WO2014061780A1 - 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 - Google Patents
組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 Download PDFInfo
- Publication number
- WO2014061780A1 WO2014061780A1 PCT/JP2013/078315 JP2013078315W WO2014061780A1 WO 2014061780 A1 WO2014061780 A1 WO 2014061780A1 JP 2013078315 W JP2013078315 W JP 2013078315W WO 2014061780 A1 WO2014061780 A1 WO 2014061780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- formula
- composition
- group
- carbon atoms
- Prior art date
Links
- 0 C*c(cc(cc1)N)c1OC(CC1)CC(CC2)C1(C)C(CC1)C2C(CCC2C(C)CCC=C(C)*)C12ClI Chemical compound C*c(cc(cc1)N)c1OC(CC1)CC(CC2)C1(C)C(CC1)C2C(CCC2C(C)CCC=C(C)*)C12ClI 0.000 description 5
- VSTAOWNYNUTGOM-UHFFFAOYSA-N CCC1C(C)C(C)CC1C Chemical compound CCC1C(C)C(C)CC1C VSTAOWNYNUTGOM-UHFFFAOYSA-N 0.000 description 2
- FFKAIBPVOJSSOW-UHFFFAOYSA-N CC(C(CO1)OC1=O)O[SiH-](OCC(CO1)OC1=O)(OCC(CO1)OC1=O)OCC(CO1)OC1=O Chemical compound CC(C(CO1)OC1=O)O[SiH-](OCC(CO1)OC1=O)(OCC(CO1)OC1=O)OCC(CO1)OC1=O FFKAIBPVOJSSOW-UHFFFAOYSA-N 0.000 description 1
- BQLXCWZMPJMYIN-UHFFFAOYSA-N CC(CC1C)C2C1C(C)CC2C Chemical compound CC(CC1C)C2C1C(C)CC2C BQLXCWZMPJMYIN-UHFFFAOYSA-N 0.000 description 1
- WLXOWMAISGKYIJ-UHFFFAOYSA-N CC(CCC=C(C)C)C(CC1)C(C)(CCC23)C1C2C=CC(CC(CC1)Oc(ccc(N)c2)c2N)C31C=C Chemical compound CC(CCC=C(C)C)C(CC1)C(C)(CCC23)C1C2C=CC(CC(CC1)Oc(ccc(N)c2)c2N)C31C=C WLXOWMAISGKYIJ-UHFFFAOYSA-N 0.000 description 1
- ZSMQVRNJQCFADJ-UHFFFAOYSA-N CC(COCC(CO1)OC1=O)(COCC(CO1)OC1=O)C(C1)C1C=C Chemical compound CC(COCC(CO1)OC1=O)(COCC(CO1)OC1=O)C(C1)C1C=C ZSMQVRNJQCFADJ-UHFFFAOYSA-N 0.000 description 1
- YTRYOCPLSRDFAG-UHFFFAOYSA-N CC(COCC(CO1)OC1=O)COCC(CO1)OC1=O Chemical compound CC(COCC(CO1)OC1=O)COCC(CO1)OC1=O YTRYOCPLSRDFAG-UHFFFAOYSA-N 0.000 description 1
- INYXDKODFMWKER-UHFFFAOYSA-N CC1C(C)C(C)C(C)C1 Chemical compound CC1C(C)C(C)C(C)C1 INYXDKODFMWKER-UHFFFAOYSA-N 0.000 description 1
- VWWAILZUSKHANH-UHFFFAOYSA-N CC1C(C)CC(C)C(C)C1 Chemical compound CC1C(C)CC(C)C(C)C1 VWWAILZUSKHANH-UHFFFAOYSA-N 0.000 description 1
- KGLVTRMNQADMLB-UHFFFAOYSA-N CCCOCC(CO1)OC1=O Chemical compound CCCOCC(CO1)OC1=O KGLVTRMNQADMLB-UHFFFAOYSA-N 0.000 description 1
- NMTYGWBWGUSZMV-UHFFFAOYSA-N COCC(COCC(COCC(CO1)OC1=O)(COCC(CO1)OC1=O)COCC(CO1)OC1=O)[O]=O Chemical compound COCC(COCC(COCC(CO1)OC1=O)(COCC(CO1)OC1=O)COCC(CO1)OC1=O)[O]=O NMTYGWBWGUSZMV-UHFFFAOYSA-N 0.000 description 1
- UUSHDJXJOSLZGJ-UHFFFAOYSA-N O=C1OC(COc(cc2)ccc2OCC(CO2)OC2=O)CO1 Chemical compound O=C1OC(COc(cc2)ccc2OCC(CO2)OC2=O)CO1 UUSHDJXJOSLZGJ-UHFFFAOYSA-N 0.000 description 1
- PKEDOQRZOIOKGU-UHFFFAOYSA-N O=C1OC(COc2cc(OCC(CO3)OC3=O)ccc2)CO1 Chemical compound O=C1OC(COc2cc(OCC(CO3)OC3=O)ccc2)CO1 PKEDOQRZOIOKGU-UHFFFAOYSA-N 0.000 description 1
- WUYZVSAIGYGVJK-UHFFFAOYSA-N OC(COCC(CCC(CO1)OC1=O)COCC(CO1)OC1=O)COCC(CO1)OC1=O Chemical compound OC(COCC(CCC(CO1)OC1=O)COCC(CO1)OC1=O)COCC(CO1)OC1=O WUYZVSAIGYGVJK-UHFFFAOYSA-N 0.000 description 1
- WDCYWAQPCXBPJA-UHFFFAOYSA-N [O-][N+](c1cc([N+]([O-])=O)ccc1)=O Chemical compound [O-][N+](c1cc([N+]([O-])=O)ccc1)=O WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
- C08G73/1028—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
- C08G73/1032—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/06—Ethers; Acetals; Ketals; Ortho-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1535—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3415—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
Definitions
- the present invention relates to a composition used for forming a resin film, a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film. Is.
- a resin film made of an organic material such as a polymer material is widely used as an interlayer insulating film or a protective film in an electronic device because of its ease of formation and insulation performance.
- a resin film made of an organic material is used as a liquid crystal alignment film.
- polyimide-based organic films with excellent durability are used as resin films used industrially.
- This polyimide organic film is formed from a composition containing a polyimide precursor, polyamic acid or polyimide. That is, the polyimide organic film is formed by applying a composition containing polyamic acid or polyimide onto a substrate and performing a baking process.
- these compositions usually use a solvent having a high boiling point such as N-methyl-2-pyrrolidone (also referred to as NMP) or ⁇ -butyrolactone (also referred to as ⁇ -BL), the temperature is about 200 to 300 ° C. It is necessary to bake at a high temperature (for example, refer to Patent Document 1).
- the baking process requires a high temperature among the processes for manufacturing a liquid crystal display element for the reasons described above.
- a liquid crystal aligning agent containing a polyimide polymer uses NMP or ⁇ -BL as a solvent to dissolve the polyimide polymer, and therefore requires a high temperature.
- NMP or ⁇ -BL as a solvent to dissolve the polyimide polymer
- firing at a lower temperature is required.
- baking at a low temperature is necessary.
- the liquid crystal alignment film is formed by applying a liquid crystal alignment treatment agent to a substrate and then baking the coating film. At that time, the liquid crystal alignment treatment agent is wetted with respect to the substrate for the purpose of enhancing the coating property (also referred to as coating property) of the liquid crystal alignment film, that is, suppressing the occurrence of pinholes due to repellency and foreign matter. There is a need to increase the spreadability.
- an object of this invention is to provide the composition which has the said characteristic. That is, an object of the present invention is to provide a composition that can form a resin film by baking at a low temperature in a composition containing a polyimide-based polymer. And when forming a resin film, it aims at providing the composition which the applicability
- substrate improves. Another object of the present invention is to provide a liquid crystal aligning agent that can form a liquid crystal aligning film by firing at a low temperature in the liquid crystal aligning agent using the above composition. And when forming a liquid crystal aligning film, it aims at providing the liquid crystal aligning agent which the applicability
- An object of the present invention is to provide a liquid crystal alignment film that meets the above requirements. That is, it aims at providing the liquid crystal aligning film which can be formed by baking at low temperature, and providing the liquid crystal aligning film which the applicability
- the present inventor has selected from a polyimide precursor or a polyimide obtained by reacting a diamine component containing a solvent having a specific structure and a diamine compound having a carboxyl group with a tetracarboxylic dianhydride component. It has been found that a composition containing at least one kind of polymer is extremely effective for achieving the above object, and the present invention has been completed.
- the present invention has the following gist.
- composition comprising the following component (A), component (B) and component (C):
- (A) component At least one solvent selected from the following formula [1a] or formula [1b].
- X 1 represents an alkyl group having 1 to 3 carbon atoms
- X 2 represents an alkyl group having 1 to 3 carbon atoms
- Component (C) At least one polymer selected from a polyimide precursor or polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group with a tetracarboxylic dianhydride component.
- the diamine compound having a carboxyl group as the component (C) is a diamine compound having a structure represented by the following formula [2], described in (1) or (2) above Composition.
- a represents an integer of 0 to 4.
- a represents an integer of 0 to 4
- n represents an integer of 1 to 4.
- the diamine compound having a carboxyl group is 20 mol% to 100 mol% in the total diamine used for the component (C), as described in (3) or (4) above Composition.
- Y represents the structure of Formula [2b-1], Formula [2b-2], Formula [2b-3], Formula [2b-4], or Formula [2b-5] below, m represents an integer of 1 to 4).
- a represents an integer of 0 to 4
- Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—
- Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15)
- Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—
- Y 4 represents a benzene ring, A divalent cyclic group selected from a cyclohexane ring or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton, wherein any hydrogen atom on the cyclic group has 1 to 3 carbon atoms
- Y 5 represents a divalent cyclic group selected from benzene ring, cyclohexane ring or a heterocyclic ring, any hydrogen atom on these cyclic group
- carbon atoms 1 May be substituted with an alkyl group having 1 to 3, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom
- n is 0
- Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
- Y 7 represents an alkyl group having 8 to 22 carbon atoms.
- Y 8 and Y 9 are each independently a hydrocarbon having 1 to 6 carbon atoms.
- a group of formula [2b During 5], Y 10 is an alkyl group having 1 to 8 carbon atoms).
- the tetracarboxylic dianhydride component of the component (C) is a compound represented by the following formula [3], according to any one of (1) to (6) above Composition.
- Z 1 is a group having at least one structure selected from the following formulas [3a] to [3j]).
- Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
- Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
- a liquid crystal display element comprising the liquid crystal alignment film according to (11) or (12).
- a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
- a liquid crystal display device comprising the liquid crystal alignment film according to (14).
- a liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
- a liquid crystal display device comprising the liquid crystal alignment film according to (16).
