WO2014068786A1 - クロマトグラフ分析装置 - Google Patents
クロマトグラフ分析装置 Download PDFInfo
- Publication number
- WO2014068786A1 WO2014068786A1 PCT/JP2012/078618 JP2012078618W WO2014068786A1 WO 2014068786 A1 WO2014068786 A1 WO 2014068786A1 JP 2012078618 W JP2012078618 W JP 2012078618W WO 2014068786 A1 WO2014068786 A1 WO 2014068786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analysis
- sample
- unit
- chromatographic
- separation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/24—Automatic injection systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
- G01N30/466—Flow patterns using more than one column with separation columns in parallel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8665—Signal analysis for calibrating the measuring apparatus
- G01N30/8668—Signal analysis for calibrating the measuring apparatus using retention times
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8675—Evaluation, i.e. decoding of the signal into analytical information
- G01N30/8679—Target compound analysis, i.e. whereby a limited number of peaks is analysed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
Definitions
- the present invention relates to a chromatographic analyzer such as a liquid chromatograph (LC) device or a gas chromatograph (GC) device, and in particular, an analysis condition for collecting a target compound contained in a sample with high purity in a preparative LC device.
- a chromatographic analyzer such as a liquid chromatograph (LC) device or a gas chromatograph (GC) device, and in particular, an analysis condition for collecting a target compound contained in a sample with high purity in a preparative LC device.
- the present invention relates to a chromatographic analyzer suitable for determination.
- a preparative LC apparatus that fractionates and collects a plurality of compounds contained in a liquid sample using a high performance liquid chromatograph (HPLC) apparatus has been widely used (for example, Patent Document 1).
- HPLC high performance liquid chromatograph
- various columns having different characteristics are used, and various mobile phases are also used. Since the separation characteristics of the compounds contained in the sample vary greatly depending on the combination of the column and mobile phase, the target compound in a sample can be separated with high purity, that is, with as little overlap of other compounds (contaminants) as possible.
- it is important to set the separation conditions mainly the type of column and the type of mobile phase) that can best separate the target compound for each sample.
- the present invention has been made in view of the above problems, and the object of the present invention is to enable high-purity fractionation, for example, when fractionating a target compound in a sample using a preparative LC apparatus. It is an object of the present invention to provide a chromatographic analyzer capable of reducing the labor of an analyst required for finding an optimum separation condition and reducing the work time.
- the present invention includes a column for separating compounds contained in a sample in a time direction, a mobile phase supply unit for supplying a mobile phase to the column, and a mobile phase supply unit.
- a chromatographic analyzer comprising: a sample introduction part for introducing a sample into a mobile phase supplied to the column; and a detection part for detecting each compound in the sample eluted from the column.
- a separation condition switching unit that sequentially switches the separation conditions among a plurality of separation conditions prepared in advance for one or more separation elements that affect the separation state of the target compound
- an analysis control unit that repeatedly introduces the same sample by the sample introduction unit while switching the separation condition by the separation condition switching unit, and performs chromatographic analysis of the same sample under each separation condition
- the mobile phase is an eluent
- the mobile phase supply unit typically includes a liquid feed pump.
- the mobile phase is a carrier gas
- the mobile phase supply unit includes a flow rate regulator or a pressure regulator such as a mass flow controller.
- one of the separation elements is a column
- the column is of a different type from the plurality of separation conditions
- the separation condition switching unit has a column used for chromatographic analysis. It can be set as the structure which is the column switching part to switch.
- one of the separation elements is a mobile phase
- the mobile phase is different in type from the plurality of separation conditions
- the separation condition switching unit is connected to the mobile phase supply unit.
- it can also be set as the structure which is a flow-path switching part which switches the mobile phase supplied to a column.
- one of the separation elements is a mobile phase, and the mixing ratio and the temporal mixing thereof when mixing a plurality of mobile phases different from the plurality of separation conditions.
- a plurality of gradient conditions with different ratio changes, and the separation condition switching unit is in the mobile phase supply unit and controls the operation of a liquid feed pump that feeds a plurality of mixed mobile phases. It can also be set as the structure which is a pump control part which changes flow volume.
- chromatographic analyzer for example, different types of columns and different types of mobile phases are automatically and sequentially switched under the control of the analysis control unit, and chromatographic analysis is performed on the same sample.
- the chromatogram creation unit creates a chromatogram based on the data obtained by performing multiple chromatographic analyzes on the same sample. For example, when the type of column and the type of mobile phase are different, the separation status of a plurality of compounds contained in the sample is changed, which is reflected in the peak overlap status on the chromatogram. Therefore, by confirming whether the chromatogram peak of the target compound overlaps with other peaks or is an isolated peak in multiple chromatograms under different separation conditions for the same sample, for example, the target compound has a high purity. The most suitable separation conditions can be found.
- An input unit for the user to specify a plurality of samples to be analyzed in series; When a plurality of samples to be analyzed in series are specified through the input section, the sample and the separation conditions are combined so that chromatographic analysis is continuously performed on the plurality of samples under the same separation conditions.
- the input unit allows the user to specify additional one or more samples even during chromatographic analysis
- the schedule creation unit for the sample that has not been analyzed in the analysis schedule being executed and the sample that has been additionally instructed, under the same separation condition Re-adjust the combination of sample and separation conditions to correct the analysis schedule so that chromatographic analysis on multiple samples is performed continuously
- the analysis control unit may be configured to continue the chromatographic analysis in accordance with the analysis schedule modified by the schedule creation unit.
- the chromatographic analyzer in the configuration further comprising a sample selection unit that selects a designated sample from a plurality of samples accommodated in a rack and supplies the sample to the sample introduction unit.
- a sample selection unit that selects a designated sample from a plurality of samples accommodated in a rack and supplies the sample to the sample introduction unit.
- the detection unit is a mass spectrometer that repeatedly acquires mass spectrum data
- the input unit can set the molecular weight of the target compound or the mass-to-charge ratio characterizing the compound for each sample,
- the chromatogram creation unit displays the created chromatogram in a form in which the chromatogram peak identified by the peak extraction unit and other chromatogram peaks can be visually discerned. It is preferable to include a drawing processing unit to be displayed above.
- the mass spectrometer is typically a quadrupole mass spectrometer or a triple quadrupole mass spectrometer.
- the chromatogram is typically a total ion chromatogram.
- the “significant mass spectrum peak” is a peak whose intensity value of a mass spectrum peak having a molecular weight or a mass-to-charge ratio set in the input unit exceeds a predetermined threshold value, for example. This threshold value may be a default value or a value specified by the user.
- the chromatogram peak specified by the peak extraction unit is a peak that is highly likely to be derived from the target compound. Therefore, by determining whether or not this chromatogram peak is in an isolated state, an optimal separation condition can be found. In particular, by displaying only the chromatogram peak identified by the peak extraction unit with a color different from that of the other chromatogram peaks, the analyst can easily and without error make a chromatogram derived from the target compound on the display screen. Gram peaks can be grasped, and it can be judged at a glance whether or not the separation conditions are appropriate.
- the chromatogram creation unit includes a drawing processing unit that displays a plurality of chromatograms obtained under different separation conditions for one sample side by side or superimposed on a display screen.
- the analyst can check the separation status of the chromatogram peak derived from the target compound under different separation conditions at a glance. For example, the optimal separation for separating the target compound with high purity is possible. Conditions can be found more easily.
- the chromatographic analyzer when searching for an optimal separation condition that enables high-purity fractionation, for example, an analyst himself / herself manually switches between a column and a mobile phase. Since it is not necessary to perform the analysis, it is not necessary for the analyst to be in the vicinity of the apparatus during the series of analysis, and the troublesome time for the analyst can be greatly reduced, and the time required for the analysis can be shortened. In particular, when there are multiple samples to be analyzed under the same separation conditions, the number of times the channel is washed is reduced by setting an analysis schedule so that the analysis of the multiple samples is performed continuously. Analysis time can be further reduced.
- a mass spectrometer is used as a detection unit, and a chromatogram peak including a significant mass spectrum peak corresponding to a mass-to-charge ratio characterizing a target compound is found based on mass spectrum data obtained by the mass spectrometer.
- the analyst can grasp at a glance the chromatogram peak derived from the target compound and can immediately determine whether the separation conditions at that time are appropriate.
