[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014067400A1 - 触控感测结构及其形成方法 - Google Patents

触控感测结构及其形成方法 Download PDF

Info

Publication number
WO2014067400A1
WO2014067400A1 PCT/CN2013/085468 CN2013085468W WO2014067400A1 WO 2014067400 A1 WO2014067400 A1 WO 2014067400A1 CN 2013085468 W CN2013085468 W CN 2013085468W WO 2014067400 A1 WO2014067400 A1 WO 2014067400A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial electrodes
substrate
conductive units
insulating layer
touch sensing
Prior art date
Application number
PCT/CN2013/085468
Other languages
English (en)
French (fr)
Inventor
袁琼
余晶
连虹艳
黄萍萍
Original Assignee
宸鸿科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210433622.4A external-priority patent/CN103793092B/zh
Application filed by 宸鸿科技(厦门)有限公司 filed Critical 宸鸿科技(厦门)有限公司
Publication of WO2014067400A1 publication Critical patent/WO2014067400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • H05K1/0289Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns having a matrix lay-out, i.e. having selectively interconnectable sets of X-conductors and Y-conductors in different planes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a touch sensing structure and a method of forming the same.
  • touch panels have gradually become the most important input interface, and are widely used in various electronic products, such as mobile phones, personal digital assistants (PDAs) or palm-sized personal computers.
  • the touch sensing component of the touch panel may include a plurality of sensing electrodes arranged in a row, and a plurality of sensing electrodes arranged in a row, where the sensing electrodes arranged in a row are interdigitated with the sensing electrodes arranged in a row
  • An insulating block must be provided to avoid a short circuit between the sensing electrodes arranged in a row and the sensing electrodes arranged in columns.
  • the sensing electrodes arranged in a row may be composed of a plurality of electrically connected cells connected to each other, and the sensing electrodes arranged in a row are composed of a plurality of mutually separated conductive cells, and the mutually separated conductive cells need to be Electrically connected across the conductive bridge structure on the insulating block.
  • the conventional conductive bridging structure needs to climb over the insulating block to make the overlapping between the conductive units, the climbing structure of the conductive bridging structure is easy to break or crack, and the electrical connection of the conductive bridging structure is invalid or Poor, resulting in an open or abnormal resistance of the sensing electrode, and the antistatic ability of the sensing electrode is deteriorated, thereby causing the touch function of the touch panel to be ineffective or defective.
  • embodiments of the present invention provide a touch sensing structure and a method for forming the same, by providing an insulating layer in a recess of the substrate so that the sensing electrode does not need to climb over the protrusion of the insulating layer.
  • the height is to solve the above problems caused by the climbing bridge structure in the conventional touch panel because of climbing.
  • a touch sensing structure includes: a substrate having a plurality of recesses disposed on a surface of the substrate; and a plurality of first axial electrodes respectively disposed in the recesses of the substrate; a plurality of second axial electrodes disposed on the surface of the substrate and staggered with the first axial electrodes; and an insulating layer filled in the grooves and disposed on the first axial electrodes and the second axes Interleaving between the electrodes to electrically insulate the first axial electrodes from the second axial electrodes.
  • each of the first axial electrodes includes a plurality of first conductive units and a plurality of first connecting lines electrically connected to the adjacent two first conductive units, and the insulating layer is disposed on the first connecting line.
  • each of the second axial electrodes includes a plurality of second conductive units and a plurality of jumpers electrically connecting the adjacent two second conductive units, and the insulating layer is disposed between the first connecting lines and the jumper wires to make the The first connection line is electrically insulated from the jumper wires, and the height of the insulation layer is flush with the height of the second conductive unit.
  • the material of the jumper includes a metal or a transparent conductive material.
  • each of the second axial electrodes includes a plurality of second conductive units and a plurality of second connecting lines electrically connected to the two adjacent second conductive units, wherein the insulating layer is located on the first connecting lines
  • the second connecting lines are electrically insulated from the second connecting lines, and the height of the insulating layer is flush with the surface of the substrate.
  • the materials of the first axial electrodes and the second axial electrodes comprise a transparent conductive material.
  • planar patterns of the grooves are the same as the planar patterns of the first axial electrodes and the insulating layer and overlap each other.
  • the cross-sectional shape of the grooves includes a rectangle.
  • a method for forming a touch sensing structure comprising: forming a plurality of grooves on a surface of the substrate; forming a plurality of first axial electrodes respectively located in the grooves Forming a plurality of second axial electrodes on the surface of the substrate, and the second axial electrodes are staggered with the first axial electrodes; and filling the insulating layers with the insulating layers, and the insulating layers are located at the first axial electrodes
  • the second axial electrode is electrically insulated from the second axial electrodes.
  • the material of the substrate comprises a glass substrate, and the groove is formed by a micro-etching or laser engraving process.
  • the material of the substrate comprises a plastic substrate, and the groove is formed by an imprint process.
  • each of the first axial electrodes includes a plurality of first conductive units and a plurality of first connecting lines electrically connected to the adjacent two first conductive units, each of the second axial electrodes including a plurality of second conductive units and a plurality The jumper wires of the two adjacent second conductive units are electrically connected, and the first axial electrode and the second conductive unit are synchronously formed.
  • an insulating layer is formed between the first connecting line and the jumper and between the adjacent two second conductive units, and the height of the insulating layer is filled to be flush with the height of the second conductive unit.
  • each of the first axial electrodes includes a plurality of first conductive units and a plurality of first connecting lines electrically connected to the adjacent two first conductive units, each of the second axial electrodes including a plurality of second conductive units and a plurality The second connecting line of the two adjacent second conductive units is electrically connected, and the first conductive unit is formed in synchronization with the first connecting line, and the second conductive unit is formed in synchronization with the second connecting line.
  • an insulating layer is formed between the first connecting line and the second connecting line, and the height of the insulating layer is filled to be flush with the surface of the substrate.
  • the sensing electrodes arranged in rows are disposed in the grooves of the substrate, and the insulating layer is filled in the grooves of the substrate, and the height of the insulating layer is filled into columns (or
  • the electrical connection structures between the adjacent two conductive units of the sensing electrodes arranged in a row can be flatly disposed on the insulating layer, so that the electrical connecting structure can overlap adjacently without climbing over the height of the insulating layer
  • the two conductive units can thus avoid the problem of breakage or cracking of the conductive bridge structure as a result of climbing.
  • FIG. 1 shows a partial plan view of a touch sensing structure in accordance with an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view of the touch sensing structure along section line 1-1' of FIG. 1 in accordance with an embodiment of the present invention.
  • 3A-3C are cross-sectional views showing respective intermediate stages of the touch sensing structure of FIG. 2, in accordance with an embodiment of the present invention.
  • FIG. 4 is a partial plan view showing a touch sensing structure in accordance with another embodiment of the present invention.
  • Figure 5 shows a cross-sectional view of the touch sensing structure along section line 4-4' of Figure 4, in accordance with one embodiment of the present invention.
