the straightness guarantee control of the straightness guarantee part, thereby changing the initial response characteristic to the suspension device itself.
  • the high steering response is secured by providing the steering response.
  • ideal steering response can be ensured by adjusting the steering response of the suspension device itself by the straight travel guarantee control by the straight travel guarantee section.
  • the straight travel guarantee unit secures straight travel performance by calculating self-aligning torque. Therefore, the straight travel performance securing section can secure the straight travel performance that has been lowered by securing the high responsiveness of the suspension device with the self-aligning torque, thereby improving the steering and stability of the vehicle.
  • the steering response characteristic of the suspension device is set to the initial steering response characteristic at the beginning of the steering by the steering response setting unit of the steer wire system. Then, after the initial set time has elapsed, the straightness ensuring part of the steer-by-wire system starts control for ensuring the straightness of the suspension device of the steering actuator itself.
  • the straightness ensuring part of the steer-by-wire system starts control for ensuring the straightness of the suspension device of the steering actuator itself.
  • step S41 for determining whether or not the vehicle speed V exceeds a set vehicle speed Vs (for example, 80 km / h) is inserted before step S1 in the process of FIG.
  • Vs for example, 80 km / h
  • step S42 for determining whether or not the vehicle speed V is equal to or lower than a set vehicle speed Vs is inserted between step S13 and step S4, and the determination result of step S42 is V ⁇ Vs. If YES, the yaw angle control process is terminated as it is, and if V> Vs, the process returns to step S4. According to the second embodiment, in a state where the vehicle speed V is traveling below the set vehicle speed Vs, the yaw angle control process is terminated simply by repeatedly executing step S41. The yaw angle control to be controlled is not executed.
  • Vs for example, 80 km / h
  • the yaw angle ⁇ of the vehicle is reduced, and the steering stability can be improved by reducing the amount of movement of the vehicle in the vehicle width direction during turning braking by using the vehicle's steering characteristic as an understeer characteristic. Also in this case, since the rack stroke of the rack shaft 14 is controlled by the steering actuator 8, the yaw angle control can be performed with high responsiveness. Then, when the vehicle speed V becomes equal to or lower than the set vehicle speed Vs during execution of the yaw angle control or the braking state is released, the yaw angle control is terminated.
  • the vehicle speed detection part which detects the vehicle speed of a vehicle is provided, and the said yaw angle control part operate
  • the yaw angle control during turning braking is executed only in the high vehicle speed traveling state where the vehicle speed V exceeds the set vehicle speed Vs, and the yaw angle deviation before and after braking is reduced in the low / medium vehicle speed traveling region. Since the small braking effect on the running of the vehicle is small, the yaw angle control can be omitted in the low / medium vehicle speed running range. For this reason, it becomes possible to reduce the control frequency of the steering actuator 8, and it is possible to extend the life and withstand long-term use.
  • the yaw angle control is executed when the vehicle speed is equal to or higher than the set vehicle speed as in the second embodiment, and the method for calculating the target rack stroke is changed. That is, in the third embodiment, the yaw angle control process executed by the yaw angle control unit 53C is changed as shown in FIG. In this yaw angle control process, step S51 for reading the vehicle speed V2 is inserted between step S5 and step S6 in the process of FIG. 18 of the second embodiment described above, and step S8 is omitted. .
  • step S52 for calculating the target yaw angle ⁇ * with reference to the target value calculation map shown in FIG. 20 is inserted between step S9 and step S10. Furthermore, in the third embodiment, the absolute value of the yaw angle deviation obtained by reading the yaw angle ⁇ 3 in step S12 and subtracting the yaw angle ⁇ 3 from the target yaw angle ⁇ * in step S13 is equal to or less than the yaw angle deviation set value ⁇ s. It has been changed to determine whether or not.
  • the vehicle speed V2 is set on the horizontal axis
  • the yaw angle ⁇ 2 is set on the vertical axis
  • a plurality of characteristic lines L1 to L5 having a plurality of steering angles ⁇ as parameters are set. It has a configuration.
  • the yaw angle at the set vehicle speed Vs (for example, 80 km / h) of the characteristic line Li selected in step S9 is set as the target yaw angle ⁇ * .
  • step S41 when the vehicle speed V is equal to or lower than the set vehicle speed Vs, only the processing of step S41 is repeated every predetermined time, and the steering actuator 8 is controlled.
  • the yaw angle control is not executed. Then, the vehicle shifts from step S4 to step S5 during turning braking when the vehicle speed V exceeds the set vehicle speed Vs, the yaw angle ⁇ 1 exceeds the set value ⁇ s, and the braking command signal is turned on when the vehicle is in the braking state. Substantial yaw angle control is performed.
  • the vehicle speed V2 read in step S51 after braking and the value read in step S6 when the absolute value
  • the nearest characteristic line L2 having a yaw angle smaller than the current yaw angle ⁇ 2 is selected.
  • the steering angle deviation ⁇ is calculated by subtracting the steering angle ⁇ 2 of the selected characteristic line L2 from the post-braking steering angle ⁇ s2 read in step S5, and the stroke corresponding to the steering angle deviation ⁇ is calculated as the target rack stroke Rs *. (Step S9).
  • the yaw angle at the set vehicle speed Vs is calculated as the target yaw angle ⁇ * (step S52).
  • the target rack stroke Rs * is converted into a steering correction value ⁇ ta corresponding to the target steering angle ⁇ * (step S10), and this steering correction value ⁇ ta is added to the target steering angle ⁇ * to obtain a steering actuator.
  • the steering actuator 8 is driven and controlled so that the rack shaft 14 moves by the target rack stroke.
  • the toe angle is generated so that the steered wheels 17FR and 17FL have the turning outer wheel in the toe-out direction.
  • the yaw angle ⁇ 4 is read (step S12), and it is determined whether or not the absolute value of the value obtained by subtracting the read yaw angle ⁇ 4 from the target yaw angle ⁇ 3 is equal to or smaller than the yaw angle deviation set value ⁇ s (step S13). If this determination result is
  • step S13 determines whether or not the brake command signal is kept on.
  • the post-brake steering angle ⁇ s2, the vehicle speed V2, and the yaw angle ⁇ 2 are read. Then, in a state where the driver is not steering, that is, in a state where the absolute value
  • the characteristic line Li on the side with a smaller yaw angle is selected with reference to the calculation map.
  • a steer-by-wire system that detects a displacement of a steering angle when the steering wheel is steered and controls an actuator that operates a steering mechanism that steers a steered wheel separated from the steering wheel based on the detection result;
  • a yaw angle detector that detects the yaw angle of the vehicle, a steering angle detector that detects the steering angle of the steering wheel, a vehicle speed detector that detects the vehicle speed of the vehicle, and a vehicle turn based on the yaw angle of the vehicle
  • a turning state detection unit for detecting a state, a braking state detection unit for detecting a braking state of the vehicle, a vehicle turning state detected by the turning state detection unit, and a braking state of the vehicle detected by the braking state detection unit.
  • the yaw angle control unit reads the vehicle speed V2 and the yaw angle ⁇ 2 when the vehicle speed V exceeds the set vehicle speed Vs, and calculates the target yaw angle from the vehicle speed V2 and the yaw angle ⁇ 2.
  • the closest characteristic line whose yaw angle is lower than the yaw angle ⁇ 2 is selected with reference to the map, and the yaw angle at the set vehicle speed Vs of the selected characteristic line is set as the target yaw angle ⁇ * .
  • the target yaw angle ⁇ * is calculated with reference to the target value calculation map based on the vehicle speed V2 and the yaw angle ⁇ 2 after the start of braking so that the actual yaw angle ⁇ 3 approaches the target yaw angle ⁇ *.
  • Adjust the rack stroke to control the yaw angle Therefore, it is possible to increase the responsiveness to suppress the yaw angle deviation as compared with the case of controlling the braking pressure to suppress the yaw angle deviation, and to improve the steering stability by understeering the vehicle.
  • the amount of movement in the vehicle width direction can be suppressed.
  • the yaw angle control unit controls the toe angle of the steered wheels in order to suppress the yaw angle deviation before and after braking. The weight can be reduced.
  • step S51 for reading the current vehicle speed V2 is inserted between steps S5 and S6 in the process of FIG. 12 of the first embodiment described above, and steps S8 and S13 are omitted.
  • step S9 the calculation processing of the target rack stroke Rs * in step S9 is performed by referring to a target value calculation map shown in FIG.
  • Rs * the rack stroke corresponding to the steering angle deviation ⁇ 2 between the steering angle ⁇ i of the selected characteristic line Li and the post-braking steering angle ⁇ s2 read in step S5 is set as the target rack stroke.
  • substantial yaw angle control is performed when the vehicle shifts to a braking state while the vehicle is turning. In this yaw angle control, the post-brake steering angle ⁇ s2 is read (step S5), the vehicle speed V2 is read (step S6), and the yaw angle ⁇ 2 is further read (step S7).
  • the rack stroke control is performed when the absolute value
  • the target steering angle ⁇ is referred to with reference to a target value calculation map having the same configuration as the target value calculation map in the third embodiment shown in FIG. * Is calculated.
  • a characteristic line Li whose yaw angle falls below the current vehicle speed V2 is selected from the point P1 represented by the vehicle speed V2 and the yaw angle ⁇ 2 in FIG. 22, and the characteristic line Li is set. Is set as the target steering angle ⁇ * .
  • the steering angle deviation ⁇ is calculated by subtracting the target steering angle ⁇ * from the post-braking steering angle ⁇ s2 read in step S5, and the rack stroke corresponding to the calculated steering angle deviation ⁇ is calculated as the target rack stroke Rs *. (Step S9). Then, the target rack stroke Rs * is converted into a steering correction value ⁇ ta (step S10), and the converted steering correction value ⁇ ta is added to the target steering angle ⁇ * calculated by the target steering angle calculation unit 51 described above. Then, the target turning angle correction value ⁇ * a is calculated, and this target turning angle correction value ⁇ * a is output to the actuator control device 54.
  • the yaw angle control is continued until the yaw angle ⁇ 3 becomes “0” or the braking command signal is turned off. Therefore, as shown by the broken line in FIG. 22, the yaw angle control is performed until the post-braking steering angle ⁇ s2 coincides with the target steering angle ⁇ 2 at the point P1, and then the yaw angle ⁇ 2 decreases as the vehicle speed V2 decreases. In this state, the target rack stroke calculation is performed again, whereby the yaw angle ⁇ 2 is reduced to the value represented by the characteristic line ⁇ 1. Thereafter, the yaw angle control is repeated until the yaw angle ⁇ 3 becomes “0” or the brake command signal is turned off.
  • the relationship between the vehicle speed and the yaw angle is obtained by having the plurality of steering angle characteristic lines having the steering angle as a parameter based on the vehicle speed V2 after braking and the yaw angle ⁇ 2.
  • a target steering angle ⁇ * is calculated with reference to a target steering angle calculation map as a target value calculation map to be expressed, a target rack stroke Rs * is calculated from a deviation between the target steering angle ⁇ * and the post-braking steering angle ⁇ s2,
  • yaw angle control for controlling the steered wheels is performed.
  • the target rack stroke is calculated with reference to the target value calculation map based on the post-brake vehicle speed after braking and the post-brake yaw angle, so that the steering angle that decreases the yaw angle is calculated.
  • the target rack stroke can be calculated by reducing the yaw angle during turning braking, the vehicle can be understeered, and the vehicle handling and stability can be improved. can do.
  • (2) The yaw angle control is continued until the detected yaw angle becomes “0”.
  • the vehicle speed V2 and the yaw angle ⁇ 2 are calculated in the target rack stroke calculation process in step S9.
  • the most recent steering angle characteristic whose yaw angle is lower than the coordinates represented by the vehicle speed V2 and the yaw angle ⁇ 2.
  • the target rack stroke Rs * is calculated based on the calculated steering angle deviation ⁇ .
  • the calculated target rack stroke Rs * is converted into a turning correction value ⁇ ta (step S10), and the converted turning correction value ⁇ ta is then added to the target turning angle ⁇ * calculated by the target turning angle calculation unit 51.
  • the target turning angle correction value ⁇ a * is calculated and output to the actuator control device 54, whereby the turning motor 8a is controlled to move the rack shaft 14 to turn the steered wheels 17FR and 17FL.
  • the yaw angle is controlled by performing the yaw angle control.
  • the yaw angle control is continued until the yaw angle ⁇ 3 reaches “0” as shown by the broken line in FIG. 24 when the braking state is continued.
  • the vehicle speed V3 is read (step S54) and is continued until the vehicle speed V3 becomes “0”, that is, until the vehicle stops.
  • the yaw angle control unit 72 calculates the target yaw angle ⁇ * in the same manner as the yaw angle control unit 53C described above during turning acceleration. Then, the rotational speed of the in-wheel motor 70FR (or 70FL) on the turning outer wheel side is increased so that the current yaw angle ⁇ 3 reaches the calculated target yaw angle ⁇ *, and the in-wheel motor (70FL (or 70FR) on the turning inner wheel side is increased. ) To reduce the number of rotations (R) and RAFL.
  • rotational speed correction values RAFR and RAFL are supplied to the driving device 71, the rotational command value is corrected by the driving device 71, and an inverter drive signal based on the corrected rotational speed command value is supplied from the DC power source 73.
  • inverters 74FR and 74FL To inverters 74FR and 74FL. These inverters 74FR and 74FL increase the number of rotations of the in-wheel motors 70FR and 70FL on the turning outer wheel side and decrease it on the turning inner wheel side to perform steering yaw angle control so that the vehicle steering characteristic tends to oversteer.
  • yaw angle control unit of the present invention Application example of yaw angle control unit of the present invention
  • the present invention is not limited to the above, and instead of referring to the target yaw angle calculation map, a plurality of steering angle characteristic lines having the steering angle as a parameter are expressed as a function of the vehicle speed and the yaw angle, and acceleration is performed.
  • a steering angle characteristic line having a yaw angle larger than the post-acceleration yaw angle at the post-acceleration vehicle speed may be selected based on the rear vehicle speed and the post-acceleration yaw angle.
  • the selection of the steering angle characteristic line can be performed by calculation without using the target yaw angle calculation map.
  • the number of steering angle characteristic lines is not limited to four and can be set to an arbitrary number.
  • the lower link of the suspension device is configured by the first link 37 and the second link 38 that do not cross each other.
  • the configuration of the suspension device is not limited to the above-described configuration, and it is only necessary to set the kingpin shaft so as to pass through the tire contact surface to reduce the turning force.
  • the lower link structure can be configured by a transverse link 81 and a compression link 82 that intersect each other, as schematically shown in FIG. 26, for example.
  • the lower link structure may be configured by a transverse link 81 and a tension link 83 that intersect each other.
  • the lower pivot point constituting the kingpin axis can be set as the intersection position of both links. For this reason, the position of the lower pivot point can be made closer to the inside of the steered wheel body. Therefore, it becomes easy to set the kingpin shaft so that it passes through the tire ground contact surface.
  • the suspension device 1B is not limited to the above-described configuration, and suspension devices having other various configurations can be applied. Further, the steering response setting unit 52 can be omitted depending on the configuration of the suspension device 1B.
  • yaw angle control is performed during turning acceleration. That is, in the prior art described in Patent Document 1 described above, the steer-by-wire control system stabilizes the behavior of the vehicle at the time of turning acceleration by controlling the braking force of each wheel. In order to stabilize the behavior of the vehicle by controlling the braking force, it is necessary to control the braking pressure of the actuator that generates the braking force, which causes a response delay in the pressure control system.
  • Patent Document 2 In the prior art described in Japanese Patent Application Laid-Open No. 9-88203 (hereinafter referred to as Patent Document 2), a driving force is applied to the turning outer wheel side by controlling a hydraulic clutch inserted between the driving wheels during turning acceleration. And a braking force is applied to the turning inner wheel side, so that a response delay occurs in the pressure control system as in the case of Patent Document 1. For this reason, in 6th Embodiment, it makes it the subject to stabilize the behavior at the time of turning acceleration of a vehicle, suppressing a response delay with a steering control apparatus, and performing appropriately.
  • the steering control device calculates the target control amount of the actuator based on the vehicle speed and the yaw angle at the time of acceleration while turning, and the control amount of the actuator becomes the target control.
  • the yaw angle at the time of turning acceleration is increased. Accordingly, it is possible to improve the response characteristics that stabilize the vehicle behavior by oversteering the vehicle by the change in the yaw angle of the vehicle.
  • the yaw angle at the time of acceleration during turning acceleration of the vehicle in the steer-by-wire system is increased by performing the yaw angle control of the vehicle by the actuator that steers the steered wheels, so that the response delay is increased. The vehicle behavior can be stabilized quickly and appropriately.
  • the suspension device similar to that described in FIGS. 2 to 10 of the first embodiment is applied as the suspension device.
  • a drive control device 23 to which an acceleration command signal Sd is output is added, and the acceleration command signal Sd output from the drive control device 23 is input to the control / drive circuit unit 26.
  • an acceleration state detection unit 53D is connected to the yaw angle control unit 53C in place of the braking state detection unit 53B in the first embodiment described above.
  • the acceleration state detection unit 53D receives an acceleration command signal Sd input from the drive control device 23 to the control / drive circuit unit 26, and determines that the acceleration state is in an acceleration state when the acceleration command signal Sd is in an on state.
  • the yaw angle control unit 53C receives the determination results of the turning state detection unit 53A and the acceleration state detection unit 53D, the yaw angle ⁇ detected by the yaw angle sensor 22a, and the steering angle detected by the steering angle sensor 4. ⁇ s and the vehicle speed V calculated by the vehicle state parameter acquisition unit 21 are input.
  • the yaw angle control unit 53C executes a yaw angle control process for controlling the steered actuator 8 so as to eliminate the change in the toe angle toward the outside of the turn when the vehicle is in an accelerating state while the vehicle is turning.
  • This yaw angle control process is executed as a timer interrupt process executed every predetermined time (for example, 1 ⁇ sec), and includes the processes of the turning state detection unit 53A and the acceleration state detection unit 53D, as shown in FIG. become.
  • step S101 the current vehicle speed V1 is read in step S101, then the yaw angle ⁇ 1 detected by the yaw angle sensor 22a is read in step S102, and this yaw angle ⁇ 1 is stored in the yaw angle storage unit 53b.
  • step S103 it is determined whether or not the absolute value of the read yaw angle ⁇ 1 exceeds a threshold value ⁇ s near zero and the vehicle is turning. If ⁇ 1 ⁇ ⁇ s, the vehicle is turning. If not, the current timer interrupt process is terminated and the process returns to the predetermined main program.
  • step S103 determines that the vehicle is in a turning state
  • the process proceeds to step S104, the steering angle ⁇ s1 detected by the steering angle sensor 4 is read, and the steering angle ⁇ s1 is steered. After storing in the corner storage unit 53a, the process proceeds to step S105.
  • step S105 it is determined whether or not an on-state acceleration command signal Sd representing an acceleration state is input from the drive control device 23 mounted on the vehicle.
  • the acceleration command signal Sd is off-state, the acceleration state is determined. If the acceleration command signal Sd is in the on state, it is determined that the vehicle is in the acceleration state, and the process proceeds to step S106.
  • step S106 the post-acceleration steering angle ⁇ s2 detected by the steering angle sensor 4 is read, and then the process proceeds to step S107, and the post-acceleration vehicle speed V2 is read from the vehicle state parameter acquisition unit 21.
  • step S108 the process proceeds to step S108, and after the acceleration yaw angle ⁇ 2 detected by the yaw angle sensor 22a is read, the process proceeds to step S109.
  • step S109 the pre-acceleration steering angle ⁇ s1 stored in the steering angle storage unit 53a is read, and the absolute value of the value obtained by subtracting the post-acceleration steering angle ⁇ s2 from the pre-acceleration steering angle ⁇ s1 is less than the steering angle ⁇ ss near zero. If
  • the vehicle speed V2 is set on the horizontal axis
  • the yaw angle ⁇ 2 is set on the vertical axis
  • the process proceeds to step S111, the steering angle deviation ⁇ is calculated by subtracting the post-acceleration steering angle ⁇ s2 read in step S106 from the steering angle ⁇ i of the characteristic line Li selected in step S10, and the calculated steering angle
  • the process proceeds to step S112.
  • step S112 the calculated target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for the target turning angle ⁇ * generated by the turning actuator 8, and then the process proceeds to step S113 to turn the turning angle correction value. After adding ⁇ ta to the target turning angle ⁇ * , the process proceeds to step S114.
  • step S114 the yaw angle after control yaw ⁇ 3 detected by the yaw angle sensor 22a is read, then the process proceeds to step S115, and the yaw angle control read in step S114 from the target yaw angle ⁇ * calculated in step S10. It is determined whether the absolute value of the value obtained by subtracting the rear yaw angle ⁇ 3 is less than the set value ⁇ s near zero. If this determination result is
  • step S109 When the determination result in step S109 is
  • the process jumps to step S14 without performing corner control.
  • the processes of steps S102 and S103 correspond to the turning state detection unit 53A
  • the process of step S105 corresponds to the acceleration state detection unit 53D
  • the processes of steps S106 to S115 are the yaw angle. This corresponds to the control unit 53C.
  • the target turning angle calculation unit 51, the turning response setting unit 52, and the actuator control device 54 constituting the turning control unit 50 have the same configuration as that of the first embodiment described above. These are not described in detail here.
  • the self-aligning torque Tsa calculated by the linear movement complementing unit 55a according to the above equation (1) has the center-of-gravity point side slip angle ⁇ and the yaw rate ⁇ are zero because the turning angle ⁇ r is zero. It becomes zero.
  • the disturbance compensation unit 55b calculates a disturbance compensation value Adis that suppresses the disturbance. Therefore, the disturbance compensation value Adis is also zero when this disturbance is not generated. Further, in yaw angle control unit 53C, since the vehicle is in a straight traveling state and the yaw angle ⁇ 1 is zero instead of the turning state, it is not determined that the vehicle is in a turning traveling state, and the rack stroke for correcting the rack stroke is determined. control also performed without the correction value ⁇ a in the target steering angle [delta] *, the target turning angle correction value obtained by adding the .DELTA.ta [delta] * a is also zero.
  • the turning angle deviation ⁇ output from the turning angle deviation calculating unit 61 of the actuator control device 54 is also zero, and the motor current command value im * output from the turning motor control unit 62 is also zero. Therefore, the motor current imt is not output from the motor current control unit 65, the steered motor 8a maintains the stopped state, the rack shaft 14 maintains the neutral position, and the steered angles ⁇ t of the steered wheels 17FR and 17FL are “0”. Is controlled.
  • the caster trail ⁇ c in the equation (1) is set to a value similar to that of a normal suspension device.
  • the calculated self-aligning torque Tsa can be a value corresponding to the caster trail ⁇ c.
  • the calculated self-aligning torque Tsa is multiplied by the gain Ksa to calculate a straightness correction value Asa, and this straightness correction value Asa is supplied to the delay control unit 56.
  • the steering start detection unit 56a does not detect the start of steering, and the gain adjustment unit 56c sets the gain Ga to “1”. Asa is supplied to the adder 56e as it is.
  • the steering motor 8a constituting the turning actuator 8 is driven and controlled by the actuator control device 54, and the self-aligning torque Tsa is set.
  • Corresponding turning torque is generated and transmitted to the steered wheels 17FR and 17FL via the rack shaft 14 and the tie rod 15.
  • the self-aligning torque Tsa is generated by the steered wheels 17FR and 17FL, so that the shortage of the self-aligning torque to the suspension device 1 can be compensated and the straight traveling performance of the vehicle can be ensured.
  • the steering wheel 2 is steered to the right (or left) from the state of maintaining the straight traveling state in which the steering wheel 2 is held at the neutral position, the transition from the straight traveling state to the turning state by steering is performed. Is detected by the steering start detector 56a. For this reason, the control delay signal that is in the ON state for a predetermined time, for example, 0.1 second is output from the monostable circuit 56b to the gain adjusting unit 56c. Accordingly, the gain adjustment unit 56c sets the control gain Ga to “0” while the control delay signal is kept on. For this reason, the multiplication output outputted from the multiplier 56d becomes “0”, and the output of the straightness ensuring control value ⁇ a to the adder 56e is stopped.
  • the control delay signal that is in the ON state for a predetermined time, for example, 0.1 second is output from the monostable circuit 56b to the gain adjusting unit 56c. Accordingly, the gain adjustment unit 56c sets the control gain Ga to “0” while the control delay signal is kept on. For this reason
  • the control gain Ga is set to “0” during the initial response period T1 of 0.1 second from the time when the steering is started from the neutral position of the steering wheel 2, the multiplication output output from the multiplier 56d is It becomes “0”, and the straight traveling guarantee control for the target turning angle ⁇ * is stopped as shown by the solid line in FIG. Therefore, the steering angle ⁇ s detected by the steering angle sensor 4 is supplied to the target turning angle calculation unit 51, and the target turning angle ⁇ * calculated by the target turning angle calculation unit 51 is directly calculated as the turning angle deviation. Supplied to the unit 61. In response to this, the turning motor 8a is rotationally driven so as to coincide with the target turning angle ⁇ * . During this time, the straightness guaranteeing control in the straightness guaranteeing part 55 is stopped.
  • the turning by the suspension device 1B in which the road contact point of the kingpin axis KS is set at the contact center position in the tire contact surface and the caster angle is set to zero is started.
  • the caster angle of the suspension device 1B is set to zero.
  • FIG. 14A when the caster angle is zero, the relationship between the caster angle, the steering response, and the steering stability is high, but the steering stability is high. It cannot be ensured, that is, there is a trade-off relationship between the steering response to the caster angle and the steering stability. For this reason, in the initial state where the steering is started from the neutral position, the straight travel guarantee control by the steer-by-wire control is not executed, and the suspension device 1B covers this initial turning.
  • the suspension device 1B has a caster angle of zero and high steering response as described above.
  • a steering response characteristic (yaw angle) higher than a steering response characteristic (yaw angle) in a vehicle having a general steer-by-wire type steering system indicated by the characteristic line L2 can be obtained.
  • the middle response period T2 and the late response period T3 as shown by the characteristic line L3 in FIG. 15 (a).
  • the steering response of the vehicle by steering becomes sensitive.
  • a phenomenon of getting inside the vehicle from the middle response period T2 to the later response period T3 becomes large.
  • the straightness constituted by the straightness complementation unit 55a and the disturbance compensation unit 55b is started stepwise.
  • the steering response of the vehicle by the suspension device 1B is suppressed to prevent the vehicle from wobbling, and the straightness of the suspension device 1B is complemented by the steer-by-wire control as shown by the dotted line in FIG.
  • the steering stability can be ensured.
  • the steering response characteristic is further suppressed by the straightness guaranteeing control by the straightness guaranteeing part 55 even when compared with the general steering response characteristic of the vehicle. And understeer tendency.
  • the characteristic line L1 shown by the solid line in FIG. 15A the steering stability can be improved, and an ideal vehicle turning response characteristic indicated by the characteristic line L1 can be realized.
  • the yaw angle control unit 53C reads the vehicle speed V1 in step S101 and the yaw angle ⁇ 1 in step S102 and stores it in the yaw angle storage unit 53b in the yaw angle control process of FIG. Then, the process proceeds to step S103, and the vehicle is in a turning state. Therefore, the process proceeds to step S104, the pre-acceleration steering angle ⁇ s1 is read, the pre-acceleration steering angle ⁇ s1 is stored in the steering angle storage unit 53a, and the timer interrupts. The process is repeated. For this reason, the pre-acceleration yaw angle ⁇ 1 is updated and stored in the yaw angle storage unit 53b, and the pre-acceleration steering angle ⁇ s1 is updated and stored in the steering angle storage unit 53a.
  • the drive control device 23 When the accelerator pedal is depressed in this turning traveling state, the drive control device 23 is activated to start acceleration control for the drive wheels, and the on-state acceleration state signal Sd is sent to the control / drive circuit unit 26. Output. Therefore, in the process of FIG. 30, the yaw angle control unit 53C proceeds from step S105 to step S1066, reads the post-acceleration steering angle ⁇ s2, then reads the post-acceleration vehicle speed V2 (step S107), and then the post-acceleration yaw angle ⁇ 2 is read (step S108).
  • step S110 is performed.
  • the target yaw angle ⁇ * is calculated with reference to the target yaw angle calculation map based on the post-acceleration vehicle speed V2 and the post-acceleration yaw angle ⁇ 2.
  • the calculation of the target yaw angle ⁇ * is that the vehicle speed V1 before acceleration in the turning state and the pre-acceleration position P1 represented by the yaw angle ⁇ 1 are between the steering characteristic lines L2 and L3. To do.
  • the post-acceleration position P2 represented by the post-acceleration vehicle speed V2 and the post-acceleration yaw angle ⁇ 2 can be steered by the suspension device 1B with a light turning force as described above.
  • the post-acceleration vehicle speed V2 increases from the pre-acceleration vehicle speed V1, and the post-acceleration yaw angle ⁇ 2 changes from the pre-acceleration yaw angle ⁇ 1 to the toe angles of the steered wheels 17FR and 17FL due to acceleration of the vehicle.
  • the post-acceleration yaw angle ⁇ 2 is lower than the pre-acceleration yaw angle ⁇ 1, and the vehicle tends to understeer.
  • the nearest steering characteristic line L3 whose yaw angle is greater than the post-acceleration yaw angle ⁇ 2 at the post-acceleration vehicle speed V2 is selected, and the yaw angle at the post-acceleration vehicle speed V2 of the selected steering characteristic line L3 is selected as the target yaw angle.
  • the steering angle deviation ⁇ is calculated by subtracting the post-acceleration steering angle ⁇ s2 from the steering angle ⁇ 3 required at the post-acceleration vehicle speed V2 set on the selected steering characteristic line L3, and the calculated steering angle deviation ⁇ is changed.
  • a rack stroke for turning the steered wheels 17FR and 17FL is calculated, and the calculated rack stroke is calculated as a target rack stroke Rs * (step S111).
  • step S112 converter The turning angle correction value ⁇ ta thus obtained is added to the target turning angle ⁇ * and output to the actuator control device 54 (step S113).
  • the actuator control device 54 eliminates the change in the toe angle to the outside of the turn due to the fact that the steered wheels 17FR and 17FL are supported by the suspension device 1B configured to steer the steered wheels with a light steering force.
  • the steered actuator 8 is controlled to change the toe angle, and the rack shaft 14 is stroked by the target rack stroke Rs * , and this stroke is supplied to the steered wheels 17FR and 17FL via the tie rod 15.
  • the acceleration state is changed from the state shown by the solid line in FIG.
  • the steered wheels 17FR and 17FL are in a state in which the toe angle change of the steered wheel 17FL on the turning outer wheel side is large in the toe-out direction as shown by the one-dot chain line in FIG.
  • the yaw angle control described above is performed at the time of turning acceleration, so that when the acceleration state is changed from the state shown by the solid line in FIG. 32, the turning wheel 17FL on the turning outer wheel side is turned as shown by the dotted line.
  • the toe angle is controlled in the toe-in direction inside the turn, and accordingly, the turning inner ring side is controlled in the toe-out direction.
  • the vehicle is turning, a large load is applied to the outer wheel side of the vehicle and the load on the inner wheel side is small. Therefore, even if the inner wheel side of the vehicle is controlled in the toe-out direction, there is almost no effect on the vehicle turning behavior. Absent.
  • the change in the toe angle in the toe-out direction on the turning outer wheel side by the suspension device 1B that can steer the steered wheels with a light steering force is controlled, and the vehicle steering characteristic is controlled to an oversteer tendency. For this reason, it is possible to ensure proper turning performance even when the vehicle 1 is in an accelerating state while turning around the corner.
  • the steering actuator 8 is controlled to control the rack stroke of the rack shaft 14 to cause the toe angle change, so that the braking pressure on the turning inner wheel side is controlled by the braking device as in the conventional example described above.
  • the steered wheels 17FR and 17FL can be controlled to change the toe angle with high responsiveness at the time of turning acceleration, and the vehicle can be controlled to be oversteered, and the turning performance can be improved and the steering stability can be improved.
  • the yaw angle control at the time of turning acceleration can be performed by the yaw angle control unit 53C provided in the steering control unit 50 constituting the steer-by-wire system. For this reason, it is not necessary to set the front / rear force (forward) toe-in in the front-side suspension device 1B as in a normal suspension device, and the front / rear force (forward) toe-out in the rear suspension device.
  • the configuration can be simplified and reduced in weight, and the degree of freedom in layout can be improved.
  • the toe angle control is borne by the suspension device, for example, the transverse link and the rack shaft are arranged substantially in parallel, and the transverse link is set longer than the rack shaft in the vehicle width direction. There is a problem that the degree of freedom of the layout of the suspension device is reduced, the configuration is complicated, and the weight is increased.
  • the yaw angle ⁇ 3 is read again (step S114), and the yaw angle deviation obtained by subtracting the yaw angle ⁇ 3 from the target yaw angle ⁇ * is equal to or less than the set value ⁇ s or the above-described yaw is continued until the acceleration state is terminated.
  • Angular control continues.
  • the absolute value of the steering angle deviation obtained by subtracting the post-acceleration steering angle ⁇ s2 from the pre-acceleration steering angle ⁇ s1 exceeds the set value ⁇ s.
  • the control jumps from S9 to step S14 to stop the yaw angle control for calculating the turning angle correction value ⁇ ta. For this reason, it does not affect the correction steering of the steering wheel 2 by the driver.
  • the suspension device 1B itself is configured to improve the steering response by setting at least the kingpin axis KS to pass through the tire ground contact surface.
  • the straight travel performance guaranteeing section 55 of the system SBW performs straight travel compensation and disturbance compensation to control the turning characteristics to secure the straight travel performance of the vehicle.
  • the initial responsiveness is ensured by using the high steering responsiveness of the suspension device itself.
  • the initial period elapses and the middle period starts, it is necessary to emphasize steering stability rather than steering response, and control is started by the steering response setting unit 52 of the steer-by-wire system SBW.
  • the steering response setting unit 52 of the steer-by-wire system SBW By performing straightness complementary control, high steering responsiveness by the suspension device 1B is suppressed, and steering stability is ensured. Further, in the latter period, it is possible to further reduce the steering responsiveness so as to suppress the inside-in phenomenon of the vehicle and to further suppress the vehicle wobble as an understeer tendency, thereby establishing ideal steering responsiveness control.
  • the suspension device 1B according to the present embodiment is a strut type, the number of parts can be reduced, and the setting of the kingpin axis KS in the present embodiment can be easily performed.
  • a control / drive circuit unit 26 including 50 constitutes a steer-by-wire system SBW.
  • the wheels 17FR, 17FL, 17RR, and 17RL correspond to a tire wheel, a tire, and a wheel hub mechanism, and the first link 37, the second link 38, and the shock absorber 40 correspond to a plurality of link members.
  • the first link 37 and the second link 38 constitute a lower arm, and the spring member 34 and the shock absorber 40 constitute a strut member ST.
  • the unit 52 may be constituted by an arithmetic processing device such as a microcomputer, and the steering control processing shown in FIG. 17 may be executed by this arithmetic processing device in the same manner as in the first to fifth embodiments described above. .
  • a steering control device detects a displacement of a steering angle when the tearing wheel is steered, and controls a steer-by-wire system that controls an actuator that steers a steered wheel separated from the steering wheel based on a detection result;
  • a suspension device that supports the steered wheel and can be steered with a low steered force by the actuator, a vehicle yaw angle detector that detects a yaw angle of the vehicle, and a steering angle detector that detects the steering angle of the steering wheel
  • a vehicle speed detection unit that detects a vehicle speed of the vehicle, a turning state detection unit that detects a vehicle turning state based on the yaw angle, an acceleration state detection unit that detects an acceleration state of the vehicle, and the turning state detection unit After the acceleration after detecting the acceleration state when the vehicle turning state is detected and the acceleration state detecting unit detects the acceleration state of the vehicle Based on the speed and post-acceleration yaw angle, a target control amount for the
  • the yaw angle control unit eliminates the change in the toe angle toward the outside of the turning of the suspension device that occurs during acceleration when the vehicle is turning. It is possible to calculate the target control amount, control the steered actuator so that the control amount becomes the target control amount, and change the toe angle so that the steered wheels have an oversteer tendency. Therefore, it is possible to improve the responsiveness of oversteering compared to the case of controlling the braking pressure and the hydraulic clutch pressure to achieve the oversteer characteristic, and the acceleration performance by adding the braking force to the driving wheel in the accelerated state is improved. The decrease can also be suppressed. Therefore, the turning performance at the time of turning acceleration of the vehicle can be improved and the steering stability can be improved.
  • the yaw angle control unit has a plurality of steering angle characteristic lines having a steering angle as a parameter based on the post-acceleration vehicle speed and the post-acceleration yaw angle, and indicates a relationship between the vehicle speed and the yaw angle.
  • the nearest steering angle characteristic line in which the yaw angle at the same vehicle speed as the post-acceleration vehicle speed is greater than the post-acceleration yaw angle is selected with reference to the target value calculation map, and the steering angle and the post-acceleration steering angle of the selected steering angle characteristic line are selected.
  • the target control amount is calculated from the deviation. Thereby, the target control amount required at the time of actual turning acceleration can be instantaneously and easily calculated with reference to the target value calculation map based on the post-acceleration vehicle speed and the post-acceleration yaw angle.
  • the yaw angle control unit refers to the target value calculation map based on the post-acceleration vehicle speed and the post-acceleration yaw angle, and a yaw angle at the same vehicle speed as the post-acceleration vehicle speed exceeds the post-acceleration yaw angle.
  • the most recent steering angle characteristic line is selected, the target control amount is calculated from the deviation between the steering angle of the selected steering angle characteristic line and the post-acceleration steering angle, and the yaw at the post-acceleration vehicle speed of the selected steering angle characteristic line is calculated.
  • Set the angle as the target yaw angle Therefore, it is possible to instantaneously and easily calculate the target control amount and the target yaw angle required during actual turning acceleration with reference to the target value calculation map based on the post-acceleration vehicle speed and the post-acceleration yaw angle.
  • the yaw angle control unit continues the control of the actuator using the control amount as the target control amount until the vehicle yaw angle detected by the vehicle yaw angle detection unit becomes a value near the target yaw angle. Like to do. Thus, since the yaw angle control is finished when the vehicle yaw angle reaches the target yaw angle, it is possible to reliably prevent the yaw angle of the vehicle from becoming excessively large and to ensure an appropriate yaw angle. .
  • the yaw angle control unit detects that the steering angle difference before and after the acceleration state detected by the steering angle detection unit is greater than or equal to a predetermined value. Control is stopped.
  • the yaw angle control is stopped and the driver's The steering control by steering can be prioritized. Therefore, corrective steering by the driver can be performed accurately.
  • the actuator detects a displacement of a steering angle when the steering wheel is steered, and steers that drive a rack mechanism of a steer-by-wire system that steers the steered wheels separated from the steering wheel based on the detection result.
  • An actuator, and the target control amount is a target Luxtalk.
  • the suspension device includes a plurality of link members that support the steered wheels on a vehicle body, and a kingpin shaft passing through an upper pivot point and a lower pivot point of the link member is within a tire ground contact surface at a neutral position of the steering wheel. It is set to pass.
  • the straight travel guarantee part is configured by a steer-by-wire system including a steering actuator and an actuator control device, it is not necessary to provide the straight travel guarantee part independently, and the configuration is simplified. can do.
  • the straightness guaranteeing part 55 of the steering response setting part 52 serves as the main straightness guaranteeing part and the actuator control device 54 serves as the secondary straightness guaranteeing part.
  • the straightness of the suspension device can be reliably ensured.
  • the delay control unit delays the straightness guarantee control of the straightness guarantee part, thereby changing the initial response characteristic to the suspension device itself.
  • ideal steering response can be ensured by adjusting the steering response of the suspension device itself by the straight travel guarantee control by the straight travel guarantee section.
  • the straight travel guarantee unit secures straight travel performance by calculating self-aligning torque. Therefore, the straight travel performance securing section can secure the straight travel performance that has been lowered by securing the high responsiveness of the suspension device with the self-aligning torque, thereby improving the steering and stability of the vehicle.
  • the steering response characteristic of the suspension device itself is set to the initial steering response characteristic at the beginning of the steering by the steering response setting unit of the steer wire system. Then, after the initial set time has elapsed, the straightness ensuring part of the steer-by-wire system starts control for ensuring the straightness of the suspension device of the steering actuator itself.
  • the straightness ensuring part of the steer-by-wire system starts control for ensuring the straightness of the suspension device of the steering actuator itself.
  • the yaw angle control unit 72 calculates the target yaw angle ⁇ * at the time of turning acceleration, similarly to the yaw angle control unit 53C described above.
  • the rotational speed of the in-wheel motor 70FR (or 70FL) on the outer turning wheel side is increased so that the current yaw angle ⁇ 3 reaches the target yaw angle ⁇ *, and the rotational speed of the in-wheel motor (70FL (or 70FR) on the inner turning wheel side).
  • Rotational speed correction values RAFR and RAFL are calculated to reduce the rotational speed, and the rotational speed correction values RAFR and RAFL are supplied to the driving device 71, and the rotational command value is corrected by the driving device 71.
  • These inverters 7 The yaw angle control for steering is performed by increasing the number of rotations of the in-wheel motors 70FR and 70FL on the turning outer wheel side and decreasing on the turning inner wheel side by FR, 74FL, so that the steering characteristic of the vehicle tends to oversteer. Also good.
  • yaw angle control unit of the present invention Application example of yaw angle control unit of the present invention
  • the present invention is not limited to the above, and instead of referring to the target yaw angle calculation map, a plurality of steering angle characteristic lines having the steering angle as a parameter are expressed as a function of the vehicle speed and the yaw angle, and acceleration is performed.
  • a steering angle characteristic line having a yaw angle larger than the post-acceleration yaw angle at the post-acceleration vehicle speed may be selected based on the rear vehicle speed and the post-acceleration yaw angle.
  • the selection of the steering angle characteristic line can be performed by calculation without using the target yaw angle calculation map.
  • the number of steering angle characteristic lines is not limited to four and can be set to an arbitrary number.
  • the lower link of the suspension device is configured by the first link 37 and the second link 38 that do not cross each other.
  • the configuration of the suspension device is not limited to the above-described configuration, and it is only necessary to set the kingpin shaft so as to pass through the tire contact surface to reduce the turning force.
  • the lower link structure can be constituted by a transverse link 81 and a compression link 82 that intersect each other as schematically shown in FIG. 26, for example.
  • the lower link structure can be configured by a transverse link 81 and a tension link 83 that intersect each other.
  • the lower pivot point constituting the kingpin axis can be set as the intersection position of both links. For this reason, the position of the lower pivot point can be made closer to the inside of the steered wheel body. Therefore, it becomes easy to set the kingpin shaft so that it passes through the tire ground contact surface.
  • the suspension device 1B is not limited to the above-described configuration, and suspension devices having other various configurations can be applied. Further, the steering response setting unit 52 can be omitted depending on the configuration of the suspension device 1B.
  • yaw angle control is performed during turning braking and turning acceleration. That is, in the prior art described in Patent Document 1 described above, the steer-by-wire control system stabilizes the behavior of the vehicle at the time of turning acceleration by controlling the braking force of each wheel. In order to stabilize the behavior of the vehicle by controlling the braking force, it is necessary to control the braking pressure of the actuator that generates the braking force, which causes a response delay in the pressure control system.
  • the steering control device selects a plurality of steered amount characteristic lines based on the vehicle speed and the yaw angle after the vehicle speed changes in the acceleration state and the deceleration state during turning. , Calculate the target turning amount of the actuator based on the selected turning amount characteristic line, control the turning amount of the actuator to be the target turning amount, and change the toe angle of the steered wheels to change the yaw angle during turning Is controlled appropriately. Therefore, the response characteristic for stabilizing the vehicle behavior can be improved by oversteering or understeering the vehicle by changing the toe angle of the steered wheels.
  • the vehicle yaw angle control is adjusted to an appropriate value in the steer-by-wire system in an acceleration state and a deceleration state at the time of turning of the vehicle.
  • the behavior of the vehicle can be stabilized. Therefore, in the seventh embodiment, the suspension apparatus similar to that described in FIGS. 2 to 10 of the first embodiment is applied as the suspension apparatus, and the overall configuration is as described above as shown in FIG. The configuration is the same as that of FIG. 28 in the sixth embodiment.
  • Step 2 turning control in the control / drive circuit unit 26 for controlling the turning actuator 8 will be described with reference to FIGS. That is, as described above, the control / drive circuit unit 26 includes the steering torque Ts of the input side steering shaft 3 detected by the torque sensor 5, the vehicle speed V acquired by the vehicle state parameter acquisition unit 21, and the steering reaction force actuator. The rotation angle ⁇ mi of the actuator 6 detected by the angle sensor 7 is input. The control / drive circuit unit 26 is provided with a steering control unit 50 shown in FIG.
  • the steering control unit 50 includes a target turning angle calculation unit 51, a steering response setting unit 52, a turning state detection unit 53A, an acceleration state detection unit 53D, a braking state detection unit 53B, a yaw angle control unit 53C, and actuator control.
  • a device 54 is provided.
  • the target turning angle calculation unit 51 receives the vehicle speed V and the rotation angle ⁇ mi, and calculates a target turning angle ⁇ * for driving the turning actuator 8 based on these.
  • the steerable response setting unit 52 includes a straight traveling security unit 55 and a delay control unit 56.
  • the straight travel guarantee unit 55 includes a straight travel complementing unit 55a and a disturbance compensation unit 55b.
  • the rectilinearity complementing unit 55a is based on the vehicle speed V, the actual turning angle ⁇ r of the steered wheels 17FR and 17FL calculated based on the pinion angle detected by the pinion angle sensor 13, and the yaw rate ⁇ detected by the yaw rate sensor 22b.
  • the self-aligning torque Tsa is not limited to the case where it is calculated by the above equation (1), but a lateral acceleration sensor for detecting the lateral acceleration Gy of the vehicle is provided, and based on the lateral acceleration Gy of the vehicle and the yaw rate ⁇ of the vehicle.
  • the lateral force Fy is calculated based on the differential value of the yaw rate ⁇ and the lateral acceleration Gy based on the equation of motion of the vehicle, and can be calculated by multiplying the lateral force Fy by the pneumatic trail ⁇ n.
  • the steering angle detected by the steering angle sensor 4 by measuring the relationship between the steering angle ⁇ s of the steering wheel 2 and the self-aligning torque Tsa using the vehicle speed V as a parameter or referring to a control map calculated by simulation.
  • the self-aligning torque Tsa can be calculated based on ⁇ s and the vehicle speed V.
  • the generated torque Th generated at the time of steering by a torque steer phenomenon is estimated based on the left and right driving force difference, and the steering torque Ts detected by the steering torque sensor 5 is estimated. It is also possible to calculate the self-aligning torque Tsa by subtracting the generated torque Th.
  • the self-aligning torque Tsa can be calculated based on the braking force difference between the left and right steered wheels 17FR and 17FL.
  • the disturbance compensator 55b receives the steering torque Ts from the steering torque sensor 5, the rotation angle ⁇ mo from the steering actuator angle sensor 9, and the motor current imr from the motor current detector 64, and the disturbance input to the vehicle.
  • a disturbance compensation value Adis for suppressing these disturbances is calculated by separating and estimating each frequency band.
  • the steering torque Ts that is the steering input by the driver and the steering input by the steering actuator 8 are used as control inputs, and the actual steering is performed.
  • a disturbance is estimated based on a difference between a value obtained by passing the control input through a low-pass filter and a value obtained by passing the control quantity through an inverse characteristic of the model and the low-pass filter.
  • the delay control unit 56 includes a steering start detection unit 56a, a monostable circuit 56b, a gain adjustment unit 56c, and a multiplier 56d.
  • the steering start detection unit 56a detects the timing of right steering or left steering from the state where the neutral position is maintained based on the steering angle ⁇ s detected by the steering angle sensor 4, and indicates the steering start signal SS indicating the steering start from the neutral state. Is output to the monostable circuit 56b.
  • the monostable circuit 56b outputs a control start delay signal that is turned on for a predetermined delay time, for example, 0.1 seconds, to the gain adjustment unit 56c based on the steering start signal output from the steering start detection unit 56a.
  • the gain adjustment unit 56c sets the control gain Ga to “0” when the control start delay signal is on, and sets the control gain Ga to “1” when the control start delay signal is off.
  • the set control gain Ga is output to the multiplier 56d.
  • the multiplier 56d receives the straightness ensuring control value ⁇ a output from the straightness ensuring unit 55, multiplies the straightness ensuring control value ⁇ a by the control gain Ga, and outputs the multiplication result from the target turning angle calculating unit 51. Is supplied to the adder 56e to which the target turning angle ⁇ * is input.
  • the delay control unit 56 detects the steering start state in which the right steering or the left steering is performed from the state where the neutral state is maintained by the steering start detection unit 56a, the straight traveling calculated by the straight travel guarantee unit 55 is detected.
  • the straightness ensuring control value is set so that the straightness ensuring control for adding the property ensuring control value ⁇ a to the target turning angle ⁇ * is stopped for a predetermined time set by the monostable circuit 56b, for example, 0.1 second.
  • a control gain Ga to be multiplied by ⁇ a is set to “0”.
  • the gain adjusting unit 56c adds the straight travel guarantee control value ⁇ a to the target turning angle ⁇ * .
  • the control gain Ga is set to “1” so as to start the straight travel guarantee control.
  • the delay control unit 56 does not detect the steering start from the neutral state by the steering start detection unit 56a, so that the output of the monostable circuit 56b maintains the off state.
  • the control gain Ga is set to “1” by the gain adjusting unit 56c.
  • the straightness ensuring control value ⁇ a calculated by the straightness ensuring unit 55 is supplied to the adder 56e as it is.
  • the straight traveling collateral control value ⁇ a is added to the target turning angle ⁇ * to perform the straight traveling collateral control.
  • the turning state detection unit 53A receives the vehicle yaw angle ⁇ detected by the yaw angle sensor 22a, and determines that the turning state is present when the yaw angle ⁇ exceeds a preset value ⁇ s.
  • the acceleration state detection unit 53D receives an acceleration command signal Sd input from the drive control device 23 to the control / drive circuit 26, and determines that the acceleration state is in an acceleration state when the acceleration command signal Sd is in an on state.
  • the braking state detection unit 53B receives a braking command signal Sb output to the pressure control unit 20 during braking by the control / drive circuit 26, and determines that the braking state is in a braking state when the braking command signal Sb is in an on state.
  • the traveling state detection unit 53V is configured by the acceleration state detection unit 53D and the braking state detection unit 53B.
  • the yaw angle control unit 53C receives the determination results of the turning state detection unit 53A, the acceleration state detection unit 53D, and the braking state detection unit 53B, and the yaw angle ⁇ detected by the yaw angle sensor 22a and the steering angle sensor.
  • the steering angle ⁇ s detected at 4 and the vehicle speed V calculated by the vehicle state parameter acquisition unit 21 are input.
  • the yaw angle control unit 53C includes a steering direction determination unit 53S, a target rack stroke calculation unit 53R as a target turning amount calculation unit, and a target yaw angle calculation unit 53Y.
  • the steering direction determination unit 53S determines whether the steering direction of the driver is the additional direction or the reverse direction based on the steering angle before and after the turning acceleration state or before and after the turning braking state.
  • the target rack stroke calculation unit 53R calculates the target rack stroke Rs * as the target turning amount with reference to the target rack stroke calculation map shown in FIGS. 38 and 39.
  • the target rack stroke calculation map is a plurality of target turnings in which the vehicle speed V2 is set on the horizontal axis, the yaw angle ⁇ 2 is set on the vertical axis, and the target rack stroke Rs is a parameter.
  • the quantity characteristic lines L1 to L4 are set. Then, in the turning acceleration state, the target rack stroke calculation unit 53R refers to the target rack stroke calculation map shown in FIG.
  • the target rack stroke calculation unit 53R when a state change in the turning acceleration state or the turning braking state occurs, and when the determination result of the steering direction determination unit 53S is in the increasing direction, similarly to the turning acceleration state. Based on the vehicle speed V2 and the yaw angle ⁇ 2 after the state change, a target turning amount characteristic line Li in which the yaw angle exceeds the yaw angle ⁇ 2 at the vehicle speed V2 is selected with reference to the target rack stroke calculation map shown in FIG. Then, the target rack stroke set in the selected target turning amount characteristic line Li is calculated as the target rack stroke Rs * .
  • the target rack stroke calculation unit 53R is the same as the turning braking state when the change in the steering acceleration state or the turning braking state occurs and the determination result of the steering direction determination unit 53S is the return direction.
  • the target turning amount characteristic line Lj whose yaw angle is less than the yaw angle ⁇ 2 at the vehicle speed V2 is selected with reference to the target rack stroke calculation map shown in FIG. Then, the target rack stroke set for the selected target turning amount characteristic line Lj is calculated as the target rack stroke Rs * .
  • the target yaw angle calculation unit 53Y calculates the yaw angle ⁇ at the vehicle speed V2 after the state change as the target yaw angle ⁇ * using the target turning amount characteristic line Li or Lj selected by the target rack stroke calculation unit 53R.
  • the target yaw angle calculation unit 53Y refers to the target rack stroke calculation map shown in FIG. 38 or 39 based on the vehicle speed V2 and the yaw angle ⁇ 2 after the state change independently of the target rack stroke calculation unit 53R.
  • the target turning amount characteristic line Li or Lj may be selected, and the target yaw angle ⁇ * may be calculated based on the selected target turning amount characteristic line Li or Lj.
  • the yaw angle control unit 53C performs yaw angle control for controlling the steered actuator 8 so that the rack stroke of the rack shaft 14 matches the target rack stroke Rs * calculated by the target rack stroke calculation unit 53R.
  • the yaw angle controller 53C the yaw angle after the yaw angle control is matched with the target yaw angle ⁇ * calculated by the target yaw angle calculation means, and the yaw angle ⁇ 1 before the turning state is started.
  • the yaw angle control unit 53C executes a yaw angle control process for controlling the steered actuator 8 so as to eliminate the change in the toe angle when the vehicle is in an acceleration state or a braking state while the vehicle is turning.
  • This yaw angle control process is executed as a timer interrupt process executed every predetermined time (for example, 1 ⁇ sec), and includes the processes of the turning state detection unit 53A, the acceleration state detection unit 53D, and the braking state detection unit 53B. As shown in FIG. 35 to FIG.
  • the pre-turn yaw angle ⁇ 1 detected by the yaw angle sensor 22a in step S201 is read, and this pre-turn yaw angle ⁇ 1 is stored in the yaw angle storage unit 53a connected to the yaw angle control unit 53C. To do.
  • step S202 it is determined whether or not the absolute value of the read pre-turn yaw angle ⁇ 1 exceeds a threshold value ⁇ s near zero and the vehicle is turning, and if
  • step S204 the vehicle speed V1 acquired by the vehicle state parameter acquisition unit 21 is read, and the read vehicle speed V1 is stored in the vehicle speed storage unit 53c connected to the yaw angle control unit 53C. Then, the process proceeds to step S205.
  • step S205 it is determined whether an on-state acceleration command signal Sd representing an acceleration state is input from the drive control device 23 mounted on the vehicle. When the acceleration command signal Sd is on-state, If it is determined that there is, the process proceeds to step S206.
  • step S206 the acceleration yaw angle control process shown in FIG. 36 is executed, and then the process proceeds to step S207.
  • step S207 the yaw angle post-yaw control ⁇ 3 detected by the yaw angle sensor 22a is read, and then the process proceeds to step S208 to read in step S14 from the target yaw angle ⁇ 1 * calculated in step S305 of FIG.
  • step S208 it is determined whether or not the absolute value of the value obtained by subtracting the yaw angle ⁇ 3 is zero.
  • this determination result is
  • step S105 determines whether the acceleration command signal Sd is in the off state.
  • the process proceeds to step S211 and the braking command signal Sb output from the control / drive circuit 26 to the pressure control unit 20 is in the on state.
  • the braking command signal Sb is in an off state, the current timer interruption process is terminated and the process returns to a predetermined main program.
  • the process proceeds to step S212. To do.
  • step S212 after executing the braking yaw angle control process shown in FIG. 37, the process proceeds to step S213.
  • step S213 the yaw angle post-yaw angle ⁇ 3 detected by the yaw angle sensor 22a is read, and then the process proceeds to step S214, and the target yaw angle ⁇ 2 * calculated in step S316 of FIG. 37 described later is read in step S213.
  • step S213 After the yaw angle control, it is determined whether or not the absolute value of the value obtained by subtracting the yaw angle ⁇ 3 is zero.
  • the acceleration yaw angle control process executed in step S206 in FIG. 35 first reads the post-acceleration steering angle ⁇ s2 detected by the steering angle sensor 4 in step S301, and then proceeds to step S302.
  • the post-acceleration vehicle speed V2 is read from the vehicle state parameter acquisition unit 21.
  • the process proceeds to step S303, and after the acceleration yaw angle ⁇ 2 detected by the yaw angle sensor 22a is read, the process proceeds to step S304.
  • step S304 the pre-acceleration / deceleration steering angle ⁇ s1 stored in the steering angle storage unit 53b is read, and it is determined whether or not the value obtained by subtracting the post-acceleration steering angle ⁇ s2 from the pre-acceleration steering angle ⁇ s1 is zero.
  • ⁇ s1 ⁇ s2 0, it is determined that the driver is in a steered state in which the steering wheel 2 is not steered and turned back or forward, and the process proceeds to step S305.
  • step S305 the target rack required for turning acceleration is referred to the target rack stroke calculation map as the target turning amount calculation map shown in FIG. 38 based on the post-acceleration vehicle speed V2 and the post-acceleration yaw angle ⁇ 2.
  • step S307 the set target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for the target turning angle ⁇ * output from the above-described target turning angle calculation unit 51 generated by the turning actuator 8. Then, the process proceeds to step S308, where the yaw angle control for controlling the steering actuator 8 by adding the turning angle correction value ⁇ ta to the target turning angle ⁇ * is performed, and then the yaw angle control during acceleration is terminated. The process proceeds to step S207 of 35. If the determination result in step S304 is ⁇ s1 ⁇ s2 ⁇ 0, it is determined that the driver is steering the steering wheel 2 in the direction of increasing or returning, and the yaw during braking shown in FIG. The process proceeds to step S320 in the angle control process.
  • step S212 in FIG. 35 first reads the post-brake steering angle ⁇ s2 detected by the steering angle sensor 4 in step S311, and then proceeds to step S312. Then, the vehicle speed V2 after braking is read from the vehicle state parameter acquisition unit 21. Next, the process proceeds to step S313, and after the braked yaw angle ⁇ 2 detected by the yaw angle sensor 22a is read, the process proceeds to step S314.
  • step S314 the pre-acceleration / deceleration steering angle ⁇ s1 stored in the steering angle storage unit 53b is read, and it is determined whether or not the value obtained by subtracting the post-brake steering angle ⁇ s2 from the pre-acceleration / deceleration steering angle ⁇ s1 is zero.
  • ⁇ s1 ⁇ s2 0, it is determined that the driver is in a steering holding state in which the steering wheel 2 is not steered to increase or decrease the steering, and the process proceeds to step S315.
  • step S315 the target rack required for turning braking is referred to the target rack stroke calculation map as the target turning amount calculation map shown in FIG. 39 based on the post-acceleration vehicle speed V2 and the post-acceleration yaw angle ⁇ 2.
  • step S316 the yaw angle of the current vehicle speed V2 in the characteristic line Lj selected in step S315 is calculated as the target yaw angle ⁇ 2 * , and then the process proceeds to step S317.