- the flowchart which shows control / processing of the operation
- the figure which shows an example of the display screen at the time of analysis reservation setting.
- FIG. 1 is a configuration diagram of a main part of the LC / MS of this embodiment.
- This LC / MS is a first switching valve for selecting one of the four types of mobile phases A1 to A4 stored in the four mobile phase containers 1 and the cleaning liquid stored in the cleaning liquid container 2. 3 and a second switching valve 4 for selecting any one of the four types of mobile phases B1 to B4 stored in the four mobile phase containers 1 and the cleaning liquid stored in the cleaning liquid container 2; , The first liquid pump 5 and the second liquid pump 6 for sucking and feeding the solution selected by the switching valves 3 and 4 respectively, and the mobile phase fed by the liquid pumps 5 and 6 are mixed.
- An autosampler 9 Suction and supply to injector 8
- An autosampler 9 six types of columns 11 (11a to 11f), and a third switching valve 10 and a fourth switch arranged on the inlet side and the outlet side of the column 11 in order to select a column to be used for LC analysis.
- An input unit 33 for the user to set conditions and the like, and a display unit 34 for displaying the analysis progress status, analysis results, and the like are provided.
- the mobile phases A1 to A4 and the mobile phases B1 to B4 are different types of mobile phase solvents.
- the six types of columns 11 are also columns having different separation characteristics.
- the identity of the sample used for analysis is somewhat clear, and the target compound is also limited to some extent . Therefore, the type of mobile phase and column to be used can be narrowed to some extent from such prior knowledge and knowledge, and the analyst may prepare an appropriate mobile phase and column in advance.
- the mass spectrometer 13 is a quadrupole mass spectrometer equipped with, for example, an electrospray ion source or an atmospheric pressure chemical ion source, and repeats scan measurement within a predetermined mass-to-charge ratio range, so that a predetermined charge is obtained for each scan measurement. Mass spectral data over a specific range can be obtained.
- the data processing unit 20 includes a data storage unit 21, a chromatogram creation unit 22, and a target peak extraction unit 23 as functional blocks.
- the control unit 30 includes a separation condition search schedule creation unit 31 and a separation condition search control unit 32 as functional blocks.
- the data processing unit 20 and the control unit 30 (in some cases, a part of the analysis control unit 14) use a personal computer as a hardware resource, and execute dedicated control / processing software installed in the personal computer.
- the functions as the data processing unit 20 and the control unit 30 can be exhibited.
- FIG. 2 is a flowchart showing the control and processing of the separation condition search operation
- FIG. 3 is a diagram showing an example of a display screen when setting an analysis reservation
- FIG. 4 is a diagram showing an example of a created analysis schedule
- FIG. FIG. 6 is a diagram illustrating an example of a display screen being executed
- FIG. 6 is a diagram illustrating an example of a part of the display screen when an additional analysis reservation is set
- FIG. 7 is a diagram illustrating an example of an analysis schedule after adjusting the schedule for the additional analysis reservation
- FIG. 8 is a diagram showing an example of the analysis report display screen after the analysis is completed.
- the input unit 33 When a certain analyst wants to examine the optimum separation condition for separating the target compound contained in a plurality of samples at hand, the input unit 33 performs a predetermined operation. In response to this operation, the separation condition search schedule creation unit 31 displays an analysis reservation acceptance screen 50 as shown in FIG. 3 for accepting an analysis reservation on the screen of the display unit 34.
- the analyst inputs and sets the number of samples, the mass-to-charge ratio m / z characterizing the target compound in each sample, and the like (step S1).
- a sample position indication image 51 showing the positions of a plurality of samples accommodated in the sample rack is drawn on the analysis reservation reception screen 50, and the analyst can display the sample position indicated on the image 51. Put the sample on.
- LC / MS of this embodiment not an individual analyst, but a system administrator sets in advance an analytical method describing the LC analysis conditions such as the type of column to be used, the type of mobile phase, and the gradient conditions.
- the LC analysis is automatically executed according to all the set analysis methods. Therefore, here, the analyst does not need to set the above-described analysis conditions again, but the analyst may be able to set such analysis conditions.
- the separation condition search schedule creation unit 31 reduces the number of executions of washing and equilibration of the flow path including the column as much as possible every time the column and the mobile phase are switched.
- the analysis order is rearranged. Specifically, as shown in FIG. 4, the analysis is continuously performed in which the combination of the column type and the mobile phase type, which are separation conditions, is the same, and washing (and equilibration is performed when the column or the mobile phase is switched).
- An analysis schedule is created by rearranging the analysis order so as to execute (Step S2).
- a combination of one column and two mobile phases for example, column 1 / mobile phase A1, B1 is an analysis condition included in one analysis method.
- the analysis schedule created as described above is transferred to the separation condition search control unit 32, and the separation condition search control unit 32 controls each unit via the analysis control unit 14 so as to execute the analysis according to the analysis schedule. (Step S3).
- the second switching valve moves so that the first switching valve 3 selects the mobile phase A1. It is switched so that phase B1 is selected. Further, the third and fourth switching valves 10 and 12 are switched so that the uppermost column 11a is selected.
- the first liquid feed pump 5 feeds the mobile phase A1 at a predetermined flow rate
- the second liquid feed pump 6 feeds the mobile phase B1 at a predetermined flow rate. Both mobile phases are mixed by the mixer 7 and sent to the column 11a through the injector 8 and the third switching valve 10.
- the mixing ratio of the mobile phases A1 and B1 is based on the gradient conditions included in the same analytical method.
- the autosampler 9 sucks the sample placed at the designated position on the sample rack and supplies it to the injector 8, and the injector 8 injects the sample into the mobile phase at a predetermined timing.
- the injected sample rides on the flow of the mobile phase and is sent to the column 11a.
- the eluate is introduced into the mass spectrometer 13 through the fourth switching valve 12.
- a part of the eluate divided through a splitter or the like may be introduced into the mass spectrometer 13.
- the mass spectrometer 13 ionizes the compound contained in the introduced eluate and repeatedly acquires mass spectrum data for the generated ions.
- the mass spectrum data is sent to the data processing unit 20 and sequentially stored in the data storage unit 21.
- the separation condition search control unit 32 determines whether or not there is an instruction for additional analysis reservation after the start of analysis execution (step S4). This will be described later. If there is no instruction for additional analysis reservation, it is next determined whether or not one analysis has been completed (step S6), and if not yet completed, the process returns to step S3. Therefore, if there is no instruction for additional analysis reservation, the process of steps S3 ⁇ S4 ⁇ S6 is repeated until one LC / MS analysis corresponding to one line on the analysis schedule shown in FIG. 4 is completed. When it is determined that one LC / MS analysis has been completed due to the end of the predetermined analysis time defined in the analysis method, the separation condition search control unit 32 has completed all the analyzes set in the analysis schedule. (Step S7), and if the entire analysis is not completed, the process proceeds to the next analysis on the analysis schedule.
- step S8 When shifting to the next analysis, it is determined whether or not sample exchange is necessary by checking the sample ID and the like on the analysis schedule (step S8). If the sample IDs of the analysis executed immediately before and the analysis to be executed next are different, it is determined that the sample needs to be exchanged, and the autosampler 9 is controlled so as to prepare the designated next sample (step S9). For example, when shifting from the first line to the second line analysis on the analysis schedule shown in FIG. 4, it is necessary to replace the sample, so the process of step S ⁇ b> 9 is executed.
- the separation condition search control unit 32 determines whether or not it is necessary to change at least one of the separation conditions, specifically, the mobile phase or the column (step S10), and if it is necessary to change at least one of them.
- the switching valves 3, 4, 10, and 12 are controlled so that the designated next mobile phase and / or column is connected (step S11).
- the process returns to step S3, and the next analysis in which at least one of the sample and the separation condition is changed is performed.
- an analysis execution screen 60 as shown in FIG. 5 is displayed on the screen of the display unit 34.
- a table 61 indicating how far each analysis according to the analysis schedule has been completed and which analysis is being executed, and a sample position indication indicating the position of the sample for which analysis has been completed
- An image 62 is displayed.