  • 6A-6C are cross-sectional views showing respective intermediate stages of the touch sensing structure of FIG. 5 in accordance with an embodiment of the present invention.
  • the touch sensing structure includes a substrate 100 , a plurality of first axial electrodes 100Y , a plurality of second axial electrodes 100X , and an insulating layer 118 .
  • the first surface 100A of the substrate 100 has a plurality of grooves 102 thereon.
  • the first axial electrode 100Y is disposed in the recess 102 of the substrate 100.
  • the second axial electrodes 100X are disposed on the first surface 100A of the substrate 100 and are staggered with the first axial electrodes 100Y.
  • the insulating layer 118 is filled in the recess 102 and disposed at an intersection between the first axial electrode 100Y and the second axial electrode 100X.
  • the plurality of first axial electrodes 100Y are arranged along a first axial direction, for example, a Y axis, and each of the first axial electrodes 100Y includes a plurality of first conductive units 112 and a plurality of electrical properties.
  • the first connection line 112C of the adjacent two first conductive units 112 is connected.
  • the plurality of second axial electrodes 100X are arranged along a second axial direction, such as an X axis, and each of the second axial electrodes 100X includes a plurality of second conductive units 114 and a plurality of electrical connections connecting adjacent two second conductive units 114 Wiring 120.
  • the first axial electrode 100Y and the second axial electrode 100X are alternately arranged, preferably perpendicular to each other, but are not limited thereto.
  • the insulating layer 118 is disposed between the first axial electrode 100Y and the second axial electrode 100X. Specifically, the insulating layer 118 is disposed on the first connecting line 112C, particularly the first axial electrode 100Y. A connection line 112C is interposed between the jumper wires 120 of the second axial electrode 100X to avoid a short circuit at the intersection of the first axial electrode 100Y and the second axial electrode 100X.
  • the substrate 100 has a first surface 100A and a second surface 100B disposed oppositely.
  • the second surface 100B of the substrate 100 can serve as a touch surface of the touch panel.
  • the substrate 100 may be a glass substrate or a plastic substrate, and the substrate 100 serves as a protective cover for the touch panel. Lens).
  • the substrate 100 can serve as a carrier for the first axial electrode 100Y and the second axial electrode 100X, and the first axial electrode 100Y and the second axial electrode 100X are further covered with a protective cover.
  • the protective cover serves as a touch surface of the touch panel.
  • the groove 102 can accommodate the first axial electrode 100Y and the insulating layer 118. Therefore, in an embodiment, the planar pattern of the groove 102 can be combined with the first axial electrode 100Y and The planar patterns of the insulating layers 118 are the same and overlap each other, and the area of the grooves 102 may be equal to or larger than the areas of the first axial electrodes 100Y and the insulating layers 118.
  • the cross-sectional shape of the groove 102 may be a rectangle, and the depth D of the groove 102 in the substrate 100 may be about 1 ⁇ m, but the planar pattern and shape of the groove 102 are not limited thereto.
  • the plurality of first conductive units 112 and the plurality of first connecting lines 112C of the first axial electrode 100Y are disposed in the recess 102, and the plurality of second conductive units 114 of the second axial electrode 100X are
  • the first insulating layer 118 is filled in the recess 102 and is located on the first connecting line 112C.
  • the height of the insulating layer 118 is filled to the second conductive unit 114 of the second axial electrode 100X. The height is flush, that is, flush with the second conductive unit 114 with respect to the other side surface of the substrate 100.
  • the jumper 120 is disposed on the insulating layer 118 and extends to a portion of the second conductive unit 114 to electrically connect the adjacent two second conductive units 114. According to the embodiment of the present invention, the jumper wires 120 do not need to climb over the protrusion height of the insulating layer 118 as in the prior art, and the overlapping of the two adjacent second conductive units 114 can be performed. All the jumper wires 120 are located at the same horizontal plane. Therefore, the jumper 120 does not have the problem of cracking and cracking due to climbing, and can improve the ability of the touch sensing structure of the touch panel in terms of resistance uniformity, antistatic capability, and reliability.
  • the method for forming the touch sensing structure of FIG. 2 mainly includes the steps of: forming a plurality of grooves on a surface of the substrate; forming a plurality of first axial electrodes respectively located in the grooves of the substrate; on the surface of the substrate Forming a plurality of second axial electrodes, the second axial electrodes are staggered with the first axial electrodes; and filling the grooves of the substrate with an insulating layer between the first axial electrodes and the second axial electrodes Interlaced.
  • FIG. 3A-3C are cross-sectional views showing intermediate stages of forming the touch sensing structure of FIG. 2, in accordance with an embodiment of the present invention.
  • a plurality of grooves 102 are first formed on the first surface 100A of the substrate 100.
  • the material of the substrate 100 may be a glass substrate, and micro etching may be used. Etch) or laser engraving (laser The engraving process forms a groove 102.
  • the material of the substrate 100 may be a plastic substrate, and the groove 102 may be formed using an imprinting process.
  • a plurality of first conductive units 112 forming a first axial electrode 100Y and a plurality of first connecting lines 112C electrically connecting adjacent two first conductive units 112 are formed in the recess 102 of the substrate 100, A conductive unit 112 and the first connecting line 112C may be integrally formed.
  • Each of the second axial electrodes 100X includes a plurality of second conductive units 114, and a plurality of second portions of the first axial electrodes 100Y and the second axial electrodes 100X may be synchronously or non-synchronized on the first surface 100A of the substrate 100.
  • Conductive unit 114 is
  • the first axial electrode 100Y and the second conductive unit 114 are formed simultaneously in the same process step, and the first axial electrode 100Y and the second conductive unit 114 may be formed using a deposition, lithography, and etching process.
  • the material of the first axial electrode 100Y and the second conductive unit 114 is a transparent conductive material such as indium tin oxide (indium) Tin oxide; ITO), indium zinc oxide (IZO), aluminum zinc oxide (aluminum zinc) Oxide; AZO) or other suitable transparent conductive material.
  • the insulating layer 118 is filled in the recess 102 of the substrate 100, and the insulating layer is The height of the 118 is filled to be flush with the height of the second conductive unit 114 of the second axial electrode 100X, that is, flush with the second conductive unit 114 with respect to the other side surface of the substrate 100, and the insulating layer 118 is formed at A plurality of first connecting lines 112C of an axial electrode 100Y.
  • the material of the insulating layer 118 is, for example, a photosensitive polyimide (PI), and the insulating layer 118 may be formed using a coating and lithography process or a printing process.
  • PI photosensitive polyimide
  • a jumper 120 of the second axial electrode 100X is formed on the insulating layer 118 to electrically connect the adjacent two second conductive units 114, that is, each jumper 120 can extend to two adjacent two conductive On the unit 114, the touch sensing structure of FIG. 2 is completed.
  • the material of the jumper 120 may be a metal or a transparent conductive material such as indium tin oxide (ITO), and the jumper 120 may be formed using a deposition, lithography, and etching process.
  • ITO indium tin oxide
  • the foregoing insulating layer 118 can be formed at the intersection between the first axial electrode 100Y and the second axial electrode 100X. Specifically, the insulating layer 118 is formed between the first connecting line 112C and the jumper 120 and Located between two adjacent second conductive units 114.
  • the touch sensing structure includes a substrate 100 , a plurality of first axial electrodes 100Y , a plurality of second axial electrodes 100X , and an insulating layer 118 .
  • the first surface 100A of the substrate 100 has a plurality of grooves 102 thereon.