  • step S317 the set target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for the target turning angle ⁇ * output from the target turning angle calculation unit 51 generated by the turning actuator 8. Then, the process proceeds to step S318, where the yaw angle control for controlling the steering actuator 8 by adding the turning angle correction value ⁇ ta to the target turning angle ⁇ * is performed, and then the braking yaw angle control process is terminated. Control proceeds to step S213 in FIG. If the determination result in step S314 is ⁇ s1 ⁇ s2 ⁇ 0, it is determined that the driver is steering the steering wheel 2 in the increasing direction or the returning direction, and the process proceeds to step S319.
  • step S319 the pre-acceleration / deceleration steering angle ⁇ s1 stored in the steering angle storage unit 53b is read, and whether the value obtained by subtracting the post-acceleration or post-brake steering angle ⁇ s2 from the pre-acceleration / deceleration steering angle ⁇ s1 is positive. Determine. If the determination result is ⁇ s1 ⁇ s2 ⁇ 0, it is determined that the driver is turning and steering the steering wheel 2 and wants to oversteer, and the process proceeds to step S320. In this step S320, it is necessary for oversteering by referring to the target rack stroke calculation map as the target turning amount calculation map shown in FIG.
  • step S321 the yaw angle at the current vehicle speed V2 in the characteristic line Li selected in step S320 is calculated as the target yaw angle ⁇ 1 * , and then the process proceeds to step S307 in FIG. 36 described above. If the determination result in step S319 is ⁇ s1- ⁇ s2> 0, it is determined that the driver is turning back the steering wheel 2 and desires understeer, and the process proceeds to step S322. . In step S322, it is necessary at the time of turning braking with reference to the target rack stroke calculation map as the target turning amount calculation map shown in FIG. 39 based on the post-brake vehicle speed V2 and the post-acceleration or post-brake yaw angle ⁇ 2.
  • the stroke Rsj is calculated as the target rack stroke Rs * .
  • step S323 the yaw angle at the current vehicle speed V2 in the characteristic line Lj selected in step S32 is calculated as the target yaw angle ⁇ 2 * , and then the process proceeds to step S317 described above.
  • the processing of steps S201 and S202 corresponds to the turning state detection unit 53A
  • the processing of step S205 corresponds to the acceleration state detection unit 53D
  • the processing of step S211 is the braking state.
  • the processes in steps S301 to S308, S208 to S210, and S311 to S323 correspond to the yaw angle control unit 53C, and the processes in steps S305, S315, S320, and S322 are the target rack strokes.
  • the processes in steps S306, S315, S321, and S320 correspond to the target yaw angle calculation unit 53Y, and the process in step S319 corresponds to the steering direction determination unit 53S.
  • the actuator control device 54 includes a turning angle deviation calculation unit 61 that calculates a turning angle deviation ⁇ , a turning motor control unit 62, a current deviation calculation unit 63, and a motor current control unit 65.
  • the turning angle deviation calculation unit 61 subtracts the actual turning angle ⁇ r based on the turning actuator angle output from the turning actuator angle sensor 9 from the target steering angle correction value ⁇ * a output from the adder 56e.
  • the steering angle deviation ⁇ is calculated, and the calculated steering angle deviation ⁇ is output to the steered motor control unit 62.
  • the steered motor control unit 62 calculates the drive command current im * of the steered motor 8a constituting the actuator 8 so that the input steered angle deviation ⁇ becomes zero, and the calculated drive command current im * Output to the deviation calculator 63.
  • the current deviation calculation unit 63 subtracts the motor current imr output from the motor current detection unit 64 that detects the motor current supplied to the steered motor 8a constituting the steered actuator 8 from the input drive command current im *.
  • the current deviation ⁇ i is calculated, and the calculated current deviation ⁇ i is output to the motor current control unit 65.
  • the motor current control unit 65 performs feedback control so that the input current deviation ⁇ i becomes zero, that is, the actual motor current imr follows the drive command current im *, and changes the turning motor drive current imr. Output to the rudder motor 8a.
  • the yaw angle ⁇ 1 of the vehicle detected by the yaw angle sensor 22a is zero, and the self-adjustment calculated by the rectilinear interpolation unit 55a according to the above equation (1).
  • the lining torque Tsa is zero because the center-of-gravity point side slip angle ⁇ is zero and the yaw angle ⁇ is zero because the steering angle ⁇ r is zero.
  • the disturbance compensation unit 55b calculates a disturbance compensation value Adis that suppresses the disturbance. Therefore, the disturbance compensation value Adis is also zero when this disturbance is not generated. Further, in the yaw angle control unit 53D, since the vehicle is in a straight traveling state and the yaw angle ⁇ 1 is zero instead of the turning state, it is not determined that the vehicle is turning, and the rack stroke for correcting the rack stroke is not determined. control also performed without the correction value ⁇ a in the target steering angle [delta] *, the target turning angle correction value obtained by adding the .DELTA.ta [delta] * a is also zero.
  • the turning angle deviation ⁇ output from the turning angle deviation calculating unit 61 of the actuator control device 54 is also zero, and the motor current command value im * output from the turning motor control unit 62 is also zero. Therefore, the motor current imt is not output from the motor current control unit 65, the steered motor 8a maintains the stopped state, the rack shaft 14 maintains the neutral position, and the steered angles ⁇ t of the steered wheels 17FR and 17FL are “0”. Is controlled.
  • the caster trail ⁇ c in the equation (1) is set to a value similar to that of a normal suspension device.
  • the calculated self-aligning torque Tsa can be a value corresponding to the caster trail ⁇ c.
  • the calculated self-aligning torque Tsa is multiplied by the gain Ksa to calculate a straightness correction value Asa, and this straightness correction value Asa is supplied to the delay control unit 56.
  • the steering start detection unit 56a does not detect the start of steering, and the gain adjustment unit 56c sets the gain Ga to “1”. Asa is supplied to the adder 56e as it is.
  • the steering motor 8a constituting the turning actuator 8 is driven and controlled by the actuator control device 54, and the self-aligning torque Tsa is set.
  • Corresponding turning torque is generated and transmitted to the steered wheels 17FR and 17FL via the rack shaft 14 and the tie rod 15.
  • the self-aligning torque Tsa is generated by the steered wheels 17FR and 17FL, so that the shortage of the self-aligning torque to the suspension device 1 can be compensated and the straight traveling performance of the vehicle can be ensured.
  • the control gain Ga is set to “0” during the initial response period T1 of 0.1 second from the time when the steering is started from the neutral position of the steering wheel 2, the multiplication output output from the multiplier 56d is It becomes “0”, and the straight traveling guarantee control for the target turning angle ⁇ * is stopped as shown by the solid line in FIG. Therefore, the steering angle ⁇ s detected by the steering angle sensor 4 is supplied to the target turning angle calculation unit 51, and the target turning angle ⁇ * calculated by the target turning angle calculation unit 51 is directly calculated as the turning angle deviation. Supplied to the unit 61. For this reason, the turning motor 8a is rotationally driven so as to coincide with the target turning angle ⁇ * . During this time, the straightness guaranteeing control in the straightness guaranteeing part 55 is stopped.
  • the turning by the suspension device 1B in which the road contact point of the kingpin axis KS is set at the contact center position in the tire contact surface and the caster angle is set to zero is started.
  • the caster angle of the suspension device 1B is set to zero.
  • FIG. 14A when the caster angle is zero, the relationship between the caster angle, the steering response, and the steering stability is high, but the steering stability is high. It cannot be ensured, that is, there is a trade-off relationship between the steering response to the caster angle and the steering stability. For this reason, in the initial state where the steering is started from the neutral position, the straight travel guarantee control by the steer-by-wire control is not executed, and the suspension device 1B covers this initial turning.
  • the suspension device 1B has a caster angle of zero and high steering response as described above.
  • a steering response characteristic (yaw angle) higher than a steering response characteristic (yaw angle) in a vehicle having a general steer-by-wire type steering system indicated by the characteristic line L2 can be obtained.
  • the middle response period T2 and the late response period T3 as shown by the characteristic line L3 in FIG. 15 (a).
  • the steering response of the vehicle by steering becomes sensitive.
  • a phenomenon of getting inside the vehicle from the middle response period T2 to the later response period T3 becomes large.
  • the straight traveling configured by the straightness complementation unit 55a and the disturbance compensation unit 55b.
  • the straightness ensuring control with respect to the target turning angle ⁇ * by the property ensuring unit 55 is started stepwise. For this reason, the steering response of the vehicle by the suspension device 1B is suppressed to prevent the vehicle from wobbling, and the straightness of the suspension device 1B is complemented by the steer-by-wire control as shown by the dotted line in FIG. Thus, the steering stability can be ensured.
  • the steering response characteristic is further suppressed by the straightness guaranteeing control by the straightness guaranteeing part 55 even when compared with the general steering response characteristic of the vehicle. And understeer tendency.
  • the characteristic line L1 shown by the solid line in FIG. 15A the steering stability can be improved, and an ideal vehicle turning response characteristic indicated by the characteristic line L1 can be realized.
  • the yaw angle control unit 53C reads the yaw angle ⁇ 1 in step S201 and stores it in the yaw angle storage unit 53a in the yaw angle control process of FIG. 35 described above, and then proceeds to step S202. Since the vehicle is turning, the process proceeds to step S203, the pre-acceleration / deceleration steering angle ⁇ s1 is read and the pre-acceleration / deceleration steering angle ⁇ s1 is stored in the steering angle storage unit 53b, and then the process proceeds to step S204.
  • the vehicle speed V1 is read and the vehicle speed V1 before acceleration / deceleration is written in the vehicle speed storage unit 53c.
  • the drive control device 23 When the accelerator pedal is depressed in this turning traveling state, the drive control device 23 is activated to start acceleration control on the drive wheels, and an ON state acceleration state signal Sd is output to the control / drive circuit 26. To do. Therefore, the yaw angle control unit 53C shifts from step S205 to step S206 in the process of FIG. 35, and executes the acceleration yaw angle control process shown in FIG. In this acceleration yaw angle control process, the post-acceleration steering angle ⁇ s2 is read (step S301), then the post-acceleration vehicle speed V2 is read (step S302), and then the post-acceleration yaw angle ⁇ 2 is read (step S303).
  • step S304 it is determined whether or not there is a change in the steering angles ⁇ s1 and ⁇ s2 before and after acceleration.
  • the steering angles ⁇ s1 and ⁇ s2 before and after acceleration coincide with each other, and the process proceeds from step S304 to step S305.
  • the target yaw angle ⁇ 1 * is calculated with reference to the target rack stroke calculation map shown in FIG.
  • the target yaw angle ⁇ 1 * is calculated when the vehicle speed V1 before acceleration in the turning state and the pre-acceleration position P1 represented by the yaw angle ⁇ 1 are between the steering characteristic lines L1 and L2. To do.
  • the post-acceleration position P2 represented by the post-acceleration vehicle speed V2 and the post-acceleration yaw angle ⁇ 2 can be steered by the suspension device 1B with a light turning force as described above.
  • the post-acceleration vehicle speed V2 increases from the pre-acceleration vehicle speed V1, and the post-acceleration yaw angle ⁇ 2 changes from the pre-acceleration yaw angle ⁇ 1 to the toe angles of the steered wheels 17FR and 17FL due to acceleration of the vehicle.
  • the post-acceleration yaw angle ⁇ 2 is lower than the pre-acceleration yaw angle ⁇ 1, and the vehicle tends to understeer.
  • the nearest steering characteristic line L3 whose yaw angle is greater than the post-acceleration yaw angle ⁇ 2 at the post-acceleration vehicle speed V2 is selected, and is required at the post-acceleration vehicle speed V2 set in the selected steering characteristic line L3.
  • the rack stroke is calculated as the target rack stroke Rs * .
  • the yaw angle at the current vehicle speed V2 in the selected steering characteristic line L3 is calculated as a target yaw angle ⁇ 1 * (step S11).
  • the calculated target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for performing yaw angle control on the target turning angle ⁇ * calculated by the target turning angle calculation unit 51 (step S12).
  • the turning angle correction value ⁇ ta thus made is added to the target turning angle ⁇ * and output to the actuator control device 54 (step S13).
  • the toe angle change that eliminates the change in the toe angle to the outside of the turn due to the steered wheels 17FR and 17FL being configured so that the suspension device 1B can steer the steered wheels with a light turning force.
  • the steered actuator 8 is controlled so that the rack shaft 14 is stroked by the target rack stroke Rs * , and this stroke is supplied to the steered wheels 17FR and 17FL via the tie rod 15. Therefore, when the suspension device 1B capable of turning with a light turning force is applied and the yaw angle control is not performed, the state shown by the solid line in FIG.
  • the steered wheels 17FR and 17FL are in a state in which the change in the toe angle of the steered wheel 17FL on the turning outer wheel side is large in the toe-out direction as shown by the one-dot chain line in FIG.
  • the yaw angle control described above is performed at the time of turning acceleration, so that when the acceleration state is changed from the state shown by the solid line in FIG.
  • the toe angle of the steering wheel 17FL is controlled in the toe-in direction inside the turn, and accordingly, the turning inner wheel side is controlled in the toe-out direction.
  • a large load is applied to the outer wheel side of the vehicle and the load on the inner wheel side is small. Therefore, even if the inner wheel side of the vehicle is controlled in the toe-out direction, there is almost no effect on the vehicle turning behavior. Absent.
  • the change in the toe angle in the toe-out direction on the turning outer wheel side by the suspension device 1B that can steer the steered wheels with a light steering force is controlled, and the vehicle steering characteristic is controlled to an oversteer tendency. For this reason, it is possible to ensure proper turning performance even when the vehicle 1 is in an accelerating state while turning around the corner.
  • the rack stroke of the rack shaft 14 is controlled to cause a toe angle change. Therefore, as in the conventional example described above, when the braking pressure on the inner turning wheel side is made larger than the braking pressure on the outer turning wheel side by the braking device to generate the yaw angle toward the turning inner side, No response delay due to hydraulic control occurs as in the case of increasing the driving force of the vehicle and increasing the braking force on the turning inner wheel side. Accordingly, the steered wheels 17FR and 17FL can be controlled to change the toe angle with high responsiveness at the time of turning acceleration, and the vehicle can be controlled to be over steered, and the turning performance can be improved and the steering stability can be improved.
  • the yaw angle control at the time of turning acceleration can be performed by the yaw angle control unit 53C provided in the steering control unit 50 constituting the steer-by-wire system. For this reason, it is not necessary to set the front / rear force (forward) toe-in in the front-side suspension device 1B as in a normal suspension device, and the front / rear force (forward) toe-out in the rear suspension device.
  • the configuration can be simplified and reduced in weight, and the degree of freedom in layout can be improved.
  • the toe angle control is borne by the suspension device, for example, the transverse link and the rack shaft are arranged substantially in parallel, and the transverse link is set longer than the rack shaft in the vehicle width direction. There is a problem that the degree of freedom of the layout of the suspension device is reduced, the configuration is complicated, and the weight is increased.
  • step S207 the yaw angle ⁇ 3 is read again (step S207), and it is determined whether or not the absolute value of the yaw angle deviation obtained by subtracting the yaw angle ⁇ 3 from the target yaw angle ⁇ * is zero (step S208). If the result of this determination is that the yaw angle deviation is not “0”, the process returns to step S205 and the yaw angle control is continued.
  • step S209 the value obtained by subtracting the yaw angle ⁇ 2 before yaw angle control from the yaw angle ⁇ 1 before turning is obtained. It is determined whether or not the absolute value
  • the accelerator pedal is released, the acceleration command signal Sd output from the drive control device 23 is turned off, and the brake pedal is released and the braking command signal Sb is also turned off. Ends the interrupt process and returns to the predetermined main program.
  • the yaw angle control unit 53C shifts to step S211 and the braking command signal Sb is Since it is in the ON state, the process proceeds to step S212 and the braking yaw angle control process shown in FIG. 37 is executed.
  • the braking yaw angle control process the post-brake steering angle ⁇ s2 is read (step S311), the post-brake vehicle speed V2 is read (step S312), and the post-brake yaw angle ⁇ 2 is read (step S313).
  • step S314 If there is no change in the steering angles ⁇ s1 and ⁇ s2 before and after the braking, it is determined that the driver is in a steered state in which the steering wheel 2 is not steered and turned back and forth, and from step S314 The process proceeds to step S315, and the target rack stroke Rs * is calculated with reference to the braking target yaw angle calculation map shown in FIG.
  • the rack stroke Rsj is calculated as the target rack stroke Rs * .
  • the yaw angle at the current vehicle speed V2 in the selected characteristic line Lj is calculated as the target yaw angle ⁇ 2 * (step S316).
  • the calculated target rack stroke Rs * is converted into a turning angle correction value ⁇ ta for performing yaw angle control corresponding to the target turning angle ⁇ * (step S317), and the converted turning angle correction value ⁇ ta is converted into the target turning angle. It is added to the steering angle ⁇ * and output to the actuator control device 54 (step S318).
  • the steered actuator 8 is controlled so that the steered wheels 17FR and 17FL are given a toe angle change that eliminates the yaw angle change before and after braking, and the rack shaft 14 is stroked to the target rack stroke Rs *.
  • the stroke is supplied to the steered wheels 17FR and 17FL via the tie rod 15. Therefore, the toe angle change is made so that the steered wheels 17FR and 17FL face the outside of the turn so as to eliminate the yaw angle change, and the vehicle steer characteristic is controlled to understeer as indicated by the curved line L1 shown in FIG. 42 (b). Is done. For this reason, when the vehicle 1 is turning around the corner as shown in FIG. 42 (c), the vehicle vehicle width direction movement amount can be suppressed even when the vehicle is in a braking state, and the travel lane is maintained. Can travel.
  • the steering actuator 8 is controlled to control the rack stroke of the rack shaft 14 to cause a change in the toe angle, so that the braking pressure on the outer ring side is made larger than the braking pressure on the inner ring side by the braking device.
  • yaw angle control during turning braking can be performed by the yaw angle control unit 53D provided in the steered control unit 50 constituting the steer-by-wire system.
  • the transverse link and the rack shaft are arranged substantially in parallel and the transverse link is made longer in the vehicle width direction than the rack shaft. It is not necessary to set the front / rear force toe-out with the front-side suspension device as the front-rear force toe-out and the rear-side suspension device as the front-rear force toe-in as the suspension characteristics, and the configuration of the front and rear suspension devices is simplified. -It can be reduced in weight.
  • step S213 the yaw angle ⁇ 3 is read again (step S213), and if the absolute value
  • the process returns to step S205 to continue the talk control during braking.
  • the yaw angle ⁇ 3 after the yaw angle control is shifted from the target yaw angle ⁇ 2 * step S214 to step S209.
  • step S304 of the acceleration yaw angle control process or step S314 of the braking yaw angle control process proceeds from step S319 in FIG.
  • the vehicle state before the acceleration or braking state is represented by the vehicle speed V1 and the coordinates represented by the yaw angle ⁇ 1 are oversteer (OS) shown in gradation in FIGS. 40 and 41.
  • step S319 it is determined whether the value obtained by subtracting the post-acceleration steering angle ⁇ s2 or the post-braking steering angle ⁇ s2 from the pre-acceleration / deceleration steering angle ⁇ s1 is positive or negative.
  • the vehicle state before acceleration / deceleration in the turning state is, for example, at a point P1 in the region Ao to be oversteered in FIG.
  • the vehicle speed V1 decreases to the vehicle speed V2
  • the yaw angle ⁇ 1 increases to the yaw angle ⁇ 2, and the vehicle moves to the point P2.
  • the state is increased, so that ⁇ s1 ⁇ s2 ⁇ 0 in step S319, and the process proceeds to step S320.
  • step S320 as in the target yaw angle calculation process (step S305) in the acceleration state, as shown in FIG. 40, the latest yaw angle at which the current vehicle speed V2 is greater than the current yaw angle ⁇ 2 is the latest yaw angle.
  • the target turning amount characteristic line L3 is selected, and the target rack stroke Rs3 set in the selected target turning amount characteristic line L3 is calculated as the target rack stroke Rs * .
  • the process proceeds to step S321, and the yaw angle at the vehicle speed V2 in the selected target turning amount characteristic line L3 is calculated as the target yaw angle ⁇ * .
  • the target rack stroke Rs * increases and the turning angle of the turning wheel 17FR (or 17FL) on the outer turning wheel side is controlled in the toe-in direction.
  • the steering characteristic of the vehicle can be oversteered in response to the additional steering of the steering wheel 2 of the driver, and the steering characteristic corresponding to the steering of the driver can be obtained.
  • step S319 the process proceeds to step S322.
  • step S322 as in the target yaw angle calculation process (step S315) in the braking state, as shown in FIG.
  • the latest yaw angle at which the current vehicle speed V2 is greater than the current yaw angle ⁇ 2 The target turning amount characteristic line L2 is selected, and the target rack stroke Rs2 set in the selected target turning amount characteristic line L2 is calculated as the target rack stroke Rs * .
  • step S321 the process proceeds to step S321, and the yaw angle ⁇ 2 'at the vehicle speed V2 in the selected target turning amount characteristic line L2 is calculated as the target yaw angle ⁇ * .
  • the target rack stroke Rs * is reduced and the turning angle of the turning wheel 17FR (or 17FL) on the turning outer wheel side is controlled in the toe-out direction.
  • the steering characteristic of the vehicle can be set to understeer in response to the driver's steering wheel 2 turning back, and the steering characteristic corresponding to the driver's steering can be obtained.
  • the vehicle state before acceleration / deceleration in the turning state is, for example, a state at a point P21 in the region Au desired to be understeered (US) in FIG.
  • this state for example, as an acceleration state, the yaw angle ⁇ 1 and the vehicle speed V1 increase and move to the point P22.
  • ⁇ s1 ⁇ s2> 0 is satisfied in step S319. Then, the process proceeds to step S322.
  • step S322 as in the target yaw angle calculation process (step S315) in the braking state, as shown in FIG. 41, the latest yaw angle at which the current vehicle speed V2 is greater than the current yaw angle ⁇ 2
  • the target turning amount characteristic line L2 is selected, and the target rack stroke Rs2 set in the selected target turning amount characteristic line L2 is calculated as the target rack stroke Rs * .
  • the process proceeds to step S321, and the yaw angle ⁇ 2 'at the vehicle speed V2 in the selected target turning amount characteristic line L2 is calculated as the target yaw angle ⁇ * .
  • the target rack stroke Rs * is reduced and the turning angle of the turning wheel 17FR (or 17FL) on the turning outer wheel side is controlled in the toe-out direction.
  • the steering characteristic of the vehicle can be set to understeer in response to the driver's steering wheel 2 turning back, and the steering characteristic corresponding to the driver's steering can be obtained.
  • the vehicle state before acceleration / deceleration in the turning state is, for example, at a point P31 in the area Ao to be oversteered (OS) in FIG.
  • OS oversteered
  • the vehicle speed V1 decreases to the vehicle speed V2
  • the yaw angle ⁇ 1 also decreases to the yaw angle ⁇ 2
  • step S320 as in the target yaw angle calculation process in the acceleration state (step S305), as shown in FIG.
  • the latest yaw angle at which the current vehicle speed V2 is greater than the current yaw angle ⁇ 2 becomes the latest yaw angle.
  • the target turning amount characteristic line L3 is selected, and the target rack stroke Rs3 set in the selected target turning amount characteristic line L3 is calculated as the target rack stroke Rs * .
  • step S321 the process proceeds to step S321, and the yaw angle at the vehicle speed V2 in the selected target turning amount characteristic line L3 is calculated as the target yaw angle ⁇ * .
  • the target rack stroke Rs * increases and the turning angle of the turning wheel 17FR (or 17FL) on the outer turning wheel side is controlled in the toe-in direction.
  • the steering characteristic of the vehicle can be oversteered in response to the additional steering of the steering wheel 2 of the driver, and the steering characteristic corresponding to the steering of the driver can be obtained.
  • the steering apparatus since the caster trail is set in the tire contact surface in the suspension device 1B, the moment around the kingpin axis KS can be further reduced. . Therefore, also in the above embodiment, the steering can be performed with a smaller rack axial force, that is, the turning force, and the direction of the wheel can be controlled with a smaller force, so that the steering response can be improved.
  • the suspension device 1B itself is configured to improve the steering response by setting at least the kingpin axis KS to pass through the tire ground contact surface.
  • the steer-by-wire The straight travel performance guaranteeing section 55 of the system SBW performs straight travel compensation and disturbance compensation to control the turning characteristics to secure the straight travel performance of the vehicle. Therefore, when right or left steering is performed from the state where the steering wheel 2 is held at the neutral position, high response is ensured by using the high steering response of the suspension device 1B itself in the initial response period T1. To do.
  • the rotation angle ⁇ mi of the actuator 6 is supplied to the target turning angle calculation unit 51, and the turning command angle ⁇ * calculated by the target turning angle calculation unit 51 is supplied to the turning angle deviation calculation unit 61 as it is.
  • the turning motor 8a is rotationally driven so as to coincide with the turning command angle ⁇ * .
  • the steering by the suspension device in which the road contact point of the kingpin axis KS is set at the contact center position in the tire contact surface and the caster angle is set to zero is started.
  • the caster angle of the suspension device is set to zero.
  • FIG. 14A the relationship between the caster angle, the steering response, and the steering stability is high when the caster angle is zero, but the steering stability is ensured. That is, there is a trade-off relationship between steering response to caster angle and steering stability.
  • the suspension device covers this initial steering.
  • the suspension device has a caster angle of zero and high steering response. Therefore, as shown by a characteristic line L1 shown by a solid line in FIG. A steering response characteristic (yaw angle) higher than a steering response characteristic (yaw angle) in a vehicle having a general steer-by-wire type steering system indicated by L2 can be obtained.
  • the turning angle changes corresponding to the steering angle change caused by the steering of the steering wheel 2 by the driver, the driver does not feel uncomfortable.
  • the steering response of the vehicle by the steering becomes sensitive in the middle and later periods as indicated by the characteristic line L3 shown by the broken line in FIG. Become.
  • the phenomenon of entrapping the inside of the vehicle from the middle to the latter half of the steering is increased. Therefore, in the above embodiment, as shown in FIG. 15 (b), for example, 0.1 seconds after the initial period elapses, the steering with respect to the steering command angle ⁇ * by the straightness complementation unit 55a and the disturbance compensation unit 55b.
  • the corner correction process is started stepwise. For this reason, the steering responsiveness of the vehicle by the suspension device is suppressed to prevent the vehicle from wobbling, and as shown in FIG.
  • the straightness is complemented by the steer-by-wire control to ensure the steering stability. be able to. Thereafter, for example, after 0.3 seconds, the steering response characteristic can be further suppressed and an understeer tendency can be obtained even when compared with the steering response characteristic of a general vehicle. Thereby, as shown by the characteristic line L1 shown by the solid line in FIG. 15A, the steering stability can be improved, and the ideal vehicle steering response characteristic indicated by the characteristic line L1 can be realized.
  • the suspension apparatus 1B when the steering wheel 2 is in the neutral state, the kingpin axis is set to pass through the tire ground contact surface.
  • the moment around the axis KS can be further reduced. Therefore, the steering can be performed with a smaller rack axial force, and the direction of the wheel can be controlled with a smaller force, so that the steering response can be improved.
  • the suspension device 1B by setting at least the kingpin axis KS to pass through the tire contact surface, the suspension device 1B itself is configured to improve the steering response, and the steer-by-wire system SBW is configured.
  • the straightness guaranteeing part 55 performs straightness compensation and disturbance compensation for controlling the turning characteristics of the vehicle.
  • the initial responsiveness is ensured by utilizing the high steering responsiveness of the suspension device itself.
  • the initial period elapses and the middle period starts, it is necessary to emphasize steering stability rather than steering response, and the steering response setting unit 52 of the steer-by-wire system SBW starts control.
  • straightness complementation control high steering responsiveness by the suspension device 1B is suppressed, and steering stability is ensured.
  • the suspension device 1B according to the present embodiment is a strut type, the number of parts can be reduced, and the setting of the kingpin axis KS in the present embodiment can be easily performed.
  • so-called slalom traveling for example, shifting from right steering to left steering so that the steering wheel 2 crosses the neutral position, the above-described delay control is not performed, and the straightness guaranteeing unit 55 performs self-compensation processing and self-compensation processing.
  • a straight-ahead compensation process for compensating for the shortage of the aligning torque is executed. For this reason, it is possible to perform steering control that ensures steering and stability.
  • the control / drive circuit 26 including 50 constitutes the steer-by-wire system SBW.
  • the wheels 17FR, 17FL, 17RR, and 17RL correspond to a tire wheel, a tire, and a wheel hub mechanism
  • the first link 37, the second link 38, and the shock absorber 40 correspond to a plurality of link members.
  • the first link 37 and the second link 38 constitute a lower arm
  • the spring member 34 and the shock absorber 40 constitute a strut member ST.
  • the target turning angle calculating part 51 turning response property
  • the setting unit 52 may be configured by an arithmetic processing device such as a microcomputer, and the steering control processing shown in FIG. 17 described above may be executed by this arithmetic processing device.
  • a steering control device detects a displacement of a steering angle when a steering wheel is steered, and controls a steer-by-wire system that controls an actuator that steers a steered wheel separated from the steering wheel based on a detection result;
  • a vehicle yaw angle detector that detects the yaw angle of the vehicle, a steering angle detector that detects the steering angle of the steering wheel, a vehicle speed detector that detects the vehicle speed of the vehicle, and a vehicle turning state based on the yaw angle
  • a turning state detection unit for detecting, an acceleration state detection unit for detecting an acceleration state of the vehicle, a braking state detection unit for detecting a braking state of the vehicle, and a vehicle turning state detected by the turning state detection unit, and the acceleration
  • the target rotation of the actuator is determined based on the vehicle speed and yaw angle after the state change is detected.
  • the target turning amount characteristic line is selected from a plurality of target turning amount characteristic lines representing the relationship between the vehicle speed and the yaw angle with the amount as a parameter, and the target corresponding to the state change based on the selected target turning amount characteristic line
  • a yaw angle control unit that controls the actuator so that the steered amount of the steered wheels by the actuator becomes the target steered amount.
  • the yaw angle control unit eliminates a change in the toe angle of the suspension device that occurs during acceleration and braking in the turning state of the vehicle. Calculate the steered amount, control the steered actuator so that the steered amount becomes the target steered amount, and adjust the yaw so that the steered wheels have the necessary oversteer and understeer tendencies during acceleration and deceleration. The angle can be changed.
  • the oversteer and understeer characteristics are controlled by controlling the braking pressure and the hydraulic clutch pressure, the responsiveness to make the oversteer and understeer characteristics can be improved, and the braking force is applied to the driving wheels in the acceleration state and the braking state. Decreasing acceleration performance due to the addition of can also be suppressed. Therefore, it is possible to improve the steering stability by improving the turning performance at the time of turning acceleration and turning braking of the vehicle.
  • the actuator is a steering actuator that controls a rack mechanism that steers the steered wheels, and the yaw angle control unit detects a vehicle turning state by the turning state detection unit, and the acceleration state or the braking state.
  • a plurality of target turning amounts representing a relationship between the vehicle speed and the yaw angle based on the vehicle speed and the yaw angle after detecting the state change, using the target turning amount of the actuator as a parameter.
  • a target turning amount characteristic unit that selects a target turning amount characteristic line corresponding to the characteristic line and calculates a target turning amount according to a state change based on the selected target turning amount characteristic line;
  • the actuator is controlled so that the steered amount of the steered wheels according to is equal to the target steered amount.
  • the yaw angle control unit controls the yaw angle of the steered wheels in order to suppress the deterioration of the turning performance during turning acceleration and turning braking. This makes it possible to simplify and reduce the weight of the suspension device.
  • the yaw angle control unit includes a target yaw angle calculation unit that calculates a target yaw angle according to the state change based on the target turning amount characteristic line selected by the target turning amount calculation unit,
  • the yaw angle control for controlling the actuator is performed so that the turning amount of the steered wheels by the actuator becomes the target turning amount, and the yaw angle after the yaw angle control is continued until the yaw angle coincides with the target yaw angle.
  • the yaw angle control is continued until the yaw angle after the yaw angle control matches the target yaw angle, so that the toe angle of the steered wheels is controlled to be the optimum yaw angle during turning acceleration or turning braking. It is possible to ensure steering stability.
  • the target turning amount calculation unit has a plurality of target turning amount characteristic lines with the target turning amount as a parameter based on the vehicle speed and yaw angle after the state change, and the vehicle speed and yaw angle
  • the target turning amount is calculated with reference to a target value calculation map representing the relationship.
  • the target yaw angle calculation unit has a plurality of target turning amount characteristic lines using the target turning amount as a parameter based on the vehicle speed and the yaw angle after the state change, The target yaw angle is calculated with reference to a target value calculation map representing the relationship.
  • the target yaw angle required during actual turning acceleration or turning braking can be instantaneously and easily calculated with reference to the target value calculation map based on the post-acceleration vehicle speed and the post-acceleration yaw angle.
  • the target turning amount calculation unit determines that the yaw angle at the same vehicle speed as the state-changed vehicle speed is the yaw after the state change.
  • the most recent turning amount characteristic line exceeding the corner is selected, and the target turning amount is set based on the selected turning amount characteristic line.
  • the target turning amount calculation unit calculates the yaw angle at the same vehicle speed as the state-changed vehicle speed from the state-changed yaw.
  • the nearest turning amount characteristic line below the corner is selected, and the target turning amount is set based on the selected turning amount characteristic line.
  • the yaw angle control unit switches back whether or not the steering angle change is in an increasing direction when the vehicle is in an acceleration state or a braking state and a steering angle change occurs before and after the state change.
  • a steering direction determination unit that determines whether the vehicle is in a direction, and when the determination result of the steering direction determination unit is a direction to be increased, the target turning amount calculation unit calculates the yaw at the same vehicle speed as the vehicle speed after the state change.
  • the most recent turning amount characteristic line whose angle exceeds the yaw angle after the state change is selected, a target turning amount is set based on the selected turning amount characteristic line, and the yaw angle calculation unit selects the selected turning amount characteristic line.
  • the target yaw angle is calculated based on the steering amount characteristic line and the vehicle speed after the change of state, and when the determination result of the steering direction determination unit is the return direction, the target turning amount calculation unit calculates the vehicle speed after the change of state.
  • the yaw angle at the same vehicle speed is The most recent turning amount characteristic line that is less than the selected turning amount characteristic line is set, the target turning amount is set based on the selected turning amount characteristic line, and the turning amount characteristic line selected by the yaw angle calculation unit and the vehicle speed after the state change are set.
  • the target yaw angle is calculated based on As a result, when the driver steers the steering wheel during turning acceleration and turning braking, it is determined that the driver desires oversteering when the steering direction is increased. Can be selected so as to have an oversteer tendency, and an optimal target yaw angle can be calculated, and the yaw angle control of steered wheels can be performed so as to have an oversteer tendency corresponding to the steering intended by the driver .
  • the actuator is a turning actuator that drives a turning shaft for turning the turning wheel, and the target turning amount is a target turning stroke of the turning shaft.
  • the turning mechanism drives a turning shaft such as a rack shaft by the turning actuator, it is possible to set an optimum target stroke that becomes a target value of the stoke of the turning shaft.
  • the suspension device includes a plurality of link members that support the steered wheels on a vehicle body, and a kingpin shaft passing through an upper pivot point and a lower pivot point of the link member is within a tire ground contact surface at a neutral position of the steering wheel. It is set to pass through.
  • the moment around the kingpin axis of the suspension device can be made smaller, it is possible to perform turning with a smaller turning force and to control the direction of the wheel with a smaller force. Therefore, the steering response can be improved.
  • the caster angle can be set to a value close to zero, it is possible to configure a suspension device with improved steering response.
  • the straightness guaranteeing part can guarantee the decline in the straightness of the vehicle due to ensuring the steering response of the suspension device.
  • the straight travel guarantee portion is configured by a steer-by-wire system including a steering actuator and an actuator control device, it is not necessary to provide the straight travel guarantee portion independently, and the configuration is simplified. can do.
  • the straightness guaranteeing part 55 of the steering response setting part 52 serves as the main straightness guaranteeing part and the actuator control device 54 serves as the secondary straightness guaranteeing part.
  • the straightness of the suspension device can be reliably ensured.
  • the initial response characteristic is changed by delaying the straightness guarantee control of the straightness guarantee part by the delay control part.
  • the high steering response is secured by providing the steering response.
  • ideal steering response can be ensured by adjusting the steering response of the suspension device itself by the straight travel guarantee control by the straight travel guarantee section.
  • the straight travel guarantee unit secures straight travel performance by calculating self-aligning torque. Therefore, the straight travel performance securing section can secure the straight travel performance that has been lowered by securing the high responsiveness of the suspension device with the self-aligning torque, thereby improving the steering and stability of the vehicle.
  • the steering response characteristic of the suspension device is set to the initial steering response characteristic at the beginning of the steering by the steering response setting unit of the steer pie wire system. Then, after the initial set time has elapsed, the straightness ensuring part of the steer-by-wire system starts control for ensuring the straightness of the suspension device itself of the steering actuator.
  • the straightness ensuring part of the steer-by-wire system starts control for ensuring the straightness of the suspension device itself of the steering actuator.
  • the yaw angle control unit 72 calculates the target yaw angle ⁇ * at the time of turning acceleration, similarly to the yaw angle control unit 53D described above.
  • the rotational speed of the in-wheel motor 70FR (or 70FL) on the outer turning wheel side is increased so that the current yaw angle ⁇ 3 reaches the target yaw angle ⁇ *, and the rotational speed of the in-wheel motor (70FL (or 70FR) on the inner turning wheel side).
  • the rotational speed correction values RAFR and RAFL are reduced to reduce the rotational speed correction value RAFR and RAFL are supplied to the driving device 71, and the rotational command value is corrected by the driving device 71, and the corrected rotational speed command value is corrected.
  • These inverters 7 The yaw angle control for steering is performed by increasing the number of rotations of the in-wheel motors 70FR and 70FL on the turning outer wheel side and decreasing on the turning inner wheel side by FR, 74FL, so that the steering characteristic of the vehicle tends to oversteer. Also good.
  • yaw angle control unit of the present invention Application example of yaw angle control unit of the present invention
  • the present invention is not limited to the above, and instead of referring to the target yaw angle calculation map, a plurality of steering angle characteristic lines having the steering angle as a parameter are expressed as a function of the vehicle speed and the yaw angle, and acceleration is performed.
  • a steering angle characteristic line having a yaw angle larger than the post-acceleration yaw angle at the post-acceleration vehicle speed may be selected based on the rear vehicle speed and the post-acceleration yaw angle.
  • the selection of the steering angle characteristic line can be performed by calculation without using the target yaw angle calculation map.
  • the number of steering angle characteristic lines is not limited to four and can be set to an arbitrary number.
  • the lower link structure can be constituted by a transverse link 81 and a compression link 82 that intersect each other as schematically shown in FIG. 26, for example.
  • the lower link structure may be configured by a transverse link 81 and a tension link 83 that intersect each other.
  • the lower pivot point constituting the kingpin axis can be set as the intersection position of both links. For this reason, the position of the lower pivot point can be made closer to the inside of the steered wheel body. Therefore, it becomes easy to set the kingpin shaft so that it passes through the tire ground contact surface.
  • the suspension device 1B is not limited to the above-described configuration, and suspension devices having other various configurations can be applied. Further, the steering response setting unit 52 can be omitted depending on the configuration of the suspension device 1B.
  • the yaw angle control is started with a delay corresponding to the delay time ⁇ set at 56. That is, in the eighth embodiment, the suspension device has the same configuration as the suspension device described in FIGS. 2 to 10 in the first embodiment described above. 43, as shown in FIG. 43, in addition to the configuration of FIG. 33 in the sixth embodiment described above, the hub lateral forces Fy R and Fy L applied to the hub are respectively applied to the left and right steered wheels 17FR and 17FL.
  • Hub lateral force sensors 25R and 25L are provided as lateral force detection units for detection. Hub lateral forces Fy R and Fy L detected by the hub lateral force sensors 25R and 25L are input to the control / drive circuit unit 26. An engine brake detection unit 90 that detects the engine brake state of the vehicle is provided, and the engine brake state detected by the engine brake detection unit 90 is supplied to the control / drive circuit unit 26 via the vehicle state parameter acquisition unit 21. ing.
  • the control / driving circuit unit 26 includes, in addition to the target turning angle calculation unit 51, the turning response setting unit 52, and the actuator control device 54, in the turning control unit 50 in the seventh embodiment described above.
  • a running-time swing control unit 53F including a yaw angle control unit 53C is provided. As shown in FIG. 44, the running swing control unit 53F includes a yaw angle control unit 53C and an engine brake control unit 53G that controls the vehicle steering characteristic in the engine braking state to the neutral steering characteristic. .
  • the yaw angle characteristic control unit 53C in addition to the target rack stroke calculation unit 53R, the target yaw angle calculation unit 53Y, and the steering direction determination unit 53S having the same configuration as in the seventh embodiment described above, performs yaw angle control at the start of turning.
  • a yaw angle control start delay unit 53T that delays the start by a predetermined delay time ⁇ is provided.
  • the yaw angle control start delay unit 53T performs the yaw angle control in the seventh embodiment described above for a predetermined time ⁇ ( For example, it is delayed by 0.1 second (similar to the delay time ⁇ of the delay control unit 56 of the steering response setting unit 52 described above), and the steering by the steering response of the suspension device in the initial period T1 at the start of the steering.
  • the yaw angle control is not affected.
  • the yaw angle control unit 53C executes the yaw angle control process when the engine brake detection unit 90 detects that the engine brake state is not established.
  • the engine brake control unit 53G controls the steering characteristic of the vehicle when the engine brake state signal Se supplied from the engine brake detection unit 90 represents the engine brake state. That is, the engine braking control 53G calculates the reference hub lateral force on the outer wheel side when the vehicle is in a turning state, and controls the brake cylinder so that the outer wheel side hub lateral force matches the reference hub lateral force. When the vehicle is running straight, the brake cylinder is controlled so that the lateral forces of the left and right hubs coincide with each other to ensure straight running stability.
  • the engine brake control unit 53G includes a straight-ahead control start delay unit 53H that delays the start of straight-ahead stability control when the steering state shifts from the turning state to the straight-ahead state.
  • the running swing control unit 53F executes the running swing control process and includes the processing of the turning state detection unit 53A, the acceleration state detection unit 53D, and the braking state detection unit 53B.
  • an engine brake detection signal Se input from the engine brake detection unit 90 is read in step S401, and the engine brake detection signal Se is, for example, at a high level.
  • the process proceeds to step S402, the current vehicle speed V0 is read, and then the process proceeds to step S403, where the current steering angle ⁇ s0 is swallowed and then the process proceeds to step S404.
  • step S404 it is determined whether or not the steering angle ⁇ s0 read in step S403 is 0. If ⁇ s0> 0 or ⁇ s0 ⁇ 0, it is determined that the vehicle is in a turning state, and the process proceeds to step S405.
  • the hub lateral force Fyo on the turning outer wheel side is read from the hub lateral forces Fy R and Fy L inputted from the hub lateral force sensors 25R and 25L, and then the process proceeds to step S406.
  • the reference hub lateral force Fyb is calculated with reference to the reference hub lateral force calculation map shown in FIG. 47 based on the vehicle speed V0 and the steering angle ⁇ s0.
  • the reference hub lateral force calculation map as shown in FIG.
  • the vehicle speed V is set on the horizontal axis
  • the hub lateral force Fy is set on the vertical axis
  • the characteristic line L1 represents a state where the steering angle ⁇ is zero, that is, a straight traveling state.
  • a point P41 is obtained from the current vehicle speed V0 and the current outer wheel side hub lateral force Fyo, and the closest characteristic line L3 is selected from the point P41 at the same vehicle speed V0. Then, the hub lateral force at the vehicle speed V0 of the selected characteristic line L3 is calculated as the reference hub lateral force Fyb.
  • step S407 When the determination result in step S407 is Fyb ⁇ Fyo ⁇ 0, the process proceeds to step S408, and the value obtained by subtracting the outer wheel side hub lateral force Fyo from the reference hub lateral force Fyb is positive (Fyb ⁇ Fyo> 0). It is determined whether or not there is. When the determination result is Fyb ⁇ Fyo> 0, it is determined that the outer wheel side hub lateral force Fyo is in the understeer region below the selected characteristic line Lk, and the process proceeds to step S409. In step S409, inner wheel side brake control is performed to correct the vehicle characteristics to the neutral steer side, and then the process returns to step S402.
  • step S408 determines that the outer wheel side hub lateral force Fyo is on the oversteer side above the selected vehicle characteristic line Lk, and the process proceeds to step S410.
  • step S410 outer wheel side brake control is performed to correct the vehicle characteristics to the side of the automatic steer, and then the process returns to step S402.
  • a predetermined delay time ⁇ 1 for example, 0.1 second
  • step S411 determines whether or not the value of the right wheel side from the hub lateral force Fy R by subtracting the hub lateral force Fy L of the left wheel side is positive (Fy R- Fy L> 0) .
  • step S414 the brake control is performed on the right wheel side to suppress the turning force, and then the process returns to step S402.
  • step S413 When the determination result in step S413 is Fy R ⁇ Fy L ⁇ 0, the process proceeds to step S415, and the value obtained by subtracting the hub lateral force Fy R on the right wheel side from the hub lateral force Fy L on the left wheel side is positive. It is determined whether (Fy L- Fy R > 0). When this determination result is not Fy L ⁇ Fy R > 0, it is determined that the hub lateral force of the left and right wheels is balanced to “0”, and no turning force is generated, and the process returns to step S401.
  • step S415 If the determination result in step S415 is Fy L- Fy R > 0, it is determined that the hub lateral force Fy L on the left wheel side is high and a turning force is generated on the outer wheel side, and the process proceeds to step S416. In step S416, the brake control is performed on the left wheel side to suppress the turning force, and then the process returns to step S402.
  • the brake control is performed to control the vehicle steer characteristic to the neutral steer.
  • the brake is controlled to suppress the turning of the vehicle and stabilize the behavior.
  • the brake control for one of the left and right wheels is delayed until the result time t passes the delay time ⁇ 1.
  • the steering angle ⁇ s0 temporarily becomes zero while the vehicle is running in the slalom, it is possible to prevent the brake control that stabilizes the behavior in the straight traveling state from being performed, and a good slalom It is possible to run.
  • step S401 determines whether the determination result in step S401 is in the engine brake state. If the determination result in step S401 is not in the engine brake state, the process proceeds to step S420, and the yaw angle control process is executed. As shown in FIG. 46, this yaw angle control process is performed except that a delay control process is inserted between steps S202 and S203 in the yaw angle control process of FIG. 35 in the seventh embodiment described above. The same processing as in FIG. 35 is performed. Therefore, in FIG. 46, the processing corresponding to FIG. 35 is assigned the same step number, and detailed description thereof will be omitted.
  • step S421 determines whether or not the turning initial state flag FC is reset to “0” indicating the turning initial state. To do.
  • FC 0
  • the process proceeds to step S422, and the elapsed time t is the delay set by the delay control unit 56 of the steering response setting unit 52 described above. It is determined whether or not a delay time ⁇ 2 (for example, 0.1 second) equal to the time ⁇ is exceeded.
  • a delay time ⁇ 2 for example, 0.1 second
  • ⁇ ⁇ s, the process proceeds to step S424 to reset the turning initial state flag FC to “0”, and then returns to step S501 in FIG. 45 described above. Furthermore, when the determination result in step S210 is ⁇ 3 0, the process proceeds to step S425, the turning initial state flag FC is reset to “0”, and then the process returns to step S501 in FIG. 45 described above.
  • step S426 the turning initial state flag FC is reset to “0”, and the process returns to step S501 in FIG. 45 described above.
  • the acceleration yaw angle control process executed in step S206 of FIG. 46 performs the same process as in FIG. 36 of the seventh embodiment described above, and the braking yaw angle control process executed in step S212 is the seventh process described above. Processing similar to that in FIG. 37 of the embodiment is performed. 45 corresponds to the engine braking time control unit 53G, and the process of step S411 corresponds to the straight-ahead control start delay unit 53H. Also, the processing of steps S421 to S216 in FIG. 46 corresponds to the yaw angle control start delay unit 53E.
  • step S403 when the vehicle is turning and the steering angle ⁇ s0 is not “0” representing the neutral position, the hub lateral force Fyo on the turning outer wheel side is read (step S405).
  • the hub lateral force detecting hub lateral force Fy L to be detected by the hub lateral force sensor 25L of the left wheel side read at the hub side force sensor 25R of the right wheel side when a left turning when a right turning traveling state Read Fy R.
  • a reference hub lateral force Fyb for ensuring a neutral steering characteristic is calculated with reference to a reference hub lateral force calculation map shown in FIG. 47 (step S406).
  • the characteristic line L2 in FIG. 47 is selected on the basis of the steering angle ⁇ s0
  • a point P40 at which the vehicle speed V0 is set on the characteristic line L2 is set, and the hub lateral force at this point P40 is the reference hub lateral force.
  • Fyb it is determined whether or not a value obtained by subtracting the detected outer wheel side hub lateral force Fyo from the set reference hub lateral force Fyb is 0 (step S407).
  • step S413 the hub lateral force Fy L of the left wheel becomes larger than the hub lateral force Fy R of the right wheel (Fy R ⁇ Fy L ⁇ 0)
  • the process proceeds from step S413 to step S416 to step S416, and the wheel on the left wheel side
  • the left wheel brake control for generating a predetermined braking force on the cylinder 19 can be performed to prevent the left wheel from generating a turning force that becomes a turning outer wheel, thereby ensuring straight running stability.
  • the steering characteristic is controlled so that the steering characteristic of the vehicle becomes the neutral steering characteristic when the vehicle is in the turning traveling state. Can do.
  • step S400 When the vehicle is not in the engine brake running state, the process proceeds from step S400 to step S420, and the yaw angle control process shown in FIG. 46 is executed.
  • this yaw angle control process as shown in FIG. 46, in the yaw angle control process of FIG. 35 of the sixth embodiment described above, the delay control process of steps S421 to S423 is performed between steps S202 and S203.
  • processing similar to that shown in FIG. 35 is performed except that processing steps S424 to S426 for resetting the initial turning state flag FC of the delay control processing to “0” are inserted.
  • step S202 when the determination result in step S202 is
  • the yaw angle control is started by delaying by the same delay time ⁇ 2 as the delay time ⁇ in the delay control unit 56 in the responsiveness setting unit 52.
  • the yaw angle control is started after being delayed by the delay time ⁇ 2, so that the yaw angle control is suspended in the initial response period T1 by the steering control unit 50. Good initial turning can be performed without affecting the turning having high responsiveness by the apparatus 1B.
  • the yaw angle control unit eliminates a change in the toe angle of the suspension device that occurs during acceleration and braking in the turning state of the vehicle. Calculate the steered amount, control the steered actuator so that the steered amount becomes the target steered amount, and adjust the yaw so that the steered wheels have the necessary oversteer and understeer tendencies during acceleration and deceleration. The angle can be changed.
  • the responsiveness to make the oversteer and understeer characteristics can be improved, and the braking force is applied to the driving wheels in the acceleration state and the braking state. Decreasing acceleration performance due to the addition of can also be suppressed. Accordingly, the turning performance at the time of turning acceleration and turning braking of the vehicle can be improved to improve steering stability, and the same effects as those of the seventh embodiment can be obtained.
  • the steering control device detects a displacement of the steering angle when the steering wheel is steered, and controls an actuator that operates a steering mechanism that steers the steered wheels separated from the steering wheel based on the detection result.
  • a steer-by-wire system a yaw angle detector that detects a yaw angle of the vehicle, a steering angle detector that detects a steering angle of the steering wheel, a turning state detector that detects a vehicle turning state, and a braking state of the vehicle
  • the traveling state detection unit that detects the acceleration state and the turning state detection unit
  • the braking state or acceleration state of the vehicle is detected by the traveling state detection unit, before and after braking or acceleration.
  • a yaw angle control unit that controls the actuator so as to suppress a yaw angle deviation
  • the yaw angle control unit is a vehicle in the turning state detection unit. From the straight state upon detection of the transition to the vehicle turning state, and a yaw angle control start delay unit for controlling the start of the yaw angle control unit by a predetermined time.
  • the yaw angle control unit controls an actuator that can control the yaw angle of the vehicle with higher responsiveness than the hydraulic control so as to suppress the yaw angle deviation before and after the braking at the time of braking in the turning traveling state of the vehicle. Can do.
  • the yaw angle control start delay unit delays the control start of the yaw angle control unit for a predetermined time, so that the steering is turned at the start of turning during the steering control in the steer-by-wire system. In the case where the start of control is delayed and the turning response characteristic of the suspension device is used for the initial turning, the yaw angle control can be prevented from affecting the turning response property of the suspension device.
  • the steering control device includes an engine brake detection unit that detects an engine brake state of the vehicle, and an engine brake control unit that adjusts the braking force of the left and right wheels to control the vehicle steering characteristic to a neutral steering characteristic.
  • the engine braking state is detected by the engine brake detecting unit, and when the turning state detecting unit detects a straight traveling state from the turning state, the engine braking time control unit delays the start of the straight traveling stability control by a predetermined time. And a stability control start delay unit.
  • the slalom traveling is performed to temporarily change the straight traveling state from the turning traveling state. Then, when the transition to the turning state is performed again, the transition to the turning state can be performed without performing the straight running stability control, and the slalom traveling can be stably performed.
  • the engine brake control unit selects and selects a corresponding steering angle characteristic line from a plurality of steering angle characteristic lines representing the relationship between the vehicle speed and the lateral force, using the target steering angle as a parameter, based on the vehicle speed and the lateral force.
  • a braking force control unit that calculates a reference lateral force based on the steering angle characteristic line and controls the braking force for the left and right wheels so that the calculated reference lateral force and the lateral force coincide with each other is provided.
  • the lateral force acting on the left and right wheels is detected, and in the engine braking state, the steering angle characteristic line is selected based on the steering angle and the vehicle speed, and the reference lateral force is calculated.
  • the steer characteristics during turning can be controlled to neutral steer.
  • the wheel motors 70FR and 70FL are assumed to be yaw angle control actuators that are steered by the difference in rotational speed between the left and right wheels.
  • the yaw angle control unit 72 calculates the target yaw angle ⁇ * at the time of turning acceleration, similarly to the yaw angle control unit 53D described above.
  • the rotational speed of the in-wheel motor 70FR (or 70FL) on the outer turning wheel side is increased so that the current yaw angle ⁇ 3 reaches the target yaw angle ⁇ *, and the rotational speed of the in-wheel motor (70FL (or 70FR) on the inner turning wheel side).
  • the rotational speed correction values RAFR and RAFL are reduced to reduce the rotational speed correction value RAFR and RAFL are supplied to the driving device 71, and the rotational command value is corrected by the driving device 71, and the corrected rotational speed command value is corrected.
  • These inverters 7 The yaw angle control for steering is performed by increasing the number of rotations of the in-wheel motors 70FR and 70FL on the turning outer wheel side and decreasing on the turning inner wheel side by FR, 74FL, so that the steering characteristic of the vehicle tends to oversteer. Also good.
  • yaw angle control unit of the present invention Application example of yaw angle control unit of the present invention
  • the present invention is not limited to the above, and instead of referring to the target yaw angle calculation map, a plurality of steering angle characteristic lines having the steering angle as a parameter are expressed as a function of the vehicle speed and the yaw angle, and acceleration is performed.
  • a steering angle characteristic line having a yaw angle larger than the post-acceleration yaw angle at the post-acceleration vehicle speed may be selected based on the rear vehicle speed and the post-acceleration yaw angle.
  • the selection of the steering angle characteristic line can be performed by calculation without using the target yaw angle calculation map.
  • the number of steering angle characteristic lines is not limited to four and can be set to an arbitrary number.
  • the lower link structure can be constituted by a transverse link 81 and a compression link 82 that intersect each other as schematically shown in FIG. 26, for example.
  • the lower link structure may be configured by a transverse link 81 and a tension link 83 that intersect each other.
  • the lower pivot point constituting the kingpin axis can be set as the intersection position of both links. For this reason, the position of the lower pivot point can be made closer to the inside of the steered wheel body. Therefore, it becomes easy to set the kingpin shaft so that it passes through the tire ground contact surface.
  • the suspension device 1B is not limited to the above-described configuration, and suspension devices having other various configurations can be applied. Further, the steering response setting unit 52 can be omitted depending on the configuration of the suspension device 1B.
  • SYMBOLS 1 ... Vehicle, 1A ... Vehicle body, 1B ... Suspension device, 2 ... Steering wheel, 3 ... Input side steering shaft, 4 ... Steering angle sensor, 5 ... Steering torque sensor, 6 ... Steering reaction force actuator, 7 ... Steering reaction force actuator Angle sensor, 8 ... steering actuator, 8a ... steering motor, 9 ... steering actuator angle sensor, 10 ... output-side steering shaft, 11 ... steering torque sensor, 12 ... pinion gear, 13 ... pinion angle sensor, 14 ... rack Axis, 15 ... tie rod, 16 ... tie rod axial force sensor, 17FR, 17FL, 17RR, 17RL ... wheel, 18 ... brake disc, 19 ...
  • wheel cylinder 20 ... pressure control unit, 21 ... vehicle state parameter acquisition unit, 22a ... yaw Angle sensor, 22b ... Yaw rate sensor, 23 ... Drive control device, 24F , 24FL, 24RR, 24RL ... wheel speed sensor, 25R, 25L ... hub lateral force sensor, 26 ... control / drive circuit unit, 27 ... mechanical backup, 32 ... axle, 33 ... axle carrier, 34 ... spring member, 37 ... first 1 link, 38 ... second link, 40 ... shock absorber, 41 ... stabilizer, SBW ... steer-by-wire system, 50 ... steering control unit, 51 ... target turning angle calculation unit, 52 ... steering response setting unit, 53A ... steering state detection unit, 53B ...
  • braking state detection unit 53C ... yaw angle control unit, 53D ... acceleration state detection unit, 53E ... running state detection unit, 53F ... running swing control unit, 53G ... engine brake control Part, 53R ... target rack stroke calculation part, 53Y ... target yaw angle calculation part, 53S ... steering direction determination part, 54 ... actuator Control device 55... Straightness guarantee section 55a ... Straightness complement section 55b ... Disturbance compensation section 55c ... Adder 56 ... Delay control section 56a ... Steering start detection section 56b ... Monostable circuit 56c ... Gain Adjustment unit, 56d ... multiplier, 56e ... adder, 60 ... current deviation calculation unit, 61 ... steering angle deviation calculation unit, 62 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Vehicle Body Suspensions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 車両の旋回制動時の挙動の安定化を操舵制御装置で応答遅れを抑制して適正に行う。操舵制御装置は、ステアリングホイール(2)を操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータ(8a)を制御するステアバイワイヤシステムと、車両のヨー角を検出する車両ヨー角検出部(22a)と、前記ステアリングホイールの操舵角を検出する操舵角検出部(4)と、前記車両のヨー角に基づいて車両旋回状態を検出する旋回状態検出部(53A)と、車両の制動状態を検出する制動状態検出部(53B)と、前記旋回状態検出部(53A)で車両旋回状態を検出し、且つ前記制動状態検出部(53B)で車両の制動状態を検出したときに、制動前後のヨー角偏差を抑制するように前記アクチュエータを制御するヨー角制御部(53C)とを備えている。

