[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014073151A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2014073151A1
WO2014073151A1 PCT/JP2013/005863 JP2013005863W WO2014073151A1 WO 2014073151 A1 WO2014073151 A1 WO 2014073151A1 JP 2013005863 W JP2013005863 W JP 2013005863W WO 2014073151 A1 WO2014073151 A1 WO 2014073151A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
battery
auxiliary heat
pipe
Prior art date
Application number
PCT/JP2013/005863
Other languages
English (en)
French (fr)
Inventor
竹内 雅之
山中 隆
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112013005304.7T priority Critical patent/DE112013005304B4/de
Priority to US14/440,727 priority patent/US9786964B2/en
Publication of WO2014073151A1 publication Critical patent/WO2014073151A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus that performs temperature adjustment of a plurality of types of temperature adjustment objects.
  • an electric vehicle such as an electric vehicle or a hybrid vehicle
  • electric power stored in a storage battery such as a secondary battery
  • an inverter or the like to output a driving force for traveling the vehicle.
  • these electric devices such as secondary batteries, inverters, and electric motors are heated to high temperatures due to self-heating or the like, malfunctions may occur or the devices may be damaged. Therefore, the electric vehicle requires a temperature adjusting unit for cooling these electric devices.
  • Patent Document 1 discloses an example in which a vapor compression refrigeration cycle apparatus that cools air (blowing air) blown into a vehicle interior in a vehicle air conditioner is used as a temperature adjustment unit for cooling an electric device.
  • the refrigeration cycle apparatus of Patent Literature 1 includes two evaporators connected in parallel, one air cools the air, and the other evaporator cools the electrical equipment. The heat medium is cooled.
  • the refrigeration cycle apparatus of Patent Document 1 is configured to perform temperature adjustment of two types of temperature adjustment objects, air (first temperature adjustment object) and a heat medium (second temperature adjustment object). Yes.
  • some of the above-described electrical devices cannot exhibit sufficient performance at low temperatures.
  • the input / output characteristics of a secondary battery deteriorate at low temperatures. Therefore, if the secondary battery is used in a low-temperature environment where it cannot be warmed up by self-heating alone, it may not be possible to output sufficient power, or regenerative power may not be sufficiently charged. is there.
  • the temperature adjusting unit for the electric device applied to the electric vehicle has a function of heating the electric device and adjusting the temperature of the electric device within a predetermined temperature range. Necessary. However, since the refrigeration cycle apparatus of Patent Document 1 can only cool the heat medium, the temperature of the electric device cannot be adjusted within a predetermined temperature range in a low temperature environment.
  • the present inventors previously described a refrigeration cycle apparatus for a vehicle air conditioner and a temperature of an electric device at a predetermined temperature in Japanese Patent Application No. 2012-176873 (hereinafter referred to as a comparative example).
  • the thing used as the temperature adjustment part for adjusting in the range is proposed.
  • the refrigeration cycle apparatus of this comparative example is for adjusting the temperature of the heat medium (second temperature adjustment object) for adjusting the temperature of the electrical equipment with respect to the refrigeration cycle apparatus of the vehicle air conditioner.
  • One auxiliary heat exchanger is added.
  • the one auxiliary heat exchanger is supplied with the high-temperature and high-pressure refrigerant when the electric device is heated, and with the low-temperature and low-pressure refrigerant when the electric device is cooled, The temperature of the electric equipment can be adjusted within a predetermined temperature range.
  • the comparative refrigeration cycle apparatus has the following fears.
  • cycle components such as a compressor, an outdoor heat exchanger, and an accumulator are generally arranged in front of the vehicle.
  • an electric device such as a secondary battery is disposed under the passenger floor in the center of the vehicle or behind the vehicle such as under the rear seat or under the trunk in order to secure a mounting space.
  • the piping from the cycle component arranged in the front of the vehicle to the auxiliary heat exchanger becomes long, and depending on the arrangement, it is as long as 5 m one way.
  • the refrigerant in the refrigeration cycle transports heat by phase change between liquid (liquid refrigerant) and gas (gas refrigerant), but the density difference between liquid refrigerant and gas refrigerant is large, so that the required amount of refrigerant is reduced. Therefore, it is necessary to reduce the inner diameter of the liquid refrigerant pipe, that is, the flow path cross-sectional area.
  • the liquid refrigerant density is about 10 times the gas refrigerant density.
  • the gas refrigerant since the gas refrigerant has a larger pressure loss when flowing through the refrigerant pipe than the liquid refrigerant, in order to reduce the pressure loss, the cross-sectional area of the gas refrigerant pipe needs to be increased.
  • the flow direction of the refrigerant in one refrigerant pipe is the same because the refrigerant flow directions in the two refrigerant pipes communicating with the auxiliary heat exchanger are the same both when heating and cooling the electrical equipment.
  • the area cannot be reduced, and the flow path cross-sectional area of the other refrigerant pipe cannot be increased.
  • the refrigerant communicates with the refrigerant inlet side of the auxiliary heat exchanger, and communicates with the piping through which the refrigerant flowing into the auxiliary heat exchanger flows and the refrigerant outlet side of the auxiliary heat exchanger. And a return pipe through which the refrigerant flowing out from the auxiliary heat exchanger flows. And at the time of heating of an electric equipment, a gas refrigerant flows into an outgoing pipe and a liquid refrigerant flows into a return pipe. On the other hand, when the electric equipment is cooled, the liquid refrigerant flows in the outgoing pipe and the gas refrigerant flows in the return pipe.
  • the present disclosure is capable of increasing the amount of refrigerant enclosed and the amount of refrigerant fluctuation.
  • the object is to achieve both suppression and suppression of increase in refrigerant pressure loss.
  • Auxiliary heat exchanger for exchanging heat with the object to be adjusted a first pipe having a channel cross-sectional area communicating with the auxiliary heat exchanger larger than a predetermined value, and a channel cross-sectional area communicating with the auxiliary heat exchanger having the first pipe
  • a smaller second pipe and a refrigerant channel switching unit that switches a refrigerant channel of the refrigerant circulating in the cycle are provided.
  • the refrigerant flow switching unit at least refrigerant in a range from the compressor discharge port side to the outdoor heat exchanger inlet side flows into the auxiliary heat exchanger via the first pipe. Furthermore, the refrigerant flowing out from the auxiliary heat exchanger is guided to the outdoor heat exchanger inlet side through the second pipe, and the range from the outdoor heat exchanger outlet side to the compressor inlet side The refrigerant flows into the auxiliary heat exchanger via the second pipe, and the second refrigerant flow path through which the refrigerant flowing out from the auxiliary heat exchanger is guided to the compressor inlet side via the first pipe can be switched. It is configured.
  • the liquid refrigerant flows through the second pipe having a small channel cross-sectional area, and the gas refrigerant passes through the first pipe having a large channel cross-sectional area. Flowing. Therefore, it is possible to achieve both suppression of increase in the refrigerant filling amount and refrigerant fluctuation amount and suppression of increase in refrigerant pressure loss.
  • the refrigeration cycle apparatus 10 is applied to an electric vehicle that obtains a driving force for traveling a vehicle from an electric motor for traveling. Further, in the electric vehicle, the refrigeration cycle apparatus 10 is used to adjust the temperature (heating and cooling) of the secondary battery 55 as an electric storage device for storing electric power supplied to the air conditioning (cooling and heating) in the vehicle interior and the electric motor for traveling. ) Is used.
  • the refrigeration cycle apparatus 10 functions to adjust the temperature of indoor air (indoor air) that is blown into the vehicle interior, and also has battery air that is blown toward the secondary battery 55 ( It functions to adjust the temperature of the battery air.
  • the refrigeration cycle apparatus 10 performs temperature adjustment of a plurality of types of temperature adjustment objects including indoor air (first temperature adjustment object) and battery air (second temperature adjustment object).
  • the compressor 11 is disposed in the vehicle bonnet, sucks the refrigerant in the refrigeration cycle apparatus 10, compresses and discharges it, and is a fixed capacity type with a fixed discharge capacity. It is comprised as an electric compressor which rotationally drives a compression mechanism with an electric motor. The operation (the number of rotations) of the electric motor of the compressor 11 is controlled by a control signal output from a control device described later.
  • the refrigeration cycle apparatus 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure. ing. Further, the refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • HFC refrigerant specifically, R134a
  • the refrigerant inlet side of the indoor condenser 13 is connected to the discharge port side of the compressor 11.
  • the indoor condenser 13 is disposed in a casing 31 that forms an air passage for indoor air in the indoor air conditioning unit 30.
  • the indoor condenser (use side heat exchanger) 13 is a heat radiating heat exchanger that radiates heat by exchanging heat from the refrigerant discharged from the compressor 11 with room air after passing through the indoor evaporator 20 described later. It is composed. The details of the indoor air conditioning unit 30 will be described later.
  • the refrigerant outlet side of the indoor condenser 13 is connected to the refrigerant inlet side of the outdoor heat exchanger 17 via a first connection portion 12a, a second three-way valve 14b, and a heating expansion valve 16 configured by a three-way joint. Yes.
  • the 1st connection part 12a and the 2nd three-way valve 14b are for connecting the auxiliary heat exchanger 15 mentioned later.
  • the heating expansion valve 16 is a pressure reducer that depressurizes the refrigerant that flows out of the indoor condenser 13 when heating the indoor air to heat the vehicle interior.
  • the heating expansion valve 16 includes a valve body that can change the opening degree (valve opening degree) and an electric actuator that includes a stepping motor that changes the opening degree (valve opening degree) of the valve body.
  • the operation of the electric expansion valve is controlled by a control signal output from the control device.
  • the heating expansion valve 16 has a fully open function that hardly exerts a pressure reducing action by fully opening the opening (throttle opening) of the valve body.
  • the outdoor heat exchanger 17 is disposed in the vehicle bonnet, and exchanges heat between the refrigerant flowing through the inside and the outside air blown from the blower fan 17a. More specifically, the outdoor heat exchanger 17 functions as an evaporator that evaporates a low-pressure refrigerant and exerts an endothermic effect when heating the indoor air to heat the vehicle interior. When air is cooled to cool the passenger compartment, it functions as a radiator that radiates high-pressure refrigerant.
  • the blower fan 17a is an electric blower in which the operating rate, that is, the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device.
  • a third connection part 12 c constituted by a three-way joint, a check valve 18, a fourth connection part 12 d constituted by a three-way joint, and a cooling expansion valve 19 are used.
  • the refrigerant inlet side of the evaporator 20 is connected.
  • the check valve 18 extends from the third connection portion 12c side (the refrigerant outlet side of the outdoor heat exchanger 17) to the fourth connection portion 12d side (the refrigerant inlet side of the indoor evaporator 20 or the refrigerant inlet side of the auxiliary heat exchanger 15).
  • the refrigerant is allowed to flow only. Therefore, the check valve 18 prevents the refrigerant from flowing back from the refrigerant inlet side of the indoor evaporator 20 or the refrigerant inlet side of the auxiliary heat exchanger 15 to the refrigerant outlet side of the outdoor heat exchanger 17.
  • the cooling expansion valve 19 is a pressure reducer that depressurizes the refrigerant that flows out of the outdoor heat exchanger 17 and flows into the indoor evaporator 20 when the room air is cooled to cool the vehicle interior.
  • the cooling expansion valve 19 is an electric expansion valve having the same configuration as that of the heating expansion valve 16, and in addition to the fully open function, the refrigerant passage can be closed by fully closing the opening of the valve body. It has a closing function. For this reason, the cooling expansion valve 19 constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle.
  • the indoor evaporator 20 is arranged upstream of the indoor condenser 13 in the casing 31 of the indoor air conditioning unit 30. Further, the indoor evaporator (use side heat exchanger) 20 constitutes an evaporation heat exchanger that evaporates the refrigerant decompressed by the cooling expansion valve 19 by exchanging heat with the indoor air.
  • the inlet side of the accumulator 23 is connected to the refrigerant outlet side of the indoor evaporator 20 through a sixth connection portion 12f configured with a three-way joint and a fifth connection portion 12e configured with a three-way joint.
  • the accumulator 23 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator 23 and stores excess refrigerant in the cycle.
  • the suction side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 23. Therefore, the accumulator 23 functions to prevent the liquid compression of the compressor 11 by preventing the liquid phase refrigerant from being sucked into the compressor 11.
  • the refrigerant flowing out of the indoor evaporator 17 is passed through the third connection portion 12c between the outdoor heat exchanger 17 and the check valve 18 and the fifth connection portion 12e between the indoor evaporator 20 and the accumulator 23.
  • a bypass flow path for bypassing the evaporator 20 and flowing therethrough is connected.
  • a bypass opening / closing valve 18a is provided in the bypass channel.
  • the bypass opening / closing valve 18a is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the control device. Further, when the bypass on-off valve 18a is opened, the refrigerant flowing out of the outdoor heat exchanger 17 flows into the accumulator 23 through the fifth connection portion 12e, and when the bypass on-off valve 18a is closed, the outdoor heat The refrigerant that has flowed out of the exchanger 17 flows into the fourth connecting portion 12d through the check valve 18. Therefore, the bypass on-off valve 18a constitutes a refrigerant flow switching unit.
  • the auxiliary heat exchanger 15 is disposed in a battery pack 50 that forms an air passage for battery air that is blown toward the secondary battery 55.
  • the temperature of the battery air is adjusted by exchanging heat between the refrigerant circulating through the battery and the battery air. Details of the battery pack 50 will be described later.
  • the auxiliary heat exchanger 15 includes a first entrance 15a and a second entrance 15b through which refrigerant flows in and out.
  • the auxiliary heat exchanger 15 is configured such that the refrigerant flows through the auxiliary heat exchanger 15 from one of the first and second inlets 15a and 15b toward the other.
  • the first pipe 24 communicates with the first inlet / outlet 15a
  • the second pipe 25 communicates with the second inlet / outlet 15b via the battery expansion valve 21.
  • the first pipe 24 has a large flow path cross-sectional area
  • the second pipe 25 has a small flow path cross-sectional area.
  • a first pipe 24 having a circular channel cross section and an inner diameter of 10.3 mm can be employed
  • a second pipe 25 having a circular channel cross section and an inner diameter of 6 mm can be employed.
  • the first pipe 24 is connected to the first connection part 12a and the sixth connection part 12f via the first three-way valve 14a.
  • the first three-way valve 14a switches between a refrigerant flow path connecting the first pipe 24 and the first connection part 12a and a refrigerant flow path connecting the first pipe 24 and the sixth connection part 12f. Therefore, the first three-way valve 14a constitutes a refrigerant flow switching unit.
  • the second pipe 25 is connected to the second three-way valve 14b and the fourth connection part 12d via the second connection part 12b.
  • the second three-way valve 14b has a refrigerant flow path connecting the second pipe 25 and the refrigerant inlet side of the outdoor heat exchanger 17, the refrigerant outlet side of the indoor condenser 13, and the refrigerant inlet side of the outdoor heat exchanger 17. Switch the refrigerant flow path to be connected. Accordingly, the second three-way valve 14b constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle, similarly to the first three-way valve 14a.
  • a battery on-off valve 21a is provided in the refrigerant flow path connecting the second connection portion 12b and the fourth connection portion 12d.
  • the battery open / close valve 21a is an electromagnetic valve having the same configuration as the bypass open / close valve 18a, and opens and closes the refrigerant passage from the other refrigerant outlet side of the fourth connection portion 12d to the second pipe 25 to circulate the cycle.
  • the refrigerant flow path of the refrigerant to be switched can be switched. Therefore, the battery on-off valve 21a constitutes a refrigerant flow switching unit.
  • the refrigerant flowing out of the indoor condenser 13 by the first and second three-way valves 14a and 14b, the bypass on-off valve 18a, and the like flows into the auxiliary heat exchanger 15 through the first pipe 24.
  • the refrigerant flowing out from the auxiliary heat exchanger 15 is guided to the inlet side of the outdoor heat exchanger 17 through the second pipe 25, and the refrigerant flowing out from the outdoor heat exchanger 17 is second.
  • the refrigerant flowing into the auxiliary heat exchanger 15 via the pipe 25 and switching to the second refrigerant flow path through which the refrigerant flowing out of the auxiliary heat exchanger 15 is led to the inlet side of the accumulator 23 via the first pipe 24 can be switched. It is configured.
  • the battery expansion valve 21 depressurizes the refrigerant flowing into the auxiliary heat exchanger 15 when the battery air is cooled to cool the secondary battery 55 or the like.
  • the battery expansion valve 21 is an electric expansion valve having the same configuration as the heating expansion valve 16 and has a fully closed function and a fully opened function.
  • the indoor air conditioning unit 30 blows the temperature-adjusted room air into the vehicle interior, and is disposed inside the instrument panel (instrument panel) at the foremost part of the vehicle interior to form an outer shell thereof.
  • the fan 32, the indoor condenser 13, the indoor evaporator 20 and the like described above are accommodated.
  • the casing 31 has an air passage for indoor air formed therein, and has a certain degree of elasticity and is molded from a resin that is excellent in strength.
  • Inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is arranged on the most upstream side of the air flow of the room air in casing 31.
  • the inside / outside air switching device 33 is formed with an inside air introduction port for introducing inside air into the casing 31 and an outside air introduction port for introducing outside air. Furthermore, inside / outside air switching device 33 is provided with an inside / outside air switching door that continuously adjusts the opening area of the inside air introduction port and the outside air introduction port to change the air volume ratio between the inside air volume and the outside air volume. Has been.
  • a blower 32 that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan with an electric motor, and the number of rotations (the amount of blown air) is controlled by a control voltage output from the control device.
  • the indoor evaporator 20 and the indoor condenser 13 are arranged in this order with respect to the flow of indoor air.
  • the indoor evaporator 20 is disposed upstream of the indoor condenser 13 in the flow direction of the indoor air.
  • the ratio of the amount of air passing through the indoor condenser 13 in the air after passing through the indoor evaporator 20 is set.
  • An air mix door 34 to be adjusted is disposed.
  • a mixing space in which air heated by exchanging heat with the refrigerant in the indoor condenser 13 and air that has not been heated bypassing the indoor condenser 13 are mixed. 35 is provided.
  • An opening hole for blowing the conditioned air mixed in the mixing space 35 into the passenger compartment, which is the air-conditioning target space, is disposed in the most downstream portion of the casing 31 in the air flow.
  • the opening hole includes a face opening hole that blows air-conditioned air toward the upper body of the passenger in the passenger compartment, a foot opening hole that blows air-conditioned air toward the feet of the passenger, and an inner surface of the front window glass of the vehicle.
  • a defroster opening hole (both not shown) for blowing the conditioned air toward is provided.
  • the temperature of the conditioned air mixed in the mixing space 35 is adjusted by adjusting the ratio of the air volume that the air mix door 34 passes through the indoor condenser 13, and the temperature of the conditioned air blown out from each opening hole. Is adjusted. That is, the air mix door 34 constitutes a temperature adjustment unit that adjusts the temperature of the conditioned air blown into the vehicle interior.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device.
  • a face door that adjusts the opening area of the face opening hole, a foot door that adjusts the opening area of the foot opening hole, and a defroster opening hole respectively A defroster door (none of which is shown) for adjusting the opening area is arranged.
  • These face doors, foot doors, and defroster doors constitute an opening hole mode switching unit that switches the opening hole mode, and their operation is controlled by a control signal output from the control device via a link mechanism or the like. It is driven by a servo motor (not shown).
  • the battery pack 50 is disposed on the vehicle bottom side between the trunk room at the rear of the vehicle and the rear seat, and the battery air is placed in a metal casing 51 that has been subjected to electrical insulation processing (for example, insulation coating).
  • electrical insulation processing for example, insulation coating
  • An air passage for circulating air is formed, and the air passage 52, the auxiliary heat exchanger 15, the secondary battery 55, and the like are accommodated in the air passage.
  • the blower 52 is arranged on the upstream side of the air flow of the auxiliary heat exchanger 15 and blows the battery air toward the auxiliary heat exchanger 15, and the operating rate, i.e., rotation, is controlled by the control voltage output from the control device. It is an electric blower in which the number (the amount of blown air) is controlled. Further, the secondary battery 55 is disposed on the downstream side of the auxiliary heat exchanger 15 in the air flow, and the downstream side of the secondary battery 55 communicates with the suction port side of the blower 52.
  • the blower 52 when the blower 52 is operated, the battery air whose temperature is adjusted by the auxiliary heat exchanger 15 is blown to the secondary battery 55, and the temperature of the secondary battery 55 is adjusted. Further, the battery air whose temperature has been adjusted for the secondary battery 55 is sucked into the blower 52 and blown again toward the auxiliary heat exchanger 15.
  • the control device is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, performs various operations and processes based on a control program stored in the ROM, and is connected to the output side. It controls the operation of the control target devices 11, 14a, 14b, 16, 17a, 18a, 19, 21, 21a, 32, 52 and the like.
  • an inside air sensor that detects the vehicle interior temperature Tr
  • an outside air sensor that detects the outside air temperature Tam
  • a solar radiation sensor that detects the amount of solar radiation Ts in the vehicle interior
  • An evaporator temperature sensor 41 for detecting the evaporator temperature Te for detecting the evaporator temperature Te
  • a heating blowout temperature sensor 42 for detecting the blown air temperature of the indoor condenser 13
  • a first refrigerant temperature sensor for detecting the temperature and pressure of the refrigerant discharged from the compressor 11.
  • the third refrigerant temperature sensor 47, the fourth refrigerant temperature sensor 48 for detecting the temperature of the refrigerant flowing out of the indoor evaporator 20, and the temperature of the refrigerant flowing out from the first inlet / outlet 15a of the auxiliary heat exchanger 15 are detected.
  • Various control sensor groups such as a battery second air temperature sensor 58 for detecting the temperature of the battery air before flowing in are connected.
  • the battery temperature sensor 56 detects the battery temperature Tb, which is the temperature of the secondary battery 55, but the battery temperature Tb is detected by the battery first air temperature sensor 57 and the battery second air temperature sensor 58. It can also be detected indirectly. Therefore, the battery temperature sensor 56, the battery first air temperature sensor 57, and the battery second air temperature sensor 58 constitute a battery temperature detector that detects the battery temperature Tb. Note that the battery temperature Tb may be indirectly detected using a detection result of a cooling water temperature sensor that detects the temperature of the cooling water that cools the secondary battery 55 or an outside air temperature sensor.