  • the first axial electrode 100Y is disposed in the recess 102 of the substrate 100.
  • the second axial electrodes 100X are disposed on the first surface 100A of the substrate 100 and are staggered with the first axial electrodes 100Y.
  • the insulating layer 118 is filled in the recess 102 and disposed at an intersection between the first axial electrode 100Y and the second axial electrode 100X.
  • the plurality of first axial electrodes 100Y are arranged along a first axial direction, for example, the Y axis, and each of the first axial electrodes 100Y includes a plurality of first conductive units 112 and a plurality of connected phases.
  • the first connection line 112C of the two first conductive units 112 is adjacent.
  • the plurality of second axial electrodes 100X are arranged along a second axial direction, for example, an X axis, and each of the second axial electrodes 100X includes a plurality of second conductive units 114 and a plurality of second connections connecting adjacent two second conductive units 114 Line 114C.
  • the first axial electrode 100Y and the second axial electrode 100X are alternately arranged, preferably perpendicular to each other, but are not limited thereto.
  • the insulating layer 118 is disposed between the first axial electrode 100Y and the second axial electrode 100X. Specifically, the insulating layer 118 is disposed on the first connecting line 112C, particularly the first axial electrode 100Y. A connection line 112C is interposed between the second connection line 114C of the second axial electrode 100X to avoid a short circuit between the first axial electrode 100Y and the second axial electrode 100X.
  • the substrate 100 has a first surface 100A and a second surface 100B.
  • the second surface 100B of the substrate 100 can be the outer surface of the touch panel to serve as a touch surface of the touch panel.
  • the substrate 100 may be a glass substrate or a plastic substrate, which serves as a protective cover for the touch panel.
  • the substrate 100 can serve as a carrier for the first axial electrode 100Y and the second axial electrode 100X, and the first axial electrode 100Y and the second axial electrode 100X are further covered with a protective cover.
  • the protective cover serves as a touch surface of the touch panel.
  • each of the grooves 102 corresponds to each of the first axial electrodes 100Y and the insulating layer 118 thereon. It is to be noted that the groove 102 can accommodate the first axial electrode 100Y and the insulating layer 118. Therefore, in an embodiment, the planar pattern of the groove 102 can be combined with the first axial electrode 100Y and The planar patterns of the insulating layers 118 are the same and overlap each other, and the area of the grooves 102 may be equal to or larger than the areas of the first axial electrodes 100Y and the insulating layers 118. In addition, in an embodiment, the cross-sectional shape of the groove 102 may be a rectangle, and the depth D of the groove 102 in the substrate 100 may be about 1 ⁇ m, but the planar pattern and shape of the groove 102 are not limited thereto.
  • the plurality of first conductive units 112 and the plurality of first connecting lines 112C of the first axial electrode 100Y are disposed in the recess 102, and the insulating layer 118 is filled in the recess 102 and located in the first connecting line. On 112C. The height of the insulating layer 118 is filled to be flush with the first surface 100A of the substrate 100.
  • the plurality of second conductive units 114 of the second axial electrode 100X are disposed on the first surface 100A of the substrate 100, and the plurality of second connection lines 114C of the second axial electrode 100X are disposed on the insulating layer 118.
  • the second connection lines 114C connecting the adjacent two second conductive units 114 are disposed flat on the insulating layer 118, and all the second connection lines 114C and the second conductive units 114 are located at the same level. Therefore, the second connecting line 114C does not need to climb over the protrusion height of the insulating layer 118 as in the conventional technology, so that the overlapping of the two adjacent second conductive units 114 can be performed, so the second connecting line 114C does not have to climb.
  • the problem of cracks and cracks appearing on the slope can improve the ability of the touch sensing structure of the touch panel in terms of resistance uniformity, antistatic ability and reliability.
  • FIG. 6A-6C are cross-sectional views showing respective intermediate stages of the touch sensing structure of FIG. 5 in accordance with another embodiment of the present invention.
  • a plurality of grooves 102 are first formed on the first surface 100A of the substrate 100.
  • the groove 102 corresponds to the first axial electrode 100Y.
  • the position of the insulating layer 118 is formed, and the material of the substrate 100 and the method of forming the groove 102 are the same as those described in FIG. 3A.
  • first conductive units 112 forming a first axial electrode 100Y and a plurality of first connecting lines 112C electrically connecting adjacent two first conductive units 112 are formed in the recess 102 of the substrate 100, A conductive unit 112 and the first connecting line 112C may be integrally formed.
  • the material of the first axial electrode 100Y is a transparent conductive material, such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO) or other suitable transparent conductive materials, which can be deposited, lithographically and etched.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • the process forms a plurality of first conductive units 112 and first connection lines 112C of the first axial electrode 100Y.
  • the insulating layer 118 is filled in the recess 102 of the substrate 100, the height of the insulating layer 118 is filled flush with the first surface 100A of the substrate 100, and the insulating layer 118 is formed on the first axial electrode.
  • the material of the insulating layer 118 and the method of forming the same on the plurality of first connection lines 112C of 100Y are the same as those described in FIG. 3C.
  • the second axial electrode 100X and the first axial electrode 100Y are alternately arranged.
  • the second conductive unit 114 is located on the first surface 100A of the substrate 100, and the second connection line 114C is located on the insulating layer 118 to complete the touch sensing structure of FIG. Thereby, the foregoing insulating layer 118 can be formed at the intersection between the first axial electrode 100Y and the second axial electrode 100X.
  • the insulating layer 118 is formed on the first connecting line 112C and the second connecting line 114C. It is located between two adjacent second conductive units 114.
  • the materials of the plurality of second conductive units 114 and the plurality of second connecting lines 114C of the second axial electrode 100X are transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and aluminum zinc oxide (AZO). Or other suitable transparent conductive material, the plurality of second conductive units 114 and the second connection lines 114C of the second axial electrode 100X may be formed using a deposition, lithography, and etching process. In the embodiment of FIG. 5, the first conductive electrode 100Y and the second conductive unit 114 of the second axial electrode 100X are formed separately in different process steps.
  • the embodiment is described in the embodiment in which the first axial electrode 100Y is disposed in the recess 102 of the substrate 100, it is not intended to limit the present invention. In other embodiments, the second embodiment may also be used.
  • the axial electrode 100X is disposed in the recess 102 of the substrate 100, and the first axial electrode 100Y is disposed on the first surface 100A of the substrate 100.
  • the insulating layer is disposed in the recess of the substrate to electrically connect the jumper of the adjacent two conductive units of an axial (eg, Y-axis or X-axis) electrode.
  • the connecting wire is flatly disposed on the insulating layer, and the jumper or the connecting wire can climb the adjacent two conductive units without climbing the protruding height of the insulating layer, so the jumper in the touch sensing structure Or the connection line does not have the problem of cracking and cracking due to climbing, thereby improving the ability of the touch sensing structure of the touch panel in terms of resistance uniformity, antistatic capability and reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)
  • Manufacture Of Switches (AREA)
  • Push-Button Switches (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明提供一种触控感测结构,包含基板,其表面上具有复数凹槽,复数条第一轴向电极分别设置于基板的这些凹槽内,复数条第二轴向电极设置于基板的表面上,且第二轴向电极与第一轴向电极交错排列,以及绝缘层填充于这些凹槽内,并且设置于这些第一轴向电极与该些第二轴向电极之间的交错处。此外,本发明还提供触控感测结构的形成方法。藉由设置绝缘层于基板的凹槽内而使感测电极不需要爬过绝缘层的突起高度,以解决传统触控面板中的导电架桥结构因为爬坡而发生断裂等问题。

