WO2014069008A1 - Induction heating cooker - Google Patents
Induction heating cooker Download PDFInfo
- Publication number
- WO2014069008A1 WO2014069008A1 PCT/JP2013/056913 JP2013056913W WO2014069008A1 WO 2014069008 A1 WO2014069008 A1 WO 2014069008A1 JP 2013056913 W JP2013056913 W JP 2013056913W WO 2014069008 A1 WO2014069008 A1 WO 2014069008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- current
- frequency
- induction heating
- heating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2213/00—Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
- H05B2213/07—Heating plates with temperature control means
Definitions
- This invention relates to an induction heating cooker.
- Some conventional induction heating cookers determine the temperature of an object to be heated based on the input current or control amount of an inverter. For example, it has a control means for controlling the inverter so that the input current of the inverter becomes constant, and when the control amount changes more than a predetermined amount within a predetermined time, the temperature change of the object to be heated is determined to be large.
- An induction heating cooker that suppresses the output of an inverter has been proposed (see, for example, Patent Document 1).
- a temperature detection device for an induction heating cooker comprising temperature determination processing means for determining a temperature corresponding to the change amount of the input current detected by the input current change amount detection means for detecting only the change amount of the input current Has been proposed (see, for example, Patent Document 2).
- JP 2008-181892 A page 3 to page 5, FIG. 1
- Japanese Patent Laid-Open No. 5-62773 pages 2 to 3, FIG. 1
- the present invention has been made to solve the above-described problems, and provides an induction heating cooker that can detect a temperature change of a heated object regardless of the material of the heated object. Moreover, the highly reliable induction heating cooking appliance which suppressed the increase in input current is obtained.
- An induction heating cooker includes a heating coil that induction-heats an object to be heated, a drive circuit that supplies high-frequency power to the heating coil, load determination means that performs load determination processing of the heating coil, and the drive Amplifying means for amplifying a detected value of at least one of an input current to the circuit and a coil current flowing in the heating coil, and a control for controlling the driving of the drive circuit and the high-frequency power supplied to the heating coil And the control unit drives the drive circuit according to a determination result of the load determination unit, and detects a detected value of at least one of the input current and the coil current, or the load determination unit.
- the amplification factor of the amplification unit is set, and the detection frequency amplified by the amplification unit in a state where the drive frequency of the drive circuit is fixed Determine the amount of change per predetermined time, based on the amount of change per predetermined time, the which detects the temperature change of the heated object.
- This invention can detect the temperature change of the heated object regardless of the material of the heated object. Further, an increase in input current can be suppressed, and reliability can be improved.
- FIG. It is a disassembled perspective view which shows the induction heating cooking appliance which concerns on Embodiment 1.
- FIG. It is a figure which shows the drive circuit of the induction heating cooking appliance which concerns on Embodiment 1.
- FIG. It is a load discrimination
- FIG. It is an interphase figure of the input current with respect to the drive frequency at the time of the temperature change of the to-be-heated material of the induction heating cooking appliance which concerns on Embodiment 1.
- FIG. It is the figure which expanded the part shown with the broken line of FIG.
- FIG. 1 It is a figure which shows the relationship between the drive frequency of the induction heating cooking appliance which concerns on Embodiment 1, temperature, input current, and time. It is a figure which shows the relationship between the drive frequency of the induction heating cooking appliance which concerns on Embodiment 1, temperature, input current, and an amplifier output, and time. It is a figure which shows another drive circuit of the induction heating cooking appliance which concerns on Embodiment 1.
- FIG. 2 It is a figure which shows the drive frequency of the induction heating cooking appliance which concerns on Embodiment 2, temperature, an input current, and the relationship between an amplifier part output and time.
- FIG. 10 is a diagram illustrating an example of a drive signal for a full bridge circuit according to a fourth embodiment.
- FIG. (Constitution) 1 is an exploded perspective view showing an induction heating cooker according to Embodiment 1.
- an induction heating cooker 100 has a top plate 4 on which an object to be heated 5 such as a pan is placed.
- the top plate 4 includes a first heating port 1, a second heating port 2, and a third heating port 3 as heating ports for inductively heating the object to be heated 5, and corresponds to each heating port.
- the first heating unit 11, the second heating unit 12, and the third heating unit 13 are provided, and the object to be heated 5 can be placed on each heating port to perform induction heating. Is.
- the first heating means 11 and the second heating means 12 are provided side by side on the front side of the main body, and the third heating means 13 is provided at substantially the center on the back side of the main body.
- positioning of each heating port is not restricted to this.
- three heating ports may be arranged side by side in a substantially straight line.
- the top plate 4 is entirely made of a material that transmits infrared rays, such as heat-resistant tempered glass or crystallized glass, and a rubber packing or sealing material is interposed between the upper surface and the outer periphery of the upper surface of the induction heating cooker 100 main body. Fixed in a watertight state.
- the top plate 4 has a circular pan showing a rough placement position of the pan corresponding to the heating range (heating port) of the first heating unit 11, the second heating unit 12 and the third heating unit 13.
- the position display is formed by applying paint or printing.
- a heating power and cooking menu (boiling mode, fried food mode when heating the article 5 to be heated by the first heating means 11, the second heating means 12, and the third heating means 13. Etc.) are provided as an input device for setting the operation unit 40a, the operation unit 40b, and the operation unit 40c (hereinafter may be collectively referred to as the operation unit 40). Further, in the vicinity of the operation unit 40, as the notification unit 42, a display unit 41a, a display unit 41b, and a display unit 41c for displaying the operation state of the induction heating cooker 100, the input / operation content from the operation unit 40, and the like. Is provided. Note that the operation units 40a to 40c and the display units 41a to 41c are not particularly limited, for example, when the operation units 40a and 41c are provided for each heating port, or when the operation unit 40 and the display unit 41 are provided collectively.
- a first heating means 11, a second heating means 12, and a third heating means 13 are provided below the top plate 4 and inside the main body, and each heating means is a heating coil (not shown). Z).
- the control unit 45 for controlling the overall operation of the induction heating cooker 100.
- the control unit 45 in the present embodiment constitutes a “control unit” and a “load determination unit” in the present invention.
- the heating coil has a substantially circular planar shape, and is configured by winding a conductive wire made of an arbitrary metal with an insulating film (for example, copper, aluminum, etc.) in the circumferential direction. Is supplied to each heating coil, whereby an induction heating operation is performed.
- FIG. 2 is a diagram illustrating a drive circuit of the induction heating cooker according to the first embodiment.
- the drive circuit 50 is provided for every heating means, and the structure is the same. In FIG. 2, only one drive circuit 50 is shown.
- the drive circuit 50 includes a DC power supply circuit 22, an inverter circuit 23, and a resonance capacitor 24a.
- the input current detection means 25a detects a current input from the AC power supply (commercial power supply) 21 to the DC power supply circuit 22 and outputs a voltage signal corresponding to the input current value to the control unit 45.
- Amplifying units 48a and 48b and a switching unit 49 are provided between the input current detecting means 25a and the control unit 45.
- the amplifying units 48a and 48b amplify the voltage signal (detected value) output from the input current detecting unit 25a.
- the amplifiers 48a and 48b are configured by an amplifier circuit that amplifies and outputs an input voltage signal.
- the amplification units 48a and 48b have different amplification factors, and the switching unit 49 switches the connection with the input current detection means 25a. In the first embodiment, a case where the amplification unit 48b has a higher amplification factor than the amplification unit 48a will be described. In the first embodiment, the case where two amplifying units 48a and 48b are provided will be described.
- the present invention is not limited to this, and three or more amplifying units having different amplification factors may be provided. Further, only one amplifying unit is provided, and the case where the detection value is input to the control unit 45 without going through the amplifying unit and the case where the detection value amplified through the amplifying unit is input to the control unit 45 are switched. May be. Further, an amplification unit that can vary the amplification factor may be provided, and the amplification factor may be set by the control unit 45.
- the DC power supply circuit 22 includes a diode bridge 22a, a reactor 22b, and a smoothing capacitor 22c, converts an AC voltage input from the AC power supply 21 into a DC voltage, and outputs the DC voltage to the inverter circuit 23.
- the inverter circuit 23 is a so-called half-bridge type inverter in which IGBTs 23a and 23b as switching elements are connected in series to the output of the DC power supply circuit 22, and diodes 23c and 23d are parallel to the IGBTs 23a and 23b as flywheel diodes, respectively. It is connected to the.
- the inverter circuit 23 converts the DC power output from the DC power supply circuit 22 into a high-frequency AC power of about 20 kHz to 50 kHz, and supplies the AC power to the resonance circuit including the heating coil 11a and the resonance capacitor 24a.
- the IGBTs 23a and 23b which are switching elements, are composed of, for example, a silicon-based semiconductor, but may be configured using a wide band gap semiconductor such as silicon carbide or a gallium nitride-based material.
- the coil current detection means 25b is connected between the heating coil 11a and the resonance capacitor 24a.
- the coil current detection unit 25b detects the peak of the current flowing through the heating coil 11a and outputs a voltage signal corresponding to the peak value of the heating coil current to the control unit 45.
- the temperature detection means 30 is composed of, for example, a thermistor, and detects the temperature by the heat transferred from the heated object 5 to the top plate 4.
- control unit 45 load determination means
- FIG. 3 is a load discrimination characteristic diagram of an object to be heated based on the relationship between the heating coil current and the input current in the induction heating cooker according to the first embodiment.
- the material of the heated object 5 (pan) serving as a load is largely divided into a magnetic material such as iron or SUS430, a high resistance nonmagnetic material such as SUS304, and a low resistance nonmagnetic material such as aluminum or copper. Separated.
- the relationship between the coil current and the input current differs depending on the material of the pan load placed on the top plate 4.
- the control unit 45 stores therein in advance a load determination table in which the relationship between the coil current and the input current shown in FIG. 3 is tabulated. By storing the load determination table therein, the load determination means can be configured with an inexpensive configuration.
- the control unit 45 drives the inverter circuit 23 with a specific drive signal for load determination, and detects the input current from the output signal of the input current detection means 25a. At the same time, the control unit 45 detects the coil current from the output signal of the coil current detection means 25b.
- the control part 45 determines the material of the to-be-heated material (pan) 5 mounted from the detected coil current and input current, and the load determination table showing the relationship of FIG. Thus, the control part 45 (load determination means) determines the material of the article 5 to be heated placed on the heating coil 11a based on the correlation between the input current and the coil current.
- control unit 45 After performing the above load determination processing, the control unit 45 performs a control operation based on the load determination result.
- the induction heating cooker 100 When the load determination result is a low-resistance non-magnetic material, the induction heating cooker 100 according to the first embodiment cannot be heated. Encourage people to change the pan.
- the notification means 42 is notified that heating is impossible, and the user is prompted to place the pan.
- these pans are materials that can be heated by the induction heating cooker 100 of the first embodiment, and thus the control unit 45 has determined.
- This drive frequency is set to a frequency higher than the resonance frequency so that the input current does not become excessive.
- the drive frequency can be determined by referring to a frequency table or the like corresponding to the material of the article 5 to be heated and the set heating power, for example.
- the control unit 45 fixes the determined drive frequency and drives the inverter circuit 23 to start the induction heating operation. In the state where the drive frequency is fixed, the on-duty (on / off ratio) of the switching element of the inverter circuit 23 is also fixed.
- FIG. 4 is a phase diagram of the input current with respect to the drive frequency when the temperature of the heated object of the induction heating cooker according to Embodiment 1 is changed.
- a thin line is a characteristic when the to-be-heated object 5 (pan) is low temperature
- a thick line is a characteristic when the to-be-heated object 5 is high temperature.
- the characteristics change depending on the temperature of the object to be heated 5 because the resistivity of the object to be heated 5 increases and the magnetic permeability decreases due to the temperature rise, so that the heating coil 11a and the object to be heated are heated. This is because the magnetic coupling of the object 5 changes.
- a frequency higher than the frequency at which the input current shown in FIG. 4 is maximized is determined as the driving frequency, and this driving frequency is fixed and the inverter circuit 23 is controlled.
- FIG. 5 is an enlarged view of a portion indicated by a broken line in FIG.
- the input current value (operating point) at the drive frequency increases as the heated object 5 changes from low temperature to high temperature.
- the point A changes from point A to point B, and the input current gradually decreases as the temperature of the article to be heated 5 rises.
- the control unit 45 obtains a change amount (time change) of the input current per predetermined time with the drive frequency of the inverter circuit 23 fixed, and based on the change amount per predetermined time, the object to be heated 5 Detects temperature changes in
- the material of the to-be-heated object 5 mounted above the heating coil 11a is determined, the drive frequency of the inverter circuit 23 is determined according to the material of the to-be-heated object 5, and the inverter circuit 23 is determined by the drive frequency. Drive.
- the inverter circuit 23 can be fixed and driven by the drive frequency according to the material of the to-be-heated material 5, and the increase in input current can be suppressed. Therefore, the high temperature of the inverter circuit 23 can be suppressed and the reliability can be improved.
- control unit 45 performs a load determination process, determines a drive frequency corresponding to the determined pan material, drives the inverter circuit 23 with the determined drive frequency fixed, and performs an induction heating operation. carry out. And the control part 45 judges completion of boiling by the time change of input current.
- the elapsed time and the change of each characteristic when performing water boiling will be described with reference to FIG.
- FIG. 6 is a diagram showing the relationship between the drive frequency, temperature, input current and time of the induction heating cooker according to the first embodiment.
- FIG. 6 the elapsed time and the change of each characteristic when water is poured into the article to be heated 5 and the boiling of water are shown
- FIG. 6 (a) shows the driving frequency
- FIG. 6 (b) shows the temperature ( Water temperature)
- FIG. 6 (c) shows the input current.
- the inverter circuit 23 is controlled with the drive frequency fixed.
- the temperature (water temperature) of the article to be heated 5 gradually rises until it boils, and when it boils, the temperature becomes constant.
- the input current gradually decreases as the temperature of the article 5 to be heated increases, and when the water boils and the temperature becomes constant, the input current also becomes constant. That is, when the input current becomes constant, the water boils and the boiling is completed.
- control unit 45 in the present embodiment obtains a change amount (time change) of the input current per predetermined time with the drive frequency of the inverter circuit 23 fixed, and the change amount per predetermined time.
- the value becomes equal to or less than the predetermined value it is determined that the water heater has been completed.
- the predetermined value information may be set in the control unit 45 in advance, or may be input from the operation unit 40 or the like.
- reports that the kettle was completed using the alerting
- the notification means 42 is not particularly limited, for example, displaying the completion of boiling on the display unit 41 or notifying the user by voice using a speaker (not shown).
- the notification means 42 notifies the completion of boiling. For this reason, it is possible to promptly notify the completion of boiling of water, and an easy-to-use induction heating cooker can be obtained.
- the magnitude of the input current depends on the magnitude of the high-frequency power (thermal power) supplied to the heating coil 11a.
- the thermal power when the thermal power is small, the temperature rises more slowly than when the thermal power is large, and the input current also decreases slowly. For this reason, when the high-frequency power (thermal power) supplied to the heating coil 11a is small, the change amount of the input current per predetermined time becomes small, and it may be impossible to detect the completion of boiling.
- the control unit 45 selects either the amplification unit 48a or 48b by switching the switching unit 49 according to the detected value of the input current detected by the input current detection means 25a.
- the control unit 45 selects so that the amplification factor of the amplification unit increases as the detected value of the input current decreases.
- the control unit 45 obtains a change amount per predetermined time of the detection value amplified by the selected amplification unit. Then, when the amount of change per predetermined time becomes equal to or less than a predetermined value (substantially constant), it is determined that the water has boiled and the boiling has been completed. Details of such operation will be described with reference to FIG.
- FIG. 7 is a diagram illustrating the relationship between the drive frequency, temperature, input current, and amplification unit output of the induction heating cooker according to Embodiment 1 and time.
- FIG. 7 shows the elapsed time and the change of each characteristic when water is poured into the article to be heated 5 and the boiling of water
- FIG. 7 (a) shows the drive frequency
- FIG. 7 (b) shows the temperature ( Water temperature)
- FIG. 7C shows the input current
- FIG. 7D shows the input current value amplified by the amplifiers 48a and 48b (hereinafter referred to as “amplifier output”).
- amplifier output shows the input current value amplified by the amplifiers 48a and 48b
- a continuous line shows the characteristic at the time of operation
- a broken line shows the characteristic at the time of controlling with low thermal power.
- the driving frequency, the input current, etc., and the length of the time and the length of the time are not particularly determined in relation to absolute values, and when the set thermal power is high thermal power and low thermal power It shall be relatively determined by comparison of cases.
- the drive frequency of the inverter circuit 23 is set low, the drive frequency is fixed, and heating is started (solid line in FIG. 7A).
- the heating power is high, the temperature (water temperature) of the object to be heated 5 rises in a short time (solid line in FIG. 7B).
- the input current decreases as the temperature of the object to be heated 5 increases.
- the input current decreases and the water boils and the temperature becomes constant, the input current also becomes constant.
- the high frequency power supplied to the heating coil 11a since the high frequency power supplied to the heating coil 11a is high and the value of the input current is also high, the amount of change in the input current until the water boils increases.
- the drive frequency of the inverter circuit 23 is set high, the drive frequency is fixed, and heating is started (broken line in FIG. 7A).
- the temperature (water temperature) of the article 5 to be heated rises gently as compared with the high heating power (broken line in FIG. 7B).
- the broken line in FIG. 7 (c) when the temperature of the article 5 to be heated increases, the input current decreases slowly as compared with the high heating power, and the water boils and the temperature becomes constant. The input current is also constant. In this way, at the time of decreasing force, the high frequency power supplied to the heating coil 11a is low and the value of the input current is also low, so the amount of change in the input current until the water boils is also small.
- the control unit 45 determines the input current of the amplifiers 48a and 48b according to the heating power set at the start of the kettle mode 2, that is, the value of the input current detected first. Switch the amplification section to be amplified. In other words, when the input current is lower than a preset threshold value, the input current is amplified by the amplification unit 48b having a high amplification factor among the amplification units 48a and 48b (broken line in FIG. 7D). This increases the amount of change per unit time of the input current.
- the input current is amplified by the amplifying unit 48a having a low amplification factor among the amplifying units 48a and 48b (solid line in FIG. 7D). It should be noted that the selection of the amplifying unit to be used is preferably immediately after the start of the control in the water heating mode 2.
- the present invention is not limited to this, and the amplification factor for amplifying the input current increases as the detected value of the input current decreases.
- Any configuration can be used.
- it may be switched to any of three or more amplifiers having different amplification factors, and the presence or absence of amplification may be switched by one amplifier.
- the amplification factor may be set steplessly by an amplification unit that can vary the amplification factor.
- the control unit 45 obtains a change amount (time change) of the amplified detection value per predetermined time with the drive frequency of the inverter circuit 23 fixed, and the change amount per predetermined time becomes equal to or less than the predetermined value. If it is determined that the water heater has been completed.
- the threshold value and the predetermined value information may be set in the control unit 45 in advance, or may be input from the operation unit 40 or the like.
- reports that the kettle was completed using the alerting
- the notification means 42 is not particularly limited, for example, displaying the completion of boiling on the display unit 41 or notifying the user by voice using a speaker (not shown).
- the amplification unit that amplifies the detection value is selected according to the detection value of the input current, and the change amount of the amplified detection value per predetermined time is obtained.
- the amount of change per predetermined time becomes equal to or less than the predetermined value, it is determined that the boiling is completed. For this reason, irrespective of the high frequency power (thermal power) supplied to the heating coil 11a, the completion of boiling of water can be detected with high accuracy, and a highly reliable induction heating cooker can be obtained. In addition, a user-friendly induction heating cooker can be obtained.
- the controller 45 determines that the kettle has been completed, the driving frequency is released, the driving frequency of the inverter circuit 23 is increased, the input current is decreased, and the high-frequency power supplied to the heating coil 11a. You may make it reduce (thermal power). In the case of boiling water (boiling water), the water temperature does not become 100 ° C. or higher even if the heating power is increased more than necessary, so that the water temperature can be maintained even if the driving frequency is increased and the heating power is decreased. Thus, when the amount of change per predetermined time of the input current correction value is equal to or less than the predetermined value, the drive of the inverter circuit 23 is controlled to reduce the high frequency power supplied to the heating coil 11a. Energy can be saved by reducing power.
- FIG. 8 is a diagram illustrating another drive circuit of the induction heating cooker according to the first embodiment.
- the drive circuit 50 shown in FIG. 8 is obtained by adding a resonance capacitor 24b to the configuration shown in FIG.
- Other configurations are the same as those in FIG. 2, and the same parts are denoted by the same reference numerals.
- the resonance circuit is configured by the heating coil 11a and the resonance capacitor, the capacity of the resonance capacitor is determined by the maximum heating power (maximum input power) required for the induction heating cooker.
- the drive circuit 50 shown in FIG. 8 by connecting the resonant capacitors 24a and 24b in parallel, the respective capacities can be halved, and an inexpensive control circuit can be obtained even when two resonant capacitors are used. .
- the coil current detection means 25b can be used, a small and inexpensive control circuit can be obtained, and an inexpensive induction heating cooker can be obtained.