  • an operation panel (not shown) arranged near the instrument panel in the front part of the vehicle interior is connected, and operation signals from various operation switches provided on the operation panel are input.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, an air conditioning operation mode selection switch, and the like.
  • control device is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured.
  • the configuration (hardware and software) that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
  • the configuration (hardware and software) for controlling the operation of the compressor 11 constitutes the refrigerant discharge capacity control unit, and various devices 14a, 14b, 18a, 19, which constitute the refrigerant flow switching unit,
  • the configuration for controlling the operation of 21a constitutes the refrigerant flow path switching control unit.
  • the refrigeration cycle apparatus 10 can perform air conditioning in the passenger compartment and temperature adjustment of the secondary battery 55.
  • the air conditioning operation mode in the passenger compartment includes a cooling mode for cooling the passenger compartment and a heating mode for heating the passenger compartment.
  • the secondary battery 55 is heated in the operation mode for adjusting the temperature of the secondary battery 55.
  • control program the operation signal of the operation panel and the detection signal of the control sensor group are read, the control state of various control target devices is determined based on the read detection signal and the value of the operation signal, and the determined control state
  • the control routine of outputting a control signal or a control voltage to various devices to be controlled is repeated.
  • the operation mode for air conditioning in the passenger compartment if the air conditioning operation switch is turned on (ON) and the cooling is selected by the selection switch when the operation signal is read from the operation panel, When the mode is switched and heating is selected by the selection switch in a state where the air conditioning operation switch is turned on (ON), the mode is switched to the heating mode.
  • the battery temperature Tb is the first reference temperature Tk1 (15 ° C. in the first embodiment) when the detection signal of the control sensor group is read.
  • the mode is switched to the battery heating operation mode in which the secondary battery 55 is heated.
  • the battery temperature Tb is equal to or higher than the second reference temperature Tk2 (35 ° C. in the first embodiment)
  • the mode is switched to the battery cooling operation mode for cooling the secondary battery 55.
  • Cooling / battery cooling operation mode is an operation mode in which the vehicle interior is cooled and the secondary battery 55 is cooled at the same time. More specifically, in this operation mode, when the operation switch of the operation panel is turned on (ON), cooling is selected by the selection switch, and the battery temperature Tb becomes equal to or higher than the second reference temperature Tk2. Executed.
  • the control device controls the operation of the first three-way valve 14a so as to connect between the first pipe 24 and the sixth connection portion 12f, and the refrigerant outlet side of the indoor condenser 13 and
  • the operation of the second three-way valve 14b is controlled so as to connect to the refrigerant inlet side of the outdoor heat exchanger 17, the bypass on-off valve 18a is closed, and the battery on-off valve 21a is opened.
  • the control device sets the heating expansion valve 16 to a fully open state, and sets the cooling expansion valve 19 to a throttling state in which a pressure reducing action is exerted.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the control device calculates a target blowout temperature TAO, which is a target temperature of the air blown into the vehicle interior, based on the read detection signal and operation signal values. Furthermore, a control apparatus determines the operating state of the various control object apparatus connected to the output side of a control apparatus based on the calculated target blowing temperature TAO and the detection signal of a sensor group.
  • TAO target blowout temperature
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 20 is determined based on the target outlet temperature TAO with reference to a control map stored in advance in the control device.
  • the blowing air temperature from the indoor evaporator 20 is changed using a feedback control method.
  • a control signal output to the electric motor of the compressor 11 is determined so as to approach the target evaporator outlet temperature TEO.
  • the control voltage output to the electric motor of the blower 32 is determined with reference to a control map stored in advance in the storage circuit based on the target blowing temperature TAO.
  • the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 17 is the coefficient of performance of the cycle ( COP) is determined so as to approach the target degree of subcooling determined so as to be approximately the maximum value.
  • the air mix door 34 closes the air passage of the indoor condenser 13, and the total amount of air after passing through the indoor evaporator 20 bypasses the indoor condenser 13. To be determined.
  • the superheat degree of the refrigerant flowing out from the auxiliary heat exchanger 15 is determined based on the temperature of the refrigerant detected by the fifth refrigerant temperature sensor 49.
  • the opening degree of the battery expansion valve 21 is determined.
  • the control signal output to the blower 52 of the battery pack 50 is determined so that the blower 52 has a predetermined blower ability. Then, a control signal or a control voltage is output from the control device to the control target device so as to obtain the control state determined as described above.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 13.
  • the air mix door 34 closes the air passage of the indoor condenser 13
  • the refrigerant flowing into the indoor condenser 13 does not substantially dissipate heat to the air and flows out from the indoor condenser 13.
  • the refrigerant flowing out of the indoor condenser 13 passes through the fully opened heating expansion valve 16 and flows into the outdoor heat exchanger 17.
  • the refrigerant flowing into the outdoor heat exchanger 17 exchanges heat with the outside air blown from the blower fan 17a to dissipate heat and become liquid refrigerant.
  • the liquid refrigerant that has flowed out of the outdoor heat exchanger 17 flows from the third connection portion 12c to the fourth connection portion 12d side via the check valve 18, and from the fourth connection portion 12d to the indoor evaporator 20 side and the auxiliary heat exchanger. Branches and flows to the 15th side.
  • the liquid refrigerant branched to the indoor evaporator 20 side is decompressed by the cooling expansion valve 19, then flows into the indoor evaporator 20, and absorbs heat from the indoor air blown by the blower 32 to evaporate. Thereby, indoor air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 20 flows into the accumulator 23 through the sixth connection portion 12f and the fifth connection portion 12e.
  • the liquid refrigerant branched from the fourth connecting portion 12d to the auxiliary heat exchanger 15 side passes through the second pipe 25 and is depressurized until it becomes a low-pressure refrigerant in the battery expansion valve 21.
  • the refrigerant that has flowed out of the battery expansion valve 21 flows into the auxiliary heat exchanger 15 from the second inlet / outlet 15b, absorbs heat from the battery air blown by the blower 52, and evaporates to become a gas refrigerant. Thereby, the battery air is cooled.
  • the gas refrigerant flowing out from the first inlet / outlet port 15a of the auxiliary heat exchanger 15 passes through the first pipe 24 and flows into the accumulator 23 through the sixth connection portion 12f and the fifth connection portion 12e. Then, the gas refrigerant separated by the accumulator 23 is sucked into the compressor 11 and compressed again.
  • the indoor air can be cooled by the indoor evaporator 20 to cool the vehicle interior, and the battery air can be cooled by the auxiliary heat exchanger 15.
  • the secondary battery 55 can be cooled.
  • Cooling operation mode is an operation mode in which the passenger compartment is cooled without adjusting the temperature of the secondary battery 55.
  • the operation switch of the operation panel is turned on (ON), cooling is selected by the selection switch, the battery temperature Tb is higher than the first reference temperature Tk1, and the second reference temperature Tk2 Run when it is lower.
  • the control device controls the operation of the first and second three-way valves 14a and 14b, closes the bypass on-off valve 18a, and fully opens the heating expansion valve 16. And the cooling expansion valve 19 is in the throttled state. Also, the control device closes the battery on-off valve 21a, unlike the cooling / battery cooling operation mode.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • control device controls the operation of the compressor 11, the cooling expansion valve 19, the blower 32, and the air mix door 34, similarly to the cooling / battery cooling operation mode.
  • control device stops the blower 52 of the battery pack 50.
  • the blower 52 may be operated in the same manner as in the cooling / battery cooling operation mode.
  • the high-pressure refrigerant discharged from the compressor 11 is similar to the cooling / battery cooling operation mode in that the indoor condenser 13, the fully-expanded heating expansion valve 16, and the outdoor heat exchange. It flows in the order of the vessel 17.
  • the refrigerant that has flowed out of the outdoor heat exchanger 17 flows into the fourth connection portion 12d through the third connection portion 12c and the check valve 18, and flows to the cooling expansion valve 19 side.
  • the refrigerant decompressed by the cooling expansion valve 19 flows into the indoor evaporator 20, absorbs heat from the indoor air blown by the blower 32, and evaporates. Thereby, indoor air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 20 flows into the accumulator 23 through the sixth connection portion 12f and the fifth connection portion 12e. Then, the gas refrigerant separated by the accumulator 23 is sucked into the compressor 11 and compressed again.
  • the battery cooling operation mode is an operation mode in which the secondary battery 55 is cooled without air conditioning of the passenger compartment. This operation mode is executed when the operation switch of the operation panel is not turned on (OFF) and when the battery temperature Tb becomes equal to or higher than the second reference temperature Tk2.
  • the control device controls the operation of the first and second three-way valves 14a and 14b, closes the bypass opening / closing valve 18a, and opens the battery opening / closing valve 21a, as in the cooling / battery cooling operation mode. Then, the heating expansion valve 16 is fully opened. Further, unlike the cooling / battery cooling operation mode, the control device fully closes the cooling expansion valve 19.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • control device controls the operation of the compressor 11, the battery expansion valve 21, the blower 52 of the battery pack 50, and the air mix door 34 as in the cooling / battery cooling operation mode. At this time, unlike the cooling / battery cooling operation mode, the control device stops the blower 32 of the indoor air conditioning unit 30.
  • the high-pressure refrigerant discharged from the compressor 11 is the indoor condenser 13, the fully-expanded heating expansion valve 16, the outdoor heat, as in the cooling / battery cooling operation mode. It flows in the order of the exchanger 17.
  • the liquid refrigerant that has flowed out of the outdoor heat exchanger 17 passes through the third connection portion 12c, the check valve 18, and the fourth connection portion 12d. It flows into the pipe 25.
  • the liquid refrigerant that has passed through the second pipe 25 is depressurized until it becomes a low-pressure refrigerant in the battery expansion valve 21.
  • the refrigerant that has flowed out of the battery expansion valve 21 flows into the auxiliary heat exchanger 15 through the second inlet / outlet 15b, absorbs heat from the battery air blown by the blower 52, and evaporates to become a gas refrigerant. Thereby, the battery air is cooled.
  • the gas refrigerant that has flowed out of the first inlet / outlet port 15a of the auxiliary heat exchanger 15 passes through the first pipe 24 and flows into the accumulator 23 through the sixth connection portion 12f and the fifth connection portion 12e. Then, the gas refrigerant separated by the accumulator 23 is sucked into the compressor 11 and compressed again.
  • the battery air is cooled by the auxiliary heat exchanger 15, and the secondary battery 55 can be cooled.
  • the heating / battery heating operation mode is an operation mode in which the vehicle interior is heated and the secondary battery 55 is heated at the same time. More specifically, in this operation mode, when the operation switch of the operation panel is turned on (ON), heating is selected by the selection switch, and the battery temperature Tb becomes equal to or lower than the first reference temperature Tk1. Executed.
  • the control device controls the operation of the first three-way valve 14a so as to connect the first pipe 24 and the first connection portion 12a, and the second pipe 25 and the outdoor heat exchanger.
  • the operation of the second three-way valve 14b is controlled so as to connect to the refrigerant inlet side of 17, the bypass on-off valve 18a is opened, and the battery on-off valve 21a is closed.
  • the control device sets the heating expansion valve 16 to a throttled state in which a pressure reducing action is exerted, closes the cooling expansion valve 19, and sets the battery expansion valve 21 to a fully opened state.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG. Further, the control device controls the operation of the blower 32 of the indoor air conditioning unit 30 and the blower 52 of the battery pack 50 as in the cooling / battery cooling operation mode.
  • the refrigerant discharge capacity of the compressor 11 is determined so that the blown air temperature detected by the heating blowout temperature sensor 42 approaches the target blowout temperature TAO. It should be noted that the target blowing temperature TAO determined at the time of heating the passenger compartment is about 40 ° C. to 60 ° C.
  • the refrigerant flowing into the heating expansion valve 16 is determined based on the refrigerant temperature and pressure states detected by the second refrigerant temperature sensor 45 and the second pressure sensor 46.
  • the degree of supercooling is determined so as to approach the target degree of supercooling determined so that the coefficient of performance (COP) of the cycle becomes a substantially maximum value.
  • the control signal output to the servo motor of the air mix door 34 is determined so that the air mix door 34 fully opens the air passage on the indoor condenser 13 side.
  • the flow of the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 13 and radiates heat by exchanging heat with indoor air. Thereby, indoor air is heated.
  • the refrigerant flowing out of the indoor condenser 13 flows into the auxiliary heat exchanger 15 from the first inlet / outlet 15a via the first junction 12b, the first three-way valve 14a and the first pipe 24, and exchanges heat with the battery air. To further dissipate heat. Thereby, the battery air is heated.
  • the refrigerant flowing out from the second inlet / outlet 15b of the auxiliary heat exchanger 15 passes through the battery expansion valve 21 in the fully opened state, and flows into the heating expansion valve 16 through the second connection portion 12b and the second three-way valve 14b. The pressure is reduced.
  • the refrigerant decompressed by the heating expansion valve 16 flows into the outdoor heat exchanger 17, absorbs heat from the outside air blown from the blower fan 17a, and evaporates.
  • the refrigerant flowing out of the outdoor heat exchanger 17 flows into the accumulator 23 through the fifth connecting portion 12e because the bypass on-off valve 18a is opened, the cooling expansion valve 19 is closed, and the battery on-off valve 21a is closed. To do. Then, the gas refrigerant separated by the accumulator 23 is sucked into the compressor 11 and compressed again.
  • the indoor air can be heated by the indoor condenser 13 to heat the vehicle interior, and the battery air is heated by the auxiliary heat exchanger 15.
  • the secondary battery 55 can be heated.
  • the refrigerant flowing into the auxiliary heat exchanger 15 is a gas-liquid two-phase state, that is, a refrigerant containing a gas refrigerant, and passes through the first pipe 24 having a large flow path cross-sectional area.
  • the refrigerant flowing out from the auxiliary heat exchanger 15 is a liquid refrigerant and passes through the second pipe 25 having a small flow path cross-sectional area.
  • the heating operation mode is an operation mode in which the passenger compartment is heated without adjusting the temperature of the secondary battery 55. In this operation mode, the operation switch of the operation panel is turned on (ON), heating is selected by the selection switch, the battery temperature Tb is higher than the first reference temperature Tk1, and the second reference temperature Tk2 Run when it is lower.
  • the control device controls the operation of the first and second three-way valves 14a and 14b as in the cooling / battery cooling operation mode. Further, as in the heating / battery heating operation mode, the control device sets the heating expansion valve 16 to the throttle state, opens the bypass opening / closing valve 18a, and closes the cooling expansion valve 19 and the battery opening / closing valve 21a.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the control device controls the operations of the compressor 11, the heating expansion valve 16, the blower 32, and the air mix door 34 as in the heating / battery heating operation mode.
  • the control device stops the blower 52 of the battery pack 50. Note that the blower 52 may be operated in the same manner as in the heating / battery heating operation mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 13, dissipates heat by exchanging heat with room air, and flows out from the indoor condenser 13. Thereby, indoor air is heated.
  • the refrigerant flowing out of the indoor condenser 13 flows into the heating expansion valve 16 and is depressurized without going to the auxiliary heat exchanger 15.
  • the subsequent operation is the same as in the heating / battery heating operation mode.
  • the battery heating operation mode is an operation mode in which the secondary battery 55 is cooled without air conditioning of the passenger compartment. This operation mode is executed when the operation switch of the operation panel is not turned on (OFF) and when the battery temperature Tb becomes equal to or lower than the first reference temperature Tk1.
  • the control device controls the operation of the first and second three-way valves 14a and 14b to bring the heating expansion valve 16 into the throttle state, and the bypass opening / closing valve. 18a is opened, and the cooling expansion valve 19 and the battery on-off valve 21a are closed.
  • control device controls the operation of the compressor 11 and the blower 52 of the battery pack 50 in the same manner as in the heating / battery heating operation mode. Further, unlike the heating / battery heating operation mode, the control device stops the blower 32 of the indoor air conditioning unit 30 and the air mix door 34 condenses the control signal output to the servo motor of the air mix door 34. The air passage on the side of the container 13 is determined to be fully closed.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG. 6, and the refrigerant flows in exactly the same manner as in the heating / battery heating operation mode. Accordingly, the refrigerant flowing into the auxiliary heat exchanger 15 exchanges heat with the battery air and dissipates heat, whereby the battery air is heated.
  • the refrigerant flowing into the auxiliary heat exchanger 15 is a gas refrigerant and passes through the first pipe 24 having a large flow path cross-sectional area.
  • the refrigerant flowing out from the auxiliary heat exchanger 15 is a liquid refrigerant and passes through the second pipe 25 having a small flow path cross-sectional area.
  • the operation of the blower 32 is stopped and the air mix door 34 fully closes the air passage on the indoor condenser 13 side, so that the refrigerant flowing into the indoor condenser 13 is the indoor air. It flows out from the indoor condenser 13 without exchanging heat with. Accordingly, the indoor air is not heated.
  • the battery air is heated by the auxiliary heat exchanger 15 and the secondary battery 55 can be heated.
  • (G) Heating / battery cooling operation mode The operation modes (a) to (c) described above are executed mainly for cooling the vehicle interior or the secondary battery 55 when the outside air temperature is relatively high, such as in summer. Each of the operation modes described in (d) to (f) is executed mainly for heating the passenger compartment or the secondary battery 55 when the outside air temperature is relatively low such as in winter.
  • the battery temperature Tb is reduced by the self-heating of the secondary battery 55 while heating is selected by the selection switch while the operation switch of the operation panel is turned on (ON).
  • the temperature may be higher than the second reference temperature Tk2. In such a case, the operation in the heating / battery cooling operation mode is executed.
  • the control device controls the operation of the first and second three-way valves 14a and 14b, fully opens the heating expansion valve 16, and opens and closes the bypass.
  • the valve 18a is closed and the battery on-off valve 21a is opened. Further, the control device closes the cooling expansion valve 19, unlike the cooling / battery cooling operation mode.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • control device controls the operation of the compressor 11, the blower 32 of the indoor air conditioning unit 30, and the blower 52 of the battery pack 50 to control the operation of the air mix door.
  • the control device controls the operation of the battery expansion valve 21 as in the battery cooling operation mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 13, dissipates heat by exchanging heat with indoor air, and from the indoor condenser 13. leak. Thereby, indoor air is heated.
  • the refrigerant flowing out of the indoor condenser 13 flows into the outdoor heat exchanger 17 through the heating expansion valve 16 in the fully opened state without going to the auxiliary heat exchanger 15, and is outside air blown from the blower fan 17a. Heat is exchanged with the heat to further dissipate heat and become a liquid refrigerant.
  • the liquid refrigerant flowing out of the outdoor heat exchanger 17 flows in the order of the third connection portion 12c, the check valve 18, and the fourth connection portion 12d in the same manner as in the battery cooling operation mode. It flows into the expansion valve 21 and is depressurized.
  • the refrigerant decompressed by the battery expansion valve 21 flows into the auxiliary heat exchanger 15, absorbs heat from the battery air blown by the blower 52, and evaporates. Thereby, the battery air is cooled.
  • the subsequent operation is the same as in the battery cooling operation mode.
  • the liquid refrigerant flowing into the auxiliary heat exchanger 15 passes through the second pipe 25 having a small channel cross-sectional area, and the gas refrigerant flowing out of the auxiliary heat exchanger 15 flows. It passes through the first pipe 24 having a large road cross-sectional area.
  • the indoor air can be heated by the indoor condenser 13 to heat the vehicle interior, and the battery air is cooled by the auxiliary heat exchanger 15.
  • the secondary battery 55 can be cooled.
  • the refrigeration cycle apparatus 10 can realize a cooling / battery heating operation mode in which the secondary battery 55 is heated simultaneously with the cooling of the vehicle interior.
  • the cooling of the passenger compartment is performed at a time when the outside air temperature is relatively high in summer, there is little opportunity for the secondary battery 55 to be equal to or lower than the first reference temperature Tk1. Therefore, there are few opportunities to perform the operation in the cooling / battery heating operation mode.
  • the refrigerant flow switching unit is used when heating battery air.
  • the refrigerant including the gas refrigerant in the range from the compressor 11 discharge port side (specifically, the indoor condenser 13 outlet side) to the outdoor heat exchanger 17 inlet side passes through the first pipe 24 to perform auxiliary heat exchange.
  • the liquid refrigerant flowing into the heat exchanger 15 and flowing out from the auxiliary heat exchanger 15 is switched to the first refrigerant flow path led to the outdoor heat exchanger 17 inlet side through the second pipe 25.
  • the liquid refrigerant flows through the second pipe having a small channel cross-sectional area and the gas refrigerant flows through the first pipe having a large channel cross-sectional area both when heating and cooling the battery air.
  • the cycle of the entire refrigeration cycle apparatus is different from the configuration for guiding the low-temperature refrigerant or the high-temperature refrigerant to each of the plurality of heat exchangers.
  • the configuration can be simplified. As a result, it is possible to improve the mountability when the refrigeration cycle apparatus is mounted on a product.
  • the auxiliary heat exchanger 15 can be used as one.
  • a large heat exchanger can be arranged, and the capacity of the secondary battery 55 can be increased.
  • the refrigerant that has dissipated heat in the indoor condenser 13 and has a temperature lower than that immediately after being discharged from the compressor 11 can be supplied to the auxiliary heat exchanger 15, the temperature of the secondary battery 55 is prevented from excessively rising. Meanwhile, the secondary battery 55 can be heated. This is effective when the secondary battery 55 that is easily damaged when the temperature exceeds a predetermined temperature is employed.