Description

触控感测结构及其形成方法 技术领域
本发明涉及触控技术领域,尤其涉及触控感测结构及其形成方法。
背景技术
近年来,触控面板逐渐成为最主要的输入介面,被广泛应用在各种电子产品中,例如手机、个人数位助理(PDA)或掌上型个人电脑等。触控面板的触控感测元件可包含复数条排列成行的感测电极,以及复数条排列成列的感测电极,在这些排列成行的感测电极与排列成列的感测电极之交错处必须设置绝缘块,以避免排列成行的感测电极与排列成列的感测电极之间发生短路。
在传统的触控面板中,排列成行的感测电极可由复数互相连接的导电单元组成,而排列成列的感测电极则由复数互相分开的导电单元组成,这些互相分开的导电单元需要藉由横跨在绝缘块上的导电架桥结构进行电性连接。
然而,由于传统的导电架桥结构需要爬过绝缘块进行导电单元之间的搭接,在导电架桥结构的爬坡处容易断裂或产生裂痕,让导电架桥结构的电性连接作用失效或不良,导致感测电极发生断路(open)或阻值异常,并且让感测电极的抗静电能力变差,进而造成触控面板的触控功能失效或不良。
发明内容
有鉴于习知技术存在的上述问题,本发明实施例在于提供触控感测结构及其形成方法,藉由设置绝缘层于基板的凹槽内而使感测电极不需要爬过绝缘层的突起高度,以解决传统触控面板中的导电架桥结构因为爬坡而发生的上述问题。
依据本发明之一实施例,提供一种触控感测结构,包括:基板,具有复数凹槽设置于基板的一表面上;复数条第一轴向电极分别设置于基板的这些凹槽内;复数条第二轴向电极设置于基板的该表面上,且与第一轴向电极交错排列;以及绝缘层填充于这些凹槽内,并且设置于这些第一轴向电极与该些第二轴向电极之间的交错处以使该些第一轴向电极与该些第二轴向电极电性绝缘。
进一步的,每一第一轴向电极包括复数第一导电单元和复数电性连接相邻两个第一导电单元的第一连接线,且绝缘层设置于第一连接线上。
进一步的,每一第二轴向电极包括复数第二导电单元和复数电性连接相邻两个第二导电单元的跨接线,绝缘层设置于第一连接线与跨接线之间以使该些第一连接线与该些跨接线电性绝缘,且该绝缘层的高度与第二导电单元的高度齐平。
进一步的,该跨接线的材料包括金属或透明导电材料。
进一步的,每一该些第二轴向电极包括复数第二导电单元和复数电性连接相邻两个该些第二导电单元的第二连接线,该绝缘层位于该些第一连接线与该些第二连接线之间以使该些第一连接线与该些第二连接线电性绝缘,且该绝缘层的高度与该基板的该表面齐平。
进一步的,该些第一轴向电极和该些第二轴向电极的材料包括透明导电材料。
进一步的,该些凹槽的平面图案与该些第一轴向电极及该绝缘层的平面图案相同且互相重叠。
进一步的,该些凹槽的剖面形状包括矩形。
此外,依据本发明之一实施例,还提供触控感测结构的形成方法,此方法包括:在基板的表面上形成复数凹槽;形成复数条第一轴向电极,分别位于这些凹槽内;在基板的表面上形成复数条第二轴向电极,且第二轴向电极与第一轴向电极交错排列;以及在这些凹槽内填充绝缘层,并且绝缘层位于这些第一轴向电极与第二轴向电极之间以使该些第一轴向电极与该些第二轴向电极电性绝缘。
进一步的,基板的材料包括玻璃基板,且凹槽采用微蚀刻或激光雕刻制程形成。
进一步的,基板的材料包括塑胶基板,且凹槽采用压印制程形成。
进一步的,每一第一轴向电极包括复数第一导电单元和复数电性连接相邻两个第一导电单元的第一连接线,每一第二轴向电极包括复数第二导电单元和复数电性连接相邻两个第二导电单元的跨接线,且第一轴向电极、第二导电单元同步形成。
进一步的,绝缘层形成于第一连接线与跨接线之间,并位于相邻两个第二导电单元之间,且绝缘层的高度填充至与第二导电单元的高度齐平。
进一步的,每一第一轴向电极包括复数第一导电单元和复数电性连接相邻两个第一导电单元的第一连接线,每一第二轴向电极包括复数第二导电单元和复数电性连接相邻两个第二导电单元的第二连接线,且第一导电单元与第一连接线同步形成,第二导电单元与第二连接线同步形成。
进一步的,绝缘层形成于第一连接线与第二连接线之间,且绝缘层的高度填充至与基板的该表面齐平。
依据本发明之实施例,排列成行(或排列成列)的感测电极设置于基板的凹槽内,并且在基板的凹槽内填充绝缘层,绝缘层填充的高度系使得排列成列(或排列成行)的感测电极之相邻两个导电单元之间的电性连接结构可以平坦地设置在绝缘层上,让此电性连接结构不需爬过绝缘层的高度就可以搭接相邻的两个导电单元,因此可避免如习知的导电架桥结构因爬坡而发生的断裂或裂痕问题。
附图说明
图1显示依据本发明之一实施例的触控感测结构的局部平面示意图。
图2显示依据本发明之一实施例,沿着图1的剖面线1-1’之触控感测结构的剖面示意图。
图3A至图3C为依据本发明之一实施例,形成图2的触控感测结构之各中间阶段的剖面示意图。
图4显示依据本发明之另一实施例的触控感测结构的局部平面示意图。
图5显示依据本发明之一实施例,沿着图4的剖面线4-4’之触控感测结构的剖面示意图。
图6A至图6C为依据本发明之一实施例,形成图5的触控感测结构之各中间阶段的剖面示意图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
图1显示依据本发明之一实施例的触控感测结构的局部平面示意图。图2显示依据本发明之一实施例,沿着图1的剖面线1-1’之触控感测结构的剖面示意图。参阅图1及图2,触控感测结构包括一基板100、复数条第一轴向电极100Y、复数条第二轴向电极100X以及一绝缘层118。基板100的第一表面100A上具有复数凹槽102。第一轴向电极100Y设置于基板100的凹槽102内。第二轴向电极100X设置于基板100的第一表面100A上,且与第一轴向电极100Y交错排列。绝缘层118填充于凹槽102内,并且设置于第一轴向电极100Y与第二轴向电极100X之间的交错处。
请再参阅图1,以上视角度观之,复数条第一轴向电极100Y沿着第一轴向例如Y轴排列,每一条第一轴向电极100Y包含复数第一导电单元112和复数电性连接相邻的两个第一导电单元112的第一连接线112C。复数条第二轴向电极100X沿着第二轴向例如X轴排列,每一条第二轴向电极100X包含复数第二导电单元114和复数电性连接相邻两个第二导电单元114的跨接线120。第一轴向电极100Y与第二轴向电极100X交错排列,较佳为相互垂直,但并不以此为限。