- composition to be formed can form a resin film by baking at a low temperature.
- the composition of the present invention has improved wet spreading properties on the substrate, and can suppress the occurrence of pinholes due to repellency and foreign matter on the resin film.
- the liquid crystal alignment treatment agent comprising the composition of the present invention can form a liquid crystal alignment film by baking at a low temperature.
- this liquid-crystal aligning agent improves the wet-spreading property to a board
- the present invention uses the following components (A), (B) and (C) containing a composition, a liquid crystal aligning agent, a resin film obtained using the composition, and the liquid crystal aligning agent.
- the obtained liquid crystal alignment film is a liquid crystal display element having the liquid crystal alignment film.
- X 1 represents an alkyl group having 1 to 4 carbon atoms
- X 2 represents an alkyl group having 1 to 4 carbon atoms
- Component (C) at least one polymer selected from a polyimide precursor or polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component (also referred to as a specific polymer). ).
- the specific alcohol solvent of the present invention usually has a lower boiling point of the solvent than NMP and ⁇ -BL used as the main solvent of the composition containing the polyimide polymer, and further dissolves the specific polymer of the present invention. Can do. Therefore, a resin film can be formed by baking at low temperature by increasing the introduction amount of the specific alcohol solvent in the entire solvent contained in the composition of the present invention.
- the specific alcohol solvent of the present invention usually has a lower surface tension as a solvent than solvents such as NMP and ⁇ -BL used for compositions having a polyimide polymer. Therefore, the composition using the specific solvent has high wettability to the substrate. Therefore, it is possible to suppress the generation of pinholes accompanying the repelling on the resin film.
- the specific polar solvent of the present invention has a high effect of dissolving the specific polymer, it is possible to suppress the occurrence of pinholes accompanying foreign substances on the resin film when applied to the substrate.
- the composition of the present invention can form a resin film by baking at a low temperature. And the composition of this invention improves the wet-spreading property to a board
- the specific alcohol solvent that is the component (A) of the present invention is at least one solvent selected from the following formula [1a] or [1b].
- X 1 represents an alkyl group having 1 to 3 carbon atoms.
- X 2 represents an alkyl group having 1 to 3 carbon atoms).
- the formula [1a-1], the formula [1b-1], the formula [1b-2] or the formula [1b-3] is preferable.
- the specific alcohol solvent of the present invention is preferably 50 to 99% by mass with respect to the total solvent contained in the composition in order to enhance the above-described effect of increasing the wettability to the substrate. Of these, 55 to 99% by mass is preferable. More preferred is 55 to 95% by mass.
- the wet spreading property of the coating solution to the substrate is enhanced, and a resin film or a liquid crystal alignment film having excellent coating properties can be obtained.
- the specific polar solvent which is the component (B) of the present invention is at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone.
- N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable. More preferred is ⁇ -butyrolactone.
- the specific polar solvent according to the present invention is a pin that forms a resin film or a liquid crystal alignment film by baking at a low temperature as described above, and a pin accompanying a foreign substance on the resin film when a composition or a liquid crystal alignment treatment agent is applied to a substrate.
- the content is preferably 1 to 40% by mass of the entire solvent contained in the composition. Among these, 1 to 35% by mass is preferable. A more preferred range is 1 to 30% by mass, and a further more preferred range is 5 to 30% by mass.
- the specific polymer which is the component (C) of the present invention is at least one selected from a polyimide precursor or a polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component.
- the polyimide precursor has a structure represented by the following formula [A].
- R 1 is a tetravalent organic group
- R 2 is a divalent organic group having a carboxyl group
- a 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. And each may be the same or different, and n represents a positive integer).
- the diamine component is a diamine compound having two primary or secondary amino groups in the molecule
- the tetracarboxylic dianhydride component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, dicarboxylic acid.
- examples thereof include dihalide compounds, dicarboxylic acid dialkyl ester compounds, and dialkyl ester dihalide compounds.
- the specific polymer of the present invention is relatively simple by using a diamine compound having a carboxyl group represented by the following formula [B] and a tetracarboxylic dianhydride represented by the following formula [C] as raw materials. From the reason that it is obtained, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
- R 1 and R 2 are as defined in formula [A]).
- the diamine compound having a carboxyl group of the present invention is a diamine compound having a structure represented by the following formula [2] in the molecule.
- a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
- diamine compound having a structure represented by the formula [2] include a structure represented by the following formula [2a].
- a represents an integer of 0 to 4. Among these, 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis.
- n represents an integer of 1 to 4. Among these, 1 is preferable from the viewpoint of ease of synthesis.
- a diamine compound represented by the formula [2a] can be obtained by synthesizing a dinitro compound represented by the following formula [2a-A], further reducing the nitro group and converting it to an amino group.
- a represents an integer of 0 to 4 and n represents an integer of 1 to 4).
- the method for reducing the dinitro group of the dinitro compound represented by the formula [2a-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent, There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
- Examples of the diamine compound having a carboxyl group of the present invention further include structures represented by the following formulas [2a-1] to [2a-4].
- a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
- a single bond —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —COO— or —OCO— is preferred. More preferred is a single bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH— or —N (CH 3 ) —.
- n 1 and m 2 each represent an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4. Among them, m 1 + m 2 is 1 or 2 are preferred.
- n 3 and m 4 each represent an integer of 1 to 5. Of these, 1 or 2 is preferable from the viewpoint of ease of synthesis.
- a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms. Of these, a linear alkyl group having 1 to 3 carbon atoms is preferable.
- m 5 represents an integer of 1 to 5. Of these, 1 or 2 is preferable.
- a 3 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
- a single bond —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , —COO— or —OCO— is preferable. More preferred is —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—.
- m 6 represents an integer of 1 to 4. Of these, 1 is preferable from the viewpoint of ease of synthesis.
- the diamine compound having a carboxyl group of the present invention is preferably 20 mol% to 100 mol%, more preferably 30 mol% to 100 mol%, based on the total diamine component.
- the diamine compound having a carboxyl group described above has properties such as the solubility of the specific polymer of the present invention in a solvent, the coating property of the composition, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. Depending on the situation, one kind or a mixture of two or more kinds can be used.
- a diamine compound represented by the following formula [2b] (also referred to as a second diamine compound) can be used as the second diamine compound.
- Y represents the following formula [2b-1], formula [2b-2], formula [2b-3], formula [2b-4] or formula [2b-5], and m represents Represents an integer of 0-4).
- a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
- Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Indicates. Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred.
- a single bond — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
- Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
- a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
- Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
- a single bond — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
- Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
- Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
- Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
- n represents an integer of 0 to 4.
- Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Indicates.
- an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
- Y 8 and Y 9 each independently represent a hydrocarbon group having 1 to 6 carbon atoms.
- Y 10 represents an alkyl group having 1 to 8 carbon atoms.
- Y is at least selected from Formula [2b-1], Formula [2b-2], Formula [2b-3], Formula [2b-4], or Formula [2b-5].
- 1 represents a substituent of one structure, and m represents an integer of 0 to 4.
- the method for reducing the dinitro group of the dinitro compound represented by the formula [2b-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
- a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
- platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
- the second diamine represented by the formula [2] includes m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5- In addition to diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol and 4,6-diaminoresorcinol, diamine compounds having structures represented by the following formulas [2b-6] to [2b-46] Can be mentioned.
- a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
- R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—
- R 2 represents carbon An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group represented by formulas 1 to 22).
- R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 - indicates
- R 4 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group of 1 to 22 carbon atoms).
- R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—
- R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
- R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
- R 8 represents an alkyl group having 3 to 12 carbon atoms.
- the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
- B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
- B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
- B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 )
- B 1 represents an oxygen atom or —COO— * (where “*” bond marked with represents a (CH 2) bind to a 2).
- a 1 represents an integer of 0 or 1
- a 2 represents an integer of 2 ⁇ 10
- a 3 is 0 or 1 Indicates an integer).
- the composition using the diamine compound in which the substituent Y in the formula [2b] is represented by the formula [2b-2] increases the hydrophobicity of the resin film. be able to. Further, when the liquid crystal alignment film is used, the pretilt angle of the liquid crystal can be increased. At that time, for the purpose of enhancing these effects, among the above diamine compounds, diamines represented by the formula [2b-28] to the formula [2b-39] or the formula [2b-42] to the formula [2b-46] are used. It is preferable to use a compound.
- diamine compounds represented by the formulas [2b-24] to [2b-39] or the formulas [2b-42] to [2b-46].
- these diamine compounds are 5 mol% or more and 80 mol% or less of the whole diamine component. More preferably, these diamine compounds are 5 mol% or more and 60 mol% or less of the whole diamine component from the viewpoint of the coating properties of the composition and the liquid crystal alignment treatment agent and the electric characteristics as the liquid crystal alignment film. Especially preferably, it is 10 mol% or more and 60 mol% or less of the whole diamine component.
- the second diamine compound of the present invention depends on properties such as solubility and coating properties of the specific polymer of the present invention in a solvent, liquid crystal alignment in the case of forming a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
- properties such as solubility and coating properties of the specific polymer of the present invention in a solvent, liquid crystal alignment in the case of forming a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
- One type or a mixture of two or more types can be used.
- the specific polymer of the present invention includes a diamine compound having a carboxyl group in the molecule represented by the formula [2a], the formula [2a-1] to the formula [2a-4], as long as the effects of the present invention are not impaired.
- other diamine compounds also referred to as other diamine compounds
- Specific examples of other diamine compounds are shown below, but are not limited to these examples.
- diamine compounds include 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3 ′.
- diamine compounds examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. .
- diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
- a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
- a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms).
- p represents an integer of 1 to 10).
- diamine compounds represented by the following formulas [DA8] to [DA13] can also be used as other diamine compounds.
- n represents an integer of 1 to 5
- a diamine compound represented by the following formula [DA14] can also be used as long as the effects of the present invention are not impaired.
- a 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ).
- a 3 is a hydrocarbon group, A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to 4 is an integer).
- diamine compounds represented by the following formulas [DA15] and [DA16] can also be used.
- the above-mentioned other diamine compounds depend on properties such as solubility of the specific polymer of the present invention in a solvent, coating properties of the composition, liquid crystal alignment in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
- properties such as solubility of the specific polymer of the present invention in a solvent, coating properties of the composition, liquid crystal alignment in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
- One kind or a mixture of two or more kinds may be used.
- tetracarboxylic dianhydride component examples include a tetracarboxylic acid anhydride represented by the following formula [3] or a tetracarboxylic acid derivative thereof (specific tetracarboxylic dianhydride component). Also called).
- Z 1 is a group having at least one structure selected from the following formulas [3a] to [3j].
- Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
- Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
- Z 1 is represented by the formula [3] from the viewpoint of ease of synthesis and polymerization reactivity when producing a polymer.