- the amplification units 48 a and 48 b and the control unit 45 are described separately.
- the amplification units 48 a and 48 b may be configured as a part of the control unit 45.
- Embodiment 2 Another control operation when the water heating mode is selected by the operation unit 40 will be described.
- the structure of the induction heating cooking appliance 100 in this Embodiment 2 is the same as that of the said Embodiment 1.
- FIG. 1 is the same as that of the said Embodiment 1.
- the amount of change in input current from the start of heating to the boiling of water also varies depending on the load (material) of the article 5 to be heated. That is, even with the same thermal power, there are materials having a large current change amount and materials having a small amount of current change. For this reason, when the object to be heated 5 with a small amount of current change is induction-heated and water is heated, depending on the material of the object to be heated 5, the amount of change in the input current per predetermined time becomes small and the water heater is heated. Completion may not be detected.
- control unit 45 determines the magnitude of the current change amount of the object to be heated 5 immediately after the start of the hot water heating mode control, and the amplification unit 48a or One of 48b is selected. Details of such an operation will be described with reference to FIG.
- FIG. 9 is a diagram illustrating the relationship between the drive frequency, temperature, input current, and amplification unit output of the induction heating cooker according to Embodiment 2 and time.
- FIG. 9 the elapsed time and the change of each characteristic when water is poured into the article to be heated 5 and the boiling of water are shown
- FIG. 9 (a) shows the drive frequency
- FIG. 9 (b) shows the temperature
- 9C shows the input current
- FIG. 9D shows the input current value (hereinafter referred to as “amplifier output”) amplified by the amplifiers 48a and 48b.
- amplifier output the input current value amplified by the amplifiers 48a and 48b.
- the solid line shows the characteristics when a load (material) with a small amount of current change is heated
- the broken line shows the characteristics when a load (material) with a large amount of current change is heated.
- the magnitude of the input current and the like and the magnitude of the current change amount are not particularly determined in relation to the absolute value, but by comparing the load (material) of the object 5 to be heated, It shall be relatively determined.
- control unit 45 determines the magnitude of the current change amount of the heated object 5 immediately after the start of the control in the hot water heating mode 3.
- FIG. 10 is a diagram for explaining a determination process of the current change amount of the object to be heated based on the relationship between the heating coil current and the input current in the induction heating cooker according to the second embodiment.
- the type of material of the heated object 5 (pan) serving as a load can be determined. Even if it is the thing 5, the to-be-heated object 5 with a large amount of current changes and the to-be-heated object 5 with a small amount of current changes exist. Therefore, as shown in FIG.
- the control unit 45 stores the magnitude relation of the current change amount in advance according to the value of the input current and the value of the coil current based on experimental data or the like. Keep it. Then, the control unit 45 (load determination unit) determines the magnitude relation of the current change amount stored in advance based on the input current detected by the input current detection unit 25a and the coil current detected by the coil current detection unit 25b. By referring to the information, the magnitude of the current change amount when the object to be heated 5 is heated is determined. In the example of FIG. 10, the case where the current change amount is “large” and the case of “small” are shown, but the present invention is not limited to these two cases, and in three or more stages. You may judge.
- the control unit 45 switches the amplification unit that amplifies the input current among the amplification units 48a and 48b according to the determination result of the current change amount. That is, when it is determined that the amount of change in current is small, the input current is amplified by the amplification unit 48b having a high amplification factor among the amplification units 48a and 48b (broken line in FIG. 9D). This increases the amount of change per unit time of the input current. When it is determined that the amount of current change is large, the input current is amplified by the amplifier 48a having a low amplification factor among the amplifiers 48a and 48b (solid line in FIG. 9D). It should be noted that the selection of the amplifying unit to be used is preferably immediately after the start of the control in the water heating mode 2.
- the control unit 45 obtains a change amount (time change) of the amplified detection value per predetermined time with the drive frequency of the inverter circuit 23 fixed, and the change amount per predetermined time becomes equal to or less than the predetermined value. If it is determined that the water heater has been completed.
- the predetermined value information may be set in the control unit 45 in advance, or may be input from the operation unit 40 or the like.
- reports that the kettle was completed using the alerting
- the notification means 42 is not particularly limited, for example, displaying the completion of boiling on the display unit 41 or notifying the user by voice using a speaker (not shown).
- the amplification unit that amplifies the detection value is selected according to the current change amount of the object to be heated 5, and the change in the amplified detection value per predetermined time An amount is obtained, and when the amount of change per predetermined time becomes equal to or less than a predetermined value, it is determined that the boiling is completed. For this reason, it is possible to accurately detect the completion of boiling of water regardless of the amount of current change during induction heating of the article 5 to be heated, and it is possible to obtain a highly reliable induction heating cooker. In addition, a user-friendly induction heating cooker can be obtained.
- the controller 45 determines that the kettle has been completed, the driving frequency is released, the driving frequency of the inverter circuit 23 is increased, the input current is decreased, and the high-frequency power supplied to the heating coil 11a. You may make it reduce (thermal power). In the case of boiling water (boiling water), the water temperature does not become 100 ° C. or higher even if the heating power is increased more than necessary, so that the water temperature can be maintained even if the driving frequency is increased and the heating power is decreased. Thus, when the amount of change per predetermined time of the input current correction value is equal to or less than the predetermined value, the drive of the inverter circuit 23 is controlled to reduce the high frequency power supplied to the heating coil 11a. Energy can be saved by reducing power.
- the method for controlling the thermal power by changing the drive frequency is described.
- the method for controlling the thermal power by changing the on-duty (on / off ratio) of the switching element of the inverter circuit 23 is used. Also good.
- the example in which the amount of change in the input current detected by the input current detection unit 25a is detected has been described.
- the change in the coil current detected by the coil current detection unit 25b is described.
- the amount may be detected, or the amount of change in both the input current and the coil current may be detected.
- amplification units 48a and 48b and a switching unit 49 are provided between the coil current detection means 25b and the control unit 45, and the detection value is selected by the selected amplification unit in the same manner as described above. Amplify.
- the half-bridge type inverter circuit 23 has been described. However, a configuration using a full-bridge type or a single-voltage resonance type inverter may be used.
- Embodiment 3 FIG. In the third embodiment, details of the drive circuit 50 in the first and second embodiments will be described.
- FIG. 11 is a diagram illustrating a part of the drive circuit of the induction heating cooker according to the third embodiment.
- the inverter circuit 23 includes two switching elements (IGBTs 23a and 23b) connected in series between positive and negative buses, and diodes 23c and 23d connected in antiparallel to the switching elements, respectively. One set of arms is provided.
- the IGBT 23 a and the IGBT 23 b are driven on and off by a drive signal output from the control unit 45.
- the control unit 45 turns off the IGBT 23b while turning on the IGBT 23a, turns on the IGBT 23b while turning off the IGBT 23a, and outputs a drive signal that turns on and off alternately.
- the half bridge inverter which drives the heating coil 11a is comprised by IGBT23a and IGBT23b.
- the IGBT 23a and the IGBT 23b constitute the “half bridge inverter circuit” in the present invention.
- the control part 45 inputs a high frequency drive signal into IGBT23a and IGBT23b according to input electric power (thermal power), and adjusts a heating output.
- the drive signal output to the IGBT 23a and the IGBT 23b is variable in a drive frequency range higher than the resonance frequency of the load circuit constituted by the heating coil 11a and the resonance capacitor 24a, and the current flowing through the load circuit is applied to the load circuit. It is controlled to flow with a lagging phase compared to the voltage to be transmitted.
- FIG. 12 is a diagram illustrating an example of a drive signal of the half bridge circuit according to the third embodiment.
- FIG. 12A shows an example of the drive signal of each switch in the high thermal power state.
- FIG. 12B is an example of the drive signal of each switch in the low thermal power state.
- the control unit 45 outputs a high-frequency drive signal higher than the resonance frequency of the load circuit to the IGBT 23 a and the IGBT 23 b of the inverter circuit 23. By varying the frequency of the drive signal, the output of the inverter circuit 23 increases or decreases.
- the frequency of the high-frequency current supplied to the heating coil 11a approaches the resonance frequency of the load circuit, and the input power to the heating coil 11a increases.
- the frequency of the high-frequency current supplied to the heating coil 11a is separated from the resonance frequency of the load circuit, and the input power to the heating coil 11a is reduced.
- control unit 45 controls the application time of the output voltage of the inverter circuit 23 by changing the on-duty ratio of the IGBT 23a and the IGBT 23b of the inverter circuit 23, along with the control of the input power by changing the drive frequency described above, It is also possible to control the input power to the heating coil 11a.
- the ratio (on duty ratio) of the on-time of the IGBT 23a (the off-time of the IGBT 23b) in one cycle of the drive signal is increased to increase the voltage application time width in one cycle.
- the ratio (on duty ratio) of the on-time of the IGBT 23a (the off-time of the IGBT 23b) in one cycle of the drive signal is reduced to reduce the voltage application time width in one cycle.
- the ratio between the ON time T11a of the IGBT 23a (the OFF time of the IGBT 23b) and the OFF time T11b of the IGBT 23a (the ON time of the IGBT 23b) in one cycle T11 of the drive signal is the same (on duty ratio). Is 50%).
- the ratio between the on time T12a of the IGBT 23a (the off time of the IGBT 23b) and the off time T12b of the IGBT 23a (the on time of the IGBT 23b) in one cycle T12 of the drive signal is the same (on The case where the duty ratio is 50%) is illustrated.
- control unit 45 obtains the amount of change per predetermined time of the amplified detection value described in the first and second embodiments, in a state where the drive frequency of the inverter circuit 23 is fixed, the control unit 45 The on-duty ratio of the IGBT 23a and the IGBT 23b is fixed. Thereby, the amount of change per predetermined time of the amplified detection value can be obtained in a state where the input power to the heating coil 11a is constant.
- FIG. 13 is a diagram illustrating a part of the drive circuit of the induction heating cooker according to the fourth embodiment.
- the two heating coils have different diameters and are arranged concentrically.
- the heating coil having a small diameter is referred to as an inner coil 11b
- the heating coil having a large diameter is referred to as an outer coil 11c.
- positioning of a heating coil are not limited to this.
- positioned in the center of a heating port may be sufficient.
- the inverter circuit 23 includes three arms each composed of two switching elements (IGBTs) connected in series between the positive and negative buses and diodes connected to the switching elements in antiparallel.
- IGBTs switching elements
- one of the three sets of arms is called a common arm, and the other two sets are called an inner coil arm and an outer coil arm.
- the common arm is an arm connected to the inner coil 11b and the outer coil 11c, and includes an IGBT 232a, an IGBT 232b, a diode 232c, and a diode 232d.
- the inner coil arm is an arm to which the inner coil 11b is connected, and includes an IGBT 231a, an IGBT 231b, a diode 231c, and a diode 231d.
- the outer coil arm is an arm to which the outer coil 11c is connected, and includes an IGBT 233a, an IGBT 233b, a diode 233c, and a diode 233d.
- the common arm IGBT 232a and IGBT 232b, the inner coil arm IGBT 231a and IGBT 231b, and the outer coil arm IGBT 233a and IGBT 233b are driven on and off by a drive signal output from the control unit 45.
- the controller 45 turns off the IGBT 232b while turning on the IGBT 232a of the common arm, turns on the IGBT 232b while turning off the IGBT 232a, and outputs a drive signal that turns on and off alternately.
- the control unit 45 outputs drive signals for alternately turning on and off the IGBTs 231a and IGBT 231b for the inner coil arms and the IGBTs 233a and IGBT 233b for the outer coil arms.
- the common arm and the inner coil arm constitute a full bridge inverter that drives the inner coil 11b.
- the common arm and the outer coil arm constitute a full bridge inverter that drives the outer coil 11c.
- the “full bridge inverter circuit” in the present invention is constituted by the common arm and the inner coil arm.
- the common arm and the outer coil arm constitute a “full bridge inverter circuit” in the present invention.
- the load circuit constituted by the inner coil 11b and the resonance capacitor 24c is connected between the output point of the common arm (the connection point of the IGBT 232a and the IGBT 232b) and the output point of the arm for the inner coil (the connection point of the IGBT 231a and the IGBT 231b). Is done.
- the load circuit constituted by the outer coil 11c and the resonance capacitor 24d is connected between the output point of the common arm and the output point of the outer coil arm (the connection point between the IGBT 233a and the IGBT 233b).
- the inner coil 11b is a heating coil with a small outer shape wound in a substantially circular shape, and an outer coil 11c is disposed on the outer periphery thereof.
- the coil current flowing through the inner coil 11b is detected by the coil current detection means 25c.
- the coil current detection means 25c detects the peak of the current flowing through the inner coil 11b and outputs a voltage signal corresponding to the peak value of the heating coil current to the control unit 45.
- the coil current flowing through the outer coil 11c is detected by the coil current detection means 25d.
- the peak of the current flowing through the coil current detection means 25d for example, the outer coil 11c, is detected, and a voltage signal corresponding to the peak value of the heating coil current is output to the control unit 45.
- the control unit 45 inputs a high-frequency drive signal to the switching element (IGBT) of each arm according to the input power (thermal power), and adjusts the heating output.
- the drive signal output to the switching elements of the common arm and the inner coil arm varies in a drive frequency range higher than the resonance frequency of the load circuit constituted by the inner coil 11b and the resonance capacitor 24c, and flows to the load circuit. Control is performed so that the current flows in a delayed phase compared to the voltage applied to the load circuit.
- the drive signal output to the switching elements of the common arm and the outer coil arm can be varied within a drive frequency range higher than the resonance frequency of the load circuit constituted by the outer coil 11c and the resonance capacitor 24d, and the load circuit Control is performed so that the current flowing in the current flows in a delayed phase compared to the voltage applied to the load circuit.
- FIG. 14 is a diagram illustrating an example of a drive signal of the full bridge circuit according to the fourth embodiment.
- FIG. 14A shows an example of the drive signal of each switch and the energization timing of each heating coil in the high thermal power state.
- FIG. 14B is an example of the drive signal of each switch and the energization timing of each heating coil in the low thermal power state.
- the energization timings shown in FIGS. 14A and 14B are related to the potential difference between the output points of each arm (the connection point between the IGBT and the IGBT), and the output points of the inner coil arm and the outer coil.
- a state where the output point of the common arm is lower than the output point of the arm is indicated by “ON”. Further, the state where the output point of the common arm is higher than the output point of the inner coil arm and the output point of the outer coil arm and the state of the same potential are indicated by “OFF”.
- the control unit 45 outputs a high-frequency drive signal higher than the resonance frequency of the load circuit to the IGBTs 232a and IGBTs 232b of the common arm. Further, the control unit 45 outputs a drive signal having a phase advanced from the drive signal of the common arm to the IGBT 231a and IGBT 231b of the inner coil arm and the IGBT 233a and IGBT 233b of the outer coil arm.
- the frequency of the drive signal of each arm is the same frequency, and the on-duty ratio is also the same.
- the positive bus potential or the negative bus potential which is the output of the DC power supply circuit, is switched at a high frequency and output at the output point of each arm (the connection point between the IGBT and IGBT) in accordance with the on / off state of the IGBT and IGBT.
- a potential difference between the output point of the common arm and the output point of the inner coil arm is applied to the inner coil 11b.
- a potential difference between the output point of the common arm and the output point of the outer coil arm is applied to the outer coil 11c. Therefore, the high frequency voltage applied to the inner coil 11b and the outer coil 11c can be adjusted by increasing / decreasing the phase difference between the driving signal to the common arm and the driving signals to the inner coil arm and the outer coil arm.
- the high frequency output current and the input current flowing through the inner coil 11b and the outer coil 11c can be controlled.
- the phase ⁇ between the arms is increased to increase the voltage application time width in one cycle.
- the upper limit of the phase ⁇ between the arms is in the case of reverse phase (phase difference 180 °), and the output voltage waveform at this time is almost a rectangular wave.
- the case where the phase ⁇ between the arms is 180 ° is illustrated.
- the energization on time width T14a and the energization off time width T14b of the inner coil 11b and the outer coil 11c in one cycle T14 of the drive signal have the same ratio.
- the phase ⁇ between the arms When lowering the thermal power, the phase ⁇ between the arms is made smaller than in the high thermal power state to reduce the voltage application time width in one cycle.
- the lower limit of the phase ⁇ between the arms is set to a level at which an excessive current does not flow into the switching element and breaks due to the phase of the current flowing in the load circuit at the time of turn-on, for example.
- FIG. 14B the case where the phase ⁇ between the arms is made smaller than that in FIG. 14A is illustrated.
- the frequency and on-duty ratio of the drive signal for each arm are the same as in FIG.
- the energization on time width T14a of the inner coil 11b and the outer coil 11c in one cycle T14 of the drive signal is a time corresponding to the phase ⁇ between the arms.
- the input power (thermal power) to the inner coil 11b and the outer coil 11c can be controlled by the phase difference between the arms.
- the control unit 45 determines the phase between the arms when the drive frequency of the inverter circuit 23 is fixed when the amount of change per predetermined time of the amplified detection value described in the first and second embodiments is obtained. ⁇ and the on-duty ratio of the switching element of each arm are fixed. Other operations are the same as those in the first or second embodiment. Thereby, the amount of change per predetermined time of the amplified detection value can be obtained in a state where the input power to the inner coil 11b and the outer coil 11c is constant.
- the coil current flowing through the inner coil 11b and the coil current flowing through the outer coil 11c are detected by the coil current detecting means 25c and the coil current detecting means 25d, respectively. Therefore, when both the inner coil 11b and the outer coil 11c are heated, even if either the coil current detection means 25c or the coil current detection means 25d cannot detect the coil current value due to a failure or the like. By amplifying the other detection value, it becomes possible to detect a change amount of the detection value per predetermined time. Further, the control unit 45 changes the detected value obtained by amplifying the detection value of the coil current detection unit 25c per predetermined time and the change per predetermined time of the detection value obtained by amplifying the detection value of the coil current detection unit 25d.
- Each determination operation described in the first and second embodiments may be performed using the larger one of the change amounts.
- each determination operation described in the first and second embodiments may be performed using an average value of each change amount.
- the IH cooking heater has been described as an example of the induction heating cooker of the present invention, but the present invention is not limited to this.
- the present invention can be applied to any induction heating cooker that employs an induction heating method, such as a rice cooker that performs cooking by induction heating.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
Abstract
This induction heating cooker: drives an inverter circuit (23) in accordance with the determination result of a load determining means; sets the amplification factor of an amplifying means in accordance with the determination result of the load determining means and the detection value of an input current and/or a coil current; calculates the change per prescribed time of the detection value amplified by the amplifying means with the drive frequency of the inverter circuit (23) fixed; and detects the change in temperature of an object to be heated on the basis of said change per prescribed time.
Description
この発明は、誘導加熱調理器に関するものである。
This invention relates to an induction heating cooker.
従来の誘導加熱調理器においては、被加熱物の温度を、インバータの入力電流や制御量により判定するものがある。
例えば、インバータの入力電流が一定となるようにインバータを制御する制御手段を有し、所定時間以内に所定以上の制御量の変化があった場合に被加熱物の温度変化が大と判断してインバータの出力を抑制する誘導加熱調理器が提案されている(例えば、特許文献1参照)。
また例えば、入力電流の変化分のみを検出する入力電流変化量検出手段によって検出された入力電流の変化量に対応する温度を判定する温度判定処理手段とを備えた誘導加熱調理器の温度検出装置が提案されている(例えば、特許文献2参照)。 Some conventional induction heating cookers determine the temperature of an object to be heated based on the input current or control amount of an inverter.
For example, it has a control means for controlling the inverter so that the input current of the inverter becomes constant, and when the control amount changes more than a predetermined amount within a predetermined time, the temperature change of the object to be heated is determined to be large. An induction heating cooker that suppresses the output of an inverter has been proposed (see, for example, Patent Document 1).
Further, for example, a temperature detection device for an induction heating cooker comprising temperature determination processing means for determining a temperature corresponding to the change amount of the input current detected by the input current change amount detection means for detecting only the change amount of the input current Has been proposed (see, for example, Patent Document 2).
例えば、インバータの入力電流が一定となるようにインバータを制御する制御手段を有し、所定時間以内に所定以上の制御量の変化があった場合に被加熱物の温度変化が大と判断してインバータの出力を抑制する誘導加熱調理器が提案されている(例えば、特許文献1参照)。
また例えば、入力電流の変化分のみを検出する入力電流変化量検出手段によって検出された入力電流の変化量に対応する温度を判定する温度判定処理手段とを備えた誘導加熱調理器の温度検出装置が提案されている(例えば、特許文献2参照)。 Some conventional induction heating cookers determine the temperature of an object to be heated based on the input current or control amount of an inverter.
For example, it has a control means for controlling the inverter so that the input current of the inverter becomes constant, and when the control amount changes more than a predetermined amount within a predetermined time, the temperature change of the object to be heated is determined to be large. An induction heating cooker that suppresses the output of an inverter has been proposed (see, for example, Patent Document 1).
Further, for example, a temperature detection device for an induction heating cooker comprising temperature determination processing means for determining a temperature corresponding to the change amount of the input current detected by the input current change amount detection means for detecting only the change amount of the input current Has been proposed (see, for example, Patent Document 2).
特許文献1に記載の誘導加熱調理器では、入力電力が一定となるようにインバータの駆動周波数を制御し、この制御量変化(Δf)によって被加熱物の温度変化を判断している。しかしながら、被加熱物の材質によっては、駆動周波数の制御量変化(Δf)が微小となり、被加熱物の温度変化を検知できないという問題点があった。
In the induction heating cooker described in Patent Document 1, the drive frequency of the inverter is controlled so that the input power is constant, and the temperature change of the object to be heated is determined by this control amount change (Δf). However, depending on the material of the object to be heated, there is a problem that the control amount change (Δf) of the driving frequency becomes minute and the temperature change of the object to be heated cannot be detected.
特許文献2に記載の誘導加熱調理器の温度検出装置では、被加熱物の材質が変わった場合に、インバータの駆動周波数によっては入力電流が過大となり、インバータが高温となって破壊する可能性があるという問題点があった。
In the temperature detection device for an induction heating cooker described in Patent Document 2, when the material of the object to be heated changes, the input current may become excessive depending on the drive frequency of the inverter, and the inverter may become hot and break down. There was a problem that there was.
この発明は、上記のような課題を解決するためになされたもので、被加熱物の材質によらず、被加熱物の温度変化を検知することができる誘導加熱調理器を得るものである。また、入力電流の増加を抑制した信頼性の高い誘導加熱調理器を得るものである。
The present invention has been made to solve the above-described problems, and provides an induction heating cooker that can detect a temperature change of a heated object regardless of the material of the heated object. Moreover, the highly reliable induction heating cooking appliance which suppressed the increase in input current is obtained.
この発明に係る誘導加熱調理器は、被加熱物を誘導加熱する加熱コイルと、前記加熱コイルに高周波電力を供給する駆動回路と、前記加熱コイルの負荷判定処理を行う負荷判定手段と、前記駆動回路への入力電流および前記加熱コイルに流れるコイル電流の少なくとも何れか一方の検出値を増幅する増幅手段と、前記駆動回路の駆動を制御し、前記加熱コイルに供給される高周波電力を制御する制御部とを備え、前記制御部は、前記負荷判定手段の判定結果に応じて、前記駆動回路を駆動させ、前記入力電流および前記コイル電流の少なくともいずれか一方の検出値、または、前記負荷判定手段の判定結果に応じて、前記増幅手段の増幅率を設定し、前記駆動回路の駆動周波数を固定した状態で、前記増幅手段によって増幅された前記検出値の所定時間当たりの変化量を求め、前記所定時間当たりの変化量に基づき、前記被加熱物の温度変化を検知するものである。
An induction heating cooker according to the present invention includes a heating coil that induction-heats an object to be heated, a drive circuit that supplies high-frequency power to the heating coil, load determination means that performs load determination processing of the heating coil, and the drive Amplifying means for amplifying a detected value of at least one of an input current to the circuit and a coil current flowing in the heating coil, and a control for controlling the driving of the drive circuit and the high-frequency power supplied to the heating coil And the control unit drives the drive circuit according to a determination result of the load determination unit, and detects a detected value of at least one of the input current and the coil current, or the load determination unit. In accordance with the determination result, the amplification factor of the amplification unit is set, and the detection frequency amplified by the amplification unit in a state where the drive frequency of the drive circuit is fixed Determine the amount of change per predetermined time, based on the amount of change per predetermined time, the which detects the temperature change of the heated object.
この発明は、被加熱物の材質によらず、被加熱物の温度変化を検知することができる。また、入力電流の増加を抑制することができ、信頼性を向上することができる。
This invention can detect the temperature change of the heated object regardless of the material of the heated object. Further, an increase in input current can be suppressed, and reliability can be improved.
実施の形態1.
(構成)
図1は、実施の形態1に係る誘導加熱調理器を示す分解斜視図である。
図1に示すように、誘導加熱調理器100の上部には、鍋などの被加熱物5が載置される天板4を有している。天板4には、被加熱物5を誘導加熱するための加熱口として、第一の加熱口1、第二の加熱口2、第三の加熱口3とを備え、各加熱口に対応して、第一の加熱手段11、第二の加熱手段12、第三の加熱手段13を備えており、それぞれの加熱口に対して被加熱物5を載置して誘導加熱を行うことができるものである。
本実施の形態1では、本体の手前側に左右に並べて第一の加熱手段11と第二の加熱手段12が設けられ、本体の奥側ほぼ中央に第三の加熱手段13が設けられている。
なお、各加熱口の配置はこれに限るものではない。例えば、3つの加熱口を略直線状に横に並べて配置しても良い。また、第一の加熱手段11の中心と第二の加熱手段12の中心との奥行き方向の位置が異なるように配置しても良い。Embodiment 1 FIG.
(Constitution)
1 is an exploded perspective view showing an induction heating cooker according toEmbodiment 1. FIG.
As shown in FIG. 1, aninduction heating cooker 100 has a top plate 4 on which an object to be heated 5 such as a pan is placed. The top plate 4 includes a first heating port 1, a second heating port 2, and a third heating port 3 as heating ports for inductively heating the object to be heated 5, and corresponds to each heating port. The first heating unit 11, the second heating unit 12, and the third heating unit 13 are provided, and the object to be heated 5 can be placed on each heating port to perform induction heating. Is.
In the first embodiment, the first heating means 11 and the second heating means 12 are provided side by side on the front side of the main body, and the third heating means 13 is provided at substantially the center on the back side of the main body. .
In addition, arrangement | positioning of each heating port is not restricted to this. For example, three heating ports may be arranged side by side in a substantially straight line. Moreover, you may arrange | position so that the position of the depth direction of the center of the 1st heating means 11 and the center of the 2nd heating means 12 may differ.
(構成)
図1は、実施の形態1に係る誘導加熱調理器を示す分解斜視図である。
図1に示すように、誘導加熱調理器100の上部には、鍋などの被加熱物5が載置される天板4を有している。天板4には、被加熱物5を誘導加熱するための加熱口として、第一の加熱口1、第二の加熱口2、第三の加熱口3とを備え、各加熱口に対応して、第一の加熱手段11、第二の加熱手段12、第三の加熱手段13を備えており、それぞれの加熱口に対して被加熱物5を載置して誘導加熱を行うことができるものである。
本実施の形態1では、本体の手前側に左右に並べて第一の加熱手段11と第二の加熱手段12が設けられ、本体の奥側ほぼ中央に第三の加熱手段13が設けられている。
なお、各加熱口の配置はこれに限るものではない。例えば、3つの加熱口を略直線状に横に並べて配置しても良い。また、第一の加熱手段11の中心と第二の加熱手段12の中心との奥行き方向の位置が異なるように配置しても良い。
(Constitution)
1 is an exploded perspective view showing an induction heating cooker according to
As shown in FIG. 1, an
In the first embodiment, the first heating means 11 and the second heating means 12 are provided side by side on the front side of the main body, and the third heating means 13 is provided at substantially the center on the back side of the main body. .
In addition, arrangement | positioning of each heating port is not restricted to this. For example, three heating ports may be arranged side by side in a substantially straight line. Moreover, you may arrange | position so that the position of the depth direction of the center of the 1st heating means 11 and the center of the 2nd heating means 12 may differ.
天板4は、全体が耐熱強化ガラスや結晶化ガラス等の赤外線を透過する材料で構成されており、誘導加熱調理器100本体の上面開口外周との間にゴム製パッキンやシール材を介して水密状態に固定される。天板4には、第一の加熱手段11、第二の加熱手段12及び第三の加熱手段13の加熱範囲(加熱口)に対応して、鍋の大まかな載置位置を示す円形の鍋位置表示が、塗料の塗布や印刷等により形成されている。
The top plate 4 is entirely made of a material that transmits infrared rays, such as heat-resistant tempered glass or crystallized glass, and a rubber packing or sealing material is interposed between the upper surface and the outer periphery of the upper surface of the induction heating cooker 100 main body. Fixed in a watertight state. The top plate 4 has a circular pan showing a rough placement position of the pan corresponding to the heating range (heating port) of the first heating unit 11, the second heating unit 12 and the third heating unit 13. The position display is formed by applying paint or printing.
天板4の手前側には、第一の加熱手段11、第二の加熱手段12、及び第三の加熱手段13で被加熱物5を加熱する際の火力や調理メニュー(湯沸しモード、揚げ物モード等)を設定するための入力装置として、操作部40a、操作部40b、及び操作部40c(以下、操作部40と総称する場合がある)が設けられている。また、操作部40の近傍には、報知手段42として、誘導加熱調理器100の動作状態や操作部40からの入力・操作内容等を表示する表示部41a、表示部41b、及び表示部41cが設けられている。なお、操作部40a~40cと表示部41a~41cは加熱口毎に設けられている場合や、加熱口を一括して操作部40と表示部41を設ける場合など、特に限定するものではない。
On the front side of the top plate 4, there is a heating power and cooking menu (boiling mode, fried food mode when heating the article 5 to be heated by the first heating means 11, the second heating means 12, and the third heating means 13. Etc.) are provided as an input device for setting the operation unit 40a, the operation unit 40b, and the operation unit 40c (hereinafter may be collectively referred to as the operation unit 40). Further, in the vicinity of the operation unit 40, as the notification unit 42, a display unit 41a, a display unit 41b, and a display unit 41c for displaying the operation state of the induction heating cooker 100, the input / operation content from the operation unit 40, and the like. Is provided. Note that the operation units 40a to 40c and the display units 41a to 41c are not particularly limited, for example, when the operation units 40a and 41c are provided for each heating port, or when the operation unit 40 and the display unit 41 are provided collectively.
天板4の下方であって本体の内部には、第一の加熱手段11、第二の加熱手段12、及び第三の加熱手段13を備えており、各々の加熱手段は加熱コイル(図示せず)で構成されている。
A first heating means 11, a second heating means 12, and a third heating means 13 are provided below the top plate 4 and inside the main body, and each heating means is a heating coil (not shown). Z).
誘導加熱調理器100の本体の内部には、第一の加熱手段11、第二の加熱手段12、及び第三の加熱手段13の加熱コイルに高周波電力を供給する駆動回路50と、駆動回路50を含め誘導加熱調理器100全体の動作を制御するための制御部45とが設けられている。
なお、本実施の形態における制御部45は、本発明における「制御部」および「負荷判定手段」を構成する。 Inside the main body of theinduction heating cooker 100, there are a drive circuit 50 for supplying high frequency power to the heating coils of the first heating means 11, the second heating means 12, and the third heating means 13, and the drive circuit 50. And a control unit 45 for controlling the overall operation of the induction heating cooker 100.
Thecontrol unit 45 in the present embodiment constitutes a “control unit” and a “load determination unit” in the present invention.
なお、本実施の形態における制御部45は、本発明における「制御部」および「負荷判定手段」を構成する。 Inside the main body of the
The
加熱コイルは、略円形の平面形状を有し、絶縁皮膜された任意の金属(例えば銅、アルミなど)からなる導電線が円周方向に巻き付けることにより構成されており、駆動回路50により高周波電力が各加熱コイルに供給されることで、誘導加熱動作が行われている。
The heating coil has a substantially circular planar shape, and is configured by winding a conductive wire made of an arbitrary metal with an insulating film (for example, copper, aluminum, etc.) in the circumferential direction. Is supplied to each heating coil, whereby an induction heating operation is performed.
図2は、実施の形態1に係る誘導加熱調理器の駆動回路を示す図である。なお、駆動回路50は加熱手段毎に設けられその構成は同一である。図2では1つの駆動回路50のみを図示する。
図2に示すように、駆動回路50は、直流電源回路22と、インバータ回路23と、共振コンデンサ24aとを備える。 FIG. 2 is a diagram illustrating a drive circuit of the induction heating cooker according to the first embodiment. In addition, thedrive circuit 50 is provided for every heating means, and the structure is the same. In FIG. 2, only one drive circuit 50 is shown.
As shown in FIG. 2, thedrive circuit 50 includes a DC power supply circuit 22, an inverter circuit 23, and a resonance capacitor 24a.
図2に示すように、駆動回路50は、直流電源回路22と、インバータ回路23と、共振コンデンサ24aとを備える。 FIG. 2 is a diagram illustrating a drive circuit of the induction heating cooker according to the first embodiment. In addition, the
As shown in FIG. 2, the
入力電流検出手段25aは、交流電源(商用電源)21から直流電源回路22へ入力される電流を検出し、入力電流値に相当する電圧信号を制御部45へ出力する。
The input current detection means 25a detects a current input from the AC power supply (commercial power supply) 21 to the DC power supply circuit 22 and outputs a voltage signal corresponding to the input current value to the control unit 45.
入力電流検出手段25aと制御部45との間には、増幅部48a、48b、および切替部49が設けられている。増幅部48a、48bは、入力電流検出手段25aから出力された電圧信号(検出値)を増幅する。増幅部48a、48bは、入力された電圧信号を増幅して出力する増幅回路によって構成される。また、増幅部48a、48bは、それぞれ増幅率が異なっており、切替部49によって、入力電流検出手段25aとの接続が切り換えられる。本実施の形態1では、増幅部48bが、増幅部48aより増幅率が大きい場合を説明する。
なお、本実施の形態1では、2つの増幅部48a、48bを設ける場合を説明するが、本発明はこれに限定されず、増幅率が異なる3つ以上の増幅部を設けても良い。また、増幅部を1つのみ設け、増幅部を介さずに検出値を制御部45に入力する場合と、増幅部を介して増幅した検出値を制御部45に入力する場合とを切り換えるようにしても良い。また、増幅率が可変できる増幅部を設け、制御部45によって増幅率を設定するようにしても良い。 Amplifying units 48a and 48b and a switching unit 49 are provided between the input current detecting means 25a and the control unit 45. The amplifying units 48a and 48b amplify the voltage signal (detected value) output from the input current detecting unit 25a. The amplifiers 48a and 48b are configured by an amplifier circuit that amplifies and outputs an input voltage signal. The amplification units 48a and 48b have different amplification factors, and the switching unit 49 switches the connection with the input current detection means 25a. In the first embodiment, a case where the amplification unit 48b has a higher amplification factor than the amplification unit 48a will be described.
In the first embodiment, the case where two amplifying units 48a and 48b are provided will be described. However, the present invention is not limited to this, and three or more amplifying units having different amplification factors may be provided. Further, only one amplifying unit is provided, and the case where the detection value is input to the control unit 45 without going through the amplifying unit and the case where the detection value amplified through the amplifying unit is input to the control unit 45 are switched. May be. Further, an amplification unit that can vary the amplification factor may be provided, and the amplification factor may be set by the control unit 45.
なお、本実施の形態1では、2つの増幅部48a、48bを設ける場合を説明するが、本発明はこれに限定されず、増幅率が異なる3つ以上の増幅部を設けても良い。また、増幅部を1つのみ設け、増幅部を介さずに検出値を制御部45に入力する場合と、増幅部を介して増幅した検出値を制御部45に入力する場合とを切り換えるようにしても良い。また、増幅率が可変できる増幅部を設け、制御部45によって増幅率を設定するようにしても良い。 Amplifying
In the first embodiment, the case where two amplifying
直流電源回路22は、ダイオードブリッジ22a、リアクタ22b、平滑コンデンサ22cとを備え、交流電源21から入力される交流電圧を直流電圧に変換して、インバータ回路23へ出力する。
The DC power supply circuit 22 includes a diode bridge 22a, a reactor 22b, and a smoothing capacitor 22c, converts an AC voltage input from the AC power supply 21 into a DC voltage, and outputs the DC voltage to the inverter circuit 23.
インバータ回路23は、スイッチング素子としてのIGBT23a、23bが直流電源回路22の出力に直列に接続された、いわゆるハーフブリッジ型のインバータであり、フライホイールダイオードとしてダイオード23c、23dがそれぞれIGBT23a、23bと並列に接続されている。インバータ回路23は、直流電源回路22から出力される直流電力を20kHz~50kHz程度の高周波の交流電力に変換して、加熱コイル11aと共振コンデンサ24aからなる共振回路に供給する。
The inverter circuit 23 is a so-called half-bridge type inverter in which IGBTs 23a and 23b as switching elements are connected in series to the output of the DC power supply circuit 22, and diodes 23c and 23d are parallel to the IGBTs 23a and 23b as flywheel diodes, respectively. It is connected to the. The inverter circuit 23 converts the DC power output from the DC power supply circuit 22 into a high-frequency AC power of about 20 kHz to 50 kHz, and supplies the AC power to the resonance circuit including the heating coil 11a and the resonance capacitor 24a.
このように構成することで、加熱コイル11aには数十A程度の高周波電流が流れ、流れる高周波電流により発生する高周波磁束によって加熱コイル11aの直上の天板4上に載置された被加熱物5を誘導加熱する。スイッチング素子であるIGBT23a、23bは、例えばシリコン系からなる半導体で構成されているが、炭化珪素、あるいは窒化ガリウム系材料などのワイドバンドギャップ半導体を用いた構成でも良い。
With this configuration, a high-frequency current of about several tens of A flows through the heating coil 11a, and the object to be heated placed on the top plate 4 directly above the heating coil 11a by the high-frequency magnetic flux generated by the flowing high-frequency current. 5 is induction heated. The IGBTs 23a and 23b, which are switching elements, are composed of, for example, a silicon-based semiconductor, but may be configured using a wide band gap semiconductor such as silicon carbide or a gallium nitride-based material.
コイル電流検出手段25bは、加熱コイル11aと共振コンデンサ24aとの間に接続されている。コイル電流検出手段25bは、例えば、加熱コイル11aに流れる電流のピークを検出し、加熱コイル電流のピーク値に相当する電圧信号を制御部45に出力する。
The coil current detection means 25b is connected between the heating coil 11a and the resonance capacitor 24a. For example, the coil current detection unit 25b detects the peak of the current flowing through the heating coil 11a and outputs a voltage signal corresponding to the peak value of the heating coil current to the control unit 45.
温度検知手段30は、例えばサーミスタにより構成され、被加熱物5から天板4に伝熱した熱により温度を検知する。なお、サーミスタに限らず赤外線センサなど任意のセンサを用いても良い。
The temperature detection means 30 is composed of, for example, a thermistor, and detects the temperature by the heat transferred from the heated object 5 to the top plate 4. In addition, you may use arbitrary sensors, such as not only a thermistor but an infrared sensor.
(動作)
次に実施の形態1に係る誘導加熱調理器100の動作について説明する。
まず、天板4の加熱口に載置された被加熱物5を、操作部40により設定された火力により誘導加熱する場合の動作について説明する。 (Operation)
Next, operation | movement of the inductionheating cooking appliance 100 which concerns on Embodiment 1 is demonstrated.
First, the operation in the case where the object to be heated 5 placed on the heating port of thetop plate 4 is induction-heated by the thermal power set by the operation unit 40 will be described.
次に実施の形態1に係る誘導加熱調理器100の動作について説明する。
まず、天板4の加熱口に載置された被加熱物5を、操作部40により設定された火力により誘導加熱する場合の動作について説明する。 (Operation)
Next, operation | movement of the induction
First, the operation in the case where the object to be heated 5 placed on the heating port of the
使用者により加熱口に被加熱物5が載置され、加熱開始(火力投入)の指示が操作部40に行われると、制御部45(負荷判定手段)は負荷判定処理を行う。
When the heated object 5 is placed on the heating port by the user and an instruction to start heating (heating power input) is given to the operation unit 40, the control unit 45 (load determination means) performs a load determination process.
図3は、実施の形態1に係る誘導加熱調理器における加熱コイル電流と入力電流の関係に基づく被加熱物の負荷判別特性図である。
ここで、負荷となる被加熱物5(鍋)の材質は、鉄やSUS430等の磁性材と、SUS304等の高抵抗非磁性材と、アルミや銅等の低抵抗非磁性材と、に大別される。 FIG. 3 is a load discrimination characteristic diagram of an object to be heated based on the relationship between the heating coil current and the input current in the induction heating cooker according to the first embodiment.
Here, the material of the heated object 5 (pan) serving as a load is largely divided into a magnetic material such as iron or SUS430, a high resistance nonmagnetic material such as SUS304, and a low resistance nonmagnetic material such as aluminum or copper. Separated.
ここで、負荷となる被加熱物5(鍋)の材質は、鉄やSUS430等の磁性材と、SUS304等の高抵抗非磁性材と、アルミや銅等の低抵抗非磁性材と、に大別される。 FIG. 3 is a load discrimination characteristic diagram of an object to be heated based on the relationship between the heating coil current and the input current in the induction heating cooker according to the first embodiment.
Here, the material of the heated object 5 (pan) serving as a load is largely divided into a magnetic material such as iron or SUS430, a high resistance nonmagnetic material such as SUS304, and a low resistance nonmagnetic material such as aluminum or copper. Separated.
図3に示すように、天板4に載置された鍋負荷の材質によってコイル電流と入力電流の関係が異なる。制御部45は、図3に示すコイル電流と入力電流との関係をテーブル化した負荷判定テーブルを予め内部に記憶している。負荷判定テーブルを内部に記憶することで安価な構成で負荷判定手段を構成することができる。
As shown in FIG. 3, the relationship between the coil current and the input current differs depending on the material of the pan load placed on the top plate 4. The control unit 45 stores therein in advance a load determination table in which the relationship between the coil current and the input current shown in FIG. 3 is tabulated. By storing the load determination table therein, the load determination means can be configured with an inexpensive configuration.