Description

操舵制御装置
 本発明は、車両の旋回制動時にヨー角を制御する車両用の操舵制御装置に関する。
 従来、車両用の操舵制御装置では、ステアリングホイールと転舵輪との間の機械的連結を切り離したステアバイワイヤ(SBW)方式を採用することが提案されている。
 このステアバイワイヤを採用した車両では、ステアリングホイールへの操舵入力に基づいて転舵輪を転舵させる操舵トルクを調整可能なアクチュエータを備えている。このアクチュエータは、ステアリングホイールの操舵状態に応じて安定した車両挙動を維持することが要求される。
 例えば、特許文献1に記載の技術では、ステアバイワイヤ制御系で、操舵角に基づいて算出された目標ヨー角と実際値との偏差に基づいて各輪の制動力を演算し、演算された制動力に基づいて各輪の制動力を制御することにより車両挙動を安定させるようにしている。
特開2008-30591号公報
 しかしながら、上記特許文献1に記載された従来技術では、ステアバイワイヤ制御系で、旋回制動時の車両の挙動を各輪の制動力を制御させることにより安定させるようにしているが、各輪の制動力を制御して車両の挙動を安定化するには制動力を発生させるアクチュエータの制動圧を制御する必要があり、圧力制御系で応答遅れを生じる。
 本発明の課題は、車両の旋回制動時の挙動の安定化を操舵制御装置で応答遅れを抑制して適正に行うことである。
 以上の課題を解決するため、本発明に係る操舵制御装置は、旋回走行中に車両の制動状態又は加速状態を検出したときに、制動又は加速前後のヨー角偏差を抑制するように車両のヨー角を油圧制御より高い応答性を有して制御可能なアクチュエータを制御する。このため、車両のヨー角制御の応答性特性を向上させながら旋回制動時のヨー角変化を解消するので、車両挙動を安定化させる応答特性を向上させることができる。
 本発明によれば、車両の旋回制動時又は旋回加速時における制動又は加速前後のヨー角偏差を車両のヨー角を油圧制御より高い応答性を有して制御可能なアクチュエータによって制動前後のヨー角変化を解消するので、応答遅れを抑制して迅速且つ適正に車両の挙動を安定化することができる。
本発明の第1の実施形態に係る自動車を示す概略構成図である。 サスペンション装置の構成を模式的に示す斜視図である。 サスペンション装置の構成を模式的に示す平面図である。 サスペンション装置の構成を模式的に示す部分正面図および部分側面図である。 転舵時におけるラックストロークとラック軸力との関係を示す図である。 転舵時におけるタイヤ接地面中心の軌跡を示す図である。 キングピン傾角とスクラブ半径とを軸とする座標において、ラック軸力の分布の一例を示す等値線図である。 サスペンション装置1Bにおけるラック軸力の解析結果を示す図である。 キングピン軸の路面着点地点と横力との関係を示すグラフである。 ポジティブスクラブとした場合のセルフアライニングトルクを説明する概念図である。 ヨー角制御部の具体的構成を示すブロック図である。 第1の実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 目標ラックストロークとヨー角偏差との関係を示す目標ラックストローク算出マップを示す特性線図である。 サスペンション装置の特性を示す図であって、(a)はキャスター角と応答性および安定性との関係を示す図、(b)はキャスタートレイルと横力低減代および直進性との関係を示す図である。 転舵応答特性を示す図であって、(a)は車両の応答特性の変化を示す特性線図、(b)は制御特性の切換タイミングを示す図である。 第1実施形態の動作の説明に供する図であって、(a)は車両のステア特性を説明する図、(b)は車両の車幅方向への移動を説明する図である。 転舵制御処理の一例を示すフローチャートである。 本発明の第2の実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 本発明の第3の実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 操舵角をパラメータとした車速とヨー角との関係を示す目標ヨー角算出マップを示す特性線図である。 本発明の第4の実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 車速とヨー角との関係を示すラックストローク算出マップを示す特性線図である。 本発明の第5の実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 車速とヨー角との関係を示すラックストローク算出マップを示す特性線図である。 本発明のアクチュエータの他の例を示すブロック図である。 本発明に適用し得るサスペンション装置の他の例を示す模式的平面図である。 本発明に適用し得るサスペンション装置のさらに他の例を示す模式的平面図である。 本発明の第6実施形態に係る自動車を示す概略構成図である。 本発明の第6実施形態におけるヨー角制御部の具体的構成を示すブロック図である。 本発明の第6実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 本発明の第6実施形態に適用し得る操舵角をパラメータとした車速とヨー角との関係を示す目標ヨー角算出マップを示す特性線図である。 本発明の第6実施形態の動作の説明に供する図である。 本発明の第7実施形態に係る自動車を示す概略構成図である。 第7実施形態のヨー角制御部の具体的構成を示すブロック図である。 第7実施形態におけるヨー角制御処理手順の一例を示すフローチャートである。 図35の加速時ヨー角制御処理手順の具体例を示すフローチャートである。 図35の減速時ヨー角制御処理手順の具体例を示すフローチャートである。 目標ラックストロークをパラメータとした車速とヨー角との関係を表す目標値算出マップを示す特性線図であって、車両をオーバーステア化する場合を説明する図である。 目標ラックストロークをパラメータとした車速とヨー角との関係を表す目標値算出マップを示す特性線図であって、車両をアンダーステア化する場合を説明する図である。 ヨー角制御前後でヨー角変化の方向性が変わらない場合の動作の説明に供する説明図である。 ヨー角制御前後でヨー角変化の方向性が変化する場合の動作の説明に供する説明図である。 第7実施形態の動作の説明に供する図である。 本発明の第8実施形態に係る自動車を示す概略構成図である。 第8実施形態の転舵制御部及びのヨー角制御部の具体的構成を示すブロック図である。 第8実施形態における走行時舵角制御処理手順の一例を示すフローチャートである。 図45のヨー角制御処理手順の具体例を示すフローチャートである。 操舵角をパラメータとした車速とハブ横力との関係を表す基準ハブ横力算出マップを示す特性線図であって、車両の旋回走行時にニュートラルステア化する場合を説明する図である。 図47と同様の特性線図であって、車両の直進走行時に走行安定化する場合を説明する図である。
 以下、図を参照して本発明を適用した自動車の実施の形態を説明する。
(第1実施形態)
(全体構成)
 図1は、本発明の第1実施形態に係る車両1の構成を示す概略図である。
 図1において、車両1は、車体1Aと、ステアリングホイール2と、入力側ステアリング軸3と、操舵角検出部としての操舵角センサ4と、操舵トルクセンサ5と、操舵反力アクチュエータ6と、操舵反力アクチュエータ角度センサ7とを備えている。
 また、車両1は、転舵アクチュエータ8と、転舵アクチュエータ角度センサ9と、出力側ステアリング軸10と、転舵トルクセンサ11と、転舵機構を構成するピニオンギヤ12、ピニオン角度センサ13、ラック軸14、タイロッド15、およびタイロッド軸力センサ16と、車輪17FR,17FL,17RR,17RLとを備えている。
 さらに、車両1は、ブレーキディスク18と、ホイールシリンダ19と、圧力制御ユニット20と、車両状態パラメータ取得部21と、車輪速センサ24FR,24FL,24RR,24RLと、コントロール/駆動回路ユニット26と、メカニカルバックアップ27とを備えている。
 ステアリングホイール2は、入力側ステアリング軸3と一体に回転するよう構成され、運転者による操舵入力を入力側ステアリング軸3に伝達する。
 入力側ステアリング軸3は、操舵反力アクチュエータ6を備えており、ステアリングホイール2から入力された操舵入力に対し、操舵反力アクチュエータ6による操舵反力を加える。
 操舵角センサ4は、入力側ステアリング軸3に備えられ、入力側ステアリング軸3の回転角(即ち、運転者によるステアリングホイール2への操舵入力角度)を検出する。そして、操舵角センサ4は、検出した入力側ステアリング軸3の回転角をコントロール/駆動回路ユニット26に出力する。
 操舵トルクセンサ5は、入力側ステアリング軸3に設置してあり、入力側ステアリング軸3の回転トルク(即ち、ステアリングホイール2への操舵入力トルク)を検出する。そして、操舵トルクセンサ5は、検出した入力側ステアリング軸3の回転トルクをコントロール/駆動回路ユニット26に出力する。
 操舵反力アクチュエータ6は、モータ軸と一体に回転するギヤが入力側ステアリング軸3の一部に形成されたギヤに噛合しており、コントロール/駆動回路ユニット26の指示に従って、ステアリングホイール2による入力側ステアリング軸3の回転に対して反力を付与する。
 操舵反力アクチュエータ角度センサ7は、操舵反力アクチュエータ6の回転角(即ち、操舵反力アクチュエータ6に伝達した操舵入力による回転角)を検出し、検出した回転角をコントロール/駆動回路ユニット26に出力する。
 転舵アクチュエータ8は、モータ軸と一体に回転するギヤが出力側ステアリング軸10の一部に形成されたギヤに噛合しており、コントロール/駆動回路ユニット26の指示に従って、出力側ステアリング軸10を回転させる。
 転舵アクチュエータ角度センサ9は、転舵アクチュエータ8の回転角(即ち、転舵アクチュエータ8が出力した転舵のための回転角)を検出し、検出した回転角をコントロール/駆動回路ユニット26に出力する。
 出力側ステアリング軸10は、転舵アクチュエータ8を備えており、転舵アクチュエータ8が入力した回転をピニオンギヤ12に伝達する。
 転舵トルクセンサ11は、出力側ステアリング軸10に設置してあり、出力側ステアリング軸10の回転トルク(即ち、ラック軸14を介した車輪17FR,17FLの転舵トルク)を検出する。そして、転舵トルクセンサ11は、検出した出力側ステアリング軸10の回転トルクをコントロール/駆動回路ユニット26に出力する。
 ピニオンギヤ12は、ラック軸14に形成したラックギヤと噛合しており、出力側ステアリング軸10から入力した回転をラック軸14に伝達する。
 ピニオン角度センサ13は、ピニオンギヤ12の回転角(即ち、ラック軸14を介して出力される車輪17FR,17FLの転舵角度)を検出し、検出したピニオンギヤ12の回転角をコントロール/駆動回路ユニット26に出力する。
 ラック軸14は、ピニオンギヤ12と噛合する平歯を有し、ピニオンギヤ12の回転を車幅方向の直線運動に変換する。
 タイロッド15は、ラック軸14の両端部と車輪17FR,17FLのナックルアームとを、ボールジョイントを介してそれぞれ連結している。
 タイロッド軸力センサ16は、ラック軸14の両端部に設置されたタイロッド15それぞれに設置してあり、タイロッド15に作用している軸力を検出する。そして、タイロッド軸力センサ16は、検出したタイロッド15の軸力をコントロール/駆動回路ユニット26に出力する。
 車輪17FR,17FL,17RR,17RLは、タイヤホイールにタイヤを取り付けて構成したものであり、サスペンション装置1Bを介して車体1Aに設置してある。これらのうち、前輪(転舵輪17FR,17FL)は、タイロッド15によってナックルアームが揺動することにより、車体1Aに対する転舵輪17FR,17FLの向きが変化する。
 また、車両1には車両1のヨー角ψを検出するヨー角センサ22aが設けられ、このヨー角センサ22aで検出したヨー角ψをコントロール/駆動回路ユニット26に出力する。さらに、車両1には車両1のヨーレートγを検出するヨーレートセンサ22bが設けられ、このヨーレートセンサ22bで検出したヨーレートγをコントロール/駆動回路ユニット26に出力する。
 車両状態パラメータ取得部21は、車輪速センサ24FR,24FL,24RR,24RLから出力される車輪の回転速度を示すパルス信号を基に車速Vを取得する。また、車両状態パラメータ取得部21は、車速Vと各車輪の回転速度とを基に、各車輪のスリップ率を取得する。そして、車両状態パラメータ取得部21は、取得した各パラメータをコントロール/駆動回路ユニット26に出力する。
 車輪速センサ24FR,24FL,24RR,24RLは、各車輪の回転速度を示すパルス信号を、車両状態パラメータ取得部21およびコントロール/駆動回路ユニット26に出力する。
 コントロール/駆動回路ユニット26は、車両1全体を制御するものであり、各部に設置したセンサから入力する信号を基に、入力側ステアリング軸3の操舵反力、前輪の転舵角、あるいはメカニカルバックアップ27の連結について、各種制御信号を、操舵反力アクチュエータ6、転舵アクチュエータ8、あるいはメカニカルバックアップ27等に出力する。
 また、コントロール/駆動回路ユニット26は、各センサによる検出値を使用目的に応じた値に換算する。例えば、コントロール/駆動回路ユニット26は、操舵反力アクチュエータ角度センサ7によって検出された回転角を操舵角θsに換算したり、転舵アクチュエータ角度センサ9によって検出された回転角を転舵輪17FR,17FLの転舵角δdに換算したり、ピニオン角度センサ13によって検出されたピニオンギヤ12の回転角を転舵輪17FR,17FLの実転舵角δrに換算したりする。
 なお、コントロール/駆動回路ユニット26は、操舵角センサ4によって検出された入力側ステアリング軸3の回転角、操舵反力アクチュエータ角度センサ7によって検出された操舵反力アクチュエータ6の回転角、転舵アクチュエータ角度センサ9によって検出された転舵アクチュエータ8の回転角、および、ピニオン角度センサ13によって検出されたピニオンギヤ12の回転角を監視し、これらの関係を基に、操舵系統におけるフェールの発生を検出することができる。そして、操舵系統におけるフェールを検出すると、コントロール/駆動回路ユニット26は、メカニカルバックアップ27に対し、入力側ステアリング軸3と出力側ステアリング軸10とを連結させる指示信号を出力する。
 メカニカルバックアップ27は、コントロール/駆動回路ユニット26の指示に従って、入力側ステアリング軸3と出力側ステアリング軸10とを連結し、入力側ステアリング軸3から出力側ステアリング軸10への力の伝達を確保する機構である。ここで、メカニカルバックアップ27に対しては、通常時には、コントロール/駆動回路ユニット26から、入力側ステアリング軸3と出力側ステアリング軸10とを連結しない状態を指示している。そして、操舵系統におけるフェールの発生により、操舵角センサ4、操舵トルクセンサ5および転舵アクチュエータ8等を介することなく操舵操作を行う必要が生じた場合に、入力側ステアリング軸3と出力側ステアリング軸10とを連結させる指示が入力する。
 なお、メカニカルバックアップ27は、例えばケーブル式ステアリング機構や電磁クラッチ機構等によって構成することができる。
(サスペンション構成)
 図2は、第1実施形態に係るサスペンション装置1Bの構成を模式的に示す斜視図である。図3は、図2のサスペンション装置1Bの構成を模式的に示す平面図である。図4は、図2のサスペンション装置1Bの構成を模式的に示す(a)部分正面図および(b)部分側面図である。
 図2から図4に示すように、サスペンション装置1Bは、ホイールハブWHに取り付けられた車輪17FR,17FLを懸架しており、車輪17FR,17FLを回転自在に支持する車軸(アクスル)32を有するアクスルキャリア33、車体側の支持部から車体幅方向に配置されてアクスルキャリア33に連結する複数のリンク部材、およびコイルスプリング等のバネ部材34を備えている。
 複数のリンク部材は、ロアリンク部材である第1リンク(第1リンク部材)37と第2リンク(第2リンク部材)38、タイロッド(タイロッド部材)15、および、ストラット(バネ部材34およびショックアブソーバ40)から構成されている。本実施形態において、サスペンション装置1Bはストラット式のサスペンションであり、バネ部材34およびショックアブソーバ40が一体となったストラットSTの上端が、車軸32より上方に位置する車体側の支持部に連結する(以下、ストラットの上端を適宜「アッパーピボット点P1」と称する。)。ロアアームを構成する第1リンク37と第2リンク38は、車軸32より下方に位置する車体側の支持部とアクスルキャリア33の下端を連結する。このロアアームは、車体側と2箇所で支持され、車軸32側と1箇所で連結されるAアーム形状を有している(以下、ロアアームとアクスル部材33との連結部を適宜「ロアピボット点P2」と称する。)。
 そして、左右のショックアブソーバ40の外筒間にスタビライザ41が連結されている。このスタビライザ41は、車両後方側の直線部41aが車体側部材に固定されたブラケット42によって回動可能に支持されている。
 タイロッド15は、車軸32の下側に位置して、ラック軸14とアクスル部材33を連結し、ラック軸14は、ステアリングホイール2からの回転力(操舵力)が伝達されて転舵用の軸力を発生させる。従って、タイロッド15により、ステアリングホイール2の回転に応じてアクスル部材33に車幅方向の軸力が加えられ、アクスル部材33を介して転舵輪17FR,17FLが転舵される。
 本願発明においては、ステアリングホイール2の中立位置すなわち転舵輪17FLおよび17FRが直進走行状態となっている状態で、上記サスペンション装置1Bのアッパーピボット点P1およびロアピボット点P2を結ぶキングピン軸KSを、キングピン軸KSの路面接地点がタイヤ接地面内に位置するようにしている。また、キャスタートレイルがタイヤ接地面内に位置するよう設定している。
 より具体的には、本実施形態におけるサスペンション装置1Bでは、キャスター角をゼロに近い値とし、キャスタートレイルがゼロに近づくようにキングピン軸KSを設定している。これにより、転舵時のタイヤ捻りトルクを低減でき、キングピン軸KS周りのモーメントをより小さくすることができる。また、スクラブ半径はゼロ以上のポジティブスクラブとしている。これにより、転舵時のタイヤ横滑り角に対し、スクラブ半径分のキャスタートレイルが生じることから、直進性を確保することができる。
 図5は、本実施形態に係るサスペンション装置1Bにおけるラック軸力の解析結果を示す図である。
 図5に示す実線は、図2~4に示すサスペンション構造において、キャスター角0度、キャスタートレイル0mm、スクラブ半径+10mmに設定した場合のラック軸力特性を示している。
 なお、図5においては、サスペンション装置1Bと同方式の懸架構造で、キングピン軸KSに関する設定をステアバイワイヤ方式の操舵装置を備えていない構造に合わせて設定したときの比較例(破線)を併せて示している。
 図5に示すように、上記検討結果に従って設定すると、ラック軸力は比較例に対し約30%低減することができる。
 このように、キャスター角を0度とすることは、サスペンション剛性を向上させることができ、また、キャスタートレイル0mmとすることは、図6において符号3で示すように、キングピン軸KSの路面着地点がタイヤ接地面におけるタイヤ接地中心点に一致させることを意味し、これにより横力低減効果を向上させることができる。
(ポジティブスクラブによる直進性確保)
 図10は、ポジティブスクラブとした場合のセルフアライニングトルクを説明する概念図である。
 図10に示すように、タイヤに働く復元力(セルフアライニングトルク)は、キャスタートレイル、ニューマチックトレイルの和に比例して大きくなる。
 ここで、ポジティブスクラブの場合、キングピン軸の接地点から、タイヤ接地中心を通るタイヤの横すべり角β方向の直線に下ろした垂線の足の位置によって定まるホイールセンタからの距離εc(図10参照)をキャスタートレイルとみなすことができる。
 そのため、ポジティブスクラブのスクラブ半径が大きければ大きいほど、転舵時にタイヤに働く復元力は大きくなる。
 本実施形態においては、キャスター角を0に近づけることによる直進性への影響を、ポジティブスクラブとすることで低減するものである。また、ステアバイワイヤ方式を採用していることから、転舵アクチュエータ8によって最終的に目的とする直進性を確保することができる。
(サスペンション設計例)
 図2~4に示すサスペンション装置1Bの構成において、上記検討結果に従い、キングピン傾角13.8度、キャスタートレイル0mm、スクラブ半径5.4mm(ポジティブスクラブ)、キャスター角5.2度、ホイールセンタの高さにおけるキングピンオフセット86mmとした場合、ラック軸力を約30%低減できる。
 上記設計値については、制動時に、サスペンションロアリンクが車両後方へ移動し、このときキングピン下端も同様に車両後方へ移動するため、キャスター角は一定の後傾をとることとしたものである。ちなみに、キャスター角0度以下の場合(キングピン軸が前傾している場合)、転舵制動時ラックモーメントが大きくなるため、ラック軸力が増大する。したがって、キングピンの位置を上記のように規定する。
 即ち、キングピンロアピボット点(仮想ピボットも含む)はホイールセンタ後方、キングピンアッパーピボット点(仮想ピボットも含む)はロアピボット点後方に位置する構成とする。
(サスペンションの作用)
 次に、本実施形態に係るサスペンション装置1Bの作用について説明する。
 本実施形態に係るサスペンション装置1Bでは、少なくともステアリングホイール2の中立位置で、キングピン軸KSの路面接地点がタイヤ接地面内に位置する設定としている。また、キャスタートレイルがタイヤ接地面内に位置する設定としている。
 例えば、キングピン軸KSの設定を、キャスター角0度、キャスタートレイル0mm、スクラブ半径0mm以上のポジティブスクラブとしている。また、キングピン傾角については、スクラブ半径をポジティブスクラブとできる範囲で、より小さい角度となる範囲(例えば15度以下)で設定する。
 このようなサスペンションジオメトリとすることにより、転舵時におけるタイヤ接地面中心の軌跡がより小さいものとなり、タイヤ捻りトルクを低減できる。
 そのため、ラック軸力をより小さいものとすることができることから、キングピン軸KS周りのモーメントをより小さくでき、転舵アクチュエータ8の出力を低減することができる。また、より小さい力で車輪の向きを制御できる。即ち、操縦性・安定性の向上を図ることができる。
 また、キャスター角を0度、キャスタートレイルを0mmとしたことに伴い、サスペンション構造上の直進性に影響が生じる可能性があるところ、ポジティブスクラブに設定することにより、その影響を軽減している。さらに、転舵アクチュエータ8による制御と併せて、直進性を確保している。即ち、操縦性・安定性の向上を図ることができる。
 また、キングピン傾角を一定の範囲(15度以下)に制限したことに対しては、転舵アクチュエータ8での転舵を行うことにより、運転者が操舵操作に重さを感じることを回避できる。また、路面からの外力によるキックバックについても、転舵アクチュエータ8によって外力に対抗できるため、運転者への影響を回避できる。即ち、操縦性・安定性の向上を図ることができる。
 以下、サスペンション装置1Bにおけるサスペンションジオメトリについて詳細に検討する。
(ラック軸力成分の分析)
 図5は、転舵時におけるラックストロークとラック軸力との関係を示す図である。
 図5に示すように、ラック軸力成分には、主にタイヤの捻りトルクと、車輪の持ち上げトルクとが含まれ、これらのうち、タイヤの捻りトルクが支配的である。
 したがって、タイヤの捻りトルクを小さくすることで、ラック軸力を低減することができることとなる。
(タイヤの捻りトルク最小化)
 図6は、転舵時におけるタイヤ接地面中心の軌跡を示す図である。
 図6においては、転舵時におけるタイヤ接地面中心の移動量が大きい場合と小さい場合とを併せて示している。
 上記ラック軸力成分の分析結果より、ラック軸力を低減するためには、転舵時のタイヤ捻りトルクを最小化することが有効である。
 転舵時のタイヤ捻りトルクを最小化するためには、図6に示すように、タイヤ接地面中心の軌跡の変化をより小さくすれば良い。
 即ち、タイヤ接地面中心とキングピン接地点を一致させることで、タイヤ捩りトルクを最小化できる。
 具体的には、後述するようにキャスタートレイル0mm、スクラブ半径0mm以上のポジティスクラブとすることが有効である。
(キングピン傾角の影響)
 図7は、キングピン傾角とスクラブ半径とを軸とする座標において、ラック軸力の分布の一例を示す等値線図である。
 図7においては、ラック軸力が小、中および大の3つの場合における等値線を例として示している。
 タイヤ捻りトルク入力に対し、キングピン傾角が大きくなるほど、その回転モーメントが大きくなり、ラック軸力は大きくなる。したがって、キングピン傾角としては、一定の値より小さく設定することが望まれるが、スクラブ半径との関係から、例えばキングピン傾角15度以下とすると、ラック軸力を望ましいレベルまで小さくすることができる。
 なお、図7における一点鎖線(境界線)で囲んだ領域は、旋回の限界領域において、横力が摩擦の限界を超える値と推定できるキングピン傾角15度より小さく、かつ、上記タイヤ捻りトルクの観点から、スクラブ半径が0mm以上の領域を示している。本実施形態では、この領域(横軸においてキングピン傾角が15度より減少する方向で、縦軸においてスクラブ半径がゼロより増加する方向)を、より設定に適した領域としている。
 具体的にスクラブ半径とキングピン傾角とを決定する場合には、例えば、図7に示すラック軸力の分布を示す等値線をn次曲線(nは2以上の整数)として近似し、上記一点鎖線で囲んだ領域の中から、n次曲線の変曲点(またはピーク値)の位置によって定めた値を採用することができる。
(ラック軸力の最小化例)
 図8は、本実施形態に係るサスペンション装置1Bにおけるラック軸力の解析結果を示す図である。
 図8に示す実線は、図2~4に示すサスペンション構造において、キャスター角0度、キャスタートレイル0mm、スクラブ半径+10mmに設定した場合のラック軸力特性を示している。
 なお、図8においては、サスペンション装置1Bと同方式の懸架構造で、キングピン軸に関する設定をステアバイワイヤ方式の操舵装置を備えていない構造に合わせて設定したときの比較例(破線)を併せて示している。
 図8に示すように、上記検討結果に従って設定すると、ラック軸力は比較例に対し約30%低減することができる。
 このように、キャスター角を0度とすることは、サスペンション剛性を向上させることができ、また、キャスタートレイル0mmとすることは、キングピン軸KSの路面着地点と横力との関係を示す図9において符号3で示すように、キングピン軸KSの路面着地点がタイヤ接地面におけるタイヤ接地中心点(着力点)Oに一致させることを意味し、これにより大きな横力低減効果を向上させることができる。
 なお、タイヤ接地中心点(着力点)Oを含むタイヤ接地面内のキングピン軸KSの接地点が符号2および符号4である場合にも、キングピン軸KSの接地点が符号1および符号5で示すようにタイヤ接地面から前後方向に外れた位置とする場合に比較して横力を小さくすることができる。特に、キングピン軸KSの接地点がタイヤ接地中心点(着力点)より車両前方側とした場合の方がタイヤ接地中心点(着力点)より車両後方とした場合に比較して横力を小さく抑制することができる。
(ポジティブスクラブによる直進性確保)
 図10は、ポジティブスクラブとした場合のセルフアライニングトルクを説明する概念図である。この図10において、転舵時にタイヤ接地中心点(着力点)Oに車体の旋回外側に向かう遠心力が作用すると、この遠心力に抗するように旋回中心に向かう横力が発生する。なお、βは横すべり角である。
 図10に示すように、タイヤに働く復元力(セルフアライニングトルク)は、キャスタートレイル、ニューマチックトレイルの和に比例して大きくなる。
 ここで、ポジティブスクラブの場合、キングピン軸の接地点から、タイヤ中心を通るタイヤの横すべり角β方向の直線に下ろした垂線の足の位置によって定まるホイールセンタからの距離εc(図10参照)をキャスタートレイルとみなすことができる。
 そのため、ポジティブスクラブのスクラブ半径が大きければ大きいほど、転舵時にタイヤに働く復元力は大きくなる。
 本実施形態においては、キャスター角を0に近づけることによる直進性への影響を、ポジティブスクラブとすることで低減するものである。
(サスペンション設計例)
 本出願人によれば、図2~4に示すサスペンション装置1Bの構成において、上記検討結果に従い、キングピン傾角13.8度、キャスタートレイル0mm、スクラブ半径5.4mm(ポジティブスクラブ)、キャスター角5.2度、ホイールセンタの高さにおけるキングピンオフセット86mmとした場合、ラック軸力を約30%低減できることを確認している。
 上記設計値については、制動時に、サスペンションロアリンクが車両後方へ移動し、このときキングピン下端も同様に車両後方へ移動するため、キャスター角は一定の後傾をとることとしたものである。ちなみに、キャスター角0度以下の場合(キングピン軸KSが前傾している場合)、転舵制動時ラックモーメントが大きくなるため、ラック軸力が増大する。したがって、キングピン軸KSの位置を上記のように規定する。
 即ち、キングピンロアピボット点(仮想ピボットも含む)はホイールセンタ後方、キングピンアッパーピボット点(仮想ピボットも含む)はロアピボット点前方に位置する構成とする。
(転舵制御)
 次に、転舵アクチュエータ8を制御するコントロール/駆動回路ユニット26における操舵応答性制御について図11~図15を伴って説明する。
 すなわち、コントロール/駆動回路ユニット26には、前述したように、トルクセンサ5で検出する入力側ステアリング軸3の操舵トルクTsと、車両状態パラメータ取得部21で取得した車速Vと、操舵反力アクチュエータ角度センサ7で検出したアクチュエータ6の回転角θmiとが入力されている。
 このコントロール/駆動回路ユニット26には、図11に示す転舵制御部50が設けられている。この転舵制御部50は、目標転舵角演算部51、転舵応答性設定部52、旋回状態検出部53A、制動状態検出部53B、ヨー角制御部53Cおよびアクチュエータ制御装置54を備えている。
 目標転舵角演算部51は、車速Vおよび回転角θmiが入力され、これらに基づいて転舵アクチュエータ8を駆動するための目標転舵角δを算出する。
 転舵応答性設定部52は、直進性担保部55と遅延制御部56とを備えている。
 直進性担保部55は、直進性補完部55aと外乱補償部55bとを備えている。
 直進性補完部55aは、車速Vと、ピニオン角度センサ13で検出したピニオン角度に基づいて算出される転舵輪17FR,17FLの実転舵角δrと、ヨーレートセンサ22bで検出したヨーレートγに基づいて下記(1)式の演算を行ってセルフアライニングトルクTsaを算出し、算出したセルフアライニングトルクTsaに所定ゲインKsaを乗算して直進性補正値としてのセルフアライニングトルク制御値Asa(=Ksa・Tsa)を算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、εcはキャスタートレイル、Kfは前輪1輪当たりのコーナリングパワー、βは重心点滑り角、Lfは重心点前輪軸間距離、Krは後輪1輪当たりのコーナリングパワー、Lrは重心点後輪軸間距離、mは車両の質量、Lは前輪後輪軸間距離である。
 この(1)式において、キャスタートレイルεを通常のサスペンション装置で設定されるキャスタートレイルεc0から本実施形態で設定するキャスタートレイルεc2を減算した値に設定することにより、本発明に適用するサスペンション装置1Bで不足する補完すべきセルフアライニングトルクTsaを算出することができる。
 なお、セルフアライニングトルクTsaは、上記(1)式によって算出する場合に限らず、車両の横加速度Gyを検出する横加速度センサを設け、車両の横加速度Gyと車両のヨーレートγとに基づいて車両の運動方程式に基づいてヨーレートγの微分値と横加速度Gyとに基づいて横力Fyを算出し、この横力Fyにニューマチックトレイルεnを乗算することにより、算出することができる。
 さらには、ステアリングホイール2の操舵角θsと、セルフアライニングトルクTsaとの関係を、車速Vをパラメータとして実測するか又はシミュレーションによって算出した制御マップを参照して操舵角センサ4で検出した操舵角θsと車速Vとに基づいてセルフアライニングトルクTsaを算出することもできる。
 また、転舵輪17FR,17FLを駆動輪とする場合には、左右の駆動力差に基づいてトルクステア現象で転舵時に発生する発生トルクThを推定し、操舵トルクセンサ5で検出した操舵トルクTsから発生トルクThを減じてセルフアライニングトルクTsaを算出することもできる。同様に、左右の転舵輪17FR,17FLの制動力差に基づいてセルフアライニングトルクTsaを算出することができる。
 外乱補償部55bは、操舵トルクセンサ5からの操舵トルクTs、転舵アクチュエータ角度センサ9からの回転角θmo、およびモータ電流検出部64からのモータ電流imrが入力され、車両に入力される外乱を周波数帯域毎に分離してそれぞれ推定し、これらの外乱を抑制するための外乱補償値Adisを算出する。
 この外乱補償部55bでは、例えば特開平2007-237840号公報に記載されているように、運転者による操舵入力である操舵トルクTsと転舵アクチュエータ8による転舵入力を制御入力とし、実際の操舵状態量を制御量とするモデルにおいて、前記制御入力をローパスフィルタに通した値と、前記制御量を前記モデルの逆特性と前記ローパスフィルタとに通した値との差に基づいて外乱を推定する複数の外乱推定部を有する。各外乱推定部は、ローパスフィルタのカットオフ周波数を異ならせることにより、外乱を複数の周波数帯域毎に分離する。
 そして、外乱補償部55bおよび直進性補完部55aで算出された外乱補償値Adisおよびセルフアライニングトルク制御値Asaが加算器55cで加算され直進性担保制御値δaを算出する。この直進性担保制御値δaは、遅延制御部56に供給される。
 遅延制御部56は、図11に示すように、操舵開始検出部56a、単安定回路56b、ゲイン調整部56cおよび乗算器56dを有する。
 操舵開始検出部56aは、操舵角センサ4で検出した操舵角θsに基づいて中立位置を維持する状態から右操舵又は左操舵したタイミングを検出して中立状態からの操舵開始を表す操舵開始信号SSを単安定回路56bに出力する。
 また、単安定回路56bは操舵開始検出部56aから出力される操舵開始信号に基づいて所定の遅延時間τ(例えば0.1秒)の間オン状態となる制御開始遅延信号をゲイン調整部56cに出力する。
 ゲイン調整部56cは、制御開始遅延信号がオン状態であるときに、制御ゲインGaを“0”に設定し、制御開始遅延信号がオフ状態であるときに制御ゲインGaを“1”に設定し、設定した制御ゲインGaを乗算器56dに出力する。
 乗算器56dでは、直進性担保部55から出力される直進性担保制御値δaが入力され、この直進性担保制御値δaに制御ゲインGaを乗算し、乗算結果を目標転舵角演算部51からの目標転舵角δが入力された加算器56eに供給する。
 したがって、遅延制御部56では、操舵開始検出部56aで中立状態を維持している状態から右操舵又は左操舵を行った操舵開始状態を検出したときに、直進性担保部55で算出された直進性担保制御値δaを目標転舵角δに加算する直進性担保制御を単安定回路56bで設定される所定時間例えば0.1秒間停止させるようにゲイン調整部56cで、直進性担保制御値δaに乗算する制御ゲインGaを“0”に設定する。そして、ゲイン調整部56cでは、0.1秒経過後に単安定回路56bの出力信号がオフ状態に反転すると、ゲイン調整部56cで、直進性担保制御値δaを目標転舵角δに加算する直進性担保制御を開始するように制御ゲインGaを“1”に設定する。
 また、遅延制御部56は、ステアリングホイール2の操舵が継続されているときには、操舵開始検出部56aで中立状態からの操舵開始を検出しないので、単安定回路56bの出力がオフ状態を維持することにより、ゲイン調整部56cで制御ゲインGaが“1”に設定される。このため、直進性担保部55で演算された直進性担保制御値δaをそのまま加算器56eに供給する。このため、目標転舵角δに直進性担保制御値δaが加算されて直進性担保制御が行われる。
 さらに、旋回状態検出部53Aは、ヨー角検出部としてのヨー角センサ22aで検出したヨー角ψが入力され、このヨー角ψが予め設定した設定値ψsを超えたときに旋回状態と判定する。制動状態検出部53Bは、圧力制御ユニット20へ出力される制動指令信号Sbが入力され、この制動指令信号Sbがオン状態であるときに制動状態と判定する。
 また、ヨー角制御部53Cには、旋回状態検出部53Aおよび制動状態検出部53Bの判定結果が入力されるとともに、ヨー角センサ22aで検出したヨー角ψ、操舵角センサ4で検出した操舵角θs、車両状態パラメータ取得部21で算出した車速Vが入力されている。このヨー角制御部53Cでは、車両の旋回走行中に、制動状態となったときに、制動の前後のヨー角を一致させるようにヨー角制御処理を実行する。
 このヨー角制御処理は、所定時間(例えば1μsec)毎に実行されるタイマ割込処理として実行され、旋回状態検出部53Aおよび制動状態検出部53Bの処理を含めて表すと、図12に示すようになる。
 このヨー角制御処理では、まず、ステップS1でヨー角センサ22aによって検出したヨー角ψ1を読込み、このヨー角ψ1をヨー角記憶部53bに記憶する。
 次いで、ステップS2に移行して、読込んだヨー角ψ1の絶対値が零近傍の閾値ψs超えて車両が旋回状態であるか否かを判定し、ψ1≦ψsであるときには車両が旋回状態ではないと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 一方、ステップS2の判定結果が、ψ1>ψsであるときには車両が旋回状態であると判断してステップS3に移行し、操舵角センサ4で検出した操舵角θs1を読込み、この操舵角θs1を操舵角記憶部53aに記憶してからステップS4に移行する。
 このステップS4では、コントロール/駆動ユニット26内に搭載された制動装置からホイールシリンダ19を作動させる制動状態を表すオン状態の制動指令信号Sbが入力されているか否かを判定し、制動指令信号Sbがオフ状態であるときに制動状態ではないと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰し、制動指令信号Sbがオン状態であるときには車両が制動状態であると判断してステップS5に移行する。
 このステップS5では、操舵角センサ4で検出した制動後操舵角θs2を読込み、次いでステップS6に移行してヨー角センサ22aで検出した制動時ヨー角ψ2を読込んでからステップS7に移行する。
 このステップS7では、操舵角記憶部53aに記憶されている制動前操舵角θs1を読出し、制動前操舵角θs1から制動後操舵角θs2を減算した値の絶対値が零近傍の操舵角θss未満であるか否かを判定し、|θs1-θs2|≦θssであるときには運転者がステアリングホイール2を操舵して切増しまたは切り戻しを行っていない保舵状態にあるものと判断してステップS8に移行する。
 このステップS8では、ヨー角記憶部53bに記憶されている旋回前ヨー角ψ1を読出し、制動後ヨー角ψ2から旋回前ヨー角ψ1を減算してヨー角偏差Δψ(=ψ2-ψ1)を算出してからステップS9に移行する。
 このステップS9では、ヨー角偏差Δψをもとに図13に示す目標ラックストローク算出マップを参照してヨー角偏差Δψを解消するために必要なトー角を発生させる目標転舵量としての目標ラックストロークRsを算出する。ここで、目標ラックストローク算出マップは図13に示すように、横軸に目標ラックストロークRsをとり、縦軸にヨー角偏差(ψ2-ψ1)をとり、ヨー角偏差(ψ2-ψ1)が零から正方向に増加するとこれに応じて目標ラックストロークRsも正方向に増加し、ヨー角偏差Δψが零から負方向に増加するとこれに応じて目標ラックストロークRsも負方向に増加する特性線Lrが設定されている。
 次いで、ステップS10に移行して、算出した目標ラックストロークRsを転舵アクチュエータ8で発生させる目標転舵角δに対する転舵角補正値δtaに変換し、次いでステップS11に移行して、転舵角補正値δtaを目標転舵角δに加算してからステップS12に移行する。
 このステップS12では、ヨー角センサ22aで検出したヨー角制御後ヨー角ψ3を読込んでからステップS13に移行して、ヨー角記憶部53bに記憶されている旋回開始時ヨー角ψ1を読込み、この旋回開始時ヨー角ψ1からヨー角制御後ヨー角ψ3を減算した値の絶対値が零近傍の設定値Δψs未満であるか否かを判定する。この判定結果が、|ψ1-ψ3|≧Δψsであるときに旋回制動前後のヨー角偏差が解消していないものと判断して前記ステップS4へ戻り、|ψ1-ψ3|<Δψsであるときには旋回制動前後のヨー角偏差が解消したものと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 また、前記ステップS7の判定結果が|θs1-θs2|>θssであるときには、運転者がステアリングホイール2を切増し方向または切り戻し方向に操舵しているものと判断してラックストローク制御を行うことなく前記ステップS12へジャンプする。
 この図12のヨー角制御処理において、ステップS1およびS2の処理が旋回状態検出部53Aに対応し、ステップS4の処理が制動状態検出部53Bに対応し、ステップS1、ステップS3およびステップS5~ステップS13の処理がヨー角制御部53Cに対応している。
 アクチュエータ制御装置54は、転舵角偏差Δδを算出する転舵角偏差演算部61と、転舵モータ制御部62と、電流偏差演算部63とモータ電流制御部65とを備えている。
 転舵角偏差演算部61は、加算器56eから出力される目標舵角補正値δaから転舵アクチュエータ角度センサ9から出力される転舵アクチュエータ角度に基づく実転舵角δrを減算して舵角偏差Δδを算出し、算出した舵角偏差Δδを転舵モータ制御部62に出力する。
 転舵モータ制御部62は、入力される転舵角偏差Δδが零となるようにアクチュエータ8を構成する転舵モータ8aの駆動指令電流imを算出し、算出した駆動指令電流imを電流偏差演算部63に出力する。
 電流偏差演算部63は、入力される駆動指令電流imから転舵アクチュエータ8を構成する転舵モータ8aに供給するモータ電流を検出するモータ電流検出部64から出力されるモータ電流imrを減算して電流偏差Δiを算出し、算出した電流偏差Δiをモータ電流制御部65に出力する。
 モータ電流制御部65は、入力される電流偏差Δiが零となるように、すなわち、実際のモータ電流imrが駆動指令電流imに追従するようにフィードバック制御し、転舵モータ駆動電流imrを転舵モータ8aに出力する。
(第1の実施形態の動作)
 次に、上記第1の実施形態の動作を図14および図15を伴って説明する。
 今、ステアリングホイール2を中立位置に保持して直進走行しているものとする。
 この直進走行状態では、目標転舵角演算部51で演算される目標転舵角δが零となる。このため、アクチュエータ制御装置54で制御される転舵モータ8aによって、ラック軸14が中立位置に制御され、タイロッド15を介して転舵輪17FRおよび17FLの転舵角δrが零に制御される。このとき、ステアリングホイール2が中立位置を保持しているので、ヨー角センサ22aで検出される車両のヨー角ψ1は零であり、直進性補完部55aで前記(1)式に従って算出されるセルフアライニングトルクTsaは、転舵角δrが零であることにより重心点横滑り角βが零となり、ヨーレートγも零であるので、零となる。
 外乱補償部55bでは、外乱を抑制する外乱補償値Adisが算出されるので、この外乱を生じていないときには外乱補償値Adisも零となる。
 さらに、ヨー角制御部53Cでは、車両が直進走行状態であり、旋回状態ではなくヨー角ψ1が零であるので、車両の旋回走行状態と判断されることはなく、ラックストロークを補正するラックストローク制御も行われず、目標転舵角δに補正値δa,δtaを加算した目標転舵角補正値δaも零となる。
 したがって、アクチュエータ制御装置54の転舵角偏差演算部61から出力される転舵角偏差Δδも零となり、転舵モータ制御部62から出力されるモータ電流指令値imも零となる。このためモータ電流制御部65からモータ電流imtは出力されず、転舵モータ8aは停止状態を維持し、ラック軸14が中立位置を維持して転舵輪17FRおよび17FLの転舵角δtが“0”に制御される。
 この直進走行状態で、転舵輪17FRおよび17FLの少なくとも一方が轍にはまったり、マンホールの蓋を通過したりして転舵輪17FRおよび17FLの一方が転舵されたり、ヨー角が発生したりすると、直進性補完部55aで算出されるセルフアライニングトルクTsaが増加する。このとき、前述したサスペンション装置1Bのようにステアリングホイール2が中立位置にある状態でキングピン軸KSがタイヤ接地面を通るように設定して転舵応答性を向上させた場合には、サスペンション装置1B自体で発生するセルフアライニングトルクTsaが不足することになる。
 しかしながら、本実施形態では、前述した(1)式に基づいてセルフアライニングトルクを算出するので、この(1)式におけるキャスタートレイルεcを通常のサスペンション装置と同様の値に設定しておくことにより、算出されるセルフアライニングトルクTsaはキャスタートレイルεcに対応した値を算出することができる。そして、算出したセルフアライニングトルクTsaにゲインKsaを乗算して、直進性補正値Asaを算出し、この直進性補正値Asaを遅延制御部56に供給する。
 このとき、遅延制御部56では直進走行状態であるので操舵開始検出部56aで操舵開始を検出することはなくゲイン調整部56cでゲインGaが“1”に設定されているので、直進性補正値Asaがそのまま加算器56eに供給される。このため、目標転舵角δが直進性補正値Asaで補正されることにより、アクチュエータ制御装置54で転舵アクチュエータ8を構成する転舵モータ8aが駆動制御されて、セルフアライニングトルクTsaに相当する転舵トルクを発生させ、これがラック軸14およびタイロッド15を介して転舵輪17FRおよび17FLに伝達される。
 このため、転舵輪17FRおよび17FLでセルフアライニングトルクTsaを発生させて、サスペンション装置1へのセルフアライニングトルク不足を補完して車両の直進性を担保することができる。
 ところが、ステアリングホイール2を中立位置に保持した直進走行状態を維持している状態からステアリングホイール2を右(又は左)に操舵する状態となると、この直進走行状態からの操舵による旋回状態への移行が操舵開始検出部56aで検出される。
 このため、単安定回路56bから所定時間例えば0.1秒間オン状態となる制御遅延信号がゲイン調整部56cに出力される。したがって、ゲイン調整部56cで、制御遅延信号がオン状態を継続している間制御ゲインGaが“0”に設定される。このため、乗算器56dから出力される乗算出力は“0”となり、直進性担保制御値δaの加算器56eへの出力が停止される。
 したがって、ステアリングホイール2の中立位置から操舵を開始した時点から0.1秒の初期応答期間T1の間は制御ゲインGaが“0”に設定されるので、乗算器56dから出力される乗算出力が“0”となり、目標転舵角δに対する直進性担保制御が図15(b)で実線図示のように停止される。
 このため、操舵角センサ4で検出した操舵角θsが目標転舵角演算部51に供給され、この目標転舵角演算部51で演算された目標転舵角δがそのまま転舵角偏差演算部61に供給される。このため、目標転舵角δに一致するように転舵モータ8aが回転駆動される。この間、直進性担保部55における直進性担保制御が停止される。
 したがって、初期応答期間T1では、キングピン軸KSの路面接地点がタイヤの接地面内の接地中心位置に設定され、且つキャスター角が零に設定されたサスペンション装置1Bによる転舵が開始される。
 このとき、サスペンション装置1Bのキャスター角が零に設定されている。このキャスター角と転舵応答性と操縦安定性との関係は、図14(a)に示すように、キャスター角が零であるときには転舵応答性が高い状態をとなるが、操縦安定性を確保することはできない、すなわち、キャスター角に対する転舵応答性と操縦安定性とはトレードオフの関係が存在する。
 このため、中立位置から操舵を開始した初期状態では、ステアバイワイヤ制御による直進性担保制御は実行されないことにより、この初期転舵をサスペンション装置1Bが賄うことになる。
 この初期応答期間T1では、サスペンション装置1Bは、上述したように、キャスター角が零あり、操縦応答性が高いので、図15(a)で実線図示の特性線L1で示すように、一点鎖線図示の特性線L2で示す一般的なステアバイワイヤ形式の操舵系を有する車両における転舵応答特性(ヨーレート)より高い転舵応答特性(ヨーレート)とすることができる。このとき、運転者のステアリングホイール2の操舵による操舵角変化に対応した転舵角変化となるので、運転者に違和感を与えることはない。
 ところが、サスペンション装置1Bによる転舵応答性のみで初期応答期間T1を越えて転舵を継続すると、図15(a)で破線図示の特性線L3のように中期応答期間T2および後期応答期間T3で操舵による車両の転舵応答性が敏感になる。また、中期応答期間T2から後期応答期間T3に掛けての車両の内側への巻き込み現象が大きくなってしまう。
 このため、上記第1の実施形態では、図15(b)に示すように、初期応答期間T1が経過する例えば0.1秒後に、直進性補完部55aおよび外乱補償部55bで構成される直進性担保部55による目標転舵角δに対する直進性担保制御がステップ状に開始される。このため、サスペンション装置1Bによる車両の転舵応答性を抑制して車両のふらつきを抑制するとともに、図14(b)で点線図示のように、ステアバイワイヤ制御によってサスペンション装置1Bの直進性を補完して、操縦安定性を確保することができる。
 その後、中期応答期間T2が終了する例えば0.3秒経過後には、直進性担保部55による直進性担保制御により一般的な車両の転舵応答特性に比較しても転舵応答特性をより抑制してアンダーステア傾向とすることができる。これにより、図15(a)で実線図示の特性線L1で示すように、操縦安定性を向上させることができ、特性線L1で示す理想的な車両の転舵応答特性を実現することができる。
 この車両の旋回走行状態では、ヨー角制御部53Cでは、前述した図12のヨー角制御処理で、ステップS1でヨー角ψ1を読込んで操舵角記憶部53aに記憶してからステップS2に移行して、旋回走行状態であるので、ステップS3に移行して制動前操舵角θs1を読込んで制動前操舵角θs1を操舵角記憶部53aに記憶してからタイマ割込処理を終了することを繰り返している。このためヨー角記憶部53bには制動前ヨー角ψ1が更新記憶され、操舵角記憶部53aには制動前操舵角θs1が更新記憶されている。
 この旋回走行状態で、ブレーキペダルが踏込まれると、制動装置が作動して各車輪17FR,17FL,17RR,17RLに制動力が作動される制動状態となる。このように、制動状態となると、コントロール/駆動回路26から出力される制動指令信号Bcがオン状態となる。
 このため、ヨー角制御部53Cでは、図12の処理において、ステップS4からステップS5に移行し、制動後操舵角θs2を読込み、次いで制動後ヨー角ψ2を読込む(ステップS6)。
 そして、制動前後の操舵角θs1およびθs2に変化がない場合には、運転者がステアリングホイール2を操舵して切増しや切り戻しを行っていない保舵状態であると判断して、ステップS8に移行し、制動後ヨー角ψ2から制動前ヨー角ψ1を減算して制動前後のヨー角偏差Δψ(=ψ2-ψ1)を算出する。そして、算出したヨー角偏差Δψをもとに図13に示す目標ラックストローク算出マップを参照してヨー角偏差Δψを解消する目標ラックストロークRsを算出する(ステップS9)。
 そして、算出した目標ラックストロークRsを目標転舵角δに対応してヨー角制御を行う転舵角補正値δtaに変換し(ステップS10)、変換した転舵角補正値δtaを目標転舵角δに加算してアクチュエータ制御装置54へ出力する。
 このため、アクチュエータ制御装置54では、転舵輪17FR,17FLに制動前後のヨー角偏差Δψを解消するトー角変化を与えるように転舵アクチュエータ8が制御されてラック軸14が目標ラックストロークRs分ストロークし、このストロークがタイロッド15を介して転舵輪17FR,17FLに供給される。
 したがって、転舵輪17FR,17FLがヨー角偏差Δψを解消するように旋回外側を向くトー角変化が行われて、車両ステア特性が図16(a)で実線図示の曲線L1で示すようにアンダーステアに制御される。このため、車両1が図16(b)に示すようにコーナーを旋回走行している状態で、制動状態となっても車両車幅方向移動量を抑制することができ、走行レーンを維持して走行することができる。
 ちなみに、ヨー角制御を行わない場合には、図16(a)で一点鎖線図示のようにヨー角が大きくなってオーバーステア特性となり、図16(b)で一点鎖線図示のように、車両車幅方向の旋回内側への移動量が大きくなって隣接レーンに向かって移動することなり、操縦安定性が低下する。
 しかも、本実施形態では転舵アクチュエータ8を制御することにより、ラック軸14のラックストロークを制御してトー角変化を生じさせるので、制動装置によって外輪側の制動圧を内輪側の制動圧より大きくして旋回外向きのヨー角を発生させる場合のように油圧制御による応答遅れを生じることがなく、旋回制動時に高応答性を持って車両をアンダーステアに制御することができ、操縦安定性を向上させることができる。
 さらに、ステアバイワイヤシステムを構成する転舵制御部50に設けたヨー角制御部53Cによって、旋回制動時のヨー角制御を行うことができる。このため、フロント側のサスペンション装置1Bで前後力コンプライアンスステアをアンダーステアに大きくとるために、例えばトランスバースリンクとラック軸を略並行に配置した上でトランスバースリンクをラック軸よりも車両幅方向に長めに設定する必要もない。また、サスペンション特性としてフロント側サスペンション装置を前後力トーアウト、リア側サスペンション装置を前後力トーインとする前後力トー特性を設定する必要もない。したがって、フロントおよびリアのサスペンション装置の構成を簡易・軽量化することができる。
 その後、再度ヨー角ψ3を読込み、このヨー角ψ3と制動前ヨー角ψ1とのヨー角偏差が設定値Δψs以下となるか、制動状態が中止されるまでヨー角制御が継続される。
 なお、旋回制動状態で、運転者がステアリングホイール2を操舵することにより、制動前操舵角θs1から制動後操舵角θs2を減算した操舵角偏差の絶対値が設定値Δθsを超える状態となると、ステップS7からステップS12にジャンプして転舵角補正値δtaを算出するヨー角制御を中止する。このため、運転者によるカウンタステア等のステアリングホイール2の操舵に影響を与えることがない。
 以上のように、本実施形態に係る車両の操舵装置によれば、サスペンション装置1Bにおいて、タイヤ接地面内にキャスタートレイルを設定しているため、キングピン軸KS周りのモーメントをより小さくすることができる。
 したがって、第3の実施形態でも、より小さいラック軸力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できるため、転舵応答性を向上させることができる。
 このように、上記第1の実施形態では、少なくともキングピン軸KSがタイヤ接地面内を通るように設定することにより、サスペンション装置1B自体が転舵応答性を向上させた構成とされ、これに加えてステアバイワイヤシステムSBWの直進性担保部55によって転舵特性を制御する直進性補完および外乱補償を行ってサスペンション装置1Bの直進性を担保している。
 このため、ステアリングホイール2を中立位置に保持している状態から右又は左操舵を行った場合に、初期応答期間T1ではサスペンション装置1B自体の高い転舵応答性を利用して高応答性を確保する。その後、初期応答期間T1を経過して中期応答期間T2に入ると、転舵応答性を重視するよりは操縦安定性を重視する必要があり、ステアバイワイヤシステムSBWにおける遅延制御部56のゲイン調整部56cで制御ゲインGaが“1”に設定されることにより、直進性担保部55で算出した直進性担保制御値δaによる直進性担保制御を開始する。
 このため、転舵角制御、直進性補完、および外乱補償等の直進性担保制御が開始されることにより、サスペンション装置1Bによる高い転舵応答性を抑制して操縦安定性を確保する。さらに、後期応答期間T3では、車両の内側への巻き込み現象を抑制するように転舵応答性をさらに低減させてアンダーステア傾向として車両のふらつきをより抑制して理想的な転舵応答性制御を確立することができる。
 ところが、ステアリングホイール2を中立位置に保持した直進走行状態からステアリングホイール2を右(又は左)に操舵する状態となると、この直進走行状態からの操舵による旋回状態への移行を操舵開始検出部56aで検出される。このため、ゲイン調整部56cでゲインGaが0.1秒間“0”に設定される。
 このため、ステアリングホイール2の中立位置から操舵を開始した時点から0.1秒の初期応答期間の間転舵指令角度δに対する補正制御処理が図15(b)に示すように停止される。
 したがって、アクチュエータ6の回転角θmiが目標転舵角演算部51に供給され、この目標転舵角演算部51で演算された転舵指令角度δがそのまま転舵角偏差演算部61に供給される。このため、転舵指令角度δに一致するように転舵モータ8aが回転駆動される。この間、ステアバイワイヤ制御における転舵角補正処理が停止される。
 したがって、初期応答期間では、キングピン軸KSの路面接地点がタイヤの接地面内の接地中心位置に設定され、且つキャスター角が零に設定されたサスペンション装置による転舵が開始される。
 このとき、サスペンション装置のキャスター角が零に設定されている。このキャスター角と操舵応答性と操縦安定性との関係は、図14(a)に示すように、キャスター角が零であるときには操舵応答性が高い状態をとなるが、操縦安定性を確保することはできない、すなわち、キャスター角に対する操舵応答性と操縦安定性とはトレードオフの関係が存在する。
 このため、中立位置から操舵を開始した初期状態では、ステアバイワイヤ制御による転舵角補正処理は実行されないことにより、この初期転舵をサスペンション装置が賄うことになる。
 この初期期間では、サスペンション装置は、上述したように、キャスター角が零あり、操縦応答性が高いので、図15(a)で実線図示の特性線L1で示すように、一点鎖線図示の特性線L2で示す一般的なステアバイワイヤ形式の操舵系を有する車両における操舵応答特性(ヨー角)より高い操舵応答特性(ヨー角)とすることができる。このとき、運転者のステアリングホイール2の操舵による操舵角変化に対応した転舵角変化となるので、運転者に違和感を与えることはない。