另外,绝缘层118设置于第一轴向电极100Y与第二轴向电极100X之间,具体的,绝缘层118设置于第一连接线112C上,特别是设置于第一轴向电极100Y的第一连接线112C与第二轴向电极100X的跨接线120之间,以避免第一轴向电极100Y与第二轴向电极100X的交错处发生短路。
再参阅图2,基板100具有相对设置的一第一表面100A及一第二表面100B,基板100的第二表面100B可作为触控面板的触碰面。基板100可以是玻璃基板或塑胶基板,基板100系作为触控面板的保护盖板(cover lens)。在另一实施例中,基板100可作为第一轴向电极100Y及第二轴向电极100X的承载板,在第一轴向电极100Y及第二轴向电极100X上还覆盖有一保护盖板,保护盖板作为触控面板的触碰面。
在基板100的第一表面100A上具有复数凹槽102,为了让本发明之实施例在图式中清楚地显示,在图2中仅绘制出一个凹槽102,然而,由于凹槽102系对应于图1中所示之复数条第一轴向电极100Y和绝缘层118的位置而设置,因此在基板100的第一表面100A上应具有复数凹槽102。
此外,以上视角度观之,凹槽102只要可以容纳第一轴向电极100Y和绝缘层118即可,因此,在一实施例中,凹槽102的平面图案可以与第一轴向电极100Y及绝缘层118的平面图案相同且互相重叠,并且凹槽102的面积可以等于或大于第一轴向电极100Y及绝缘层118的面积。另外,在一实施例中,凹槽102的剖面形状可以是矩形,并且凹槽102在基板100内的深度D可约为1μm,但凹槽102的平面图案与形状不以此为限。
在此实施例中,第一轴向电极100Y的多个第一导电单元112和多个第一连接线112C设置于凹槽102内,第二轴向电极100X的多个第二导电单元114则设置于基板100的第一表面100A上,绝缘层118填充于凹槽102内并位于第一连接线112C上,绝缘层118的高度填充至与第二轴向电极100X的第二导电单元114的高度齐平,即可与第二导电单元114相对于基板100的另一侧表面齐平。
跨接线120设置于绝缘层118上并延伸至部分的第二导电单元114上以电性连接相邻的两个第二导电单元114。依据本发明之实施例,跨接线120不需要如传统技术般需爬过绝缘层118的突起高度就可以进行相邻两个第二导电单元114的搭接,全部的跨接线120都位于同一水平面上,因此跨接线120不会有因爬坡而出现的断裂及裂痕问题,可以提高触控面板的触控感测结构在阻值均匀性、抗静电能力以及信赖性等方面的能力。
上述图2的触控感测结构之形成方法主要包括步骤:在基板的一表面上形成复数凹槽;形成复数条第一轴向电极,分别位于基板的凹槽内;在基板的该表面上形成复数条第二轴向电极,第二轴向电极与第一轴向电极交错排列;以及在基板的凹槽内填充绝缘层,绝缘层位于第一轴向电极与第二轴向电极之间的交错处。下面配合图示详细描述本发明实施例触控感测结构之形成方法。
图3A至图3C显示依据本发明之一实施例,形成图2的触控感测结构之各中间阶段的剖面示意图。参阅图3A,首先在基板100的第一表面100A上形成复数凹槽102,为简化制图,在图3A中仅绘出一个凹槽102为代表。在一实施例中,基板100的材料可以是玻璃基板,可使用微蚀刻(micro etch)或激光雕刻(laser engraving)制程形成凹槽102。在另一实施例中,基板100的材料可以是塑胶基板,可使用压印(imprinting)制程形成凹槽102。
参阅图3B,在基板100的凹槽102内形成第一轴向电极100Y的多个第一导电单元112和多个电性连接相邻两个第一导电单元112的第一连接线112C,第一导电单元112与第一连接线112C可以是一体成型的。每一第二轴向电极100X包括多个第二导电单元114,在基板100的第一表面100A上可同步或非同步形成第一轴向电极100Y与第二轴向电极100X的多个第二导电单元114。在此实施例中,第一轴向电极100Y和第二导电单元114在相同的制程步骤中同步形成,可使用沉积、微影以及蚀刻制程形成第一轴向电极100Y和第二导电单元114。第一轴向电极100Y和第二导电单元114的材料为透明导电材料,例如氧化铟锡(indium tin oxide;ITO)、氧化铟锌(indium zinc oxide;IZO)、氧化铝锌(aluminum zinc oxide;AZO)或其他适合的透明导电材料。
参阅图3C,在基板100的凹槽102内填充绝缘层 118,将绝缘层 118的高度填充至与第二轴向电极100X的第二导电单元114的高度齐平,即可与第二导电单元114相对于基板100的另一侧表面齐平,并且绝缘层118形成于第一轴向电极100Y的多个第一连接线112C上。在一实施例中,绝缘层118的材料例如为感光的聚亚酰胺(polyimide;PI),可使用涂布与微影制程或印刷制程形成绝缘层118。
接着,在绝缘层118上形成第二轴向电极100X的跨接线120以电性连接相邻的两个第二导电单元114,即每一跨接线120可延伸至两两相邻的第二导电单元114上,完成图2的触控感测结构。
在此实施例中,跨接线120的材料可以是金属或透明导电材料例如氧化铟锡(ITO),可使用沉积、微影以及蚀刻制程形成跨接线120。
藉此,前述的绝缘层118可形成于第一轴向电极100Y与第二轴向电极100X之间的交错处,具体的,绝缘层118形成于第一连接线112C与跨接线120之间并位于相邻两个第二导电单元114之间。
图4显示依据本发明之另一实施例的触控感测结构的局部平面示意图。图5显示依据本发明之一实施例,沿着图4的剖面线4-4’之触控感测结构的剖面示意图。参阅图4及图5,触控感测结构包括一基板100、复数条第一轴向电极100Y、复数条第二轴向电极100X以及一绝缘层118。基板100的第一表面100A上具有复数凹槽102。第一轴向电极100Y设置于基板100的凹槽102内。第二轴向电极100X设置于基板100的第一表面100A上,且与第一轴向电极100Y交错排列。绝缘层118填充于凹槽102内,并且设置于第一轴向电极100Y与第二轴向电极100X之间的交错处。