負荷判定処理において、制御部45は、負荷判定用の特定の駆動信号でインバータ回路23を駆動し、入力電流検出手段25aの出力信号から入力電流を検出する。また同時に制御部45は、コイル電流検出手段25bの出力信号からコイル電流を検出する。制御部45は検出したコイル電流および入力電流と、図3の関係を表した負荷判定テーブルから、載置された被加熱物(鍋)5の材質を判定する。このように、制御部45(負荷判定手段)は、入力電流とコイル電流との相関に基づいて、加熱コイル11aの上方に載置された被加熱物5の材質を判定する。
In the load determination process, the control unit 45 drives the inverter circuit 23 with a specific drive signal for load determination, and detects the input current from the output signal of the input current detection means 25a. At the same time, the control unit 45 detects the coil current from the output signal of the coil current detection means 25b. The control part 45 determines the material of the to-be-heated material (pan) 5 mounted from the detected coil current and input current, and the load determination table showing the relationship of FIG. Thus, the control part 45 (load determination means) determines the material of the article 5 to be heated placed on the heating coil 11a based on the correlation between the input current and the coil current.
以上の負荷判定処理を行った後、制御部45は、負荷判定結果に基づいた制御動作を行う。
After performing the above load determination processing, the control unit 45 performs a control operation based on the load determination result.
負荷判定結果が、低抵抗非磁性材であった場合、本実施の形態1の誘導加熱調理器100では加熱不可能であるため、加熱不可能であることを報知手段42に報知して、使用者に鍋の変更を促す。
When the load determination result is a low-resistance non-magnetic material, the induction heating cooker 100 according to the first embodiment cannot be heated. Encourage people to change the pan.
また、負荷判定結果が、無負荷であった場合も、加熱不可能であることを報知手段42に報知して、使用者に鍋の載置を促す。
Also, even if the load determination result is no load, the notification means 42 is notified that heating is impossible, and the user is prompted to place the pan.
負荷判定結果が、磁性材、または高抵抗非磁性材であった場合、これらの鍋は本実施の形態1の誘導加熱調理器100で加熱可能な材質であるため、制御部45は、判定した鍋材質に応じた駆動周波数を決定する。この駆動周波数は、入力電流が過大とならないよう共振周波数よりも高い周波数とする。この駆動周波の決定は、例えば被加熱物5の材質と設定火力とに応じた周波数のテーブル等を参照することで決定することができる。
制御部45は、決定した駆動周波数を固定してインバータ回路23を駆動して誘導加熱動作を開始する。なお、駆動周波数を固定した状態においては、インバータ回路23のスイッチング素子のオンデューティ(オンオフ比率)も固定した状態とする。 When the load determination result is a magnetic material or a high-resistance nonmagnetic material, these pans are materials that can be heated by theinduction heating cooker 100 of the first embodiment, and thus the control unit 45 has determined. Determine the drive frequency according to the pan material. This drive frequency is set to a frequency higher than the resonance frequency so that the input current does not become excessive. The drive frequency can be determined by referring to a frequency table or the like corresponding to the material of the article 5 to be heated and the set heating power, for example.
Thecontrol unit 45 fixes the determined drive frequency and drives the inverter circuit 23 to start the induction heating operation. In the state where the drive frequency is fixed, the on-duty (on / off ratio) of the switching element of the inverter circuit 23 is also fixed.
制御部45は、決定した駆動周波数を固定してインバータ回路23を駆動して誘導加熱動作を開始する。なお、駆動周波数を固定した状態においては、インバータ回路23のスイッチング素子のオンデューティ(オンオフ比率)も固定した状態とする。 When the load determination result is a magnetic material or a high-resistance nonmagnetic material, these pans are materials that can be heated by the
The
図4は、実施の形態1に係る誘導加熱調理器の被加熱物の温度変化時の駆動周波数に対する入力電流の相間図である。図4において、細線は被加熱物5(鍋)が低温のときの特性であり、太線は被加熱物5が高温のときの特性である。
図4に示すように、被加熱物5の温度によって特性が変化するのは、温度上昇によって被加熱物5の抵抗率が上昇し、また透磁率が低下することで、加熱コイル11aと被加熱物5の磁気結合が変化するためである。 FIG. 4 is a phase diagram of the input current with respect to the drive frequency when the temperature of the heated object of the induction heating cooker according toEmbodiment 1 is changed. In FIG. 4, a thin line is a characteristic when the to-be-heated object 5 (pan) is low temperature, and a thick line is a characteristic when the to-be-heated object 5 is high temperature.
As shown in FIG. 4, the characteristics change depending on the temperature of the object to be heated 5 because the resistivity of the object to be heated 5 increases and the magnetic permeability decreases due to the temperature rise, so that theheating coil 11a and the object to be heated are heated. This is because the magnetic coupling of the object 5 changes.
図4に示すように、被加熱物5の温度によって特性が変化するのは、温度上昇によって被加熱物5の抵抗率が上昇し、また透磁率が低下することで、加熱コイル11aと被加熱物5の磁気結合が変化するためである。 FIG. 4 is a phase diagram of the input current with respect to the drive frequency when the temperature of the heated object of the induction heating cooker according to
As shown in FIG. 4, the characteristics change depending on the temperature of the object to be heated 5 because the resistivity of the object to be heated 5 increases and the magnetic permeability decreases due to the temperature rise, so that the
本実施の形態1に係る誘導加熱調理器100の制御部45においては、図4に示す入力電流が最大となる周波数よりも高い周波数を駆動周波数として決定し、この駆動周波数を固定してインバータ回路23を制御する。
In the control unit 45 of the induction heating cooker 100 according to the first embodiment, a frequency higher than the frequency at which the input current shown in FIG. 4 is maximized is determined as the driving frequency, and this driving frequency is fixed and the inverter circuit 23 is controlled.
図5は、図4の破線で示した部分を拡大した図である。
前述の負荷判定処理で判定した鍋材質に応じた駆動周波数を固定してインバータ回路23を制御すると、被加熱物5が低温から高温になるにつれて、当該駆動周波数における入力電流値(動作点)が、点Aから点Bに変化し、被加熱物5の温度上昇に伴い、入力電流が徐々に低下していく。
このとき、制御部45は、インバータ回路23の駆動周波数を固定した状態で、入力電流の所定時間当たりの変化量(時間変化)を求め、この所定時間当たりの変化量に基づき、被加熱物5の温度変化を検知する。 FIG. 5 is an enlarged view of a portion indicated by a broken line in FIG.
When theinverter circuit 23 is controlled by fixing the drive frequency according to the pan material determined in the load determination process described above, the input current value (operating point) at the drive frequency increases as the heated object 5 changes from low temperature to high temperature. The point A changes from point A to point B, and the input current gradually decreases as the temperature of the article to be heated 5 rises.
At this time, thecontrol unit 45 obtains a change amount (time change) of the input current per predetermined time with the drive frequency of the inverter circuit 23 fixed, and based on the change amount per predetermined time, the object to be heated 5 Detects temperature changes in
前述の負荷判定処理で判定した鍋材質に応じた駆動周波数を固定してインバータ回路23を制御すると、被加熱物5が低温から高温になるにつれて、当該駆動周波数における入力電流値(動作点)が、点Aから点Bに変化し、被加熱物5の温度上昇に伴い、入力電流が徐々に低下していく。
このとき、制御部45は、インバータ回路23の駆動周波数を固定した状態で、入力電流の所定時間当たりの変化量(時間変化)を求め、この所定時間当たりの変化量に基づき、被加熱物5の温度変化を検知する。 FIG. 5 is an enlarged view of a portion indicated by a broken line in FIG.
When the
At this time, the
このため、被加熱物5の材質によらず、被加熱物5の温度変化を検知することができる。また、入力電流の変化により被加熱物5の温度変化を検知することができるので、温度センサ等と比較して高速に温度変化を検知することができる。
For this reason, it is possible to detect the temperature change of the heated object 5 regardless of the material of the heated object 5. Moreover, since the temperature change of the to-be-heated object 5 can be detected by the change of input current, a temperature change can be detected at high speed compared with a temperature sensor etc.
また、加熱コイル11aの上方に載置された被加熱物5の材質を判定し、被加熱物5の材質に応じて、インバータ回路23の駆動周波数を決定し、該駆動周波数によりインバータ回路23を駆動させる。このため、被加熱物5の材質に応じた駆動周波数によりインバータ回路23を固定して駆動させることができ、入力電流の増加を抑制することができる。よって、インバータ回路23の高温化を抑制でき、信頼性を向上することができる。
Moreover, the material of the to-be-heated object 5 mounted above the heating coil 11a is determined, the drive frequency of the inverter circuit 23 is determined according to the material of the to-be-heated object 5, and the inverter circuit 23 is determined by the drive frequency. Drive. For this reason, the inverter circuit 23 can be fixed and driven by the drive frequency according to the material of the to-be-heated material 5, and the increase in input current can be suppressed. Therefore, the high temperature of the inverter circuit 23 can be suppressed and the reliability can be improved.
(湯沸しモード1)
次に、操作部40により調理メニュー(動作モード)として、被加熱物5に投入された水の湯沸し動作を行う湯沸しモードが選択された場合の動作について説明する。 (Water heating mode 1)
Next, an operation when the water heating mode for performing the water heating operation of the water charged in the article to be heated 5 is selected as the cooking menu (operation mode) by theoperation unit 40 will be described.
次に、操作部40により調理メニュー(動作モード)として、被加熱物5に投入された水の湯沸し動作を行う湯沸しモードが選択された場合の動作について説明する。 (Water heating mode 1)
Next, an operation when the water heating mode for performing the water heating operation of the water charged in the article to be heated 5 is selected as the cooking menu (operation mode) by the
制御部45は、上述した動作と同様に、負荷判定処理を行い、判定した鍋材質に応じた駆動周波数を決定し、決定した駆動周波数を固定してインバータ回路23を駆動して誘導加熱動作を実施する。そして、制御部45は、入力電流の時間変化により沸騰完了を判断する。ここで、水の湯沸かしを行う際の経過時間と各特性の変化について図6により説明する。
Similarly to the above-described operation, the control unit 45 performs a load determination process, determines a drive frequency corresponding to the determined pan material, drives the inverter circuit 23 with the determined drive frequency fixed, and performs an induction heating operation. carry out. And the control part 45 judges completion of boiling by the time change of input current. Here, the elapsed time and the change of each characteristic when performing water boiling will be described with reference to FIG.
図6は、実施の形態1に係る誘導加熱調理器の駆動周波数、温度、入力電流と時間との関係を示す図である。図6においては、被加熱物5内に水が投入され湯沸しを行った際の経過時間と各特性の変化を示しており、図6(a)は駆動周波数、図6(b)は温度(水温)、図6(c)は入力電流を示す。
FIG. 6 is a diagram showing the relationship between the drive frequency, temperature, input current and time of the induction heating cooker according to the first embodiment. In FIG. 6, the elapsed time and the change of each characteristic when water is poured into the article to be heated 5 and the boiling of water are shown, FIG. 6 (a) shows the driving frequency, and FIG. 6 (b) shows the temperature ( Water temperature), FIG. 6 (c) shows the input current.
図6(a)に示すように、駆動周波数を固定してインバータ回路23の制御を行う。図6(b)に示すように、被加熱物5の温度(水温)は沸騰するまで徐々に上昇し、沸騰すると温度が一定となる。図6(c)に示すように、被加熱物5の温度の上昇に応じて、入力電流は徐々に低下していき、水が沸騰して温度が一定となると、入力電流も一定となる。すなわち、入力電流が一定となれば、水が沸騰して湯沸しが完了したこととなる。
As shown in FIG. 6A, the inverter circuit 23 is controlled with the drive frequency fixed. As shown in FIG. 6B, the temperature (water temperature) of the article to be heated 5 gradually rises until it boils, and when it boils, the temperature becomes constant. As shown in FIG. 6C, the input current gradually decreases as the temperature of the article 5 to be heated increases, and when the water boils and the temperature becomes constant, the input current also becomes constant. That is, when the input current becomes constant, the water boils and the boiling is completed.
このようなことから、本実施の形態における制御部45は、インバータ回路23の駆動周波数を固定した状態で入力電流の所定時間当たりの変化量(時間変化)を求め、この所定時間当たりの変化量が所定値以下となった場合、湯沸かしが完了したと判断する。
なお、所定値の情報は予め制御部45に設定しても良いし、操作部40等から入力可能としても良い。 For this reason, thecontrol unit 45 in the present embodiment obtains a change amount (time change) of the input current per predetermined time with the drive frequency of the inverter circuit 23 fixed, and the change amount per predetermined time. When the value becomes equal to or less than the predetermined value, it is determined that the water heater has been completed.
The predetermined value information may be set in thecontrol unit 45 in advance, or may be input from the operation unit 40 or the like.
なお、所定値の情報は予め制御部45に設定しても良いし、操作部40等から入力可能としても良い。 For this reason, the
The predetermined value information may be set in the
そして、制御部45は、報知手段42を用いて湯沸かしが完了した旨を報知する。ここで報知手段42としては、表示部41に沸騰完了などの表示を行ったり、スピーカ(図示せず)を用いて音声で使用者に報知したり、その方式は特に限定しない。
And the control part 45 alert | reports that the kettle was completed using the alerting | reporting means 42. FIG. Here, the notification means 42 is not particularly limited, for example, displaying the completion of boiling on the display unit 41 or notifying the user by voice using a speaker (not shown).
以上のように、水の湯沸し動作を設定する湯沸しモードにおいて、インバータ回路23の駆動周波数を固定した状態で、入力電流の所定時間当たりの変化量を求め、この所定時間当たりの変化量が、所定値以下となったとき、湯沸しが完了した旨を報知手段42により報知させる。
このため、水の湯沸かし完了を速やかに報知することができ、使い勝手の良い誘導加熱調理器を得ることができる。 As described above, in the water heating mode in which the water boiling operation is set, the amount of change per predetermined time of the input current is obtained with the drive frequency of theinverter circuit 23 being fixed. When the value is less than or equal to the value, the notification means 42 notifies the completion of boiling.
For this reason, it is possible to promptly notify the completion of boiling of water, and an easy-to-use induction heating cooker can be obtained.
このため、水の湯沸かし完了を速やかに報知することができ、使い勝手の良い誘導加熱調理器を得ることができる。 As described above, in the water heating mode in which the water boiling operation is set, the amount of change per predetermined time of the input current is obtained with the drive frequency of the
For this reason, it is possible to promptly notify the completion of boiling of water, and an easy-to-use induction heating cooker can be obtained.
(湯沸かしモード2)
次に、操作部40により湯沸しモードが選択された場合の別の制御動作について説明する。 (Water heater mode 2)
Next, another control operation when the water heating mode is selected by theoperation unit 40 will be described.
次に、操作部40により湯沸しモードが選択された場合の別の制御動作について説明する。 (Water heater mode 2)
Next, another control operation when the water heating mode is selected by the
入力電流の大きさは、加熱コイル11aに供給される高周波電力(火力)の大きさに依存し、火力が大きければ入力電流が大きく、火力が小さければ入力電流も小さくなる。また、火力が小さい場合には、火力が大きい場合と比較して、温度上昇が緩やかであり、入力電流もゆっくりと低下する。このため、加熱コイル11aに供給される高周波電力(火力)が小さい場合には、入力電流の所定時間当たりの変化量が小さくなり、湯沸し完了を検知できない場合がある。
The magnitude of the input current depends on the magnitude of the high-frequency power (thermal power) supplied to the heating coil 11a. The larger the thermal power, the larger the input current, and the smaller the thermal power, the smaller the input current. In addition, when the thermal power is small, the temperature rises more slowly than when the thermal power is large, and the input current also decreases slowly. For this reason, when the high-frequency power (thermal power) supplied to the heating coil 11a is small, the change amount of the input current per predetermined time becomes small, and it may be impossible to detect the completion of boiling.
湯沸しモード2において、制御部45は、入力電流検出手段25aで検出した入力電流の検出値に応じて、切替部49を切り換えることによって、増幅部48aまたは48bのいずれかを選択する。ここで、制御部45は、入力電流の検出値が小さいほど、増幅部の増幅率が大きくなるように選択する。制御部45は、選択した増幅部によって増幅された検出値の所定時間当たりの変化量を求める。そして、所定時間当たりの変化量が所定値以下(ほぼ一定)となったときに、水が沸騰して湯沸しが完了したと判断する。このような動作の詳細を図7により説明する。
In the hot water heating mode 2, the control unit 45 selects either the amplification unit 48a or 48b by switching the switching unit 49 according to the detected value of the input current detected by the input current detection means 25a. Here, the control unit 45 selects so that the amplification factor of the amplification unit increases as the detected value of the input current decreases. The control unit 45 obtains a change amount per predetermined time of the detection value amplified by the selected amplification unit. Then, when the amount of change per predetermined time becomes equal to or less than a predetermined value (substantially constant), it is determined that the water has boiled and the boiling has been completed. Details of such operation will be described with reference to FIG.
図7は、実施の形態1に係る誘導加熱調理器の駆動周波数、温度、入力電流、および増幅部出力と時間との関係を示す図である。図7においては、被加熱物5内に水が投入され湯沸しを行った際の経過時間と各特性の変化を示しており、図7(a)は駆動周波数、図7(b)は温度(水温)、図7(c)は入力電流、図7(d)は増幅部48a、48bによって増幅された入力電流値(以下「増幅部出力」という)を示す。また、図7の各図において、実線は高火力で動作(制御)した場合の特性を示し、破線は低火力で制御した場合の特性を示す。
なお、以下の説明において、駆動周波数、入力電流等の高低および時間の長短については、特に絶対的な値との関係で定まっているものではなく、設定火力が高火力の場合と低火力との場合の比較によって、相対的に定まるものとする。 FIG. 7 is a diagram illustrating the relationship between the drive frequency, temperature, input current, and amplification unit output of the induction heating cooker according toEmbodiment 1 and time. In FIG. 7, the elapsed time and the change of each characteristic when water is poured into the article to be heated 5 and the boiling of water are shown, FIG. 7 (a) shows the drive frequency, and FIG. 7 (b) shows the temperature ( Water temperature), FIG. 7C shows the input current, and FIG. 7D shows the input current value amplified by the amplifiers 48a and 48b (hereinafter referred to as “amplifier output”). Moreover, in each figure of FIG. 7, a continuous line shows the characteristic at the time of operation | movement (control) with high thermal power, and a broken line shows the characteristic at the time of controlling with low thermal power.
In the following explanation, the driving frequency, the input current, etc., and the length of the time and the length of the time are not particularly determined in relation to absolute values, and when the set thermal power is high thermal power and low thermal power It shall be relatively determined by comparison of cases.
なお、以下の説明において、駆動周波数、入力電流等の高低および時間の長短については、特に絶対的な値との関係で定まっているものではなく、設定火力が高火力の場合と低火力との場合の比較によって、相対的に定まるものとする。 FIG. 7 is a diagram illustrating the relationship between the drive frequency, temperature, input current, and amplification unit output of the induction heating cooker according to
In the following explanation, the driving frequency, the input current, etc., and the length of the time and the length of the time are not particularly determined in relation to absolute values, and when the set thermal power is high thermal power and low thermal power It shall be relatively determined by comparison of cases.
高火力の場合、インバータ回路23の駆動周波数を低く設定し、駆動周波数を固定して加熱を開始する(図7(a)の実線)。この場合、高火力であるため、被加熱物5の温度(水温)が短時間で上昇する(図7(b)の実線)。図7(c)の実線に示すように、被加熱物5の温度の上昇に伴い、入力電流が低下する。入力電流が低下し、水が沸騰して温度が一定となると、入力電流も一定となる。このように、高火力時は、加熱コイル11aに供給される高周波電力も高く、入力電流の値も高いため、水の沸騰に至るまでの入力電流の変化量も大きくなる。
一方、低火力の場合、インバータ回路23の駆動周波数を高く設定し、駆動周波数を固定して加熱を開始する(図7(a)の破線)。この場合、低火力であるため、被加熱物5の温度(水温)は、高火力時と比較して穏やかに上昇する(図7(b)の破線)。図7(c)の破線に示すように、被加熱物5の温度の上昇に伴い、高火力時と比較して、入力電流がゆっくりと低下し、水が沸騰して温度が一定となると、入力電流も一定となる。
このように、低下力時は、加熱コイル11aに供給される高周波電力が低く、入力電流の値も低いため、水の沸騰に至るまでの入力電流の変化量も小さくなる。 In the case of high thermal power, the drive frequency of theinverter circuit 23 is set low, the drive frequency is fixed, and heating is started (solid line in FIG. 7A). In this case, since the heating power is high, the temperature (water temperature) of the object to be heated 5 rises in a short time (solid line in FIG. 7B). As indicated by the solid line in FIG. 7C, the input current decreases as the temperature of the object to be heated 5 increases. When the input current decreases and the water boils and the temperature becomes constant, the input current also becomes constant. Thus, at the time of high thermal power, since the high frequency power supplied to the heating coil 11a is high and the value of the input current is also high, the amount of change in the input current until the water boils increases.