- This LC / MS is supposed to be used by a plurality of analysts. Therefore, even when an analysis designated by a certain analyst is being performed, another (or the same as above) is used. It is possible for an analyst to register a sample to be analyzed. That is, if an analyst performs the same operation as step S1 by the input unit 33 during the analysis execution, the analysis reservation acceptance screen 50 is displayed on the screen of the display unit 34, and a new number of samples can be designated. It becomes. However, some samples are already placed on the sample rack, and no additional samples can be placed at that position. Therefore, the separation condition search schedule creation unit 31 automatically determines a position where an additional sample can be placed, and presents the sample position on the sample position instruction image 51 drawn on the analysis reservation reception screen 50. The analyst places a sample at the presented position (step S1A).
- the separation condition search schedule creation unit 31 determines that point in the already created analysis schedule.
- the analysis schedule is adjusted so that the number of washings is reduced as much as possible by combining the analysis that has not been performed in step 1 and the analysis on the newly added sample (step S5). Specifically, for example, an analysis reservation for a new sample (sample 3) was made during the execution of the analysis in the fourth row (sample 1 column 1 / mobile phase A1, B2) in the analysis schedule shown in FIG. Then, as shown in FIG. 7, the analysis for the new sample is inserted on the analysis schedule.
- the analysis order is dynamically optimized so that the number of washings is not increased as much as possible.
- the analysis is executed under different separation conditions for each of the plurality of samples according to the analysis schedule created first or appropriately adjusted in the middle, and when all the analyzes are completed, the process proceeds from step S7 to S12.
- the chromatogram creation unit 22 creates a total ion chromatogram for each sample and for each separation condition based on the mass spectrum data for each analysis stored in the data storage unit 21 (step S12).
- the threshold for determining the mass spectrum peak signal intensity may be determined in advance by the manufacturer of the device, or may be set freely by the user (analyzer or system administrator). Good. Further, the threshold value is not an absolute value, and may be a relative value with respect to the signal intensity of another peak, for example.
- the control unit 30, selects a plurality of chromatograms under different separation conditions for a specified sample ( Total ion chromatograms) are displayed side by side on the screen of the display unit 34.
- the chromatogram peaks identified in step S13 are colored (indicated by hatching in FIG. 8) so that they can be easily distinguished from other peaks (step S14).
- the analyst can confirm the chromatogram of the same sample under different separation conditions at a glance, and also immediately understand the peak of the target compound to be separated. Appropriate separation conditions can be known immediately.
- report results can be displayed as well as output from a printer (not shown).
- the display format can be changed as appropriate, for example, the horizontal axis and the vertical axis are aligned and displayed in the same graph frame.
- the display format of the specified chromatogram peak is not limited to the coloring display of the peak area, but can be changed as appropriate, such as displaying the peak curve in color or displaying a translucent display other than the specific chromatogram peak. it can.
- the position where the sample should be placed is presented on the sample position indicating image 51, and the analyst places the sample at that position.
- the analyst may be allowed to specify the position where the sample is placed.
- the separation condition search schedule creation unit 31 places an additional sample on the sample position indication image 51 in the analysis reservation reception screen 50 as shown in FIG. Indicates possible positions.
- a position indicated by a solid line is a position where a sample can be placed
- a position indicated by a dotted line is a position where a sample cannot be placed (that is, a reserved position).
- the analyst designates a position where the sample is to be placed by clicking on an arbitrary position among a plurality of positions where the sample can be placed. Then, the sample may be actually placed at the position designated by itself.