  • the refrigerant flow switching unit switches to the second refrigerant flow channel as in the cooling / battery cooling operation mode, the battery cooling operation mode, and the heating / battery cooling operation mode.
  • the refrigerant in the range from the outdoor heat exchanger 17 outlet side to the indoor evaporator 20 inlet side flows into the auxiliary heat exchanger 15, and the refrigerant flowing out of the auxiliary heat exchanger 15 is guided to the compressor 11 suction side. ing. That is, when the refrigerant channel switching unit switches to the second refrigerant channel, the indoor evaporator 20 and the auxiliary heat exchanger 15 are connected in parallel. Therefore, for example, even when the operation mode is switched from the cooling / battery cooling operation mode to the cooling operation mode, the indoor evaporator 20 is compared with the case where the indoor evaporator 20 and the auxiliary heat exchanger 15 are connected in series. Since it can suppress that the dryness etc.
  • the second embodiment is obtained by adding a four-way valve 26 to the auxiliary heat exchanger 15 side with respect to the first embodiment.
  • the auxiliary heat exchanger 15 includes a refrigerant inlet 15c into which the refrigerant flows and a refrigerant outlet 15d from which the refrigerant flows out.
  • the auxiliary heat exchanger 15 is configured such that the refrigerant flows through the auxiliary heat exchanger 15 from the refrigerant inlet 15c toward the refrigerant outlet 15d.
  • the refrigerant inlet 15c is connected to the first connection port of the four-way valve 26 via the battery expansion valve 21.
  • the refrigerant outlet 15 d is connected to the second connection port of the four-way valve 26.
  • First and second pipes 24 and 25 are connected to the third and fourth connection ports of the four-way valve 26, respectively.
  • the refrigerant inlet 15c and the first pipe 24 communicate with each other, the first communication state in which the refrigerant outlet 15d and the second pipe 25 communicate with each other, and the refrigerant inlet 15c and the second pipe 25 communicate with each other.
  • a communication state switching unit that switches between a second communication state in which the refrigerant outlet 15d and the first pipe 24 communicate with each other.
  • the four-way valve 26 is configured so that the refrigerant inlet side and the refrigerant outlet side of the auxiliary heat exchanger 15 are the same. Switch between 2 communication states. The operation of the four-way valve 26 is controlled by a control signal output from the control device.
  • Cooling / battery cooling operation mode In the cooling / battery cooling operation mode, the control device controls the operation of the four-way valve 26 so as to be in the second communication state.
  • the operating states of the other devices to be controlled are the same as those in the cooling / battery cooling operation mode of the first embodiment.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant flow and the operation of each device at this time are the same as those in the cooling / battery cooling operation mode of the first embodiment except for the refrigerant flow direction inside the auxiliary heat exchanger 15.
  • the refrigerant that has passed through the second pipe 25 flows to the refrigerant inlet 15 c side of the auxiliary heat exchanger 15 via the four-way valve 26.
  • the refrigerant decompressed by the battery expansion valve 21 flows into the auxiliary heat exchanger 15 from the refrigerant inlet 15c, flows inside the auxiliary heat exchanger 15 toward the refrigerant outlet 15d, and is blown by the blower 52. It absorbs heat from the battery air and evaporates to become a gas refrigerant.
  • the gas refrigerant flowing out from the refrigerant outlet 15d of the auxiliary heat exchanger 15 flows into the first pipe 24 via the four-way valve 26.
  • (B) Air-cooling operation mode The operation state of the device to be controlled in the air-cooling operation mode is the same as that in the air-cooling operation mode of the first embodiment. For this reason, the refrigerant
  • (C) Battery cooling operation mode In the battery cooling operation mode, the control device controls the operation of the four-way valve 26 so as to be in the second communication state, similarly to the cooling / battery cooling operation mode. About the operation state of other control object apparatus, it is the same as the battery cooling operation mode of 1st Embodiment.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant flow and the operation of each device at this time are the same as in the battery cooling operation mode of the first embodiment except for the refrigerant flow direction inside the auxiliary heat exchanger 15.
  • the refrigerant that has passed through the second pipe 25 flows to the refrigerant inlet 15 c side of the auxiliary heat exchanger 15 via the four-way valve 26. Further, the gas refrigerant flowing out from the refrigerant outlet 15 d of the auxiliary heat exchanger 15 flows into the first pipe 24 via the four-way valve 26.
  • (D) Heating / battery heating operation mode In the heating / battery heating operation mode, the control device controls the operation of the four-way valve 26 so as to be in the first communication state, and the battery expansion valve 21 is not fully opened but is throttled. The battery expansion valve 21 is operated as an intermediate throttle.
  • the refrigerant pressure in the auxiliary heat exchanger 15 is within the appropriate temperature range based on the refrigerant pressure detected by the second pressure sensor 46 ( In the second embodiment, the opening degree of the battery expansion valve 21 is determined so that the pressure becomes 10 ° C. to 40 ° C.). About the operation state of other control object apparatus, it is the same as the heating / battery heating operation mode of 1st Embodiment.
  • the refrigerant pressure in the indoor condenser 13 can realize heating of the vehicle interior. Pressure (that is, pressure at which room air can be heated to about 40 ° C. to 60 ° C.).
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant flow and the operation of each device at this time are the same as those in the heating / battery heating operation mode of the first embodiment except for the following points.
  • the refrigerant that has passed through the first pipe 24 flows into the battery expansion valve 21 via the four-way valve 26 and is reduced to an intermediate pressure. Then, the refrigerant decompressed by the battery expansion valve 21 flows into the auxiliary heat exchanger 15 from the refrigerant inlet 15c, flows inside the auxiliary heat exchanger 15 toward the refrigerant outlet 15d, and is blown by the blower 52. Dissipates heat to the working air and condenses to become liquid refrigerant. The liquid refrigerant that has flowed out of the refrigerant outlet 15 d of the auxiliary heat exchanger 15 flows into the second pipe 25 through the four-way valve 26.
  • (E) Heating operation mode The operation state of the device to be controlled in the heating operation mode is the same as that in the heating operation mode of the first embodiment. For this reason, the refrigerant
  • (F) Battery heating operation mode In the battery heating operation mode, the control device controls the operation of the four-way valve 26 so as to be in the second communication state, similarly to the heating / battery heating operation mode. However, unlike the heating / battery heating operation mode, the battery expansion valve 21 is fully opened. About the operation state of other control object apparatus, it is the same as the battery heating operation mode of 1st Embodiment.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant flow and the operation of each device at this time are the same as in the battery heating operation mode of the first embodiment.
  • the gas refrigerant that has passed through the first pipe 24 flows to the refrigerant inlet 15 c side of the auxiliary heat exchanger 15 through the four-way valve 26. Further, the liquid refrigerant flowing out from the refrigerant outlet 15 d of the auxiliary heat exchanger 15 flows into the first pipe 25 through the four-way valve 26.
  • the control device controls the operation of the four-way valve 26 so as to be in the second communication state. About the operation state of other control object apparatus, it is the same as the heating / battery cooling operation mode of 1st Embodiment.
  • the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant flow and the operation of each device at this time are the same as those in the heating / battery cooling operation mode of the first embodiment except for the refrigerant flow direction inside the auxiliary heat exchanger 15.
  • the refrigerant that has passed through the second pipe 25 flows to the refrigerant inlet 15 c side of the auxiliary heat exchanger 15 via the four-way valve 26.
  • the refrigerant decompressed by the battery expansion valve 21 flows into the auxiliary heat exchanger 15 from the refrigerant inlet 15c, flows inside the auxiliary heat exchanger 15 toward the refrigerant outlet 15d, and is blown by the blower 52. It absorbs heat from the battery air and evaporates to become a gas refrigerant.
  • the gas refrigerant flowing out from the refrigerant outlet 15d of the auxiliary heat exchanger 15 flows into the first pipe 24 via the four-way valve 26.
  • the four-way valve 26 is the first, first By switching between the two communication states, the refrigerant inlet side and the refrigerant outlet side in the auxiliary heat exchanger 15 are not changed.
  • the four-way valve 26 switches between the first and second communication states so that the flow directions are the same. Therefore, the specification of the auxiliary heat exchanger 15 can be easily optimized.
  • the operation of the four-way valve 26 causes the battery expansion valve 21 to be arranged on the upstream side of the refrigerant flow of the refrigerant inlet 15c of the auxiliary heat exchanger 15 not only during cooling but also during heating. Therefore, in the “heating / battery heating operation mode”, the battery expansion valve 21 can act as an intermediate throttle that reduces the refrigerant flowing into the auxiliary heat exchanger 15 to an intermediate pressure.
  • the intermediate pressure means a pressure between the refrigerant pressure (high pressure) after discharging the compressor 11 and the refrigerant pressure (low pressure) sucked into the compressor 11.
  • the temperature of room air required for heating is about 40 ° C. to 60 ° C.
  • the optimum battery temperature for maintaining the output of the secondary battery 55 (for example, lithium ion battery) is 10 ° C. to 40 ° C.
  • the battery temperature required for warming up the secondary battery 55 in winter is approximately 20 ° C. to 40 ° C. That is, the temperature of the indoor air required for heating is higher than the battery temperature required for warming up the secondary battery 55.
  • the auxiliary heat exchanger 15 is arranged in series downstream of the refrigerant flow of the indoor condenser 13, and an intermediate throttle is arranged between the indoor condenser 13 and the auxiliary heat exchanger 15. If not, when operating in the heating / battery heating operation mode, the heat dissipation is large, so that the pressure of the high-pressure refrigerant is lower than that in the heating operation mode in which the indoor condenser 13 acts alone as a radiator, and is necessary for heating. The blowing temperature will also decrease.
  • the intermediate expansion is arranged as shown in the Mollier diagram of FIG. 13 by causing the battery expansion valve 21 to act as the intermediate expansion.
  • coolant which flows the indoor condenser 13 can be made high.
  • the broken line indicates a case where the intermediate diaphragm is not disposed, and the solid line indicates the second embodiment.
  • the temperature of the indoor air heated by the indoor condenser 13 can be increased compared to the case where the intermediate throttle is not disposed. it can.
  • the refrigerant discharged from the compressor 11 is heat-exchanged with the indoor air (first temperature adjustment object) to dissipate the heat, thereby performing outdoor heat exchange.
  • An indoor condenser (heat radiation heat exchanger) 13 is provided to flow out to the inlet side of the vessel 17.
  • the refrigerant in the range from the outlet side of the indoor condenser 13 to the inlet side of the outdoor heat exchanger 17 flows into the auxiliary heat exchanger 15 via the first pipe 24.
  • the refrigerant flowing out from the auxiliary heat exchanger 15 is guided to the inlet side of the outdoor heat exchanger 17 through the second pipe 25.
  • the auxiliary heat exchanger 15 has a refrigerant inlet 15c into which the refrigerant flows and a refrigerant outlet 15d from which the refrigerant flows out.
  • the refrigerant flow switching unit includes a first communication state in which the refrigerant inlet 15c of the auxiliary heat exchanger 15 and the first pipe 24 communicate with each other, and the refrigerant outlet 15d of the auxiliary heat exchanger 15 and the second pipe 25 communicate with each other.
  • the refrigerant inlet 15c of the auxiliary heat exchanger 15 and the second pipe 25 communicate with each other, and a four-way valve (communication) for switching between the refrigerant outlet 15d of the auxiliary heat exchanger 15 and the second communication state in which the first pipe 24 communicates.
  • State switching unit) 26 State switching unit
  • the four-way valve 26 is in the first communication state when switched to the first refrigerant flow path, and is in the second communication state when switched to the second refrigerant flow path.
  • the refrigeration cycle apparatus 10 of the second embodiment is a battery that is disposed between the refrigerant inlet 15c of the auxiliary heat exchanger 15 and the four-way valve 26, and depressurizes the refrigerant flowing into the refrigerant inlet 15c of the auxiliary heat exchanger 15.
  • An expansion valve (pressure reducer) 21 is provided.
  • the refrigerant inlet 15c and the refrigerant outlet 15d of the auxiliary heat exchanger 15 when the refrigerant flow switching unit switches between the first refrigerant flow path and the second refrigerant flow path can be made the same.
  • the direction of the refrigerant flow inside the auxiliary heat exchanger 15 is constant regardless of which of the first and second refrigerant flow paths is switched, so the specifications of the auxiliary heat exchanger 15 can be easily optimized.
  • the refrigerant flowing into the refrigerant inlet 15c of the auxiliary heat exchanger 15 can be depressurized by one common battery expansion valve (decompressor) 21 regardless of which of the first and second refrigerant channels is switched.
  • the battery expansion valve 21 can be operated as an intermediate throttle that depressurizes the refrigerant flowing into the auxiliary heat exchanger 15 to obtain an intermediate pressure.
  • the third embodiment is obtained by adding a first battery expansion valve (first decompressor) 27 to the refrigeration cycle apparatus 10 of the first embodiment.
  • the second battery expansion valve (second decompressor) 21 corresponds to the battery expansion valve 21 of the first embodiment.
  • the first piping 24 is communicated with the first inlet / outlet 15a via the first battery expansion valve 27, and the second piping is connected with the second inlet / outlet 15b via the second battery expansion valve 21. 25 communicates.
  • Both the first and second battery expansion valves 27 and 21 are electric expansion valves having the same configuration as the heating expansion valve 16 and have a fully closed function and a fully opened function.
  • the operation states of the first and second battery expansion valves 27 and 21 in each operation mode are as follows, and the operation states of the other devices are the same as those in the operation modes of the first embodiment.
  • the second battery expansion valve 21 is in the throttling state and the first battery expansion valve 27 is fully opened.
  • the second battery expansion valve 21 is fully closed, and the first battery expansion valve 27 is fully closed.
  • the second battery expansion valve 21 is fully opened, and the first battery expansion valve 27 is fully opened.
  • the second battery expansion valve 21 is fully opened, and the first battery expansion valve 27 is in the throttle state.
  • the cooling throttle is performed in the battery cooling operation mode or the like in the heating / battery heating operation mode.
  • the above-described intermediate throttle action can be realized by adding the first battery expansion valve 27 to the configuration of the refrigeration cycle apparatus 10 of the first embodiment. Therefore, the intermediate throttle can be formed with a cheaper and simpler configuration than when a four-way valve is used.
  • the refrigeration cycle apparatus 10 is disposed between the auxiliary heat exchanger 15 and the first pipe 24 and expands the first battery expansion valve (decompressing the refrigerant flowing into the auxiliary heat exchanger 15 (
  • the first battery decompression valve (second decompressor) 21 is disposed between the first decompressor 27, the auxiliary heat exchanger 15 and the second pipe 25, and decompresses the refrigerant flowing into the auxiliary heat exchanger 15.
  • the first battery expansion valve 27 when switched to the first refrigerant flow path, the first battery expansion valve 27 can be operated as the above-described intermediate throttle.
  • the indoor condenser heat radiation heat dissipation
  • the indoor condenser heat radiation heat dissipation
  • the temperature of the indoor air heated by the exchanger 13 can be increased.
  • the indoor evaporator 20 and the auxiliary heat In the first embodiment, when the refrigerant channel switching unit switches to the second refrigerant channel as in the cooling / battery cooling operation mode, the battery cooling operation mode, and the heating / battery cooling operation mode, the indoor evaporator 20 and the auxiliary heat
  • the refrigeration cycle apparatus 10 is configured so that the exchanger 15 has a parallel connection relationship.
  • the refrigeration cycle apparatus 10 is configured such that the indoor evaporator 20 and the auxiliary heat exchanger 15 are connected in series.
  • the fourth connection portion 12d is changed to the third three-way valve 14c, and the connection position of the sixth connection portion 12f is changed.
  • the position is changed between the inlet side of the indoor evaporator 20 and the third three-way valve 14c.
  • the third three-way valve 14 c is a refrigerant channel that connects the refrigerant outlet side of the outdoor heat exchanger 17 and the auxiliary heat exchanger 15, and a refrigerant that connects the refrigerant outlet side of the outdoor heat exchanger 17 and the indoor evaporator 20. Switch between channels. Accordingly, the third three-way valve 14c constitutes a refrigerant flow switching unit. Other configurations are the same as those of the first embodiment.
  • the control device operates the third three-way valve 14 c so as to connect the refrigerant outlet side of the outdoor heat exchanger 17 and the auxiliary heat exchanger 15.
  • the operating states of other devices to be controlled are the same as those in the first embodiment. Thereby, the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant in a range from the outdoor heat exchanger 17 outlet side to the indoor evaporator 20 inlet side flows into the auxiliary heat exchanger 15 via the second pipe 25.
  • the refrigerant flowing out from the auxiliary heat exchanger 15 is guided to the inlet side of the indoor evaporator 20 in the compressor 11 suction side through the first pipe 24. That is, when the refrigerant flow path switching unit switches to the second refrigerant flow path, the indoor evaporator 20 is arranged in series on the downstream side of the refrigerant flow of the auxiliary heat exchanger 15. The same applies to the battery cooling operation mode and the heating / battery cooling operation mode.
  • the control device operates the third three-way valve 14c so as to connect the refrigerant outlet side of the outdoor heat exchanger 17 and the refrigerant inlet side of the indoor evaporator 20.
  • the operating states of other devices to be controlled are the same as those in the first embodiment. Thereby, the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the fourth embodiment also provides the effects (1) to (4) of the first embodiment.
  • the auxiliary heat exchanger 15 is serially arranged downstream of the refrigerant flow of the indoor condenser 13.
  • the refrigeration cycle apparatus 10 was configured so as to be placed.
  • the refrigeration cycle apparatus 10 is configured such that the indoor condenser 13 and the auxiliary heat exchanger 15 have a parallel connection relationship.
  • connection position of the first connection portion 12 a is set to the discharge port side of the compressor 11 and the inlet of the indoor condenser 13. The position has changed between the side. Moreover, the 2nd connection part 12b and the 2nd three-way valve 14b are replaced.
  • the second three-way valve 14b includes a refrigerant channel that connects the second pipe 25 and the second connection part 12b (the refrigerant inlet side of the outdoor heat exchanger 17), a second pipe 25 and a fourth connection part 12d (outdoor heat).
  • the refrigerant flow path connecting the refrigerant outlet side of the exchanger 17 is switched.
  • Other configurations are the same as those of the first embodiment.
  • the control device operates the second three-way valve 14b so as to connect the second pipe 25 and the fourth connection portion 12d.
  • the operation states of the other devices to be controlled are the same as those in the cooling / battery cooling operation mode of the first embodiment. Thereby, the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the control device operates the second three-way valve 14b so as to connect the second pipe 25 and the second connection portion 12b.
  • the operation states of the other devices to be controlled are the same as those in the heating / battery heating operation mode of the first embodiment. Thereby, the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the arrows in FIG.
  • the refrigerant in a range from the compressor 11 outlet side to the indoor condenser 13 inlet side flows into the auxiliary heat exchanger 15 via the first pipe 24 and the auxiliary heat exchanger.
  • the refrigerant flowing out of 15 is guided to the outdoor heat exchanger 17 inlet side via the second pipe 25. That is, when the refrigerant channel switching unit switches to the first refrigerant channel, the indoor condenser 13 and the auxiliary heat exchanger 15 are connected in parallel.
  • the secondary battery 55 can be immediately warmed up by the high-temperature refrigerant immediately after being discharged from the compressor 11.
  • the effects (1) to (3) and (5) of the first embodiment are also achieved.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims as follows.
  • the four-way valve 26 is used as a communication state switching unit that switches the communication state between the refrigerant inlet 15c and the refrigerant outlet 15d of the auxiliary heat exchanger 15 and the first and second pipes 24 and 25.
  • a refrigerant passage that connects each of the refrigerant inlet 15c and the refrigerant outlet 15d and the first and second pipes 24 and 25 and an opening / closing device that opens and closes each refrigerant passage may be used.
  • an electric expansion valve is used as the heating expansion valve 16, but a fixed throttle such as a capillary may be used instead of the electric expansion valve.
  • a bypass path that bypasses the heating expansion valve 16 and flows the refrigerant, and an on-off valve that opens and closes the bypass path are provided.
  • the refrigerant is caused to flow by bypassing the heating expansion valve 16 by opening the on-off valve.
  • the secondary battery 55 is cooled or heated by cooling or heating the battery air (second temperature adjustment object) with the auxiliary heat exchanger 15.
  • the secondary battery 55 may be cooled or heated by configuring the auxiliary heat exchanger with a water-refrigerant heat exchanger and cooling or heating water with the auxiliary heat exchanger. In this case, water becomes the second temperature adjustment object.
  • the auxiliary heat exchanger may be configured to directly exchange heat between the refrigerant and the secondary battery 55. In this case, the secondary battery 55 is the second temperature adjustment object.
  • the refrigeration cycle apparatus 10 is applied to an electric vehicle.
  • a normal vehicle that obtains driving force for traveling from an internal combustion engine, or an internal combustion engine and a traveling electric motor You may apply to the hybrid vehicle which obtains the driving force for vehicle travel from both.
  • a heater core that heats indoor air using cooling water of the internal combustion engine as a heat source may be provided.
  • the second temperature adjustment object is the battery air blown to the secondary battery 55, but may be the vehicle cabin air blown into the vehicle interior space.
  • the vehicle interior air blown to the front seat in the vehicle interior is cooled or heated by the indoor evaporator 20 and the vehicle interior air blown to the rear seat in the vehicle interior by the auxiliary heat exchanger 15. May be cooled or heated. According to this, cooling or heating at the rear seat becomes possible as a dual air conditioner using a heat pump.
  • the first temperature adjustment object is not limited to this. For example, drinking water or domestic water may be employed as the first temperature adjustment object.
  • the example in which the secondary battery 55 is cooled or heated by cooling or heating the second temperature adjustment object has been described.
  • In-vehicle equipment that requires cooling or heating may be cooled or heated.
  • the internal combustion engine (engine), electric motor, inverter, transmission, etc. may be cooled or heated.
  • the refrigeration cycle apparatus 10 is applied to a vehicle, but the refrigeration cycle apparatus 10 may be applied to a vehicle other than the vehicle.
  • the first temperature adjustment object may be air for blowing air into the room
  • the second temperature adjustment object may be a heat medium for adjusting the temperature of the power generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 第2温度調整対象物である電池用空気を加熱する運転モードでは、冷媒流路切換部は、室内凝縮器13から流出したガス冷媒を含む冷媒が、流路断面積が相対的に大きな第1配管24を介して補助熱交換器15へ流入し、補助熱交換器15から流出した液冷媒が、流路断面積が相対的に小さな第2配管25を介して室外熱交換器17入口側へ導かれる第1冷媒流路に切り替える。一方、電池用空気の冷却する運転モードでは、冷媒流路切換部は、室外熱交換器17から流出した液冷媒が、第2配管25を介して補助熱交換器15へ流入し、補助熱交換器15から流出したガス冷媒が、第1配管24を介して圧縮機11吸入口側へ導かれる第2冷媒流路に切り替える。