请再参阅图4,以上视角度观之,复数条第一轴向电极100Y沿着第一轴向例如Y轴排列,每一条第一轴向电极100Y包含复数第一导电单元112和复数连接相邻两个第一导电单元112的第一连接线112C。复数条第二轴向电极100X沿着第二轴向例如X轴排列,每一条第二轴向电极100X包含复数第二导电单元114和复数连接相邻两个第二导电单元114的第二连接线114C。第一轴向电极100Y与第二轴向电极100X交错排列,较佳为相互垂直,但并不以此为限。
另外,绝缘层118设置于第一轴向电极100Y与第二轴向电极100X之间,具体的,绝缘层118设置于第一连接线112C上,特别是设置于第一轴向电极100Y的第一连接线112C与第二轴向电极100X的第二连接线114C之间,以避免第一轴向电极100Y与第二轴向电极100X的交错处发生短路。
再参阅图5,基板100具有相对设置的一第一表面100A及一第二表面100B,基板100的第二表面100B可为触控面板的外侧面以作为触控面板的触碰面。基板100可以是玻璃基板或塑胶基板,其系作为触控面板的保护盖板。在另一实施例中,基板100可作为第一轴向电极100Y及第二轴向电极100X的承载板,在第一轴向电极100Y及第二轴向电极100X上还覆盖有一保护盖板,保护盖板作为触控面板的触碰面。
在基板100的第一表面100A上具有复数凹槽102,同时参阅图4,在一实施例中,每一个凹槽102系对应于每一条第一轴向电极100Y和其上的绝缘层118而设置,以上视角度观之,凹槽102只要可以容纳第一轴向电极100Y和绝缘层118即可,因此,在一实施例中,凹槽102的平面图案可以与第一轴向电极100Y及绝缘层118的平面图案相同且互相重叠,并且凹槽102的面积可以等于或大于第一轴向电极100Y及绝缘层118的面积。另外,在一实施例中,凹槽102的剖面形状可以是矩形,并且凹槽102在基板100内的深度D可约为1μm,但凹槽102的平面图案与形状不以此为限。
在此实施例中,第一轴向电极100Y的多个第一导电单元112和多个第一连接线112C设置于凹槽102内,绝缘层118填充于凹槽102内并位于第一连接线112C上。绝缘层118的高度填充至与基板100的第一表面100A齐平。第二轴向电极100X的多个第二导电单元114设置于基板100的第一表面100A上,并且第二轴向电极100X的多个第二连接线114C设置于绝缘层118上。
在此实施例中,连接相邻的两个第二导电单元114的第二连接线114C平坦地设置于绝缘层118上,并且全部的第二连接线114C与第二导电单元114都位于同一水平面上,使得第二连接线114C不需要如传统技术般需爬过绝缘层118的突起高度就可以进行相邻两个第二导电单元114的搭接,因此第二连接线114C不会有因爬坡而出现的断裂及裂痕问题,藉此可提高触控面板的触控感测结构在阻值均匀性、抗静电能力以及信赖性等方面的能力。
图6A至图6C显示依据本发明之另一实施例,形成图5的触控感测结构之各中间阶段的剖面示意图。参阅图6A,首先在基板100的第一表面100A上形成复数凹槽102,为简化制图,在图6A中仅绘出一个凹槽102为代表,凹槽102系对应于第一轴向电极100Y及绝缘层118的位置而形成,基板100的材料以及凹槽102的形成方法与图3A所述内容相同。
参阅图6B,在基板100的凹槽102内形成第一轴向电极100Y的多个第一导电单元112和多个电性连接相邻两个第一导电单元112的第一连接线112C,第一导电单元112与第一连接线112C可以是一体成型的。第一轴向电极100Y的材料为透明导电材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铝锌(AZO)或其他适合的透明导电材料,可使用沉积、微影以及蚀刻制程形成第一轴向电极100Y的多个第一导电单元112和第一连接线112C。
接着,参阅图6C,在基板100的凹槽102内填充绝缘层118,将绝缘层118的高度填充至与基板100的第一表面100A齐平,并且让绝缘层118形成于第一轴向电极100Y的多个第一连接线112C上,绝缘层118的材料以及其形成方法与图3C所述内容相同。
之后,形成第二轴向电极100X的多个第二导电单元114和多个电性连接相邻两个第二导电单元114的第二连接线114C,第二导电单元114与第二连接线114C可以是一体成型的。第二轴向电极100X与第一轴向电极100Y相互交错排列。第二导电单元114位于基板100的第一表面100A上,并且第二连接线114C位于绝缘层118上,完成图5的触控感测结构。藉此,前述的绝缘层118可形成于第一轴向电极100Y与第二轴向电极100X之间的交错处,具体的,绝缘层118形成于第一连接线112C与第二连接线114C之间并位于相邻两个第二导电单元114之间。第二轴向电极100X的多个第二导电单元114和多个第二连接线114C的材料为透明导电材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铝锌(AZO)或其他适合的透明导电材料,可使用沉积、微影以及蚀刻制程形成第二轴向电极100X的多个第二导电单元114和第二连接线114C。在图5的实施例中,第一轴向电极100Y和第二轴向电极100X的第二导电单元114是在不同的制程步骤中分别形成。
虽然在上述实施例中是以第一轴向电极100Y设置于基板100的凹槽102内之实施方式进行说明,然而,其并非用以限定本发明,在其他实施例中,也可以将第二轴向电极100X设置于基板100的凹槽102内,并且将第一轴向电极100Y设置于基板100的第一表面100A上。
依据本发明之实施例的触控感测结构,设置绝缘层于基板的凹槽内而使电性连接某一轴向(例如Y轴或X轴)电极之相邻两个导电单元的跨接线或连接线系平坦地设置在绝缘层上,此跨接线或连接线不需要爬过绝缘层的突起高度就可以进行相邻两个导电单元的搭接,因此触控感测结构中的跨接线或连接线不会有因爬坡而出现的断裂及裂痕问题,藉此可提高触控面板的触控感测结构在阻值均匀性、抗静电能力以及信赖性等方面的能力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内, 所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (15)