- the above embodiment is merely an example of the present invention, and can be appropriately modified, modified, and added within the scope of the gist of the present invention.
- the present invention is applied to LC / MS, but the present invention is also applicable to GC / MS.
- a mass spectrometer is not used as a detector, the processing shown in step S13 and display based on the processing result cannot be performed, but other functions can be realized.
Landscapes
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Library & Information Science (AREA)
- Engineering & Computer Science (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
目的化合物を分取するのに最適な分離条件(移動相やカラムの種類)を見出したい場合、分析者がサンプル数やラック上でのサンプル位置を指示すると(S1)、分離条件の切替毎に必要となる洗浄の回数が極力少なくなるべく、同一分離条件の下での複数のサンプルの分析が連続的に行われるように分析順序を入れ替えた分析スケジュールを作成し、これに従って分析を実行する(S2、S3)。また、分析実行中に他の分析者が分析予約を行うと(S1A)、未分析サンプルを含めて分析スケジュールを再調整する(S5)。これにより、カラムや移動相の切替えを手動で行う必要がなくなり、分析者の負担が大幅に軽減される。また、時間を要する洗浄回数が減るので、全体的な分析所要時間も短縮される。
Description
本発明は、液体クロマトグラフ(LC)装置やガスクロマトグラフ(GC)装置などのクロマトグラフ分析装置に関し、特に、分取LC装置において試料に含まれる目的化合物を高い純度で採取するための分析条件を決めるのに好適なクロマトグラフ分析装置に関する。
医薬品の研究・開発或いは製造を行う際には、化学合成反応等で生成される様々な化合物が含まれた混合液や天然抽出液などから、目的とする化合物を高い純度で分離し精製する必要がある。こうした目的のために、従来より、高速液体クロマトグラフ(HPLC)装置を利用して、液体試料に含まれる複数の化合物を分画して採取する、分取LC装置が広く用いられている(例えば特許文献1参照)。一般にLC分析では、特性の異なる様々なカラムが使用され、また移動相も様々なものが使用されている。試料に含まれる化合物の分離特性はカラムと移動相との組み合わせによって大きく変わるため、或るサンプル中の目的化合物を高純度で、つまりは他の化合物(夾雑物)の重なりができるだけ少ない状態で分取するには、サンプル毎に目的化合物を最も良好に分離できる分離条件(主にはカラムの種類及び移動相の種類)を設定して分取を行うことが重要である。
このようにサンプル毎に目的化合物に対する最適分離条件を探索するために、従来は、分析者が移動相とカラムとをそれぞれ切り替える操作を行いながら、考え得る移動相とカラムとの全ての組み合わせについて一つのサンプルに対するLC分析を実行し、その結果を見ていずれの組み合わせが最適であるかを判断している。通常、移動相とカラムとの組み合わせは少なくても十程度、多い場合には数十にも及ぶ。また、特に医薬品等の研究・開発を行う際には、処理すべきサンプルの数自体もかなり多くなる。そのため、サンプル毎に目的化合物の最適分離条件を探索するという作業には、膨大な手間と時間が掛かることが避けられず、これが創薬の効率アップを阻む大きな要因となっている。
本発明は上記課題に鑑みて成されたものであり、その目的とするところは、例えば分取LC装置を用いてサンプル中の目的化合物を分取する場合において、高純度の分取が行えるような最適な分離条件を見出す作業に要する分析者の手間を軽減し、その作業時間を短縮することができるクロマトグラフ分析装置を提供することにある。
上記課題を解決するために成された本発明は、試料に含まれる化合物を時間方向に分離するためのカラムと、該カラムに移動相を供給する移動相供給部と、該移動相供給部により前記カラムに供給される移動相中に試料を導入する試料導入部と、前記カラムから溶出する前記試料中の各化合物を検出する検出部と、を具備するクロマトグラフ分析装置において、
a)目的化合物の分離状態に影響を与える1又は複数の分離要素について、予め用意された複数の分離条件の中で分離条件を順次切り替える分離条件切替部と、
b)前記分離条件切替部により分離条件を切り替えながら前記試料導入部により同一試料を繰り返し導入し、各分離条件の下で同一試料のクロマトグラフ分析をそれぞれ実行する分析制御部と、
c)前記分析制御部による制御の下で実行された同一試料に対する複数回のクロマトグラフ分析においてそれぞれ前記検出部により得られたデータに基づいて、異なる分離条件の下でのクロマトグラムを作成するクロマトグラム作成部と、
を備え、前記クロマトグラム作成部により作成された複数のクロマトグラムを利用して試料中の目的化合物に適した分離条件を探索可能としたことを特徴としている。
a)目的化合物の分離状態に影響を与える1又は複数の分離要素について、予め用意された複数の分離条件の中で分離条件を順次切り替える分離条件切替部と、
b)前記分離条件切替部により分離条件を切り替えながら前記試料導入部により同一試料を繰り返し導入し、各分離条件の下で同一試料のクロマトグラフ分析をそれぞれ実行する分析制御部と、
c)前記分析制御部による制御の下で実行された同一試料に対する複数回のクロマトグラフ分析においてそれぞれ前記検出部により得られたデータに基づいて、異なる分離条件の下でのクロマトグラムを作成するクロマトグラム作成部と、
を備え、前記クロマトグラム作成部により作成された複数のクロマトグラムを利用して試料中の目的化合物に適した分離条件を探索可能としたことを特徴としている。
本発明に係るクロマトグラフ分析装置がLC装置である場合には移動相は溶離液であり、移動相供給部は典型的には送液ポンプを含む。一方、本発明に係るクロマトグラフ分析装置がGC装置である場合には移動相はキャリアガスであり、移動相供給部は例えばマスフローコントローラ等の流量調整器又は圧力調整器を含む。
一般に、試料に様々な性質の化合物が複数含まれる場合、それら化合物の分離状態に影響を与える大きな要素は、カラムの分離特性や移動相の極性などである。
そこで、本発明の一態様として、上記分離要素の1つはカラムであり、上記複数の分離条件とは種類の相違するカラムであり、上記分離条件切替部は、クロマトグラフ分析に使用するカラムを切り替えるカラム切替部である構成とすることができる。
そこで、本発明の一態様として、上記分離要素の1つはカラムであり、上記複数の分離条件とは種類の相違するカラムであり、上記分離条件切替部は、クロマトグラフ分析に使用するカラムを切り替えるカラム切替部である構成とすることができる。
また本発明の別の態様として、上記分離要素の1つは移動相であり、上記複数の分離条件とは種類の相違する移動相であり、上記分離条件切替部は、上記移動相供給部にあって、カラムに供給する移動相を切り替える流路切替部である構成とすることもできる。
さらにまた本発明の別の態様として、上記分離要素の1つは移動相であり、上記複数の分離条件とは種類の相違する複数の移動相を混合する際の混合比率及びその時間的な混合比率の変化が相違する複数のグラジエント条件であり、上記分離条件切替部は、上記移動相供給部にあって、混合される複数の移動相をそれぞれ送給する送液ポンプの動作を制御することで流量を変化させるポンプ制御部である構成とすることもできる。
本発明に係るクロマトグラフ分析装置では、分析制御部による制御の下で、例えば異なる種類のカラムや異なる種類の移動相が自動的に順次切り替えられ、同一試料に対するクロマトグラフ分析がそれぞれ実行される。クロマトグラム作成部は、このように同一試料に対する複数回のクロマトグラフ分析により得られたデータに基づいて、それぞれクロマトグラムを作成する。例えばカラムの種類や移動相の種類が異なると、試料に含まれる複数の化合物の分離状況が変化し、それはクロマトグラム上でピークの重なり状況に反映される。したがって、同一試料に対する異なる分離条件の下での複数のクロマトグラムにおいて目的化合物のクロマトグラムピークが他のピークと重なっているか、或いは孤立ピークであるかと確認することで、例えばその目的化合物を高純度で分取するのに最も適当な分離条件を見出すことができる。
本発明に係るクロマトグラフ分析装置において、好ましくは、
一連で分析すべき複数の試料をユーザが指定するための入力部と、
上記入力部を通して一連で分析すべき複数の試料が指定されたとき、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように、試料と分離条件とを組み合わせた分析スケジュールを作成するスケジュール作成部と、をさらに備え、
上記分析制御部は、上記スケジュール作成部により作成された分析スケジュールに従ってクロマトグラフ分析を実行する構成とするとよい。
一連で分析すべき複数の試料をユーザが指定するための入力部と、
上記入力部を通して一連で分析すべき複数の試料が指定されたとき、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように、試料と分離条件とを組み合わせた分析スケジュールを作成するスケジュール作成部と、をさらに備え、
上記分析制御部は、上記スケジュール作成部により作成された分析スケジュールに従ってクロマトグラフ分析を実行する構成とするとよい。
クロマトグラフ分析に使用される移動相やカラムが変更された場合、カラムの劣化やコンタミネーションを防止するために、カラムを含む流路の洗浄(カラムの平衡化を含む)が必要である。上述のように、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように分析スケジュールを組めば、その同一分離条件の下での分析が実行されている期間には流路の洗浄を行う必要がないので、洗浄回数を減らすことができる。一般に、流路の洗浄に要する時間は実際の分析実行時間と比べても無視できない程度に長い。そのため、洗浄回数を減らすことで、複数の試料に対する一連の分析に要する総所要時間を短縮することができる。また、洗浄はカラムの劣化を促進させることになるが、洗浄回数を減らすことでカラムの長寿命化を図ることができる。