Description

冷凍サイクル装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年11月7日に出願された日本特許出願2012-245645を基にしている。
 本開示は、複数種類の温度調整対象物の温度調整を行う冷凍サイクル装置に関するものである。
 従来、電気自動車やハイブリッド車等の電動車両では、二次電池等の蓄電器に蓄えられた電力を、インバータ等を介して電動モータへ供給して車両走行用の駆動力を出力させている。これらの二次電池、インバータ、電動モータ等の電気機器は、自己発熱等によって高温化すると、作動不良を起こしたり、破損したりしてしまうことがある。そのため、電動車両には、これらの電気機器を冷却するための温度調整部が必要となる。
 例えば、特許文献1には、車両用空調装置において車室内へ送風される空気(送風空気)を冷却する蒸気圧縮式の冷凍サイクル装置を、電気機器を冷却するための温度調整部として用いた例が開示されている。より具体的には、特許文献1の冷凍サイクル装置では、並列的に接続された2つの蒸発器を備え、一方の蒸発器にて空気を冷却し、他方の蒸発器にて電気機器冷却用の熱媒体を冷却している。
 換言すると、特許文献1の冷凍サイクル装置は、空気(第1温度調整対象物)および熱媒体(第2温度調整対象物)の2種類の温度調整対象物の温度調整を行うように構成されている。
特開2002-313441号公報
 本願発明者らの検討によると、上述した電気機器には、低温になると充分な性能を発揮できなくなってしまうものもある。例えば、二次電池は、低温になると入出力特性が悪化する。そのため、二次電池を自己発熱等だけでは暖機することができない程度の低温環境下で使用すると、充分な電力を出力できなくなってしまうことや、回生電力を充分に充電できなくなってしまうおそれがある。
 従って、電動車両に適用される電気機器用の温度調整部には、単に電気機器を冷却する機能に加えて、電気機器を加熱して電気機器の温度を所定の温度範囲内に調整する機能が必要となる。しかしながら、特許文献1の冷凍サイクル装置では、熱媒体を冷却することしかできないため、低温環境下では電気機器の温度を所定の温度範囲内に調整することができない。
 これに対して、本発明者らは、先に、特願2012-176873号(以下、比較例と言う。)にて、車両用空調装置の冷凍サイクル装置を、電気機器の温度を所定の温度範囲内に調整するための温度調整部として用いたものを提案している。
 この比較例の冷凍サイクル装置は、具体的には、車両用空調装置の冷凍サイクル装置に対して、電気機器の温度調整用の熱媒体(第2温度調整対象物)の温度調整を行うための補助熱交換器を1つ追加したものである。そして、この比較例の冷凍サイクル装置では、この1つの補助熱交換器に、電気機器の加熱時には高温高圧冷媒が、電気機器の冷却時には低温低圧冷媒が、それぞれ供給されるようにすることで、電気機器の温度を所定の温度範囲内に調整することができるようになっている。
 しかし、この比較例の冷凍サイクル装置では、以下のようなおそれがある。
 すなわち、車両用空調装置の冷凍サイクル装置では、圧縮機、室外熱交換器、アキュムレータ等のサイクル構成部品は、一般的に、車両前方に配置される。一方、二次電池等の電気機器は、搭載スペースを確保するために、車両中央の乗員床下、あるいはリヤシート下やトランク下等の車両後方に配置される。このため、車両前方に配置されるサイクル構成部品から補助熱交換器までの配管が長くなり、配置によっては片道5m程にもなる。
 また、冷凍サイクル内の冷媒は、液体(液冷媒)と気体(ガス冷媒)の相変化により熱輸送を行っているが、液冷媒とガス冷媒の密度差が大きく、必要冷媒量を低減させるためには、液冷媒配管の内径、すなわち、流路断面積を小さくする必要がある。ちなみに、液冷媒密度はガス冷媒密度の約10倍である。一方、ガス冷媒は、液冷媒に比べて冷媒配管を流れる際の圧力損失が大きいため、この圧力損失を低減させるためには、ガス冷媒配管の流路断面積を大きくする必要がある。
 ところが、比較例の冷凍サイクル装置では、電気機器の加熱時と冷却時ともに、補助熱交換器に連通する2つの冷媒配管内における冷媒流れ方向が同じであったため、一方の冷媒配管の流路断面積を小さくし、他方の冷媒配管の流路断面積を大きくすることができない。
 具体的には、比較例の冷凍サイクル装置では、補助熱交換器の冷媒入口側に連通し、補助熱交換器に流入する冷媒が流れる行きの配管と、補助熱交換器の冷媒出口側に連通し、補助熱交換器から流出する冷媒が流れる帰りの配管とを備えている。そして、電気機器の加熱時には、行き配管にガス冷媒が流れ、帰りの配管に液冷媒が流れる。一方、電気機器の冷却時には、行きの配管に液冷媒が流れ、帰りの配管にガス冷媒が流れる。そのため、冷媒の圧力損失を抑制するためには、行き・帰り両方の配管の流路断面積を大きくする必要がある。しかしながら、両方の配管の内容積も大きくなり、冷媒封入量の増大あるいは運転モードごとの冷媒変動量の増大を招いてしまう。反対に、冷媒封入量や冷媒変動量を抑制するために、行き・帰り両方の配管の流路断面積を小さくすると、冷媒の圧力損失の増大を招いてしまう。なお、冷媒封入量の増大は冷媒コスト増加につながり、冷媒変動量の増大はアキュムレータ容量の増加につながってしまう。また、冷媒の圧力損失の増大は、冷凍サイクルの性能低下につながってしまう。
 本開示は上記点に鑑みて、第2温度調整対象物の冷却時と加熱時で共通する1つの補助熱交換器を使用する構成の冷凍サイクル装置において、冷媒封入量や冷媒変動量の増大の抑制と、冷媒の圧力損失の増大の抑制との両立を図ることを目的とする。
 上記目的を達成するため、本開示における冷凍サイクル装置では、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒と外気とを熱交換させて圧縮機吸入口側へ流出させる室外熱交換器と、圧縮機から吐出された冷媒および室外熱交換器から流出した冷媒のうち一方の冷媒と第1温度調整対象物とを熱交換させる利用側熱交換器と、冷媒と第2温度調整対象物とを熱交換させる補助熱交換器と、補助熱交換器に連通する流路断面積が所定値より大きな第1配管と、補助熱交換器に連通する流路断面積が第1配管より小さな第2配管と、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部とを備える。
 冷媒流路切替部は、少なくとも、圧縮機吐出口側から室外熱交換器入口側へ至る範囲の冷媒が、第1配管を介して補助熱交換器へ流入する。さらに、補助熱交換器から流出した冷媒が、第2配管を介して室外熱交換器入口側へ導かれる第1冷媒流路と、室外熱交換器出口側から圧縮機吸入口側へ至る範囲の冷媒が第2配管を介して補助熱交換器へ流入するとともに、補助熱交換器から流出した冷媒が第1配管を介して圧縮機吸入口側へ導かれる第2冷媒流路とを切替可能に構成されている。
 これによれば、第2温度調整対象物の冷却時、加熱時のどちらにおいても、流路断面積が小さな第2配管を液冷媒が流れ、流路断面積が大きな第1配管をガス冷媒が流れる。したがって、冷媒封入量や冷媒変動量の増大の抑制と、冷媒の圧力損失の増大の抑制とを両立させることができる。
第1実施形態の冷凍サイクル装置の冷房/バッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第1実施形態の冷凍サイクル装置の冷房運転モードにおける冷媒流れを示す全体構成図である。 第1実施形態の冷凍サイクル装置のバッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第1実施形態の冷凍サイクル装置の暖房/バッテリ加熱運転モードにおける冷媒流れを示す全体構成図である。 第1実施形態の冷凍サイクル装置の暖房運転モードにおける冷媒流れを示す全体構成図である。 第1実施形態の冷凍サイクル装置のバッテリ加熱運転モードにおける冷媒流れを示す全体構成図である。 第1実施形態の冷凍サイクル装置の暖房/バッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第2実施形態の冷凍サイクル装置の冷房/バッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第2実施形態の冷凍サイクル装置のバッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第2実施形態の冷凍サイクル装置の暖房/バッテリ加熱運転モードにおける冷媒流れを示す全体構成図である。 第2実施形態の冷凍サイクル装置のバッテリ加熱運転モードにおける冷媒流れを示す全体構成図である。 第2実施形態の冷凍サイクル装置の暖房/バッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第2実施形態の冷凍サイクル装置の暖房/バッテリ加熱運転モードにおける冷媒の状態を示すモリエル線図である。 第3実施形態の冷凍サイクル装置の全体構成図である。 第4実施形態の冷凍サイクル装置の冷房/バッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第4実施形態の冷凍サイクル装置の冷房運転モードにおける冷媒流れを示す全体構成図である。 第5実施形態の冷凍サイクル装置の冷房/バッテリ冷却運転モードにおける冷媒流れを示す全体構成図である。 第5実施形態の冷凍サイクル装置の暖房/バッテリ加熱運転モードにおける冷媒流れを示す全体構成図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
 図1~図7により、本開示の第1実施形態を説明する。第1実施形態では、冷凍サイクル装置10を、車両走行用の駆動力を走行用の電動モータから得る電気自動車に適用している。さらに、電気自動車では、冷凍サイクル装置10を、車室内の空調(冷房および暖房)、並びに、走行用の電動モータへ供給される電力を蓄える蓄電器としての二次電池55の温度調整(加熱および冷却)を行うために用いている。
 より詳細には、冷凍サイクル装置10は、車室内へ送風される室内用空気(室内用送風空気)の温度を調整する機能を果たすとともに、二次電池55に向けて送風される電池用空気(電池用送風空気)の温度を調整する機能を果たす。換言すると、冷凍サイクル装置10は、室内用空気(第1温度調整対象物)および電池用空気(第2温度調整対象物)の複数種類の温度調整対象物の温度調整を行う。
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、車両ボンネット内に配置され、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機として構成されている。圧縮機11の電動モータは、後述する制御装置から出力される制御信号によって、その作動(回転数)が制御される。
 なお、冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。さらに、この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 圧縮機11の吐出口側には、室内凝縮器13の冷媒入口側が接続されている。室内凝縮器13は、室内空調ユニット30において室内用空気の空気通路を形成するケーシング31内に配置されている。さらに、室内凝縮器(利用側熱交換器)13は、圧縮機11から吐出された冷媒を、後述する室内蒸発器20通過後の室内用空気と熱交換させて放熱させる放熱用熱交換器を構成している。なお、室内空調ユニット30の詳細については後述する。
 室内凝縮器13の冷媒出口側には、三方継手で構成された第1接続部12a、第2三方弁14bおよび暖房用膨張弁16を介して、室外熱交換器17の冷媒入口側が接続されている。第1接続部12aおよび第2三方弁14bは、後述する補助熱交換器15を接続するためのものである。
 暖房用膨張弁16は、室内用空気を加熱して車室内の暖房を行う際に、室内凝縮器13から流出した冷媒を減圧させる減圧器である。この暖房用膨張弁16は、開度(弁開度)を変更可能に構成された弁体と、この弁体の開度(弁開度)を変化させるステッピングモータからなる電動アクチュエータとを有して構成された電気式膨張弁であり、制御装置から出力される制御信号によって、その作動が制御される。暖房用膨張弁16は、弁体の開度(絞り開度)を全開にすることで減圧作用を殆ど発揮させない全開機能を有するものである。
 室外熱交換器17は、車両ボンネット内に配置され、その内部を流通する冷媒と送風ファン17aから送風された外気とを熱交換させるものである。より具体的には、この室外熱交換器17は、室内用空気を加熱して車室内の暖房を行う際等には低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、室内用空気を冷却して車室内の冷房を行う際等には、高圧冷媒を放熱させる放熱器として機能する。また、送風ファン17aは、制御装置から出力される制御電圧によって稼働率、すなわち回転数(送風空気量)が制御される電動送風機である。
 室外熱交換器17の出口側には、三方継手で構成された第3接続部12c、逆止弁18、三方継手で構成された第4接続部12d、冷房用膨張弁19を介して、室内蒸発器20の冷媒入口側が接続されている。
 逆止弁18は、第3接続部12c側(室外熱交換器17の冷媒出口側)から第4接続部12d側(室内蒸発器20の冷媒入口側または補助熱交換器15の冷媒入口側)へ冷媒が流れることのみを許容している。従って、この逆止弁18により、冷媒が室内蒸発器20の冷媒入口側または補助熱交換器15の冷媒入口側から室外熱交換器17の冷媒出口側へ逆流してしまうことが防止される。
 冷房用膨張弁19は、室内用空気を冷却して車室内の冷房を行う際に、室外熱交換器17から流出して室内蒸発器20へ流入する冷媒を減圧させる減圧器である。冷房用膨張弁19は、暖房用膨張弁16と同様の構成の電気式膨張弁であり、全開機能に加えて、弁体の開度を全閉にすることで冷媒通路を閉じることができる全閉機能を有するものである。このため、冷房用膨張弁19は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。
 室内蒸発器20は、室内空調ユニット30のケーシング31内の室内凝縮器13よりも空気流れ上流側に配置されている。さらに、室内蒸発器(利用側熱交換器)20は、冷房用膨張弁19にて減圧された冷媒を室内用空気と熱交換させて蒸発させる蒸発用熱交換器を構成している。室内蒸発器20の冷媒出口側には、三方継手で構成された第6接続部12f、三方継手で構成された第5接続部12eを介して、アキュムレータ23の入口側が接続されている。
 アキュムレータ23は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ23の気相冷媒出口には、圧縮機11の吸入側が接続されている。従って、このアキュムレータ23は、圧縮機11に液相冷媒が吸入されてしまうことを抑制して、圧縮機11の液圧縮を防止する機能を果たす。
 室外熱交換器17と逆止弁18との間の第3接続部12cと、室内蒸発器20とアキュムレータ23との間の第5接続部12eとに、室内蒸発器17から流出した冷媒を室内蒸発器20を迂回させて流すためのバイパス流路が接続されている。バイパス流路にはバイパス開閉弁18aが設けられている。
 バイパス開閉弁18aは、制御装置から出力される制御電圧によって、その開閉作動が制御される電磁弁である。さらに、バイパス開閉弁18aが開いた際には、室外熱交換器17から流出した冷媒が第5接続部12eを介してアキュムレータ23へ流入し、バイパス開閉弁18aが閉じた際には、室外熱交換器17から流出した冷媒が逆止弁18を介して第4接続部12d側へ流入する。従って、バイパス開閉弁18aは、冷媒流路切替部を構成している。
 また、冷凍サイクル装置10の構成機器のうち、補助熱交換器15は、二次電池55に向けて送風される電池用空気の空気通路を形成する電池パック50内に配置されており、その内部を流通する冷媒と電池用空気とを熱交換させて電池用空気の温度を調整するものである。なお、電池パック50の詳細については後述する。
 補助熱交換器15は、冷媒が流出入する第1出入口15aと第2出入口15bとを備えている。補助熱交換器15は、第1、第2出入口15a、15bの一方から他方に向かって、補助熱交換器15の内部を冷媒が流れるように構成されている。
 補助熱交換器15は、第1出入口15aに第1配管24が連通しており、第2出入口15bに電池用膨張弁21を介して第2配管25が連通している。第1、第2配管24、25を比較すると、第1配管24は流路断面積が大きく、第2配管25は流路断面積が小さいものである。例えば、第1配管24として流路断面が円形状であって内径が10.3mmのものを採用し、第2配管25として流路断面が円形状であって内径が6mmのものを採用できる。
 第1配管24は、第1三方弁14aを介して、第1接続部12aと、第6接続部12fとに接続されている。第1三方弁14aは、第1配管24と第1接続部12aとを接続する冷媒流路と、第1配管24と第6接続部12fとを接続する冷媒流路とを切り替える。従って、第1三方弁14aは、冷媒流路切替部を構成している。
 第2配管25は、第2接続部12bを介して、第2三方弁14bと、第4接続部12dと接続されている。第2三方弁14bは、第2配管25と室外熱交換器17の冷媒入口側とを接続する冷媒流路と、室内凝縮器13の冷媒出口側と室外熱交換器17の冷媒入口側とを接続する冷媒流路とを切り替える。従って、第2三方弁14bは、第1三方弁14aと同様に、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。
 第2接続部12bと第4接続部12dとを接続する冷媒流路には電池用開閉弁21aが設けられている。電池用開閉弁21aは、バイパス開閉弁18aと同様の構成の電磁弁であり、第4接続部12dの他方の冷媒流出口側から第2配管25へ至る冷媒通路を開閉して、サイクルを循環する冷媒の冷媒流路を切り替えることができる。従って、電池用開閉弁21aは、冷媒流路切替部を構成している。
 このようにして、第1、第2三方弁14a、14bおよびバイパス開閉弁18a等によって、室内凝縮器13から流出した冷媒が、第1配管24を介して、補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が、第2配管25を介して、室外熱交換器17入口側へ導かれる第1冷媒流路と、室外熱交換器17から流出した冷媒が、第2配管25を介して、補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が、第1配管24を介して、アキュムレータ23入口側へ導かれる第2冷媒流路と切換可能に構成されている。
 また、電池用膨張弁21は、電池用空気を冷却して二次電池55を冷却する際等に、補助熱交換器15へ流入する冷媒を減圧させるものである。電池用膨張弁21は、暖房用膨張弁16と同様の構成の電気式膨張弁であり、全閉機能および全開機能を有している。
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、温度調整された室内用空気を車室内に送風するもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、前述の室内凝縮器13、室内蒸発器20等を収容することによって構成されている。
 ケーシング31は、内部に室内用空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂にて成形されている。ケーシング31内の室内用空気の空気流れ最上流側には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が配置されている。
 内外気切替装置33には、ケーシング31内に内気を導入させる内気導入口および外気を導入させる外気導入口が形成されている。さらに、内外気切替装置33の内部には、内気導入口および外気導入口の開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる内外気切替ドアが配置されている。
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入された空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機であって、制御装置から出力される制御電圧によって回転数(送風量)が制御される。
 送風機32の空気流れ下流側には、室内蒸発器20および室内凝縮器13が、室内用空気の流れに対して、この順に配置されている。換言すると、室内蒸発器20は、室内凝縮器13に対して、室内用空気の流れ方向上流側に配置されている。
 さらに、室内蒸発器20の空気流れ下流側であって、かつ、室内凝縮器13の空気流れ上流側には、室内蒸発器20通過後の空気のうち、室内凝縮器13を通過させる風量割合を調整するエアミックスドア34が配置されている。また、室内凝縮器13の空気流れ下流側には、室内凝縮器13にて冷媒と熱交換して加熱された空気と室内凝縮器13を迂回して加熱されていない空気とを混合させる混合空間35が設けられている。
 ケーシング31の空気流れ最下流部には、混合空間35にて混合された空調風を、空調対象空間である車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴(いずれも図示せず)が設けられている。
 従って、エアミックスドア34が室内凝縮器13を通過させる風量の割合を調整することによって、混合空間35にて混合された空調風の温度が調整され、各開口穴から吹き出される空調風の温度が調整される。つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部を構成している。なお、エアミックスドア34は、制御装置から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。
 さらに、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
 これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替部を構成するものであって、リンク機構等を介して、制御装置から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。
 次に、電池パック50について説明する。電池パック50は、車両後方のトランクルームと後部座席との間の車両底面側に配置されて、電気的な絶縁処理(例えば、絶縁塗装)が施された金属製のケーシング51内に電池用空気を循環送風させる空気通路を形成し、この空気通路に送風機52、前述の補助熱交換器15および二次電池55等を収容して構成されたものである。
 送風機52は、補助熱交換器15の空気流れ上流側に配置されて、電池用空気を補助熱交換器15へ向けて送風するもので、制御装置から出力される制御電圧によって稼働率、すなわち回転数(送風空気量)が制御される電動送風機である。さらに、補助熱交換器15の空気流れ下流側には二次電池55が配置され、二次電池55の空気流れ下流側は、送風機52の吸込口側に連通している。
 従って、送風機52を作動させると、補助熱交換器15にて温度調整された電池用空気が二次電池55に吹き付けられて、二次電池55の温度調整がなされる。さらに、二次電池55の温度調整を行った電池用空気は、送風機52に吸入されて再び補助熱交換器15に向けて送風される。
 次に、電気制御部について説明する。制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a、14b、16、17a、18a、19、21、21a、32、52等の作動を制御する。
 また、制御装置の入力側には、車室内温度Trを検出する内気センサ、外気温Tamを検出する外気センサ、車室内の日射量Tsを検出する日射センサ、室内蒸発器20の吹出空気温度(蒸発器温度)Teを検出する蒸発器温度センサ41、室内凝縮器13の吹出空気温度を検出する暖房吹出温度センサ42、圧縮機11の吐出冷媒の温度、圧力をそれぞれ検出する第1冷媒温度センサ43、第1圧力センサ44、暖房用膨張弁16の流入冷媒の温度、圧力をそれぞれ検出する第2冷媒温度センサ45、第2圧力センサ46、室外熱交換器14の流出冷媒の温度を検出する第3冷媒温度センサ47、室内蒸発器20の流出冷媒の温度を検出する第4冷媒温度センサ48、補助熱交換器15の第1出入口15aから流出した冷媒の温度を検出する第5冷媒温度センサ49、二次電池53の温度を直接検出する電池温度センサ56、補助熱交換器15の吹出空気温度を検出する電池用第1空気温度センサ57、補助熱交換器15に流入する前の電池用空気の温度を検出する電池用第2空気温度センサ58等の種々の制御用センサ群が接続されている。
 第1実施形態では、電池温度センサ56によって二次電池55の温度である電池温度Tbを検出するが、電池用第1空気温度センサ57および電池用第2空気温度センサ58によって、電池温度Tbを間接的に検出することもできる。したがって、電池温度センサ56、電池用第1空気温度センサ57や電池用第2空気温度センサ58が、電池温度Tbを検出する電池温度検出器を構成する。なお、二次電池55を冷却する冷却水の温度を検出する冷却水温度センサや、外気温センサの検出結果を用いて、電池温度Tbを間接的に検出しても良い。
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、空調運転モードの選択スイッチ等が設けられている。
 ここで、制御装置は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
 例えば、制御装置のうち、圧縮機11の作動を制御する構成(ハードウェアおよびソフトウェア)が冷媒吐出能力制御部を構成し、冷媒流路切替部を構成する各種機器14a、14b、18a、19、21aの作動を制御する構成が冷媒流路切替制御部を構成している。