 ところが、サスペンション装置による操舵応答性のみで初期期間を越えて転舵を継続すると、図15(a)で破線図示の特性線L3のように中期および後期で操舵による車両の操舵応答性が敏感になる。また、操舵中期から後期に掛けての車両の内側への巻き込み現象が大きくなってしまう。
 このため、上記第1の実施形態では、図15(b)に示すように、初期期間が経過する例えば0.1秒後に、直進性補完部55aおよび外乱補償部55bによる転舵指令角度δに対する転舵角補正処理がステップ状に開始される。このため、サスペンション装置による車両の操舵応答性を抑制して車両のふらつきを抑制するとともに、図14(b)に示すように、ステアバイワイヤ制御によって直進性を補完して、操縦安定性を確保することができる。その後、例えば0.3秒経過後には、一般的な車両の操舵応答特性に比較しても操舵応答特性をより抑制してアンダーステア傾向とすることができる。これにより、図15(a)で実線図示の特性線L1で示すように、操縦安定性を向上させることができ、特性線L1で示す理想的な車両の操舵応答特性を実現することができる。
 以上のように、本実施形態に係る車両の操舵装置によれば、サスペンション装置1Bにおいて、タイヤ接地面内にキャスタートレイルを設定しているため、キングピン軸KS周りのモーメントをより小さくすることができる。
 したがって、より小さいラック軸力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できるため、操舵応答性を向上させることができる。
 このように、上記第1の実施形態では、少なくともキングピン軸KSがタイヤ接地面内を通るように設定することにより、サスペンション装置1B自体が操舵応答性を向上させた構成とされ、ステアバイワイヤシステムSBWの直進性担保部55によって操舵特性を制御する直進性補完および外乱補償を行うようにしている。
 このため、ステアリングホイール2を中立位置に保持している状態から右又は左操舵を行った場合に、初期応答性はサスペンション装置自体の高い操舵応答性を利用して高応答性を確保する。その後、初期期間を経過して中期期間に入ると、操舵応答性を重視するよりは操縦安定性を重視する必要があり、ステアバイワイヤシステムSBWの転舵応答性設定部52で制御を開始して直進性補完制御を行うことにより、サスペンション装置1Bによる高い操舵応答性を抑制して操縦安定性を確保する。さらに、後期期間では、車両の内側への巻き込み現象を抑制するように操舵応答性をさらに低減させてアンダーステア傾向として車両のふらつきをより抑制して理想的な操舵応答性制御を確立することができる。
 また、本実施形態に係るサスペンション装置1Bは、ストラット式としたため、部品点数をより少ないものとすることができ、本実施形態におけるキングピン軸KSの設定を容易に行うことができる。
 なお、本実施形態において、入力側ステアリング軸3、操舵反力アクチュエータ6、操舵反力アクチュエータ角度センサ7、転舵アクチュエータ8、転舵アクチュエータ角度センサ9、出力側ステアリング軸10、および転舵制御部50を含むコントロール/駆動回路26がステアバイワイヤシステムSBWを構成する。また、車輪17FR,17FL,17RR,17RLがタイヤホイール、タイヤおよびホイールハブ機構に対応し、第1リンク37、第2リンク38、ショックアブソーバ40が複数のリンク部材に対応する。また、第1リンク37および第2リンク38でロアアームを構成し、バネ部材34およびショックアブソーバ40がストラット部材STを構成している。
 なお、上記第1の実施形態においては、転舵制御部50をハードウェアで構成する場合について説明したが、これに限定されるものではなく、例えば目標転舵角演算部51、転舵応答性設定部52を例えばマイクロコンピュータ等の演算処理装置で構成し、この演算処理装置で、図17に示す転舵制御処理を実行するようにしてもよい。
 この転舵制御処理は、図17に示すように、先ず、ステップS21で、車速V、操舵角センサ4で検出した操舵角θs、アクチュエータ回転角センサ9で検出した回転角θmo、操舵トルクセンサ5で検出した操舵トルクTs等の演算処理に必要なデータを読込む。次いで、ステップS22に移行して、操舵角センサ4で検出した操舵角θsに基づいてステアリングホイール2が中立位置を保持している状態から右又は左に操舵された操舵開始状態であるか否かを判定し、操舵開始状態ではないときにはステップS23に移行する。
 このステップS23では、操舵開始制御状態であることを表す制御フラグFが“1”にセットされているか否かを判定し、制御フラグFが“0”にリセットされているときには、ステップS24に移行して、制御ゲインGaを“1”に設定してからステップS25に移行する。
 このステップS25では、前述した目標転舵角演算部51と同様に車速Vと操舵角θsに基づいて目標転舵角δを算出する。
 次いで、ステップS26に移行して、前述した直進性補完部55aと同様に、前記(1)式の演算を行ってセルフアライニングトルクTsaを算出し、このセルフアライニングトルクTsaに所定ゲインKsaを乗算してセルフアライニングトルク制御値Asaを算出する。
 次いで、ステップS27に移行して、転舵アクチュエータ角度センサ9からのモータ回転角θmo、操舵トルクTsおよびモータ電流検出部64で検出したモータ電流imrに基づいて車両に入力される外乱を周波数帯域毎に分離してそれぞれ推定し、これらの外乱を抑制するための外乱補償値Adisを算出する。
 次いで、ステップS28に移行して、目標転舵角δと、セルフアライニングトルク制御値Asaと、外乱補償値Adisとに基づいて下記(2)式の演算を行って加算後目標転舵角δaを算出する。
 δa=δ+Ga(Asa+Adis)   …………(2)
 次いで、ステップS29に移行して、ステップS28で算出した加算後目標転舵角δaを図11における転舵角偏差演算部61に出力してから前記ステップS21に戻る。
 また、ステップS22の判定結果が操舵開始状態であるときにはステップS30に移行して、制御フラグFを“1”にセットしてからステップS31に移行する。さらに、ステップS23の判定結果が、制御フラグFが“1”にセットされているときに直接ステップS31に移行する。
 このステップS31では、予め設定された遅延時間(例えば0.1秒)が経過したか否かを判定する。このとき、遅延時間が経過していないときには、ステップS32に移行し、制御ゲインGaを“0”に設定してから前記ステップS25に移行して、目標転舵角δ*を算出する。
 また、ステップS31の判定結果が、所定の遅延時間(例えば0.1秒)が経過したときには、ステップS33に移行して、制御フラグFを“0”にリセットしてから前記ステップS24に移行して、制御ゲインGaを“1”に設定する。
 この図17に示す転舵制御演算処理でも、ステアリングホイール2が中立位置に保持されている状態から右又は左に操舵が開始された操舵開始状態ではないときには、目標転舵角δにセルフアライニングトルク制御値Asaおよび外乱補償値Adisを加算した直進性担保制御値δaを目標転舵角δに加算する直進性担保制御が行われる。
 これに対して、ステアリングホイール2が中立位置に保持されている状態から右又は左に操舵が開始された操舵開始状態であるときには、予め設定された遅延時間が経過するまでは、制御ゲインGaが“0”に設定されるため、直進性担保制御が停止される。このため、目標転舵角δのみが転舵角偏差演算部61に出力され、これによって転舵アクチュエータ8を構成する転舵モータ8aが回転駆動される。このため、初期転舵応答性はサスペンション装置自体の高転舵応答性が設定されることになり、高転舵応答性を得ることができる。
 その後、遅延時間が経過すると、制御ゲインGaが“1”に設定されるため、目標転舵角δ*にコンプライアンスステア制御値Ac、セルフアライニングトルク制御値Asaおよび外乱補償値Adisが加算された直進性担保制御値δaを目標転舵角δに加えた値によって転舵アクチュエータ8を構成する転舵モータ8aを回転駆動する。このため、サスペンション装置1Bの高転舵応答性が抑制されると共に、サスペンション装置1Bの直進性が担保されて、理想的な転舵応答特性を得ることができる。
 この転舵制御処理でも、車両の直進走行状態では、目標転舵角δが零となり、外乱が生じない場合には、この目標転舵角δが直接図11の転舵角偏差演算部61に供給されるので、前述したと同様にアクチュエータ制御装置54によって直進性が担保される。
 この図17の処理において、ステップS25の処理が目標転舵角演算部51に対応し、ステップS26の処理が直進性補完部55aに対応し、ステップS25~S28の処理が直進性担保部55に対応しステップS22~S24、S30~S33の処理が遅延制御部56に対応し、ステップS22~33の処理が転舵応答性設定部52に対応している。
(第1実施形態の効果)
(1)操舵制御装置は、ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータを制御するステアバイワイヤシステムと、車両のヨー角を検出するヨー角検出部と前記ステアリングホイールの操舵角を検出する操舵角検出部と、車両旋回状態を検出する旋回状態検出部と、車両の制動状態を検出する制動状態検出部と、前記旋回状態検出部で車両旋回状態を検出し、且つ前記制動状態検出部で車両の制動状態を検出したときに、制動前後のヨー角偏差を抑制するように前記アクチュエータを制御するヨー角制御部とを備えている。
 これにより、ヨー角制御部で車両の旋回走行状態における制動時に制動前後のヨー角偏差を抑制するように車両のヨー角を油圧制御より高い応答性を有して制御可能なアクチュエータを制御することができる。したがって、制動圧力を制御してヨー角偏差を抑制する場合に比較してヨー角偏差を抑制する応答性を高めることができ、車両をアンダーステア化して操縦安定性を向上させることができるとともに、車両車幅方向移動量を抑制することができる。
(2)前記ヨーク制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記制動状態検出部で車両の制動状態を検出したときに、制動前後のヨー角偏差を抑制する目標転舵量を演算し、演算した目標転舵量となるように前記アクチュエータを制御する。
 これにより、ヨー角制御部で車両の旋回走行状態における制動時に制動前後のヨー角偏差を抑制する目標転舵量を演算し、演算した目標転舵量となるようにアクチュエータを制御して、ヨー角偏差を抑制する転舵量変化を生じさせることができる。したがって、制動圧力を制御してヨー角偏差を抑制する場合に比較してヨー角偏差を抑制する応答性を高めることができ、車両をアンダーステア化して操縦安定性を向上させることができるとともに、車両車幅方向移動量を抑制することができる。
 また、制動前後のヨー角偏差を抑制するためにヨー角制御部で転舵輪の転舵量を制御してトー角変化を与えることができ、サスペンション装置の基本特性として前後力トー特性を確保する必要がなくなり、サスペンション装置を簡易・軽量化することができる。
(3)前記ヨー角制御部は、前記制動状態検出部で車両の制動状態を検出したときに、前記操舵角検出部で検出した制動状態前後の操舵角差が所定値以上であるときに前記アクチュエータの制御を中止するようにしている。
 このため、車両が旋回制動状態となってヨー角を抑制するヨー角制御を開始したときに、運転者がカウンタステア等のステアリングホイールの操舵を行ったときには、ヨー角制御を中止して運転者の操舵による転舵制御を優先することができる。したがって、運転者によるカウンタステア等の操舵を的確に行うことができる。
(4)また、前輪側のサスペンション装置は、ステアリングホイールが中立位置にあるときに、キングピン軸がタイヤ接地面内を通るように設定されている。また、転舵制御部は、前記サスペンション装置の直進性を担保する直進性担保部を備えている。
 これにより、サスペンション装置のキングピン軸周りのモーメントをより小さくすることができるため、より小さいラック軸力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できる。
 したがって、転舵応答性を向上させることができる。このとき、キャスター角を零近傍の値とすることにより、転舵応答性をより高めたサスペンション装置を構成することができる。
 そして、サスペンション装置の転舵応答性を確保することによる車両の直進性の低下を直進性担保部で担保することができる。
(5)また、直進性担保部を転舵アクチュエータとアクチュエータ制御装置とを備えたステアバイワイヤシステムで構成するようにしているので、直進性担保部を独立して設ける必要がなく、構成を簡略化することができる。
 しかも、直進性担保部としては、転舵応答性設定部52の直進性担保部55が主直進性担保部となり、アクチュエータ制御装置54が副直進性担保部となるので、双方の直進性担保部によって、サスペンション装置の直進性を確実に担保することができる。
(6)ステアリングホイールが中立位置を保持している状態から右又は左に操舵されたときに、遅延制御部により直進性担保部の直進性担保制御を遅らせることにより、初期応答特性をサスペンション装置自体の転舵応答性で賄って高転舵応答性を確保する。その後、サスペンション装置自体の転舵応答性を直進性担保部による直進性担保制御で調整することにより、理想的な転舵応答性を確保することができる。
(7)直進性担保部は、セルフアライニングトルクを演算して直進性を担保している。
 したがって、直進性担保部で、サスペンション装置の高応答性を確保することにより低下した直進性をセルフアライニングトルクで担保することができ、車両の操縦・安定性を向上させることができる。
(8)ステアリングホイールを中立位置から操舵を開始したときに、前記ステアパイワイヤシステムの転舵応答性設定部によって、転舵開始初期に前記サスペンション装置自体の転舵応答特性を初期転舵応答特性とし、初期設定時間経過後に前記ステアバイワイヤシステムの直進性担保部で前記転舵アクチュエータの前記サスペンション装置自体の直進性を担保する制御を開始する。
 これにより、初期転舵にサスペンション装置の高い転舵応答特性を確保し、初期設定時間経過後に直進性担保部で前記転舵アクチュエータの前記サスペンション装置自体の直進性を担保する制御を行うことができ、理想的な転舵応答特性を得ることができる。
(第2実施形態)
 次に、本発明の第2実施形態について図18を伴って説明する。
 この第2実施形態は、前述した第1の実施形態において旋回制動時のヨー角制御の開始を設定車速以上である場合に限定したものである。
 すなわち、第2実施形態では、ヨー角制御部53Cで、図18に示すヨー角制御処理を実行する。このヨー角制御処理では、前述した図12の処理において、ステップS1の前に車速Vが設定車速Vs(例えば80km/h)を超えているか否かを判定するステップS41が介挿され、このステップS41の判定結果がV≦Vsであるときにはそのままタイマ割込処理を終了して所定のメインプログラムに復帰し、V>VsであるときにはステップS1へ移行する。
 また、前記ステップS13およびステップS4間に同様に車速Vが設定車速Vs(例えば80km/h)以下であるか否かを判定するステップS42が介挿され、このステップS42の判定結果かV≦Vsであるときにはそのままヨー角制御処理を終了し、V>Vsであるときは前記ステップS4に戻る。
 この第2の実施形態によると、車速Vが設定車速Vs以下で走行している状態では、ステップS41を繰り返し実行するだけでヨー角制御処理を終了することになり、実際に転舵アクチュエータ8を制御するヨー角制御は実行されない。
 この状態から車速Vが設定車速以上となると、ステップS41からステップS1に移行し、前述した第1の実施形態と同様に旋回状態で制動状態となったときに制動前後のヨー角偏差Δψ(=ψ2-ψ1)を抑制する目標ラックストロークRsを演算し、この目標ラックストロークRsに基づいて転舵アクチュエータ8をヨー角偏差Δψを抑制するように制御して、転舵輪17FR,17FLのトー角を旋回外輪がトーアウト方向となるように制御する。このため、車両のヨー角ψが小さくなり、車両のステア特性をアンダーステア特性として旋回制動時の車両の車幅方向の移動量を小さくして操縦安定性を向上させることができる。この場合も転舵アクチュエータ8によってラック軸14のラックストロークを制御するので、高応答性をもってヨー角制御を行うことができる。
 そして、ヨー角制御を実行中に車速Vが設定車速Vs以下となるか、制動状態が解除されると、ヨー角制御を終了する。
(第2実施形態の効果)
(1)第2実施形態では、車両の車速を検出する車速検出部を備え、前記ヨー角制御部は、車速が設定車速以上となったときに動作する。
 これにより、旋回制動時のヨー角制御が、車速Vが設定車速Vsを超えている高車速走行状態でのみ実行されることになり、低・中車速走行領域では、制動前後のヨー角偏差が小さく旋回走行時の制動が車両の走行に与える影響が少ないので、低・中車速走行領域でヨー角制御を省略することができる。このため、転舵アクチュエータ8の制御頻度を低下させることが可能となり、寿命を長期化して長期の使用に耐えることができる。
(第3実施形態)
 次に、本発明の第3実施形態について図19および図20を伴って説明する。
 この第3の実施形態は、前述した第2実施形態と同様に車速が設定車速以上であるときにヨー角制御を実行するとともに、目標ラックストロークの算出方法を変更したようにしたものである。
 すなわち、第3実施形態では、ヨー角制御部53Cで実行するヨー角制御処理を図19に示すように変更している。このヨー角制御処理は、前述した第2実施形態の図18の処理において、ステップS5およびステップS6の間に車速V2を読込むステップS51が介挿されているとともに、ステップS8が省略されている。また、第3実施形態では、ステップS9およびステップS10間に図20に示す目標値算出マップを参照して目標ヨー角ψを演算するステップS52が介挿されている。さらに、第3実施形態では、ステップS12の処理でヨー角ψ3を読込み、ステップS13の処理で目標ヨー角ψからヨー角ψ3を減算したヨー角偏差の絶対値がヨー角偏差設定値Δψs以下であるか判定するように変更されている。
 ここで、図20の目標ヨー角算出マップは、車速V2を横軸に、ヨー角ψ2を縦軸に設定し、複数の操舵角θをパラメータとする複数の特性線L1~L5が設定された構成を有する。
 そして、ステップS9の目標ラックストロークRsの演算処理は、車速V2およびヨー角ψ2に基づいて図20に示す目標値算出マップを参照して、ヨー角ψ2が現在より小さいヨー角となる直近の特性線Li(i=1~5)を選択し、この特性線Liの操舵角θiとステップS5で読込んだ制動後操舵角θs2との操舵角偏差Δθ2に対応するラックストロークを目標ラックストロークRsとして設定する。
 また、ステップS52の目標ヨー角ψの演算処理は、ステップS9で選択した特性線Liの設定車速Vs(例えば80km/h)のときのヨー角を目標ヨー角ψとして設定する。
 この第3実施形態によると、前述した第2実施形態と同様に、車速Vが設定車速Vs以下であるときにはステップS41の処理が所定時間毎に繰り返されるだけであり、転舵アクチュエータ8を制御するヨー角制御は実行されない。
 そして、車速Vが設定車速Vsを超え、ヨー角ψ1が設定値ψsを超える旋回状態となり、且つ制動状態となって制動指令信号がオン状態となる旋回制動時にステップS4からステップS5に移行して実質的なヨー角制御が実行される。
 このとき、第3実施形態では、制動前後の操舵角偏差の絶対値|θs1-θs2|が設定値Δθs以下であるときに、制動後にステップS51で読込んだ車速V2およびステップS6で読込んだヨー角ψ2をもとに図20に示す目標値算出マップを参照して、現在のヨー角ψ2よりもヨー角が小さい直近の特性線L2を選択する。そして、ステップS5で読込んだ制動後操舵角θs2から選択した特性線L2の操舵角θ2を減算して操舵角偏差Δθを算出し、この操舵角偏差Δθに対応するストロークを目標ラックストロークRsとして算出する(ステップS9)。
 次いで、選択した特性線L2に基づいて設定車速Vsでのヨー角を目標ヨー角ψとして演算する(ステップS52)。
 そして、目標ラックストロークRsを目標転舵角δに対応する転舵補正値δtaに変換し(ステップS10)、この転舵補正値δtaを目標転舵角δに加算して転舵アクチュエータ制御装置54に供給することにより、転舵アクチュエータ8をラック軸14が目標ラックストローク分移動するように駆動制御する。これによって、転舵輪17FRおよび17FLが旋回外輪をトーアウト方向とするようにトー角が発生される。
 その後、ヨー角ψ4を読込み(ステップS12)、目標ヨー角ψ3から読込んだヨー角ψ4を減算した値の絶対値がヨー角偏差設定値Δψs以下であるか否かを判定する(ステップS13)。この判定結果が、|ψ-ψ3|≦Δψsとなるとヨー角偏差が解消したものと判断してヨー角制御処理を終了する。
 一方、ステップS13の判定結果が|ψ-ψ3|>Δψsであるときにはヨー角偏差が解消していないものであると判断してステップS42へ移行し、車速Vが設定車速Vs以下であるときにヨー角制御処理を終了し、車速Vが設定車速Vsを超えているときにはステップS4へ戻って制動指令信号がオン状態を継続しているか否かを判定する。
 したがって、第3実施形態では、車速Vが設定車速Vsを超えている状態で旋回制動時となると、制動後操舵角θs2、車速V2およびヨー角ψ2を読込む。そして、運転者の操舵が無い状態すなわち制動前後の操舵角偏差の絶対値|θs1-θs2|が設定値Δθs以下である状態で、車速V2とヨー角ψ2とに基づいて図20に示す目標値算出マップを参照してヨー角が小さい側の特性線Liを選択する。選択した特性線Liにおける設定車速Vsでのヨー角を目標ヨー角ψとして設定し、この目標ヨー角ψと実際のヨー角ψ3との偏差の絶対値|ψ-ψ3|が設定値Δψs以下となるように制御する。
(第3実施形態の効果)
(1)ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータを制御するステアバイワイヤシステムと、車両のヨー角を検出するヨー角検出部と、前記ステアリングホイールの操舵角を検出する操舵角検出部と、車両の車速を検出する車速検出部と、前記車両のヨー角に基づいて車両旋回状態を検出する旋回状態検出部と、車両の制動状態を検出する制動状態検出部と、前記旋回状態検出部で車両旋回状態を検出し、且つ前記制動状態検出部で車両の制動状態を検出したときに、制動状態を検出した後の制動後車速および制動後ヨー角をもとに、操舵角をパラメータとする複数の操舵角特性に基づいて前記制動後ヨー角を前記制動前ヨー角に近づける目標ヨー角を算出し、制動後ヨー角が目標ヨー角となるように前記アクチュエータを制御するヨー角制御部とを備えている。
 このため、制動後の制動後車速および制動後ヨー角に基づいて操舵角をパラメータとする複数の操舵角特性に基づいて、前記制動後ヨー角を前記制動前ヨー角に近づける目標ヨー角を算出するので、ヨー角を低下させることができ、車両の操縦・安定性を確保することができる。
(2)ヨー角制御部は、車速Vが設定車速Vsを超えた状態で旋回制動時となったときに、車速V2およびヨー角ψ2を読込み、これら車速V2およびヨー角ψ2から目標ヨー角算出マップを参照してヨー角がヨー角ψ2を下回る直近の特性線を選択し、選択した特性線の設定車速Vsでのヨー角を目標ヨー角ψに設定している。このため、前述した第2実施形態と同様に、低・中車速走行領域では、制動前後のヨー角偏差が小さく旋回走行時の制動が車両の走行に与える影響が少ないので、低・中車速走行領域でヨー角制御を省略することができる。このため、転舵アクチュエータ8の制御頻度を低下させることが可能となり、寿命を長期化して長期の使用に耐えることができる。
(3)さらに、制動開始後の車速V2およびヨー角ψ2に基づいて目標値算出マップを参照して目標ヨー角ψを算出し、実際のヨー角ψ3が目標ヨー角ψに近づくようにラックストロークを調整してヨー角制御を行う。
 したがって、制動圧力を制御してヨー角偏差を抑制する場合に比較してヨー角偏差を抑制する応答性を高めることができ、車両をアンダーステア化して操縦安定性を向上させることができるとともに、車両車幅方向移動量を抑制することができる。また、制動前後のヨー角偏差を抑制するためにヨー角制御部で転舵輪のトー角を制御するので、サスペンション装置の基本特性として前後力トー特性を確保する必要がなくなり、サスペンション装置を簡易・軽量化することができる。
(第4実施形態)
 次に、本発明に係る操舵制御装置の第4実施形態について図21および図22を伴って説明する。
 この第4実施形態は、ヨー角制御部53Cで実行するヨー角制御処理を図21に示すように変更している。このヨー角制御処理は、前述した第1実施形態の図12の処理において、ステップS5およびS6間に現在の車速V2を読込むステップS51が介挿されているとともに、ステップS8およびS13が省略されている。
 そして、ステップS9の目標ラックストロークRsの演算処理は、車速V2およびヨー角ψ2に基づいて図22に示す目標値算出マップを参照して、ヨー角ψ2が現在より小さいヨー角となる直近の特性線Li(i=1~5)を選択し、選択した特性線Liの操舵角θiとステップS5で読込んだ制動後操舵角θs2との操舵角偏差Δθ2に対応するラックストロークを目標ラックストロークRsとして設定する。
 さらに、ステップS12の次に、ステップS12で読込んだヨー角ψ3が“0”になったか否かを判定するステップS53が介挿され、このステップS53の判定結果が、ψ3=0であるときにヨー角制御処理を終了して所定のメインプログラムに復帰し、ψ3≠0であるときには前記ステップS4に戻る。
 この第4実施形態によると、前述した第1の実施形態と同様に、車両が旋回状態となっている状態で制動状態に移行したときに実質的なヨー角制御が行われる。このヨー角制御では、制動後操舵角θs2を読込み(ステップS5)、車速V2を読込み(ステップS6)、さらにヨー角ψ2を読込む(ステップS7)。
 そして、制動前後の操舵角偏差の絶対値|θs1-θs2|が設定値Δθs以下であるときすなわち運転者の操舵が行われていないときに、ラックストローク制御を行う。このラックストローク制御では、先ず、車速V2およびヨー角ψ2に基づいて図22に示す前述した第3実施形態における目標値算出マップと同一の構成を有する目標値算出マップを参照して目標操舵角θを算出する。この目標操舵角θの算出は、図22で、車速V2およびヨー角ψ2で表される点P1から現在の車速V2でヨー角が下回る特性線Liを選択し、この特性線Liに設定されている操舵角θiを目標操舵角θとして設定する。
 そして、ステップS5で読込んだ制動後操舵角θs2から目標操舵角θを減算して操舵角偏差Δθを算出し、算出した操舵角偏差Δθに対応するラックストロークを目標ラックストロークRsとして算出する(ステップS9)。
 そして、目標ラックストロークRsを転舵補正値δtaに変換し(ステップS10)、変換した転舵補正値δtaを前述した目標転舵角演算部51で算出した目標転舵角度δに加算して目標転舵角度補正値δaを算出し、この目標転舵角度補正値δaをアクチュエータ制御装置54に出力する。
 そして、上記ヨー角制御がヨー角ψ3が“0”となるか、制動指令信号がオフ状態となるまで継続される。
 したがって、図22で破線図示のように、点P1で制動後操舵角θs2が目標操舵角θ2に一致するまでヨー角制御が行われ、その後車速V2の低下に伴ってヨー角ψ2が減少する。この状態で、再度目標ラックストローク演算が行われることにより、ヨー角ψ2が特性線θ1で表される値に減少される。
 その後、ヨー角ψ3が“0”となるか制動指令信号がオフ状態となるまで上記ヨー角制御が繰り返される。
(第4実施形態の効果)
(1)この第4実施形態によれば、制動後の車速V2とヨー角ψ2とに基づいて操舵舵角をパラメータとする複数の操舵角特性線を有して車速とヨー角との関係を表す目標値算出マップとしての目標操舵角算出マップを参照して目標操舵角θを算出し、この目標操舵角θと制動後操舵角θs2との偏差から目標ラックストロークRsを算出し、これに応じて転舵輪を制御するヨー角制御を行う。
 このため、前述した第3実施形態と同様に、制動後の制動後車速および制動後ヨー角に基づいて目標値算出マップを参照して目標ラックストロークを算出するので、ヨー角を低下させる操舵角を求めて目標ラックストロークを算出することができ、旋回制動時のヨー角を減少させて車両をアンダーステア化し、車両の操縦・安定性を向上させることができるとともに、車両車幅宝庫移動量を抑制することができる。
(2)そして、このヨー角制御を検出されるヨー角が“0”となるまで継続する。
 このため、ヨー角が小さくなるように転舵輪のヨー角制御が行われるので、旋回制動時の車両の車幅方向移動を確実に抑制することができるとともに、車両をアンダーステア傾向に制御して、走行安定性を確保することができる。
(第5実施形態)
 次に、本発明に係る操舵制御装置の第5実施形態について図23および図24を伴って説明する。
 この第5実施形態では、前述した第4実施形態において、旋回制動状態を継続している場合に、ヨー角が“0”となった後も車速が“0”すなわち停車するまでのヨー角制御を継続するようにしたものである。
 すなわち、第5実施形態では、図23に示すように、前述した第4実施形態における図21の処理において、ステップS53の判定結果が、ヨー角ψ3が“0”であるときにステップS54に移行して車速V3を読込み、次いでステップS55に移行して車速V3が“0”となったか否かを判定するように変更されている。このステップS55の判定結果がV3>0であるときには前記ステップS4へ戻り、V3=0であるときにはタイマ割込処理を終了して所定のメインプログラムに復帰する。
 この第5実施形態によると、前述した第4実施形態と同様に、旋回制動時で、運転者が操舵していないときに、ステップS9の目標ラックストローク演算処理で、車速V2とヨー角ψ2とに基づいて図24に示す前述した第4実施形態の目標値算出マップと同一の目標値算出マップを参照して車速V2とヨー角ψ2で表される座標よりヨー角が下回る直近の操舵角特性線例えば操舵角θ2を表す操舵角特性線L2を選択し、制動後操舵角θs2から選択した操舵角特性線L1に設定された操舵角θ2を減算して操舵角偏差Δθ(=θs2-θ2)を算出する。そして、算出した操舵角偏差Δθに基づいて目標ラックストロークRsを算出する。
 次いで、算出した目標ラックストロークRsを転舵補正値δtaに変換し(ステップS10)、次いで変換した転舵補正値δtaを目標転舵角演算部51で演算した目標転舵角δに加算して目標転舵角補正値δaを算出し、これをアクチュエータ制御装置54へ出力することにより、転舵モータ8aを制御してラック軸14を移動させて転舵輪17FRおよび17FLを転舵するヨー角制御を行ってヨー角を制御する。
 このヨー角制御は、制動状態を継続しているときに、図24で破線図示のように、ヨー角ψ3が“0”となるまで継続し、ヨー角ψ3が“0”に達すると、次いで車速V3を読込み(ステップS54)、この車速V3が“0”となるまですなわち車両が停止するまで継続する。
(第5実施形態の効果)
(1)この第5実施形態によれば、旋回制動状態となってヨー角を抑制するヨー角制御を開始したときに、ヨー角が“0”となり、且つ車速が“0”となるまでヨー角制御を継続する。このため、第5実施形態では、前述した第4実施形態の効果に加えて、制動状態が継続しているときに車両が停止するまで、ヨー角を“0”とするヨー角制御が継続されるので、車両の走行安定性を確保した状態で車両を停止させることができる。
(本発明のアクチュエータ応用例)
 上記実施形態では、アクチュエータとしてラック軸14を駆動する転舵アクチュエータ8を適用した場合について説明した。しかしながら、本発明では、上記構成に限定されるものではなく、図25に示すように、前輪17FRおよび17FLを駆動輪として直接駆動するインホイールモータ70FRおよび70FLを有する場合には、これらインホイールモータ70FRおよび70FLを左右輪の回転数差で操舵するヨー角制御アクチュエータとする。
 そして、インホイールモータ70FRおよび70FLを回転駆動する駆動装置71に対して、ヨー角制御部72によって旋回加速時に、前述したヨー角制御部53Cと同様に目標ヨー角ψを算出する。そして、算出した目標ヨー角ψに現在のヨー角ψ3が達するように旋回外輪側のインホイールモータ70FR(又は70FL)の回転数を増加させ、旋回内輪側のインホイールモータ(70FL(又は70FR)の回転数を減少させる回転数補正値RAFR,RAFLを算出する。
 これら回転数補正値RAFR,RAFLを駆動装置71に供給して、駆動装置71で回転指令値の補正を行い、補正された回転数指令値に基づくインバータ駆動信号を直流電源73から電力が供給されるインバータ74FR,74FLに供給する。これらインバータ74FR,74FLによってインホイールモータ70FRおよび70FLの回転数を旋回外輪側で増加させ、旋回内輪側で減少させることにより操舵するヨー角制御を行い、車両のステア特性をオーバーステア傾向とするようにしても良い。
(応用例の効果)
 このように、アクチュエータとして駆動輪を直接駆動するインホイールモータによるヨー角制御アクチュエータを適用することにより、油圧を使用した応答遅れを生じることがないとともに、旋回加速時の旋回外側へのトー角変化を、転舵角を制御することなくヨー角を制御して解消することができる。
(転舵機構の変形例)
 なお、転舵輪を転舵する転舵機構としては、ラックアンドピニオン機構に代えてボールねじ機構を適用することができ、この場合にはボールナットを転舵アクチュエータ8で回転駆動するようにすればよい。このように、ボールねじ機構を適用することにより、転舵角を高精度に制御することができる。
 また、転舵機構としてピニオンアンドラック機構やボールねじ機構に代えて他の形式の転舵機構を適用することができる。
(本発明のヨー角制御部応用例)
 上記実施形態では、目標ヨー角算出マップを参照して目標ラックストロークおよび目標ヨー角を算出する場合について説明した。しかしながら、本発明は上記に限定されるものではなく、目標ヨー角算出マップを参照する場合に代えて、操舵角をパラメータとする複数の操舵角特性線を車速およびヨー角の関数として表し、加速後車速および加速後ヨー角をもとに加速後車速で加速後ヨー角より大きいヨー角となる操舵角特性線を選択するようにしてもよい。
 このように操舵特性線を車速とヨー角の関数で表すことにより、目標ヨー角算出マップを用いることなく操舵角特性線の選択を演算で行うことができる。
 なお、上記実施形態において、操舵角特性線の本数は4本に限らず任意数に設定することができる。
(本発明に適用するサスペンション応用例)
 上記実施形態では、サスペンション装置のロアリンクを互いに交差することがない第1リンク37と第2リンク38とで構成する場合について説明した。しかしながら、サスペンション装置の構成は上記構成に限定されるものではなく、キングピン軸がタイヤ接地面内を通るように設定して、転舵力を軽減できればよい。このため、ロアリンク構造を例えば図26に模式的に示すように、互いに交差するトランスバースリンク81とコンプレッションリンク82とで構成することもできる。また、ロアリンク構造を、図27に模式的に示すように、互いに交差するトランスバースリンク81とテンションリンク83とで構成することもできる。
(応用例の効果)
 このように、ロアリンク構造を平面視で互いに交差する第1リンクおよび第2リンクで構成することにより、キングピン軸を構成するロアピボット点を両リンクの交点位置とすることができる。このため、ロアピボット点の位置を転舵輪の車体内側により近づけることが可能となる。したがって、キングピン軸がタイヤ接地面内を通るように設定することが容易となる。
 また、サスペンション装置1Bとしては上記構成に限定されるものではなく、他の種々の構成のサスペンション装置を適用することができる。
 さらに、サスペンション装置1Bの構成によっては転舵応答性設定部52を省略することができる。
(本発明の応用例2)
 前述した第1~第5実施形態においては、本発明をステアバイワイヤシステムSBWに適用した場合について説明したが、これに限定されるものでなく、アクチュエータとしてホイールインモータを適用する場合には、通常の電動パワーステアリング装置にも適用することができる。
(第6実施形態)
 次に、本発明の第6実施形態について図28~図32を伴って説明する。
 この第6実施形態では、旋回加速時にヨー角制御を行うようにしたものである。
 すなわち、前述した特許文献1に記載された従来技術では、ステアバイワイヤ制御系で、旋回加速時の車両の挙動を各輪の制動力を制御させることにより安定させるようにしているが、各輪の制動力を制御して車両の挙動を安定化するには制動力を発生させるアクチュエータの制動圧を制御する必要があり、圧力制御系で応答遅れを生じる。
 また、特開平9-88203号公報(以下、特許文献2と称す)に記載された従来技術では、旋回加速時に駆動輪間に介挿した油圧クラッチを制御することにより、旋回外輪側に駆動力を与え、旋回内輪側に制動力を与えるので、上記特許文献1と同様に圧力制御系で応答遅れを生じる。
 このため、第6実施形態では、車両の旋回加速時の挙動の安定化を操舵制御装置で応答遅れを抑制して適正に行うことを課題としている。
 この課題を解決する手段として、本発明に係る操舵制御装置は、旋回走行中の加速時の車速とヨー角とに基づいてアクチュエータの目標制御量を算出し、アクチュエータの制御量を目標制御となるように制御して旋回加速時のヨー角を増加させる。したがって、車両のヨー角変化によって車両をオーバーステア化して、車両挙動を安定化させる応答特性を向上させることができる。
 このように構成することにより、ステアバイワイヤシステムにおける車両の旋回加速時における加速時のヨー角を、転舵輪を転舵動作させるアクチュエータによって車両のヨー角制御を行うことにより増加させるので、応答遅れを抑制して迅速且つ適正に車両の挙動を安定化することができる。
 したがって、第6実施形態では、サスペンション装置としては前述した第1実施形態の図2~図10で説明したと同様のサスペンション装置を適用するが、全体構成としては、図28に示すように、前述した第1実施形態における図1の構成において、加速指令信号Sdが出力される駆動制御装置23が付加され、駆動制御装置23から出力される加速指令信号Sdがコントロール/駆動回路ユニット26に入力されている。
 また、ヨー角制御部53Cに、図29に示すように前述した第1実施形態における制動状態検出部53Bに代えて加速状態検出部53Dが接続されている。この加速状態検出部53Dは、駆動制御装置23からコントロール/駆動回路ユニット26へ入力される加速指令信号Sdが入力され、この加速指令信号Sdがオン状態であるときに加速状態と判定する。
 また、ヨー角制御部53Cには、旋回状態検出部53Aおよび加速状態検出部53Dの判定結果が入力されるとともに、ヨー角センサ22aで検出したヨー角ψ、操舵角センサ4で検出した操舵角θs、車両状態パラメータ取得部21で算出した車速Vが入力されている。このヨー角制御部53Cでは、車両の旋回走行中に、加速状態となったときに、旋回外側へのトー角変化を解消するように転舵アクチュエータ8を制御するヨー角制御処理を実行する。
 このヨー角制御処理は、所定時間(例えば1μsec)毎に実行されるタイマ割込処理として実行され、旋回状態検出部53Aおよび加速状態検出部53Dの処理を含めて表すと、図30に示すようになる。
 このヨー角制御処理では、まず、ステップS101で現在の車速V1を読込み、次いでステップS102でヨー角センサ22aによって検出したヨー角ψ1を読込み、このヨー角ψ1をヨー角記憶部53bに記憶する。
 次いで、ステップS103に移行して、読込んだヨー角ψ1の絶対値が零近傍の閾値ψsを超えて車両が旋回状態であるか否かを判定し、ψ1≦ψsであるときには車両が旋回状態ではないと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 一方、ステップS103の判定結果が、ψ1>ψsであるときには車両が旋回状態であると判断してステップS104に移行し、操舵角センサ4で検出した操舵角θs1を読込み、この操舵角θs1を操舵角記憶部53aに記憶してからステップS105に移行する。
 このステップS105では、車両に搭載された駆動制御装置23から加速状態を表すオン状態の加速指令信号Sdが入力されているか否かを判定し、加速指令信号Sdがオフ状態であるときに加速状態ではないと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰し、加速指令信号Sdがオン状態であるときには車両が加速状態であると判断してステップS106に移行する。
 このステップS106では、操舵角センサ4で検出した加速後操舵角θs2を読込み、次いでステップS107に移行して、車両状態パラメータ取得部21から加速後車速V2を読み込む。次いでステップS108に移行して、ヨー角センサ22aで検出した加速後ヨー角ψ2を読込んでからステップS109に移行する。
 このステップS109では、操舵角記憶部53aに記憶されている加速前操舵角θs1を読出し、加速前操舵角θs1から加速後操舵角θs2を減算した値の絶対値が零近傍の操舵角θss未満であるか否かを判定し、|θs1-θs2|≦θssであるときには運転者がステアリングホイール2を操舵して切増しまたは切り戻しを行っていない保舵状態にあるものと判断してステップS110に移行する。
 このステップS110では、加速後車速V2および加速後ヨー角ψ2をもとに図31に示す目標制御値算出マップとしての目標ヨー角算出マップを参照して旋回加速時に必要とする目標ヨー角ψを算出する。ここで、目標ヨー角算出マップは、図31に示すように、車速V2を横軸に、ヨー角ψ2を縦軸に設定し、複数の操舵角θをパラメータとする複数の特性線L1~L5が設定された構成を有する。
 目標ヨー角ψの算出は、現在のヨー角ψ2よりも大きく直近の特性線Li(i=1~5)を選択し、選択した特性線Liにおける現在の車速V2におけるヨー角を目標ヨー角ψとして算出する。
 次いで、ステップS111に移行して、上記ステップS10で選択した特性線Liの操舵角θiからステップS106で読込んだ加速後操舵角θs2を減算して操舵角偏差Δθを算出し、算出した操舵角偏差分だけ転舵輪17FR,17FLを転舵させるラックストロークを目標制御量としての目標ラックストロークRsとして演算してからステップS112に移行する。
 このステップS112では、算出した目標ラックストロークRsを転舵アクチュエータ8で発生させる目標転舵角δに対する転舵角補正値δtaに変換し、次いでステップS113に移行して、転舵角補正値δtaを目標転舵角δに加算してからステップS114に移行する。
 このステップS114では、ヨー角センサ22aで検出したヨー角制御後ヨー角ψ3を読込み、次いでステップS115に移行して、ステップS10で算出した目標ヨー角ψからステップS114で読込んだヨー角制御後ヨー角ψ3を減算した値の絶対値が零近傍の設定値Δψs未満であるか否かを判定する。この判定結果が、|ψ-ψ3|≧Δψsであるときにはヨー角制御後ヨー角ψ3が目標ヨー角ψに略一致していないと判断して前記ステップS5へ戻り、|ψ-ψ3|<Δψsであるときにはヨー角制御後ヨー角ψ3が目標ヨー角ψに略一致し、必要なヨー角に達したものと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 また、前記ステップS109の判定結果が|θs1-θs2|>θssであるときには、運転者がステアリングホイール2を切増し方向または切り戻し方向に操舵しているものと判断してステップS110~S113のヨー角制御を行うことなく前記ステップS14へジャンプする。
 この図30のヨー角制御処理において、ステップS102およびS103の処理が旋回状態検出部53Aに対応し、ステップS105の処理が加速状態検出部53Dに対応し、ステップS106~ステップS115の処理がヨー角制御部53Cに対応している。
 なお、図29において、転舵制御部50を構成する目標転舵角演算部51、転舵応答性設定部52及びアクチュエータ制御装置54は、前述した第1の実施形態と同様の構成を有し、これらについての詳細説明はこれを省略する。
(第6実施形態の動作)
 次に、上記第6実施形態の動作について図31および図32を伴って説明する。
 今、ステアリングホイール2を中立位置に保持して直進走行しているものとする。
 この直進走行状態では、目標転舵角演算部51で演算される目標転舵角δが零となる。このため、アクチュエータ制御装置54で制御される転舵モータ8aによって、ラック軸14が中立位置に制御され、タイロッド15を介して転舵輪17FRおよび17FLの転舵角δrが零に制御される。このとき、ステアリングホイール2が中立位置を保持しているので、ヨーレートセンサ22bで検出される車両のヨーレートγは零である。このため、直進補完部55aで前記(1)式に従って算出されるセルフアライニングトルクTsaは、転舵角δrが零であることにより重心点横滑り角βが零となり、ヨーレートγも零であるので、零となる。
 外乱補償部55bでは、外乱を抑制する外乱補償値Adisが算出されるので、この外乱を生じていないときには外乱補償値Adisも零となる。
 さらに、ヨー角制御部53Cでは、車両が直進走行状態であり、旋回状態ではなくヨー角ψ1が零であるので、車両の旋回走行状態と判断されることはなく、ラックストロークを補正するラックストローク制御も行われず、目標転舵角δに補正値δa,δtaを加算した目標転舵角補正値δaも零となる。
 したがって、アクチュエータ制御装置54の転舵角偏差演算部61から出力される転舵角偏差Δδも零となり、転舵モータ制御部62から出力されるモータ電流指令値imも零となる。このためモータ電流制御部65からモータ電流imtは出力されず、転舵モータ8aは停止状態を維持し、ラック軸14が中立位置を維持して転舵輪17FRおよび17FLの転舵角δtが“0”に制御される。
 この直進走行状態で、転舵輪17FRおよび17FLの少なくとも一方が轍にはまったり、マンホールの蓋を通過したりして転舵輪17FRおよび17FLの一方が転舵されたり、ヨー角が発生したりすると、直進性補完部55aで算出されるセルフアライニングトルクTsaが増加する。このとき、前述したサスペンション装置1Bのようにステアリングホイール2が中立位置にある状態でキングピン軸KSがタイヤ接地面を通るように設定して転舵応答性を向上させた場合には、サスペンション装置1B自体で発生するセルフアライニングトルクTsaが不足することになる。
 しかしながら、本実施形態では、前述した(1)式に基づいてセルフアライニングトルクを算出するので、この(1)式におけるキャスタートレイルεcを通常のサスペンション装置と同様の値に設定しておくことにより、算出されるセルフアライニングトルクTsaはキャスタートレイルεcに対応した値を算出することができる。
 そして、算出したセルフアライニングトルクTsaにゲインKsaを乗算して、直進性補正値Asaを算出し、この直進性補正値Asaを遅延制御部56に供給する。このとき、遅延制御部56では直進走行状態であるので操舵開始検出部56aで操舵開始を検出することはなくゲイン調整部56cでゲインGaが“1”に設定されているので、直進性補正値Asaがそのまま加算器56eに供給される。
 このため、目標転舵角δが直進性補正値Asaで補正されることにより、アクチュエータ制御装置54で転舵アクチュエータ8を構成する転舵モータ8aが駆動制御されて、セルフアライニングトルクTsaに相当する転舵トルクを発生させ、これがラック軸14およびタイロッド15を介して転舵輪17FRおよび17FLに伝達される。
 したがって、転舵輪17FRおよび17FLでセルフアライニングトルクTsaを発生させて、サスペンション装置1へのセルフアライニングトルク不足を補完して車両の直進性を担保することができる。
 ところが、ステアリングホイール2を中立位置に保持した直進走行状態を維持している状態からステアリングホイール2を右(又は左)に操舵する状態となると、この直進走行状態からの操舵による旋回状態への移行が操舵開始検出部56aで検出される。
 このため、単安定回路56bから所定時間例えば0.1秒間オン状態となる制御遅延信号がゲイン調整部56cに出力される。したがって、ゲイン調整部56cで、制御遅延信号がオン状態を継続している間制御ゲインGaが“0”に設定される。このため、乗算器56dから出力される乗算出力は“0”となり、直進性担保制御値δaの加算器56eへの出力が停止される。
 したがって、ステアリングホイール2の中立位置から操舵を開始した時点から0.1秒の初期応答期間T1の間は制御ゲインGaが“0”に設定されるので、乗算器56dから出力される乗算出力が“0”となり、目標転舵角δに対する直進性担保制御が前述した図15(b)で実線図示のように停止される。
 このため、操舵角センサ4で検出した操舵角θsが目標転舵角演算部51に供給され、この目標転舵角演算部51で演算された目標転舵角δがそのまま転舵角偏差演算部61に供給される。これに応じて、転舵モータ8aが目標転舵角δに一致するように回転駆動される。この間、直進性担保部55における直進性担保制御が停止される。
 したがって、初期応答期間T1では、キングピン軸KSの路面接地点がタイヤの接地面内の接地中心位置に設定され、且つキャスター角が零に設定されたサスペンション装置1Bによる転舵が開始される。
 このとき、サスペンション装置1Bのキャスター角が零に設定されている。このキャスター角と転舵応答性と操縦安定性との関係は、図14(a)に示すように、キャスター角が零であるときには転舵応答性が高い状態をとなるが、操縦安定性を確保することはできない、すなわち、キャスター角に対する転舵応答性と操縦安定性とはトレードオフの関係が存在する。
 このため、中立位置から操舵を開始した初期状態では、ステアバイワイヤ制御による直進性担保制御は実行されないことにより、この初期転舵をサスペンション装置1Bが賄うことになる。
 この初期応答期間T1では、サスペンション装置1Bは、上述したように、キャスター角が零あり、操縦応答性が高いので、図15(a)で実線図示の特性線L1で示すように、一点鎖線図示の特性線L2で示す一般的なステアバイワイヤ形式の操舵系を有する車両における転舵応答特性(ヨー角)より高い転舵応答特性(ヨー角)とすることができる。このとき、運転者のステアリングホイール2の操舵による操舵角変化に対応した転舵角変化となるので、運転者に違和感を与えることはない。
 ところが、サスペンション装置1Bによる転舵応答性のみで初期応答期間T1を越えて転舵を継続すると、図15(a)で破線図示の特性線L3のように中期応答期間T2および後期応答期間T3で操舵による車両の転舵応答性が敏感になる。また、中期応答期間T2から後期応答期間T3に掛けての車両の内側への巻き込み現象が大きくなってしまう。
 このため、上記第6実施形態では、図15(b)に示すように、初期応答期間T1が経過する例えば0.1秒後に、直進性補完部55aおよび外乱補償部55bで構成される直進性担保部55による目標転舵角δに対する直進性担保制御がステップ状に開始される。このため、サスペンション装置1Bによる車両の転舵応答性を抑制して車両のふらつきを抑制するとともに、図14(b)で点線図示のように、ステアバイワイヤ制御によってサスペンション装置1Bの直進性を補完して、操縦安定性を確保することができる。
 その後、中期応答期間T2が終了する例えば0.3秒経過後には、直進性担保部55による直進性担保制御により一般的な車両の転舵応答特性に比較しても転舵応答特性をより抑制してアンダーステア傾向とすることができる。これにより、図15(a)で実線図示の特性線L1で示すように、操縦安定性を向上させることができ、特性線L1で示す理想的な車両の転舵応答特性を実現することができる。
 この車両の旋回走行状態では、ヨー角制御部53Cでは、前述した図30のヨー角制御処理で、ステップS101で車速V1を読込み、ステップS102でヨー角ψ1を読込んでヨー角記憶部53bに記憶してからステップS103に移行して、旋回走行状態であるので、ステップS104に移行して加速前操舵角θs1を読込んで加速前操舵角θs1を操舵角記憶部53aに記憶してからタイマ割込処理を終了することを繰り返している。このため、ヨー角記憶部53bには加速前ヨー角ψ1が更新記憶され、操舵角記憶部53aには加速動前操舵角θs1が更新記憶されている。
 この旋回走行状態で、アクセルペダルが踏込まれると、駆動制御装置23が作動して駆動輪に対して加速制御が開始されるとともに、オン状態の加速状態信号Sdをコントロール/駆動回路ユニット26へ出力する。
 このため、ヨー角制御部53Cでは、図30の処理において、ステップS105からステップS1066に移行し、加速後操舵角θs2を読込み、次いで加速後車速V2を読込み(ステップS107)、次いで加速後ヨー角ψ2を読込む(ステップS108)。
 そして、加速前後の操舵角θs1およびθs2に殆ど変化がない場合には、運転者がステアリングホイール2を操舵して切増しや切り戻しを行っていない保舵状態であると判断して、ステップS110に移行し、加速後車速V2と加速後ヨー角ψ2とをもとに目標ヨー角算出マップを参照して目標ヨー角ψを算出する。
 この目標ヨー角ψの算出は、図31に示すように、旋回状態における加速前の車速V1とヨー角ψ1で表される加速前位置P1が操舵特性線L2およびL3の間にあるものとする。この旋回前位置P1から加速状態となると、加速後車速V2と加速後ヨー角ψ2とで表される加速後位置P2は前述したようにサスペンション装置1Bが軽い転舵力で転舵ができることから、加速後車速V2が加速前車速V1より増加し、且つ加速後ヨー角ψ2が加速前ヨー角ψ1より車両の加速によって転舵輪17FR,17FLのトー角が旋回外側に変化することになる。この結果、加速後ヨー角ψ2が加速前ヨー角ψ1より低下して、車両がアンダーステア傾向となる。
 この加速後位置P2から加速後車速V2でヨー角が加速後ヨー角ψ2より大きい直近の操舵特性線L3を選択し、選択した操舵特性線L3の加速後車速V2でのヨー角を目標ヨー角ψとして算出する。
 そして、選択した操舵特性線L3に設定されている加速後車速V2で必要とする操舵角θ3から加速後操舵角θs2を減算して操舵角偏差Δθを算出し、算出した操舵角偏差Δθだけ転舵輪17FR,17FLを転舵させるためのラックストロークを算出し、算出したラックストロークを目標ラックストロークRsとして算出する(ステップS111)。
 そして、算出した目標ラックストロークRsを目標転舵角演算部51で演算された目標転舵角δに対してヨー角制御を行う転舵角補正値δtaに変換し(ステップS112)、変換した転舵角補正値δtaを目標転舵角δに加算してアクチュエータ制御装置54へ出力する(ステップS113)。
 このため、アクチュエータ制御装置54では、転舵輪17FR,17FLが軽い転舵力によって転舵輪を転舵可能に構成されているサスペンション装置1Bによって支持されることによる旋回外側へのトー角変化を解消するトー角変化を与えるように転舵アクチュエータ8が制御されてラック軸14が目標ラックストロークRs分ストロークし、このストロークがタイロッド15を介して転舵輪17FR,17FLに供給される。
 したがって、軽い転舵力で転舵が可能なサスペンション装置1Bを適用した場合に、ヨー角制御を行わない場合には、旋回状態で加速を行わない状態の図32で実線図示の状態から加速状態に移行したときに、転舵輪17FR,17FLが図32で一点鎖線図示のようにトーアウト方向で旋回外輪側の転舵輪17FLのトー角変化が大きい状態となる。
 しかしながら、本実施形態では、旋回加速時に上述したヨー角制御が行われることにより、図32で実線図示の状態から加速状態となったときに、点線図示のように旋回外輪側の転舵輪17FLのトー角を旋回内側にトーイン方向に制御し、これに伴って旋回内輪側はトーアウト方向に制御される。このとき、旋回中であるので、車両の荷重は旋回外輪側に多く掛かり、旋回内輪側では荷重負担が少ないので、旋回内輪側がトーアウト方向に制御されても車両の旋回挙動への影響は殆ど生じない。
 したがって、本実施形態によると、軽い転舵力で転舵輪を転舵可能なサスペンション装置1Bによる旋回外輪側のトーアウト方向のトー角変化を解消して車両ステア特性がオーバーステア傾向に制御される。このため、車両1がコーナーを旋回走行している状態で、加速状態となっても適正な旋回性能を確保することができる。
 しかも、本実施形態では転舵アクチュエータ8を制御することにより、ラック軸14のラックストロークを制御してトー角変化を生じさせるので、前述した従来例のように制動装置によって旋回内輪側の制動圧を旋回外輪側の制動圧より大きくして旋回内側向きのヨー角を発生させる場合や、油圧クラッチを使用して旋回外輪の駆動力を増加し、旋回内輪側の制動力を増加させる場合のように油圧制御による応答遅れを生じることがない。したがって、旋回加速時に高応答性を持って転舵輪17FR,17FLをトー角変化させて車両をオーバーステアに制御することができ、旋回性能を向上させて操縦安定性を向上させることができる。
 さらに、ステアバイワイヤシステムを構成する転舵制御部50に設けたヨー角制御部53Cによって、旋回加速時のヨー角制御を行うことができる。このため、通常のサスペンション装置のようにフロント側のサスペンション装置1Bで前後力(前引き)トーイン、リアサスペンション装置では前後力(前引き)トーアウトに設定する必要がなく、フロントおよびリアのサスペンション装置の構成を簡易・軽量化することができるとともに、レイアウトの自由度を向上させることができる。
 ちなみに、従来例では、トー角制御分をサスペンション装置で負担することにより、例えばトランスバースリンクとラック軸を略平行に配置した上で、トランスバースリンクをラック軸よりも車両幅方向長めに設定する必要があり、サスペンション装置のレイアウトの自由度が少なくなるとともに、構成が複雑化して、重量が増加するという問題点がある。
 その後、再度ヨー角ψ3を読込み(ステップS114)、目標ヨー角ψからヨー角ψ3を減算したヨー角偏差の絶対値が設定値Δψs以下となるか、加速状態が終了されるまで上述したヨー角制御が継続される。
 なお、旋回加速状態で、運転者がステアリングホイール2を操舵することにより、加速前操舵角θs1から加速後操舵角θs2を減算した操舵角偏差の絶対値が設定値Δθsを超える状態となると、ステップS9からステップS14にジャンプして転舵角補正値δtaを算出するヨー角制御を中止する。このため、運転者によるステアリングホイール2の修正操舵に影響を与えることがない。
 以上のように、本実施形態に係る車両の操舵装置によれば、サスペンション装置1Bにおいて、タイヤ接地面内にキャスタートレイルを設定しているため、キングピン軸KS周りのモーメントをより小さくすることができる。
 したがって、上記実施形態でも、より小さいラック軸力すなわち転舵力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できるため、転舵応答性を向上させることができる。