また上記構成のクロマトグラフ分析装置では、
上記入力部は、クロマトグラフ分析実行中にも、ユーザによる1又は複数の試料の追加の指定を許容し、
上記スケジュール作成部は、上記入力部により分析対象試料の追加が指示されたとき、実行中の分析スケジュール中で未分析である試料と追加指示された試料とについて、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように、試料と分離条件との組み合わせを再調整して分析スケジュールを修正し、
上記分析制御部は、上記スケジュール作成部により修正された分析スケジュールに従ってクロマトグラフ分析を続行する構成とするとよい。
上記入力部は、クロマトグラフ分析実行中にも、ユーザによる1又は複数の試料の追加の指定を許容し、
上記スケジュール作成部は、上記入力部により分析対象試料の追加が指示されたとき、実行中の分析スケジュール中で未分析である試料と追加指示された試料とについて、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように、試料と分離条件との組み合わせを再調整して分析スケジュールを修正し、
上記分析制御部は、上記スケジュール作成部により修正された分析スケジュールに従ってクロマトグラフ分析を続行する構成とするとよい。
この構成によれば、例えば或る分析者が当該装置において分析を実行している途中でも、別の分析者が自分が分析すべき試料の分析を登録することができ、そのときに、全体として最も分析効率が良くなるように自動的に分析スケジュールが調整される。したがって、例えば複数の分析者が1台の装置を共用して化合物単離の作業を行うような場合に、作業全体のスループットを向上させることができる。
なお、本発明に係るクロマトグラフ分析装置にあって、ラックに収容された複数の試料の中から指定された試料を選択し上記試料導入部に供給する試料選択部をさらに備える構成においては、
ユーザによる試料の指定又は追加の際に、上記ラックにおいて使用可能な試料収容位置と使用不能である試料収容位置とを視覚上識別可能な表示を表示画面上に行うことが好ましい。
ユーザによる試料の指定又は追加の際に、上記ラックにおいて使用可能な試料収容位置と使用不能である試料収容位置とを視覚上識別可能な表示を表示画面上に行うことが好ましい。
これによって、複数の分析者が1台の装置を共用する場合であっても、それら分析者が試料を混同することなく、効率よく分析作業を進めることができる。
また本発明に係るクロマトグラフ分析装置において、好ましくは、
上記検出部はマススペクトルデータを繰り返し取得する質量分析装置であり、
上記入力部は試料毎に目的化合物の分子量又は該化合物を特徴付ける質量電荷比を設定することが可能であり、
上記質量分析装置により得られたマススペクトルデータに基づいて上記入力部で設定された分子量又は質量電荷比に対応する有意なマススペクトルピークが含まれるクロマトグラムピークを特定するピーク抽出部、をさらに備える構成とするとよい。
上記検出部はマススペクトルデータを繰り返し取得する質量分析装置であり、
上記入力部は試料毎に目的化合物の分子量又は該化合物を特徴付ける質量電荷比を設定することが可能であり、
上記質量分析装置により得られたマススペクトルデータに基づいて上記入力部で設定された分子量又は質量電荷比に対応する有意なマススペクトルピークが含まれるクロマトグラムピークを特定するピーク抽出部、をさらに備える構成とするとよい。
さらにまた、上記構成において、上記クロマトグラム作成部は、上記ピーク抽出部により特定されたクロマトグラムピークと他のクロマトグラムピークとが視覚上識別可能である態様で、作成されたクロマトグラムを表示画面上に表示する描画処理部を含むようにするとよい。
ここで、質量分析装置は典型的には四重極型質量分析装置又は三連四重極型質量分析装置である。また、この構成では、クロマトグラムは典型的にはトータルイオンクロマトグラムである。また、上記の「有意なマススペクトルピーク」とは、例えば入力部で設定された分子量又は質量電荷比を持つマススペクトルピークの強度値が予め決められた閾値を超えるようなピークである。この閾値はデフォルト値でもユーザにより指定される値でもよい。
上記構成のクロマトグラフ分析装置において、ピーク抽出部により特定されるクロマトグラムピークは目的化合物由来である可能性が高いピークである。そこで、このクロマトグラムピークが孤立状態であるかどうかを判断することで、最適な分離条件を見出すことができる。特に、上記ピーク抽出部により特定されたクロマトグラムピークのみを他のクロマトグラムピークとは異なる色で以て色付け表示することにより、分析者は表示画面上で容易に且つミス無く目的化合物由来のクロマトグラムピークを把握することができ、一目でその分離条件が適切かどうかを判断することができる。
さらにまた、上記クロマトグラム作成部は、一つの試料について異なる分離条件の下で得られた複数のクロマトグラムを並べて又は重ねて表示画面上に表示する描画処理部を備える構成とするとさらに好ましい。
この構成によれば、分析者は異なる分離条件の下での目的化合物由来のクロマトグラムピークの分離状況を一目で確認することができるので、例えば高純度で目的化合物を分取するための最適分離条件を一層容易に見つけることができる。
本発明に係るクロマトグラフ分析装置によれば、例えば高純度の分取が行えるような最適な分離条件を探索する際に、従来のように、分析者自身がカラムや移動相の切り替えを手動で行う必要がなくなるので、分析者がその一連の分析の期間中、装置の傍にいる必要もなくなり、分析者の煩わしい手間が大幅に軽減できるとともに、分析所要時間も短縮することができる。また特に、同一の分離条件の下で分析すべき試料が複数ある場合に、その複数の試料に対する分析が連続的に行われるように分析スケジュールを組むようにすることで、流路の洗浄回数を減らして分析所要時間を一層短縮することができる。
さらにまた、検出部として質量分析装置を用い、該質量分析装置により得られたマススペクトルデータに基づいて目的化合物を特徴付ける質量電荷比等に対応する有意なマススペクトルピークが含まれるクロマトグラムピークを見つけてこれをクロマトグラム上で明示することにより、分析者は目的化合物由来のクロマトグラムピークを一目で把握することができ、そのときの分離条件が適切かどうかを即座に判断することができる。
以下、本発明に係るクロマトグラフ分析装置の一実施例である液体クロマトグラフ質量分析計(LC/MS)について、添付図面を参照して説明する。図1は本実施例のLC/MSの要部の構成図である。
このLC/MSは、4つの移動相容器1に貯留されている4種類の移動相A1~A4と洗浄液容器2に貯留されている洗浄液とのいずれか1つを選択するための第1切替バルブ3と、同じく4つの移動相容器1に貯留されている4種類の移動相B1~B4と洗浄液容器2に貯留されている洗浄液とのいずれか1つを選択するための第2切替バルブ4と、切替バルブ3、4で選択された溶液をそれぞれ吸引して送給する第1送液ポンプ5、第2送液ポンプ6と、両送液ポンプ5、6により送給された移動相を混合する混合器7と、混合機7を介して送られて来る移動相中にサンプルを注入するインジェクタ8と、図示しないサンプルラック上に用意された多数のサンプルの中から指定された1つのサンプルを吸引してインジェクタ8へ供給するオートサンプラ9と、6種類のカラム11(11a~11f)と、LC分析に使用するカラムを選択するために上記カラム11の入口側と出口側とに配置された第3切替バルブ10及び第4切替バルブ12と、カラム11からの溶出液中の化合物を検出する大気圧イオン化質量分析計13と、切替バルブ3、4、10、12や送液ポンプ5、6、オートサンプラ9、質量分析計13などの動作をそれぞれ制御する分析制御部14と、質量分析計13で得られたデータを処理するデータ処理部20と、分析を含めシステム全体の統括的な制御を行う制御部30と、分析条件などをユーザが設定するための入力部33と、分析進行状況や分析結果などを表示する表示部34と、を備える。
通常、移動相A1~A4、移動相B1~B4は異なる種類の移動相溶媒である。また、6種類のカラム11も互いに異なる分離特性を持つカラムである。例えば創薬を目的として合成反応後の混合液や天然抽出液から目的とする化合物を抽出したい場合には、分析に供するサンプルの素性は或る程度明確であり、目的化合物も或る程度限られる。したがって、そうした事前の知識や知見から、使用する移動相やカラムの種類を或る程度絞ることができ、分析者は適切な移動相やカラムを予め用意しておけばよい。
質量分析計13は、例えばエレクトロスプレイイオン源又は大気圧化学イオン源を備えた四重極型質量分析計であり、所定質量電荷比範囲のスキャン測定を繰り返すことで、そのスキャン測定毎に所定電荷比範囲に亘るマススペクトルデータを得ることができる。データ処理部20は、データ記憶部21と、クロマトグラム作成部22と、目的ピーク抽出部23とを、機能ブロックとして含む。また、制御部30は、分離条件探索スケジュール作成部31と、分離条件探索制御部32とを、機能ブロックとして含む。一般に、データ処理部20及び制御部30は(場合によっては分析制御部14の一部も)パーソナルコンピュータをハードウエア資源としており、パーソナルコンピュータにインストールされた専用の制御・処理ソフトウエアを実行することにより、データ処理部20や制御部30としての機能を発揮させるようにすることができる。
次に、本実施例のLC/MSにおける特徴的な、分離条件探索の動作を詳述する。図2はこの分離条件探索動作の制御・処理を示すフローチャート、図3は分析予約設定時の表示画面の一例を示す図、図4は作成された分析スケジュールの一例を示す図、図5は分析実行中の表示画面の一例を示す図、図6は追加分析予約設定時の表示画面の一部の一例を示す図、図7は追加分析予約に対するスケジュール調整後の分析スケジュールの一例を示す図、図8は分析終了後の分析レポートの表示画面の一例を示す図である。
或る分析者が手元の複数のサンプルについて、該サンプルに含まれる目的化合物を分取するための最適分離条件を調べたい場合には、入力部33で所定操作を行う。この操作に応じて分離条件探索スケジュール作成部31は、分析予約を受け付けるための図3に示すような分析予約受付画面50を表示部34の画面上に表示する。この分析予約受付画面50において分析者は、サンプル数、各サンプル中の目的化合物を特徴付ける質量電荷比m/zなどを入力設定する(ステップS1)。図3に示すように、分析予約受付画面50には、サンプルラックに収容される複数のサンプルの位置を示すサンプル位置指示画像51が描画され、分析者はその画像51上の提示されたサンプル位置にサンプルを置く。また、図3の例では、2つのサンプルに対しそれぞれm/z=250、300が目的化合物を特徴付ける質量電荷比として設定されている。