On the other hand, in the case of low thermal power, the drive frequency of theinverter circuit 23 is set high, the drive frequency is fixed, and heating is started (broken line in FIG. 7A). In this case, since the heating power is low, the temperature (water temperature) of the article 5 to be heated rises gently as compared with the high heating power (broken line in FIG. 7B). As shown by the broken line in FIG. 7 (c), when the temperature of the article 5 to be heated increases, the input current decreases slowly as compared with the high heating power, and the water boils and the temperature becomes constant. The input current is also constant.
In this way, at the time of decreasing force, the high frequency power supplied to theheating coil 11a is low and the value of the input current is also low, so the amount of change in the input current until the water boils is also small.
一方、低火力の場合、インバータ回路23の駆動周波数を高く設定し、駆動周波数を固定して加熱を開始する(図7(a)の破線)。この場合、低火力であるため、被加熱物5の温度(水温)は、高火力時と比較して穏やかに上昇する(図7(b)の破線)。図7(c)の破線に示すように、被加熱物5の温度の上昇に伴い、高火力時と比較して、入力電流がゆっくりと低下し、水が沸騰して温度が一定となると、入力電流も一定となる。
このように、低下力時は、加熱コイル11aに供給される高周波電力が低く、入力電流の値も低いため、水の沸騰に至るまでの入力電流の変化量も小さくなる。 In the case of high thermal power, the drive frequency of the
On the other hand, in the case of low thermal power, the drive frequency of the
In this way, at the time of decreasing force, the high frequency power supplied to the
このようなことから、湯沸しモード2において、制御部45は、湯沸しモード2の制御開始時に設定した火力、すなわち最初に検出した入力電流の値に応じて、増幅部48a、48bのうち入力電流を増幅する増幅部を切り替える。つまり、入力電流が、予め設定した閾値より低い場合は、増幅部48a、48bのうち増幅率が高い増幅部48bにて入力電流を増幅させる(図7(d)の破線)。これによって、入力電流の単位時間当たりの変化量が大きくなる。また、入力電流が、予め設定した閾値以上の場合は、増幅部48a、48bのうち増幅率が低い増幅部48aにて入力電流を増幅させる(図7(d)の実線)。なお、使用する増幅部の選択は、湯沸しモード2の制御開始直後が望ましい。
For this reason, in the kettle mode 2, the control unit 45 determines the input current of the amplifiers 48a and 48b according to the heating power set at the start of the kettle mode 2, that is, the value of the input current detected first. Switch the amplification section to be amplified. In other words, when the input current is lower than a preset threshold value, the input current is amplified by the amplification unit 48b having a high amplification factor among the amplification units 48a and 48b (broken line in FIG. 7D). This increases the amount of change per unit time of the input current. When the input current is equal to or greater than a preset threshold, the input current is amplified by the amplifying unit 48a having a low amplification factor among the amplifying units 48a and 48b (solid line in FIG. 7D). It should be noted that the selection of the amplifying unit to be used is preferably immediately after the start of the control in the water heating mode 2.
なお、ここでは、2つの増幅部48a、48bのいずれかに切り換える場合を説明したが、本発明はこれに限定されず、入力電流の検出値が小さいほど、入力電流を増幅する増幅率を大きくする構成であれば良い。例えば、増幅率が異なる3つ以上の増幅部のいずれかに切り換えても良いし、1つの増幅部によって増幅の有無を切り換えるようにしても良い。また、増幅率が可変できる増幅部によって、無段階に増幅率を設定しても良い。
Here, the case of switching to one of the two amplifying units 48a and 48b has been described, but the present invention is not limited to this, and the amplification factor for amplifying the input current increases as the detected value of the input current decreases. Any configuration can be used. For example, it may be switched to any of three or more amplifiers having different amplification factors, and the presence or absence of amplification may be switched by one amplifier. Further, the amplification factor may be set steplessly by an amplification unit that can vary the amplification factor.
制御部45は、インバータ回路23の駆動周波数を固定した状態で、増幅された検出値の所定時間当たりの変化量(時間変化)を求め、この所定時間当たりの変化量が所定値以下となった場合、湯沸かしが完了したと判断する。
なお、閾値および所定値の情報は予め制御部45に設定しても良いし、操作部40等から入力可能としても良い。 Thecontrol unit 45 obtains a change amount (time change) of the amplified detection value per predetermined time with the drive frequency of the inverter circuit 23 fixed, and the change amount per predetermined time becomes equal to or less than the predetermined value. If it is determined that the water heater has been completed.
The threshold value and the predetermined value information may be set in thecontrol unit 45 in advance, or may be input from the operation unit 40 or the like.
なお、閾値および所定値の情報は予め制御部45に設定しても良いし、操作部40等から入力可能としても良い。 The
The threshold value and the predetermined value information may be set in the
そして、制御部45は、報知手段42を用いて湯沸かしが完了した旨を報知する。ここで報知手段42としては、表示部41に沸騰完了などの表示を行ったり、スピーカ(図示せず)を用いて音声で使用者に報知したり、その方式は特に限定しない。
And the control part 45 alert | reports that the kettle was completed using the alerting | reporting means 42. FIG. Here, the notification means 42 is not particularly limited, for example, displaying the completion of boiling on the display unit 41 or notifying the user by voice using a speaker (not shown).
以上のように、水の湯沸し動作を設定する湯沸しモードにおいて、入力電流の検出値に応じて、検出値を増幅する増幅部を選択し、増幅された検出値の所定時間当たりの変化量を求め、この所定時間当たりの変化量が、所定値以下となったとき、湯沸しが完了したと判断する。
このため、加熱コイル11aに供給される高周波電力(火力)にかかわらず、水の湯沸し完了を精度良く検知することができ、信頼性の高い誘導加熱調理器を得ることができる。また、使い勝手の良い誘導加熱調理器を得ることができる。 As described above, in the water heating mode for setting the water heating operation of the water, the amplification unit that amplifies the detection value is selected according to the detection value of the input current, and the change amount of the amplified detection value per predetermined time is obtained. When the amount of change per predetermined time becomes equal to or less than the predetermined value, it is determined that the boiling is completed.
For this reason, irrespective of the high frequency power (thermal power) supplied to theheating coil 11a, the completion of boiling of water can be detected with high accuracy, and a highly reliable induction heating cooker can be obtained. In addition, a user-friendly induction heating cooker can be obtained.
このため、加熱コイル11aに供給される高周波電力(火力)にかかわらず、水の湯沸し完了を精度良く検知することができ、信頼性の高い誘導加熱調理器を得ることができる。また、使い勝手の良い誘導加熱調理器を得ることができる。 As described above, in the water heating mode for setting the water heating operation of the water, the amplification unit that amplifies the detection value is selected according to the detection value of the input current, and the change amount of the amplified detection value per predetermined time is obtained. When the amount of change per predetermined time becomes equal to or less than the predetermined value, it is determined that the boiling is completed.
For this reason, irrespective of the high frequency power (thermal power) supplied to the
なお、制御部45は、湯沸かしが完了したと判断した場合、駆動周波数の固定を解除し、インバータ回路23の駆動周波数を上昇させることで入力電流を低下させ、加熱コイル11aに供給される高周波電力(火力)を低下させるようにしても良い。湯沸し(水の沸騰)の場合では、必要以上に火力を上げても水温が100℃以上になることはないため、駆動周波数を上げて火力を低下させても、水温を保持することができる。
このように、入力電流補正値の所定時間当たりの変化量が、所定値以下となった場合、インバータ回路23の駆動を制御して、加熱コイル11aに供給される高周波電力を低下させるので、入力電力を抑えて省エネルギー化を図ることができる。 When thecontroller 45 determines that the kettle has been completed, the driving frequency is released, the driving frequency of the inverter circuit 23 is increased, the input current is decreased, and the high-frequency power supplied to the heating coil 11a. You may make it reduce (thermal power). In the case of boiling water (boiling water), the water temperature does not become 100 ° C. or higher even if the heating power is increased more than necessary, so that the water temperature can be maintained even if the driving frequency is increased and the heating power is decreased.
Thus, when the amount of change per predetermined time of the input current correction value is equal to or less than the predetermined value, the drive of theinverter circuit 23 is controlled to reduce the high frequency power supplied to the heating coil 11a. Energy can be saved by reducing power.
このように、入力電流補正値の所定時間当たりの変化量が、所定値以下となった場合、インバータ回路23の駆動を制御して、加熱コイル11aに供給される高周波電力を低下させるので、入力電力を抑えて省エネルギー化を図ることができる。 When the
Thus, when the amount of change per predetermined time of the input current correction value is equal to or less than the predetermined value, the drive of the
(別の駆動回路の構成例)
続いて別の駆動回路を使用した例について説明する。
図8は、実施の形態1に係る誘導加熱調理器の別の駆動回路を示す図である。
図8に示す駆動回路50は、図2に示した構成に、共振コンデンサ24bを付加したものである。なお、その他の構成は図2と同様であり、同一部分には同一の符号を付する。 (Configuration example of another drive circuit)
Next, an example using another drive circuit will be described.
FIG. 8 is a diagram illustrating another drive circuit of the induction heating cooker according to the first embodiment.
Thedrive circuit 50 shown in FIG. 8 is obtained by adding a resonance capacitor 24b to the configuration shown in FIG. Other configurations are the same as those in FIG. 2, and the same parts are denoted by the same reference numerals.
続いて別の駆動回路を使用した例について説明する。
図8は、実施の形態1に係る誘導加熱調理器の別の駆動回路を示す図である。
図8に示す駆動回路50は、図2に示した構成に、共振コンデンサ24bを付加したものである。なお、その他の構成は図2と同様であり、同一部分には同一の符号を付する。 (Configuration example of another drive circuit)
Next, an example using another drive circuit will be described.
FIG. 8 is a diagram illustrating another drive circuit of the induction heating cooker according to the first embodiment.
The
前述の通り、加熱コイル11aと共振コンデンサにより共振回路を構成しているため、誘導加熱調理器に必要とされる最大火力(最大入力電力)によって、共振コンデンサの容量は決定される。図8に示す駆動回路50では、共振コンデンサ24aおよび24bを並列接続することで、それぞれの容量を半分にすることができ、共振コンデンサを2個使用した場合でも安価な制御回路を得ることができる。
As described above, since the resonance circuit is configured by the heating coil 11a and the resonance capacitor, the capacity of the resonance capacitor is determined by the maximum heating power (maximum input power) required for the induction heating cooker. In the drive circuit 50 shown in FIG. 8, by connecting the resonant capacitors 24a and 24b in parallel, the respective capacities can be halved, and an inexpensive control circuit can be obtained even when two resonant capacitors are used. .
またコイル電流検出手段25bを並列接続した共振コンデンサのうちの共振コンデンサ24a側に配置することで、コイル電流検出手段25bに流れる電流は、加熱コイル11aに流れる電流の半分になるため、小型・小容量のコイル電流検出手段25bを用いることが可能となり、小型で安価な制御回路を得ることができ、安価な誘導加熱調理器を得ることができる。
Further, by arranging the coil current detection means 25b on the resonance capacitor 24a side of the resonance capacitors connected in parallel, the current flowing through the coil current detection means 25b becomes half of the current flowing through the heating coil 11a. The capacity coil current detection means 25b can be used, a small and inexpensive control circuit can be obtained, and an inexpensive induction heating cooker can be obtained.
なお、本実施の形態1では、増幅部48a、48bと、制御部45とを分けて説明したが、増幅部48a、48bを制御部45の一部として構成しても良い。
In the first embodiment, the amplification units 48 a and 48 b and the control unit 45 are described separately. However, the amplification units 48 a and 48 b may be configured as a part of the control unit 45.
実施の形態2.
操作部40により湯沸しモードが選択された場合の別の制御動作について説明する。
なお、本実施の形態2における誘導加熱調理器100の構成は、上記実施の形態1の構成と同様である。Embodiment 2. FIG.
Another control operation when the water heating mode is selected by theoperation unit 40 will be described.
In addition, the structure of the inductionheating cooking appliance 100 in this Embodiment 2 is the same as that of the said Embodiment 1. FIG.
操作部40により湯沸しモードが選択された場合の別の制御動作について説明する。
なお、本実施の形態2における誘導加熱調理器100の構成は、上記実施の形態1の構成と同様である。
Another control operation when the water heating mode is selected by the
In addition, the structure of the induction
(湯沸かしモード3)
加熱開始から水が沸騰に至るまでの間における入力電流の変化量(以下「電流変化量」という)は、被加熱物5の負荷(材質)によっても変化する。すなわち、同じ火力であっても、電流変化量が大きい材質と小さい材質とが存在する。このため、電流変化量が小さい被加熱物5を誘導加熱して、水の湯沸しを行う場合には、被加熱物5の材質によっては、入力電流の所定時間当たりの変化量が小さくなり、湯沸し完了を検知できない場合がある。
本実施の形態2では、制御部45(負荷判定手段)は、湯沸しモードの制御開始直後に、被加熱物5の電流変化量の大小を判定し、この判結果に応じて、増幅部48aまたは48bのいずれかを選択する。このような動作の詳細を図9により説明する。 (Water heater mode 3)
The amount of change in input current from the start of heating to the boiling of water (hereinafter referred to as “current change amount”) also varies depending on the load (material) of thearticle 5 to be heated. That is, even with the same thermal power, there are materials having a large current change amount and materials having a small amount of current change. For this reason, when the object to be heated 5 with a small amount of current change is induction-heated and water is heated, depending on the material of the object to be heated 5, the amount of change in the input current per predetermined time becomes small and the water heater is heated. Completion may not be detected.
In the second embodiment, the control unit 45 (load determination unit) determines the magnitude of the current change amount of the object to be heated 5 immediately after the start of the hot water heating mode control, and theamplification unit 48a or One of 48b is selected. Details of such an operation will be described with reference to FIG.
加熱開始から水が沸騰に至るまでの間における入力電流の変化量(以下「電流変化量」という)は、被加熱物5の負荷(材質)によっても変化する。すなわち、同じ火力であっても、電流変化量が大きい材質と小さい材質とが存在する。このため、電流変化量が小さい被加熱物5を誘導加熱して、水の湯沸しを行う場合には、被加熱物5の材質によっては、入力電流の所定時間当たりの変化量が小さくなり、湯沸し完了を検知できない場合がある。
本実施の形態2では、制御部45(負荷判定手段)は、湯沸しモードの制御開始直後に、被加熱物5の電流変化量の大小を判定し、この判結果に応じて、増幅部48aまたは48bのいずれかを選択する。このような動作の詳細を図9により説明する。 (Water heater mode 3)
The amount of change in input current from the start of heating to the boiling of water (hereinafter referred to as “current change amount”) also varies depending on the load (material) of the
In the second embodiment, the control unit 45 (load determination unit) determines the magnitude of the current change amount of the object to be heated 5 immediately after the start of the hot water heating mode control, and the
図9は、実施の形態2に係る誘導加熱調理器の駆動周波数、温度、入力電流、および増幅部出力と時間との関係を示す図である。図9においては、被加熱物5内に水が投入され湯沸しを行った際の経過時間と各特性の変化を示しており、図9(a)は駆動周波数、図9(b)は温度(水温)、図9(c)は入力電流、図9(d)は増幅部48a、48bによって増幅された入力電流値(以下「増幅部出力」という)を示す。また、図9(c)および(d)において、実線は電流変化量が小さい負荷(材質)を加熱した場合の特性を示し、破線は電流変化量が大きい負荷(材質)を加熱した場合の特性を示す。
なお、以下の説明において、入力電流等の高低および電流変化量の大小については、特に絶対的な値との関係で定まっているものではなく、被加熱物5の負荷(材質)の比較によって、相対的に定まるものとする。 FIG. 9 is a diagram illustrating the relationship between the drive frequency, temperature, input current, and amplification unit output of the induction heating cooker according toEmbodiment 2 and time. In FIG. 9, the elapsed time and the change of each characteristic when water is poured into the article to be heated 5 and the boiling of water are shown, FIG. 9 (a) shows the drive frequency, and FIG. 9 (b) shows the temperature ( 9C shows the input current, and FIG. 9D shows the input current value (hereinafter referred to as “amplifier output”) amplified by the amplifiers 48a and 48b. In FIGS. 9C and 9D, the solid line shows the characteristics when a load (material) with a small amount of current change is heated, and the broken line shows the characteristics when a load (material) with a large amount of current change is heated. Indicates.
In the following description, the magnitude of the input current and the like and the magnitude of the current change amount are not particularly determined in relation to the absolute value, but by comparing the load (material) of theobject 5 to be heated, It shall be relatively determined.
なお、以下の説明において、入力電流等の高低および電流変化量の大小については、特に絶対的な値との関係で定まっているものではなく、被加熱物5の負荷(材質)の比較によって、相対的に定まるものとする。 FIG. 9 is a diagram illustrating the relationship between the drive frequency, temperature, input current, and amplification unit output of the induction heating cooker according to
In the following description, the magnitude of the input current and the like and the magnitude of the current change amount are not particularly determined in relation to the absolute value, but by comparing the load (material) of the
駆動周波数を固定して加熱を開始すると(図9(a))、被加熱物5の温度(水温)は沸騰するまで徐々に上昇する(図9(b))。図9(c)に示すように、被加熱物5の温度の上昇に応じて、入力電流は徐々に低下していき、水が沸騰して温度が一定となると、入力電流も一定となる。この際、被加熱物5が入力電流変化量の大きい材質の場合、図9(c)の実線で示すように入力電流が低下するのに対し、被加熱物5が、入力電流の小さい材質の場合には、図9(d)の破線で示すように入力電流の低下量は小さくなる。
When heating is started with the driving frequency fixed (FIG. 9 (a)), the temperature (water temperature) of the article to be heated 5 gradually rises until boiling (FIG. 9 (b)). As shown in FIG. 9 (c), the input current gradually decreases as the temperature of the article 5 to be heated increases, and when the water boils and the temperature becomes constant, the input current also becomes constant. At this time, when the object to be heated 5 is made of a material having a large amount of change in input current, the input current decreases as shown by the solid line in FIG. 9C, whereas the object to be heated 5 is made of a material having a small input current. In such a case, as shown by the broken line in FIG.
このようなことから、湯沸しモード3において、制御部45(負荷判定手段)は、湯沸しモード3の制御開始直後に、被加熱物5の電流変化量の大小を判定する。
For this reason, in the hot water heating mode 3, the control unit 45 (load determination means) determines the magnitude of the current change amount of the heated object 5 immediately after the start of the control in the hot water heating mode 3.
ここで、制御部45(負荷判定手段)における、被加熱物5の電流変化量の判定の一例について説明する。
図10は、実施の形態2に係る誘導加熱調理器における加熱コイル電流と入力電流の関係に基づく被加熱物の電流変化量の判定処理を説明する図である。
上記実施の形態1で説明したように、入力電流とコイル電流との相関に基づいて、負荷となる被加熱物5(鍋)の材質の種類を判定することができるが、同じ種類の被加熱物5であっても、電流変化量が大きい被加熱物5と電流変化量が小さい被加熱物5とが存在する。そこで、制御部45(負荷判定手段)は、図10に示すように、予め実験データなどにより、入力電流の値とコイル電流との値とに対応して、電流変化量の大小関係を記憶しておく。そして、制御部45(負荷判定手段)は、入力電流検出手段25aによって検出された入力電流、および、コイル電流検出手段25bによって検出されたコイル電流に基づき、予め記憶した電流変化量の大小関係の情報を参照することで、当該被加熱物5を加熱した際における電流変化量の大小を判定する。
なお、図10の例では、電流変化量が「大」の場合と「小」の場合を示すが、本発明はこの2つの場合に限定されるものではなく、3つ以上の複数の段階で判定しても良い。 Here, an example of determination of the current change amount of the object to be heated 5 in the control unit 45 (load determination unit) will be described.
FIG. 10 is a diagram for explaining a determination process of the current change amount of the object to be heated based on the relationship between the heating coil current and the input current in the induction heating cooker according to the second embodiment.
As described inEmbodiment 1 above, based on the correlation between the input current and the coil current, the type of material of the heated object 5 (pan) serving as a load can be determined. Even if it is the thing 5, the to-be-heated object 5 with a large amount of current changes and the to-be-heated object 5 with a small amount of current changes exist. Therefore, as shown in FIG. 10, the control unit 45 (load determination means) stores the magnitude relation of the current change amount in advance according to the value of the input current and the value of the coil current based on experimental data or the like. Keep it. Then, the control unit 45 (load determination unit) determines the magnitude relation of the current change amount stored in advance based on the input current detected by the input current detection unit 25a and the coil current detected by the coil current detection unit 25b. By referring to the information, the magnitude of the current change amount when the object to be heated 5 is heated is determined.
In the example of FIG. 10, the case where the current change amount is “large” and the case of “small” are shown, but the present invention is not limited to these two cases, and in three or more stages. You may judge.
図10は、実施の形態2に係る誘導加熱調理器における加熱コイル電流と入力電流の関係に基づく被加熱物の電流変化量の判定処理を説明する図である。
上記実施の形態1で説明したように、入力電流とコイル電流との相関に基づいて、負荷となる被加熱物5(鍋)の材質の種類を判定することができるが、同じ種類の被加熱物5であっても、電流変化量が大きい被加熱物5と電流変化量が小さい被加熱物5とが存在する。そこで、制御部45(負荷判定手段)は、図10に示すように、予め実験データなどにより、入力電流の値とコイル電流との値とに対応して、電流変化量の大小関係を記憶しておく。そして、制御部45(負荷判定手段)は、入力電流検出手段25aによって検出された入力電流、および、コイル電流検出手段25bによって検出されたコイル電流に基づき、予め記憶した電流変化量の大小関係の情報を参照することで、当該被加熱物5を加熱した際における電流変化量の大小を判定する。
なお、図10の例では、電流変化量が「大」の場合と「小」の場合を示すが、本発明はこの2つの場合に限定されるものではなく、3つ以上の複数の段階で判定しても良い。 Here, an example of determination of the current change amount of the object to be heated 5 in the control unit 45 (load determination unit) will be described.
FIG. 10 is a diagram for explaining a determination process of the current change amount of the object to be heated based on the relationship between the heating coil current and the input current in the induction heating cooker according to the second embodiment.
As described in
In the example of FIG. 10, the case where the current change amount is “large” and the case of “small” are shown, but the present invention is not limited to these two cases, and in three or more stages. You may judge.
次に、制御部45は、電流変化量の判定結果に応じて、増幅部48a、48bのうち入力電流を増幅する増幅部を切り替える。
つまり、電流変化量が小さいと判定した場合は、増幅部48a、48bのうち増幅率が高い増幅部48bにて入力電流を増幅させる(図9(d)の破線)。これによって、入力電流の単位時間当たりの変化量が大きくなる。また、電流変化量大きいと判定した場合は、増幅部48a、48bのうち増幅率が低い増幅部48aにて入力電流を増幅させる(図9(d)の実線)。なお、使用する増幅部の選択は、湯沸しモード2の制御開始直後が望ましい。 Next, thecontrol unit 45 switches the amplification unit that amplifies the input current among the amplification units 48a and 48b according to the determination result of the current change amount.
That is, when it is determined that the amount of change in current is small, the input current is amplified by theamplification unit 48b having a high amplification factor among the amplification units 48a and 48b (broken line in FIG. 9D). This increases the amount of change per unit time of the input current. When it is determined that the amount of current change is large, the input current is amplified by the amplifier 48a having a low amplification factor among the amplifiers 48a and 48b (solid line in FIG. 9D). It should be noted that the selection of the amplifying unit to be used is preferably immediately after the start of the control in the water heating mode 2.
つまり、電流変化量が小さいと判定した場合は、増幅部48a、48bのうち増幅率が高い増幅部48bにて入力電流を増幅させる(図9(d)の破線)。これによって、入力電流の単位時間当たりの変化量が大きくなる。また、電流変化量大きいと判定した場合は、増幅部48a、48bのうち増幅率が低い増幅部48aにて入力電流を増幅させる(図9(d)の実線)。なお、使用する増幅部の選択は、湯沸しモード2の制御開始直後が望ましい。 Next, the
That is, when it is determined that the amount of change in current is small, the input current is amplified by the
制御部45は、インバータ回路23の駆動周波数を固定した状態で、増幅された検出値の所定時間当たりの変化量(時間変化)を求め、この所定時間当たりの変化量が所定値以下となった場合、湯沸かしが完了したと判断する。
なお、所定値の情報は予め制御部45に設定しても良いし、操作部40等から入力可能としても良い。 Thecontrol unit 45 obtains a change amount (time change) of the amplified detection value per predetermined time with the drive frequency of the inverter circuit 23 fixed, and the change amount per predetermined time becomes equal to or less than the predetermined value. If it is determined that the water heater has been completed.
The predetermined value information may be set in thecontrol unit 45 in advance, or may be input from the operation unit 40 or the like.
なお、所定値の情報は予め制御部45に設定しても良いし、操作部40等から入力可能としても良い。 The
The predetermined value information may be set in the
そして、制御部45は、報知手段42を用いて湯沸かしが完了した旨を報知する。ここで報知手段42としては、表示部41に沸騰完了などの表示を行ったり、スピーカ(図示せず)を用いて音声で使用者に報知したり、その方式は特に限定しない。
And the control part 45 alert | reports that the kettle was completed using the alerting | reporting means 42. FIG. Here, the notification means 42 is not particularly limited, for example, displaying the completion of boiling on the display unit 41 or notifying the user by voice using a speaker (not shown).
以上のように、水の湯沸し動作を設定する湯沸しモードにおいて、被加熱物5の電流変化量に応じて、検出値を増幅する増幅部を選択し、増幅された検出値の所定時間当たりの変化量を求め、この所定時間当たりの変化量が、所定値以下となったとき、湯沸しが完了したと判断する。
このため、被加熱物5を誘導加熱する際の電流変化量の大小にかかわらず、水の湯沸し完了を精度良く検知することができ、信頼性の高い誘導加熱調理器を得ることができる。また、使い勝手の良い誘導加熱調理器を得ることができる。 As described above, in the water heating mode for setting the water boiling operation of water, the amplification unit that amplifies the detection value is selected according to the current change amount of the object to be heated 5, and the change in the amplified detection value per predetermined time An amount is obtained, and when the amount of change per predetermined time becomes equal to or less than a predetermined value, it is determined that the boiling is completed.
For this reason, it is possible to accurately detect the completion of boiling of water regardless of the amount of current change during induction heating of thearticle 5 to be heated, and it is possible to obtain a highly reliable induction heating cooker. In addition, a user-friendly induction heating cooker can be obtained.
このため、被加熱物5を誘導加熱する際の電流変化量の大小にかかわらず、水の湯沸し完了を精度良く検知することができ、信頼性の高い誘導加熱調理器を得ることができる。また、使い勝手の良い誘導加熱調理器を得ることができる。 As described above, in the water heating mode for setting the water boiling operation of water, the amplification unit that amplifies the detection value is selected according to the current change amount of the object to be heated 5, and the change in the amplified detection value per predetermined time An amount is obtained, and when the amount of change per predetermined time becomes equal to or less than a predetermined value, it is determined that the boiling is completed.
For this reason, it is possible to accurately detect the completion of boiling of water regardless of the amount of current change during induction heating of the
なお、制御部45は、湯沸かしが完了したと判断した場合、駆動周波数の固定を解除し、インバータ回路23の駆動周波数を上昇させることで入力電流を低下させ、加熱コイル11aに供給される高周波電力(火力)を低下させるようにしても良い。湯沸し(水の沸騰)の場合では、必要以上に火力を上げても水温が100℃以上になることはないため、駆動周波数を上げて火力を低下させても、水温を保持することができる。
このように、入力電流補正値の所定時間当たりの変化量が、所定値以下となった場合、インバータ回路23の駆動を制御して、加熱コイル11aに供給される高周波電力を低下させるので、入力電力を抑えて省エネルギー化を図ることができる。 When thecontroller 45 determines that the kettle has been completed, the driving frequency is released, the driving frequency of the inverter circuit 23 is increased, the input current is decreased, and the high-frequency power supplied to the heating coil 11a. You may make it reduce (thermal power). In the case of boiling water (boiling water), the water temperature does not become 100 ° C. or higher even if the heating power is increased more than necessary, so that the water temperature can be maintained even if the driving frequency is increased and the heating power is decreased.
Thus, when the amount of change per predetermined time of the input current correction value is equal to or less than the predetermined value, the drive of theinverter circuit 23 is controlled to reduce the high frequency power supplied to the heating coil 11a. Energy can be saved by reducing power.
このように、入力電流補正値の所定時間当たりの変化量が、所定値以下となった場合、インバータ回路23の駆動を制御して、加熱コイル11aに供給される高周波電力を低下させるので、入力電力を抑えて省エネルギー化を図ることができる。 When the
Thus, when the amount of change per predetermined time of the input current correction value is equal to or less than the predetermined value, the drive of the
なお、上記の説明では、駆動周波数を変更することで火力を制御する方式について述べたが、インバータ回路23のスイッチング素子のオンデューティ(オンオフ比率)を変更することで火力を制御する方式を用いても良い。
In the above description, the method for controlling the thermal power by changing the drive frequency is described. However, the method for controlling the thermal power by changing the on-duty (on / off ratio) of the switching element of the inverter circuit 23 is used. Also good.
なお、実施の形態1および2では、入力電流検出手段25aで検出した入力電流の変化量を検知する例について説明したが、入力電流に代えて、コイル電流検出手段25bで検出したコイル電流の変化量を検知しても良いし、入力電流とコイル電流の両方の変化量を検知しても良い。コイル電流を用いる場合には、コイル電流検出手段25bと制御部45との間に、増幅部48a、48b、および切替部49を設け、上述した動作と同様に、選択した増幅部によって検出値を増幅する。
In the first and second embodiments, the example in which the amount of change in the input current detected by the input current detection unit 25a is detected has been described. However, instead of the input current, the change in the coil current detected by the coil current detection unit 25b is described. The amount may be detected, or the amount of change in both the input current and the coil current may be detected. In the case of using a coil current, amplification units 48a and 48b and a switching unit 49 are provided between the coil current detection means 25b and the control unit 45, and the detection value is selected by the selected amplification unit in the same manner as described above. Amplify.
なお、実施の形態1および2では、ハーフブリッジ型のインバータ回路23について説明したが、フルブリッジ型や一石電圧共振型のインバータなどを用いた構成でも良い。
In the first and second embodiments, the half-bridge type inverter circuit 23 has been described. However, a configuration using a full-bridge type or a single-voltage resonance type inverter may be used.
更に鍋材質の負荷判定でコイル電流と一次電流の関係を用いる方式について説明したが、共振コンデンサの両端の共振電圧を検出することで負荷判定を行う方式を用いても良く、負荷判定の方式は特に問わない。
Furthermore, although the method of using the relationship between the coil current and the primary current in the load determination of the pot material has been described, a method of determining the load by detecting the resonance voltage at both ends of the resonance capacitor may be used. It doesn't matter.
実施の形態3.
本実施の形態3では、上記実施の形態1及び2における駆動回路50の詳細について説明する。Embodiment 3 FIG.
In the third embodiment, details of thedrive circuit 50 in the first and second embodiments will be described.
本実施の形態3では、上記実施の形態1及び2における駆動回路50の詳細について説明する。
In the third embodiment, details of the
図11は、実施の形態3に係る誘導加熱調理器の駆動回路の一部を示す図である。なお、図11においては、上記実施の形態1及び2の駆動回路50の一部の構成のみを図示している。
図11に示すように、インバータ回路23は、正負母線間に直列に接続された2個のスイッチング素子(IGBT23a、23b)と、そのスイッチング素子にそれぞれ逆並列に接続されたダイオード23c、23dとによって構成されるアームを1組備えている。 FIG. 11 is a diagram illustrating a part of the drive circuit of the induction heating cooker according to the third embodiment. In FIG. 11, only a part of the configuration of thedrive circuit 50 of the first and second embodiments is illustrated.
As shown in FIG. 11, theinverter circuit 23 includes two switching elements ( IGBTs 23a and 23b) connected in series between positive and negative buses, and diodes 23c and 23d connected in antiparallel to the switching elements, respectively. One set of arms is provided.
図11に示すように、インバータ回路23は、正負母線間に直列に接続された2個のスイッチング素子(IGBT23a、23b)と、そのスイッチング素子にそれぞれ逆並列に接続されたダイオード23c、23dとによって構成されるアームを1組備えている。 FIG. 11 is a diagram illustrating a part of the drive circuit of the induction heating cooker according to the third embodiment. In FIG. 11, only a part of the configuration of the
As shown in FIG. 11, the
IGBT23aとIGBT23bは、制御部45から出力される駆動信号によりオンオフ駆動される。
制御部45は、IGBT23aをオンさせている間はIGBT23bをオフ状態にし、IGBT23aをオフさせている間はIGBT23bをオン状態にし、交互にオンオフする駆動信号を出力する。
これにより、IGBT23aとIGBT23bとにより、加熱コイル11aを駆動するハーフブリッジインバータを構成する。 TheIGBT 23 a and the IGBT 23 b are driven on and off by a drive signal output from the control unit 45.
Thecontrol unit 45 turns off the IGBT 23b while turning on the IGBT 23a, turns on the IGBT 23b while turning off the IGBT 23a, and outputs a drive signal that turns on and off alternately.
Thereby, the half bridge inverter which drives theheating coil 11a is comprised by IGBT23a and IGBT23b.
制御部45は、IGBT23aをオンさせている間はIGBT23bをオフ状態にし、IGBT23aをオフさせている間はIGBT23bをオン状態にし、交互にオンオフする駆動信号を出力する。
これにより、IGBT23aとIGBT23bとにより、加熱コイル11aを駆動するハーフブリッジインバータを構成する。 The
The
Thereby, the half bridge inverter which drives the
なお、IGBT23aとIGBT23bとにより本発明における「ハーフブリッジインバータ回路」を構成する。
The IGBT 23a and the IGBT 23b constitute the “half bridge inverter circuit” in the present invention.
制御部45は、投入電力(火力)に応じて、IGBT23aおよびIGBT23bに高周波の駆動信号を入力し、加熱出力を調整する。IGBT23aおよびIGBT23bに出力される駆動信号は、加熱コイル11aおよび共振コンデンサ24aにより構成される負荷回路の共振周波数よりも高い駆動周波数の範囲で可変して、負荷回路に流れる電流が負荷回路に印加される電圧と比較して遅れ位相で流れるように制御する。
The control part 45 inputs a high frequency drive signal into IGBT23a and IGBT23b according to input electric power (thermal power), and adjusts a heating output. The drive signal output to the IGBT 23a and the IGBT 23b is variable in a drive frequency range higher than the resonance frequency of the load circuit constituted by the heating coil 11a and the resonance capacitor 24a, and the current flowing through the load circuit is applied to the load circuit. It is controlled to flow with a lagging phase compared to the voltage to be transmitted.
次に、インバータ回路23の駆動周波数とオンデューティ比とによる投入電力(火力)の制御動作について説明する。
Next, the control operation of the input power (thermal power) by the drive frequency and on-duty ratio of the inverter circuit 23 will be described.
図12は、実施の形態3に係るハーフブリッジ回路の駆動信号の一例を示す図である。図12(a)は高火力状態における各スイッチの駆動信号の例である。図12(b)は低火力状態における各スイッチの駆動信号の例である。
制御部45は、インバータ回路23のIGBT23aおよびIGBT23bに、負荷回路の共振周波数よりも高い高周波の駆動信号を出力する。
この駆動信号の周波数を可変することにより、インバータ回路23の出力が増減する。 FIG. 12 is a diagram illustrating an example of a drive signal of the half bridge circuit according to the third embodiment. FIG. 12A shows an example of the drive signal of each switch in the high thermal power state. FIG. 12B is an example of the drive signal of each switch in the low thermal power state.
Thecontrol unit 45 outputs a high-frequency drive signal higher than the resonance frequency of the load circuit to the IGBT 23 a and the IGBT 23 b of the inverter circuit 23.
By varying the frequency of the drive signal, the output of theinverter circuit 23 increases or decreases.
制御部45は、インバータ回路23のIGBT23aおよびIGBT23bに、負荷回路の共振周波数よりも高い高周波の駆動信号を出力する。
この駆動信号の周波数を可変することにより、インバータ回路23の出力が増減する。 FIG. 12 is a diagram illustrating an example of a drive signal of the half bridge circuit according to the third embodiment. FIG. 12A shows an example of the drive signal of each switch in the high thermal power state. FIG. 12B is an example of the drive signal of each switch in the low thermal power state.
The
By varying the frequency of the drive signal, the output of the
例えば、図12(a)に示すように、駆動周波数を低下させると、加熱コイル11aに供給される高周波電流の周波数が、負荷回路の共振周波数に近づき、加熱コイル11aへの投入電力が増加する。
また、図12(b)に示すように、駆動周波数を上昇させると、加熱コイル11aに供給される高周波電流の周波数が、負荷回路の共振周波数から離れ、加熱コイル11aへの投入電力が減少する。 For example, as shown in FIG. 12A, when the driving frequency is lowered, the frequency of the high-frequency current supplied to theheating coil 11a approaches the resonance frequency of the load circuit, and the input power to the heating coil 11a increases. .
Further, as shown in FIG. 12B, when the drive frequency is increased, the frequency of the high-frequency current supplied to theheating coil 11a is separated from the resonance frequency of the load circuit, and the input power to the heating coil 11a is reduced. .
また、図12(b)に示すように、駆動周波数を上昇させると、加熱コイル11aに供給される高周波電流の周波数が、負荷回路の共振周波数から離れ、加熱コイル11aへの投入電力が減少する。 For example, as shown in FIG. 12A, when the driving frequency is lowered, the frequency of the high-frequency current supplied to the
Further, as shown in FIG. 12B, when the drive frequency is increased, the frequency of the high-frequency current supplied to the
さらに、制御部45は、上述した駆動周波数の可変による投入電力の制御とともに、インバータ回路23のIGBT23aおよびIGBT23bのオンデューティ比を可変することで、インバータ回路23の出力電圧の印加時間を制御し、加熱コイル11aへの投入電力を制御することも可能である。
火力を増加させる場合には、駆動信号の1周期におけるIGBT23aのオン時間(IGBT23bのオフ時間)の比率(オンデューティ比)を大きくして、1周期における電圧印加時間幅を増加させる。
また、火力を低下させる場合には、駆動信号の1周期におけるIGBT23aのオン時間(IGBT23bのオフ時間)の比率(オンデューティ比)を小さくして、1周期における電圧印加時間幅を減少させる。 Furthermore, thecontrol unit 45 controls the application time of the output voltage of the inverter circuit 23 by changing the on-duty ratio of the IGBT 23a and the IGBT 23b of the inverter circuit 23, along with the control of the input power by changing the drive frequency described above, It is also possible to control the input power to the heating coil 11a.
When increasing the thermal power, the ratio (on duty ratio) of the on-time of theIGBT 23a (the off-time of the IGBT 23b) in one cycle of the drive signal is increased to increase the voltage application time width in one cycle.
When reducing the thermal power, the ratio (on duty ratio) of the on-time of theIGBT 23a (the off-time of the IGBT 23b) in one cycle of the drive signal is reduced to reduce the voltage application time width in one cycle.
火力を増加させる場合には、駆動信号の1周期におけるIGBT23aのオン時間(IGBT23bのオフ時間)の比率(オンデューティ比)を大きくして、1周期における電圧印加時間幅を増加させる。
また、火力を低下させる場合には、駆動信号の1周期におけるIGBT23aのオン時間(IGBT23bのオフ時間)の比率(オンデューティ比)を小さくして、1周期における電圧印加時間幅を減少させる。 Furthermore, the
When increasing the thermal power, the ratio (on duty ratio) of the on-time of the
When reducing the thermal power, the ratio (on duty ratio) of the on-time of the
図12(a)の例では、駆動信号の1周期T11におけるIGBT23aのオン時間T11a(IGBT23bのオフ時間)と、IGBT23aのオフ時間T11b(IGBT23bのオン時間)との比率が同じ場合(オンデューティ比が50%)の場合を図示している。
また、図12(b)の例では、駆動信号の1周期T12におけるIGBT23aのオン時間T12a(IGBT23bのオフ時間)と、IGBT23aのオフ時間T12b(IGBT23bのオン時間)との比率が同じ場合(オンデューティ比が50%)の場合を図示している。 In the example of FIG. 12A, the ratio between the ON time T11a of theIGBT 23a (the OFF time of the IGBT 23b) and the OFF time T11b of the IGBT 23a (the ON time of the IGBT 23b) in one cycle T11 of the drive signal is the same (on duty ratio). Is 50%).
In the example of FIG. 12B, the ratio between the on time T12a of theIGBT 23a (the off time of the IGBT 23b) and the off time T12b of the IGBT 23a (the on time of the IGBT 23b) in one cycle T12 of the drive signal is the same (on The case where the duty ratio is 50%) is illustrated.
また、図12(b)の例では、駆動信号の1周期T12におけるIGBT23aのオン時間T12a(IGBT23bのオフ時間)と、IGBT23aのオフ時間T12b(IGBT23bのオン時間)との比率が同じ場合(オンデューティ比が50%)の場合を図示している。 In the example of FIG. 12A, the ratio between the ON time T11a of the
In the example of FIG. 12B, the ratio between the on time T12a of the
制御部45は、上記実施の形態1及び2で説明した、増幅された検出値の所定時間当たりの変化量を求める際に、インバータ回路23の駆動周波数を固定した状態においては、インバータ回路23のIGBT23aおよびIGBT23bのオンデューティ比を固定した状態にしている。
これにより、加熱コイル11aへの投入電力が一定の状態で、増幅された検出値の所定時間当たりの変化量を求めることができる。 When thecontrol unit 45 obtains the amount of change per predetermined time of the amplified detection value described in the first and second embodiments, in a state where the drive frequency of the inverter circuit 23 is fixed, the control unit 45 The on-duty ratio of the IGBT 23a and the IGBT 23b is fixed.
Thereby, the amount of change per predetermined time of the amplified detection value can be obtained in a state where the input power to theheating coil 11a is constant.
これにより、加熱コイル11aへの投入電力が一定の状態で、増幅された検出値の所定時間当たりの変化量を求めることができる。 When the
Thereby, the amount of change per predetermined time of the amplified detection value can be obtained in a state where the input power to the
実施の形態4.
本実施の形態4においては、フルブリッジ回路を用いたインバータ回路23について説明を行う。
図13は、実施の形態4に係る誘導加熱調理器の駆動回路の一部を示す図である。なお、図13においては、上記実施の形態1及び2の駆動回路50との相違点のみを図示している。
本実施の形態4では、1つの加熱口に対して2つの加熱コイルが設けられている。2つの加熱コイルは、例えば、それぞれ直径が異なり、同心円状に配置されている。ここでは、直径の小さい加熱コイルを内コイル11bと称し、直径の大きい加熱コイルを外コイル11cと称する。
なお、加熱コイルの数及び配置は、これに限定されない。例えば、加熱口の中央に配置した加熱コイルの周囲に複数の加熱コイルを配置する構成でも良い。Embodiment 4 FIG.
In the fourth embodiment, aninverter circuit 23 using a full bridge circuit will be described.
FIG. 13 is a diagram illustrating a part of the drive circuit of the induction heating cooker according to the fourth embodiment. In FIG. 13, only the difference from thedrive circuit 50 of the first and second embodiments is shown.
In the fourth embodiment, two heating coils are provided for one heating port. For example, the two heating coils have different diameters and are arranged concentrically. Here, the heating coil having a small diameter is referred to as aninner coil 11b, and the heating coil having a large diameter is referred to as an outer coil 11c.
In addition, the number and arrangement | positioning of a heating coil are not limited to this. For example, the structure which arrange | positions a some heating coil around the heating coil arrange | positioned in the center of a heating port may be sufficient.
本実施の形態4においては、フルブリッジ回路を用いたインバータ回路23について説明を行う。
図13は、実施の形態4に係る誘導加熱調理器の駆動回路の一部を示す図である。なお、図13においては、上記実施の形態1及び2の駆動回路50との相違点のみを図示している。
本実施の形態4では、1つの加熱口に対して2つの加熱コイルが設けられている。2つの加熱コイルは、例えば、それぞれ直径が異なり、同心円状に配置されている。ここでは、直径の小さい加熱コイルを内コイル11bと称し、直径の大きい加熱コイルを外コイル11cと称する。
なお、加熱コイルの数及び配置は、これに限定されない。例えば、加熱口の中央に配置した加熱コイルの周囲に複数の加熱コイルを配置する構成でも良い。
In the fourth embodiment, an
FIG. 13 is a diagram illustrating a part of the drive circuit of the induction heating cooker according to the fourth embodiment. In FIG. 13, only the difference from the
In the fourth embodiment, two heating coils are provided for one heating port. For example, the two heating coils have different diameters and are arranged concentrically. Here, the heating coil having a small diameter is referred to as an
In addition, the number and arrangement | positioning of a heating coil are not limited to this. For example, the structure which arrange | positions a some heating coil around the heating coil arrange | positioned in the center of a heating port may be sufficient.
インバータ回路23は、正負母線間に直列に接続された2個のスイッチング素子(IGBT)と、そのスイッチング素子にそれぞれ逆並列に接続されたダイオードとによって構成されるアームを3組備えている。なお、これ以降、3組のアームのうち1組を共通アーム、他の2組を内コイル用アームおよび外コイル用アームと呼ぶ。
The inverter circuit 23 includes three arms each composed of two switching elements (IGBTs) connected in series between the positive and negative buses and diodes connected to the switching elements in antiparallel. Hereinafter, one of the three sets of arms is called a common arm, and the other two sets are called an inner coil arm and an outer coil arm.
共通アームは、内コイル11bおよび外コイル11cに接続されたアームで、IGBT232a、IGBT232b、ダイオード232c、及びダイオード232dで構成されている。
内コイル用アームは、内コイル11bが接続されたアームで、IGBT231a、IGBT231b、ダイオード231c、及びダイオード231dで構成されている。
外コイル用アームは、外コイル11cが接続されたアームで、IGBT233a、IGBT233b、ダイオード233c、及びダイオード233dで構成されている。 The common arm is an arm connected to theinner coil 11b and the outer coil 11c, and includes an IGBT 232a, an IGBT 232b, a diode 232c, and a diode 232d.
The inner coil arm is an arm to which theinner coil 11b is connected, and includes an IGBT 231a, an IGBT 231b, a diode 231c, and a diode 231d.
The outer coil arm is an arm to which theouter coil 11c is connected, and includes an IGBT 233a, an IGBT 233b, a diode 233c, and a diode 233d.
内コイル用アームは、内コイル11bが接続されたアームで、IGBT231a、IGBT231b、ダイオード231c、及びダイオード231dで構成されている。
外コイル用アームは、外コイル11cが接続されたアームで、IGBT233a、IGBT233b、ダイオード233c、及びダイオード233dで構成されている。 The common arm is an arm connected to the
The inner coil arm is an arm to which the
The outer coil arm is an arm to which the
共通アームのIGBT232aとIGBT232b、内コイル用アームのIGBT231aとIGBT231b、外コイル用アームのIGBT233aとIGBT233bは制御部45から出力される駆動信号によりオンオフ駆動される。
The common arm IGBT 232a and IGBT 232b, the inner coil arm IGBT 231a and IGBT 231b, and the outer coil arm IGBT 233a and IGBT 233b are driven on and off by a drive signal output from the control unit 45.
制御部45は、共通アームのIGBT232aをオンさせている間はIGBT232bをオフ状態にし、IGBT232aをオフさせている間はIGBT232bをオン状態にし、交互にオンオフする駆動信号を出力する。
同様に、制御部45は、内コイル用アームのIGBT231aとIGBT231b、外コイル用アームのIGBT233aとIGBT233bを交互にオンオフする駆動信号を出力する。
これにより、共通アームと内コイル用アームとにより、内コイル11bを駆動するフルブリッジインバータを構成する。また、共通アームと外コイル用アームとにより、外コイル11cを駆動するフルブリッジインバータを構成する。 Thecontroller 45 turns off the IGBT 232b while turning on the IGBT 232a of the common arm, turns on the IGBT 232b while turning off the IGBT 232a, and outputs a drive signal that turns on and off alternately.
Similarly, thecontrol unit 45 outputs drive signals for alternately turning on and off the IGBTs 231a and IGBT 231b for the inner coil arms and the IGBTs 233a and IGBT 233b for the outer coil arms.
As a result, the common arm and the inner coil arm constitute a full bridge inverter that drives theinner coil 11b. The common arm and the outer coil arm constitute a full bridge inverter that drives the outer coil 11c.
同様に、制御部45は、内コイル用アームのIGBT231aとIGBT231b、外コイル用アームのIGBT233aとIGBT233bを交互にオンオフする駆動信号を出力する。
これにより、共通アームと内コイル用アームとにより、内コイル11bを駆動するフルブリッジインバータを構成する。また、共通アームと外コイル用アームとにより、外コイル11cを駆動するフルブリッジインバータを構成する。 The
Similarly, the
As a result, the common arm and the inner coil arm constitute a full bridge inverter that drives the
なお、共通アームと内コイル用アームとにより本発明における「フルブリッジインバータ回路」を構成する。また、共通アームと外コイル用アームとにより本発明における「フルブリッジインバータ回路」を構成する。
In addition, the “full bridge inverter circuit” in the present invention is constituted by the common arm and the inner coil arm. The common arm and the outer coil arm constitute a “full bridge inverter circuit” in the present invention.
内コイル11bおよび共振コンデンサ24cにより構成される負荷回路は、共通アームの出力点(IGBT232aとIGBT232bの接続点)と、内コイル用アームの出力点(IGBT231aとIGBT231bの接続点)との間に接続される。
外コイル11cおよび共振コンデンサ24dにより構成される負荷回路は、共通アームの出力点と、外コイル用アームの出力点(IGBT233aとIGBT233bの接続点)との間に接続されている。 The load circuit constituted by theinner coil 11b and the resonance capacitor 24c is connected between the output point of the common arm (the connection point of the IGBT 232a and the IGBT 232b) and the output point of the arm for the inner coil (the connection point of the IGBT 231a and the IGBT 231b). Is done.
The load circuit constituted by theouter coil 11c and the resonance capacitor 24d is connected between the output point of the common arm and the output point of the outer coil arm (the connection point between the IGBT 233a and the IGBT 233b).
外コイル11cおよび共振コンデンサ24dにより構成される負荷回路は、共通アームの出力点と、外コイル用アームの出力点(IGBT233aとIGBT233bの接続点)との間に接続されている。 The load circuit constituted by the
The load circuit constituted by the
内コイル11bは、略円形に巻回された外形の小さい加熱コイルであり、その外周に外コイル11cが配置されている。
内コイル11bに流れるコイル電流は、コイル電流検出手段25cにより検出する。コイル電流検出手段25cは、例えば、内コイル11bに流れる電流のピークを検出し、加熱コイル電流のピーク値に相当する電圧信号を制御部45に出力する。
外コイル11cに流れるコイル電流は、コイル電流検出手段25dにより検出する。コイル電流検出手段25d、例えば、外コイル11cに流れる電流のピークを検出し、加熱コイル電流のピーク値に相当する電圧信号を制御部45に出力する。 Theinner coil 11b is a heating coil with a small outer shape wound in a substantially circular shape, and an outer coil 11c is disposed on the outer periphery thereof.
The coil current flowing through theinner coil 11b is detected by the coil current detection means 25c. For example, the coil current detection means 25c detects the peak of the current flowing through the inner coil 11b and outputs a voltage signal corresponding to the peak value of the heating coil current to the control unit 45.
The coil current flowing through theouter coil 11c is detected by the coil current detection means 25d. The peak of the current flowing through the coil current detection means 25d, for example, the outer coil 11c, is detected, and a voltage signal corresponding to the peak value of the heating coil current is output to the control unit 45.
内コイル11bに流れるコイル電流は、コイル電流検出手段25cにより検出する。コイル電流検出手段25cは、例えば、内コイル11bに流れる電流のピークを検出し、加熱コイル電流のピーク値に相当する電圧信号を制御部45に出力する。
外コイル11cに流れるコイル電流は、コイル電流検出手段25dにより検出する。コイル電流検出手段25d、例えば、外コイル11cに流れる電流のピークを検出し、加熱コイル電流のピーク値に相当する電圧信号を制御部45に出力する。 The
The coil current flowing through the
The coil current flowing through the
制御部45は、投入電力(火力)に応じて、各アームのスイッチング素子(IGBT)に高周波の駆動信号を入力し、加熱出力を調整する。
共通アーム及び内コイル用アームのスイッチング素子に出力される駆動信号は、内コイル11bおよび共振コンデンサ24cにより構成される負荷回路の共振周波数よりも高い駆動周波数の範囲で可変して、負荷回路に流れる電流が負荷回路に印加される電圧と比較して遅れ位相で流れるように制御する。
また、共通アーム及び外コイル用アームのスイッチング素子に出力される駆動信号は、外コイル11cおよび共振コンデンサ24dにより構成される負荷回路の共振周波数よりも高い駆動周波数の範囲で可変して、負荷回路に流れる電流が負荷回路に印加される電圧と比較して遅れ位相で流れるように制御する。 Thecontrol unit 45 inputs a high-frequency drive signal to the switching element (IGBT) of each arm according to the input power (thermal power), and adjusts the heating output.
The drive signal output to the switching elements of the common arm and the inner coil arm varies in a drive frequency range higher than the resonance frequency of the load circuit constituted by theinner coil 11b and the resonance capacitor 24c, and flows to the load circuit. Control is performed so that the current flows in a delayed phase compared to the voltage applied to the load circuit.
In addition, the drive signal output to the switching elements of the common arm and the outer coil arm can be varied within a drive frequency range higher than the resonance frequency of the load circuit constituted by theouter coil 11c and the resonance capacitor 24d, and the load circuit Control is performed so that the current flowing in the current flows in a delayed phase compared to the voltage applied to the load circuit.
共通アーム及び内コイル用アームのスイッチング素子に出力される駆動信号は、内コイル11bおよび共振コンデンサ24cにより構成される負荷回路の共振周波数よりも高い駆動周波数の範囲で可変して、負荷回路に流れる電流が負荷回路に印加される電圧と比較して遅れ位相で流れるように制御する。
また、共通アーム及び外コイル用アームのスイッチング素子に出力される駆動信号は、外コイル11cおよび共振コンデンサ24dにより構成される負荷回路の共振周波数よりも高い駆動周波数の範囲で可変して、負荷回路に流れる電流が負荷回路に印加される電圧と比較して遅れ位相で流れるように制御する。 The
The drive signal output to the switching elements of the common arm and the inner coil arm varies in a drive frequency range higher than the resonance frequency of the load circuit constituted by the
In addition, the drive signal output to the switching elements of the common arm and the outer coil arm can be varied within a drive frequency range higher than the resonance frequency of the load circuit constituted by the
次に、インバータ回路23のアーム相互間の位相差による投入電力(火力)の制御動作について説明する。
Next, the control operation of the input power (thermal power) due to the phase difference between the arms of the inverter circuit 23 will be described.
図14は、実施の形態4に係るフルブリッジ回路の駆動信号の一例を示す図である。
図14(a)は高火力状態における各スイッチの駆動信号と各加熱コイルの通電タイミングの例である。
図14(b)は低火力状態における各スイッチの駆動信号と各加熱コイルの通電タイミングの例である。
なお、図14(a)及び(b)に示す通電タイミングは、各アームの出力点(IGBTとIGBTの接続点)の電位差に関係するものであり、内コイル用アームの出力点および外コイル用アームの出力点に対して共通アームの出力点が低い状態を「ON」で示している。また、内コイル用アームの出力点および外コイル用アームの出力点に対して共通アームの出力点が高い状態および同電位の状態を「OFF」で示している。 FIG. 14 is a diagram illustrating an example of a drive signal of the full bridge circuit according to the fourth embodiment.
FIG. 14A shows an example of the drive signal of each switch and the energization timing of each heating coil in the high thermal power state.
FIG. 14B is an example of the drive signal of each switch and the energization timing of each heating coil in the low thermal power state.
Note that the energization timings shown in FIGS. 14A and 14B are related to the potential difference between the output points of each arm (the connection point between the IGBT and the IGBT), and the output points of the inner coil arm and the outer coil. A state where the output point of the common arm is lower than the output point of the arm is indicated by “ON”. Further, the state where the output point of the common arm is higher than the output point of the inner coil arm and the output point of the outer coil arm and the state of the same potential are indicated by “OFF”.
図14(a)は高火力状態における各スイッチの駆動信号と各加熱コイルの通電タイミングの例である。
図14(b)は低火力状態における各スイッチの駆動信号と各加熱コイルの通電タイミングの例である。
なお、図14(a)及び(b)に示す通電タイミングは、各アームの出力点(IGBTとIGBTの接続点)の電位差に関係するものであり、内コイル用アームの出力点および外コイル用アームの出力点に対して共通アームの出力点が低い状態を「ON」で示している。また、内コイル用アームの出力点および外コイル用アームの出力点に対して共通アームの出力点が高い状態および同電位の状態を「OFF」で示している。 FIG. 14 is a diagram illustrating an example of a drive signal of the full bridge circuit according to the fourth embodiment.
FIG. 14A shows an example of the drive signal of each switch and the energization timing of each heating coil in the high thermal power state.
FIG. 14B is an example of the drive signal of each switch and the energization timing of each heating coil in the low thermal power state.
Note that the energization timings shown in FIGS. 14A and 14B are related to the potential difference between the output points of each arm (the connection point between the IGBT and the IGBT), and the output points of the inner coil arm and the outer coil. A state where the output point of the common arm is lower than the output point of the arm is indicated by “ON”. Further, the state where the output point of the common arm is higher than the output point of the inner coil arm and the output point of the outer coil arm and the state of the same potential are indicated by “OFF”.
図14に示すように、制御部45は、共通アームのIGBT232aおよびIGBT232bに、負荷回路の共振周波数よりも高い高周波の駆動信号を出力する。
また、制御部45は、共通アームの駆動信号より位相の進んだ駆動信号を、内コイル用アームのIGBT231aとIGBT231b、外コイル用アームのIGBT233aとIGBT233bに出力する。なお、各アームの駆動信号の周波数は同一周波数であり、オンデューティ比も同一である。 As shown in FIG. 14, thecontrol unit 45 outputs a high-frequency drive signal higher than the resonance frequency of the load circuit to the IGBTs 232a and IGBTs 232b of the common arm.
Further, thecontrol unit 45 outputs a drive signal having a phase advanced from the drive signal of the common arm to the IGBT 231a and IGBT 231b of the inner coil arm and the IGBT 233a and IGBT 233b of the outer coil arm. In addition, the frequency of the drive signal of each arm is the same frequency, and the on-duty ratio is also the same.
また、制御部45は、共通アームの駆動信号より位相の進んだ駆動信号を、内コイル用アームのIGBT231aとIGBT231b、外コイル用アームのIGBT233aとIGBT233bに出力する。なお、各アームの駆動信号の周波数は同一周波数であり、オンデューティ比も同一である。 As shown in FIG. 14, the
Further, the
各アームの出力点(IGBTとIGBTの接続点)には、IGBTとIGBTのオンオフ状態に応じて、直流電源回路の出力である正母線電位、あるいは負母線電位が高周波で切り替わって出力される。これにより、内コイル11bには、共通アームの出力点と、内コイル用アームの出力点との電位差が印加される。また、外コイル11cには、共通アームの出力点と、外コイル用アームの出力点との電位差が印加される。
したがって、共通アームへの駆動信号と、内コイル用アームおよび外コイル用アームへの駆動信号との位相差を増減することにより、内コイル11bおよび外コイル11cに印加する高周波電圧を調整することができ、内コイル11bと外コイル11cに流れる高周波出力電流と入力電流を制御することができる。 The positive bus potential or the negative bus potential, which is the output of the DC power supply circuit, is switched at a high frequency and output at the output point of each arm (the connection point between the IGBT and IGBT) in accordance with the on / off state of the IGBT and IGBT. As a result, a potential difference between the output point of the common arm and the output point of the inner coil arm is applied to theinner coil 11b. Further, a potential difference between the output point of the common arm and the output point of the outer coil arm is applied to the outer coil 11c.
Therefore, the high frequency voltage applied to theinner coil 11b and the outer coil 11c can be adjusted by increasing / decreasing the phase difference between the driving signal to the common arm and the driving signals to the inner coil arm and the outer coil arm. The high frequency output current and the input current flowing through the inner coil 11b and the outer coil 11c can be controlled.
したがって、共通アームへの駆動信号と、内コイル用アームおよび外コイル用アームへの駆動信号との位相差を増減することにより、内コイル11bおよび外コイル11cに印加する高周波電圧を調整することができ、内コイル11bと外コイル11cに流れる高周波出力電流と入力電流を制御することができる。 The positive bus potential or the negative bus potential, which is the output of the DC power supply circuit, is switched at a high frequency and output at the output point of each arm (the connection point between the IGBT and IGBT) in accordance with the on / off state of the IGBT and IGBT. As a result, a potential difference between the output point of the common arm and the output point of the inner coil arm is applied to the
Therefore, the high frequency voltage applied to the
火力を増加させる場合には、アーム間の位相αを大きくして、1周期における電圧印加時間幅を大きくする。なお、アーム間の位相αの上限は、逆相(位相差180°)の場合であり、このときの出力電圧波形はほぼ矩形波となる。
図14(a)の例では、アーム間の位相αが180°の場合を図示している。また、各アームの駆動信号のオンデューティ比が50%の場合、つまり、1周期T13におけるオン時間T13aとオフ時間T13bとの比率が同じ場合を図示している。
この場合、駆動信号の1周期T14における、内コイル11b、外コイル11cの通電オン時間幅T14aと、通電オフ時間幅T14bとが同じ比率となる。 When increasing the thermal power, the phase α between the arms is increased to increase the voltage application time width in one cycle. The upper limit of the phase α between the arms is in the case of reverse phase (phase difference 180 °), and the output voltage waveform at this time is almost a rectangular wave.
In the example of FIG. 14A, the case where the phase α between the arms is 180 ° is illustrated. Further, the case where the on-duty ratio of the drive signal of each arm is 50%, that is, the case where the ratio of the on-time T13a and the off-time T13b in one cycle T13 is the same is illustrated.
In this case, the energization on time width T14a and the energization off time width T14b of theinner coil 11b and the outer coil 11c in one cycle T14 of the drive signal have the same ratio.
図14(a)の例では、アーム間の位相αが180°の場合を図示している。また、各アームの駆動信号のオンデューティ比が50%の場合、つまり、1周期T13におけるオン時間T13aとオフ時間T13bとの比率が同じ場合を図示している。
この場合、駆動信号の1周期T14における、内コイル11b、外コイル11cの通電オン時間幅T14aと、通電オフ時間幅T14bとが同じ比率となる。 When increasing the thermal power, the phase α between the arms is increased to increase the voltage application time width in one cycle. The upper limit of the phase α between the arms is in the case of reverse phase (phase difference 180 °), and the output voltage waveform at this time is almost a rectangular wave.
In the example of FIG. 14A, the case where the phase α between the arms is 180 ° is illustrated. Further, the case where the on-duty ratio of the drive signal of each arm is 50%, that is, the case where the ratio of the on-time T13a and the off-time T13b in one cycle T13 is the same is illustrated.
In this case, the energization on time width T14a and the energization off time width T14b of the
火力を低下させる場合には、高火力状態と比較してアーム間の位相αを小さくして、1周期における電圧印加時間幅を減少させる。なお、アーム間の位相αの下限は、例えば、ターンオン時に負荷回路に流れる電流の位相等との関係でスイッチング素子に過大電流が流れて破壊してしまわないレベルに設定する。
図14(b)の例では、アーム間の位相αを図14(a)と比較して小さくした場合を図示している。なお、各アームの駆動信号の周波数及びオンデューティ比は、図14(a)と同じである。
この場合、駆動信号の1周期T14における、内コイル11b、外コイル11cの通電オン時間幅T14aは、アーム間の位相αに応じた時間となる。
このように、アーム相互間の位相差によって、内コイル11b、外コイル11cへの投入電力(火力)を制御することができる。 When lowering the thermal power, the phase α between the arms is made smaller than in the high thermal power state to reduce the voltage application time width in one cycle. Note that the lower limit of the phase α between the arms is set to a level at which an excessive current does not flow into the switching element and breaks due to the phase of the current flowing in the load circuit at the time of turn-on, for example.
In the example of FIG. 14B, the case where the phase α between the arms is made smaller than that in FIG. 14A is illustrated. The frequency and on-duty ratio of the drive signal for each arm are the same as in FIG.
In this case, the energization on time width T14a of theinner coil 11b and the outer coil 11c in one cycle T14 of the drive signal is a time corresponding to the phase α between the arms.
Thus, the input power (thermal power) to theinner coil 11b and the outer coil 11c can be controlled by the phase difference between the arms.
図14(b)の例では、アーム間の位相αを図14(a)と比較して小さくした場合を図示している。なお、各アームの駆動信号の周波数及びオンデューティ比は、図14(a)と同じである。
この場合、駆動信号の1周期T14における、内コイル11b、外コイル11cの通電オン時間幅T14aは、アーム間の位相αに応じた時間となる。
このように、アーム相互間の位相差によって、内コイル11b、外コイル11cへの投入電力(火力)を制御することができる。 When lowering the thermal power, the phase α between the arms is made smaller than in the high thermal power state to reduce the voltage application time width in one cycle. Note that the lower limit of the phase α between the arms is set to a level at which an excessive current does not flow into the switching element and breaks due to the phase of the current flowing in the load circuit at the time of turn-on, for example.
In the example of FIG. 14B, the case where the phase α between the arms is made smaller than that in FIG. 14A is illustrated. The frequency and on-duty ratio of the drive signal for each arm are the same as in FIG.
In this case, the energization on time width T14a of the
Thus, the input power (thermal power) to the
なお、上記の説明では、内コイル11bおよび外コイル11cを共に加熱動作させる場合を説明したが、内コイル用アーム又は外コイル用アームの駆動を停止し、内コイル11b又は外コイル11cの何れか一方のみを加熱動作させるようにしても良い。
In the above description, the case where both the inner coil 11b and the outer coil 11c are heated is described. However, the driving of the inner coil arm or the outer coil arm is stopped, and either the inner coil 11b or the outer coil 11c is stopped. Only one of them may be heated.
制御部45は、上記実施の形態1及び2で説明した、増幅された検出値の所定時間当たりの変化量を求める際に、インバータ回路23の駆動周波数を固定した状態においては、アーム間の位相αと、各アームのスイッチング素子のオンデューティ比とを固定した状態にする。なお、その他の動作は上記実施の形態1又は2と同様である。
これにより、内コイル11b、外コイル11cへの投入電力が一定の状態で、増幅された検出値の所定時間当たりの変化量を求めることができる。 Thecontrol unit 45 determines the phase between the arms when the drive frequency of the inverter circuit 23 is fixed when the amount of change per predetermined time of the amplified detection value described in the first and second embodiments is obtained. α and the on-duty ratio of the switching element of each arm are fixed. Other operations are the same as those in the first or second embodiment.
Thereby, the amount of change per predetermined time of the amplified detection value can be obtained in a state where the input power to theinner coil 11b and the outer coil 11c is constant.
これにより、内コイル11b、外コイル11cへの投入電力が一定の状態で、増幅された検出値の所定時間当たりの変化量を求めることができる。 The
Thereby, the amount of change per predetermined time of the amplified detection value can be obtained in a state where the input power to the
なお、本実施の形態4では、内コイル11b流れるコイル電流と、外コイル11c流れるコイル電流とを、コイル電流検出手段25cとコイル電流検出手段25dによってそれぞれ検出している。
このため、内コイル11bおよび外コイル11cを共に加熱動作させた場合において、コイル電流検出手段25c又はコイル電流検出手段25dの何れか一方が、故障などでコイル電流値が検出できない場合であっても、他方の検出値を増幅することによって、検出値の所定時間当たり変化量を検出することが可能となる。
また、制御部45は、コイル電流検出手段25cの検出値が増幅された検出値の所定時間当たりの変化量と、コイル電流検出手段25dの検出値が増幅された検出値の所定時間当たりの変化量とをそれぞれ求め、それぞれ変化量のうち大きい方を用いて、上記実施の形態1及び2で説明した各判断動作を行うようにしても良い。また、それぞれの変化量の平均値を用いて、上記実施の形態1及び2で説明した各判断動作を行うようにしても良い。
このような制御を行うことで、コイル電流検出手段25c又はコイル電流検出手段25dの何れか検出精度が低い場合であっても、検出値の所定時間当たりの変化量を、より精度良く求めることができる。 In the fourth embodiment, the coil current flowing through theinner coil 11b and the coil current flowing through the outer coil 11c are detected by the coil current detecting means 25c and the coil current detecting means 25d, respectively.
Therefore, when both theinner coil 11b and the outer coil 11c are heated, even if either the coil current detection means 25c or the coil current detection means 25d cannot detect the coil current value due to a failure or the like. By amplifying the other detection value, it becomes possible to detect a change amount of the detection value per predetermined time.
Further, thecontrol unit 45 changes the detected value obtained by amplifying the detection value of the coil current detection unit 25c per predetermined time and the change per predetermined time of the detection value obtained by amplifying the detection value of the coil current detection unit 25d. Each determination operation described in the first and second embodiments may be performed using the larger one of the change amounts. In addition, each determination operation described in the first and second embodiments may be performed using an average value of each change amount.
By performing such control, even if the detection accuracy of either the coil current detection means 25c or the coil current detection means 25d is low, the amount of change per predetermined time of the detection value can be obtained more accurately. it can.
このため、内コイル11bおよび外コイル11cを共に加熱動作させた場合において、コイル電流検出手段25c又はコイル電流検出手段25dの何れか一方が、故障などでコイル電流値が検出できない場合であっても、他方の検出値を増幅することによって、検出値の所定時間当たり変化量を検出することが可能となる。
また、制御部45は、コイル電流検出手段25cの検出値が増幅された検出値の所定時間当たりの変化量と、コイル電流検出手段25dの検出値が増幅された検出値の所定時間当たりの変化量とをそれぞれ求め、それぞれ変化量のうち大きい方を用いて、上記実施の形態1及び2で説明した各判断動作を行うようにしても良い。また、それぞれの変化量の平均値を用いて、上記実施の形態1及び2で説明した各判断動作を行うようにしても良い。
このような制御を行うことで、コイル電流検出手段25c又はコイル電流検出手段25dの何れか検出精度が低い場合であっても、検出値の所定時間当たりの変化量を、より精度良く求めることができる。 In the fourth embodiment, the coil current flowing through the
Therefore, when both the
Further, the
By performing such control, even if the detection accuracy of either the coil current detection means 25c or the coil current detection means 25d is low, the amount of change per predetermined time of the detection value can be obtained more accurately. it can.
なお、上記実施の形態1~4においては、本発明の誘導加熱調理器の一例として、IHクッキングヒーターを例に説明したが、本発明はこれに限定されるものではない。本発明は、誘導加熱により加熱調理を行う炊飯器など、誘導加熱方式を採用する任意の誘導加熱調理器に適用することが可能である。
In Embodiments 1 to 4, the IH cooking heater has been described as an example of the induction heating cooker of the present invention, but the present invention is not limited to this. The present invention can be applied to any induction heating cooker that employs an induction heating method, such as a rice cooker that performs cooking by induction heating.
1 第一の加熱口、2 第二の加熱口、3 第三の加熱口、4 天板、5 被加熱物、11 第一の加熱手段、11a 加熱コイル、12 第二の加熱手段、13 第三の加熱手段、21 交流電源、22 直流電源回路、22a ダイオードブリッジ、22b リアクタ、22c 平滑コンデンサ、23 インバータ回路、23a、23b IGBT、23c、23d ダイオード、24a、24b 共振コンデンサ、25a 入力電流検出手段、25b コイル電流検出手段、30 温度検知手段、35 一次電圧検出手段、35a、35b 抵抗、40a~40c 操作部、41a~41c 表示部、42 報知手段、45 制御部、48a、48b 増幅部、49 切替部、50 駆動回路、100 誘導加熱調理器、11b 内コイル、11c 外コイル、24c、24d 共振コンデンサ、25c、25d コイル電流検出手段、231a、231b、232a、232b、233a、233b IGBT、231c、231d、232c、232d、233c、233d ダイオード。
DESCRIPTION OF SYMBOLS 1 1st heating port, 2nd heating port, 3rd heating port, 4 top plate, 5 to-be-heated object, 11 1st heating means, 11a heating coil, 12 2nd heating means, 13th Three heating means, 21 AC power supply, 22 DC power supply circuit, 22a diode bridge, 22b reactor, 22c smoothing capacitor, 23 inverter circuit, 23a, 23b IGBT, 23c, 23d diode, 24a, 24b resonance capacitor, 25a input current detection means 25b, coil current detection means, 30 temperature detection means, 35 primary voltage detection means, 35a, 35b resistance, 40a-40c operation section, 41a-41c display section, 42 notification means, 45 control section, 48a, 48b amplification section, 49 Switching unit, 50 drive circuit, 100 induction heating cooker, 11b Yl, 11c outside the coil, 24c, 24d resonant capacitor, 25c, 25d coil current detecting means, 231a, 231b, 232a, 232b, 233a, 233b IGBT, 231c, 231d, 232c, 232d, 233c, 233d diode.
Claims (10)
- 被加熱物を誘導加熱する加熱コイルと、
前記加熱コイルに高周波電力を供給する駆動回路と、
前記加熱コイルの負荷判定処理を行う負荷判定手段と、
前記駆動回路への入力電流および前記加熱コイルに流れるコイル電流の少なくとも何れか一方の検出値を増幅する増幅手段と、
前記駆動回路の駆動を制御し、前記加熱コイルに供給される高周波電力を制御する制御部とを備え、
前記制御部は、
前記負荷判定手段の判定結果に応じて、前記駆動回路を駆動させ、
前記入力電流および前記コイル電流の少なくともいずれか一方の検出値、または、前記負荷判定手段の判定結果に応じて、前記増幅手段の増幅率を設定し、
前記駆動回路の駆動周波数を固定した状態で、前記増幅手段によって増幅された前記検出値の所定時間当たりの変化量を求め、
前記所定時間当たりの変化量に基づき、前記被加熱物の温度変化を検知する
ことを特徴とする誘導加熱調理器。 A heating coil for inductively heating an object to be heated;
A drive circuit for supplying high-frequency power to the heating coil;
Load determination means for performing load determination processing of the heating coil;
Amplifying means for amplifying a detected value of at least one of an input current to the drive circuit and a coil current flowing in the heating coil;
A controller that controls driving of the driving circuit and controls high-frequency power supplied to the heating coil;
The controller is
Depending on the determination result of the load determination means, the drive circuit is driven,
According to a detection value of at least one of the input current and the coil current, or a determination result of the load determination unit, an amplification factor of the amplification unit is set,
In a state where the drive frequency of the drive circuit is fixed, the amount of change per predetermined time of the detection value amplified by the amplification means is determined,
An induction heating cooker that detects a temperature change of the object to be heated based on a change amount per predetermined time. - 前記制御部は、
前記検出値が小さいほど、前記増幅手段の増幅率を大きく設定する
ことを特徴とする請求項1記載の誘導加熱調理器。 The controller is
The induction heating cooker according to claim 1, wherein the amplification factor of the amplification means is set to be larger as the detection value is smaller. - 前記負荷判定手段は、
前記入力電流と前記コイル電流との相関に基づいて、前記被加熱物を誘導加熱した際の電流変化量の大小を判定し、
前記制御部は、
前記電流変化量が小さいほど、前記増幅手段の増幅率を大きく設定する
ことを特徴とする請求項1記載の誘導加熱調理器。 The load determination means includes
Based on the correlation between the input current and the coil current, determine the amount of current change when the object to be heated is induction-heated,
The controller is
The induction heating cooker according to claim 1, wherein the amplification factor of the amplification means is set to be larger as the current change amount is smaller. - 前記制御部は、
前記駆動回路の駆動周波数を固定した状態で求めた前記所定時間当たりの変化量が、所定値以下となった場合、
前記駆動回路の駆動を制御して、前記加熱コイルに供給される高周波電力を可変させる
ことを特徴とする請求項1~3の何れか一項に記載の誘導加熱調理器。 The controller is
When the amount of change per predetermined time obtained in a state where the drive frequency of the drive circuit is fixed becomes a predetermined value or less,
The induction heating cooker according to any one of claims 1 to 3, wherein the driving circuit is controlled to vary the high-frequency power supplied to the heating coil. - 前記制御部は、
前記駆動回路の駆動周波数またはスイッチング素子のオンデューティ比を可変することで、前記加熱コイルに供給される高周波電力を可変させる
ことを特徴とする請求項4に記載の誘導加熱調理器。 The controller is
The induction heating cooker according to claim 4, wherein the high-frequency power supplied to the heating coil is varied by varying a driving frequency of the driving circuit or an on-duty ratio of the switching element. - 動作モードの選択操作を行う操作部と、
報知手段とを備え、
前記制御部は、
前記動作モードとして、水の湯沸し動作を設定する湯沸しモードが選択された場合、前記駆動回路を駆動させ、
前記駆動回路の駆動周波数を固定した状態で求めた前記所定時間当たりの変化量が、所定値以下となったとき、湯沸しが完了した旨を前記報知手段により報知させる
ことを特徴とする請求項1~5の何れか一項に記載の誘導加熱調理器。 An operation unit for selecting an operation mode;
An informing means,
The controller is
When the water heating mode for setting the water heating operation of water is selected as the operation mode, the driving circuit is driven,
2. The notification means that the boiling of water has been completed when the amount of change per predetermined time obtained with the drive frequency of the drive circuit fixed is below a predetermined value. The induction heating cooker according to any one of 1 to 5. - 前記負荷判定手段は、
前記入力電流と前記コイル電流との相関に基づいて、前記被加熱物の負荷判定処理を行う
ことを特徴とする請求項1~6の何れか一項に記載の誘導加熱調理器。 The load determination means includes
The induction heating cooker according to any one of claims 1 to 6, wherein a load determination process for the object to be heated is performed based on a correlation between the input current and the coil current. - 前記制御部は、
前記駆動回路の駆動周波数を固定した状態において、前記駆動回路のスイッチング素子のオンデューティ比を固定した状態にする
ことを特徴とする請求項1~7の何れか一項に記載の誘導加熱調理器。 The controller is
The induction heating cooker according to any one of claims 1 to 7, wherein an on-duty ratio of a switching element of the drive circuit is fixed in a state where the drive frequency of the drive circuit is fixed. . - 前記駆動回路は、
2つのスイッチング素子を直列に接続したアームを少なくとも2つ有するフルブリッジインバータ回路により構成され、
前記制御部は、
前記フルブリッジインバータ回路の、前記スイッチング素子の駆動周波数を固定した状態において、前記2つのアームの相互間の前記スイッチング素子の駆動位相差と、前記スイッチング素子のオンデューティ比とを固定した状態にする
ことを特徴とする請求項1~7の何れか一項に記載の誘導加熱調理器。 The drive circuit is
A full-bridge inverter circuit having at least two arms in which two switching elements are connected in series;
The controller is
In the state where the driving frequency of the switching element of the full bridge inverter circuit is fixed, the driving phase difference of the switching element between the two arms and the on-duty ratio of the switching element are fixed. The induction heating cooker according to any one of claims 1 to 7, wherein - 前記駆動回路は、
2つのスイッチング素子を直列に接続したアームを有するハーフブリッジインバータ回路により構成され、
前記制御部は、
前記ハーフブリッジインバータ回路の、前記スイッチング素子の駆動周波数を固定した状態において、前記スイッチング素子のオンデューティ比を固定した状態にする
ことを特徴とする請求項1~7の何れか一項に記載の誘導加熱調理器。 The drive circuit is
It is composed of a half-bridge inverter circuit having an arm in which two switching elements are connected in series,
The controller is
The on-duty ratio of the switching element is fixed in a state where the driving frequency of the switching element of the half-bridge inverter circuit is fixed. Induction heating cooker.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014544329A JP5980344B2 (en) | 2012-10-30 | 2013-03-13 | Induction heating cooker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/077942 WO2014068646A1 (en) | 2012-10-30 | 2012-10-30 | Induction heating cooker |
JPPCT/JP2012/077942 | 2012-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069008A1 true WO2014069008A1 (en) | 2014-05-08 |
Family
ID=50626626
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/077942 WO2014068646A1 (en) | 2012-10-30 | 2012-10-30 | Induction heating cooker |
PCT/JP2013/056913 WO2014069008A1 (en) | 2012-10-30 | 2013-03-13 | Induction heating cooker |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/077942 WO2014068646A1 (en) | 2012-10-30 | 2012-10-30 | Induction heating cooker |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5980344B2 (en) |
WO (2) | WO2014068646A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562773A (en) * | 1991-09-03 | 1993-03-12 | Zojirushi Corp | Temperature detecting device for induction-heated cooking device |
JPH11260542A (en) * | 1998-03-11 | 1999-09-24 | Toshiba Corp | Induction heating cooking device |
JP2003151753A (en) * | 2001-11-13 | 2003-05-23 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
JP2006114371A (en) * | 2004-10-15 | 2006-04-27 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
JP2006114311A (en) * | 2004-10-14 | 2006-04-27 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
JP2007287702A (en) * | 2007-07-11 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001267052A (en) * | 2000-03-21 | 2001-09-28 | Hitachi Hometec Ltd | Induction heating cooker |
JP2006066182A (en) * | 2004-08-26 | 2006-03-09 | Mitsubishi Electric Corp | Induction heating cooker and its control method |
JP4901529B2 (en) * | 2007-02-28 | 2012-03-21 | 三菱電機株式会社 | Induction heating cooker |
JP5431899B2 (en) * | 2009-12-15 | 2014-03-05 | 株式会社ダイヘン | Electromagnetic induction heating cooker |
JP4969676B2 (en) * | 2010-08-16 | 2012-07-04 | 三菱電機株式会社 | Induction heating cooker |
-
2012
- 2012-10-30 WO PCT/JP2012/077942 patent/WO2014068646A1/en active Application Filing
-
2013
- 2013-03-13 WO PCT/JP2013/056913 patent/WO2014069008A1/en active Application Filing
- 2013-03-13 JP JP2014544329A patent/JP5980344B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562773A (en) * | 1991-09-03 | 1993-03-12 | Zojirushi Corp | Temperature detecting device for induction-heated cooking device |
JPH11260542A (en) * | 1998-03-11 | 1999-09-24 | Toshiba Corp | Induction heating cooking device |
JP2003151753A (en) * | 2001-11-13 | 2003-05-23 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
JP2006114311A (en) * | 2004-10-14 | 2006-04-27 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
JP2006114371A (en) * | 2004-10-15 | 2006-04-27 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
JP2007287702A (en) * | 2007-07-11 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Induction heating cooker |
Also Published As
Publication number | Publication date |
---|---|
JP5980344B2 (en) | 2016-08-31 |
JPWO2014069008A1 (en) | 2016-09-08 |
WO2014068646A1 (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6038345B2 (en) | Induction heating cooker | |
JP6141492B2 (en) | Induction heating cooker | |
JP6021933B2 (en) | Induction heating cooker | |
JP6021934B2 (en) | Induction heating cooker | |
JP6038343B2 (en) | Induction heating cooker | |
JP5369202B2 (en) | Induction heating cooker | |
JP5844017B1 (en) | Induction heating cooker and control method thereof | |
JP6038344B2 (en) | Induction heating cooker | |
JP6211175B2 (en) | Induction heating cooker | |
JP5921707B2 (en) | Induction heating cooker | |
JP5980344B2 (en) | Induction heating cooker | |
JP6005281B2 (en) | Induction heating cooker | |
JP6076040B2 (en) | Induction heating cooker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13851303 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014544329 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13851303 Country of ref document: EP Kind code of ref document: A1 |