  1. 一种触控感测结构,其特征在于,包括:
    基板,具有复数凹槽设置于该基板的一表面上;
    复数条第一轴向电极,分别设置于该基板的该些凹槽内;
    复数条第二轴向电极,设置于该基板的该表面上,且与该些第一轴向电极交错排列;以及
    绝缘层,填充于该些凹槽内,并且设置于该些第一轴向电极与该些第二轴向电极之间的交错处以使该些第一轴向电极与该些第二轴向电极电性绝缘。
  2. 如权利要求1所述的触控感测结构,其特征在于,每一该些第一轴向电极包括复数第一导电单元和复数电性连接相邻两个该些第一导电单元的第一连接线,且该绝缘层设置于该些第一连接线上。
  3. 如权利要求2所述的触控感测结构,其特征在于,每一该些第二轴向电极包括复数第二导电单元和复数电性连接相邻两个该些第二导电单元的跨接线,该绝缘层设置于该些第一连接线与该些跨接线之间以使该些第一连接线与该些跨接线电性绝缘,且该绝缘层的高度与该些第二导电单元的高度齐平。
  4. 如权利要求3所述的触控感测结构,其特征在于,该跨接线的材料包括金属或透明导电材料。
  5. 如权利要求2所述的触控感测结构,其特征在于,每一该些第二轴向电极包括复数第二导电单元和复数电性连接相邻两个该些第二导电单元的第二连接线,该绝缘层位于该些第一连接线与该些第二连接线之间以使该些第一连接线与该些第二连接线电性绝缘,且该绝缘层的高度与该基板的该表面齐平。
  6. 如权利要求1所述的触控感测结构,其特征在于,该些第一轴向电极和该些第二轴向电极的材料包括透明导电材料。
  7. 如权利要求1所述的触控感测结构,其特征在于,该些凹槽的平面图案与该些第一轴向电极及该绝缘层的平面图案相同且互相重叠。
  8. 如权利要求1所述的触控感测结构,其特征在于,该些凹槽的剖面形状包括矩形。
  9. 一种触控感测结构的形成方法,其特征在于,包括:
    在一基板的一表面上形成复数凹槽;
    形成复数条第一轴向电极,分别位于该些凹槽内;
    在该基板的该表面上形成复数条第二轴向电极,且该些第二轴向电极与该些第一轴向电极交错排列;以及
    在该些凹槽内填充一绝缘层,并且该绝缘层位于该些第一轴向电极与该些第二轴向电极之间的交错处以使该些第一轴向电极与该些第二轴向电极电性绝缘。
  10. 如权利要求9所述的触控感测结构的形成方法,其特征在于,该基板的材料包括玻璃基板,且该些凹槽采用微蚀刻或激光雕刻制程形成。
  11. 如权利要求9所述的触控感测结构的形成方法,其特征在于,该基板的材料包括塑胶基板,且该些凹槽采用压印制程形成。
  12. 如权利要求9所述的触控感测结构的形成方法,其特征在于,每一该些第一轴向电极包括复数第一导电单元和复数电性连接相邻两个该些第一导电单元的第一连接线,每一该些第二轴向电极包括复数第二导电单元和复数电性连接相邻两个该些第二导电单元的跨接线,且该些第一轴向电极、该些第二导电单元同步形成。
  13. 如权利要求12所述的触控感测结构的形成方法,其特征在于,该绝缘层形成于该些第一连接线与该些跨接线之间以使该些第一连接线与该些跨接线电性绝缘,并位于相邻两个该些第二导电单元之间,且该绝缘层的高度填充至与该些第二导电单元的高度齐平。
  14. 如权利要求9所述的触控感测结构的形成方法,其特征在于,每一该些第一轴向电极包括复数第一导电单元和复数电性连接相邻两个该些第一导电单元的第一连接线,每一该些第二轴向电极包括复数第二导电单元和复数电性连接相邻两个该些第二导电单元的第二连接线,且该些第一导电单元与该些第一连接线同步形成,该些第二导电单元与该些第二连接线同步形成。
  15. 如权利要求14所述的触控感测结构的形成方法,其特征在于,该绝缘层形成于该些第一连接线与该些第二连接线之间以使该些第一连接线与该些第二连接线电性绝缘,且该绝缘层的高度填充至与该基板的该表面齐平。
PCT/CN2013/085468 2012-10-29 2013-10-18 触控感测结构及其形成方法 WO2014067400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210433622.4 2012-10-29
CN201210433622.4A CN103793092B (zh) 2012-10-29 触控感测结构及其形成方法

Publications (1)

Publication Number Publication Date
WO2014067400A1 true WO2014067400A1 (zh) 2014-05-08

Family

ID=49228416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085468 WO2014067400A1 (zh) 2012-10-29 2013-10-18 触控感测结构及其形成方法

Country Status (3)

Country Link
US (1) US9456493B2 (zh)
TW (2) TWI489362B (zh)
WO (1) WO2014067400A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489362B (zh) * 2012-10-29 2015-06-21 Tpk Touch Solutions Xiamen Inc 觸控感測結構及其形成方法
CN105874410B (zh) * 2013-09-27 2018-11-13 Lg伊诺特有限公司 触摸窗和包含该触摸窗的显示设备
US10329194B2 (en) 2014-02-28 2019-06-25 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and systems relating to enhancing material toughness
CN104951116B (zh) * 2014-03-31 2018-08-31 宸盛光电有限公司 触控装置及其制造方法
CN105094395A (zh) * 2014-05-04 2015-11-25 宸鸿科技(厦门)有限公司 触控装置
WO2015184527A1 (en) * 2014-06-06 2015-12-10 The Royal Institution For The Advancement Of Learning/Mc Gill University Methods and systems relating to enhancing material toughness
CN104076982B (zh) * 2014-06-24 2017-01-18 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
TWM506323U (zh) * 2015-02-03 2015-08-01 Tpk Touch Solutions Xiamen Inc 觸控裝置
CN106033275B (zh) * 2015-03-18 2019-10-18 宸鸿科技(厦门)有限公司 触控面板及其制造方法
CN107085473A (zh) * 2016-02-15 2017-08-22 宸鸿光电科技股份有限公司 触控模块及其制造方法
CN106201136A (zh) * 2016-07-01 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触摸屏
KR20180079055A (ko) * 2016-12-30 2018-07-10 엘지디스플레이 주식회사 스트레처블 터치 스크린, 이의 제조 방법 및 이를 이용한 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261379A (zh) * 2008-02-01 2008-09-10 信利半导体有限公司 电容式触摸屏及包含该触摸屏的触摸显示器件
CN202404561U (zh) * 2012-01-19 2012-08-29 常熟晶玻光学科技有限公司 单片式玻璃电容触控面板
KR20120121573A (ko) * 2011-04-27 2012-11-06 주식회사 이노터치테크놀로지 투영 정전용량 터치 패널 및 그의 제조 방법
CN202904529U (zh) * 2012-10-29 2013-04-24 宸鸿科技(厦门)有限公司 触控感测结构
CN103226414A (zh) * 2013-05-02 2013-07-31 深圳欧菲光科技股份有限公司 触摸屏及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275974A (en) * 1992-07-30 1994-01-04 Northern Telecom Limited Method of forming electrodes for trench capacitors
US7324095B2 (en) * 2004-11-01 2008-01-29 Hewlett-Packard Development Company, L.P. Pressure-sensitive input device for data processing systems
KR100713154B1 (ko) * 2005-12-15 2007-05-02 삼성전자주식회사 공압식 rf mems 스위치 및 그 제조 방법
CN101546242A (zh) * 2008-03-26 2009-09-30 义隆电子股份有限公司 触控面板装置
CN101546241A (zh) * 2008-03-28 2009-09-30 义隆电子股份有限公司 触控面板装置
CN101763186B (zh) 2008-12-23 2011-10-05 胜华科技股份有限公司 触控面板
CN101988999B (zh) * 2009-07-31 2013-11-06 胜华科技股份有限公司 显示触控器及其触控面板
CN102169395B (zh) * 2010-02-26 2013-03-20 范莉立 桥接式电极的布设方法及其结构
US8653378B2 (en) * 2010-03-24 2014-02-18 Li-Li Fan Structure of bridging electrode
CN102346614B (zh) 2011-09-19 2013-10-16 深圳莱宝高科技股份有限公司 一种电容式触控面板及其制作方法
TWI489362B (zh) * 2012-10-29 2015-06-21 Tpk Touch Solutions Xiamen Inc 觸控感測結構及其形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261379A (zh) * 2008-02-01 2008-09-10 信利半导体有限公司 电容式触摸屏及包含该触摸屏的触摸显示器件
KR20120121573A (ko) * 2011-04-27 2012-11-06 주식회사 이노터치테크놀로지 투영 정전용량 터치 패널 및 그의 제조 방법
CN202404561U (zh) * 2012-01-19 2012-08-29 常熟晶玻光学科技有限公司 单片式玻璃电容触控面板
CN202904529U (zh) * 2012-10-29 2013-04-24 宸鸿科技(厦门)有限公司 触控感测结构
CN103226414A (zh) * 2013-05-02 2013-07-31 深圳欧菲光科技股份有限公司 触摸屏及其制备方法

Also Published As

Publication number Publication date
TWM457921U (zh) 2013-07-21
US20140144689A1 (en) 2014-05-29
CN103793092A (zh) 2014-05-14
US9456493B2 (en) 2016-09-27
TW201416952A (zh) 2014-05-01
TWI489362B (zh) 2015-06-21

Similar Documents

Publication Publication Date Title
WO2014067400A1 (zh) 触控感测结构及其形成方法
TWI549165B (zh) 觸控面板及其製造方法
CN106873835B (zh) 触控面板及其制作方法、触控显示屏
WO2013029345A1 (en) Touch pane land manufacturing method thereof
EP2354908B1 (en) Capacitive touch panel with multiple zones
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
WO2011046391A2 (en) Touch panel and manufacturing method thereof
CN202217245U (zh) 触控面板
WO2013131361A1 (zh) 单层式二维触摸传感器及触控终端
WO2014051247A1 (en) Touch panel and manufacturing method thereof
WO2013085227A1 (en) Electrode pattern of touch panel and method of manufacturing the same
CN108228014B (zh) 触控模组及其制备方法、触控屏
WO2013170684A1 (zh) 触控面板及其应用的触控显示设备
CN108241456A (zh) 触控感测模组及其制作方法以及应用其的触控显示面板
WO2011046389A2 (en) Touch panel and manufacturing method thereof
WO2014067383A1 (zh) 触控装置及其制造方法
WO2015010507A1 (zh) 触控电极结构及其应用之触控面板
WO2010038957A2 (ko) 터치패널의 제조방법 및 이에 의해 제조되는 터치패널
CN107765926A (zh) 显示装置、触控面板及其制造方法
WO2013053263A1 (en) Pattern of a capacitive touch device and manufacturing method thereof
CN102306073B (zh) 电容式触控面板及其制作方法
WO2010120073A2 (ko) 터치패널 제조용 패드, 이를 이용한 터치패널 제조방법 및 이에 의해 제조되는 터치패널
CN104216542A (zh) 触控面板及其制造方法
CN102279686B (zh) 电容式触控面板及其制作方法
CN202904529U (zh) 触控感测结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851611

Country of ref document: EP

Kind code of ref document: A1