 このように、上記実施形態では、少なくともキングピン軸KSがタイヤ接地面内を通るように設定することにより、サスペンション装置1B自体が転舵応答性を向上させた構成とされ、これに加えてステアバイワイヤシステムSBWの直進性担保部55によって転舵特性を制御する直進性補完および外乱補償を行って車両の直進性を担保している。
 このため、ステアリングホイール2を中立位置に保持している状態から右又は左操舵を行った場合に、初期応答性はサスペンション装置自体の高い操舵応答性を利用して高応答性を確保する。その後、初期期間を経過して中期期間に入ると、操舵応答性を重視するよりは操縦安定性を重視する必要があり、ステアバイワイヤシステムSBWの転舵応答性設定部52で制御を開始して直進性補完制御を行うことにより、サスペンション装置1Bによる高い操舵応答性を抑制して操縦安定性を確保する。さらに、後期期間では、車両の内側への巻き込み現象を抑制するように操舵応答性をさらに低減させてアンダーステア傾向として車両のふらつきをより抑制して理想的な操舵応答性制御を確立することができる。
 また、本実施形態に係るサスペンション装置1Bは、ストラット式としたため、部品点数をより少ないものとすることができ、本実施形態におけるキングピン軸KSの設定を容易に行うことができる。
 なお、本実施形態において、入力側ステアリング軸3、操舵反力アクチュエータ6、操舵反力アクチュエータ角度センサ7、転舵アクチュエータ8、転舵アクチュエータ角度センサ9、出力側ステアリング軸10、および転舵制御部50を含むコントロール/駆動回路ユニット26がステアバイワイヤシステムSBWを構成する。また、車輪17FR,17FL,17RR,17RLがタイヤホイール、タイヤおよびホイールハブ機構に対応し、第1リンク37、第2リンク38、ショックアブソーバ40が複数のリンク部材に対応する。また、第1リンク37および第2リンク38でロアアームを構成し、バネ部材34およびショックアブソーバ40がストラット部材STを構成している。
 なお、上記第6実施形態においては、転舵制御部50をハードウェアで構成する場合について説明したが、これに限定されるものではなく、例えば目標転舵角演算部51、転舵応答性設定部52を例えばマイクロコンピュータ等の演算処理装置で構成し、この演算処理装置で、前述した第1~第5の実施形態と同様に図17に示す転舵制御処理を実行するようにしてもよい。
(第6実施形態の効果)
(1)操舵制御装置は、テアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させるアクチュエータを制御するステアバイワイヤシステムと、前記転舵輪を支持するとともに、前記アクチュエータによって低転舵力で転舵可能なサスペンション装置と、車両のヨー角を検出する車両ヨー角検出部と、前記ステアリングホイールの操舵角を検出する操舵角検出部と、車両の車速を検出する車速検出部と、前記ヨー角に基づいて車両旋回状態を検出する旋回状態検出部と、車両の加速状態を検出する加速状態検出部と、前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態検出部で車両の加速状態を検出したときに、加速状態を検出した後の加速後車速および加速後ヨー角をもとに、操舵角をパラメータとする複数の操舵角特性に基づいて加速前後のヨー角偏差を抑制する前記アクチュエータの目標制御量を算出し、前記アクチュエータの制御量が前記目標制御量となるように前記アクチュエータを制御するヨー角制御部とを備えている。
 これにより、軽い転舵力で転舵可能に構成されたサスペンション装置を使用した場合に、ヨー角制御部で車両の旋回走行状態における加速時に生じるサスペンション装置の旋回外側向きにトー角変化を解消する目標制御量を算出し、制御量が目標制御量となるように転舵アクチュエータを制御して、転舵輪をオーバーステア傾向となるようにトー角変化させることができる。したがって、制動圧力や油圧クラッチ圧力を制御してオーバーステア特性とする場合に比較してオーバーステア化する応答性を高めることができ、加速状態の駆動輪に制動力を付加することによる加速性能を低下も抑制することができる。したがって、車両の旋回加速時の旋回性能を向上させて操縦安定性を向上させることができる。
(2)また、ヨー角制御部は、前記加速後車速および前記加速後ヨー角をもとに操舵角をパラメータとする複数の操舵角特性線を有して車速とヨー角との関係を示す目標値算出マップを参照して前記加速後車速と同一車速におけるヨー角が前記加速後ヨー角を上回る直近の操舵角特性線を選択し、選択した操舵角特性線の操舵角と加速後操舵角との偏差から前記目標制御量を演算する。
 これにより、加速後車速および加速後ヨー角に基づいて目標値算出マップを参照して実際の旋回加速時に必要とする目標制御量を瞬時に且つ容易に算出することができる。
(3)ヨー角制御部は、前記加速後車速および前記加速後ヨー角をもとに前記目標値算出マップを参照して前記加速後車速と同一車速におけるヨー角が前記加速後ヨー角を上回る直近の操舵角特性線を選択し、選択した操舵角特性線の操舵角と加速後操舵角との偏差から前記目標制御量を演算するとともに、選択した操舵角特性線の前記加速後車速におけるヨー角を目標ヨー角として設定する。
 このため、加速後車速および加速後ヨー角に基づいて目標値算出マップを参照して実際の旋回加速時に必要とする目標制御量および目標ヨー角を瞬時に且つ容易に算出することができる。
(4)ヨー角制御部は、前記制御量を前記目標制御量とする前記アクチュエータの制御を、前記車両ヨー角検出部で検出した車両ヨー角が、前記目標ヨー角近傍の値となるまで継続するようにしている。
 これにより、車両ヨー角が目標ヨー角に達したときにヨー角制御が終了するので、車両のヨー角が過度に大きくなることを確実に防止して、適正なヨー角を確保することができる。
(5)ヨー角制御部は、前記加速状態検出部で車両の加速状態を検出した場合に、前記操舵角検出部で検出した加速状態前後の操舵角差が所定値以上であるとき前記アクチュエータの制御を中止するようにしている。
 これにより、車両が旋回加速状態となってヨー角の低下を解消するヨー角制御を開始したときに、運転者がステアリングホイールの修正操舵を行ったときには、ヨー角制御を中止して運転者の操舵による転舵制御を優先することができる。したがって、運転者による修正操舵を的確に行うことができる。
(6)前記アクチュエータはステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させるステアバイワイヤシステムのラック機構を駆動する転舵アクチュエータであり、前記目標制御量は目標ラックストークである。
 これにより、ラック機構のラックストロークを目標ラックストロークとなるように制御することにより、転舵輪のトー角変化を直接且つ正確に制御することができる。
(7)サスペンション装置は、前記転舵輪を車体に支持する複数のリンク部材を含み、前記リンク部材のアッパーピボット点とロアピボット点とを通るキングピン軸が前記ステアリングホイールの中立位置でタイヤ接地面内を通るように設定されている。
 これにより、サスペンション装置のキングピン軸周りのモーメントをより小さくすることができるため、より小さい転舵力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できる。
 したがって、転舵応答性を向上させることができる。このとき、キャスター角を零近傍の値とすることにより、転舵応答性をより高めたサスペンション装置を構成することができる。
 そして、転舵制御装置に直進性担保部を設けることにより、サスペンション装置の転舵応答性を確保することによる車両の直進性の低下を直進性担保部で担保することができる。
(8)また、直進性担保部を転舵アクチュエータとアクチュエータ制御装置とを備えたステアバイワイヤシステムで構成するようにしているので、直進性担保部を独立して設ける必要がなく、構成を簡略化することができる。
 しかも、直進性担保部としては、転舵応答性設定部52の直進性担保部55が主直進性担保部となり、アクチュエータ制御装置54が副直進性担保部となるので、双方の直進性担保部によって、サスペンション装置の直進性を確実に担保することができる。
(9)ステアリングホイールが中立位置を保持している状態から右又は左に操舵されたときに、遅延制御部により直進性担保部の直進性担保制御を遅らせることにより、初期応答特性をサスペンション装置自体の転舵応答性で賄って高転舵応答性を確保する。その後、サスペンション装置自体の転舵応答性を直進性担保部による直進性担保制御で調整することにより、理想的な転舵応答性を確保することができる。
(10)直進性担保部は、セルフアライニングトルクを演算して直進性を担保している。
 したがって、直進性担保部で、サスペンション装置の高応答性を確保することにより低下した直進性をセルフアライニングトルクで担保することができ、車両の操縦・安定性を向上させることができる。
(11)ステアリングホイールを中立位置から操舵を開始したときに、前記ステアパイワイヤシステムの転舵応答性設定部によって、転舵開始初期に前記サスペンション装置自体の転舵応答特性を初期転舵応答特性とし、初期設定時間経過後に前記ステアバイワイヤシステムの直進性担保部で前記転舵アクチュエータの前記サスペンション装置自体の直進性を担保する制御を開始する。
 これにより、初期転舵にサスペンション装置の高い転舵応答特性を確保し、初期設定時間経過後に直進性担保部で前記転舵アクチュエータの前記サスペンション装置自体の直進性を担保する制御を行うことができ、理想的な転舵応答特性を得ることができる。
(本発明のアクチュエータ応用例)
 上記第6実施形態では、アクチュエータとしてラック軸14を駆動する転舵アクチュエータ8を適用した場合について説明した。しかしながら、本発明では、上記構成に限定されるものではなく、前述した図25に示すように、前輪17FRおよび17FLを駆動輪として直接駆動するインホイールモータ70FRおよび70FLを有する場合には、これらインホイールモータ70FRおよび70FLを左右輪の回転数差で操舵するヨー角制御アクチュエータとする。
 そして、インホイールモータ70FRおよび70FLを回転駆動する駆動装置71に対して、ヨー角制御部72によって旋回加速時に、前述したヨー角制御部53Cと同様に目標ヨー角ψを算出し、算出した目標ヨー角ψに現在のヨー角ψ3が達するように旋回外輪側のインホイールモータ70FR(又は70FL)の回転数を増加させ、旋回内輪側のインホイールモータ(70FL(又は70FR)の回転数を減少させる回転数補正値RAFR,RAFLを算出する。これら回転数補正値RAFR,RAFLを駆動装置71に供給して、駆動装置71で回転指令値の補正を行い、補正された回転数指令値に基づくインバータ駆動信号を直流電源73から電力が供給されるインバータ74FR,74FLに供給する。これらインバータ74FR,74FLによってインホイールモータ70FRおよび70FLの回転数を旋回外輪側で増加させ、旋回内輪側で減少させることにより操舵するヨー角制御を行い、車両のステア特性をオーバーステア傾向とするようにしても良い。
(応用例の効果)
 このように、アクチュエータとして駆動輪を直接駆動するインホイールモータによるヨー角制御アクチュエータを適用することにより、油圧を使用した応答遅れを生じることがないとともに、旋回加速時の旋回外側へのトー角変化を、転舵角を制御することなくヨー角を制御して解消することができる。
(転舵機構の変形例)
 なお、転舵輪を転舵する転舵機構としては、ラックアンドピニオン機構に代えてボールねじ機構を適用することができ、この場合にはボールナットを転舵アクチュエータ8で回転駆動するようにすればよい。このように、ボールねじ機構を適用することにより、転舵角を高精度に制御することができる。
 また、転舵機構としてピニオンアンドラック機構やボールねじ機構に代えて他の形式の転舵機構を適用することができる。
(本発明のヨー角制御部応用例)
 上記実施形態では、目標ヨー角算出マップを参照して目標ラックストロークおよび目標ヨー角を算出する場合について説明した。しかしながら、本発明は上記に限定されるものではなく、目標ヨー角算出マップを参照する場合に代えて、操舵角をパラメータとする複数の操舵角特性線を車速およびヨー角の関数として表し、加速後車速および加速後ヨー角をもとに加速後車速で加速後ヨー角より大きいヨー角となる操舵角特性線を選択するようにしてもよい。
 このように操舵特性線を車速とヨー角の関数で表すことにより、目標ヨー角算出マップを用いることなく操舵角特性線の選択を演算で行うことができる。
 なお、上記実施形態において、操舵角特性線の本数は4本に限らず任意数に設定することができる。
(本発明のサスペンション応用例)
 上記実施形態では、サスペンション装置のロアリンクを互いに交差することがない第1リンク37と第2リンク38とで構成する場合について説明した。しかしながら、サスペンション装置の構成は上記構成に限定されるものではなく、キングピン軸がタイヤ接地面内を通るように設定して、転舵力を軽減できればよい。このため、ロアリンク構造を例えば前述した図26に模式的に示すように、互いに交差するトランスバースリンク81とコンプレッションリンク82とで構成することもできる。また、ロアリンク構造を、前述した図27に模式的に示すように、互いに交差するトランスバースリンク81とテンションリンク83とで構成することもできる。
(応用例の効果)
 このように、ロアリンク構造を平面視で互いに交差する第1リンクおよび第2リンクで構成することにより、キングピン軸を構成するロアピボット点を両リンクの交点位置とすることができる。このため、ロアピボット点の位置を転舵輪の車体内側により近づけることが可能となる。したがって、キングピン軸がタイヤ接地面内を通るように設定することが容易となる。
 また、サスペンション装置1Bとしては上記構成に限定されるものではなく、他の種々の構成のサスペンション装置を適用することができる。
 さらに、サスペンション装置1Bの構成によっては転舵応答性設定部52を省略することができる。
(第7実施形態)
 次に、本発明の第7実施形態について図33~図41を伴って説明する。
 この第7実施形態では、旋回制動時および旋回加速時にヨー角制御を行うようにしたものである。
 すなわち、前述した特許文献1に記載された従来技術では、ステアバイワイヤ制御系で、旋回加速時の車両の挙動を各輪の制動力を制御させることにより安定させるようにしているが、各輪の制動力を制御して車両の挙動を安定化するには制動力を発生させるアクチュエータの制動圧を制御する必要があり、圧力制御系で応答遅れを生じる。
 また、前述した特許文献2に記載された従来技術では、旋回加速時に駆動輪間に介挿した油圧クラッチを制御することにより、旋回外輪側に駆動力を与え、旋回内輪側に制動力を与えるので、上記特許文献1と同様に圧力制御系で応答遅れを生じる。
 このため、第7実施形態では、車両の旋回時における加速時および制動時の挙動の安定化を操舵制御装置で応答遅れを抑制して適正に行うことである。
 この課題を解決する手段として、本発明に係る操舵制御装置は、旋回走行中の加速状態および減速状態において車速変化後の車速とヨー角とをもとに複数の転舵量特性線を選択し、選択した転舵量特性線に基づきアクチュエータの目標転舵量を算出し、アクチュエータの転舵量を目標転舵量となるように制御して転舵輪のトー角変化によって旋回走行中のヨー角を適正に制御する。したがって、転舵輪のトー角変化によって車両をオーバーステア化したり、アンダーステア化したりして、車両挙動を安定化させる応答特性を向上させることができる。
 このように構成することにより、ステアバイワイヤシステムにおける車両の旋回時における加速状態および減速状態で、車両のヨー角制御を行うことにより適正値に調整されるので、応答遅れを抑制して迅速且つ適正に車両の挙動を安定化することができる。
 したがって、第7実施形態では、サスペンション装置としては前述した第1実施形態の図2~図10で説明したと同様のサスペンション装置を適用し、全体構成としては、図33に示すように、前述した第6実施形態における図28と同様の構成を有している。
(転舵制御)
 次に、転舵アクチュエータ8を制御するコントロール/駆動回路ユニット26における転舵制御について図34~図41を伴って説明する。
 すなわち、コントロール/駆動回路ユニット26には、前述したように、トルクセンサ5で検出する入力側ステアリング軸3の操舵トルクTsと、車両状態パラメータ取得部21で取得した車速Vと、操舵反力アクチュエータ角度センサ7で検出したアクチュエータ6の回転角θmiとが入力されている。
 このコントロール/駆動回路ユニット26には、図34に示す転舵制御部50が設けられている。この転舵制御部50は、目標転舵角演算部51、転舵応答性設定部52、旋回状態検出部53A、加速状態検出部53D、制動状態検出部53B、ヨー角制御部53Cおよびアクチュエータ制御装置54を備えている。
 目標転舵角演算部51は、車速Vおよび回転角θmiが入力され、これらに基づいて転舵アクチュエータ8を駆動するための目標転舵角δを算出する。
 転舵応答性設定部52は、直進性担保部55と遅延制御部56とを備えている。
 直進性担保部55は、直進性補完部55aと外乱補償部55bとを備えている。
 直進性補完部55aは、車速Vと、ピニオン角度センサ13で検出したピニオン角度に基づいて算出される転舵輪17FR,17FLの実転舵角δrと、ヨーレートセンサ22bで検出したヨーレートγに基づいて前記(1)式の演算を行ってセルフアライニングトルクTsaを算出し、算出したセルフアライニングトルクTsaに所定ゲインKsaを乗算して直進性補正値としてのセルフアライニングトルク制御値Asa(=Ksa・Tsa)を算出する。
 なお、セルフアライニングトルクTsaは、上記(1)式によって算出する場合に限らず、車両の横加速度Gyを検出する横加速度センサを設け、車両の横加速度Gyと車両のヨーレートγとに基づいて車両の運動方程式に基づいてヨーレートγの微分値と横加速度Gyとに基づいて横力Fyを算出し、この横力Fyにニューマチックトレイルεnを乗算することにより、算出することができる。さらには、ステアリングホイール2の操舵角θsと、セルフアライニングトルクTsaとの関係を、車速Vをパラメータとして実測するか又はシミュレーションによって算出した制御マップを参照して操舵角センサ4で検出した操舵角θsと車速Vとに基づいてセルフアライニングトルクTsaを算出することもできる。また、転舵輪17FR,17FLを駆動輪とする場合には、左右の駆動力差に基づいてトルクステア現象で転舵時に発生する発生トルクThを推定し、操舵トルクセンサ5で検出した操舵トルクTsから発生トルクThを減じてセルフアライニングトルクTsaを算出することもできる。同様に、左右の転舵輪17FR,17FLの制動力差に基づいてセルフアライニングトルクTsaを算出することができる。
 外乱補償部55bは、操舵トルクセンサ5からの操舵トルクTs、転舵アクチュエータ角度センサ9からの回転角θmo、およびモータ電流検出部64からのモータ電流imrが入力され、車両に入力される外乱を周波数帯域毎に分離してそれぞれ推定し、これらの外乱を抑制するための外乱補償値Adisを算出する。
 この外乱補償部55bでは、例えば特開平2007-237840号公報に記載されているように、運転者による操舵入力である操舵トルクTsと転舵アクチュエータ8による転舵入力を制御入力とし、実際の操舵状態量を制御量とするモデルにおいて、前記制御入力をローパスフィルタに通した値と、前記制御量を前記モデルの逆特性と前記ローパスフィルタとに通した値との差に基づいて外乱を推定する複数の外乱推定部を有する。各外乱推定部は、ローパスフィルタのカットオフ周波数を異ならせることにより、外乱を複数の周波数帯域毎に分離する。
 そして、外乱補償部55bおよび直進性補完部55aで算出された外乱補償値Adisおよびセルフアライニングトルク制御値Asaが加算器55cで加算され直進性担保制御値δaを算出する。この直進性担保制御値δaは、遅延制御部56に供給される。
 遅延制御部56は、図34に示すように、操舵開始検出部56a、単安定回路56b、ゲイン調整部56cおよび乗算器56dを有する。
 操舵開始検出部56aは、操舵角センサ4で検出した操舵角θsに基づいて中立位置を維持する状態から右操舵又は左操舵したタイミングを検出して中立状態からの操舵開始を表す操舵開始信号SSを単安定回路56bに出力する。
 また、単安定回路56bは操舵開始検出部56aから出力される操舵開始信号に基づいて所定の遅延時間例えば0.1秒の間オン状態となる制御開始遅延信号をゲイン調整部56cに出力する。
 ゲイン調整部56cは、制御開始遅延信号がオン状態であるときに、制御ゲインGaを“0”に設定し、制御開始遅延信号がオフ状態であるときに制御ゲインGaを“1”に設定し、設定した制御ゲインGaを乗算器56dに出力する。
 乗算器56dでは、直進性担保部55から出力される直進性担保制御値δaが入力され、この直進性担保制御値δaに制御ゲインGaを乗算し、乗算結果を目標転舵角演算部51からの目標転舵角δが入力された加算器56eに供給する。
 したがって、遅延制御部56では、操舵開始検出部56aで中立状態を維持している状態から右操舵又は左操舵を行った操舵開始状態を検出したときに、直進性担保部55で算出された直進性担保制御値δaを目標転舵角δに加算する直進性担保制御を単安定回路56bで設定される所定時間例えば0.1秒間停止させるようにゲイン調整部56cで、直進性担保制御値δaに乗算する制御ゲインGaを“0”に設定する。そして、ゲイン調整部56cでは、0.1秒経過後に単安定回路56bの出力信号がオフ状態に反転すると、ゲイン調整部56cで、直進性担保制御値δaを目標転舵角δに加算する直進性担保制御を開始するように制御ゲインGaを“1”に設定する。
 また、遅延制御部56は、ステアリングホイール2の操舵が継続されているときには、操舵開始検出部56aで中立状態からの操舵開始を検出しないので、単安定回路56bの出力がオフ状態を維持することにより、ゲイン調整部56cで制御ゲインGaが“1”に設定される。このため、直進性担保部55で演算された直進性担保制御値δaをそのまま加算器56eに供給する。このため、目標転舵角δに直進性担保制御値δaが加算されて直進性担保制御が行われる。
 さらに、旋回状態検出部53Aは、ヨー角センサ22aで検出した車両のヨー角ψが入力され、このヨー角ψが予め設定した設定値ψsを超えたときに旋回状態と判定する。
 加速状態検出部53Dは、駆動制御装置23からコントロール/駆動回路26へ入力される加速指令信号Sdが入力され、この加速指令信号Sdがオン状態であるときに加速状態と判定する。
 制動状態検出部53Bは、コントロール/駆動回路26で制動時に圧力制御ユニット20へ出力される制動指令信号Sbが入力され、この制動指令信号Sbがオン状態であるときに制動状態と判定する。
 ここで、加速状態検出部53Dおよび制動状態検出部53Bで走行状態検出部53Vが構成されている。
 また、ヨー角制御部53Cには、旋回状態検出部53A、加速状態検出部53Dおよび制動状態検出部53Bの判定結果が入力されるとともに、ヨー角センサ22aで検出したヨー角ψ、操舵角センサ4で検出した操舵角θs、車両状態パラメータ取得部21で算出した車速Vが入力されている。このヨー角制御部53Cは、操舵方向判定部53Sと、目標転舵量算出部としての目標ラックストローク算出部53Rと、目標ヨー角算出部53Yとを備えている。
 操舵方向判定部53Sは、旋回加速状態の前後又は旋回制動状態の前後の操舵角に基づいて運転者の操舵方向が切り増し方向であるか切り戻し方向であるかを判定する。
 目標ラックストローク算出部53Rは、車速Vおよびヨー角ψをもとに、図38および図39に示す、目標ラックストストローク算出マップを参照して目標転舵量としての目標ラックストロークRsを算出する。ここで、目標ラックストローク算出マップは、図38および図39に示すように、車速V2を横軸に、ヨー角ψ2を縦軸に設定し、目標ラックストロークRsをパラメータとする複数の目標転舵量特性線L1~L4が設定された構成を有する。
 そして、目標ラックストローク算出部53Rは、旋回加速状態では、旋回加速状態となった後(状態変化後)の車速V2およびヨー角ψ2をもとに、図38に示す目標ラックストローク算出マップを参照して、車速V2でヨー角がヨー角ψ2を上回る目標転舵量特性線Liを選択し、選択した目標転舵量特性線Li(i=1~4)に設定されている目標ラックストロークを目標ラックストロークRsとして算出する。
 また、目標ラックストローク算出部53Rは、旋回制動状態では、旋回制動状態となった後(状態変化後)の車速V2およびヨー角ψ2をもとに、図39に示す目標ラックストローク算出マップを参照して、車速V2でヨー角がヨー角ψ2を下回る目標転舵量特性線Lj(j=1~4)を選択し、選択した目標転舵量特性線Ljに設定されている目標ラックストロークを目標ラックストロークRsとして算出する。
 さらに、目標ラックストローク算出部53Rは、旋回加速状態又は旋回制動状態である状態変化を生じたときに、操舵方向判定部53Sの判定結果が切り増し方向であるときには、前記旋回加速状態と同様に状態変化後の車速V2およびヨー角ψ2をもとに、図38に示す目標ラックストローク算出マップを参照して、車速V2でヨー角がヨー角ψ2を上回る目標転舵量特性線Liを選択し、選択した目標転舵量特性線Liに設定されている目標ラックストロークを目標ラックストロークRsとして算出する。
 さらにまた、目標ラックストローク算出部53Rは、旋回加速状態又は旋回制動状態である状態変化を生じたときに、操舵方向判定部53Sの判定結果が切り戻し方向であるときには、前記旋回制動状態と同様に状態変化後の車速V2およびヨー角ψ2をもとに、図39に示す目標ラックストローク算出マップを参照して、車速V2でヨー角がヨー角ψ2を下回る目標転舵量特性線Ljを選択し、選択した目標転舵量特性線Ljに設定されている目標ラックストロークを目標ラックストロークRsとして算出する。
 また、目標ヨー角算出部53Yは、目標ラックストローク算出部53Rで選択した目標転舵量特性線Li又はLjで、状態変化後の車速V2でのヨー角ψを目標ヨー角ψとして算出する。なお、目標ヨー角算出部53Yでは、目標ラックストローク算出部53Rとは独立して状態変化後の車速V2およびヨー角ψ2をもとに図38又は図39に示す目標ラックストローク算出マップを参照して目標転舵量特性線Li又はLjを選択し、選択した目標転舵量特性線Li又はLjに基づいて目標ヨー角ψを算出するようにしてもよい。
 そして、ヨー角制御部53Cでは、ラック軸14のラックストロークが目標ラックストローク算出部53Rで算出した目標ラックストロークRsに一致するように転舵アクチュエータ8を制御するヨー角制御を行う。
 また、ヨー角制御部53Cでは、ヨー角制御をヨー角制御後のヨー角ψ3が目標ヨー角算出手段で算出した目標ヨー角ψに一致し、且つ旋回状態となる前のヨー角ψ1から加速状態又は制動状態となった後の状態変化後ヨー角ψ2を減算した値の絶対値であるヨー角偏差Δψ1に対して旋回状態となる前のヨー角ψ1からヨー角制御後のヨー角ψ3を減算した値の絶対値であるヨー角偏差Δψ2が小さくなり、さらにヨー角制御後のヨー角ψ3が“0”となったとき、あるいは加速状態又は制動状態が解消されるまで継続する。
 すなわち、ヨー角制御部53Cでは、車両の旋回走行中に、加速状態又は制動状態となったときに、トー角変化を解消するように転舵アクチュエータ8を制御するヨー角制御処理を実行する。
 このヨー角制御処理は、所定時間(例えば1μsec)毎に実行されるタイマ割込処理として実行され、旋回状態検出部53A、加速状態検出部53Dおよび制動状態検出部53Bの処理を含めて表すと、図35~図37に示すようになる。
 このヨー角制御処理では、まず、ステップS201でヨー角センサ22aによって検出した旋回前ヨー角ψ1を読込み、この旋回前ヨー角ψ1をヨー角制御部53Cに接続されたヨー角記憶部53aに記憶する。
 次いで、ステップS202に移行して、読込んだ旋回前ヨー角ψ1の絶対値が零近傍の閾値ψsを超えて車両が旋回状態であるか否かを判定し、|ψ1|≦ψsであるときには車両が旋回状態ではないと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 一方、ステップS202の判定結果が、|ψ1|>ψsであるときには車両が旋回状態であると判断してステップS203に移行し、操舵角センサ4で検出した加減速前操舵角θs1を読込み、この加減速前操舵角θs1をヨー角制御部53Cに接続された操舵角記憶部53bに記憶してからステップS204に移行する。
 このステップS204では、車両状態パラメータ取得部21で取得した車速V1を読込み、読込んだ車速V1をヨー角制御部53Cに接続された車速記憶部53cに記憶してからステップS205に移行する。
 このステップS205では、車両に搭載された駆動制御装置23から加速状態を表すオン状態の加速指令信号Sdが入力されているか否かを判定し、加速指令信号Sdがオン状態であるときには加速状態であると判断してステップS206に移行する。
 このステップS206では、図36に示す加速時ヨー角制御処理を実行してからステップS207に移行する。
 このステップS207では、ヨー角センサ22aで検出したヨー角制御後ヨー角ψ3を読込み、次いでステップS208に移行して、後述する図36のステップS305で算出した目標ヨー角ψ1からステップS14で読込んだヨー角制御後ヨー角ψ3を減算した値の絶対値が零であるか否かを判定する。この判定結果が、|ψ1-ψ3|>0であるときにはヨー角制御後ヨー角ψ3が目標ヨー角ψ1に略一致していないと判断して前記ステップS105へ戻り、|ψ1-ψ3|=0であるときにはヨー角制御後ヨー角ψ3が目標ヨー角ψ1に一致し、必要なヨー角に達したものと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 一方、ステップS105の判定結果が、加速指令信号Sdがオフ状態であるときには、ステップS211に移行して、コントロール/駆動回路26から圧力制御ユニット20に出力される制動指令信号Sbがオン状態であるか否かを判定し、制動指令信号Sbがオフ状態であるときにはそのまま今回のタイマ割込処理を終了して所定のメインプログラムに復帰し、制動指令信号Sbがオン状態であるときにはステップS212へ移行する。
 このステップS212では、図37に示す制動時ヨー角制御処理を実行してからステップS213に移行する。このステップS213では、ヨー角センサ22aで検出したヨー角制御後ヨー角ψ3を読込み、次いでステップS214に移行して、後述する図37のステップS316で算出した目標ヨー角ψ2からステップS213で読込んだヨー角制御後ヨー角ψ3を減算した値の絶対値が零であるか否かを判定する。この判定結果が、|ψ2-ψ3|>0であるときにはヨー角制御後ヨー角ψ3が目標ヨー角ψ2に一致していないと判断して前記ステップS205へ戻り、|ψ2-ψ3|=0であるときにはヨー角制御後ヨー角ψ3が目標ヨー角ψ2に一致し、必要なヨー角に達したものと判断して今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 また、図35のステップS206で実行する加速時ヨー角制御処理は、図36に示すように、まずステップS301で、操舵角センサ4で検出した加速後操舵角θs2を読込み、次いでステップS302に移行して、車両状態パラメータ取得部21から加速後車速V2を読み込む。次いで、ステップS303に移行して、ヨー角センサ22aで検出した加速後ヨー角ψ2を読込んでからステップS304に移行する。
 このステップS304では、操舵角記憶部53bに記憶されている加減速前操舵角θs1を読出し、加速前操舵角θs1から加速後操舵角θs2を減算した値が零であるか否かを判定し、θs1-θs2=0であるときには運転者がステアリングホイール2を操舵して切り増しまたは切り戻しを行っていない保舵状態にあるものと判断してステップS305に移行する。
 このステップS305では、加速後車速V2および加速後ヨー角ψ2をもとに前述した図38に示す目標転舵量算出マップとしての目標ラックストローク算出マップを参照して旋回加速時に必要とする目標ラックストロークRsを算出する。すなわち、現在の車速V2において現在のヨー角ψ2よりも大きい直近の特性線Li(i=1~4)を選択し、選択した特性線Liに設定されている目標ラックストロークLsiを目標ラックストロークRsとして算出する。
 次いで、ステップS306に移行して、上記ステップS305で選択した特性線Liにおける現在の車速V2のヨー角を目標ヨー角ψ1として算出してからステップS307に移行する。
 このステップS307では、設定した目標ラックストロークRsを転舵アクチュエータ8で発生させる前述した目標転舵角演算部51から出力される前記目標転舵角δに対する転舵角補正値δtaに変換し、次いでステップS308に移行して、転舵角補正値δtaを目標転舵角δに加算して転舵アクチュエータ8を制御するヨー角制御を行ってから加速時ヨー角制御を終了して図35のステップS207に移行する。
 また、前記ステップS304の判定結果が、θs1-θs2≠0であるときには、運転者がステアリングホイール2を切り増し方向または切り戻し方向に操舵しているものと判断して図37に示す制動時ヨー角制御処理におけるステップS320に移行する。
 また、図35のステップS212で実行する制動時ヨー角制御処理は、図37に示すように、まず、ステップS311で、操舵角センサ4で検出した制動後操舵角θs2を読込み、次いでステップS312に移行して、車両状態パラメータ取得部21から制動後車速V2を読み込む。次いでステップS313に移行して、ヨー角センサ22aで検出した制動後ヨー角ψ2を読込んでからステップS314に移行する。
 このステップS314では、操舵角記憶部53bに記憶されている加減速前操舵角θs1を読出し、加減速前操舵角θs1から制動後操舵角θs2を減算した値が零であるか否かを判定し、θs1-θs2=0であるときには運転者がステアリングホイール2を操舵して切り増しまたは切り戻しを行っていない保舵状態にあるものと判断してステップS315に移行する。
 このステップS315では、加速後車速V2および加速後ヨー角ψ2をもとに前述した図39に示す目標転舵量算出マップとしての目標ラックストローク算出マップを参照して旋回制動時に必要とする目標ラックストロークRsを算出する。すなわち、図39を参照して、現在の車速V2において現在のヨー角ψ2よりも小さい直近の特性線Lj(j=1~4)を選択し、選択した特性線Ljに設定されている目標ラックストロークRsjを目標ラックストロークRsとして設定する。
 次いで、ステップS316に移行して、上記ステップS315で選択した特性線Ljおける現在の車速V2のヨー角を目標ヨー角ψ2として算出してからステップS317へ移行する。
 このステップS317では、設定した目標ラックストロークRsを転舵アクチュエータ8で発生させる前述した目標転舵角演算部51から出力される前記目標転舵角δに対する転舵角補正値δtaに変換し、次いでステップS318に移行して、転舵角補正値δtaを目標転舵角δに加算して転舵アクチュエータ8を制御するヨー角制御を行ってから制動時ヨー角制御処理を終了して図35のステップS213に移行する。
 また、前記ステップS314の判定結果が、θs1-θs2≠0であるときには、運転者がステアリングホイール2を切り増し方向または切り戻し方向に操舵しているものと判断してステップS319へ移行する。
 このステップS319では、操舵角記憶部53bに記憶されている加減速前操舵角θs1を読出し、加減速前操舵角θs1から加速後又は制動後操舵角θs2を減算した値が正であるか否かを判定する。この判定結果が、θs1-θs2<0であるときには、運転者がステアリングホイール2を切り増し操舵しており、よりオーバーステア化を望んでいるものと判断してステップS320へ移行する。
 このステップS320では、制動後車速V2および加速後又は制動後ヨー角ψ2をもとに前述した図38に示す目標転舵量算出マップとしての目標ラックストローク算出マップを参照してオーバーステア化に必要とする目標ラックストロークRsを算出する。すなわち、図38を参照して、現在の車速V2において現在のヨー角ψ2よりも大きい直近の特性線Li(i=1~4)を選択し、選択した特性線Liに設定された目標ラックストロークRsiを目標ラックストロークRsとして算出する。
 次いで、ステップS321に移行して、上記ステップS320で選択した特性線Liにおける現在の車速V2におけるヨー角を目標ヨー角ψ1として算出してから前述した図36のステップS307に移行する。
 また、前記ステップS319の判定結果が、θs1-θs2>0であるときには、運転者がステアリングホイール2を切り戻し操舵しており、よりアンダーステア化を望んでいるものと判断してステップS322へ移行する。
 このステップS322では、制動後車速V2および加速後又は制動後ヨー角ψ2をもとに前述した図39に示す目標転舵量算出マップとしての目標ラックストローク算出マップを参照して旋回制動時に必要とする目標ラックストロークRsを算出する。すなわち、図39を参照して、現在の車速V2において現在のヨー角ψ2よりも小さい直近の特性線Lj(j=1~4)を選択し、選択した特性線Ljに設定されている目標ラックストロークRsjを目標ラックストロークRsとして算出する。
 次いで、ステップS323に移行して、上記ステップS32で選択した特性線Ljにおける現在の車速V2におけるヨー角を目標ヨー角ψ2として算出してから前述したステップS317に移行する。
 この図35~図37のヨー角制御処理において、ステップS201およびS202の処理が旋回状態検出部53Aに対応し、ステップS205の処理が加速状態検出部53Dに対応し、ステップS211の処理が制動状態検出部53Bに対応し、ステップS301~ステップS308及びステップS208~ステップS210、ステップS311~ステップS323の処理がヨー角制御部53Cに対応し、ステップS305、S315、S320およびS322の処理が目標ラックストローク算出部53Rに対応し、ステップS306、S315、S321およびS320の処理が目標ヨー角算出部53Yに対応し、ステップS319の処理が操舵方向判定部53Sに対応している。
 アクチュエータ制御装置54は、転舵角偏差Δδを算出する転舵角偏差演算部61と、転舵モータ制御部62と、電流偏差演算部63とモータ電流制御部65とを備えている。
 転舵角偏差演算部61は、加算器56eから出力される目標舵角補正値δaから転舵アクチュエータ角度センサ9から出力される転舵アクチュエータ角度に基づく実転舵角δrを減算して舵角偏差Δδを算出し、算出した舵角偏差Δδを転舵モータ制御部62に出力する。
 転舵モータ制御部62は、入力される転舵角偏差Δδが零となるようにアクチュエータ8を構成する転舵モータ8aの駆動指令電流imを算出し、算出した駆動指令電流imを電流偏差演算部63に出力する。
 電流偏差演算部63は、入力される駆動指令電流imから転舵アクチュエータ8を構成する転舵モータ8aに供給するモータ電流を検出するモータ電流検出部64から出力されるモータ電流imrを減算して電流偏差Δiを算出し、算出した電流偏差Δiをモータ電流制御部65に出力する。
 モータ電流制御部65は、入力される電流偏差Δiが零となるように、すなわち、実際のモータ電流imrが駆動指令電流imに追従するようにフィードバック制御し、転舵モータ駆動電流imrを転舵モータ8aに出力する。
(第7の実施形態の動作)
 次に、上記第7の実施形態の動作について図40~図42を伴って説明する。
(直進走行動作)
 今、ステアリングホイール2を中立位置に保持して直進走行しているものとする。
 この直進走行状態では、目標転舵角演算部51で演算される目標転舵角δが零となる。このため、アクチュエータ制御装置54で制御される転舵モータ8aによって、ラック軸14が中立位置に制御され、タイロッド15を介して転舵輪17FRおよび17FLの転舵角δrが零に制御される。このとき、ステアリングホイール2が中立位置を保持しているので、ヨー角センサ22aで検出される車両のヨー角ψ1は零であり、直進補完部55aで前記(1)式に従って算出されるセルフアライニングトルクTsaは、転舵角δrが零であることにより重心点横滑り角βが零となり、ヨー角ψも零であるので、零となる。
 外乱補償部55bでは、外乱を抑制する外乱補償値Adisが算出されるので、この外乱を生じていないときには外乱補償値Adisも零となる。
 さらに、ヨー角制御部53Dでは、車両が直進走行状態であり、旋回状態ではなくヨー角ψ1が零であるので、車両の旋回走行状態と判断されることはなく、ラックストロークを補正するラックストローク制御も行われず、目標転舵角δに補正値δa,δtaを加算した目標転舵角補正値δaも零となる。
 したがって、アクチュエータ制御装置54の転舵角偏差演算部61から出力される転舵角偏差Δδも零となり、転舵モータ制御部62から出力されるモータ電流指令値imも零となる。このためモータ電流制御部65からモータ電流imtは出力されず、転舵モータ8aは停止状態を維持し、ラック軸14が中立位置を維持して転舵輪17FRおよび17FLの転舵角δtが“0”に制御される。
 この直進走行状態で、転舵輪17FRおよび17FLの少なくとも一方が轍にはまったり、マンホールの蓋を通過したりして転舵輪17FRおよび17FLの一方が転舵されたり、ヨー角が発生したりすると、直進性補完部55aで算出されるセルフアライニングトルクTsaが増加する。このとき、前述したサスペンション装置1Bのようにステアリングホイール2が中立位置にある状態でキングピン軸KSがタイヤ接地面を通るように設定して転舵応答性を向上させた場合には、サスペンション装置1B自体で発生するセルフアライニングトルクTsaが不足することになる。
 しかしながら、本実施形態では、前述した(1)式に基づいてセルフアライニングトルクを算出するので、この(1)式におけるキャスタートレイルεcを通常のサスペンション装置と同様の値に設定しておくことにより、算出されるセルフアライニングトルクTsaはキャスタートレイルεcに対応した値を算出することができる。
 そして、算出したセルフアライニングトルクTsaにゲインKsaを乗算して、直進性補正値Asaを算出し、この直進性補正値Asaを遅延制御部56に供給する。このとき、遅延制御部56では直進走行状態であるので操舵開始検出部56aで操舵開始を検出することはなくゲイン調整部56cでゲインGaが“1”に設定されているので、直進性補正値Asaがそのまま加算器56eに供給される。
 このため、目標転舵角δが直進性補正値Asaで補正されることにより、アクチュエータ制御装置54で転舵アクチュエータ8を構成する転舵モータ8aが駆動制御されて、セルフアライニングトルクTsaに相当する転舵トルクを発生させ、これがラック軸14およびタイロッド15を介して転舵輪17FRおよび17FLに伝達される。
 したがって、転舵輪17FRおよび17FLでセルフアライニングトルクTsaを発生させて、サスペンション装置1へのセルフアライニングトルク不足を補完して車両の直進性を担保することができる。
(旋回開始動作)
 ところが、ステアリングホイール2を中立位置に保持した直進走行状態を維持している状態からステアリングホイール2を右(又は左)に操舵する状態となると、この直進走行状態からの操舵による旋回状態への移行が操舵開始検出部56aで検出される。
 このため、単安定回路56bから所定時間例えば0.1秒間オン状態となる制御遅延信号がゲイン調整部56cに出力される。したがって、ゲイン調整部56cで、制御遅延信号がオン状態を継続している間制御ゲインGaが“0”に設定される。このため、乗算器56dから出力される乗算出力は“0”となり、直進性担保制御値δaの加算器56eへの出力が停止される。
 したがって、ステアリングホイール2の中立位置から操舵を開始した時点から0.1秒の初期応答期間T1の間は制御ゲインGaが“0”に設定されるので、乗算器56dから出力される乗算出力が“0”となり、目標転舵角δに対する直進性担保制御が前述した図15(b)で実線図示のように停止される。
 このため、操舵角センサ4で検出した操舵角θsが目標転舵角演算部51に供給され、この目標転舵角演算部51で演算された目標転舵角δがそのまま転舵角偏差演算部61に供給される。このため、目標転舵角δに一致するように転舵モータ8aが回転駆動される。この間、直進性担保部55における直進性担保制御が停止される。
 したがって、初期応答期間T1では、キングピン軸KSの路面接地点がタイヤの接地面内の接地中心位置に設定され、且つキャスター角が零に設定されたサスペンション装置1Bによる転舵が開始される。
 このとき、サスペンション装置1Bのキャスター角が零に設定されている。このキャスター角と転舵応答性と操縦安定性との関係は、図14(a)に示すように、キャスター角が零であるときには転舵応答性が高い状態をとなるが、操縦安定性を確保することはできない、すなわち、キャスター角に対する転舵応答性と操縦安定性とはトレードオフの関係が存在する。
 このため、中立位置から操舵を開始した初期状態では、ステアバイワイヤ制御による直進性担保制御は実行されないことにより、この初期転舵をサスペンション装置1Bが賄うことになる。
 この初期応答期間T1では、サスペンション装置1Bは、上述したように、キャスター角が零あり、操縦応答性が高いので、図15(a)で実線図示の特性線L1で示すように、一点鎖線図示の特性線L2で示す一般的なステアバイワイヤ形式の操舵系を有する車両における転舵応答特性(ヨー角)より高い転舵応答特性(ヨー角)とすることができる。このとき、運転者のステアリングホイール2の操舵による操舵角変化に対応した転舵角変化となるので、運転者に違和感を与えることはない。
 ところが、サスペンション装置1Bによる転舵応答性のみで初期応答期間T1を越えて転舵を継続すると、図15(a)で破線図示の特性線L3のように中期応答期間T2および後期応答期間T3で操舵による車両の転舵応答性が敏感になる。また、中期応答期間T2から後期応答期間T3に掛けての車両の内側への巻き込み現象が大きくなってしまう。
 このため、上記第1の実施形態では、図15(b)に示すように、初期応答期間T1が経過する例えば0.1秒後に、直進性補完部55aおよび外乱補償部55bで構成される直進性担保部55による目標転舵角δに対する直進性担保制御がステップ状に開始される。このため、サスペンション装置1Bによる車両の転舵応答性を抑制して車両のふらつきを抑制するとともに、図14(b)で点線図示のように、ステアバイワイヤ制御によってサスペンション装置1Bの直進性を補完して、操縦安定性を確保することができる。
 その後、中期応答期間T2が終了する例えば0.3秒経過後には、直進性担保部55による直進性担保制御により一般的な車両の転舵応答特性に比較しても転舵応答特性をより抑制してアンダーステア傾向とすることができる。これにより、図15(a)で実線図示の特性線L1で示すように、操縦安定性を向上させることができ、特性線L1で示す理想的な車両の転舵応答特性を実現することができる。
(旋回加速動作)
 この車両の旋回走行状態では、ヨー角制御部53Cでは、前述した図35のヨー角制御処理で、ステップS201でヨー角ψ1を読込んでヨー角記憶部53aに記憶してからステップS202に移行して、旋回走行状態であるので、ステップS203に移行して加減速前操舵角θs1を読込んで加減速前操舵角θs1を操舵角記憶部53bに記憶し、次いでステップS204に移行して加減速前車速V1を読込んで加減速前車速V1を車速記憶部53cに書込む。
 しかしながら、加速指令信号Sd及び制動指令信号Sbがともにオフ状態であるためそのままタイマ割込処理を終了することを繰り返している。このため、ヨー角記憶部53aには加減速前ヨー角ψ1が更新記憶され、操舵角記憶部53bには加減速前操舵角θs1が更新記憶され、車速記憶部53cには加減速前車速V1が更新記憶されている。
 この旋回走行状態で、アクセルペダルが踏込まれると、駆動制御装置23が作動して駆動輪に対して加速制御が開始されるとともに、オン状態の加速状態信号Sdをコントロール/駆動回路26へ出力する。
 このため、ヨー角制御部53Cでは、図35の処理において、ステップS205からステップS206に移行して、図36に示す加速時ヨー角制御処理を実行する。この加速時ヨー角制御処理では、加速後操舵角θs2を読込み(ステップS301)、次いで加速後車速V2を読込み(ステップS302)、次いで加速後ヨー角ψ2を読込む(ステップS303)。
 その後、加速前後の操舵角θs1およびθs2に変化があるか否かが判定される(ステップS304)。このとき、運転者がステアリングホイール2を操舵して切増しや切り戻しを行っていない保舵状態であるときには、加速前後の操舵角θs1およびθs2が一致するので、ステップS304からステップS305に移行し、加速後車速V2と加速後ヨー角ψ2とをもとに図38に示す目標ラックストローク算出マップを参照して目標ヨー角ψ1を算出する。
 この目標ヨー角ψ1の算出は、図40に示すように、旋回状態における加速前の車速V1とヨー角ψ1で表される加速前位置P1が操舵特性線L1およびL2の間にあるものとする。この旋回前位置P1から加速状態となると、加速後車速V2と加速後ヨー角ψ2とで表される加速後位置P2は前述したようにサスペンション装置1Bが軽い転舵力で転舵ができることから、加速後車速V2が加速前車速V1より増加し、且つ加速後ヨー角ψ2が加速前ヨー角ψ1より車両の加速によって転舵輪17FR,17FLのトー角が旋回外側に変化することになる。この結果、加速後ヨー角ψ2が加速前ヨー角ψ1より低下して、車両がアンダーステア傾向となる。
 この加速後位置P2から加速後車速V2でヨー角が加速後ヨー角ψ2より大きい直近の操舵特性線L3を選択し、選択した操舵特性線L3に設定されている加速後車速V2で必要とするラックストロークを目標ラックストロークRsとして算出する。
 そして、選択した操舵特性線L3における現在の車速V2おけるにヨー角を目標ヨー角ψ1算出する(ステップS11)。
 そして、算出した目標ラックストロークRsを目標転舵角演算部51で演算された目標転舵角δに対してヨー角制御を行う転舵角補正値δtaに変換し(ステップS12)、変換した転舵角補正値δtaを目標転舵角δに加算してアクチュエータ制御装置54へ出力する(ステップS13)。
 このため、アクチュエータ制御装置54では、転舵輪17FR,17FLがサスペンション装置1Bが軽い転舵力によって転舵輪を転舵可能に構成されていることによる旋回外側へのトー角変化を解消するトー角変化を与えるように転舵アクチュエータ8が制御されてラック軸14が目標ラックストロークRs分ストロークし、このストロークがタイロッド15を介して転舵輪17FR,17FLに供給される。
 したがって、軽い転舵力で転舵が可能なサスペンション装置1Bを適用した場合に、ヨー角制御を行わない場合には、旋回状態で加速を行わない状態の図42(a)で実線図示の状態から加速状態に移行したときに、転舵輪17FR,17FLが図42で一点鎖線図示のようにトーアウト方向で旋回外輪側の転舵輪17FLのトー角変化が大きい状態となる。
 しかしながら、本実施形態では、旋回加速時に上述したヨー角制御が行われることにより、図42(a)で実線図示の状態から加速状態となったときに、点線図示のように旋回外輪側の転舵輪17FLのトー角を旋回内側にトーイン方向に制御し、これに伴って旋回内輪側はトーアウト方向に制御される。このとき、旋回中であるので、車両の荷重は旋回外輪側に多く掛かり、旋回内輪側では荷重負担が少ないので、旋回内輪側がトーアウト方向に制御されても車両の旋回挙動への影響は殆ど生じない。
 したがって、本実施形態によると、軽い転舵力で転舵輪を転舵可能なサスペンション装置1Bによる旋回外輪側のトーアウト方向のトー角変化を解消して車両ステア特性がオーバーステア傾向に制御される。このため、車両1がコーナーを旋回走行している状態で、加速状態となっても適正な旋回性能を確保することができる。
 しかも、本実施形態では転舵アクチュエータ8を制御することにより、ラック軸14のラックストロークを制御してトー角変化を生じさせる。このため、前述した従来例のように制動装置によって旋回内輪側の制動圧を旋回外輪側の制動圧より大きくして旋回内側向きのヨー角を発生させる場合や、油圧クラッチを使用して旋回外輪の駆動力を増加し、旋回内輪側の制動力を増加させる場合のように油圧制御による応答遅れを生じることがない。したがって、旋回加速時に高応答性を持って転舵輪17FR,17FLをトー角変化させて車両をオーバーステアに制御することができ、旋回性能を向上させて操縦安定性を向上させることができる。
 さらに、ステアバイワイヤシステムを構成する転舵制御部50に設けたヨー角制御部53Cによって、旋回加速時のヨー角制御を行うことができる。このため、通常のサスペンション装置のようにフロント側のサスペンション装置1Bで前後力(前引き)トーイン、リアサスペンション装置では前後力(前引き)トーアウトに設定する必要がなく、フロントおよびリアのサスペンション装置の構成を簡易・軽量化することができるとともに、レイアウトの自由度を向上させることができる。
 ちなみに、従来例では、トー角制御分をサスペンション装置で負担することにより、例えばトランスバースリンクとラック軸を略平行に配置した上で、トランスバースリンクをラック軸よりも車両幅方向長めに設定する必要があり、サスペンション装置のレイアウトの自由度が少なくなるとともに、構成が複雑化して、重量が増加するという問題点がある。
 その後、再度ヨー角ψ3を読込み(ステップS207)、目標ヨー角ψからヨー角ψ3を減算したヨー角偏差の絶対値が零となるか否かを判定する(ステップS208)。この判定結果が、ヨー角偏差が“0”でない場合には、前記ステップS205へ戻り、ヨー角制御を継続する。
 そして、目標ヨー角ψからヨー角ψ3を減算したヨー角偏差の絶対値が零となると、ステップS209へ移行し、旋回前ヨー角ψ1からヨー角制御前のヨー角ψ2を減算した値の絶対値|ψ1-ψ2|が、旋回前ヨー角ψ1からヨー角制御後のヨー角ψ3を減算した値の絶対値|ψ1-ψ3|より大きいか否かを判定する(ステップS209)。この判定結果が、|ψ1-ψ2|≦|ψ1-ψ3|であるときにはヨー角変化が旋回前の状態に収束していないと判断して前記ステップS205へ移行してヨー角制御を継続する。
 その後、ヨー角制御前後のヨー角偏差|ψ1-ψ3|が加速前後のヨー角偏差|ψ1-ψ2|より小さくなると、ヨー角変化が収束したものと判断してステップS210へ移行してヨー角制御後ヨー角ψ3が“0”であるか否かを判定する。この判定結果が、ψ3≠0であるときにはステップS201に戻り、ψ3=0であるときには今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
 また、アクセルペダルの踏込みを解除することにより、駆動制御装置23から出力される加速指令信号Sdがオフ状態となり、且つブレーキペダルを開放して制動指令信号Sbもオフ状態であるときには、今回のタイマ割込処理を終了して所定のメインプログラムに復帰する。
(旋回制動動作)
 一方、車両が旋回状態となってからブレーキペダルを踏込んで制動状態とすると、制動装置が作動して各車輪17FR,17FL,17RR,17RLに制動力が作動される制動状態となる。このように、制動状態となると、コントロール/駆動回路ユニット26から出力される制動指令信号Sbがオン状態となる。
 このため、ヨー角制御部53Cでは、図35~図38の処理において、ステップS204からステップS205に移行し、加速指令信号Sdがオフ状態であるので、ステップS211へ移行し、制動指令信号Sbがオン状態であるので、ステップS212へ移行して図37に示す制動時ヨー角制御処理を実行する。
 この制動時ヨー角制御処理では、制動後操舵角θs2を読込み(ステップS311)、次いで制動後車速V2を読込み(ステップS312)、さらに制動後ヨー角ψ2を読込む(ステップS313)。
 そして、制動前後の操舵角θs1およびθs2に変化がない場合には、運転者がステアリングホイール2を操舵して切増しや切り戻しを行っていない保舵状態であると判断して、ステップS314からステップS315へ移行し、図39に示す制動時目標ヨー角算出マップを参照して目標ラックストロークRsを算出する。
 この目標ラックストロークRsの算出は、現在の車速V2において現在のヨー角ψ2よりも小さい直近の特性線Lj(j=1~4)を選択し、選択した特性線Ljに設定されている目標ラックストロークRsjを目標ラックストロークRsとして算出する。
 そして、選択した特性線Ljにおける現在の車速V2におけるヨー角を目標ヨー角ψ2として算出する(ステップS316)。
 そして、算出した目標ラックストロークRsを目標転舵角δに対応してヨー角制御を行う転舵角補正値δtaに変換し(ステップS317)、変換した転舵角補正値δtaを目標転舵角δに加算してアクチュエータ制御装置54へ出力する(ステップS318)。
 このため、アクチュエータ制御装置54では、転舵輪17FR,17FLに制動前後のヨー角変化を解消するトー角変化を与えるように転舵アクチュエータ8が制御されてラック軸14が目標ラックストロークRsまでストロークし、このストロークがタイロッド15を介して転舵輪17FR,17FLに供給される。
 したがって、転舵輪17FR,17FLがヨー角変化を解消するように旋回外側を向くトー角変化が行われて、車両ステア特性が図42(b)で実線図示の曲線L1で示すようにアンダーステアに制御される。このため、車両1が図42(c)に示すようにコーナーを旋回走行している状態で、制動状態となっても車両車幅方向移動量を抑制することができ、走行レーンを維持して走行することができる。
 ちなみに、ヨー角制御を行わない場合には、図42(b)で一点鎖線図示のようにヨーレートが大きくなってオーバーステア特性となり、図42(c)で一点鎖線図示のように、車両車幅方向の旋回内側への移動量が大きくなって隣接レーンに向かって移動することなり、操縦安定性が低下する。
 しかも、本実施形態では転舵アクチュエータ8を制御することにより、ラック軸14のラックストロークを制御してトー角変化を生じさせるので、制動装置によって外輪側の制動圧を内輪側の制動圧より大きくして旋回外向きのヨー角を発生させる場合のように油圧制御による応答遅れを生じることがなく、旋回制動時に高応答性を持って車両をアンダーステアに制御することができ、操縦安定性を向上させることができる。
 さらに、ステアバイワイヤシステムを構成する転舵制御部50に設けたヨー角制御部53Dによって、旋回制動時のヨー角制御を行うことができる。このため、フロント側のサスペンション装置1Bで前後力コンプライアンスステアをアンダーステアに大きくとるために、例えばトランスバースリンクとラック軸を略並行に配置した上でトランスバースリンクをラック軸よりも車両幅方向に長めに設定する必要もなく、サスペンション特性としてフロント側サスペンション装置を前後力トーアウト、リア側サスペンション装置を前後力トーインとする前後力トー特性を設定する必要がなく、フロントおよびリアのサスペンション装置の構成を簡易・軽量化することができる。
 その後、再度ヨー角ψ3を読込み(ステップS213)、目標ヨー角ψ2からヨー角ψ3を減算した値の絶対値|ψ2-ψ3|が零でないときには、ヨー角抑制が十分でないものと判断して前記ステップS205へ戻って制動時トーク制御を継続する。
 そして、ヨー角制御後ヨー角ψ3が目標ヨー角ψ2ステップS214から前記ステップS209へ移行する。このため、ヨー角制御後ヨー角ψ3が制動後ヨー角ψ2より小さくなり、ヨー角制御後ヨー角ψ3が“0”となると旋回制動時のヨー角制御を終了する。
 同様に、ブレーキペダルを開放して制動状態を解消することにより、制動指令信号Sbがオフ状態となったときにも旋回制動時のヨー角制御を終了する。
(運転者操舵時動作)
 さらに、旋回加速時又は旋回制動時に、運転者がステアリングホイール2を操舵したときには、運転者の操舵意図に応じたヨー角制御を行う。
 すなわち、旋回加速状態又は旋回制動状態で、運転者がステアリングホイール2を操舵すると、図36の加速時ヨー角制御処理のステップS304又は制動時ヨー角制御処理のステップS314からステップS319へ移行する。
 この運転者がステアリングホイール2を操舵する場合は、加速又は制動状態となる前の車両状態が車速V1およびヨー角ψ1で表される座標が図40および図41でグラデーション図示のオーバーステア(OS)にしたい領域Aoに存在する場合にはステアリングホイール2を切り増しする状態が想定される。逆に、加速又は制動状態となる前の車両状態が車速V1およびヨー角ψ1で表される座標が図40および図41で薄いグラデーション図示のアンダーステアにしたい領域Auに存在する場合にはステアリングホイール2を切り戻しする状態が想定される。
 このため、ステップS319では、加減速前操舵角θs1から加速後操舵角θs2又は制動後操舵角θs2を減算した値が正であるか負であるかを判定する。ここで、旋回状態における加減速前の車両状態が、例えば図40のオーバーステアにしたい領域Ao内の点P1にある状態であるものとする。この状態で例えば制動状態としてステアリングホイール2を切り増しすることにより、車速V1が減少して車速V2となり、ヨー角ψ1が増加してヨー角ψ2となって点P2に移動したものとする。この状態では、切り増し状態となるので、ステップS319でθs1-θs2<0となって、ステップS320に移行する。
 このステップS320では、加速状態での目標ヨー角演算処理(ステップS305)と同様に、図40に示すように、現在の車速V2におけるヨー角が現在のヨー角ψ2を上回るヨー角となる直近の目標転舵量特性線L3を選択し、選択した目標転舵量特性線L3に設定されている目標ラックストロークRs3を目標ラックストロークRsとして算出する。
 次いで、ステップS321に移行して、選択した目標転舵量特性線L3における車速V2でのヨー角を目標ヨー角ψとして算出する。
 このため、目標ラックストロークRsが増加して旋回外輪側の転舵輪17FR(又は17FL)の転舵角がトーイン方向に制御される。このため、運転者のステアリングホイール2の切り増し操舵に対応して車両のステア特性をオーバーステアとすることができ、運転者の操舵に対応したステア特性を得ることができる。
 逆に、旋回状態における加減速前の車両状態が、例えば図40のアンダーステア(US)にしたい領域Au内の点P11にある状態であるものとする。この状態で例えば加速状態としてステアリングホイール2を切り戻しすることにより、車速V1が増加して車速V2となり、ヨー角ψ1が減少してヨー角ψ2となって点P12に移動したものとする。この状態では、切り戻し状態となるので、ステップS319でθs1-θs2>0となって、ステップS322に移行する。
 このステップS322では、制動状態での目標ヨー角演算処理(ステップS315)と同様に、図40に示すように、現在の車速V2におけるヨー角が現在のヨー角ψ2を上回るヨー角となる直近の目標転舵量特性線L2を選択し、選択した目標転舵量特性線L2に設定されている目標ラックストロークRs2を目標ラックストロークRsとして算出する。
 次いで、ステップS321に移行して、選択した目標転舵量特性線L2における車速V2でのヨー角ψ2′を目標ヨー角ψとして算出する。
 このため、目標ラックストロークRsが減少して旋回外輪側の転舵輪17FR(又は17FL)の転舵角がトーアウト方向に制御される。このため、運転者のステアリングホイール2の切り戻し操舵に対応して車両のステア特性をアンダーステアとすることができ、運転者の操舵に対応したステア特性を得ることができる。
 さらに、旋回状態における加減速前の車両状態が、例えば図41のアンダーステア(US)にしたい領域Au内の点P21にある状態であるものとする。この状態で例えば加速状態としてヨー角ψ1および車速V1が増加して点P22に移動し、この状態で、ステアリングホイール2を切り戻し操舵した場合には、ステップS319でθs1-θs2>0となって、ステップS322に移行する。
 このステップS322では、制動状態での目標ヨー角演算処理(ステップS315)と同様に、図41に示すように、現在の車速V2におけるヨー角が現在のヨー角ψ2を上回るヨー角となる直近の目標転舵量特性線L2を選択し、選択した目標転舵量特性線L2に設定されている目標ラックストロークRs2を目標ラックストロークRsとして算出する。
 次いで、ステップS321に移行して、選択した目標転舵量特性線L2における車速V2でのヨー角ψ2′を目標ヨー角ψとして算出する。
 このため、目標ラックストロークRsが減少して旋回外輪側の転舵輪17FR(又は17FL)の転舵角がトーアウト方向に制御される。このため、運転者のステアリングホイール2の切り戻し操舵に対応して車両のステア特性をアンダーステアとすることができ、運転者の操舵に対応したステア特性を得ることができる。
 また、旋回状態における加減速前の車両状態が、例えば図41のオーバーステア(OS)にしたい領域Ao内の点P31にある状態であるものとする。この状態で例えば制動状態とすることにより、車速V1が減少して車速V2となり、ヨー角ψ1も減少してヨー角ψ2となって点P32に移動したものとする。この状態で、運転者が切り増し操舵すると、ステップS319でθs1-θs2<0となって、ステップS320に移行する。
 このステップS320では、加速状態での目標ヨー角演算処理(ステップS305)と同様に、図41に示すように、現在の車速V2におけるヨー角が現在のヨー角ψ2を上回るヨー角となる直近の目標転舵量特性線L3を選択し、選択した目標転舵量特性線L3に設定されている目標ラックストロークRs3を目標ラックストロークRsとして算出する。
 次いで、ステップS321に移行して、選択した目標転舵量特性線L3における車速V2でのヨー角を目標ヨー角ψとして算出する。
 このため、目標ラックストロークRsが増加して旋回外輪側の転舵輪17FR(又は17FL)の転舵角がトーイン方向に制御される。このため、運転者のステアリングホイール2の切り増し操舵に対応して車両のステア特性をオーバーステアとすることができ、運転者の操舵に対応したステア特性を得ることができる。
 以上のように、本実施形態に係る車両の操舵装置によれば、サスペンション装置1Bにおいて、タイヤ接地面内にキャスタートレイルを設定しているため、キングピン軸KS周りのモーメントをより小さくすることができる。
 したがって、上記実施形態でも、より小さいラック軸力すなわち転舵力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できるため、転舵応答性を向上させることができる。
 このように、上記実施形態では、少なくともキングピン軸KSがタイヤ接地面内を通るように設定することにより、サスペンション装置1B自体が転舵応答性を向上させた構成とされ、これに加えてステアバイワイヤシステムSBWの直進性担保部55によって転舵特性を制御する直進性補完および外乱補償を行って車両の直進性を担保している。
 このため、ステアリングホイール2を中立位置に保持している状態から右又は左操舵を行った場合に、初期応答期間T1ではサスペンション装置1B自体の高い転舵応答性を利用して高応答性を確保する。その後、初期応答期間T1を経過して中期応答期間T2に入ると、転舵応答性を重視するよりは操縦安定性を重視する必要があり、ステアバイワイヤシステムSBWにおける遅延制御部56のゲイン調整部56cで制御ゲインGaが“1”に設定されることにより、直進性担保部55で算出した直進性担保制御値δaによる直進性担保制御を開始する。
 このため、転舵角制御、直進性補完、および外乱補償等の直進性担保制御が開始されることにより、サスペンション装置1Bによる高い転舵応答性を抑制して操縦安定性を確保する。さらに、後期応答期間T3では、車両の内側への巻き込み現象を抑制するように転舵応答性をさらに低減させてアンダーステア傾向として車両のふらつきをより抑制して理想的な転舵応答性制御を確立することができる。
 ところが、ステアリングホイール2を中立位置に保持した直進走行状態からステアリングホイール2を右(又は左)に操舵する状態となると、この直進走行状態からの操舵による旋回状態への移行を操舵開始検出部56aで検出される。このため、ゲイン調整部56cでゲインGaが0.1秒間“0”に設定される。
 このため、ステアリングホイール2の中立位置から操舵を開始した時点から0.1秒の初期応答期間の間転舵指令角度δに対する補正制御処理が図15(b)に示すように停止される。
 したがって、アクチュエータ6の回転角θmiが目標転舵角演算部51に供給され、この目標転舵角演算部51で演算された転舵指令角度δがそのまま転舵角偏差演算部61に供給される。このため、転舵指令角度δに一致するように転舵モータ8aが回転駆動される。この間、ステアバイワイヤ制御における転舵角補正処理が停止される。
 したがって、初期応答期間では、キングピン軸KSの路面接地点がタイヤの接地面内の接地中心位置に設定され、且つキャスター角が零に設定されたサスペンション装置による転舵が開始される。
 このとき、サスペンション装置のキャスター角が零に設定されている。このキャスター角と操舵応答性と操縦安定性との関係は、図14(a)に示すように、キャスター角が零であるときには操舵応答性が高い状態をとなるが、操縦安定性を確保することはできない、すなわち、キャスター角に対する操舵応答性と操縦安定性とはトレードオフの関係が存在する。
 このため、中立位置から操舵を開始した初期状態では、ステアバイワイヤ制御による転舵角補正処理は実行されないことにより、この初期転舵をサスペンション装置が賄うことになる。
 この初期期間では、サスペンション装置は、上述したように、キャスター角が零あり、操縦応答性が高いので、図15(a)で実線図示の特性線L1で示すように、一点鎖線図示の特性線L2で示す一般的なステアバイワイヤ形式の操舵系を有する車両における操舵応答特性(ヨー角)より高い操舵応答特性(ヨー角)とすることができる。このとき、運転者のステアリングホイール2の操舵による操舵角変化に対応した転舵角変化となるので、運転者に違和感を与えることはない。
 ところが、サスペンション装置による操舵応答性のみで初期期間を越えて転舵を継続すると、図15(a)で破線図示の特性線L3のように中期および後期で操舵による車両の操舵応答性が敏感になる。また、操舵中期から後期に掛けての車両の内側への巻き込み現象が大きくなってしまう。
 このため、上記実施形態では、図15(b)に示すように、初期期間が経過する例えば0.1秒後に、直進性補完部55aおよび外乱補償部55bによる転舵指令角度δに対する転舵角補正処理がステップ状に開始される。このため、サスペンション装置による車両の操舵応答性を抑制して車両のふらつきを抑制するとともに、図14(b)に示すように、ステアバイワイヤ制御によって直進性を補完して、操縦安定性を確保することができる。その後、例えば0.3秒経過後には、一般的な車両の操舵応答特性に比較しても操舵応答特性をより抑制してアンダーステア傾向とすることができる。これにより、図15(a)で実線図示の特性線L1で示すように、操縦安定性を向上させることができ、特性線L1で示す理想的な車両の操舵応答特性を実現することができる。
 以上のように、本実施形態に係る車両の操舵装置によれば、サスペンション装置1Bにおいて、ステアリングホイール2が中立状態にあるときに、タイヤ接地面内にキングピン軸が通る設定しているため、キングピン軸KS周りのモーメントをより小さくすることができる。
 したがって、より小さいラック軸力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できるため、操舵応答性を向上させることができる。
 このように、上記第7実施形態では、少なくともキングピン軸KSがタイヤ接地面内を通るように設定することにより、サスペンション装置1B自体が操舵応答性を向上させた構成とされ、ステアバイワイヤシステムSBWの直進性担保部55によって車両の転舵特性を制御する直進性補完および外乱補償を行うようにしている。
 このため、ステアリングホイール2を中立位置に保持している状態から右又は左操舵を行った場合に、初期応答性はサスペンション装置自体の高い操舵応答性を利用して高応答性を確保する。その後、初期期間を経過して中期期間に入ると、操舵応答性を重視するよりは操縦安定性を重視する必要があり、ステアバイワイヤシステムSBWの転舵応答性設定部52で制御を開始して直進性補完制御を行うことにより、サスペンション装置1Bによる高い操舵応答性を抑制して操縦安定性を確保する。さらに、後期期間では、車両の内側への巻き込み現象を抑制するように操舵応答性をさらに低減させてアンダーステア傾向として車両のふらつきをより抑制して理想的な操舵応答性制御を確立することができる。
 また、本実施形態に係るサスペンション装置1Bは、ストラット式としたため、部品点数をより少ないものとすることができ、本実施形態におけるキングピン軸KSの設定を容易に行うことができる。
 また、ステアリングホイール2が中立位置を横切るように例えば右操舵から左操舵に移行する所謂スラローム走行を行う場合には、前述した遅延制御は実行されず、直進性担保部55によって外乱補償処理とセルフアライニングトルクの不足分を補う直進性補完処理とが実行される。このため、操縦・安定性を確保した転舵制御を行うことができる。
 なお、本実施形態において、入力側ステアリング軸3、操舵反力アクチュエータ6、操舵反力アクチュエータ角度センサ7、転舵アクチュエータ8、転舵アクチュエータ角度センサ9、出力側ステアリング軸10、および転舵制御部50を含むコントロール/駆動回路26がステアバイワイヤシステムSBWを構成する。また、車輪17FR,17FL,17RR,17RLがタイヤホイール、タイヤおよびホイールハブ機構に対応し、第1リンク37、第2リンク38、ショックアブソーバ40が複数のリンク部材に対応する。また、第1リンク37および第2リンク38でロアアームを構成し、バネ部材34およびショックアブソーバ40がストラット部材STを構成している。
 なお、上記第7の実施形態においては、転舵制御部50をハードウェアで構成する場合について説明したが、これに限定されるものではなく、例えば目標転舵角演算部51、転舵応答性設定部52を例えばマイクロコンピュータ等の演算処理装置で構成し、この演算処理装置で、前述した図17に示す転舵制御処理を実行するようにしてもよい。
(第7実施形態の効果)
(1)操舵制御装置は、ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させるアクチュエータを制御するステアバイワイヤシステムと、車両のヨー角を検出する車両ヨー角検出部と、前記ステアリングホイールの操舵角を検出する操舵角検出部と、車両の車速を検出する車速検出部と、前記ヨー角に基づいて車両旋回状態を検出する旋回状態検出部と、車両の加速状態を検出する加速状態検出部と、車両の制動状態を検出する制動状態検出部と、前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態又は制動状態による状態変化を検出したときに、当該状態変化を検出した後の車速およびヨー角をもとに、前記アクチュエータの目標転舵量をパラメータとして車速およびヨー角の関係を表す複数の目標転舵量特性線から該当する目標転舵量特性線を選択し、選択した目標転舵量特性線に基づいて状態変化に応じた目標転舵量を算出する目標転舵量算出部を有し、前記アクチュエータによる転舵輪の転舵量が前記目標転舵量となるように当該アクチュエータを制御するヨー角制御部とを備えている。
 これにより、軽い転舵力で転舵可能に構成されたサスペンション装置を使用した場合に、ヨー角制御部で車両の旋回走行状態における加速時および制動時に生じるサスペンション装置のトー角変化を解消する目標転舵量を算出し、転舵量が目標転舵量となるように転舵アクチュエータを制御して、転舵輪を加速時および減速時で必要とするオーバーステア傾向およびアンダーステア傾向となるようにヨー角変化させることができる。したがって、制動圧力や油圧クラッチ圧力を制御してオーバーステアおよびアンダーステア特性とする場合に比較してオーバーステアおよびアンダーステア特性とする応答性を高めることができ、加速状態および制動状態の駆動輪に制動力を付加することによる加速性能の低下も抑制することができる。したがって、車両の旋回加速時および旋回制動時の旋回性能を向上させて操縦安定性を向上させることができる。
(2)前記アクチュエータは転舵輪を転舵させるラック機構を制御する転舵アクチュエータであり、前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態又は制動状態による状態変化を検出したときに、当該状態変化を検出した後の車速およびヨー角をもとに、前記アクチュエータの目標転舵量をパラメータとして車速およびヨー角の関係を表す複数の目標転舵量特性線から該当する目標転舵量特性線を選択し、選択した目標転舵量特性線に基づいて状態変化に応じた目標転舵量を算出する目標転舵量算出部を有し、前記アクチュエータによる転舵輪の転舵量が前記目標転舵量となるように当該アクチュエータを制御する。
 これにより、旋回加速時および旋回制動時の旋回性能の低下を抑制するためにヨー角制御部で転舵輪のヨー角を制御するので、サスペンション装置の基本特性として前後力トー特性を確保する必要がなくなり、サスペンション装置を簡易・軽量化することができる。
(3)ヨー角制御部は、前記目標転舵量算出部で選択した目標転舵量特性線に基づいて前記状態変化に応じた目標ヨー角を算出する目標ヨー角算出部を有し、前記アクチュエータによる転舵輪の転舵量が前記目標転舵量となるように前記アクチュエータを制御するヨー角制御を行い、当該ヨー角制御後のヨー角が前記目標ヨー角に一致するまで継続する。
 これにより、ヨー角制御をヨー角制御後のヨー角が目標ヨー角に一致するまで継続するので、転舵輪のトー角を旋回加速時又は旋回制動時における最適なヨー角となるように制御することができ、操縦安定性を確保することができる。
(4)目標転舵量算出部は、前記状態変化後の車速およびヨー角をもとに、目標転舵量をパラメータとする複数の目標転舵量特性線を有して車速とヨー角との関係を表す目標値算出マップを参照して前記目標転舵量を算出する。
 これにより、加速後車速および加速後ヨー角に基づいて目標値算出マップを参照して実際の旋回加速時又は旋回制動時に必要とする目標転舵量を瞬時に且つ容易に算出することができる。
(5)前記目標ヨー角算出部は、前記状態変化後の車速およびヨー角をもとに、目標転舵量をパラメータとする複数の目標転舵量特性線を有して車速とヨー角との関係を表す目標値算出マップを参照して前記目標ヨー角を算出する。
 これにより、加速後車速および加速後ヨー角に基づいて目標値算出マップを参照して実際の旋回加速時又は旋回制動時に必要とする目標ヨー角を瞬時に且つ容易に算出することができる。
(6)前記目標転舵量算出部は、車両が加速状態であり、且つ状態変化前後に操舵角変化を生じないときに、前記状態変化後車速と同一車速におけるヨー角が前記状態変化後ヨー角を上回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定する。
 これにより、加速後車速および加速後ヨー角に基づいて実際の旋回加速時に必要とする目標転舵量を瞬時に且つ容易に算出することができる。
(7)前記目標転舵量算出部は、車両が制動状態であり、且つ状態変化前後に操舵角変化を生じないときに、前記状態変化後車速と同一車速におけるヨー角が前記状態変化後ヨー角を下回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定する。
 これにより、制動後車速および制動後ヨー角に基づいて実際の旋回制動時に必要とする目標転舵量を瞬時に且つ容易に算出することができる。
(8)前記ヨー角制御部は、車両が加速状態および制動状態の何れかであり、且つ状態変化前後に操舵角変化を生じたときに、前記操舵角変化が切り増し方向であるか切り戻し方向であるかを判定する操舵方向判定部を有し、該操舵方向判定部の判定結果が切増し方向であるときに、前記目標転舵量算出部で前記状態変化後車速と同一車速におけるヨー角が前記状態変化後ヨー角を上回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定するとともに、前記ヨー角算出部で、選択した転舵量特性線および状態変化後車速に基づいて目標ヨー角を算出し、前記操舵方向判定部の判定結果が切り戻し方向であるときに、前記目標転舵量算出部で前記状態変化後車速と同一車速におけるヨー角が前記車速変化後ヨー角を下回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定するとともに、前記ヨー角算出部で選択した転舵量特性線および状態変化後車速に基づいて目標ヨー角を算出する。
 これにより、運転者が旋回加速時および旋回制動時にステアリングホイールを操舵したときに、操舵方向が切り増し方向であるときに運転者がオーバーステア化を望んでいるものと判断して目標転舵量をオーバーステア傾向となるように選定するとともに最適な目標ヨー角を算出することができ、運転者の意図する操舵に対応したオーバーステア傾向となるように転舵輪のヨー角制御を行うことができる。
(9)前記アクチュエータは、前記転舵輪を転舵させる転舵軸を駆動する転舵アクチュエータであり、前記目標転舵量は前記転舵軸の目標転舵ストロークである。
 これにより、転舵機構がラック軸等の転舵軸を転舵アクチュエータで駆動する場合に、転舵軸のストークの目標値となる最適な目標ストロークを設定することができる。
(10)前記サスペンション装置は、前記転舵輪を車体に支持する複数のリンク部材を含み、前記リンク部材のアッパーピボット点とロアピボット点とを通るキングピン軸が前記ステアリングホイールの中立位置でタイヤ接地面内を通るように設定されている。
 これにより、サスペンション装置のキングピン軸周りのモーメントをより小さくすることができるため、より小さい転舵力で転舵を行うことができると共に、より小さい力で車輪の向きを制御できる。
 したがって、転舵応答性を向上させることができる。このとき、キャスター角を零近傍の値とすることにより、転舵応答性をより高めたサスペンション装置を構成することができる。
(11)そして、転舵制御装置に直進性担保部を設けることにより、サスペンション装置の転舵応答性を確保することによる車両の直進性の低下を直進性担保部で担保することができる。
(12)また、直進性担保部を転舵アクチュエータとアクチュエータ制御装置とを備えたステアバイワイヤシステムで構成するようにしているので、直進性担保部を独立して設ける必要がなく、構成を簡略化することができる。
 しかも、直進性担保部としては、転舵応答性設定部52の直進性担保部55が主直進性担保部となり、アクチュエータ制御装置54が副直進性担保部となるので、双方の直進性担保部によって、サスペンション装置の直進性を確実に担保することができる。
(13)ステアリングホイールが中立位置を保持している状態から右又は左に操舵されたときに、遅延制御部により直進性担保部の直進性担保制御を遅らせることにより、初期応答特性をサスペンション装置自体の転舵応答性で賄って高転舵応答性を確保する。その後、サスペンション装置自体の転舵応答性を直進性担保部による直進性担保制御で調整することにより、理想的な転舵応答性を確保することができる。
(14)直進性担保部は、セルフアライニングトルクを演算して直進性を担保している。
 したがって、直進性担保部で、サスペンション装置の高応答性を確保することにより低下した直進性をセルフアライニングトルクで担保することができ、車両の操縦・安定性を向上させることができる。
(15)ステアリングホイールを中立位置から操舵を開始したときに、前記ステアパイワイヤシステムの転舵応答性設定部によって、転舵開始初期に前記サスペンション装置自体の転舵応答特性を初期転舵応答特性とし、初期設定時間経過後に前記ステアバイワイヤシステムの直進性担保部で前記転舵アクチュエータの前記サスペンション装置自体の直進性を担保する制御を開始する。
 これにより、初期転舵にサスペンション装置の高い転舵応答特性を確保し、初期設定時間経過後に直進性担保部で前記転舵アクチュエータの前記サスペンション装置自体の直進性を担保する制御を行うことができ、理想的な転舵応答特性を得ることができる。
(第7実施形態のアクチュエータ応用例)
 上記実施形態では、アクチュエータとしてラック軸14を駆動する転舵アクチュエータ8を適用した場合について説明した。しかしながら、本発明では、上記構成に限定されるものではなく、前述した図25に示すように、前輪17FRおよび17FLを駆動輪として直接駆動するインホイールモータ70FRおよび70FLを有する場合には、これらインホイールモータ70FRおよび70FLを左右輪の回転数差で操舵するヨー角制御アクチュエータとする。
 そして、インホイールモータ70FRおよび70FLを回転駆動する駆動装置71に対して、ヨー角制御部72によって旋回加速時に、前述したヨー角制御部53Dと同様に目標ヨー角ψを算出し、算出した目標ヨー角ψに現在のヨー角ψ3が達するように旋回外輪側のインホイールモータ70FR(又は70FL)の回転数を増加させ、旋回内輪側のインホイールモータ(70FL(又は70FR)の回転数を減少させる回転数補正値RAFR,RAFLを算出する。これら回転数補正値RAFR,RAFLを駆動装置71に供給して、駆動装置71で回転指令値の補正を行い、補正された回転数指令値に基づくインバータ駆動信号を直流電源73から電力が供給されるインバータ74FR,74FLに供給する。これらインバータ74FR,74FLによってインホイールモータ70FRおよび70FLの回転数を旋回外輪側で増加させ、旋回内輪側で減少させることにより操舵するヨー角制御を行い、車両のステア特性をオーバーステア傾向とするようにしても良い。
(応用例の効果)
 このように、アクチュエータとして駆動輪を直接駆動するインホイールモータによるヨー角制御アクチュエータを適用することにより、油圧を使用した応答遅れを生じることがないとともに、旋回加速時の旋回外側へのトー角変化を、転舵角を制御することなくヨー角を制御して解消することができる。
(転舵機構の変形例)
 なお、転舵輪を転舵する転舵機構としては、ラックアンドピニオン機構に代えてボールねじ機構を適用することができ、この場合にはボールナットを転舵アクチュエータ8で回転駆動するようにすればよい。このように、ボールねじ機構を適用することにより、転舵角を高精度に制御することができる。また、転舵機構としてピニオンアンドラック機構やボールねじ機構に代えて他の形式の転舵機構を適用することができる。
(本発明のヨー角制御部応用例)
 上記実施形態では、目標ヨー角算出マップを参照して目標ラックストロークおよび目標ヨー角を算出する場合について説明した。しかしながら、本発明は上記に限定されるものではなく、目標ヨー角算出マップを参照する場合に代えて、操舵角をパラメータとする複数の操舵角特性線を車速およびヨー角の関数として表し、加速後車速および加速後ヨー角をもとに加速後車速で加速後ヨー角より大きいヨー角となる操舵角特性線を選択するようにしてもよい。
 このように操舵特性線を車速とヨー角の関数で表すことにより、目標ヨー角算出マップを用いることなく操舵角特性線の選択を演算で行うことができる。
 なお、上記実施形態において、操舵角特性線の本数は4本に限らず任意数に設定することができる。
(本発明のサスペンション応用例)
 上記実施形態では、サスペンション装置のロアリンクを互いに交差することがない第1リンク37と第2リンク38とで構成する場合について説明した。しかしながら、サスペンション装置の構成は上記構成に限定されるものではなく、キングピン軸がタイヤ接地面内を通るように設定して、転舵力を軽減できればよい。このため、ロアリンク構造を例えば前述した図26に模式的に示すように、互いに交差するトランスバースリンク81とコンプレッションリンク82とで構成することもできる。また、ロアリンク構造を、図27に模式的に示すように、互いに交差するトランスバースリンク81とテンションリンク83とで構成することもできる。
(応用例の効果)
 このように、ロアリンク構造を平面視で互いに交差する第1リンクおよび第2リンクで構成することにより、キングピン軸を構成するロアピボット点を両リンクの交点位置とすることができる。このため、ロアピボット点の位置を転舵輪の車体内側により近づけることが可能となる。したがって、キングピン軸がタイヤ接地面内を通るように設定することが容易となる。
(変形例)
 また、サスペンション装置1Bとしては上記構成に限定されるものではなく、他の種々の構成のサスペンション装置を適用することができる。
 さらに、サスペンション装置1Bの構成によっては転舵応答性設定部52を省略することができる。
(第8実施形態)
 次に、本発明の第8実施形態について図43~図47を伴って説明する。
 この第8実施形態は、前述した第7の実施形態において、ヨー角制御処理で、旋回状態に移行したときに、前述した転舵角制御部50における転舵応答性設定部52の遅延制御部56で設定される遅延時間τに相当する遅延時間分遅らせてヨー角制御を開始するようにしたものである。
 すなわち、第8実施形態では、サスペンション装置が前述した第1実施形態における図2~図10で説明したサスペンション装置と同様の構成を有している。また、全体構成が、図43に示すように、前述した第6の実施形態における図33の構成に加えて、左右の転舵輪17FRおよび17FLにそれぞれハブに掛かるハブ横力FyおよびFyを検出する横力検出部としてのハブ横力センサ25Rおよび25Lが設けられている。これらハブ横力センサ25Rおよび25Lで検出されたハブ横力FyおよびFyがコントロール/駆動回路ユニット26に入力されている。また、車両のエンジンブレーキ状態を検出するエンジンブレーキ検出部90が設けられ、このエンジンブレーキ検出部90で検出したエンジンブレーキ状態が車両状態パラメータ取得部21を介してコントロール/駆動回路ユニット26に供給されている。
 このコントロール/駆動回路ユニット26には、前述した第7の実施形態における転舵制御部50内に、目標転舵角瀬演算部51、転舵応答性設定部52、アクチュエータ制御装置54に加えてヨー角制御部53Cを含む走行時揺動制御部53Fが設けられている。
 この走行時揺動制御部53Fは、図44に示すように、ヨー角制御部53Cと、エンジンブレーキ状態での車両ステア特性をニュートラルステア特性に制御するエンジンブレーキ時制御部53Gとを備えている。
 ヨー角特性制御部53Cは、前述した第7実施形態と同様の構成を有する目標ラックストローク算出部53R、目標ヨー角算出部53Y及び操舵方向判定部53Sに加えて、旋回開始時にヨー角制御の開始を所定遅延時間τだけ遅らせるヨー角制御開始遅延部53Tを備えている。
 このヨー角制御開始遅延部53Tは、ヨー角ψ1の絶対値|ψ1|が設定値ψsを超えて旋回状態と判断されたときに、前述した第7実施形態におけるヨー角制御を所定時間τ(例えば前述した操舵応答性設定部52の遅延制御部56の遅延時間τと同様に0.1秒)だけ遅らせて、転舵開始時の初期期間T1におけるサスペンション装置自体の転舵応答性による転舵にヨー角制御が影響を与えないようにしている。
 また、ヨー角制御部53Cでは、エンジンブレーキ検出部90でエンジンブレーキ状態ではないことが検出されたときに、ヨー角制御処理を実行する。
 一方、エンジンブレーキ時制御部53Gは、エンジンブレーキ検出部90から供給されるエンジンブレーキ状態信号Seがエンジンブレーキ状態を表しているときに、車両のステア特性を制御する。すなわち、エンジンブレーキ時制御53Gは、車両の操舵状態が旋回状態であるときには外輪側の基準ハブ横力を算出してこの基準ハブ横力に外輪側ハブ横力が一致するようにブレーキシリンダを制御し、直進状態であるときには左右のハブ横力が一致するようにブレーキシリンダを制御して直進安定性を確保する。ここで、エンジンブレーキ時制御部53Gは、操舵状態が旋回状態から直進状態に移行したときに直進安定性の制御開始を遅らせる直進制御開始遅延部53Hを備えている。
 そして、走行時揺動制御部53Fでは、走行時揺動制御処理を実行し、旋回状態検出部53A、加速状態検出部53Dおよび制動状態検出部53Bの処理を含めて表すと、図45~図46に示すようになる。
 この走行時舵角制御処理では、図45に示すように、まず、ステップS401でエンジンブレーキ検出部90から入力されるエンジンブレーキ検出信号Seを読込み、このエンジンブレーキ検出信号Seが例えばハイレベルであってエンジンブレーキ状態を表しているか否かを判定する。
 この判定結果が、エンジンブレーキ状態であるときには、ステップS402に移行して、現在の車速V0を読込み、次いでステップS403に移行して、現在の操舵角θs0を詠み込んでからステップS404に移行する。
 このステップS404では、ステップS403で読込んだ操舵角θs0が0であるか否かを判定し、θs0>0又はθs0<0であるときには旋回状態であると判断してステップS405に移行する。
 このステップS405では、ハブ横力センサ25R,25Lから入力されるハブ横力Fy,Fyのうち旋回外輪側のハブ横力Fyoを読込んでからステップS406に移行する。
 このステップS406では、車速V0および操舵角θs0をもとに図47に示す基準ハブ横力算出マップを参照して基準ハブ横力Fybを算出する。ここで、基準ハブ横力算出マップは、図47に示すように、車速Vを横軸に、ハブ横力Fyを縦軸に設定し、複数の操舵角θをパラメータとする複数の特性線L1~L5が設定された構成を有する。このうち、特性線L1は操舵角θが零すなわち直進走行状態を表している。
 そして、基準ハブ横力Fybを算出するには、現在の車速V0と現在の外輪側ハブ横力Fyoとから例えば点P41を求め、この点P41から同じ車速V0で一番近い特性線L3を選択し、選択した特性線L3の車速V0におけるハブ横力を基準ハブ横力Fybとして算出する。
 次いで、ステップS407に移行して、基準ハブ横力Fybから外輪側ハブ横力Fyoを減算した値が0であるか否かすなわち外輪側ハブ横力Fyoが基準ハブ横力Fybに一致しているか否かを判定し、Fyb-Fyo=0であるときには外輪側ハブ横力Fyoが基準ハブ横力Fybに一致しており、ステア特性がニュートラルステア特性にあるものと判断して前記ステップS401に戻る。
 また、ステップS407の判定結果が、Fyb-Fyo≠0であるときにはステップS408に移行して、基準ハブ横力Fybから外輪側ハブ横力Fyoを減算した値が正(Fyb-Fyo>0)であるか否かを判定する。この判定結果が、Fyb-Fyo>0であるときには、外輪側ハブ横力Fyoが選択した特性線Lkより下側のアンダーステア領域にあるものと判断して、ステップS409に移行する。このステップS409では、内輪側ブレーキ制御を行って、車両特性をニュートラルステア側に修正してから前記ステップS402に戻る。
 逆に、ステップS408の判定結果が、Fyb-Fyo<0であるときには外輪側ハブ横力Fyoが選択した車両特性線Lkよりも上側のオーバーステア側であるものと判断してステップS410に移行する。このステップS410では、外輪側ブレーキ制御を行って、車両特性をオュートラルステア側に修正してから前記ステップS402に戻る。
 一方、前述したステップS404の判定結果が、現在の操舵角θs0が零であるときには、直進走行状態であると判断してステップS411に移行し、操舵角θs0が零となった時点からの経過時間tが所定遅延時間τ1(例えば0.1秒)を超えたか否かを判定し、t≦τ1=0.1であるときには前記ステップS402に戻る。
 また、ステップS411の判定結果が、t>τ1=0.1であるときには遅延時間τ1が経過したものと判断してステップS412に移行する。このステップS412では、左右輪のハブ横力FyおよびFyを読込んでからステップS413に移行する。
 このステップS413では、例えば右輪側のハブ横力Fyから左輪側のハブ横力Fyを減算した値が正(FyR-Fy>0)であるか否かを判定する。
 この判定結果が、FyR-Fy>0であるときには右輪側のハブ横力Fyが右輪側のハブ横力Fyより大きく外輪側として車両に対して旋回力が作用しているものと判断してステップS414に移行する。このステップS414では右輪側に対してブレーキ制御を行って旋回力を抑制してから前記ステップS402に戻る。
 また、ステップS413の判定結果が、FyR-Fy≦0であるときにはステップS415に移行して、左輪側のハブ横力Fyから右輪側のハブ横力Fyを減算した値が正(FyL-Fy>0)であるか否かを判定する。この判定結果がFyL-Fy>0ではないときには、左右輪のハブ横力が“0”である均衡しており、旋回力が発生されていないものと判断して前記ステップS401に戻る。
 また、ステップS415の判定結果が、FyL-Fy>0であるときには、左輪側のハブ横力Fyが高く外輪側として旋回力を発生いるものと判断してステップS416に移行する。このステップS416では、左輪側に対してブレーキ制御を行って旋回力を抑制してから前記ステップS402に戻る。
 したがって、エンジンブレーキ状態では、旋回走行状態ではブレーキ制御を行って車両のステア特性をニュートラルステアに制御し、直進走行状態では、左右輪のうちハブ横力が大きく外輪として旋回力を生じさせる輪側に対してブレーキ制御を行って車両旋回を抑制して挙動を安定させる。
 このとき、旋回走行状態から直進走行状態となったときに、結果時間tが遅延時間τ1を経過するまでの間左右輪の一方に対するブレーキ制御を遅らせるようにしている。このため、車両がスラローム走行している状態で、一時的に操舵角θs0が零になった場合には、直進状態の挙動を安定させるブレーキ制御を行うことを防止することができ、良好なスラローム走行を行うことができる。
 また、前述したステップS401の判定結果が、エンジンブレーキ状態ではないものであるときには、ステップS420に移行して、ヨー角制御処理を実行する。このヨー角制御処理は、図46に示すように、前述した第7実施形態における図35のヨー角制御処理においてステップS202及びステップS203間に遅延制御処理が介挿されていることを除いては図35と同様の処理を行う。したがって、図46において図35との対応処理には同一ステップ番号を付し、その詳細説明はこれを省略する。
 すわなち、ステップS202の判定結果が、|ψ1|≧ψsであるときには、ステップS421に移行して、旋回初期状態フラグFCが旋回初期状態を表す“0”にリセットされているか否かを判定する。この判定結果が、FC=0であるときには、旋回初期状態であると判断してステップS422に移行し、経過時間tが前述した転舵応答性設定部52の遅延制御部56で設定される遅延時間τと等しい遅延時間τ2(例えば0.1秒)を超えているか否かを判定する。この判定結果が、t≦τ2=0.1であるときには、そのままヨー角制御処理を終了して前述した図45のステップS401に戻る。
 また、ステップS422の判定結果が、t>τ2=0.1であるときすなわち旋回を開始してから遅延時間τ2が経過したときにはステップS423に移行し、旋回初期状態フラグFCを“1”にセットしてからステップS203に移行する。
 一方、前記ステップS411の判定結果が、旋回初期状態フラグFCが“1”にセットされているときには直接ステップS203に移行する。
 また、前述したステップS202の判定結果か、|ψ1|≧ψsであるときにはステップS424に移行して旋回初期状態フラグFCを“0”にリセットしてから前述した図45のステップS501に戻る。
 さらに、ステップS210の判定結果がψ3=0であるときにはステップS425に移行して、旋回初期状態フラグFCを“0”にリセットしてから前述した図45のステップS501に戻る。
 さらにまた、ステップS211の判定結果か制動指令信号がオフ状態であるときにもステップS426に移行して、旋回初期状態フラグFCを“0”にリセットしてから前述した図45のステップS501に戻る。
 また、図46のステップS206で実行する加速時ヨー角制御処理は、前述した第7実施形態の図36と同様の処理を行い、ステップS212で実行する制動時ヨー角制御処理は前述した第7実施形態の図37と同様の処理を行う。
 なお、図45のステップS401~416の処理がエンジンブレーキ時制御部53Gに対応し、ステップS411の処理が直進制御開始遅延部53Hに対応している。
 また、図46のステップS421~S216の処理がヨー角制御開始遅延部53Eに対応している。
 この第8実施形態によると、エンジンブレーキ検出部90で、車両がエンジンブレーキ状態であることが検出されると、図45の走行時揺動制御処理で、ステップS4002からステップS401を経てステップS402に移行し、現在の車速V0を読込み、次いで現在の操舵角θs0を読込む(ステップS403)。
 このとき、車両が旋回走行中であって、操舵角θs0が中立位置を表す“0”ではないときには、旋回外輪側のハブ横力Fyoを読込む(ステップS405)。すなわち、右旋回走行状態であるときには左輪側のハブ横力センサ25Lで検出するハブ横力Fyを読込み、左旋回走行であるときには右輪側のハブ横力センサ25Rで検出するハブ横力Fyを読み込む。
 次いで、操舵角θs0及び車速V0に基づいて、図47に示す基準ハブ横力算出マップを参照してニュートラルステア特性を確保するための基準ハブ横力Fybを算出する(ステップS406)。この場合、操舵角θs0に基づいて図47における特性線L2が選択されたものとすると、この特性線L2上における車速V0となる点P40が設定され、この点P40のハブ横力が基準ハブ横力Fybとして設定される。
 そして、設定した基準ハブ横力Fybから検出した外輪側ハブ横力Fyoを減算した値が0であるか否かを判定する(ステップS407)。この判定結果が、Fyb-Fyo=0であるときには、車両がニュートラルステア特性を維持しているものと判断してそのままステップS400に戻る。
 しかしながら、図47に示すように、外輪側ハブ横力Fyoが特性線L2の下側となるアンダーステア領域に存在する場合には、Fyb-Fyo>0となる。このため、内輪側のホイールシリンダ19に対して予め設定された制動力を発生させる内輪ブレーキ制御を行って(ステップS409)、車両のステア特性をニュートラルステア特性に戻すステア特性制御を行ってからステップS402に戻ってステア特性制御を継続する。
 その後、車両のステア特性がニュートラルステア特性となると、Fyb-Fyo=0となって、ステア特性制御を終了してステップS400に戻る。
 逆に、外輪側ハブ横力Fyoが特性線L2の上側となるオーバーステア領域に存在する場合には、Fyb-Fyo<0となる。このため、外輪側のホイールシリンダ19に対して予め設定された制動力を発生させる外輪ブレーキ制御を行って(ステップS410)、車両のステア特性をニュートラルステア特性に戻すステア特性制御を行ってからステップS402に戻ってステア特性制御を継続する。
 その後、車両のステア特性がニュートラルステア特性となると、Fyb-Fyo=0となって、ステア特性制御を終了してステップS400に戻る。
 また、車両がエンジンブレーキ状態で、車両が直進走行状態であるときには、操舵角θs0が“0”となるので、車両が旋回走行状態から直進走行状態となったときには、所定の遅延時間(例えば0.1秒)が経過した後に左右輪のハブ横力FyおよびFyを読込む(ステップS412)。
 この直進走行状態では、路面からの外力が作用しない場合に左右のハブ横力FyおよびFyがともに“0”となるものであるが、轍路や片側傾斜路面を走行することにより、例えば右輪のハブ横力Fyが左輪のハブ横力Fyより大きくなると(Fy-Fy>0)、ステップS413からステップS414に移行して、右輪側のホイールシリンダ19に対して所定の制動力を発生させる右輪ブレーキ制御を行って、右輪が旋回外輪となる旋回力を発生することを防止して直進安定性を確保することができる。この右輪ブレーキ制御によってFy-Fy=0となると、右輪ブレーキ制御処理を終了してステップS423からステップS425を経て前記ステップS400に戻る。
 逆に、左輪のハブ横力Fyが右輪のハブ横力Fyより大きくなると(Fy-Fy<0)、ステップS413からステップS415を経てステップS416に移行して、左輪側のホイールシリンダ19に対して所定の制動力を発生させる左輪ブレーキ制御を行って、左輪が旋回外輪となる旋回力を発生することを防止して直進安定性を確保することができる。
 この左輪ブレーキ制御によってFy-Fy=0となると、左輪ブレーキ制御処理を終了してステップS415から前記ステップS400に戻る。
 このように、車両がエンジンブレーキ走行状態であるときに、旋回走行状態であるときには車両のステア特性がニュートラルステア特性となるようにステア特性制御されるので、車両の旋回走行を安定して行うことができる。
 一方、車両がエンジンブレーキ走行状態であるときに、直進走行状態を継続している場合には、大きなハブ横力を生じる車輪側に対してブレーキ制御を行って、旋回力の発生を防止して直進安定性を確保することができる。
 しかも、車両がエンジンブレーキ走行状態であるときに、旋回走行状態から直進走行状態に移行したときには、所定遅延時間τ1分遅れてブレーキ制御が開始されるので、例えば車両がスラローム走行をしている際に、一時的に操舵角θs0が“0”となる場合には、ステップS412~ステップS416のブレーキ制御が行われることがなく、直進走行時のブレーキ制御がスラローム走行に影響を与えることを確実に防止できる。
 また、車両がエンジンブレーキ走行状態ではないときには、ステップS400からステップS420に移行して、図46に示すヨー角制御処理を実行する。
 このヨー角制御処理では、図46に示すように、前述した第6実施形態の図35のヨー角制御処理において、ステップS202とステップS203との間にステップS421~ステップS423の遅延制御処理が介挿され、その他、遅延制御処理の旋回初期状態フラグFCを“0”にリセットする処理ステップS424~ステップS426が介挿されていることを除いては図35と同様の処理を行う。
 このため、ステップS202の判定結果が、|ψ1|≧ψsとなって、旋回走行状態と判定されたときに、ステップS4121~ステップS423の遅延制御処理で、前述した転舵制御部50の転舵応答性設定部52における遅延制御部56での遅延時間τと同じ遅延時間τ2だけ遅らせてヨー角制御が開始される。
 このように、第8実施形態では、ヨー角制御を開始する場合に、遅延時短τ2だけ遅延させてヨー角制御を開始するので、ヨー角制御が転舵制御部50による初期応答期間T1でサスペンション装置1Bによる高応答性を有する転舵に影響を与えることがなく、良好な初期転舵を行うことができる。
 そして、遅延時間τ2が経過した後は、前述した第7実施形態と同様の加速時制御処理及び制動時制御処理が実行される。このため、軽い転舵力で転舵可能に構成されたサスペンション装置を使用した場合に、ヨー角制御部で車両の旋回走行状態における加速時および制動時に生じるサスペンション装置のトー角変化を解消する目標転舵量を算出し、転舵量が目標転舵量となるように転舵アクチュエータを制御して、転舵輪を加速時および減速時で必要とするオーバーステア傾向およびアンダーステア傾向となるようにヨー角変化させることができる。したがって、制動圧力や油圧クラッチ圧力を制御してオーバーステアおよびアンダーステア特性とする場合に比較してオーバーステアおよびアンダーステア特性とする応答性を高めることができ、加速状態および制動状態の駆動輪に制動力を付加することによる加速性能の低下も抑制することができる。したがって、車両の旋回加速時および旋回制動時の旋回性能を向上させて操縦安定性を向上させることができる他、第7実施形態同様の作用効果を得ることができる。
(第8実施形態の効果)
(1)操舵制御装置は、ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータを制御するステアバイワイヤシステムと、車両のヨー角を検出するヨー角検出部と、前記ステアリングホイールの操舵角を検出する操舵角検出部と、車両旋回状態を検出する旋回状態検出部と、車両の制動状態又は加速状態を検出する走行状態検出部と、前記旋回状態検出部で車両旋回状態を検出し、且つ前記走行状態検出部で車両の制動状態又は加速状態を検出したときに、制動又は加速前後のヨー角偏差を抑制するように前記アクチュエータを制御するヨー角制御部とを備え、前記ヨー角制御部は、前記旋回状態検出部で車両の直進状態から車両旋回状態への移行を検出したときに、前記ヨー角制御部の制御開始を所定時間遅延させるヨー角制御開始遅延部を有している。
 これにより、ヨー角制御部で車両の旋回走行状態における制動時に制動前後のヨー角偏差を抑制するように車両のヨー角を油圧制御より高い応答性を有して制御可能なアクチュエータを制御することができる。しかも、旋回状態検出部で旋回状態を検出したときに、ヨー角制御開始遅延部でヨー角制御部の制御開始を所定時間遅延させるので、ステアバイワイヤシステムでの転舵制御時に旋回開始時に転舵制御の開始を遅らせて初期転舵をサスペンション装置の転舵応答特性を利用する場合に、ヨー角制御がサスペンション装置の転舵応答特性に影響を与えることを防止できる。
(2)また、操舵制御装置は、車両のエンジンブレーキ状態を検出するエンジンブレーキ検出部と、左右輪の制動力を調整して車両のステア特性をニュートラルステア特性に制御するエンジンブレーキ時制御部と、該エンジンブレーキ検出部でエンジンブレーキ状態を検出し、且つ前記旋回状態検出部で旋回状態から直進状態を検出したときに前記エンジンブレーキ時制御部における直進安定性制御の開始を所定時間遅延させる直進安定性制御開始遅延部とを備えている。
 これにより、エンジンブレーキ状態で、旋回状態から直進状態を検出したときに、直進安定制御の開始が所定時間遅延されるので、例えばスラローム走行を行って、旋回走行状態から一時的に直進走行状態を経て再度旋回状態に移行する場合に、直進安定性制御を行うことなく旋回状態に移行することができ、スラローム走行を安定して行うことができる。
(3)左右の転舵輪に作用する横力を個別に検出する横力検出部と、車両の車速を検出する車速検出部とを有し、
 前記エンジンブレーキ時制御部は、車速および横力をもとに、目標操舵角をパラメータとして車速及び横力の関係を表す複数の操舵角特性線から該当する操舵角特性線を選択し、選択した操舵角特性線に基づいて基準横力を算出し、算出した基準横力と前記横力とが一致するように前記左右輪に対する制動力を制御する制動力制御部を備えている。
 これにより、左右輪に作用する横力を検出して、エンジンブレーキ状態で、操舵角および車速に基づいて操舵角特性線を選択して、基準横力を算出するので、基準横力をニュートラルステア特性に合わせることにより、旋回時のステア特性をニュートラルステアに制御することができる。
(第8実施形態の応用例)
 なお、上記第8実施形態では、前述した第7実施形態にエンジンブレーキ時制御及びヨー角遅延制御を適用した場合について説明したが、これに限定されるものではなく、前述した第1~第5実施形態に図45の走行時舵角制御処理及び図46のステップS421~ステップS426の遅延制御処理を適用することができる。
(第8実施形態のアクチュエータ応用例)
 上記実施形態では、アクチュエータとしてラック軸14を駆動する転舵アクチュエータ8を適用した場合について説明した。しかしながら、本発明では、上記構成に限定されるものではなく、前述した図25に示すように、前輪17FRおよび17FLを駆動輪として直接駆動するインホイールモータ70FRおよび70FLを有する場合には、これらインホイールモータ70FRおよび70FLを左右輪の回転数差で操舵するヨー角制御アクチュエータとする。
 そして、インホイールモータ70FRおよび70FLを回転駆動する駆動装置71に対して、ヨー角制御部72によって旋回加速時に、前述したヨー角制御部53Dと同様に目標ヨー角ψを算出し、算出した目標ヨー角ψに現在のヨー角ψ3が達するように旋回外輪側のインホイールモータ70FR(又は70FL)の回転数を増加させ、旋回内輪側のインホイールモータ(70FL(又は70FR)の回転数を減少させる回転数補正値RAFR,RAFLを算出する。これら回転数補正値RAFR,RAFLを駆動装置71に供給して、駆動装置71で回転指令値の補正を行い、補正された回転数指令値に基づくインバータ駆動信号を直流電源73から電力が供給されるインバータ74FR,74FLに供給する。これらインバータ74FR,74FLによってインホイールモータ70FRおよび70FLの回転数を旋回外輪側で増加させ、旋回内輪側で減少させることにより操舵するヨー角制御を行い、車両のステア特性をオーバーステア傾向とするようにしても良い。
(応用例の効果)
 このように、アクチュエータとして駆動輪を直接駆動するインホイールモータによるヨー角制御アクチュエータを適用することにより、油圧を使用した応答遅れを生じることがないとともに、旋回加速時の旋回外側へのトー角変化を、転舵角を制御することなくヨー角を制御して解消することができる。
(転舵機構の変形例)
 なお、転舵輪を転舵する転舵機構としては、ラックアンドピニオン機構に代えてボールねじ機構を適用することができ、この場合にはボールナットを転舵アクチュエータ8で回転駆動するようにすればよい。このように、ボールねじ機構を適用することにより、転舵角を高精度に制御することができる。また、転舵機構としてピニオンアンドラック機構やボールねじ機構に代えて他の形式の転舵機構を適用することができる。
(本発明のヨー角制御部応用例)
 上記実施形態では、目標ヨー角算出マップを参照して目標ラックストロークおよび目標ヨー角を算出する場合について説明した。しかしながら、本発明は上記に限定されるものではなく、目標ヨー角算出マップを参照する場合に代えて、操舵角をパラメータとする複数の操舵角特性線を車速およびヨー角の関数として表し、加速後車速および加速後ヨー角をもとに加速後車速で加速後ヨー角より大きいヨー角となる操舵角特性線を選択するようにしてもよい。
 このように操舵特性線を車速とヨー角の関数で表すことにより、目標ヨー角算出マップを用いることなく操舵角特性線の選択を演算で行うことができる。
 なお、上記実施形態において、操舵角特性線の本数は4本に限らず任意数に設定することができる。
(第8実施形態のサスペンション応用例)
 上記第8実施形態では、サスペンション装置のロアリンクを互いに交差することがない第1リンク37と第2リンク38とで構成する場合について説明した。しかしながら、サスペンション装置の構成は上記構成に限定されるものではなく、キングピン軸がタイヤ接地面内を通るように設定して、転舵力を軽減できればよい。このため、ロアリンク構造を例えば前述した図26に模式的に示すように、互いに交差するトランスバースリンク81とコンプレッションリンク82とで構成することもできる。また、ロアリンク構造を、図27に模式的に示すように、互いに交差するトランスバースリンク81とテンションリンク83とで構成することもできる。
(応用例の効果)
 このように、ロアリンク構造を平面視で互いに交差する第1リンクおよび第2リンクで構成することにより、キングピン軸を構成するロアピボット点を両リンクの交点位置とすることができる。このため、ロアピボット点の位置を転舵輪の車体内側により近づけることが可能となる。したがって、キングピン軸がタイヤ接地面内を通るように設定することが容易となる。
(変形例)
 また、サスペンション装置1Bとしては上記構成に限定されるものではなく、他の種々の構成のサスペンション装置を適用することができる。
 さらに、サスペンション装置1Bの構成によっては転舵応答性設定部52を省略することができる。
1…車両、1A…車体、1B…サスペンション装置、2…ステアリングホイール、3…入力側ステアリング軸、4…操舵角センサ、5…操舵トルクセンサ、6…操舵反力アクチュエータ、7…操舵反力アクチュエータ角度センサ、8…転舵アクチュエータ、8a…転舵モータ、9…転舵アクチュエータ角度センサ、10…出力側ステアリング軸、11…転舵トルクセンサ、12…ピニオンギヤ、13…ピニオン角度センサ、14…ラック軸、15…タイロッド、16…タイロッド軸力センサ、17FR,17FL,17RR,17RL…車輪、18…ブレーキディスク、19…ホイールシリンダ、20…圧力制御ユニット、21…車両状態パラメータ取得部、22a…ヨー角センサ、22b…ヨーレートセンサ、23…駆動制御装置、24FR,24FL,24RR,24RL…車輪速センサ、25R,25L…ハブ横力センサ、26…コントロール/駆動回路ユニット、27…メカニカルバックアップ、32…車軸、33…アクスルキャリア、34…バネ部材、37…第1リンク、38…第2リンク、40…ショックアブソーバ、41…スタビライザ、SBW…ステアバイワイヤシステム、50…転舵制御部、51…目標転舵角演算部、52…転舵応答性設定部、53A…転舵状態検出部、53B…制動状態検出部、53C…ヨー角制御部、53D…加速状態検出部、53E…走行状態検出部、53F…走行時揺動制御部、53G…エンジンブレーキ時制御部、53R…目標ラックストローク算出部、53Y…目標ヨー角算出部、53S…操舵方向判定部、54…アクチュエータ制御装置、55…直進性担保部、55a…直進性補完部、55b…外乱補償部、55c…加算器、56…遅延制御部、56a…操舵開始検出部、56b…単安定回路、56c…ゲイン調整部、56d…乗算器、56e…加算器、60…電流偏差演算部、61…転舵角偏差演算部、62…転舵モータ制御部、63…電流偏差演算部、64…モータ電流検出部、65…モータ電流制御部、70FR,70FL…インホイールモータ、71…駆動装置、72…ヨー角制御部、73…直流電源、74FR,74FL…インバータ、81…トランスバースリンク、82…コンプレッションリンク、83…テンションリンク、90…エンジンブレーキ検出部