 次に、上記構成における冷凍サイクル装置10の作動を説明する。前述の如く、この冷凍サイクル装置10は、車室内の空調、および二次電池55の温度調整を行うことができる。
 さらに、車室内の空調の運転モードには、車室内を冷房する冷房モードと車室内を暖房する暖房モードがあり、二次電池55の温度調整の運転モードには、二次電池55を加熱するバッテリ加熱運転モードと二次電池55を冷却するバッテリ冷却運転モードがある。これらの運転モードの切り替えは、制御装置が予め記憶回路に記憶している制御プログラムを実行することによって行われる。
 この制御プログラムでは、操作パネルの操作信号および制御用センサ群の検出信号を読み込み、読み込まれた検出信号および操作信号の値に基づいて各種制御対象機器の制御状態を決定し、決定された制御状態が得られるように各種制御対象機器へ制御信号あるいは制御電圧を出力するといった制御ルーチンを繰り返す。
 車室内の空調を行う際の運転モードについては、操作パネルの操作信号を読み込んだ際に、空調作動スイッチが投入(ON)された状態で選択スイッチにて冷房が選択されている場合には冷房モードに切り替えられ、空調作動スイッチが投入(ON)された状態で選択スイッチにて暖房が選択されている場合には暖房モードに切り替えられる。
 また、二次電池55の温度調整を行う際の運転モードについては、制御用センサ群の検出信号を読み込んだ際に、電池温度Tbが第1基準温度Tk1(第1実施形態では、15℃)以下になっている際には二次電池55を加熱するバッテリ加熱運転モードに切り替え、電池温度Tbが第2基準温度Tk2(第1実施形態では、35℃)以上になっている際には二次電池55を冷却するバッテリ冷却運転モードに切り替える。
 以下に、各運転モードにおける作動を説明する。
(a)冷房/バッテリ冷却運転モード
 冷房/バッテリ冷却運転モードは、車室内の冷房を行うと同時に二次電池55の冷却を行う運転モードである。より詳細には、この運転モードは、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって冷房が選択され、かつ、電池温度Tbが第2基準温度Tk2以上となった際に実行される。
 冷房/バッテリ冷却運転モードでは、制御装置が、第1配管24と第6接続部12fとの間を接続するように第1三方弁14aの作動を制御し、室内凝縮器13の冷媒出口側と室外熱交換器17の冷媒入口側との間を接続するように第2三方弁14bの作動を制御し、バイパス開閉弁18aを閉じ、電池用開閉弁21aを開く。また、制御装置は、暖房用膨張弁16を全開状態とし、冷房用膨張弁19を減圧作用が発揮される絞り状態とする。
 これにより、冷房/バッテリ冷却運転モードでは、冷凍サイクル装置10は、図1の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 この冷媒流路の構成で、制御装置が、読み込まれた検出信号および操作信号の値に基づいて、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。さらに、制御装置は、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、制御装置の出力側に接続された各種制御対象機器の作動状態を決定する。
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め制御装置に記憶された制御マップを参照して、室内蒸発器20の目標蒸発器吹出温度TEOを決定する。
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された室内蒸発器20からの吹出空気温度との偏差に基づいて、フィードバック制御手法を用いて室内蒸発器20からの吹出空気温度が目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
 送風機32の電動モータに出力される制御電圧については、目標吹出温度TAOに基づいて、予め記憶回路に記憶されている制御マップを参照して決定される。
 冷房用膨張弁19へ出力される制御信号については、第3冷媒温度センサ47によって検出された冷媒の温度に基づいて、室外熱交換器17から流出した冷媒の過冷却度がサイクルの成績係数(COP)が略最大値となるように決定された目標過冷却度に近づくように決定される。
 エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器13の空気通路を閉塞し、室内蒸発器20通過後の空気の全量が室内凝縮器13を迂回するように決定される。
 電池用膨張弁21へ出力される制御信号については、第5冷媒温度センサ49によって検出された冷媒の温度に基づいて、補助熱交換器15から流出した冷媒の過熱度が予め定めた過熱度となるように、電池用膨張弁21の開度が決定される。
 電池パック50の送風機52へ出力される制御信号については、送風機52の送風能力が、予め定めた所定送風能力となるように決定される。そして、上記の如く決定された制御状態が得られるように制御装置から制御対象機器へ制御信号あるいは制御電圧が出力される。
 従って、冷房/バッテリ冷却運転モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が室内凝縮器13へ流入する。この際、エアミックスドア34が室内凝縮器13の空気通路を閉塞しているので、室内凝縮器13に流入した冷媒は実質的に空気へ放熱せず、室内凝縮器13から流出する。室内凝縮器13から流出した冷媒は、全開状態の暖房用膨張弁16を通過して、室外熱交換器17へ流入する。
 室外熱交換器17へ流入した冷媒は、送風ファン17aから送風された外気と熱交換して放熱して液冷媒となる。室外熱交換器17から流出した液冷媒は、第3接続部12cから逆止弁18を介して第4接続部12d側へ流れ、第4接続部12dから室内蒸発器20側と補助熱交換器15側とに分岐して流れる。
 室内蒸発器20側に分岐した液冷媒は、冷房用膨張弁19にて減圧された後、室内蒸発器20へ流入して、送風機32によって送風された室内用空気から吸熱して蒸発する。これにより、室内用空気が冷却される。室内蒸発器20から流出した冷媒は、第6接続部12f、第5接続部12eを介して、アキュムレータ23へ流入する。
 また、第4接続部12dから補助熱交換器15側に分岐した液冷媒は、第2配管25を通過し、電池用膨張弁21に低圧冷媒となるまで減圧される。電池用膨張弁21から流出した冷媒は、第2出入口15bから補助熱交換器15へ流入して、送風機52によって送風された電池用空気から吸熱して蒸発し、ガス冷媒となる。これにより、電池用空気が冷却される。補助熱交換器15の第1出入口15aから流出したガス冷媒は、第1配管24を通過し、第6接続部12f、第5接続部12eを介して、アキュムレータ23へ流入する。そして、アキュムレータ23にて分離されたガス冷媒が、圧縮機11に吸入されて再び圧縮される。
 上記の如く、冷房/バッテリ冷却運転モードでは、室内蒸発器20にて室内用空気が冷却されて車室内の冷房を行うことができるとともに、補助熱交換器15にて電池用空気が冷却されて二次電池55の冷却を行うことができる。
 このとき、補助熱交換器15に流入する液冷媒は、流路断面積が小さな第2配管25を通過し、補助熱交換器15から流出したガス冷媒は、流路断面積が大きな第1配管24を通過する。
(b)冷房運転モード
 冷房運転モードは、二次電池55の温度調整を行うことなく、車室内の冷房を行う運転モードである。この運転モードは、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって冷房が選択され、さらに、電池温度Tbが第1基準温度Tk1よりも高く、かつ、第2基準温度Tk2より低くなっている際に実行される。
 冷房運転モードでは、制御装置が、冷房/バッテリ冷却運転モードと同様に、第1、第2三方弁14a、14bの作動を制御し、バイパス開閉弁18aを閉じ、暖房用膨張弁16を全開状態とし、冷房用膨張弁19を絞り状態とする。また、制御装置は、冷房/バッテリ冷却運転モードと異なり、電池用開閉弁21aを閉じる。
 これにより、冷房運転モードでは、冷凍サイクル装置10は、図2の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 さらに、制御装置は、冷房/バッテリ冷却運転モードと同様に、圧縮機11、冷房用膨張弁19、送風機32、エアミックスドア34の作動を制御する。このとき、制御装置は、冷房/バッテリ冷却運転モードと異なり、電池パック50の送風機52を停止させる。なお、送風機52については冷房/バッテリ冷却運転モードと同様に作動させてもよい。
 従って、冷房運転モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、冷房/バッテリ冷却運転モードと同様に、室内凝縮器13、全開状態の暖房用膨張弁16、室外熱交換器17の順に流れる。
 室外熱交換器17から流出した冷媒は、第3接続部12cおよび逆止弁18を介して第4接続部12dへ流入し、冷房用膨張弁19側へ流れる。冷房用膨張弁19にて減圧された冷媒は室内蒸発器20へ流入して、送風機32によって送風された室内用空気から吸熱して蒸発する。これにより、室内用空気が冷却される。
 室内蒸発器20から流出した冷媒は、第6接続部12f、第5接続部12eを介して、アキュムレータ23へ流入する。そして、アキュムレータ23にて分離されたガス冷媒が、圧縮機11に吸入されて再び圧縮される。
 上記の如く、冷房運転モードでは、室内蒸発器20にて室内用空気が冷却されて車室内の冷房を行うことができる。
(c)バッテリ冷却運転モード
 バッテリ冷却運転モードは、車室内の空調を行うことなく、二次電池55の冷却を行う運転モードである。この運転モードは、操作パネルの作動スイッチが非投入(OFF)となっている状態で、さらに、電池温度Tbが第2基準温度Tk2以上となった際に実行される。
 バッテリ冷却運転モードでは、制御装置が、冷房/バッテリ冷却運転モードと同様に、第1、第2三方弁14a、14bの作動を制御し、バイパス開閉弁18aを閉じ、電池用開閉弁21aを開き、暖房用膨張弁16を全開状態とする。また、制御装置は、冷房/バッテリ冷却運転モードと異なり、冷房用膨張弁19を全閉状態とする。
 これにより、バッテリ冷却運転モードでは、冷凍サイクル装置10は、図3の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 さらに、制御装置は、冷房/バッテリ冷却運転モードと同様に、圧縮機11、電池用膨張弁21、電池パック50の送風機52、エアミックスドア34の作動を制御する。このとき、制御装置は、冷房/バッテリ冷却運転モードと異なり、室内空調ユニット30の送風機32を停止させる。
 従って、バッテリ冷却運転モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、冷房/バッテリ冷却運転モードと同様に、室内凝縮器13、全開状態の暖房用膨張弁16、室外熱交換器17の順に流れる。
 室外熱交換器17から流出した液冷媒は、バイパス開閉弁18aおよび冷房用膨張弁19が閉じているので、第3接続部12c、逆止弁18、第4接続部12dを介して、第2配管25へ流入する。第2配管25を通過した液冷媒は、電池用膨張弁21に低圧冷媒となるまで減圧される。電池用膨張弁21から流出した冷媒は、第2出入口15bから補助熱交換器15へ流入して、送風機52によって送風された電池用空気から吸熱して蒸発し、ガス冷媒となる。これにより、電池用空気が冷却される。
 補助熱交換器15の第1出入口15aから流出したガス冷媒は、第1配管24を通過し、第6接続部12f、第5接続部12eを介して、アキュムレータ23へ流入する。そして、アキュムレータ23にて分離されたガス冷媒が、圧縮機11に吸入されて再び圧縮される。
 上記の如く、バッテリ冷却運転モードでは、補助熱交換器15にて電池用空気が冷却されて二次電池55の冷却を行うことができる。
 このとき、補助熱交換器15に流入する液冷媒は、流路断面積が小さな第2配管25を通過し、補助熱交換器15から流出したガス冷媒は、流路断面積が大きな第1配管24を通過する。
(d)暖房/バッテリ加熱運転モード
 暖房/バッテリ加熱運転モードは、車室内の暖房を行うと同時に二次電池55の加熱を行う運転モードである。より詳細には、この運転モードは、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって暖房が選択され、かつ、電池温度Tbが第1基準温度Tk1以下となった際に実行される。
 暖房/バッテリ加熱運転モードでは、制御装置が、第1配管24と第1接続部12aとの間を接続するように第1三方弁14aの作動を制御し、第2配管25と室外熱交換器17の冷媒入口側との間を接続するように第2三方弁14bの作動を制御し、バイパス開閉弁18aを開き、電池用開閉弁21aを閉じる。また、制御装置は、暖房用膨張弁16を減圧作用が発揮される絞り状態とし、冷房用膨張弁19を閉じ、電池用膨張弁21を全開状態とする。
 これにより、暖房/バッテリ加熱運転モードでは、冷凍サイクル装置10は、図4の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。さらに、制御装置は、冷房/バッテリ冷却運転モードと同様に、室内空調ユニット30の送風機32および電池パック50の送風機52の作動を制御する。
 また、圧縮機11の冷媒吐出能力については、暖房吹出温度センサ42によって検出される吹出空気温度が、目標吹出温度TAOに近づくように決定される。なお、車室内の暖房時に決定される目標吹出温度TAOは、40℃~60℃程度である。
 暖房用膨張弁16へ出力される制御信号については、第2冷媒温度センサ45および第2圧力センサ46によって検出された冷媒の温度、圧力状態に基づいて、暖房用膨張弁16へ流入する冷媒の過冷却度が、サイクルの成績係数(COP)が略最大値となるように決定された目標過冷却度に近づくように決定される。
 エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器13側の空気通路を全開するように決定される。
 従って、暖房/バッテリ加熱運転モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒の流れが室内凝縮器13へ流入し、室内用空気と熱交換して放熱する。これにより、室内用空気が加熱される。室内凝縮器13から流出した冷媒は、第1合流部12b、第1三方弁14aおよび第1配管24を介して、第1出入口15aから補助熱交換器15へ流入し、電池用空気と熱交換してさらに放熱する。これにより、電池用空気が加熱される。補助熱交換器15の第2出入口15bから流出した冷媒は、全開状態の電池用膨張弁21を通過し、第2接続部12b、第2三方弁14bを介して、暖房用膨張弁16へ流入して減圧される。暖房用膨張弁16にて減圧された冷媒は、室外熱交換器17へ流入して、送風ファン17aから送風された外気から吸熱して蒸発する。
 室外熱交換器17から流出した冷媒は、バイパス開閉弁18aが開き、冷房用膨張弁19が閉じ、電池用開閉弁21aが閉じているので、第5接続部12eを介して、アキュムレータ23へ流入する。そして、アキュムレータ23にて分離されたガス冷媒が、圧縮機11に吸入されて再び圧縮される。
 上記の如く、暖房/バッテリ加熱運転モードでは、室内凝縮器13にて室内用空気が加熱されて車室内の暖房を行うことができるとともに、補助熱交換器15にて電池用空気が加熱されて二次電池55の加熱を行うことができる。
 このとき、補助熱交換器15に流入する冷媒は、気液2相状態、すなわち、ガス冷媒を含む冷媒であり、流路断面積が大きな第1配管24を通過する。また、補助熱交換器15から流出する冷媒は、液冷媒であり、流路断面積が小さな第2配管25を通過する。
(e)暖房運転モード
 暖房運転モードは、二次電池55の温度調整を行うことなく、車室内の暖房を行う運転モードである。この運転モードは、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって暖房が選択され、さらに、電池温度Tbが第1基準温度Tk1よりも高く、かつ、第2基準温度Tk2より低くなっている際に実行される。
 暖房運転モードでは、制御装置が、冷房/バッテリ冷却運転モードと同様に、第1、第2三方弁14a、14bの作動を制御する。また、制御装置は、暖房/バッテリ加熱運転モードと同様に、暖房用膨張弁16を絞り状態とし、バイパス開閉弁18aを開き、冷房用膨張弁19および電池用開閉弁21aを閉じる。
 これにより、暖房運転モードでは、冷凍サイクル装置10は、図5の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。さらに、制御装置は、暖房/バッテリ加熱運転モードと同様に、圧縮機11、暖房用膨張弁16、送風機32、エアミックスドア34の作動を制御する。また、制御装置は、暖房/バッテリ加熱運転モードと異なり、電池パック50の送風機52を停止させる。なお、送風機52については暖房/バッテリ加熱運転モードと同様に作動させてもよい。
 従って、暖房運転モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、室内凝縮器13へ流入して室内用空気と熱交換して放熱し、室内凝縮器13から流出する。これにより、室内用空気が加熱される。室内凝縮器13から流出した冷媒は、補助熱交換器15に向かうことなく、暖房用膨張弁16へ流入して減圧される。以降の作動は暖房/バッテリ加熱運転モードと同様である。
 上記の如く、暖房運転モードでは、室内凝縮器13にて室内用空気が加熱されて車室内の暖房を行うことができる。
(f)バッテリ加熱運転モード
 バッテリ加熱運転モードは、車室内の空調を行うことなく、二次電池55の冷却を行う運転モードである。この運転モードは、操作パネルの作動スイッチが非投入(OFF)となっている状態で、さらに、電池温度Tbが第1基準温度Tk1以下となった際に実行される。
 このバッテリ加熱運転モードでは、制御装置が、暖房/バッテリ加熱運転モードと同様に、第1、第2三方弁14a、14bの作動を制御し、暖房用膨張弁16を絞り状態とし、バイパス開閉弁18aを開き、冷房用膨張弁19および電池用開閉弁21aを閉じる。
 さらに、制御装置は、暖房/バッテリ加熱運転モードと同様に、圧縮機11、電池パック50の送風機52の作動を制御する。また、制御装置は、暖房/バッテリ加熱運転モードとは異なり、室内空調ユニット30の送風機32を停止させ、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器13側の空気通路を全閉するように決定される。
 これにより、暖房運転モードでは、冷凍サイクル装置10は、図6の矢印に示すように冷媒が流れる冷媒流路に切り替えられ、暖房/バッテリ加熱運転モードと全く同様に冷媒が流れる。従って、補助熱交換器15へ流入した冷媒が電池用空気と熱交換して放熱することにより、電池用空気が加熱される。
 このとき、補助熱交換器15に流入する冷媒は、ガス冷媒であり、流路断面積が大きな第1配管24を通過する。また、補助熱交換器15から流出する冷媒は、液冷媒であり、流路断面積が小さな第2配管25を通過する。
 ただし、バッテリ加熱運転モードでは、送風機32の作動を停止させるとともに、エアミックスドア34が室内凝縮器13側の空気通路を全閉にするので、室内凝縮器13へ流入した冷媒は、室内用空気と熱交換することなく、室内凝縮器13から流出する。従って、室内用空気は加熱されない。
 上記の如く、バッテリ加熱運転モードでは、補助熱交換器15にて電池用空気が加熱されて二次電池55の加熱を行うことができる。
(g)暖房/バッテリ冷却運転モード
 上述した(a)~(c)の各運転モードは、主に夏季等の比較的外気温が高い時に車室内あるいは二次電池55を冷却するために実行され、(d)~(f)に記載された各運転モードは、主に冬季等の比較的外気温が低い時に車室内あるいは二次電池55を加熱するために実行される。
 これに対して、春季や秋季には、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって暖房が選択されながらも、二次電池55が自己発熱することによって電池温度Tbが第2基準温度Tk2以上になってしまうことがある。このような場合には、暖房/バッテリ冷却運転モードの運転が実行される。
 暖房/バッテリ冷却運転モードでは、制御装置が、冷房/バッテリ冷却運転モードと同様に、第1、第2三方弁14a、14bの作動を制御し、暖房用膨張弁16を全開状態とし、バイパス開閉弁18aを閉じ、電池用開閉弁21aを開く。また、制御装置は、冷房/バッテリ冷却運転モードと異なり、冷房用膨張弁19を閉じる。
 これにより、暖房/バッテリ冷却運転モードでは、冷凍サイクル装置10は、図7の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 さらに、制御装置は、暖房/バッテリ加熱運転モードと同様に、圧縮機11、室内空調ユニット30の送風機32および電池パック50の送風機52の作動を制御し、エアミックスドアの作動を制御する。また、制御装置は、バッテリ冷却運転モードと同様に、電池用膨張弁21の作動を制御する。
 従って、暖房/バッテリ冷却運転モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、室内凝縮器13へ流入し、室内用空気と熱交換して放熱し、室内凝縮器13から流出する。これにより、室内用空気が加熱される。
 室内凝縮器13から流出した冷媒は、補助熱交換器15に向かうことなく、全開状態の暖房用膨張弁16を介して、室外熱交換器17へ流入して、送風ファン17aから送風された外気と熱交換してさらに放熱し、液冷媒となる。室外熱交換器17から流出した液冷媒は、バッテリ冷却運転モードと同様に、第3接続部12c、逆止弁18、第4接続部12dの順に流れ、第2配管25を介して、電池用膨張弁21に流入して減圧される。電池用膨張弁21にて減圧された冷媒は補助熱交換器15へ流入して、送風機52によって送風された電池用空気から吸熱して蒸発する。これにより、電池用空気が冷却される。以降の作動はバッテリ冷却運転モードと同様である。
 このとき、バッテリ冷却運転モードと同様に、補助熱交換器15に流入する液冷媒は、流路断面積が小さな第2配管25を通過し、補助熱交換器15から流出したガス冷媒は、流路断面積が大きな第1配管24を通過する。
 上記の如く、暖房/バッテリ冷却運転モードでは、室内凝縮器13にて室内用空気が加熱されて車室内の暖房を行うことができるとともに、補助熱交換器15にて電池用空気が冷却されて二次電池55の冷却を行うことができる。
 さらに、冷凍サイクル装置10は、上述した(a)~(g)の運転モードの他に、車室内の冷房を行うと同時に二次電池55の加熱を行う冷房/バッテリ加熱運転モードを実現できる。なお、車室内の冷房は、夏季の比較的外気温が高い時期に実行されるので、二次電池55が第1基準温度Tk1以下になる機会は少ない。従って、冷房/バッテリ加熱運転モードでの運転が実行される機会は少ない。
 次に、第1実施形態の効果について説明する。
(1)第1実施形態の冷凍サイクル装置10では、上記の(d)暖房/バッテリ加熱運転モード、(f)バッテリ加熱運転モードの説明の通り、電池用空気の加熱時に、冷媒流路切換部が、圧縮機11吐出口側(具体的には、室内凝縮器13出口側)から室外熱交換器17入口側へ至る範囲のガス冷媒を含む冷媒が、第1配管24を介して補助熱交換器15へ流入するとともに、補助熱交換器15から流出した液冷媒が、第2配管25を介して室外熱交換器17入口側へ導かれる第1冷媒流路に切り替えている。
 一方、上記の(a)冷房/バッテリ冷却運転モード、(c)バッテリ冷却運転モード、(g)暖房/バッテリ冷却運転モードの説明の通り、電池用空気の冷却時に、冷媒流路切換部が、室外熱交換器17出口側から圧縮機11吸入口側(具体的には、室内蒸発器20入口側)へ至る範囲の液冷媒が、第2配管25を介して補助熱交換器15へ流入するとともに、補助熱交換器15から流出したガス冷媒が、第1配管24を介して圧縮機11吸入口側へ導かれる第2冷媒流路に切り替えている。なお、第2配管25を通過した液冷媒は電池用膨張弁21で減圧されて補助熱交換器15へ流入する。
 したがって、電池用空気の加熱時、冷却時のどちらにおいても、流路断面積が小さな第2配管を液冷媒が流れ、流路断面積が大きな第1配管をガス冷媒が流れるので、冷媒封入量や冷媒変動量の増大の抑制と、冷媒の圧力損失の増大の抑制とを両立させることができる。
(2)第1実施形態の冷凍サイクル装置10では、共通する1つの補助熱交換器15にて電池用空気を冷却あるいは加熱することができるので、複数の熱交換器を用いて電池用空気を冷却あるいは加熱する構成に対して、補助熱交換器15の搭載スペースの縮小化を図ることができる。延いては、冷凍サイクル装置10全体としての小型化および低コスト化を図ることができる。
 さらに、共通する1つの補助熱交換器15へ低温冷媒あるいは高温冷媒を導く構成となるので、複数の熱交換器のそれぞれに低温冷媒あるいは高温冷媒を導く構成に対して冷凍サイクル装置全体としてのサイクル構成の簡素化を図ることができる。その結果、冷凍サイクル装置を製品に搭載する際の搭載性の向上を図ることもできる。
 また、複数の熱交換器を用いて電池用空気を冷却あるいは加熱する構成を採用するときと同等の熱交換器搭載スペースが確保できる場合は、補助熱交換器15を1つにすることでより大きな熱交換器を配置でき、二次電池55の温度調整の大能力化が可能となる。
(3)第1実施形態の冷凍サイクル装置10では、いずれの温度調整対象物を加熱する場合も、ヒートポンプサイクル(蒸気圧縮式冷凍サイクル)にて加熱するので、温度調整対象物を電気ヒータやホットガスサイクルにて加熱する場合に対して、エネルギー効率を向上させることができる。