なお、この実施例のLC/MSでは、個々の分析者ではなく、システム管理者が、使用するカラムの種類、移動相の種類、グラジエント条件などのLC分析条件を記述した分析メソッドを予め設定しておき、設定された全ての分析メソッドに従ってLC分析が自動的に実行されるようになっている。したがって、ここでは、分析者自身は上記のような分析条件を改めて設定する必要はないが、分析者自身がそうした分析条件を設定できるようにしてもよい。
分析に必要な情報が入力されると、分離条件探索スケジュール作成部31は、カラム及び移動相を切り替える毎に必要となる、カラムを含む流路の洗浄及び平衡化の実行回数ができるだけ少なくなるように、分析順序の並べ替えを行う。具体的には、図4に示すように、分離条件であるカラムの種類と移動相の種類との組み合わせが同一である分析を連続して行い、カラム又は移動相が切り替わるときに洗浄(及び平衡化)を実行するように分析順序を並べ替えて分析スケジュールを作成する(ステップS2)。なお、図4において、1つのカラムと2つの移動相との組み合わせ(例えばカラム1/移動相A1,B1)は1つの分析メソッドに含まれる分析条件である。
そして、上述のように作成された分析スケジュールは分離条件探索制御部32に引き渡され、分離条件探索制御部32はこの分析スケジュールに従って分析を実行するように分析制御部14を介して各部を制御する(ステップS3)。
例えば図4に示した分析スケジュールの1行目の分析(サンプル1 カラム1/移動相A1,B1)では、第1切替バルブ3は移動相A1が選択されるように、第2切替バルブは移動相B1が選択されるように切り替えられる。また、第3、第4切替バルブ10、12は一番上のカラム11aが選択されるように切り替えられる。この状態で、第1送液ポンプ5は所定流量で移動相A1を送給し、第2送液ポンプ6は所定流量で移動相B1を送給する。その両移動相が混合器7で混合されてインジェクタ8、第3切替バルブ10を経てカラム11aへと送られる。移動相A1、B1の混合比率は同じ分析メソッドに含まれるグラジエント条件に基づく。
オートサンプラ9はサンプルラック上の指示された位置に置かれたサンプルを吸引してインジェクタ8に供給し、インジェクタ8は所定のタイミングで移動相中にそのサンプルを注入する。注入されたサンプルは移動相の流れに乗ってカラム11aに送り込まれ、カラム11aを通過する過程で、含まれている化合物が時間方向に分離して溶出する。溶出液は第4切替バルブ12を経て質量分析計13に導入される。なお、質量分析計13に導入可能な液量が制限されている場合には、スプリッタ等を通して分割した一部の溶出液を質量分析計13に導入すればよい。質量分析計13は導入された溶出液に含まれる化合物をイオン化し、生成されたイオンに対するマススペクトルデータを繰り返し取得する。このマススペクトルデータはデータ処理部20に送られ、データ記憶部21に順次格納される。
分離条件探索制御部32は、分析実行開始後、追加分析予約の指示があるか否を判定する(ステップS4)。これについては後述する。追加分析予約の指示がなければ、次に、1つの分析が終了したか否かを判定し(ステップS6)、未だ終了していなければステップS3へと戻る。したがって、追加分析予約の指示がなければ、図4に示した分析スケジュール上の1行に対応する1つのLC/MS分析が終了するまで、ステップS3→S4→S6の処理を繰り返す。分析メソッドに定められている所定の分析時間が終了することで1つのLC/MS分析が終了したと判定されると、分離条件探索制御部32は分析スケジュールに設定されている全分析が終了したか否かを判定し(ステップS7)、全分析が終了していなければ分析スケジュール上の次の分析に移行する。
次の分析に移行する際に、分析スケジュール上のサンプルIDなどを確認してサンプル交換が必要であるか否かを判定する(ステップS8)。直前に実行した分析と次に実行する分析とのサンプルIDが相違していればサンプル交換が必要であると判断し、指定された次のサンプルを用意するようにオートサンプラ9を制御する(ステップS9)。例えば図4に示した分析スケジュール上で1行目から2行目の分析に移行する際には、サンプルの交換必要であるから、ステップS9の処理が実行される。
分離条件探索制御部32は、次に分離条件、具体的には移動相又はカラムの少なくとも一方の変更が必要であるか否かを判定し(ステップS10)、少なくとも一方を変更する必要があれば、指定された次の移動相及び/又はカラムが接続されるように切替バルブ3、4、10、12を制御する(ステップS11)。そして、ステップS3へと戻り、サンプル又は分離条件の少なくとも一方が変更された次の分析が遂行される。このような分析の実行中には、表示部34の画面上には図5に示すような分析実行中画面60が表示される。この分析実行中画面60には、分析スケジュールに従った各分析がどこまで終了しているか、どの分析が実行中であるか、を示すテーブル61と、分析が終了したサンプルの位置を示すサンプル位置指示画像62が表示されている。
このLC/MSは、複数の分析者が使用することを想定しており、そのために、或る分析者が指定した分析が実行されている途中であっても、他の(又は先と同じ)分析者が分析したいサンプルの登録等を行うことが可能である。即ち、分析実行中に或る分析者がステップS1と同様の操作を入力部33により行うと上記分析予約受付画面50が表示部34の画面上に表示され、新たなサンプル数等の指定が可能となる。ただし、サンプルラック上にはすでにいくつかのサンプルが置かれており、その位置には追加してサンプルを置くことができない。そこで、分離条件探索スケジュール作成部31はサンプルを追加で置くことが可能な位置を自動判定し、分析予約受付画面50上に描画されるサンプル位置指示画像51上にサンプル位置を提示する。分析者はその提示された位置にサンプルを置く(ステップS1A)。
上記のように或る分析者が分析実行中に新たなサンプルの分析予約を行うと(ステップS4でYes)、分離条件探索スケジュール作成部31は、既に作成されている分析スケジュールの中でその時点で未実行である分析と新たに追加されたサンプルに対する分析とを併せて、洗浄回数ができるだけ少なくなるように分析スケジュールを調整する(ステップS5)。具体的には、例えば図4に示した分析スケジュールで4行目の分析(サンプル1 カラム1/移動相A1,B2)の実行中に新たなサンプル(サンプル3)の分析予約が行われたものとすると、図7に示すように分析スケジュール上で新たなサンプルに対する分析が挿入される。このように分析実行中に新たなサンプルの分析予約が行われると、その度に、洗浄回数ができるだけ増えないように分析順序が動的に最適化されることになる。
こうして最初に作成された又は途中で適宜調整された分析スケジュールに従って複数のサンプルのそれぞれについて異なる分離条件の下で分析が実行され、全ての分析が終了すると、ステップS7からS12へと進む。データ処理部20においてクロマトグラム作成部22はデータ記憶部21に保存されている分析毎のマススペクトルデータに基づいて、サンプル毎、分離条件毎にトータルイオンクロマトグラムを作成する(ステップS12)。
また、目的ピーク抽出部23は、サンプル毎及び分離条件毎に収集されたマススペクトルデータに基づき、スキャン毎のマススペクトルを作成し、ステップS1において当該サンプルに対して設定された質量電荷比のマススペクトルピークの信号強度を求める。例えばサンプル1であれば、m/z=250のマススペクトルピークの信号強度を求める。そして、そのマススペクトルピークの信号強度が所定の閾値以上であるか否かを判定し、信号強度が閾値以上であるマススペクトルピークが存在するマススペクトルを特定し、さらに該マススペクトルが現れる時間に対応するクロマトグラムピークを特定する(ステップS13)。上記閾値を適切に設定することで、目的化合物由来である可能性が高いクロマトグラムピークを特定することができる。
なお、マススペクトルピーク信号強度を判定する閾値は当該装置の製造メーカが予めその値を決めておいてもよいし、或いは、ユーザ(分析者又はシステム管理者)が自由に設定できるようにしてもよい。また、閾値は絶対的な値ではなく、例えば他のピークの信号強度に対する相対値でもよい。
入力部33を介して分析者が分析結果のレポート表示指示を行うと、制御部30は、図8に示すように、例えば指定されたサンプルについての異なる分離条件の下での複数のクロマトグラム(トータルイオンクロマトグラム)を並べて表示部34の画面上に表示する。また、このとき、ステップS13で特定されたクロマトグラムピークをそれぞれ他のピークと識別容易であるように色付け表示(図8では斜線塗りつぶしで示している)する(ステップS14)。それにより、分析者は同じサンプルについて異なる分離条件の下でのクロマトグラムを一目で確認することができ、しかも、分取したい目的化合物のピークも直ぐに把握できるので、目的化合物を分取するのに適した分離条件を即座に知ることができる。もちろん、こうしたレポート結果は表示するのみならず、図示しないプリンタ等から出力することも可能である。
また、図8に示すように複数のクロマトグラムを並べて表示する代わりに、例えば横軸、縦軸を揃えて同じグラフ枠内に重ねて表示する等、表示の形式は適宜変更することができる。また、特定されたクロマトグラムピークの表示形式もピーク領域の色付け表示に限らず、ピークカーブを色付け表示したり、特定のクロマトグラムピーク以外を半透明表示したりする等、適宜に変更することができる。
また上記実施例では、ステップS1、S1Aにおいて分析者が分析予約を行う際に、サンプル位置指示画像51上にサンプルを置くべき位置が提示され、分析者はその位置にサンプルを置くようにしていたが、それに代えて、分析者がサンプルを置く位置を指定できるようにしてもよい。
例えば、分析者が入力部33で所定操作を行うと、分離条件探索スケジュール作成部31は図6に示すように、分析予約受付画面50内のサンプル位置指示画像51に、サンプルを追加で置くことが可能な位置を示す。この例では実線で示す位置がサンプルを置くことが可能な位置であり、点線で示す位置がサンプルを置くことができない(つまり予約済みの)位置である。分析者はその画像51上で、サンプルを置くことが可能な複数の位置の中の任意の位置をクリック操作することでサンプルを置く位置を指定する。そして、自らが指定した位置に実際にサンプルを置けばよい。ただし、分析者が指定した位置と実際にサンプルが置かれた位置に食い違いがあると支障をきたすので、例えばそうした食い違いがある場合には、エラー表示を行う等、分析者に警告を報知するとよい。