- 3a], Formula [3c], Formula [3d], Formula [3e], Formula [3f] or Formula [3g] is preferable. More preferred is a structure represented by formula [3a], formula [3e], formula [3f] or formula [3g], and particularly preferred is formula [3e], formula [3f] or formula [3g]. It is.
- the specific tetracarboxylic dianhydride component of the present invention is preferably 1 mol% or more of the total tetracarboxylic dianhydride component. More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more.
- the usage-amount is 20 mol% or more of the whole tetracarboxylic dianhydride component, By doing so, a desired effect can be obtained. Preferably, it is 30 mol% or more.
- all of the tetracarboxylic dianhydride component may be a tetracarboxylic dianhydride component having a structure of the formula [3e], the formula [3f], or the formula [3g].
- tetracarboxylic dianhydride components other than a specific tetracarboxylic dianhydride component can be used for the specific polymer of this invention.
- examples of other tetracarboxylic dianhydride components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, dicarboxylic acid dihalide compounds, dicarboxylic acid dialkyl ester compounds, and dialkyl ester dihalide compounds.
- tetracarboxylic dianhydride components include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5, 8-naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2, 3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone Bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-
- the specific tetracarboxylic dianhydride component and the other tetracarboxylic dianhydride components are the solubility of the specific polymer of the present invention in the solvent, the coating property of the composition, and the orientation of the liquid crystal when used as a liquid crystal alignment film. Depending on the characteristics such as voltage holding ratio and accumulated charge, one kind or a mixture of two or more kinds may be used.
- the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component with a tetracarboxylic dianhydride component. In general, at least one tetracarboxylic dianhydride component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to form a polyamic acid. Get.
- a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic dihalide
- a method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
- Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component.
- a method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
- polyimide In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
- the reaction between the diamine component and the tetracarboxylic dianhydride component is usually carried out in an organic solvent with the diamine component and the tetracarboxylic dianhydride component.
- the organic solvent used in that case is particularly limited as long as the specific alcohol solvent that is the component (A) of the present invention, the specific polar solvent that is the component (B), and the polyimide precursor that is generated are soluble. Not.
- Examples of the solvent other than the specific alcohol solvent and the specific polar solvent of the present invention include the following solvents.
- N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone is there.
- the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent.
- a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component. These may be used alternately, and any of these methods may be used.
- the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
- the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
- the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
- the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic dianhydride component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
- the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
- Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
- the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
- the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
- the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
- Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
- the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
- the reaction solution may be poured into a solvent and precipitated.
- the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
- the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
- the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
- the molecular weight of the specific polymer of the present invention is the weight average measured by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the resin film or liquid crystal alignment film obtained therefrom, the workability during film formation, and the film property.
- the molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
- composition of the present invention or a liquid crystal alignment treatment agent using the same is a coating solution for forming a resin film or a liquid crystal alignment film (also collectively referred to as a resin film), and includes a specific alcohol solvent, a specific polar solvent, It is a coating solution for forming a resin film containing a specific polymer.
- All of the polymer components in the composition of the present invention or the liquid crystal alignment treatment agent using the same may be the specific polymer of the present invention.
- a polymer may be mixed.
- the content of the other polymer is 0.5 to 15% by mass, preferably 1 to 10% by mass, of the specific polymer of the present invention.
- the polyimide precursor or polyimide which does not use the diamine compound which has the said carboxyl group, the 2nd diamine compound, or a specific tetracarboxylic dianhydride component is mentioned.
- a polyimide precursor and a polymer other than polyimide specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or the like can be given.
- the organic solvent in the composition of the present invention or the liquid crystal alignment treatment agent using the composition may have an organic solvent content of 70 to 99.9% by mass from the viewpoint of forming a uniform resin film by coating. preferable. This content can be appropriately changed depending on the film thickness of the target resin film or liquid crystal alignment film.
- all the organic solvents may be the specific alcohol solvent and the specific polar solvent of the present invention.
- other organic solvents may be mixed.
- the specific alcohol solvent of the present invention is preferably 50 to 99% by mass of the whole solvent contained in the composition. Of these, 55 to 99% by mass is preferable. More preferred is 55 to 95% by mass.
- the specific polar solvent of the present invention is preferably 1 to 40% by mass of the total solvent contained in the composition. Among these, 1 to 35% by mass is preferable. A more preferred range is 1 to 30% by mass, and a further more preferred range is 5 to 30% by mass.
- organic solvents are not particularly limited as long as they are organic solvents capable of dissolving the specific polymer. Specific examples are given below.
- N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone is there.
- the composition of this invention or the liquid-crystal aligning agent using it is a coating film of the resin film or liquid crystal aligning film at the time of apply
- An organic solvent that improves the property and surface smoothness, that is, a poor solvent can be used.
- ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
- components (D) are preferably 1 to 50% by mass of the whole organic solvent contained in the composition or the liquid crystal aligning agent using the same. Among these, 1 to 40% by mass is preferable. A more preferred range is 5 to 30% by mass, and a further more preferred range is 10 to 30% by mass.
- the composition of the present invention or the liquid crystal alignment treatment agent using the same is a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, and a hydroxyalkyl group.
- a crosslinkable compound having at least one substituent selected from the group consisting of lower alkoxyalkyl groups, or a crosslinkable compound having a polymerizable unsaturated bond may be introduced. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
- crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-
- the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
- n represents an integer of 1 to 3).
- n represents an integer of 1 to 3
- n represents an integer of 1 to 3
- n represents 1 to 100 Indicates an integer
- n represents an integer of 1 to 10).
- the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
- n represents an integer of 1 to 10
- n represents an integer of 1 to 10
- n represents an integer of 1 to 100, and in the formula [5-37], n represents an integer of 1 to 10).
- polysiloxanes having at least one structure represented by the following formulas [5-38] to [5-40] can also be mentioned.
- R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a structure represented by the formula [5], a hydrogen atom, a hydroxyl group, An alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, at least one of which represents a structure represented by the formula [5].
- n represents an integer of 1 to 10).
- Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
- a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
- a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
- the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per
- Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
- Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
- crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
- Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
- E 1 represents a cyclohexane ring, bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, a group selected from the group consisting of an anthracene ring or phenanthrene ring
- E 2 Represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
- crosslinkable compound used for the composition of this invention or the liquid-crystal aligning agent using the same may be one type, and may combine two or more types.
- the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components.
- the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
- a compound that promotes charge transfer in a liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film when a liquid crystal alignment film using the liquid crystal alignment treatment agent using the composition of the present invention is formed It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.27). .
- This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent.
- the solvent is not particularly limited as long as it is an organic solvent that dissolves the above-described polymer.
- coating the composition or the liquid crystal aligning agent using the composition of the present invention or a liquid crystal aligning agent using the same is used.
- a compound that improves the uniformity and surface smoothness of the film can be used.
- a compound that improves the adhesion between the resin coating or the liquid crystal alignment film and the substrate can also be used.
- Examples of compounds that improve the film thickness uniformity and surface smoothness of the resin coating or the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
- F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (or above) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
- the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all the polymer components contained in the composition or the liquid crystal aligning agent. 1 part by mass.
- the compound that improves the adhesion between the resin coating or the liquid crystal alignment film and the substrate include the functional silane-containing compounds and epoxy group-containing compounds shown below.
- the amount is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all the polymer components contained in the composition or the liquid crystal aligning agent using the composition. More preferably, it is 1 to 20 parts by mass. If the amount is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected. If the amount exceeds 30 parts by mass, the storage stability of the composition or the liquid crystal alignment treatment agent using the composition may be deteriorated.
- composition of the present invention or a liquid crystal aligning agent using the same is in close contact with the above-mentioned poor solvent, crosslinkable compound, resin film or liquid crystal alignment film, the compound for improving the film thickness uniformity and surface smoothness, and the substrate.
- a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the resin film or the liquid crystal alignment film may be added as long as the effects of the present invention are not impaired. Good.
- the composition of the present invention can be used as a resin film after coating and baking on a substrate.
- a substrate used in this case a glass substrate, a silicon wafer, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used depending on a target device.
- the coating method of the composition is not particularly limited, but industrially, there are methods such as a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, screen printing, offset printing, flexographic printing, or an inkjet method. It is common. You may use these according to the objective.
- the composition After the composition is applied on the substrate, it is 50 to 250 ° C., preferably 80 to 200 ° C., more preferably 80 to 150 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
- the solvent can be evaporated to form a resin film.
- the thickness of the resin film after firing can be adjusted to 0.01 to 100 ⁇ m depending on the purpose.
- the liquid crystal alignment treatment agent using the composition of the present invention can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on a substrate.
- it can be used as a liquid crystal alignment film without alignment treatment.
- the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
- a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
- an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
- the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used.
- Examples of other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
- the liquid crystal alignment treatment agent After the liquid crystal alignment treatment agent is applied on the substrate, it is 50 to 250 ° C., preferably 80 to 200 ° C., more preferably 80 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven.
- the solvent can be evaporated at 150 ° C. to obtain a liquid crystal alignment film. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
- the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
- the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
- a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
- the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
- the liquid crystal composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes.
- ultraviolet rays are suitable as the active energy ray.
- the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Further, ultraviolet irradiation and heating may be performed simultaneously.
- the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
- a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
- the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
- the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
- a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and a polymerizable compound is produced by at least one of irradiation with ultraviolet rays and heating.
- the orientation of the liquid crystal molecules can be controlled by polymerizing.
- a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
- the substrate is bonded and sealed.
- a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
- the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
- the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
- the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
- the polymerizable compound After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
- the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a step of disposing a liquid crystal alignment film containing a group and applying a voltage between the electrodes.
- ultraviolet rays are suitable as the active energy ray.
- the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm.
- the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Further, ultraviolet irradiation and heating may be performed simultaneously.
- liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by heat or ultraviolet irradiation, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
- liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
- Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, or a method in which the substrate is attached and sealed after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed.
- the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
- the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
- Component (A) of the present invention (specific alcohol solvent))
- PGME Propylene glycol monomethyl ether (solvent represented by the formula [1a-1] of the present invention)
- MCS ethylene glycol monomethyl ether (solvent represented by the formula [1b-1] of the present invention)
- ECS ethylene glycol monoethyl ether (solvent represented by the formula [1b-2] of the present invention)
- PCS ethylene glycol monopropyl ether (solvent represented by the formula [1b-3] of the present invention)
- the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
- the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
- Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
- x is a proton peak integrated value derived from NH group of amic acid
- y is a peak integrated value of reference proton
- ⁇ is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
- polyimide precursor and polyimide The specific polymers (polyimide precursor and polyimide) of the present invention are shown in Table 1.
- Tables 2 to 4 show the compositions and liquid crystal aligning agents of the present invention.
- compositions or liquid crystal alignment treatment agents obtained in the examples and comparative examples of the present invention “Evaluation of applicability of the composition and liquid crystal alignment treatment agent”, “Evaluation of ink jet coatability of the liquid crystal alignment treatment agent”, “Preparation of liquid crystal cell (normal cell)”, “Evaluation of liquid crystal alignment (normal cell)”, “Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell)” and “Evaluation of voltage holding ratio” .
- the conditions are as follows.
- compositions obtained in Examples and Comparative Examples of the present invention were subjected to pressure filtration with a membrane filter having a pore diameter of 1 ⁇ m, and coating properties were evaluated using solutions stored at ⁇ 15 ° C. for 48 hours.
- a spin coater (1H-D7) manufactured by Mikasa
- Application is performed by spin-coating on the ITO surface of a 30 ⁇ 40 mm ITO electrode substrate (length 40 mm ⁇ width 30 mm, thickness 0.7 mm) cleaned with pure water and IPA (isopropyl alcohol). The time was 30 seconds, and temporary drying was performed on a hot plate at 80 ° C. for 5 minutes.
- the pinhole of the obtained resin film was evaluated. Evaluation of the pinhole of the resin film was performed by visually observing the resin film under a sodium lamp. Specifically, the number of pinholes associated with repellency and foreign matter confirmed on the resin film was counted, and the smaller the number of pinholes, the better the evaluation.
- compositions obtained in the examples and comparative examples of the present invention can be used for liquid crystal alignment treatment agents. Therefore, the result of the coatability of the resin film obtained in the present example and the comparative example is also the result of the printability of the liquid crystal alignment film.
- Tables 5 to 7 show the number of pinholes in the resin film (liquid crystal alignment film) obtained in Examples and Comparative Examples.
- evaluation of inkjet coating properties of liquid crystal alignment treatment agents The liquid crystal aligning agent (7) obtained in Example 7 of the present invention and the liquid crystal aligning agent (11) obtained in Example 11 were subjected to pressure filtration with a membrane filter having a pore diameter of 1 ⁇ m, and at ⁇ 15 ° C. The ink-jet coating property was evaluated using the solution stored for 48 hours.
- HIS-200 manufactured by Hitachi Plant Technology
- Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA, the application area is 70 ⁇ 70 mm, the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, and the application speed is 40 mm / Second, the time from application to temporary drying was 60 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
- ITO indium tin oxide
- Table 5 shows the number of pinholes in the liquid crystal alignment film obtained in the examples.
- "Production of liquid crystal cell (normal cell)” A liquid crystal cell was prepared by using a solution obtained by pressure-filtering the liquid crystal aligning agent obtained in Examples and Comparative Examples of the present invention through a membrane filter having a pore size of 1 ⁇ m and storing at ⁇ 15 ° C. for 48 hours (normal cell) ) This solution was spin coated on the ITO surface of a 30 ⁇ 40 mm ITO electrode substrate (length 40 mm ⁇ width 30 mm, thickness 0.7 mm) washed with pure water and IPA, and heated at 100 ° C. for 5 minutes on a hot plate.
- Heat treatment was performed to obtain an ITO substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm.
- the surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
- liquid crystal aligning agent (1) and the liquid crystal aligning agent (2) obtained in Example 1 and Example 2 obtained in Comparative Examples 1 to 5 and the liquid crystal aligning agent.
- liquid crystal cell using the treating agent (28) nematic liquid crystal (MLC-2003) (manufactured by Merck Japan) was used as the liquid crystal.
- nematic liquid crystal (MLC-6608) manufactured by Merck Japan Ltd. was used as the liquid crystal.
- evaluation of liquid crystal alignment (normal cell) The liquid crystal alignment was evaluated using the liquid crystal cell obtained in the above-mentioned “Preparation of liquid crystal cell (normal cell)”.
- the liquid crystal alignment was confirmed by observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) to check for the presence of alignment defects. Specifically, those in which no alignment defect was observed were considered excellent in this evaluation (shown as good in Tables 5 to 7).
- Tables 5 to 7 show the liquid crystal orientation results obtained in the examples and comparative examples.
- the liquid crystal aligning agent (5) obtained in Example 5, the liquid crystal aligning agent (9) obtained in Example 9 and the liquid crystal aligning agent (20) obtained in Example 20 were mixed with a membrane having a pore diameter of 1 ⁇ m. Using a solution filtered under pressure and stored at ⁇ 15 ° C. for 48 hours, a liquid crystal cell was prepared and liquid crystal alignment was evaluated (PSA cell).
- This solution was washed with pure water and IPA at the center with a 10 ⁇ 10 mm ITO electrode substrate with a pattern spacing of 20 ⁇ m (vertical 40 mm ⁇ width 30 mm, thickness 0.7 mm) and at the center with a 10 ⁇ 40 mm ITO electrode substrate
- Spin coating was performed on the ITO surface (length 40 mm ⁇ width 30 mm, thickness 0.7 mm), and heat treatment was performed on a hot plate at 100 ° C. for 5 minutes to obtain a polyimide coating film having a thickness of 100 nm.
- After the coated surface was washed with pure water, it was heat-treated at 100 ° C. for 15 minutes in a heat circulation type clean oven to obtain a substrate with a liquid crystal alignment film.
- This substrate with a liquid crystal alignment film was combined with a liquid crystal alignment film surface inside, with a 6 ⁇ m spacer in between, and the periphery was adhered with a sealant to produce an empty cell.
- a nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) was added to the empty cell by a reduced pressure injection method, and a polymerizable compound (1) represented by the following formula was added to 100% by mass of the nematic liquid crystal (MLC-6608). Liquid crystal mixed with 0.3% by mass of the polymerizable compound (1) was injected, and the injection port was sealed to obtain a liquid crystal cell.
- the response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured.
- T90 ⁇ T10 from 90% transmittance to 10% transmittance was measured.
- the response speed of the liquid crystal cell after the ultraviolet irradiation was higher than that of the liquid crystal cell before the ultraviolet irradiation, so that it was confirmed that the alignment direction of the liquid crystal was controlled. Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned. "Evaluation of voltage holding ratio" A voltage of 1 V was applied to the liquid crystal cell obtained in the above-mentioned “Preparation of liquid crystal cell (normal cell)” at a temperature of 80 ° C. for 60 ⁇ s, and the voltage after 16.67 ms and 50 ms was measured.
- VHR voltage holding ratio
- Table 8 shows the results of voltage holding ratios obtained in the examples and comparative examples.
- Example 1 PGME (11.5 g) and NMP (1.57 g) were added to the polyamic acid solution (1) (20.0 g) having a resin solid content concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 1, and 25 The mixture was stirred at 0 ° C. for 2 hours to obtain a composition (1). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (1) was used for evaluation also as a liquid-crystal aligning agent (1).
- composition (1) and liquid crystal aligning agent (1) under the above-mentioned conditions, "Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
- Example 2 PGME (21.9 g) and ⁇ -BL (2.43 g) were added to the polyimide powder (2) (1.55 g) obtained by the synthesis method of Synthesis Example 2, and the mixture was stirred at 70 ° C. for 24 hours. A product (2) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (2) was used for evaluation also as a liquid-crystal aligning agent (2).
- composition (2) and liquid crystal aligning agent (2) under the above-mentioned conditions, “Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) ”,“ Evaluation of liquid crystal alignment (normal cell) ”and“ Evaluation of voltage holding ratio ”.
- Example 3 PGME (5.36 g) and NMP (1.65 g) were added to a polyamic acid solution (3) (10.5 g) having a resin solid concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 3, and 25 The mixture was stirred at 0 ° C for 2 hours to obtain a composition (3). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (3) was used for evaluation also as a liquid-crystal aligning agent (3).
- composition (3) and liquid crystal aligning agent (3) under the above-mentioned conditions, “Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) ”,“ Evaluation of liquid crystal alignment (normal cell) ”and“ Evaluation of voltage holding ratio ”.
- Example 4 To the polyamic acid solution (3) (10.0 g) having a resin solid content concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 3, PGME (1.97 g), ⁇ -BL (1.57 g), BCS (3.13 g) was added, and the mixture was stirred at 25 ° C. for 2 hours to obtain a composition (4). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (4) was used for evaluation also as a liquid-crystal aligning agent (4).
- Example 5 PGME (22.6 g) and ⁇ -BL (2.51 g) were added to polyimide powder (4) (1.60 g) obtained by the synthesis method of Synthesis Example 4, and the mixture was stirred at 70 ° C. for 24 hours. A product (5) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (5) was used for evaluation also as a liquid-crystal aligning agent (5).
- composition (5) and liquid crystal aligning agent (5) under the conditions described above, “Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) ”,“ Evaluation of liquid crystal alignment (normal cell) ”,“ Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ”and“ Evaluation of voltage holding ratio ”.
- Example 7 PCS (21.5 g), ⁇ -BL (7.17 g), and BCS (10.8 g) were added to the polyimide powder (4) (1.30 g) obtained by the synthesis method of Synthesis Example 4, and the mixture was heated to 70 ° C. And stirred for 24 hours to obtain a composition (7).
- this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
- this composition (7) was used for evaluation also as a liquid-crystal aligning agent (7).
- Example 8 MCS (14.6 g), NEP (3.64 g), and BCS (6.07 g) are added to the polyimide powder (5) (1.55 g) obtained by the synthesis method of Synthesis Example 5, and 24 ° C. at 24 ° C. The mixture was stirred for a time to obtain a composition (8). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (8) was used for evaluation also as a liquid-crystal aligning agent (8).
- composition (8) and liquid crystal aligning agent (8) under the conditions described above, "Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
- Example 9 PGME (15.0 g), ⁇ -BL (7.52 g), and BCS (2.51 g) were added to the polyimide powder (5) (1.60 g) obtained by the synthesis method of Synthesis Example 5, and the mixture was heated to 70 ° C. For 24 hours to obtain a composition (9). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (9) was used for evaluation also as a liquid-crystal aligning agent (9).
- composition (9) and liquid crystal aligning agent (9) under the conditions described above, “Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) ",” Evaluation of liquid crystal alignment (normal cell) “and” Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ".
- Example 10 PGME (22.6 g) and ⁇ -BL (2.51 g) were added to polyimide powder (6) (1.60 g) obtained by the synthesis method of Synthesis Example 6, and the mixture was stirred at 70 ° C. for 24 hours. A product (10) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (10) was used for evaluation also as a liquid-crystal aligning agent (10).
- Example 11 PGME (32.3 g) and ⁇ -BL (3.58 g) were added to the polyimide powder (6) (1.30 g) obtained by the synthesis method of Synthesis Example 6, and the mixture was stirred at 70 ° C. for 24 hours. A product (11) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (11) was used for evaluation also as a liquid-crystal aligning agent (11).
- Example 12 ⁇ Example 12> PCS (17.6 g), NEP (5.01 g), and BCS (2.51 g) were added to the polyimide powder (6) (1.60 g) obtained by the synthesis method of Synthesis Example 6, and 24 ° C. at 24 ° C. The mixture was stirred for a time to obtain a composition (12). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (12) was used for evaluation also as a liquid-crystal aligning agent (12).
- Example 13 ECS (15.0 g), NMP (5.01 g), and BCS (5.01 g) were added to the polyimide powder (7) (1.60 g) obtained by the synthesis method of Synthesis Example 7, and 24 ° C. at 24 ° C. The mixture was stirred for a time to obtain a composition (13). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (13) was used for evaluation also as a liquid-crystal aligning agent (13).
- Example 14 PGME (21.9 g) and ⁇ -BL (2.43 g) were added to the polyimide powder (8) (1.55 g) obtained by the synthesis method of Synthesis Example 8, and the mixture was stirred at 70 ° C. for 24 hours. A product (14) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (14) was used for evaluation also as a liquid-crystal aligning agent (14).
- Example 15 MCS (21.3 g), ⁇ -BL (1.25 g), and BCS (2.51 g) were added to the polyimide powder (8) (1.60 g) obtained by the synthesis method of Synthesis Example 8, and the mixture was heated to 70 ° C. And stirred for 24 hours to obtain a composition (15). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (15) was used for evaluation also as a liquid-crystal aligning agent (15).
- Example 16 PGME (22.6 g) and ⁇ -BL (2.51 g) were added to the polyimide powder (9) (1.60 g) obtained by the synthesis method of Synthesis Example 9, and the mixture was stirred at 70 ° C. for 24 hours. A product (16) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (16) was used for evaluation also as a liquid-crystal aligning agent (16).
- Example 17 > PCS (22.6 g), ⁇ -BL (5.01 g), and BCS (2.51 g) were added to the polyimide powder (9) (1.60 g) obtained by the synthesis method of Synthesis Example 9, and the mixture was heated to 70 ° C. And stirred for 24 hours to obtain a composition (17). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (17) was used for evaluation also as a liquid-crystal aligning agent (17).
- Example 18 PCS (17.6 g) and NMP (5.88 g) were added to the polyimide powder (10) (1.50 g) obtained by the synthesis method of Synthesis Example 10, and the mixture was stirred at 70 ° C. for 24 hours. 18) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (18) was used for evaluation also as a liquid-crystal aligning agent (18).
- Example 19 PGME (23.3 g) and ⁇ -BL (2.59 g) were added to the polyimide powder (11) (1.65 g) obtained by the synthesis method of Synthesis Example 11, and the mixture was stirred at 70 ° C. for 24 hours. A product (19) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (19) was used for evaluation also as a liquid-crystal aligning agent (19).
- PGME (20.1 g), ⁇ -BL (2.51 g), and BCS (2.51 g) were added to the polyimide powder (11) (1.60 g) obtained by the synthesis method of Synthesis Example 11, and the mixture was heated to 70 ° C. For 24 hours to obtain a composition (20).
- this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
- this composition (20) was used for evaluation also as a liquid-crystal aligning agent (20).
- composition (20) and liquid crystal aligning agent (20) under the conditions described above, “Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) ",” Evaluation of liquid crystal alignment (normal cell) “and” Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ".
- PGME (22.6 g) and ⁇ -BL (2.51 g) were added to polyimide powder (12) (1.60 g) obtained by the synthesis method of Synthesis Example 12, and the mixture was stirred at 70 ° C. for 24 hours. A product (22) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (22) was used for evaluation also as a liquid-crystal aligning agent (22).
- Example 23 MCS (17.0 g), ⁇ -BL (1.21 g), and BCS (6.07 g) were added to the polyimide powder (12) (1.55 g) obtained by the synthesis method of Synthesis Example 12, and the mixture was heated to 70 ° C. And stirred for 24 hours to obtain a composition (23). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (23) was used for evaluation also as a liquid-crystal aligning agent (23).
- PGME (20.4 g) was added to the polyimide powder (14) (1.30 g) obtained by the synthesis method of Synthesis Example 14, and the mixture was stirred at 70 ° C. for 24 hours to obtain a composition (28).
- this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
- this composition (28) was used for evaluation also as a liquid-crystal aligning agent (28).
- NMP (17.4 g) is added to the polyamic acid solution (15) (5.50 g) having a resin solid content concentration of 25.0 mass% obtained by the synthesis method of Synthesis Example 15, and the mixture is stirred at 25 ° C. for 2 hours.
- a composition (29) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
- this composition (29) was used for evaluation also as a liquid-crystal aligning agent (29).
- ⁇ Comparative Example 7> ⁇ -BL (20.4 g) was added to the polyimide powder (16) (1.30 g) obtained by the synthesis method of Synthesis Example 16, and the mixture was stirred at 70 ° C. for 24 hours to obtain a composition (30). .
- this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
- this composition (30) was used for evaluation also as a liquid-crystal aligning agent (30).
- composition (33) and the liquid crystal aligning agent (33) could not be produced.
- * 3 Indicates the proportion of the polymer in the composition (liquid crystal aligning agent).
- * 4 Indicates the proportion of the polymer in the composition (liquid crystal aligning agent).
- the composition of the example of the present invention has a uniform coating property that does not generate pinholes due to repellency or foreign matter when applied to the substrate, compared to the composition of the comparative example. showed that.
- a comparison with a composition using the same polyimide precursor or solvent-soluble polyimide that is, comparison between Example 1 and Comparative Example 1 or Comparative Example 2, Example 2 and Comparative Example 3 or Comparison with Comparative Example 4, Comparison between Example 3 and Comparative Example 6, and Comparison between Example 5 and Comparative Example 7 or Comparative Example 8.
- production of the pinhole accompanying a foreign material was able to be suppressed. Specifically, it is a comparison between Example 2 and Comparative Example 5 and a comparison between Example 5 and Comparative Example 9.
- the same result was obtained for the liquid crystal alignment film obtained from the liquid crystal aligning agent using the composition of the present invention.
- a comparison with a composition using the same polyimide precursor or solvent-soluble polyimide that is, comparison between Example 1 and Comparative Example 1 or Comparative Example 2, Example 2 and Comparative Example 3 or Comparison with Comparative Example 4, Comparison between Example 3 and Comparative Example 6, and Comparison between Example 5 and Comparative Example 7 or Comparative Example 8.
- the comparison between Example 2 and Comparative Example 5 and the comparison between Example 5 and Comparative Example 9 are shown.
- the liquid crystal cell obtained from the liquid crystal alignment treatment agent using the composition of the present invention is the liquid crystal cell obtained from the liquid crystal alignment treatment agent using the composition of the comparative example. Compared with, no alignment defects due to pinholes were observed, and uniform liquid crystal alignment was obtained.
- a comparison with a liquid crystal alignment treatment agent using the same polyimide precursor or solvent-soluble polyimide that is, comparison between Example 1 and Comparative Example 1 or Comparative Example 2
- Example 2 and Comparative Example 3 is a comparison with 3 or Comparative Example 4
- a comparison with Example 3 and Comparative Example 6 is a comparison with Example 5 and Comparative Example 7 or Comparative Example 8.
- the comparison between Example 2 and Comparative Example 5 and the comparison between Example 5 and Comparative Example 9 are shown.
- the liquid crystal cell obtained from the liquid crystal aligning agent using the composition of the present invention is compared with the liquid crystal cell obtained from the liquid crystal aligning agent using the composition of the comparative example. Showed a high value. Specifically, a comparison with a liquid crystal aligning agent using the same polyimide precursor or solvent-soluble polyimide, that is, a comparison between Example 2 and Comparative Example 3, and a comparison between Example 3 and Comparative Example 6. And a comparison between Example 5 and Comparative Example 7.
- composition of the present invention When the composition of the present invention is applied to a substrate, a resin film having a uniform coating property that does not generate pinholes due to repellency or foreign matter can be obtained. Moreover, the same result can be obtained also with the liquid-crystal aligning agent using the composition of this invention.
- the liquid crystal aligning agent of the present invention can obtain a liquid crystal cell in which alignment defects due to pinholes accompanying repelling and foreign matters do not occur.
- the same result can be obtained even with a liquid crystal alignment treatment agent using a polyimide precursor or a solvent-soluble polyimide obtained by using a diamine compound having a side chain as a diamine component.
- liquid crystal aligning agent of the present invention can exhibit a high voltage holding ratio even when firing at a low temperature.
- the liquid crystal aligning agent of the present invention is a liquid crystal display element that switches between a liquid crystal transmission state (also referred to as a transparent state) and a scattering state, that is, a polymer dispersed liquid crystal (PDLC (Polymer Dispersed Liquid Crystal). ) And polymer network liquid crystal (PNLC (Polymer Network Liquid Crystal)) is also useful.
- PDLC Polymer Dispersed liquid crystal
- PNLC polymer network liquid crystal
- This reverse type element is a liquid crystal display for display using a glass substrate, or a plastic substrate such as PET (polyethylene terephthalate) or an acrylic substrate, and a light control for controlling transmission and blocking of light.
- PET polyethylene terephthalate
- the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.
- the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element. That is, a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes, and containing a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates, A liquid crystal display element manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes, and further comprising a liquid crystal layer between a pair of substrates provided with electrodes, A liquid crystal produced by placing a liquid crystal alignment film containing a polymerizable group that polymerizes at least one of active energy rays and heat between substrates and polymerizing the polymerizable group while applying a voltage between the electrodes. It is also useful for display elements.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
また、本発明は、上述の組成物を用いた液晶配向処理剤において、低温での焼成によって液晶配向膜を形成できる液晶配向処理剤を提供することを目的とする。そして、液晶配向膜を形成する際に、基板への塗布性が向上する液晶配向処理剤を提供することを目的とする。
そして本発明は、上述の要求に対応した液晶配向膜を提供することを目的とする。すなわち、低温での焼成によって形成できる液晶配向膜を提供することおよび基板への塗布性が向上する液晶配向膜を提供することを目的とする。
さらに本発明は、上述の要求に対応した液晶配向膜を備えた液晶表示素子を提供することを目的とする。
(A)成分:下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒(特定アルコール系溶媒ともいう)。
本発明の(A)成分である特定アルコール系溶媒は、下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒である。
(式[1b]中、X2は炭素数1~3のアルキル基を示す)。
本発明の特定アルコール系溶媒は、上述した基板への濡れ拡がり性を高める効果を高めるため、組成物に含まれる溶媒全体の50~99質量%であることが好ましい。なかでも、55~99質量%が好ましい。より好ましいのは、55~95質量%である。
本発明の(B)成分である特定極性溶媒は、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンから選ばれる少なくとも1つの溶媒である。
本発明の(C)成分である特定重合体は、カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体である。
ポリイミド前駆体は、下記の式[A]で示される構造である。
本発明のカルボキシル基を有するジアミン化合物は、分子内に下記の式[2]で示される構造を有するジアミン化合物である。
一例として、式[2a]で示されるジアミン化合物は、下記の式[2a-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。
本発明のカルボキシル基を有するジアミン化合物としては、さらに、下記の式[2a-1]~式[2a-4]で示される構造も挙げられる。
本発明の特定重合体を作製するためのジアミン成分には、第2のジアミン化合物として、下記の式[2b]で示されるジアミン化合物(第2のジアミン化合物ともいう)を用いることができる。
式[2b-2]中、Y1は単結合、-(CH2)a-(aは1~15の整数である)、-O-、-CH2O-、-COO-または-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH2)a-(aは1~15の整数である)、-O-、-CH2O-または-COO-が好ましい。より好ましいのは、単結合、-(CH2)a-(aは1~10の整数である)、-O-、-CH2O-または-COO-である。
式[2b-2]中、Y2は単結合または-(CH2)b-(bは1~15の整数である)を示す。なかでも、単結合または-(CH2)b-(bは1~10の整数である)が好ましい。
式[2b-2]中、Y3は単結合、-(CH2)c-(cは1~15の整数である)、-O-、-CH2O-、-COO-または-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH2)c-(cは1~15の整数である)、-O-、-CH2O-または-COO-が好ましい。より好ましいのは、単結合、-(CH2)c-(cは1~10の整数である)、-O-、-CH2O-または-COO-である。
式[2b-2]中、Y4はベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。さらに、Y4は、ステロイド骨格を有する炭素数12~25の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環またはステロイド骨格を有する炭素数12~25の有機基が好ましい。
式[2b-2]中、Y5はベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。なかでも、ベンゼン環またはシクロへキサン環が好ましい。
式[2b-2]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。
式[2b-2]中、Y6は炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基または炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基である。
式[2b]中の置換基Yを構成するための、式[2b-2]におけるY1、Y2、Y3、Y4、Y5、Y6およびnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13項~34項の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY1~Y6が、Y1~Y6として示されているが、Y1~Y6は、Y1~Y6と読み替えるものとする。
式[2b-3]中、Y7は炭素数8~22のアルキル基を示す。
式[2b-4]中、Y8およびY9はそれぞれ独立して炭素数1~6の炭化水素基を示す。
式[2b-5]中、Y10は炭素数1~8のアルキル基を示す。
本発明の式[2b]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。
一例として、式[2b]で示されるジアミン化合物は、下記の式[2b-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。
下記に、本発明の式[2]で示される第2のジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。
すなわち、式[2]で示される第2のジアミンとしては、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノールの他に、下記の式[2b-6]~[2b-46]で示される構造のジアミン化合物を挙げることができる。
本発明の特定重合体には、本発明の効果を損なわない限りにおいて、式[2a]、式[2a-1]~式[2a-4]で示される分子内にカルボキシル基を有するジアミン化合物や式[2b]で示される第2のジアミン化合物の他に、その他のジアミン化合物(その他ジアミン化合物ともいう)を、ジアミン成分として用いることができる。
下記に、その他ジアミン化合物の具体例を挙げるが、これらの例に限定されるものではない。
すなわち、その他ジアミン化合物としては、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンまたは1,12-ジアミノドデカンなどが挙げられる。
加えて、その他ジアミン化合物として、下記の式[DA15]および式[DA16]で示されるジアミン化合物を用いることもできる。
本発明の特定重合体を作製するためのテトラカルボン酸二無水物成分としては、下記の式[3]で示されるテトラカルボン酸無水物またはそのテトラカルボン酸誘導体(特定テトラカルボン酸二無水物成分ともいう)が挙げられる。
式[3g]中、Z6およびZ7は水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい。
本発明の特定重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物成分以外のその他のテトラカルボン酸二無水物成分を用いることができる。
その他のテトラカルボン酸二無水物成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物またはジアルキルエステルジハライド化合物が挙げられる。
すなわち、その他のテトラカルボン酸二無水物成分としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。
本発明において、特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られる。一般的には、テトラカルボン酸およびその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物成分と、1種または複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物とジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸とジアミン成分とを脱水重縮合反応させてポリアミド酸を得る方法またはテトラカルボン酸ジハライドとジアミン成分とを重縮合させてポリアミド酸を得る方法が用いられる。
すなわち、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどである。
本発明の組成物またはそれを用いた液晶配向処理剤は、樹脂被膜または液晶配向膜(総称して樹脂被膜ともいう)を形成するための塗布溶液であり、特定アルコール系溶媒、特定極性溶媒および特定重合体を含有する樹脂被膜を形成するための塗布溶液である。
本発明の組成物またはそれを用いた液晶配向処理剤に用いる有機溶媒における、すべての有機溶媒は、すべてが本発明の特定アルコール系溶媒および特定極性溶媒であってもよく、本発明の有機溶媒に、それ以外の他の有機溶媒が混合させていても良い。
その際、本発明の特定アルコール系溶媒は、組成物に含まれる溶媒全体の50~99質量%であることが好ましい。なかでも、55~99質量%が好ましい。より好ましいのは、55~95質量%である。
また、本発明の特定極性溶媒は、組成物に含まれる溶媒全体の1~40質量%であることが好ましい。なかでも、1~35質量%が好ましい。より好ましいのは、1~30質量%であり、さらに好ましくは、5~30質量%である。
本発明の組成物は、基板上に塗布、焼成した後、樹脂被膜として用いることができる。この際に用いる基板としては、目的とするデバイスに応じて、ガラス基板、シリコンウェハ、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。組成物の塗布方法は、特に限定されないが、工業的には、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。これらは、目的に応じてこれらを用いてもよい。
本発明の組成物を用いた液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
(カルボキシル基を有するジアミン化合物)
A1:3,5-ジアミノ安息香酸(下記式[A1]で示されるジアミン化合物)
A2:2,5-ジアミノ安息香酸(下記式[A2]で示されるジアミン化合物)
B1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン(下記の式[B1]で示されるジアミン化合物)
B2:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン(下記の式[B2]で示されるジアミン化合物)
B3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン(下記の式[B3]で示されるジアミン化合物)
B4:下記の式[B4]で示されるジアミン化合物
B5:1,3-ジアミノ-4-オクタデシルオキシベンゼン(下記の式[B5]で示されるジアミン化合物)
B6:下記の式[B6]で示されるジアミン化合物
C1:p-フェニレンジアミン(下記の式[C1]で示されるジアミン化合物)
C2:m-フェニレンジアミン(下記の式[C2]で示されるジアミン化合物)
D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物(下記の式[D1]で示されるテトラカルボン酸二無水物)
D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物(下記の式[D2]で示されるテトラカルボン酸二無水物)
D3:下記の式[D3]で示されるテトラカルボン酸二無水物
D4:下記の式[D4]で示されるテトラカルボン酸二無水物
PGME:プロピレングリコールモノメチルエーテル(本発明の式[1a-1]で示される溶媒)
MCS:エチレングリコールモノメチルエーテル(本発明の式[1b-1]で示される溶媒)
ECS:エチレングリコールモノエチルエーテル(本発明の式[1b-2]で示される溶媒)
PCS:エチレングリコールモノプロピルエーテル(本発明の式[1b-3]で示される溶媒)
NMP:N-メチル-2-ピロリドン
NEP:N-エチル-2-ピロリドン
γ-BL:γ-ブチロラクトン
(本発明の(D)成分(その他の有機溶媒))
BCS:エチレングリコールモノブチルエーテル
(ポリイミド前駆体およびポリイミドの分子量測定)
合成例におけるポリイミド前駆体およびポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000、および30,000)(東ソー社製)およびポリエチレングリコール(分子量;約12,000、4,000、および1,000)(ポリマーラボラトリー社製)。
(ポリイミドのイミド化率の測定)
合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
「本発明の(C)成分である特定重合体(ポリイミド前駆体およびポリイミド)の合成」
D1(3.00g,15.3mmol)、A1(2.33g,15.3mmol)をPGME(48.0g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度10.0質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、13,500、重量平均分子量は、32,100であった。
D2(7.65g,30.6mmol)、A2(5.82g,38.3mmol)をNMP(24.7g)中で混合し、80℃で5時間反応させた後、D1(1.50g,7.65mmol)とNMP(20.2g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D2(1.91g,7.63mmol)、B1(2.43g,6.39mmol)、A1(0.97g,6.38mmol)をPGME(31.2g)中で混合し、80℃で5時間反応させた後、D1(1.00g,5.10mmol)とPGME(25.6g)を加え、40℃で8時間反応させ、樹脂固形分濃度が10.0質量%のポリアミド酸溶液(3)を得た。このポリアミド酸の数平均分子量は、13,900、重量平均分子量は、36,500であった。
D2(3.73g,14.9mmol)、B1(4.73g,12.4mmol)、A1(1.89g,12.4mmol)をNMP(20.3g)中で混合し、80℃で5時間反応させた後、D1(1.95g,9.94mmol)とNMP(16.6g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D2(5.61g,22.4mmol)、B1(4.27g,11.2mmol)、A1(2.13g,14.0mmol)、C1(0.30g,2.77mmol)をNMP(22.1g)中で混合し、80℃で5時間反応させた後、D1(1.10g,5.61mmol)とNMP(18.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D2(5.21g,20.8mmol)、B2(3.52g,8.92mmol)、A1(2.26g,14.9mmol)、B6(1.21g,5.95mmol)をNMP(23.0g)中で混合し、80℃で5時間反応させた後、D1(1.75g,8.92mmol)とNMP(18.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D2(3.57g,14.3mmol)、B3(3.71g,8.58mmol)、A2(2.61g,17.2mmol)、C2(0.31g,2.87mmol)をNMP(21.4g)中で混合し、80℃で5時間反応させた後、D1(2.80g,14.3mmol)とNMP(17.5g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D2(6.12g,24.5mmol)、B4(2.26g,4.59mmol)、A2(3.96g,26.0mmol)をNMP(22.3g)中で混合し、80℃で6時間反応させた後、D1(1.20g,6.12mmol)とNMP(18.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D3(6.50g,29.0mmol)、B1(3.31g,8.70mmol)、A1(3.09g,20.3mmol)をNMP(38.7g)中で混合し、40℃で5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D3(6.50g,29.0mmol)、B5(3.28g,8.71mmol)、B6(1.18g,5.80mmol)、A2(2.21g,14.5mmol)をNMP(39.5g)中で混合し、40℃で5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D4(5.05g,16.8mmol)、B2(3.32g,8.41mmol)、C2(0.45g,4.16mmol)、A2(2.35g,15.4mmol)をNMP(22.1g)中で混合し、80℃で5時間反応させた後、D1(2.20g,11.2mmol)とNMP(18.1g)を加え、40℃で5.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D4(4.29g,14.3mmol)、B1(3.26g,8.57mmol)、B6(1.74g,8.56mmol)、A1(1.74g,11.4mmol)をNMP(22.8g)中で混合し、80℃で5時間反応させた後、D1(2.80g,14.3mmol)とNMP(18.7g)を加え、40℃で5.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D1(9.50g,48.4mmol)、A1(7.37g,48.4mmol)をNMP(50.6g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)を得た。このポリアミド酸の数平均分子量は、17,300、重量平均分子量は、42,900であった。
<合成例14>
D2(7.65g,30.6mmol)、A2(5.82g,38.3mmol)をNMP(24.7g)中で混合し、80℃で5時間反応させた後、D1(1.50g,7.65mmol)とNMP(20.2g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
D2(7.37g,29.5mmol)、B1(9.34g,24.5mmol)、A1(3.73g,24.5mmol)をNMP(40.1g)中で混合し、80℃で5時間反応させた後、D1(3.85g,19.6mmol)とNMP(32.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(15)を得た。このポリアミド酸の数平均分子量は、19,500、重量平均分子量は、46,200であった。
合成例15で得られたポリアミド酸溶液(15)(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.80g)、ピリジン(3.75g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(800ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は17,100、重量平均分子量は40,100であった。
D2(3.92g,15.7mmol)、B1(4.97g,13.1mmol)、C1(1.41g,13.0mmol)をNMP(20.4g)中で混合し、80℃で5時間反応させた後、D1(2.05g,10.5mmol)とNMP(16.7g)を加え、40℃で5.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
「本発明の組成物および液晶配向処理剤の製造」
下記する実施例1~実施例23、比較例1~比較例10では、組成物の製造例を記載する。また、これら組成物は液晶配向処理剤の評価のためにも使用される。
「組成物および液晶配向処理剤の塗布性の評価」
本発明の実施例および比較例で得られた組成物を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した溶液を用いて、塗布性の評価を行った。塗布には、スピンコーター(1H-D7)(ミカサ社製)を用いた。塗布は、純水およびIPA(イソプロピルアルコール)にて洗浄を行った30×40mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、塗布から仮乾燥までの時間が30秒、仮乾燥がホットプレート上にて80℃で5分間の条件で行った。
「液晶配向処理剤のインクジェット塗布性の評価」
本発明の実施例7で得られた液晶配向処理剤(7)および実施例11で得られた液晶配向処理剤(11)を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した溶液を用いて、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水およびIPAにて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間の条件で行った。
「液晶セルの作製(通常セル)」
本発明の実施例および比較例で得られた液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した溶液を用いて、液晶セルの作製(通常セル)を行った。この溶液を純水およびIPAにて洗浄を行った30×40mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。
「液晶配向性の評価(通常セル)」
上記の「液晶セルの作製(通常セル)」で得られた液晶セルを用いて、液晶配向性の評価を行った。液晶配向性は、液晶セルを偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、配向欠陥の有無を確認した。具体的には、配向欠陥が見られなかったものを、本評価に優れるとした(表5~表7中に、良好と示した)。
「液晶セルの作製および液晶配向性の評価(PSAセル)」
実施例5で得られた液晶配向処理剤(5)、実施例9で得られた液晶配向処理剤(9)および実施例20で得られた液晶配向処理剤(20)を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した溶液を用いて、液晶セルの作製および液晶配向性の評価(PSAセル)を行った。この溶液を、純水およびIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間加熱処理をして膜厚が100nmのポリイミド塗膜を得た。塗膜面を純水にて洗浄した後、熱循環型クリーンオーブン中にて100℃で15分間加熱処理をして、液晶配向膜付き基板を得た。
「電圧保持率の評価」
上記の「液晶セルの作製(通常セル)」で得られた液晶セルに、80℃の温度下で1Vの電圧を60μs印加し、16.67ms後および50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHRともいう)として計算した。なお、測定は、電圧保持率測定装置(VHR-1)(東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:16.67msまたは50msの設定で行った。
合成例1の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(1)(20.0g)に、PGME(11.5g)、NMP(1.57g)を加え、25℃にて2時間攪拌し、組成物(1)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(1)は、液晶配向処理剤(1)としても評価に用いた。
合成例2の合成手法で得られたポリイミド粉末(2)(1.55g)に、PGME(21.9g)、γ-BL(2.43g)を加え、70℃にて24時間攪拌し、組成物(2)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(2)は、液晶配向処理剤(2)としても評価に用いた。
合成例3の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(3)(10.5g)に、PGME(5.36g)、NMP(1.65g)を加え、25℃にて2時間攪拌し、組成物(3)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(3)は、液晶配向処理剤(3)としても評価に用いた。
合成例3の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(3)(10.0g)に、PGME(1.97g)、γ-BL(1.57g)、BCS(3.13g)を加え、25℃にて2時間攪拌し、組成物(4)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(4)は、液晶配向処理剤(4)としても評価に用いた。
合成例4の合成手法で得られたポリイミド粉末(4)(1.60g)に、PGME(22.6g)、γ-BL(2.51g)を加え、70℃にて24時間攪拌し、組成物(5)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(5)は、液晶配向処理剤(5)としても評価に用いた。
合成例4の合成手法で得られたポリイミド粉末(4)(1.60g)に、PCS(15.0g)、γ-BL(2.51g)、BCS(7.52g)を加え、70℃にて24時間攪拌し、組成物(6)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(6)は、液晶配向処理剤(6)としても評価に用いた。
合成例4の合成手法で得られたポリイミド粉末(4)(1.30g)に、PCS(21.5g)、γ-BL(7.17g)、BCS(10.8g)を加え、70℃にて24時間攪拌し、組成物(7)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(7)は、液晶配向処理剤(7)としても評価に用いた。
合成例5の合成手法で得られたポリイミド粉末(5)(1.55g)に、MCS(14.6g)、NEP(3.64g)、BCS(6.07g)を加え、70℃にて24時間攪拌し、組成物(8)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(8)は、液晶配向処理剤(8)としても評価に用いた。
合成例5の合成手法で得られたポリイミド粉末(5)(1.60g)に、PGME(15.0g)、γ-BL(7.52g)、BCS(2.51g)を加え、70℃にて24時間攪拌し、組成物(9)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(9)は、液晶配向処理剤(9)としても評価に用いた。
合成例6の合成手法で得られたポリイミド粉末(6)(1.60g)に、PGME(22.6g)、γ-BL(2.51g)を加え、70℃にて24時間攪拌し、組成物(10)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(10)は、液晶配向処理剤(10)としても評価に用いた。
合成例6の合成手法で得られたポリイミド粉末(6)(1.30g)に、PGME(32.3g)、γ-BL(3.58g)を加え、70℃にて24時間攪拌し、組成物(11)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(11)は、液晶配向処理剤(11)としても評価に用いた。
合成例6の合成手法で得られたポリイミド粉末(6)(1.60g)に、PCS(17.6g)、NEP(5.01g)、BCS(2.51g)を加え、70℃にて24時間攪拌し、組成物(12)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(12)は、液晶配向処理剤(12)としても評価に用いた。
合成例7の合成手法で得られたポリイミド粉末(7)(1.60g)に、ECS(15.0g)、NMP(5.01g)、BCS(5.01g)を加え、70℃にて24時間攪拌し、組成物(13)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(13)は、液晶配向処理剤(13)としても評価に用いた。
合成例8の合成手法で得られたポリイミド粉末(8)(1.55g)に、PGME(21.9g)、γ-BL(2.43g)を加え、70℃にて24時間攪拌し、組成物(14)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(14)は、液晶配向処理剤(14)としても評価に用いた。
合成例8の合成手法で得られたポリイミド粉末(8)(1.60g)に、MCS(21.3g)、γ-BL(1.25g)、BCS(2.51g)を加え、70℃にて24時間攪拌し、組成物(15)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(15)は、液晶配向処理剤(15)としても評価に用いた。
合成例9の合成手法で得られたポリイミド粉末(9)(1.60g)に、PGME(22.6g)、γ-BL(2.51g)を加え、70℃にて24時間攪拌し、組成物(16)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(16)は、液晶配向処理剤(16)としても評価に用いた。
合成例9の合成手法で得られたポリイミド粉末(9)(1.60g)に、PCS(22.6g)、γ-BL(5.01g)、BCS(2.51g)を加え、70℃にて24時間攪拌し、組成物(17)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(17)は、液晶配向処理剤(17)としても評価に用いた。
合成例10の合成手法で得られたポリイミド粉末(10)(1.50g)に、PCS(17.6g)、NMP(5.88g)を加え、70℃にて24時間攪拌し、組成物(18)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(18)は、液晶配向処理剤(18)としても評価に用いた。
合成例11の合成手法で得られたポリイミド粉末(11)(1.65g)に、PGME(23.3g)、γ-BL(2.59g)を加え、70℃にて24時間攪拌し、組成物(19)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(19)は、液晶配向処理剤(19)としても評価に用いた。
合成例11の合成手法で得られたポリイミド粉末(11)(1.60g)に、PGME(20.1g)、γ-BL(2.51g)、BCS(2.51g)を加え、70℃にて24時間攪拌し、組成物(20)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(20)は、液晶配向処理剤(20)としても評価に用いた。
合成例11の合成手法で得られたポリイミド粉末(11)(1.60g)に、PCS(17.6g)、γ-BL(2.51g)、BCS(5.01g)を加え、70℃にて24時間攪拌し、組成物(21)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(21)は、液晶配向処理剤(21)としても評価に用いた。
合成例12の合成手法で得られたポリイミド粉末(12)(1.60g)に、PGME(22.6g)、γ-BL(2.51g)を加え、70℃にて24時間攪拌し、組成物(22)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(22)は、液晶配向処理剤(22)としても評価に用いた。
合成例12の合成手法で得られたポリイミド粉末(12)(1.55g)に、MCS(17.0g)、γ-BL(1.21g)、BCS(6.07g)を加え、70℃にて24時間攪拌し、組成物(23)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(23)は、液晶配向処理剤(23)としても評価に用いた。
合成例13の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)(5.50g)に、NMP(17.4g)を加え、25℃にて2時間攪拌し、組成物(24)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(24)は、液晶配向処理剤(24)としても評価に用いた。
合成例13の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)(5.50g)に、NMP(13.1g)、BCS(4.31g)を加え、25℃にて2時間攪拌し、組成物(25)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(25)は、液晶配向処理剤(25)としても評価に用いた。
合成例14の合成手法で得られたポリイミド粉末(14)(1.25g)に、γ-BL(19.6g)を加え、70℃にて24時間攪拌し、組成物(26)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(26)は、液晶配向処理剤(26)としても評価に用いた。
合成例14の合成手法で得られたポリイミド粉末(14)(1.30g)に、γ-BL(19.6g)、BCS(4.07g)を加え、70℃にて24時間攪拌し、組成物(27)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(27)は、液晶配向処理剤(27)としても評価に用いた。
合成例14の合成手法で得られたポリイミド粉末(14)(1.30g)に、PGME(20.4g)を加え、70℃にて24時間攪拌し、組成物(28)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(28)は、液晶配向処理剤(28)としても評価に用いた。
合成例15の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(15)(5.50g)に、NMP(17.4g)を加え、25℃にて2時間攪拌し、組成物(29)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(29)は、液晶配向処理剤(29)としても評価に用いた。
合成例16の合成手法で得られたポリイミド粉末(16)(1.30g)に、γ-BL(20.4g)を加え、70℃にて24時間攪拌し、組成物(30)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(30)は、液晶配向処理剤(30)としても評価に用いた。
合成例16の合成手法で得られたポリイミド粉末(16)(1.30g)に、γ-BL(16.3g)、BCS(4.07g)を加え、70℃にて24時間攪拌し、組成物(31)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(31)は、液晶配向処理剤(31)としても評価に用いた。
合成例16の合成手法で得られたポリイミド粉末(16)(1.25g)に、PGME(19.6g)を加え、70℃にて24時間攪拌し、組成物(32)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(32)は、液晶配向処理剤(32)としても評価に用いた。
合成例17の合成手法で得られたポリイミド粉末(17)(1.30g)に、PGME(20.4g)を加え、70℃にて24時間攪拌した。溶液中にポリイミド粉末の溶け残りが見られたため、さらに70℃にて12時間攪拌したが、ポリイミド粉末を完全に溶解することができなかった。
*6:ポリイミド粉末が完全に溶解せず、組成物および液晶配向処理剤を調整することができなかった。
*7:配向欠陥が、25個以上確認された。
*8:配向欠陥が、11個~24個確認された。
*9:配向欠陥が、5個~10個確認された。
Claims (17)
- 前記(A)成分が、組成物に含まれる溶媒全体の50~99質量%であることを特徴とする請求項1に記載の組成物。
- 前記カルボキシル基を有するジアミン化合物が、前記(C)成分に用いられる全ジアミン中の20モル%~100モル%であることを特徴とする請求項3または請求項4に記載の組成物。
- 前記(C)成分のジアミン成分が、下記の式[2b]で示される構造から選ばれる少なくとも1種のジアミン化合物を含むことを特徴とする請求項1~請求項5のいずれか一項に記載の組成物。
- (D)成分として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルエーテルまたはジエチレングリコールモノブチルエーテルから選ばれる少なくとも1つの溶媒を含有することを特徴とする請求項1~請求項7のいずれか一項に記載の組成物。
- 請求項1~請求項8のいずれか一項に記載の組成物から得られることを特徴とする樹脂被膜。
- 請求項1~請求項8のいずれか一項に記載の組成物から得られることを特徴とする液晶配向処理剤。
- 請求項10に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。
- 請求項10に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。
- 請求項11または請求項12に記載に記載の液晶配向膜を有することを特徴とする液晶表示素子。
- 電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項11または請求項12に記載の液晶配向膜。
- 請求項14に記載の液晶配向膜を有することを特徴とする液晶表示素子。
- 電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項11または請求項12に記載の液晶配向膜。
- 請求項16に記載の液晶配向膜を有することを特徴とする液晶表示素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380066259.XA CN104919003B (zh) | 2012-10-18 | 2013-10-18 | 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件 |
JP2014542193A JP5930238B2 (ja) | 2012-10-18 | 2013-10-18 | 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 |
KR1020157012391A KR20150070276A (ko) | 2012-10-18 | 2013-10-18 | 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자 |
KR1020177012151A KR20170053736A (ko) | 2012-10-18 | 2013-10-18 | 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012231139 | 2012-10-18 | ||
JP2012-231139 | 2012-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061780A1 true WO2014061780A1 (ja) | 2014-04-24 |
Family
ID=50488336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078315 WO2014061780A1 (ja) | 2012-10-18 | 2013-10-18 | 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5930238B2 (ja) |
KR (2) | KR20150070276A (ja) |
CN (1) | CN104919003B (ja) |
TW (1) | TWI542633B (ja) |
WO (1) | WO2014061780A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190060803A (ko) * | 2016-09-29 | 2019-06-03 | 닛산 가가쿠 가부시키가이샤 | 액정 배향제, 액정 배향막, 및 액정 표시 소자 |
JP7188381B2 (ja) * | 2017-03-31 | 2022-12-13 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
WO2018221568A1 (ja) * | 2017-05-31 | 2018-12-06 | 日産化学株式会社 | 液晶を用いた移相変調素子用機能性樹脂組成物 |
CN113684039A (zh) * | 2021-08-13 | 2021-11-23 | Tcl华星光电技术有限公司 | 配向剂、配向膜、彩膜基板及彩膜基板的制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07109438A (ja) * | 1993-08-19 | 1995-04-25 | Nissan Chem Ind Ltd | ポリイミドワニス |
JPH07287236A (ja) * | 1994-04-18 | 1995-10-31 | Sumitomo Bakelite Co Ltd | 液晶配向剤及びこれを用いた液晶表示素子の製造方法 |
WO2004072719A1 (ja) * | 2003-02-12 | 2004-08-26 | Nissan Chemical Industries, Ltd. | 液晶配向剤およびそれを用いた液晶配向膜 |
JP2007031540A (ja) * | 2005-07-26 | 2007-02-08 | Chisso Corp | ワニス組成物 |
JP2007241246A (ja) * | 2006-02-13 | 2007-09-20 | Seiko Epson Corp | 液晶配向膜形成用組成物、液晶表示装置の製造方法、液晶配向膜形成装置及び液晶表示装置 |
JP2009037222A (ja) * | 2007-07-06 | 2009-02-19 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2009157351A (ja) * | 2007-12-06 | 2009-07-16 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2011242427A (ja) * | 2010-05-14 | 2011-12-01 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2012017402A (ja) * | 2010-07-08 | 2012-01-26 | Ube Industries Ltd | ポリイミドシロキサン溶液の製造方法 |
WO2013008852A1 (ja) * | 2011-07-12 | 2013-01-17 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 |
WO2013125595A1 (ja) * | 2012-02-22 | 2013-08-29 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0634979A (ja) * | 1992-07-21 | 1994-02-10 | Hitachi Chem Co Ltd | 液晶配向膜用組成物、液晶配向膜の製造法、液晶配向膜、液晶挾持基板および液晶表示素子 |
TW283163B (ja) * | 1993-08-19 | 1996-08-11 | Nissan Chemical Ind Ltd | |
CN101021654A (zh) * | 2006-02-13 | 2007-08-22 | 精工爱普生株式会社 | 液晶取向膜形成用组合物、液晶取向膜形成装置及液晶显示装置 |
KR100847464B1 (ko) * | 2007-03-02 | 2008-07-21 | 제일모직주식회사 | 액정배향제 및 이를 이용하여 제조된 액정배향막 |
WO2008153101A1 (ja) * | 2007-06-15 | 2008-12-18 | Nissan Chemical Industries, Ltd. | 熱硬化膜形成用樹脂組成物 |
-
2013
- 2013-10-18 CN CN201380066259.XA patent/CN104919003B/zh active Active
- 2013-10-18 WO PCT/JP2013/078315 patent/WO2014061780A1/ja active Application Filing
- 2013-10-18 TW TW102137861A patent/TWI542633B/zh active
- 2013-10-18 JP JP2014542193A patent/JP5930238B2/ja active Active
- 2013-10-18 KR KR1020157012391A patent/KR20150070276A/ko active Application Filing
- 2013-10-18 KR KR1020177012151A patent/KR20170053736A/ko not_active Application Discontinuation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07109438A (ja) * | 1993-08-19 | 1995-04-25 | Nissan Chem Ind Ltd | ポリイミドワニス |
JPH07287236A (ja) * | 1994-04-18 | 1995-10-31 | Sumitomo Bakelite Co Ltd | 液晶配向剤及びこれを用いた液晶表示素子の製造方法 |
WO2004072719A1 (ja) * | 2003-02-12 | 2004-08-26 | Nissan Chemical Industries, Ltd. | 液晶配向剤およびそれを用いた液晶配向膜 |
JP2007031540A (ja) * | 2005-07-26 | 2007-02-08 | Chisso Corp | ワニス組成物 |
JP2007241246A (ja) * | 2006-02-13 | 2007-09-20 | Seiko Epson Corp | 液晶配向膜形成用組成物、液晶表示装置の製造方法、液晶配向膜形成装置及び液晶表示装置 |
JP2009037222A (ja) * | 2007-07-06 | 2009-02-19 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2009157351A (ja) * | 2007-12-06 | 2009-07-16 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2011242427A (ja) * | 2010-05-14 | 2011-12-01 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2012017402A (ja) * | 2010-07-08 | 2012-01-26 | Ube Industries Ltd | ポリイミドシロキサン溶液の製造方法 |
WO2013008852A1 (ja) * | 2011-07-12 | 2013-01-17 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 |
WO2013125595A1 (ja) * | 2012-02-22 | 2013-08-29 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 |
Also Published As
Publication number | Publication date |
---|---|
CN104919003B (zh) | 2018-01-30 |
TWI542633B (zh) | 2016-07-21 |
JPWO2014061780A1 (ja) | 2016-09-05 |
KR20170053736A (ko) | 2017-05-16 |
KR20150070276A (ko) | 2015-06-24 |
JP5930238B2 (ja) | 2016-06-08 |
CN104919003A (zh) | 2015-09-16 |
TW201430055A (zh) | 2014-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6414145B2 (ja) | 液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
JP2020056034A (ja) | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
JP5930239B2 (ja) | 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 | |
JP6368955B2 (ja) | 液晶配向処理剤、液晶配向膜および液晶表示素子 | |
JP6512417B2 (ja) | 組成物および樹脂被膜 | |
JP5930237B2 (ja) | 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 | |
JP6331028B2 (ja) | 液晶配向処理剤、液晶配向膜および液晶表示素子 | |
JP6079627B2 (ja) | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
JP6052171B2 (ja) | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
WO2014119682A1 (ja) | 液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
JP5930238B2 (ja) | 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 | |
WO2013115387A1 (ja) | 液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
JP5950137B2 (ja) | 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 | |
JP6361887B2 (ja) | 液晶配向膜の製造方法、液晶配向膜、液晶表示素子 | |
JP6264577B2 (ja) | 液晶配向処理剤、液晶配向膜および液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13846982 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014542193 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157012391 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13846982 Country of ref document: EP Kind code of ref document: A1 |