(4)第1実施形態の冷凍サイクル装置10では、暖房/バッテリ加熱運転モードのときに、冷媒流路切替部が第1冷媒流路に切り替えると、室内凝縮器13出口側から室外熱交換器17入口側へ至る範囲の冷媒が補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が室外熱交換器17入口側へ導かれる。つまり、冷媒流路切替部が第1冷媒流路に切り替えると、室内凝縮器13および補助熱交換器15が直列的な接続関係となり、補助熱交換器15が室内凝縮器13の冷媒流れ下流側となる。
 従って、室内凝縮器13で放熱し、圧縮機11から吐出された直後よりも低い温度となった冷媒を補助熱交換器15へできるため、二次電池55の温度が上昇しすぎるのを抑制しつつ二次電池55を加熱できる。このことは、所定の温度以上となると破損しやすい二次電池55を採用する場合に有効である。
(5)第1実施形態の冷凍サイクル装置10では、冷房/バッテリ冷却運転モード、バッテリ冷却運転モード、暖房/バッテリ冷却運転モードのように、冷媒流路切替部が第2冷媒流路に切り替えると、室外熱交換器17出口側から室内蒸発器20入口側へ至る範囲の冷媒が補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が圧縮機11吸入口側へ導かれている。つまり、冷媒流路切替部が第2冷媒流路に切り替えると、室内蒸発器20および補助熱交換器15が並列的な接続関係となる。従って、例えば、冷房/バッテリ冷却運転モードから冷房運転モードへ運転モードを切り替えた場合でも、室内蒸発器20および補助熱交換器15が直列的な接続関係のときと比較して、室内蒸発器20入口側冷媒の乾き度等が急変してしまうことを抑制できるので、空調フィーリングの悪化を抑制できる。
(第2実施形態)
 図8~図12に示すように、第2実施形態は、第1実施形態に対して、補助熱交換器15側に四方弁26を追加したものである。
 第2実施形態では、補助熱交換器15は、冷媒が流入する冷媒入口15cと、冷媒が流出する冷媒出口15dとを備えている。補助熱交換器15は、冷媒入口15cから冷媒出口15dに向かって、補助熱交換器15の内部を冷媒が流れるように構成されている。
 そして、冷媒入口15cは、電池用膨張弁21を介して、四方弁26の第1接続口に接続されている。冷媒出口15dは、四方弁26の第2接続口に接続されている。四方弁26の第3、第4接続口には、それぞれ、第1、第2配管24、25が接続されている。
 四方弁26は、冷媒入口15cと第1配管24とが連通するとともに、冷媒出口15dと第2配管25とが連通する第1連通状態と、冷媒入口15cと第2配管25とが連通するとともに、冷媒出口15dと第1配管24とが連通する第2連通状態とを切り替える連通状態切換部である。
 四方弁26は、補助熱交換器15の運転モードとして加熱、冷却のどちらを選択しても、補助熱交換器15の冷媒入口側と冷媒出口側とが同一となるように、第1、第2連通状態を切り替える。四方弁26は、制御装置から出力される制御信号によって、その作動が制御される。
 以下に、各運転モードにおける作動を説明する。
(a)冷房/バッテリ冷却運転モード
 冷房/バッテリ冷却運転モードでは、制御装置が、第2連通状態となるように四方弁26の作動を制御する。その他の制御対象機器の作動状態については、第1実施形態の冷房/バッテリ冷却運転モードと同じである。
 これにより、冷房/バッテリ冷却運転モードでは、冷凍サイクル装置10は、図8の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。このときの冷媒流れおよび各機器の作動は、補助熱交換器15の内部の冷媒流れ方向を除き、第1実施形態の冷房/バッテリ冷却運転モードと同じである。
 第2実施形態では、図8に示すように、第2配管25を通過した冷媒は、四方弁26を介して、補助熱交換器15の冷媒入口15c側に流れる。その際、電池用膨張弁21にて減圧された冷媒が、冷媒入口15cから補助熱交換器15へ流入し、補助熱交換器15の内部を冷媒出口15dに向かって流れ、送風機52によって送風された電池用空気から吸熱して蒸発し、ガス冷媒となる。補助熱交換器15の冷媒出口15dから流出したガス冷媒は、四方弁26を介して、第1配管24に流入する。
(b)冷房運転モード
 冷房運転モードにおける制御対象機器の作動状態は、第1実施形態の冷房運転モードと同じである。このため、冷凍サイクル装置10の冷媒流れおよび各機器の作動は、第1実施形態の冷房運転モードと同じである。
(c)バッテリ冷却運転モード
 バッテリ冷却運転モードでは、制御装置が、冷房/バッテリ冷却運転モードと同様に、第2連通状態となるように四方弁26の作動を制御する。その他の制御対象機器の作動状態については、第1実施形態のバッテリ冷却運転モードと同じである。
 これにより、バッテリ冷却運転モードでは、冷凍サイクル装置10は、図9の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。このときの冷媒流れおよび各機器の作動は、補助熱交換器15の内部の冷媒流れ方向を除き、第1実施形態のバッテリ冷却運転モードと同じである。
 冷房/バッテリ冷却運転モードと同様に、図9に示すように、第2配管25を通過した冷媒は、四方弁26を介して、補助熱交換器15の冷媒入口15c側に流れる。また、補助熱交換器15の冷媒出口15dから流出したガス冷媒は、四方弁26を介して、第1配管24に流入する。
(d)暖房/バッテリ加熱運転モード
 暖房/バッテリ加熱運転モードでは、制御装置が、第1連通状態となるように四方弁26の作動を制御し、電池用膨張弁21を全開状態ではなく、絞り状態とし、電池用膨張弁21を中間絞りとして作用させる。
 電池用膨張弁21へ出力される制御信号については、第2圧力センサ46によって検出された冷媒圧力に基づいて、補助熱交換器15内の冷媒圧力が、電池温度Tbを適切な温度範囲内(第2実施形態では、10℃~40℃)とする圧力となるように、電池用膨張弁21の開度が決定される。その他の制御対象機器の作動状態については、第1実施形態の暖房/バッテリ加熱運転モードと同じである。
 なお、圧縮機11の冷媒吐出能力は、室内凝縮器13の吹出空気温度が目標吹出温度TAOに近づくように決定されるので、室内凝縮器13内の冷媒圧力は、車室内の暖房を実現可能な圧力(すなわち、室内用空気が40℃~60℃程度まで加熱可能な圧力)に調整される。
 これにより、暖房/バッテリ加熱運転モードでは、冷凍サイクル装置10は、図10の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。このときの冷媒流れおよび各機器の作動は、下記の点を除いて、第1実施形態の暖房/バッテリ加熱運転モードと同じである。
 第2実施形態では、図10に示すように、第1配管24を通過した冷媒が、四方弁26を介して、電池用膨張弁21に流入し、中間圧となるまで減圧される。そして、電池用膨張弁21で減圧された冷媒が、冷媒入口15cから補助熱交換器15へ流入し、補助熱交換器15の内部を冷媒出口15dに向かって流れ、送風機52によって送風された電池用空気へ放熱して凝縮し、液冷媒となる。補助熱交換器15の冷媒出口15dから流出した液冷媒は、四方弁26を介して、第2配管25に流入する。
(e)暖房運転モード
 暖房運転モードにおける制御対象機器の作動状態は、第1実施形態の暖房運転モードと同じである。このため、冷凍サイクル装置10の冷媒流れおよび各機器の作動は、第1実施形態の暖房運転モードと同じである。
(f)バッテリ加熱運転モード
 バッテリ加熱運転モードでは、制御装置が、暖房/バッテリ加熱運転モードと同様に、第2連通状態となるように四方弁26の作動を制御する。ただし、暖房/バッテリ加熱運転モードと異なり、電池用膨張弁21を全開状態とする。その他の制御対象機器の作動状態については、第1実施形態のバッテリ加熱運転モードと同じである。
 これにより、バッテリ冷却運転モードでは、冷凍サイクル装置10は、図11の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。このときの冷媒流れおよび各機器の作動は、第1実施形態のバッテリ加熱運転モードと同じである。
 ちなみに、暖房/バッテリ加熱運転モードと同様に、図11に示すように、第1配管24を通過したガス冷媒は、四方弁26を介して、補助熱交換器15の冷媒入口15c側に流れる。また、補助熱交換器15の冷媒出口15dから流出した液冷媒は、四方弁26を介して、第1配管25に流入する。
(g)暖房/バッテリ冷却運転モード
 暖房/バッテリ冷却運転モードでは、制御装置が、第2連通状態となるように四方弁26の作動を制御する。その他の制御対象機器の作動状態については、第1実施形態の暖房/バッテリ冷却運転モードと同じである。
 これにより、暖房/バッテリ冷却運転モードでは、冷凍サイクル装置10は、図12の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。このときの冷媒流れおよび各機器の作動は、補助熱交換器15の内部の冷媒流れ方向を除き、第1実施形態の暖房/バッテリ冷却運転モードと同じである。
 図12に示すように、第2配管25を通過した冷媒は、四方弁26を介して、補助熱交換器15の冷媒入口15c側に流れる。その際、電池用膨張弁21にて減圧された冷媒が、冷媒入口15cから補助熱交換器15へ流入し、補助熱交換器15の内部を冷媒出口15dに向かって流れ、送風機52によって送風された電池用空気から吸熱して蒸発し、ガス冷媒となる。補助熱交換器15の冷媒出口15dから流出したガス冷媒は、四方弁26を介して、第1配管24に流入する。
 第2実施形態の冷凍サイクル装置10によれば、第1実施形態で説明した効果(1)~(5)に加えて、以下の効果を奏する。
 冷媒流路切替部が第1冷媒流路(図10、図11参照)と第2冷媒流路(図8、図9、図12参照)とを切り替えても、四方弁26が第1、第2連通状態を切り替えることで、補助熱交換器15における冷媒入口側と冷媒出口側が変化しないように構成されている。
 換言すると、冷媒流路切替部が第1冷媒流路に切り替えた際の補助熱交換器15内の冷媒の流れ方向と第2冷媒流路に切り替えた際の補助熱交換器15内の冷媒の流れ方向が、同一となるように、四方弁26が第1、第2連通状態を切り替えている。従って、補助熱交換器15の仕様を容易に最適化できる。
 また、四方弁26の作動により、冷却時だけでなく加熱時にも、補助熱交換器15の冷媒入口15cの冷媒流れ上流側に、電池用膨張弁21が配置される構成となる。このため、「暖房/バッテリ加熱運転モード」において、電池用膨張弁21を、補助熱交換器15へ流入する冷媒を減圧させて中間圧とする中間絞りとして作用させることが可能となる。なお、中間圧とは、圧縮機11吐出後の冷媒の圧力(高圧)と、圧縮機11に吸入される冷媒の圧力(低圧)との間の圧力を意味する。
 以下に中間絞り作用の効果を説明する。一般に、暖房に必要とされる室内空気の温度は40℃~60℃程度であり、二次電池55(例えば、リチウムイオン電池)の出力を維持するための最適な電池温度は10℃~40℃程度であり、冬季の二次電池55の暖機に必要な電池温度は20℃~40℃程度である。つまり、暖房に必要とされる室内空気の温度の方が二次電池55の暖機に必要な電池温度よりも高い。
 ここで、第1実施形態のように、室内凝縮器13の冷媒流れ下流に補助熱交換器15を直列配置し、室内凝縮器13と補助熱交換器15との間に中間絞りが配置されていない場合、暖房/バッテリ加熱運転モードで運転すると、放熱が大きいために、室内凝縮器13を単独で放熱器として作用させる暖房運転モードと比較して、高圧冷媒の圧力が低下し、暖房に必要な吹き出し温度も低下してしまう。
 これに対して、第2実施形態によれば、暖房/バッテリ加熱運転モードにおいて、電池用膨張弁21を中間絞りとして作用させることで、図13のモリエル線図に示すように、中間絞りが配置されていない場合と比較して、室内凝縮器13を流れる冷媒の圧力を高くできる。なお、図13のモリエル線図において、破線が中間絞りが配置されていない場合を示しており、実線が第2実施形態を示している。
 従って、第2実施形態によれば、暖房/バッテリ加熱運転モードにおいて、中間絞りが配置されていない場合と比較して、室内凝縮器13にて加熱される室内用空気の温度を高くすることができる。
 要約すれば、第2実施形態によると、利用側熱交換器として、圧縮機11から吐出された冷媒を、室内用空気(第1温度調整対象物)と熱交換させて放熱させ、室外熱交換器17の入口側へ流出させる室内凝縮器(放熱用熱交換器)13が設けられている。
 第1冷媒流路に切り替えられたとき、室内凝縮器13の出口側から室外熱交換器17の入口側へ至る範囲の冷媒は、第1配管24を介して補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が、第2配管25を介して室外熱交換器17の入口側へ導かれる。
 補助熱交換器15は、冷媒が流入する冷媒入口15cと冷媒が流出する冷媒出口15dとを有する。
 冷媒流路切替部は、補助熱交換器15の冷媒入口15cと第1配管24とが連通するとともに、補助熱交換器15の冷媒出口15dと第2配管25とが連通する第1連通状態と、補助熱交換器15の冷媒入口15cと第2配管25とが連通するとともに、補助熱交換器15の冷媒出口15dと第1配管24とが連通する第2連通状態とを切り替える四方弁(連通状態切換部)26を有する。
 四方弁26は、第1冷媒流路に切り替えられたとき、第1連通状態とし、第2冷媒流路に切り替えられたとき、第2連通状態とする。
 さらに、第2実施形態の冷凍サイクル装置10は、補助熱交換器15の冷媒入口15cと四方弁26との間に配置され、補助熱交換器15の冷媒入口15cに流入する冷媒を減圧する電池用膨張弁(減圧器)21を備える。
 これによれば、冷媒流路切替部が第1冷媒流路と第2冷媒流路とを切り替えた際の補助熱交換器15の冷媒入口15cと冷媒出口15dとを同一にできる。このため、第1、第2冷媒流路のどちらに切り替えられても、補助熱交換器15の内部の冷媒流れ方向が一定となるので、補助熱交換器15の仕様を容易に最適化できる。
 また、第1、第2冷媒流路のどちらに切り替えられても、共通する1つの電池用膨張弁(減圧器)21によって補助熱交換器15の冷媒入口15cに流入する冷媒を減圧できる。このため、第1冷媒流路に切り替えられたとき、この電池用膨張弁21を補助熱交換器15に流入する冷媒を減圧させて中間圧とする中間絞りとして作動させることが可能となる。この結果、第1冷媒流路に切り替えられたとき、補助熱交換器15の冷媒入口15cに流入する冷媒を減圧する中間絞りが配置されていない場合と比較して、室内凝縮器13にて加熱される室内用空気の温度を高くすることができる。
(第3実施形態)
 第3実施形態は、図14に示すように、第1実施形態の冷凍サイクル装置10に対して、第1電池用膨張弁(第1減圧器)27を追加したものである。第2電池用膨張弁(第2減圧器)21が第1実施形態の電池用膨張弁21に対応している。
 補助熱交換器15は、第1出入口15aに第1電池用膨張弁27を介して第1配管24が連通しており、第2出入口15bに第2電池用膨張弁21を介して第2配管25が連通している。
 第1、第2電池用膨張弁27、21は、どちらも、暖房用膨張弁16と同様の構成の電気式膨張弁であり、全閉機能および全開機能を有している。
 各運転モードにおける第1、第2電池用膨張弁27、21の作動状態は次の通りであり、他の機器の作動状態は第1実施形態の各運転モードと同じである。
 冷房/バッテリ冷却運転モード、バッテリ冷却運転モード、暖房/バッテリ冷却運転モードでは、第2電池用膨張弁21は絞り状態、第1電池用膨張弁27は全開状態とされる。
 冷房運転モード、暖房運転モードでは、第2電池用膨張弁21は全閉状態、第1電池用膨張弁27は全閉状態とされる。
 バッテリ加熱運転モードでは、第2電池用膨張弁21は全開状態、第1電池用膨張弁27は全開状態とされる。
 暖房/バッテリ加熱運転モードでは、第2電池用膨張弁21は全開状態、第1電池用膨張弁27は絞り状態とされる。
 ここで、第2実施形態では、第1実施形態の冷凍サイクル装置10の構成に対して、四方弁26を追加することで、暖房/バッテリ加熱運転モードにおいて、バッテリ冷却運転モード時等に冷却絞りとして作動させる電池用膨張弁21を、中間絞りとして作動させていた。
 第3実施形態では、第1実施形態の冷凍サイクル装置10の構成に対して、第1電池用膨張弁27を追加することによって、上記した中間絞り作用を実現できる。よって、四方弁を用いる場合よりも、安価で簡素な構成で、中間絞りを形成できる。
 要約すると、第3実施形態における冷凍サイクル装置10は、補助熱交換器15と第1配管24との間に配置され、補助熱交換器15に流入する冷媒を減圧する第1電池用膨張弁(第1減圧器)27と、補助熱交換器15と第2配管25との間に配置され、補助熱交換器15に流入する冷媒を減圧する第2電池用膨張弁(第2減圧器)21とを備える。
 これによれば、第1冷媒流路に切り替えられたとき、第1電池用膨張弁27を上述の中間絞りとして作動させることが可能となる。この結果、第1冷媒流路に切り替えられたとき、補助熱交換器15の冷媒入口15cに流入する冷媒を減圧する中間絞りが配置されていない場合と比較して、室内凝縮器(放熱用熱交換器)13にて加熱される室内用空気の温度を高くすることができる。
(第4実施形態)
 第1実施形態では、冷房/バッテリ冷却運転モード、バッテリ冷却運転モード、暖房/バッテリ冷却運転モードのように、冷媒流路切替部が第2冷媒流路に切り替えると、室内蒸発器20および補助熱交換器15が並列的な接続関係となるように、冷凍サイクル装置10が構成されていた。これに対して、第4実施形態では、室内蒸発器20および補助熱交換器15が直列的な接続関係となるように、冷凍サイクル装置10が構成されている。
 すなわち、図15、16に示すように、第1実施形態の冷凍サイクル装置10の構成に対して、第4接続部12dを第3三方弁14cに変更し、第6接続部12fの接続位置を、室内蒸発器20入口側と第3三方弁14cとの間の位置に変更している。
 第3三方弁14cは、室外熱交換器17の冷媒出口側と補助熱交換器15とを接続する冷媒流路と、室外熱交換器17の冷媒出口側と室内蒸発器20とを接続する冷媒流路とを切り替える。従って、第3三方弁14cは、冷媒流路切替部を構成する。その他の構成は、第1実施形態と同じである。
 次に、各運転モードにおける作動について、第1実施形態との主な相違点を説明する。
 冷房/バッテリ冷却運転モードでは、制御装置は、室外熱交換器17の冷媒出口側と補助熱交換器15とを接続するように第3三方弁14cを作動させる。その他の制御対象機器の作動状態は第1実施形態と同じである。これにより、冷凍サイクル装置10は、図15の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 このとき、第4実施形態の冷凍サイクル装置10では、室外熱交換器17出口側から室内蒸発器20入口側へ至る範囲の冷媒が、第2配管25を介して補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が、第1配管24を介して圧縮機11吸入口側のうち室内蒸発器20入口側へ導かれる。つまり、冷媒流路切替部が第2冷媒流路に切り替えると、補助熱交換器15の冷媒流れ下流側に室内蒸発器20が直列的に配置された状態となる。なお、バッテリ冷却運転モード、暖房/バッテリ冷却運転モードにおいても、同様である。
 また、冷房運転モードでは、制御装置は、室外熱交換器17の冷媒出口側と室内蒸発器20の冷媒入口側とを接続するように第3三方弁14cを作動させる。その他の制御対象機器の作動状態は第1実施形態と同じである。これにより、冷凍サイクル装置10は、図16の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 第4実施形態においても、第1実施形態の効果(1)~(4)を奏する。
(第5実施形態)
 第1実施形態では、暖房/バッテリ加熱運転モードのように、冷媒流路切替部が第1冷媒流路に切り替えると、室内凝縮器13の冷媒流れ下流側に補助熱交換器15が直列的に配置された状態となるように、冷凍サイクル装置10が構成されていた。これに対して、第5実施形態では、室内凝縮器13および補助熱交換器15が並列的な接続関係となるように、冷凍サイクル装置10が構成されている。
 すなわち、図17、18に示すように、第1実施形態の冷凍サイクル装置10の構成に対して、第1接続部12aの接続位置を、圧縮機11の吐出口側と室内凝縮器13の入口側との間の位置に変更している。また、第2接続部12bと第2三方弁14bとを入れ替えている。
 第2三方弁14bは、第2配管25と第2接続部12b(室外熱交換器17の冷媒入口側)とを接続する冷媒流路と、第2配管25と第4接続部12d(室外熱交換器17の冷媒出口側)とを接続する冷媒流路とを切り替える。その他の構成は、第1実施形態と同じである。
 次に、各運転モードにおける作動について、第1実施形態との主な相違点を説明する。
 冷房/バッテリ冷却運転モードでは、制御装置は、第2配管25と第4接続部12dとを接続するように第2三方弁14bを作動させる。その他の制御対象機器の作動状態は第1実施形態の冷房/バッテリ冷却運転モードと同じである。これにより、冷凍サイクル装置10は、図17の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 また、暖房/バッテリ加熱運転モードでは、制御装置は、第2配管25と第2接続部12bとを接続するように第2三方弁14bを作動させる。その他の制御対象機器の作動状態は第1実施形態の暖房/バッテリ加熱運転モードと同じである。これにより、冷凍サイクル装置10は、図18の矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 このとき、冷凍サイクル装置10では、圧縮機11吐出口側から室内凝縮器13入口側へ至る範囲の冷媒が、第1配管24を介して補助熱交換器15へ流入するとともに、補助熱交換器15から流出した冷媒が、第2配管25を介して室外熱交換器17入口側へ導かれる。つまり、冷媒流路切替部が第1冷媒流路に切り替えると、室内凝縮器13および補助熱交換器15が並列的な接続関係となる。
 従って、第5実施形態の冷凍サイクル装置10によれば、圧縮機11から吐出された直後の高温冷媒によって二次電池55の即効暖機を行うことができる。なお、第5実施形態においても、第1実施形態の効果(1)~(3)、(5)を奏する。
(他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、下記のように、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(1)第2実施形態では、補助熱交換器15の冷媒入口15c、冷媒出口15dと第1、第2配管24、25との連通状態を切り替える連通状態切替部として、四方弁26を用いたが、これ以外のものを用いても良い。例えば、冷媒入口15c、冷媒出口15dのそれぞれと第1、第2配管24、25側とをそれぞれ接続する冷媒通路と、各冷媒通路を開閉する開閉装置とを用いても良い。
(2)上記した各実施形態では、暖房用膨張弁16として電気式膨張弁を用いたが、電気式膨張弁の代わりにキャピラリ等の固定絞りを用いても良い。この場合、暖房用膨張弁16を迂回させて冷媒を流すバイパス経路と、このバイパス経路を開閉する開閉弁とを設ける。冷房運転モード時では、開閉弁を開くことで、暖房用膨張弁16を迂回させて冷媒を流す。同様に、冷房用膨張弁19として、電気式膨張弁の代わりに固定絞りを用いても良い。
(3)上記した各実施形態では、補助熱交換器15で電池用空気(第2温度調整対象物)を冷却あるいは加熱することによって、二次電池55を冷却あるいは加熱した。しかしながら、補助熱交換器を水―冷媒熱交換器で構成し、補助熱交換器で水を冷却あるいは加熱することによって、二次電池55を冷却あるいは加熱しても良い。この場合、水が第2温度調整対象物となる。また、補助熱交換器を冷媒と二次電池55とが直接熱交換する構成としても良い。この場合、二次電池55が第2温度調整対象物となる。
(4)上記した各実施形態では、冷凍サイクル装置10を電気自動車に適用した例を説明したが、もちろん内燃機関から車両走行用の駆動力を得る通常の車両や、内燃機関と走行用電動モータの双方から車両走行用の駆動力を得るハイブリッド車両に適用してもよい。内燃機関を有する車両に適用する場合には、内燃機関の冷却水を熱源として室内用空気を加熱するヒータコアを設けてもよい。
(5)上記した各実施形態では、第2温度調整対象物が二次電池55に送風される電池用空気であったが、車室内空間に送風される車室内用空気であっても良い。この場合、例えば、室内蒸発器20にて車室内の前席に吹き出される車室内用空気を冷却あるいは加熱し、補助熱交換器15にて車室内の後席に吹き出される車室内用空気を冷却あるいは加熱しても良い。これによれば、ヒートポンプを用いたデュアルエアコンとして後席での冷房あるいは暖房が可能となる。
(6)上記した各実施形態では、第1温度調整対象物として空調対象空間へ送風される室内用空気を加熱あるいは冷却した例を説明したが、第1温度調整対象物はこれに限定されない。例えば、第1温度調整対象物として飲料水や生活用水等を採用してもよい。また、上記した各実施形態では、第2温度調整対象物を冷却あるいは加熱することによって、二次電池55を冷却あるいは加熱した例を説明したが、始動前あるいは始動直後、走行中に最適温度範囲内で冷却や加熱を必要とされる車載機器の冷却あるいは加熱を行ってもよい。例えば、内燃機関(エンジン)、電動モータ、インバータ、トランスミッション等の冷却あるいは加熱を行ってもよい。
(7)上記した各実施形態では、冷凍サイクル装置10を車両に適用したが、冷凍サイクル装置10を車両以外に適用してもよい。例えば、第1温度調整対象物を室内へ送風させる空気とし、第2温度調整対象物を発電装置の温度調整を行うための熱媒体としてもよい。
(8)なお、上記した各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。

Claims (4)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒と外気とを熱交換させて前記圧縮機吸入口側へ流出させる室外熱交換器(17)と、
     前記圧縮機から吐出された冷媒および前記室外熱交換器から流出した冷媒のうち一方の冷媒と第1温度調整対象物とを熱交換させる利用側熱交換器(13、20)と、
     冷媒と第2温度調整対象物とを熱交換させる補助熱交換器(15)と、
     前記補助熱交換器に連通する流路断面積が所定値より大きな第1配管(24)と、
     前記補助熱交換器に連通する流路断面積が第1配管より小さな第2配管(25)と、
     サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部(14a、14b、14c、18a、19、21a、26)とを備え、
     前記冷媒流路切替部は、少なくとも、前記圧縮機吐出口側から前記室外熱交換器入口側へ至る範囲の冷媒が、前記第1配管を介して前記補助熱交換器へ流入するとともに、前記補助熱交換器から流出した冷媒が、前記第2配管を介して前記室外熱交換器入口側へ導かれる第1冷媒流路と、前記室外熱交換器出口側から前記圧縮機吸入口側へ至る範囲の冷媒が、前記第2配管を介して前記補助熱交換器へ流入するとともに、前記補助熱交換器から流出した冷媒が、前記第1配管を介して前記圧縮機吸入口側へ導かれる第2冷媒流路とを切替可能に構成されている冷凍サイクル装置。
  2.  前記利用側熱交換器として、前記圧縮機から吐出された冷媒を、前記第1温度調整対象物と熱交換させて放熱させ、前記室外熱交換器入口側へ流出させる放熱用熱交換器(13)が設けられており、
     前記第1冷媒流路に切り替えられたとき、前記放熱用熱交換器出口側から前記室外熱交換器入口側へ至る範囲の冷媒が、前記第1配管を介して前記補助熱交換器へ流入するとともに、前記補助熱交換器から流出した冷媒が、前記第2配管を介して前記室外熱交換器入口側へ導かれる請求項1に記載の冷凍サイクル装置。
  3.  前記補助熱交換器は、冷媒が流入する冷媒入口(15c)と冷媒が流出する冷媒出口(15d)とを有し
     前記冷媒流路切替部は、前記補助熱交換器の冷媒入口と前記第1配管とが連通するとともに、前記補助熱交換器の冷媒出口と前記第2配管とが連通する第1連通状態と、前記補助熱交換器の冷媒入口と前記第2配管とが連通するとともに、前記補助熱交換器の冷媒出口と前記第1配管とが連通する第2連通状態とを切り替える連通状態切換部(26)を有し、
     前記連通状態切換部は、前記第1冷媒流路に切り替えられたとき、前記第1連通状態とし、前記第2冷媒流路に切り替えられたとき、前記第2連通状態とし、
     前記補助熱交換器の冷媒入口と前記連通状態切換部との間に配置され、前記補助熱交換器(15)の冷媒入口に流入する冷媒を減圧する減圧器(21)を備える請求項1または2に記載の冷凍サイクル装置。
  4. 前記補助熱交換器と前記第1配管との間に配置され、前記補助熱交換器に流入する冷媒を減圧する第1減圧器(27)と、
     前記補助熱交換器と前記第2配管との間に配置され、前記補助熱交換器に流入する冷媒を減圧する第2減圧器(21)とを備える請求項3に記載の冷凍サイクル装置。
PCT/JP2013/005863 2012-11-07 2013-10-02 冷凍サイクル装置 WO2014073151A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013005304.7T DE112013005304B4 (de) 2012-11-07 2013-10-02 Kältekreislaufvorrichtung
US14/440,727 US9786964B2 (en) 2012-11-07 2013-10-02 Refrigeration cycle device for auxiliary heating or cooling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012245645A JP5870903B2 (ja) 2012-11-07 2012-11-07 冷凍サイクル装置
JP2012-245645 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073151A1 true WO2014073151A1 (ja) 2014-05-15

Family

ID=50684278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005863 WO2014073151A1 (ja) 2012-11-07 2013-10-02 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US9786964B2 (ja)
JP (1) JP5870903B2 (ja)
DE (1) DE112013005304B4 (ja)
WO (1) WO2014073151A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082570A1 (ja) * 2017-10-26 2019-05-02 株式会社デンソー 車両用熱管理システム
WO2019235414A1 (ja) * 2018-06-08 2019-12-12 株式会社デンソー 車両用冷凍サイクル装置
JP2020034228A (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
JP2021037862A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 車両用空調装置
WO2023177120A1 (ko) * 2022-03-17 2023-09-21 한온시스템 주식회사 차량의 열관리 시스템

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217631A (ja) * 2012-03-14 2013-10-24 Denso Corp 冷凍サイクル装置
JP2016090201A (ja) * 2014-11-11 2016-05-23 株式会社デンソー 冷凍サイクル装置
DE102015208438A1 (de) * 2015-05-06 2016-11-10 Robert Bosch Gmbh Temperierungsvorrichtung für eine Batterie und einen Fahrzeuginnenraum, Verfahren zur Temperierung einer Batterie und eines Fahrzeuginnenraumes mit einer solchen Temperierungsvorrichtung und Verwendung einer solchen Temperierungsvorrichtung
CN106240340B (zh) * 2015-06-04 2018-09-25 本田技研工业株式会社 车辆用电源装置
JP6535570B2 (ja) * 2015-10-20 2019-06-26 本田技研工業株式会社 車両
JP6481633B2 (ja) * 2016-02-02 2019-03-13 株式会社デンソー 車両の空調装置
US10486498B2 (en) 2016-02-23 2019-11-26 Ford Global Technologies, Llc Method and system for operating a heat pump of a vehicle
JP6590321B2 (ja) * 2016-03-25 2019-10-16 パナソニックIpマネジメント株式会社 車両用空調装置
CN109416205B (zh) 2016-06-17 2021-10-15 开利公司 电池组冷启动的热气旁路
DE102016214119A1 (de) 2016-08-01 2018-02-01 Volkswagen Aktiengesellschaft Klimatisierungsvorrichtung für ein Kraftfahrzeug und Verfahren zu deren Betrieb
ES2973256T3 (es) * 2017-06-06 2024-06-19 Carrier Corp Sistema de refrigeración de transporte
JP6753379B2 (ja) * 2017-09-15 2020-09-09 トヨタ自動車株式会社 車両の熱交換システム
CN110015196B (zh) * 2017-09-30 2021-02-23 比亚迪股份有限公司 电动汽车、电池热管理供电系统及其控制方法
US20190142185A1 (en) * 2017-11-10 2019-05-16 Hill Phoenix, Inc. Configuration for a heat exchanger in a temperature controlled case
KR102484896B1 (ko) * 2017-12-13 2023-01-04 현대자동차주식회사 볼텍스 튜브를 이용한 리튬-공기 배터리 시스템
FR3079669A1 (fr) * 2018-03-29 2019-10-04 Valeo Systemes Thermiques Circuit de gestion thermique d'un dispositif de stockage electrique d'un vehicule automobile et procede de pilotage associe
JP7056819B2 (ja) * 2018-06-27 2022-04-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11964536B2 (en) * 2018-09-18 2024-04-23 Sanden Corporation Vehicular heat exchange system and motor unit used in same
JP2020050155A (ja) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN109455103B (zh) * 2018-12-19 2024-09-06 山东万辉新能源科技有限公司 一种电动汽车多路交流充电桩的集控装置
US20200282806A1 (en) * 2019-03-04 2020-09-10 Denso International America, Inc. Heating and cooling system
JP7410672B2 (ja) * 2019-08-28 2024-01-10 サンデン株式会社 車両用空気調和装置
CN110911777B (zh) * 2019-10-25 2023-05-30 国网山西省电力公司运城供电公司 智能能源控制器
CN111098664B (zh) * 2020-01-19 2020-11-20 湖南汽车工程职业学院 一种混合动力汽车多模式温度管理系统
DE102020201455A1 (de) 2020-02-06 2021-08-12 Ford Global Technologies, Llc System sowie Verfahren zur Klimatisierung eines Fahrzeuginnenraums und gleichzeitigen Kühlung einer Fahrzeugbatterie für ein elektrisches Fahrzeug
JP7112453B2 (ja) * 2020-07-15 2022-08-03 本田技研工業株式会社 車両
CN213920593U (zh) * 2020-09-21 2021-08-10 比亚迪股份有限公司 车辆热管理系统及电动汽车
US11855267B1 (en) 2021-02-02 2023-12-26 Motiv Power Systems, Inc. Methods and apparatus for controlling cooling capacity of a multi- evaporator cooling system
CN113147320B (zh) * 2021-04-23 2022-07-01 吉林大学 一种热泵汽车空调系统
US11919368B2 (en) 2021-10-07 2024-03-05 Ford Global Technologies, Llc Heat pump for a vehicle
US11912105B2 (en) 2021-10-07 2024-02-27 Ford Global Technologies, Llc Heat pump for a vehicle
US20230130147A1 (en) * 2021-10-21 2023-04-27 Luxshare Precision Industry (Jiangsu) Co.,Ltd. Liquid cooling system of charging gun and charging gun
US11987098B2 (en) 2021-10-26 2024-05-21 Ford Global Technologies, Llc Heat pump for a vehicle
US12097750B2 (en) 2021-10-26 2024-09-24 Ford Global Technologies, Llc Heat pump for a vehicle
US12017509B2 (en) 2021-12-14 2024-06-25 Ford Global Technologies, Llc Heat pump for a vehicle
US12000639B2 (en) 2021-12-20 2024-06-04 Ford Global Technologies, Llc Heat pump with multiple vapor generators
CN117691243A (zh) * 2023-12-12 2024-03-12 深蓝汽车科技有限公司 电池直冷系统、方法、车辆电池管理系统及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972625A (ja) * 1995-09-07 1997-03-18 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2004078440A (ja) * 2002-08-14 2004-03-11 Kubota Corp 自動販売機の冷却加温装置
JP2008308080A (ja) * 2007-06-15 2008-12-25 Hitachi Ltd 自動車の吸放熱システムおよびその制御方法
JP2012172849A (ja) * 2011-02-17 2012-09-10 Daikin Industries Ltd 空気調和機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029980B2 (ja) 2001-04-17 2012-09-19 株式会社ヴァレオジャパン バッテリー冷却装置
JP4241024B2 (ja) * 2002-12-18 2009-03-18 株式会社デンソー 車両用空調装置の配管接続構造
JP4803199B2 (ja) * 2008-03-27 2011-10-26 株式会社デンソー 冷凍サイクル装置
FR2958020B1 (fr) * 2010-03-25 2015-07-17 Valeo Systemes Thermiques Boucle de climatisation comprenant un echangeur thermique directement interpose entre deux organes de detente
WO2012046594A1 (ja) * 2010-10-06 2012-04-12 日産自動車株式会社 車両用空調装置
DE102012204404B4 (de) * 2011-03-25 2022-09-08 Denso Corporation Wärmeaustauschsystem und Fahrzeugkältekreislaufsystem
JP5755490B2 (ja) * 2011-04-18 2015-07-29 トヨタ自動車株式会社 冷却装置
JP5758196B2 (ja) 2011-05-25 2015-08-05 株式会社名南製作所 ベニヤ単板の切断装置
JP2013217631A (ja) 2012-03-14 2013-10-24 Denso Corp 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972625A (ja) * 1995-09-07 1997-03-18 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2004078440A (ja) * 2002-08-14 2004-03-11 Kubota Corp 自動販売機の冷却加温装置
JP2008308080A (ja) * 2007-06-15 2008-12-25 Hitachi Ltd 自動車の吸放熱システムおよびその制御方法
JP2012172849A (ja) * 2011-02-17 2012-09-10 Daikin Industries Ltd 空気調和機

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077398A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 車両用熱管理システム
US11499757B2 (en) 2017-10-26 2022-11-15 Denso Corporation Vehicular heat management system
WO2019082570A1 (ja) * 2017-10-26 2019-05-02 株式会社デンソー 車両用熱管理システム
JP7147279B2 (ja) 2018-06-08 2022-10-05 株式会社デンソー 車両用冷凍サイクル装置
WO2019235414A1 (ja) * 2018-06-08 2019-12-12 株式会社デンソー 車両用冷凍サイクル装置
JP2019209938A (ja) * 2018-06-08 2019-12-12 株式会社デンソー 車両用冷凍サイクル装置
CN112272622B (zh) * 2018-06-08 2024-01-16 株式会社电装 车辆用制冷循环装置
US11525611B2 (en) * 2018-06-08 2022-12-13 Denso Corporation Refrigeration cycle device for vehicle
CN112272622A (zh) * 2018-06-08 2021-01-26 株式会社电装 车辆用制冷循环装置
JP7117945B2 (ja) 2018-08-30 2022-08-15 サンデン株式会社 車両空調装置用ヒートポンプシステム
WO2020045261A1 (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
US11794555B2 (en) 2018-08-30 2023-10-24 Sanden Corporation Heat pump system for vehicle air conditioning devices
JP2020034228A (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
JP2021037862A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 車両用空調装置
JP7445374B2 (ja) 2019-09-04 2024-03-07 株式会社デンソー 車両用空調装置
WO2023177120A1 (ko) * 2022-03-17 2023-09-21 한온시스템 주식회사 차량의 열관리 시스템

Also Published As

Publication number Publication date
US20150295285A1 (en) 2015-10-15
JP5870903B2 (ja) 2016-03-01
DE112013005304T5 (de) 2015-07-30
DE112013005304B4 (de) 2019-09-05
JP2014095487A (ja) 2014-05-22
US9786964B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
JP5870903B2 (ja) 冷凍サイクル装置
US20190111756A1 (en) Refrigeration cycle device
WO2013136693A1 (ja) 冷凍サイクル装置
JP6794964B2 (ja) 冷凍サイクル装置
JP6201434B2 (ja) 冷凍サイクル装置
WO2014188674A1 (ja) 冷凍サイクル装置
JP6075058B2 (ja) 冷凍サイクル装置
WO2014049928A1 (ja) 冷凍サイクル装置
CN110997369B (zh) 制冷循环装置
WO2014103143A1 (ja) 冷凍サイクル装置
WO2016075897A1 (ja) 冷凍サイクル装置
WO2017010289A1 (ja) ヒートポンプサイクル
JP2012225637A (ja) 冷凍サイクル装置
JP7516761B2 (ja) 冷凍サイクル装置
CN112638674B (zh) 制冷循环装置
CN114793444B (zh) 制冷循环装置
WO2020213537A1 (ja) 冷凍サイクル装置
WO2019116781A1 (ja) 車両用暖房装置
WO2020050038A1 (ja) 冷凍サイクル装置
WO2014024376A1 (ja) 冷凍サイクル装置
JP2019217947A (ja) 空調装置
WO2020050039A1 (ja) 冷凍サイクル装置
JP6922856B2 (ja) 冷凍サイクル装置
WO2023199912A1 (ja) ヒートポンプサイクル装置
WO2024101061A1 (ja) ヒートポンプサイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440727

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130053047

Country of ref document: DE

Ref document number: 112013005304

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853848

Country of ref document: EP

Kind code of ref document: A1