また、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正、追加を行うことができる。例えば、上記実施例は本発明をLC/MSに適用していたが、本発明はGC/MSにも適用可能である。また、検出器として質量分析計を使用しない場合、ステップS13に示した処理及びその処理結果に基づく表示は行えないものの、それ以外の機能は実現することはできる。
1…移動相容器
2…洗浄液容器
3、4、10、12…切替バルブ
5、6…送液ポンプ
7…混合器
8…インジェクタ
9…オートサンプラ
11(11a~11f)…カラム
13…大気圧イオン化質量分析計
14…分析制御部
20…データ処理部
21…データ記憶部
22…クロマトグラム作成部
23…目的ピーク抽出部
30…制御部
31…分離条件探索スケジュール作成部
32…分離条件探索制御部
33…入力部
34…表示部
2…洗浄液容器
3、4、10、12…切替バルブ
5、6…送液ポンプ
7…混合器
8…インジェクタ
9…オートサンプラ
11(11a~11f)…カラム
13…大気圧イオン化質量分析計
14…分析制御部
20…データ処理部
21…データ記憶部
22…クロマトグラム作成部
23…目的ピーク抽出部
30…制御部
31…分離条件探索スケジュール作成部
32…分離条件探索制御部
33…入力部
34…表示部
Claims (10)
- 試料に含まれる化合物を時間方向に分離するためのカラムと、該カラムに移動相を供給する移動相供給部と、該移動相供給部により前記カラムに供給される移動相中に試料を導入する試料導入部と、前記カラムから溶出する前記試料中の各化合物を検出する検出部と、を具備するクロマトグラフ分析装置において、
a)目的化合物の分離状態に影響を与える1又は複数の分離要素について、予め用意された複数の分離条件の中で分離条件を順次切り替える分離条件切替部と、
b)前記分離条件切替部により分離条件を切り替えながら前記試料導入部により同一試料を繰り返し導入し、各分離条件の下で同一試料のクロマトグラフ分析をそれぞれ実行する分析制御部と、
c)前記分析制御部による制御の下で実行された同一試料に対する複数回のクロマトグラフ分析においてそれぞれ前記検出部により得られたデータに基づいて、異なる分離条件の下でのクロマトグラムを作成するクロマトグラム作成部と、
を備え、前記クロマトグラム作成部により作成された複数のクロマトグラムを利用して試料中の目的化合物に適した分離条件を探索可能としたことを特徴とするクロマトグラフ分析装置。 - 請求項1に記載のクロマトグラフ分析装置であって、
一連で分析すべき複数の試料をユーザが指定するための入力部と、
前記入力部を通して一連で分析すべき複数の試料が指定されたとき、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように、試料と分離条件とを組み合わせた分析スケジュールを作成するスケジュール作成部と、をさらに備え、
前記分析制御部は、前記スケジュール作成部により作成された分析スケジュールに従ってクロマトグラフ分析を実行することを特徴とするクロマトグラフ分析装置。 - 請求項2に記載のクロマトグラフ分析装置であって、
前記入力部は、クロマトグラフ分析実行中にも、ユーザによる1又は複数の試料の追加の指定を許容し、
前記スケジュール作成部は、前記入力部により分析対象試料の追加が指示されたとき、実行中の分析スケジュール中で未分析である試料と追加指示された試料とについて、同一の分離条件の下での複数の試料に対するクロマトグラフ分析が連続的に行われるように、試料と分離条件との組み合わせを再調整して分析スケジュールを修正し、
前記分析制御部は、前記スケジュール作成部により修正された分析スケジュールに従ってクロマトグラフ分析を続行することを特徴とするクロマトグラフ分析装置。 - 請求項2又は3に記載のクロマトグラフ分析装置であって、
前記検出部はマススペクトルデータを繰り返し取得する質量分析装置であり、
前記入力部は試料毎に目的化合物の分子量又は該化合物を特徴付ける質量電荷比を設定することが可能であり、
前記質量分析装置により得られたマススペクトルデータに基づいて前記入力部で設定された分子量又は質量電荷比に対応する有意なマススペクトルピークが含まれるクロマトグラムピークを特定するピーク抽出部、をさらに備えることを特徴とするクロマトグラフ分析装置。 - 請求項4に記載のクロマトグラフ分析装置であって、
前記クロマトグラム作成部は、前記ピーク抽出部により特定されたクロマトグラムピークと他のクロマトグラムピークとが視覚上識別可能である態様で、作成されたクロマトグラムを表示画面上に表示する描画処理部を含むことを特徴とするクロマトグラフ分析装置。 - 請求項1~5のいずれかに記載のクロマトグラフ分析装置であって、
前記クロマトグラム作成部は、一つの試料について異なる分離条件の下で得られた複数のクロマトグラムを並べて又は重ねて表示画面上に表示する描画処理部を備えることを特徴とするクロマトグラフ分析装置。 - 請求項2又は3に記載のクロマトグラフ分析装置であって、
ラックに収容された複数の試料の中から指定された試料を選択し前記試料導入部に供給する試料選択部をさらに備え、
ユーザによる試料の指定又は追加の際に、前記ラックにおいて使用可能な試料収容位置と使用不能である試料収容位置とを視覚上識別可能な表示を表示画面上に行うことを特徴とするクロマトグラフ分析装置。 - 請求項1~7のいずれかに記載のクロマトグラフ分析装置であって、
前記分離要素の1つは前記カラムであり、前記複数の分離条件とは種類の相違するカラムであり、前記分離条件切替部は、クロマトグラフ分析に使用するカラムを切り替えるカラム切替部であることを特徴とするクロマトグラフ分析装置。 - 請求項1~8のいずれかに記載のクロマトグラフ分析装置であって、
前記分離要素の1つは移動相であり、前記複数の分離条件とは種類の相違する移動相であり、前記分離条件切替部は、前記移動相供給部にあって、カラムに供給する移動相を切り替える流路切替部であることを特徴とするクロマトグラフ分析装置。 - 請求項1~8のいずれかに記載のクロマトグラフ分析装置であって、
前記分離要素の1つは移動相であり、前記複数の分離条件とは種類の相違する複数の移動相を混合する際の混合比率及びその時間的な混合比率の変化が相違する複数のグラジエント条件であり、前記分離条件切替部は、前記移動相供給部にあって、混合される複数の移動相をそれぞれ送給する送液ポンプの動作を制御することで流量を変化させるポンプ制御部であることを特徴とするクロマトグラフ分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/078618 WO2014068786A1 (ja) | 2012-11-05 | 2012-11-05 | クロマトグラフ分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/078618 WO2014068786A1 (ja) | 2012-11-05 | 2012-11-05 | クロマトグラフ分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014068786A1 true WO2014068786A1 (ja) | 2014-05-08 |
Family
ID=50626749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/078618 WO2014068786A1 (ja) | 2012-11-05 | 2012-11-05 | クロマトグラフ分析装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014068786A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017534060A (ja) * | 2014-11-12 | 2017-11-16 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | 液体クロマトグラフィープロトコルにおける実験パラメータの影響を決定するための方法及びシステム |
WO2017216934A1 (ja) * | 2016-06-16 | 2017-12-21 | 株式会社日立ハイテクノロジーズ | クロマトグラフ質量分析装置、及び制御方法 |
WO2020084785A1 (ja) * | 2018-10-26 | 2020-04-30 | 株式会社島津製作所 | クロマトグラフ制御装置、クロマトグラフシステム、クロマトグラフ制御方法およびクロマトグラフ制御プログラム |
WO2020110268A1 (ja) * | 2018-11-29 | 2020-06-04 | 株式会社島津製作所 | 試料測定装置、プログラムおよび測定パラメータ設定支援装置 |
JP2020516901A (ja) * | 2017-04-14 | 2020-06-11 | 株式会社島津製作所 | 検出方法および検出装置 |
WO2020162438A1 (ja) * | 2019-02-04 | 2020-08-13 | 株式会社日立ハイテク | 液体クロマトグラフ質量分析装置 |
WO2020194955A1 (ja) * | 2019-03-22 | 2020-10-01 | 株式会社島津製作所 | 試料測定装置および測定試料同定方法 |
JP2021110548A (ja) * | 2020-01-06 | 2021-08-02 | 山善株式会社 | 分析装置及び分析装置の使用方法 |
WO2022190605A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社日立ハイテク | 自動分析装置の制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01250060A (ja) * | 1988-03-30 | 1989-10-05 | Shimadzu Corp | クロマトグラフの条件設定装置 |
JPH0363566A (ja) * | 1989-07-31 | 1991-03-19 | Shimadzu Corp | 分析装置の分析指示装置 |
JP2009229150A (ja) * | 2008-03-21 | 2009-10-08 | Jeol Ltd | クロマトグラフ質量分析装置 |
JP2012122865A (ja) * | 2010-12-09 | 2012-06-28 | Hitachi High-Technologies Corp | 自動分析システム |
JP2012181023A (ja) * | 2011-02-28 | 2012-09-20 | Shimadzu Corp | 自動分析用制御装置及びプログラム |