Claims (26)

  1.  ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータを制御するステアバイワイヤシステムと、
     車両のヨー角を検出するヨー角検出部と、
     前記ステアリングホイールの操舵角を検出する操舵角検出部と、
     車両旋回状態を検出する旋回状態検出部と、
     車両の制動状態又は加速状態を検出する走行状態検出部と、
     前記旋回状態検出部で車両旋回状態を検出し、且つ前記走行状態検出部で車両の制動状態又は加速状態を検出したときに、制動又は加速前後のヨー角偏差を抑制するように前記アクチュエータを制御するヨー角制御部と
     を備えたことを特徴とする操舵制御装置。
  2.  ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータを制御するステアバイワイヤシステムと、
     車両のヨー角を検出する車両ヨー角検出部と、
     前記ステアリングホイールの操舵角を検出する操舵角検出部と、
     車両の車速を検出する車速検出部と、
     前記ヨー角に基づいて車両旋回状態を検出する旋回状態検出部と、
     車両の加速状態を検出する加速状態検出部と、
     車両の制動状態を検出する制動状態検出部と、
     前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態又は制動状態による状態変化を検出したときに、当該状態変化を検出した後の車速およびヨー角をもとに状態変化に応じた目標ヨー角を算出する目標ヨー角算出部を有し、前記アクチュエータによるヨー角制御量が前記目標ヨー角となるように当該アクチュエータを制御するヨー角制御部と
     を備えたことを特徴とする操舵制御装置。
  3.  ステアリングホイールを操舵したときの操舵角の変位を検出し、検出結果に基づいて前記ステアリングホイールから切り離された転舵輪を転舵させる転舵機構を動作させるアクチュエータを制御するステアバイワイヤシステムと、
     車両のヨー角を検出するヨー角検出部と、
     前記ステアリングホイールの操舵角を検出する操舵角検出部と、
     車両旋回状態を検出する旋回状態検出部と、
     車両の制動状態又は加速状態を検出する走行状態検出部と、
     前記旋回状態検出部で車両旋回状態を検出し、且つ前記走行状態検出部で車両の制動状態又は加速状態を検出したときに、制動又は加速前後のヨー角偏差を抑制するように前記アクチュエータを制御するヨー角制御部とを備え、
     前記ヨー角制御部は、前記旋回状態検出部で車両の直進状態から車両旋回状態への移行を検出したときに、前記ヨー角制御部の制御開始を所定時間遅延させるヨー角制御開始遅延部を有する
     ことを特徴とする操舵制御装置。
  4.  車両のエンジンブレーキ状態を検出するエンジンブレーキ検出部と、
     左右輪の制動力を調整して車両のステア特性をニュートラルステア特性に制御するエンジンブレーキ時制御部と、
     該エンジンブレーキ検出部でエンジンブレーキ状態を検出し、且つ前記旋回状態検出部で旋回状態から直進状態を検出したときに前記エンジンブレーキ時制御部における直進安定性制御の開始を所定時間遅延させる直進安定性制御開始遅延部と
     を備えていることを特徴とする請求項3に記載の操舵制御装置。
  5.  左右の転舵輪に作用する横力を個別に検出する横力検出部と、車両の車速を検出する車速検出部とを有し、
     前記エンジンブレーキ時制御部は、車速および横力をもとに、目標操舵角をパラメータとして車速及び横力の関係を表す複数の操舵角特性線から該当する操舵角特性線を選択し、選択した操舵角特性線に基づいて基準横力を算出し、算出した基準横力と前記横力とが一致するように前記左右輪に対する制動力を制御する制動力制御部を備えていることを特徴とする請求項4に記載の操舵制御装置。
  6.  前記転舵輪を支持するサスペンション装置は、前記転舵輪を車体に支持する複数のリンク部材を含み、前記リンク部材のアッパーピボット点とロアピボット点とを通るキングピン軸が前記ステアリングホイールの中立位置でタイヤ接地面内を通るように設定されていることを特徴とする請求項1から5の何れか1項に記載の操舵制御装置。
  7.  前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記制動状態検出部で車両の制動状態を検出したときに、制動前後のヨー角偏差を抑制する目標転舵量を演算し、演算した目標転舵量となるように前記アクチュエータを制御することを特徴とする請求項1又は3に記載の操舵制御装置。
  8.  前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記制動状態検出部で車両の制動状態を検出したときに、制動状態を検出した後の制動後車速および制動後ヨー角をもとに、操舵角をパラメータとする複数の操舵角特性に基づいて前記制動後ヨー角を前記制動前ヨー角に近づける目標ヨー角を算出し、制動後ヨー角が目標ヨー角となるように前記アクチュエータを制御することを特徴とする請求項1又は3に記載の操舵制御装置。
  9.  前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記制動状態検出部で車両の制動状態を検出したときに、制動状態を検出した後の制動後車速および制動後ヨー角をもとに、操舵角をパラメータとする複数の操舵角特性に基づいて目標転舵量を算出し、前記転舵機構の転舵量が前記目標転舵量となるように前記アクチュエータを制御することを特徴とする請求項1又は3に記載の操舵制御装置。
  10.  前記ヨー角制御部は、前記制動後車速および前記制動後ヨー角をもとに、操舵角をパラメータとする車速とヨー角との関係を表す複数の操舵角特性線を設定した目標値算出マップを参照して前記制動後車速と同一車速におけるヨー角が前記制動後ヨー角を下回る操舵角特性線を選択し、選択した操舵角特性線の操舵角と制動後操舵角との偏差から前記目標転舵量を演算するとともに、選択した操舵角特性線と前記設定車速とから前記目標ヨー角を算出することを特徴とする請求項9に記載の操舵制御装置。
  11.  前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態検出部で車両の加速状態を検出したときに、加速状態を検出した後の加速後車速および加速後ヨー角をもとに、操舵角をパラメータとする複数の操舵角特性に基づいて加速前後のヨー角偏差を抑制する前記アクチュエータの目標制御量を算出し、前記アクチュエータの制御量が前記目標制御量となるように前記アクチュエータを制御することを特徴とする請求項1又は3に記載の操舵制御装置。
  12. 前記ヨー角制御部は、前記加速後車速および前記加速後ヨー角をもとに操舵角をパラメータとする複数の操舵角特性線を有して車速とヨー角との関係を示す目標値算出マップを参照して前記加速後車速と同一車速におけるヨー角が前記加速後ヨー角を上回る直近の操舵角特性線を選択し、選択した操舵角特性線の操舵角と加速後操舵角との偏差から前記目標制御量を演算することを特徴とする請求項11に記載の操舵制御装置。
  13.  前記ヨー角制御部は、前記加速後車速および前記加速後ヨー角をもとに前記目標値算出マップを参照して前記加速後車速と同一車速におけるヨー角が前記加速後ヨー角を上回る直近の操舵角特性線を選択し、選択した操舵角特性線の操舵角と加速後操舵角との偏差から前記目標制御量を演算するとともに、選択した操舵角特性線の前記加速後車速におけるヨー角を目標ヨー角として設定することを特徴とする請求項11に記載の操舵制御装置。
  14.  車両の車速を検出する車速検出部を備え、前記ヨー角制御部は、車速が設定車速以上であるときに動作すること特徴とする請求項11から13の何れか1項に記載の操舵制御装置。
  15.  前記ヨー角制御部は、前記制御量を前記目標制御量とする前記アクチュエータの制御を、前記車両ヨー角検出部で検出した車両ヨー角が、前記目標ヨー角近傍の値となるまで継続することを特徴とする請求項13に記載の操舵制御装置。
  16.  前記ヨー角制御部は、前記加速状態検出部で車両の加速状態を検出した場合に、前記操舵角検出部で検出した加速状態前後の操舵角差が所定値以上であるとき前記アクチュエータの制御を中止することを特徴とする請求項11から14のいずれか1項に記載の操舵制御装置。
  17.  前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態又は制動状態による状態変化を検出したときに、当該状態変化を検出した後の車速およびヨー角をもとに、前記アクチュエータの目標転舵量をパラメータとして車速およびヨー角の関係を表す複数の目標転舵量特性に基づいて状態変化に応じた目標ヨー角を算出する目標ヨー角算出部を有し、前記アクチュエータによるヨー角制御量が前記目標ヨー角となるように当該アクチュエータを制御することを特徴とする請求項2に記載の操舵制御装置。
  18.  前記ヨー角制御部は、前記旋回状態検出部で車両旋回状態を検出し、且つ前記加速状態又は制動状態による状態変化を検出したときに、当該状態変化を検出した後の車速およびヨー角をもとに、前記アクチュエータの目標転舵量をパラメータとして車速およびヨー角の関係を表す複数の目標転舵量特性線から該当する目標転舵量特性線を選択し、選択した目標転舵量特性線に基づいて状態変化に応じた目標転舵量を算出する目標転舵量算出部を有し、前記アクチュエータによる転舵輪の転舵量が前記目標転舵量となるように当該アクチュエータを制御することを特徴とする請求項2に記載の操舵制御装置。
  19.  前記ヨー角制御部は、前記目標転舵量算出部で選択した目標転舵量特性線に基づいて前記状態変化に応じた目標ヨー角を算出する目標ヨー角算出部を有し、前記アクチュエータによる転舵輪の転舵量が前記目標転舵量となるように前記アクチュエータを制御するヨー角制御を行い、当該ヨー角制御後のヨー角が前記目標ヨー角に一致するまで継続することを特徴とする請求項18に記載の操舵制御装置。
  20.  前記目標転舵量算出部は、前記状態変化後の車速およびヨー角をもとに、目標転舵量をパラメータとする複数の目標転舵量特性線を有して車速とヨー角との関係を表す目標値算出マップを参照して前記目標転舵量を算出することを特徴とする請求項18又は19に記載の操舵制御装置。
  21.  前記目標ヨー角算出部は、前記状態変化後の車速およびヨー角をもとに、目標転舵量をパラメータとする複数の目標転舵量特性線を有して車速とヨー角との関係を表す目標値算出マップを参照して前記目標ヨー角を算出することを特徴とする請求項18から20のいずれか1項に記載の操舵制御装置。
  22.  前記目標転舵量算出部は、車両が加速状態であり、且つ状態変化前後に操舵角変化を生じないときに、前記状態変化後車速と同一車速におけるヨー角が前記状態変化後ヨー角を上回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定することを特徴とする請求項18に記載の操舵制御装置。
  23.  前記目標転舵量算出部は、車両が制動状態であり、且つ状態変化前後に操舵角変化を生じないときに、前記状態変化後車速と同一車速におけるヨー角が前記状態変化後ヨー角を下回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定することを特徴とする請求項18に記載の操舵制御装置。
  24.  前記ヨー角制御部は、車両が加速状態および制動状態の何れかであり、且つ状態変化前後に操舵角変化を生じたときに、前記操舵角変化が切り増し方向であるか切り戻し方向であるかを判定する操舵方向判定部を有し、
     該操舵方向判定部の判定結果が切増し方向であるときに、前記目標転舵量算出部で前記状態変化後車速と同一車速におけるヨー角が前記状態変化後ヨー角を上回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定するとともに、前記ヨー角算出部で、選択した転舵量特性線および状態変化後車速に基づいて目標ヨー角を算出し、
     前記操舵方向判定部の判定結果が切り戻し方向であるときに、前記目標転舵量算出部で前記状態変化後車速と同一車速におけるヨー角が前記車速変化後ヨー角を下回る直近の転舵量特性線を選択し、選択した転舵量特性線に基づいて目標転舵量を設定するとともに、前記ヨー角算出部で選択した転舵量特性線および状態変化後車速に基づいて目標ヨー角を算出する
     ことを特徴とする請求項18から23のいずれか1項に記載の操舵制御装置。
  25.  前記アクチュエータは、前記ステアバイワイヤシステムのラック機構を駆動する転舵アクチュエータであり、前記目標制御量は目標ラックストークであることを特徴とする請求項1から24のいずれか1項に記載の操舵制御装置。
  26.  前記アクチュエータは、転舵輪の左右輪に回転数差を与えて操舵するヨー角制御アクチュエータであることを特徴とする請求項1から24のいずれか1項に記載の操舵制御装置。
PCT/JP2013/006362 2012-11-07 2013-10-28 操舵制御装置 WO2014073180A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014545559A JP5900643B2 (ja) 2012-11-07 2013-10-28 操舵制御装置
CN201380054321.3A CN105473419B (zh) 2012-11-07 2013-10-28 转向操纵控制装置
EP13853439.1A EP2918479B1 (en) 2012-11-07 2013-10-28 Steering control device
US14/437,894 US9567003B2 (en) 2012-11-07 2013-10-28 Steering control device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012245583 2012-11-07
JP2012245584 2012-11-07
JP2012245585 2012-11-07
JP2012-245584 2012-11-07
JP2012-245585 2012-11-07
JP2012-245583 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073180A1 true WO2014073180A1 (ja) 2014-05-15

Family

ID=50684306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006362 WO2014073180A1 (ja) 2012-11-07 2013-10-28 操舵制御装置

Country Status (5)

Country Link
US (1) US9567003B2 (ja)
EP (1) EP2918479B1 (ja)
JP (1) JP5900643B2 (ja)
CN (1) CN105473419B (ja)
WO (1) WO2014073180A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220297672A1 (en) * 2020-01-21 2022-09-22 Hitachi Astemo, Ltd. Steering control device and steering device
FR3142165A1 (fr) 2022-11-17 2024-05-24 Safran Electronics & Defense Procédé de retour d’effort dans un organe de guidage motorisé de véhicule a conduite assistée
WO2024195772A1 (ja) * 2023-03-17 2024-09-26 株式会社アイシン 車両制御装置

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119359A1 (ja) * 2013-01-29 2014-08-07 日本精工株式会社 電動パワーステアリング装置
US9663142B2 (en) * 2013-12-11 2017-05-30 GM Global Technology Operations LLC Methods and systems for aligning a steering system of a vehicle
WO2015107601A1 (ja) * 2014-01-17 2015-07-23 日本精工株式会社 電動パワーステアリング装置
EP3124316A4 (en) * 2014-03-28 2017-12-13 Honda Motor Co., Ltd. Electric vehicle
CN107107951B (zh) * 2014-12-25 2019-03-26 日本精工株式会社 电动助力转向装置
US9573591B2 (en) * 2015-03-18 2017-02-21 Continental Automotive Systems, Inc. System and method utilizing detected load for vehicle handling
US9963155B2 (en) 2015-05-29 2018-05-08 Clearpath Robotics, Inc. Method, system and apparatus for path control in unmanned vehicles
EP3246227B1 (en) * 2015-06-26 2019-05-01 Nsk Ltd. Driving assistance control device using electric power steering mechanism
EP3330160B1 (en) * 2015-07-31 2020-03-18 Nissan Motor Co., Ltd. Steer-by-wire system, and control method for steer-by-wire system
JP2017039466A (ja) * 2015-08-21 2017-02-23 株式会社東海理化電機製作所 車両用操作装置
US9889876B2 (en) * 2015-11-23 2018-02-13 Ford Global Technologies, Llc Methods and systems for controlling steering response and steering torque feedback based on steering position
US10065674B2 (en) * 2015-11-27 2018-09-04 Jtekt Corporation Steering control device
JP6579377B2 (ja) * 2015-11-30 2019-09-25 株式会社ジェイテクト 車両用操舵装置
US20170190355A1 (en) * 2016-01-04 2017-07-06 GM Global Technology Operations LLC Wheel alignment monitoring
DE102016001592A1 (de) * 2016-02-11 2017-08-17 Audi Ag Verfahren zur Beeinflussung der Fahrtrichtung von Kraftfahrzeugen
CN108698639A (zh) * 2016-02-29 2018-10-23 日本精工株式会社 电动助力转向装置
US10029728B2 (en) 2016-03-30 2018-07-24 Nissan North America, Inc. Vehicle adaptive steering control apparatus
US9919736B2 (en) 2016-03-30 2018-03-20 Nissan North America, Inc. Vehicle adaptive steering control apparatus
JP6331159B2 (ja) 2016-05-18 2018-05-30 マツダ株式会社 車両の制御装置
JP6332329B2 (ja) * 2016-05-18 2018-05-30 マツダ株式会社 車両の制御装置
JP2018008550A (ja) * 2016-07-11 2018-01-18 株式会社デンソー 操舵制御装置
JP6852299B2 (ja) * 2016-08-09 2021-03-31 株式会社デンソー 運転支援システム
EP3293065B1 (en) * 2016-09-12 2021-02-24 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Steering control system and a method for controlling steering
US10539961B2 (en) * 2016-11-01 2020-01-21 Ford Global Technologies Steering capability prediction
KR101899396B1 (ko) * 2016-11-24 2018-09-18 현대자동차주식회사 차량 및 그 제어방법
CN108116403A (zh) * 2016-11-29 2018-06-05 长城汽车股份有限公司 车辆的控制方法、系统及车辆
CN106800042B (zh) * 2016-12-15 2018-10-19 中国北方车辆研究所 双侧独立电驱动履带车辆行驶状态切换控制方法
US10585440B1 (en) 2017-01-23 2020-03-10 Clearpath Robotics Inc. Systems and methods for using human-operated material-transport vehicles with fleet-management systems
JP6787174B2 (ja) * 2017-02-22 2020-11-18 トヨタ自動車株式会社 駆動力制御装置
US11097736B2 (en) * 2017-02-28 2021-08-24 Clearpath Robotics Inc. Systems and methods for traction detection and control in a self-driving vehicle
JP6743736B2 (ja) * 2017-03-23 2020-08-19 トヨタ自動車株式会社 車両のブレーキ装置
KR102262132B1 (ko) * 2017-03-27 2021-06-10 현대자동차주식회사 차량용 조향 제어방법
US10232873B2 (en) 2017-03-30 2019-03-19 Ford Global Technologies, Llc Methods and apparatus to identify non-uniformity in a vehicle steering system
US10315691B2 (en) 2017-03-30 2019-06-11 Ford Global Technologies, Llc Methods and apparatus to correct clear vision errors in a vehicle steering system
US10787192B1 (en) 2017-04-11 2020-09-29 Apple Inc. Steer-by-wire system with multiple steering actuators
FR3066748B1 (fr) * 2017-05-23 2019-07-05 Jtekt Europe Procede de determination de l’effort aux biellettes modelisant le relachement elastique du pneumatique en torsion pour gerer les transitions entre parking et roulage
JP2019023038A (ja) 2017-07-24 2019-02-14 株式会社ジェイテクト 操舵制御装置
CN107672669B (zh) * 2017-11-13 2018-08-10 吉林大学 一种全解耦线控转向系统
FR3076529B1 (fr) * 2018-01-10 2020-01-10 Jtekt Europe Procede de compensation de deviation de trajectoire au freinage avec une direction assistee
CN111902331B (zh) * 2018-03-26 2023-06-09 株式会社捷太格特 控制装置、转向装置、控制方法以及记录介质
KR102506932B1 (ko) * 2018-04-24 2023-03-07 현대자동차 주식회사 차량 쏠림 검사 장치 및 그 방법
KR102532338B1 (ko) * 2018-06-21 2023-05-16 현대자동차주식회사 차량용 조향 제어방법
CN110667562B (zh) * 2018-07-03 2020-11-10 郑州宇通客车股份有限公司 一种基于车轮转速的车辆直行保持控制方法及装置
US11390277B2 (en) 2018-11-30 2022-07-19 Clearpath Robotics Inc. Systems and methods for self-driving vehicle collision prevention
US10843728B2 (en) * 2019-01-31 2020-11-24 StradVision, Inc. Method and device for delivering steering intention of autonomous driving module or driver to steering apparatus of subject vehicle more accurately
WO2020158350A1 (ja) * 2019-01-31 2020-08-06 日本精工株式会社 車両の操舵に用いられるアクチュエータ制御装置
JP7211149B2 (ja) * 2019-02-21 2023-01-24 トヨタ自動車株式会社 電動パワーステアリング装置
US11414122B2 (en) * 2019-03-01 2022-08-16 Steering Solutions Ip Holding Corporation Handwheel-roadwheel resynchronization in steer-by-wire systems
US20210016826A1 (en) * 2019-07-17 2021-01-21 Steering Solutions Ip Holding Corporation Steer by wire drift compensation
CN110320917B (zh) * 2019-07-24 2022-09-02 北京智行者科技有限公司 无人车弯道循迹控制方法
JP7429902B2 (ja) * 2019-08-21 2024-02-09 パナソニックIpマネジメント株式会社 自走式ロボット
US11440551B2 (en) * 2019-09-04 2022-09-13 Deere & Company Automatic crab steering on side hills
KR20210031075A (ko) * 2019-09-11 2021-03-19 주식회사 만도 조향 제어 장치 및 그 방법, 그리고 조향 시스템
US11649147B2 (en) 2019-09-20 2023-05-16 Clearpath Robotics Inc. Autonomous material transport vehicles, and systems and methods of operating thereof
US11891073B2 (en) * 2019-10-25 2024-02-06 GM Global Technology Operations LLC Systems and methods for detecting and compensating camera yaw angle offset for autonomous vehicles
JP7342763B2 (ja) * 2020-03-30 2023-09-12 トヨタ自動車株式会社 車両用ステアリングシステム
US12122367B2 (en) 2020-09-10 2024-10-22 Rockwell Automation Technologies, Inc. Systems and methods for operating one or more self-driving vehicles
KR20220055947A (ko) * 2020-10-27 2022-05-04 현대자동차주식회사 4륜 독립조향 차량의 제자리 회전모드 제어방법 및 시스템
JP7150001B2 (ja) * 2020-12-28 2022-10-07 本田技研工業株式会社 車両制御装置
WO2023237174A1 (en) * 2022-06-06 2023-12-14 Volvo Truck Corporation A method for controlling a yaw motion of a vehicle
KR20240119510A (ko) * 2023-01-30 2024-08-06 에이치엘만도 주식회사 스티어 바이 와이어 시스템 및 이의 제어 방법

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111538A (ja) * 1987-10-26 1989-04-28 Toyota Central Res & Dev Lab Inc 車両の姿勢制御装置
JPH0988203A (ja) 1995-09-22 1997-03-31 Achilles Corp 断熱パネル及びこれを用いた断熱構造
JPH1062311A (ja) * 1996-08-22 1998-03-06 Mitsubishi Motors Corp 車両用路面摩擦係数推定装置
JP2005112285A (ja) * 2003-10-10 2005-04-28 Toyoda Mach Works Ltd 車両用操舵制御装置
JP2005324655A (ja) * 2004-05-13 2005-11-24 Nissan Motor Co Ltd 車両用後輪操舵装置
JP2006264561A (ja) * 2005-03-24 2006-10-05 Toyota Central Res & Dev Lab Inc 車両制御装置
JP2007022326A (ja) * 2005-07-15 2007-02-01 Toyota Central Res & Dev Lab Inc 車両制御装置
JP2007062412A (ja) * 2005-08-29 2007-03-15 Nsk Ltd 車両の操舵装置
JP2007237840A (ja) 2006-03-07 2007-09-20 Nissan Motor Co Ltd 操舵制御装置、自動車及び操舵制御方法
JP2007302053A (ja) * 2006-05-09 2007-11-22 Jtekt Corp 車両用操舵装置
JP2008030591A (ja) 2006-07-28 2008-02-14 Nissan Motor Co Ltd 制動制御装置およびその方法
JP2009269427A (ja) * 2008-05-01 2009-11-19 Toyota Motor Corp 車両安定化制御装置
JP2010095153A (ja) * 2008-10-16 2010-04-30 Honda Motor Co Ltd 舵角比可変制御装置
JP2011207313A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 車両の制御装置
JP2012192841A (ja) * 2011-03-16 2012-10-11 Nissan Motor Co Ltd 車両用サスペンション装置およびそのジオメトリ調整方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW330182B (en) 1995-09-26 1998-04-21 Honda Motor Co Ltd Process for controlling yaw moment in a vehicle
JP3660027B2 (ja) 1995-09-26 2005-06-15 本田技研工業株式会社 車両におけるヨーモーメント制御方法
US6415215B1 (en) 2000-02-23 2002-07-02 Koyo Seiko Co., Ltd. Vehicle attitude control apparatus
JP4032985B2 (ja) * 2003-02-07 2008-01-16 日産自動車株式会社 車両運動制御装置
JP2006069498A (ja) 2004-09-06 2006-03-16 Nissan Motor Co Ltd 前後輪操舵制御装置
JP4835189B2 (ja) * 2006-02-16 2011-12-14 日産自動車株式会社 旋回挙動制御装置、自動車、及び旋回挙動制御方法
JP4636062B2 (ja) * 2007-08-27 2011-02-23 トヨタ自動車株式会社 車両の挙動制御装置
RU2555902C2 (ru) * 2011-03-16 2015-07-10 Ниссан Мотор Ко., Лтд. Моторное транспортное средство и способ управления выполнением руления для управляемого колеса

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111538A (ja) * 1987-10-26 1989-04-28 Toyota Central Res & Dev Lab Inc 車両の姿勢制御装置
JPH0988203A (ja) 1995-09-22 1997-03-31 Achilles Corp 断熱パネル及びこれを用いた断熱構造
JPH1062311A (ja) * 1996-08-22 1998-03-06 Mitsubishi Motors Corp 車両用路面摩擦係数推定装置
JP2005112285A (ja) * 2003-10-10 2005-04-28 Toyoda Mach Works Ltd 車両用操舵制御装置
JP2005324655A (ja) * 2004-05-13 2005-11-24 Nissan Motor Co Ltd 車両用後輪操舵装置
JP2006264561A (ja) * 2005-03-24 2006-10-05 Toyota Central Res & Dev Lab Inc 車両制御装置
JP2007022326A (ja) * 2005-07-15 2007-02-01 Toyota Central Res & Dev Lab Inc 車両制御装置
JP2007062412A (ja) * 2005-08-29 2007-03-15 Nsk Ltd 車両の操舵装置
JP2007237840A (ja) 2006-03-07 2007-09-20 Nissan Motor Co Ltd 操舵制御装置、自動車及び操舵制御方法
JP2007302053A (ja) * 2006-05-09 2007-11-22 Jtekt Corp 車両用操舵装置
JP2008030591A (ja) 2006-07-28 2008-02-14 Nissan Motor Co Ltd 制動制御装置およびその方法
JP2009269427A (ja) * 2008-05-01 2009-11-19 Toyota Motor Corp 車両安定化制御装置
JP2010095153A (ja) * 2008-10-16 2010-04-30 Honda Motor Co Ltd 舵角比可変制御装置
JP2011207313A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 車両の制御装置
JP2012192841A (ja) * 2011-03-16 2012-10-11 Nissan Motor Co Ltd 車両用サスペンション装置およびそのジオメトリ調整方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220297672A1 (en) * 2020-01-21 2022-09-22 Hitachi Astemo, Ltd. Steering control device and steering device
FR3142165A1 (fr) 2022-11-17 2024-05-24 Safran Electronics & Defense Procédé de retour d’effort dans un organe de guidage motorisé de véhicule a conduite assistée
WO2024195772A1 (ja) * 2023-03-17 2024-09-26 株式会社アイシン 車両制御装置

Also Published As

Publication number Publication date
US20150291210A1 (en) 2015-10-15
EP2918479A4 (en) 2016-07-06
CN105473419B (zh) 2018-12-18
CN105473419A (zh) 2016-04-06
JP5900643B2 (ja) 2016-04-06
EP2918479A1 (en) 2015-09-16
EP2918479B1 (en) 2019-06-12
US9567003B2 (en) 2017-02-14
JPWO2014073180A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5900643B2 (ja) 操舵制御装置
JP5910747B2 (ja) 車両用サスペンション装置、これを使用した自動車および転舵制御方法
US11014600B2 (en) Leaning vehicle
JP5582197B2 (ja) 車両及びその操舵制御方法
WO2012124272A1 (ja) 車両用サスペンション装置、そのジオメトリ調整方法及び自動車
JP2004345592A (ja) 車両の操舵装置
JP6135278B2 (ja) 車両
JP5403182B2 (ja) 自動車および転舵輪の転舵制御方法
JP6136136B2 (ja) 車両用転舵装置
JP6051846B2 (ja) 車両用リヤサスペンション装置
JP6094206B2 (ja) 車両用サスペンション装置
JP2006062454A (ja) 車両用サスペンション装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380054321.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545559

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013853439

Country of ref document: EP