-
2012
- 2012-11-05 WO PCT/JP2012/078618 patent/WO2014068786A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01250060A (ja) * | 1988-03-30 | 1989-10-05 | Shimadzu Corp | クロマトグラフの条件設定装置 |
JPH0363566A (ja) * | 1989-07-31 | 1991-03-19 | Shimadzu Corp | 分析装置の分析指示装置 |
JP2009229150A (ja) * | 2008-03-21 | 2009-10-08 | Jeol Ltd | クロマトグラフ質量分析装置 |
JP2012122865A (ja) * | 2010-12-09 | 2012-06-28 | Hitachi High-Technologies Corp | 自動分析システム |
JP2012181023A (ja) * | 2011-02-28 | 2012-09-20 | Shimadzu Corp | 自動分析用制御装置及びプログラム |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11460455B2 (en) | 2014-11-12 | 2022-10-04 | Cytiva Sweden Ab | Method and system for determining the influence of experimental parameters on a liquid chromatography protocol |
JP2017534060A (ja) * | 2014-11-12 | 2017-11-16 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | 液体クロマトグラフィープロトコルにおける実験パラメータの影響を決定するための方法及びシステム |
WO2017216934A1 (ja) * | 2016-06-16 | 2017-12-21 | 株式会社日立ハイテクノロジーズ | クロマトグラフ質量分析装置、及び制御方法 |
GB2564988A (en) * | 2016-06-16 | 2019-01-30 | Hitachi High Tech Corp | Chromatographic mass analysis device and control method |
JPWO2017216934A1 (ja) * | 2016-06-16 | 2019-03-07 | 株式会社日立ハイテクノロジーズ | クロマトグラフ質量分析装置、及び制御方法 |
US11320410B2 (en) | 2016-06-16 | 2022-05-03 | Hitachi High-Tech Corporation | Chromatographic mass analysis device and control method |
GB2564988B (en) * | 2016-06-16 | 2021-12-08 | Hitachi High Tech Corp | Chromatographic mass analysis device and control method |
JP2020516901A (ja) * | 2017-04-14 | 2020-06-11 | 株式会社島津製作所 | 検出方法および検出装置 |
JPWO2020084785A1 (ja) * | 2018-10-26 | 2021-09-02 | 株式会社島津製作所 | クロマトグラフ制御装置、クロマトグラフシステム、クロマトグラフ制御方法およびクロマトグラフ制御プログラム |
WO2020084785A1 (ja) * | 2018-10-26 | 2020-04-30 | 株式会社島津製作所 | クロマトグラフ制御装置、クロマトグラフシステム、クロマトグラフ制御方法およびクロマトグラフ制御プログラム |
JP7124881B2 (ja) | 2018-10-26 | 2022-08-24 | 株式会社島津製作所 | クロマトグラフ制御装置、クロマトグラフシステム、クロマトグラフ制御方法およびクロマトグラフ制御プログラム |
JPWO2020110268A1 (ja) * | 2018-11-29 | 2021-09-30 | 株式会社島津製作所 | 試料測定装置、プログラムおよび測定パラメータ設定支援装置 |
WO2020110268A1 (ja) * | 2018-11-29 | 2020-06-04 | 株式会社島津製作所 | 試料測定装置、プログラムおよび測定パラメータ設定支援装置 |
JP7173159B2 (ja) | 2018-11-29 | 2022-11-16 | 株式会社島津製作所 | 試料測定装置、プログラムおよび測定パラメータ設定支援装置 |
JP7297799B2 (ja) | 2019-02-04 | 2023-06-26 | 株式会社日立ハイテク | 液体クロマトグラフ質量分析装置 |
US11635413B2 (en) | 2019-02-04 | 2023-04-25 | Hitachi High-Tech Corporation | Liquid chromatograph mass spectrometer |
JPWO2020162438A1 (ja) * | 2019-02-04 | 2020-08-13 | ||
WO2020162438A1 (ja) * | 2019-02-04 | 2020-08-13 | 株式会社日立ハイテク | 液体クロマトグラフ質量分析装置 |
JP7188561B2 (ja) | 2019-03-22 | 2022-12-13 | 株式会社島津製作所 | 試料測定装置および測定試料同定方法 |
WO2020194955A1 (ja) * | 2019-03-22 | 2020-10-01 | 株式会社島津製作所 | 試料測定装置および測定試料同定方法 |
JPWO2020194955A1 (ja) * | 2019-03-22 | 2021-11-11 | 株式会社島津製作所 | 試料測定装置および測定試料同定方法 |
CN113474650A (zh) * | 2019-03-22 | 2021-10-01 | 株式会社岛津制作所 | 试样测定装置及测定试样鉴定方法 |
CN113474650B (zh) * | 2019-03-22 | 2023-09-26 | 株式会社岛津制作所 | 试样测定装置及测定试样鉴定方法 |
JP2021110548A (ja) * | 2020-01-06 | 2021-08-02 | 山善株式会社 | 分析装置及び分析装置の使用方法 |
WO2022190605A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社日立ハイテク | 自動分析装置の制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014068786A1 (ja) | クロマトグラフ分析装置 | |
US10607722B2 (en) | Data-processing for chromatographic mass spectrometry | |
US10890566B2 (en) | Automatic analysis control device and program | |
JP6790963B2 (ja) | 液体クロマトグラフ | |
US20080142444A1 (en) | Liquid chromatograph apparatus | |
US20130289893A1 (en) | Data-Processing System for Chromatograph Mass Spectrometry | |
JP6989622B2 (ja) | 複数のクロマトグラフを有する分析装置 | |
JP2014134385A (ja) | クロマトグラフ質量分析用データ処理装置 | |
JP2005172829A (ja) | 移動相の再循環機能を有するクロマトグラフシステム | |
JP5569434B2 (ja) | 自動分析用制御装置及びプログラム | |
JP6221800B2 (ja) | クロマトグラフ質量分析装置用データ処理装置 | |
CN110168362A (zh) | 色谱装置用控制装置 | |
JP6260351B2 (ja) | クロマトグラフ用データ処理装置及びデータ処理方法 | |
CN113167772A (zh) | 具有多个色谱仪的分析装置及其控制方法 | |
JP5561016B2 (ja) | クロマトグラフ質量分析装置 | |
US20200158698A1 (en) | Controlling apparatus for liquid chromatograph, method for controlling liquid chromatograph, and liquid-chromatographic analyzing system | |
CN110114667A (zh) | 用于在分析系统中的过程期间标识试剂的方法 | |
CN107615059B (zh) | 色谱数据处理装置以及程序 | |
EP4261536A1 (en) | Method for controlling automated analysis device | |
WO2022190605A1 (ja) | 自動分析装置の制御方法 | |
JP6376262B2 (ja) | クロマトグラフ質量分析装置用データ処理装置 | |
JP7056767B2 (ja) | クロマトグラフを用いた物質同定方法 | |
JP2008537153A (ja) | 生体高分子の質量分析管理された精製のための装置および方法 | |
EP3855179A1 (en) | Analysis device having liquid chromatograph, and liquid chromatograph analysis method | |
JP2023124605A (ja) | 分取液体クロマトグラフ装置及び分取条件決定支援方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12887384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12887384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |