WO2014054396A1 - 受電機器、送電機器及び非接触電力伝送装置 - Google Patents
受電機器、送電機器及び非接触電力伝送装置 Download PDFInfo
- Publication number
- WO2014054396A1 WO2014054396A1 PCT/JP2013/074622 JP2013074622W WO2014054396A1 WO 2014054396 A1 WO2014054396 A1 WO 2014054396A1 JP 2013074622 W JP2013074622 W JP 2013074622W WO 2014054396 A1 WO2014054396 A1 WO 2014054396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- impedance
- impedance converter
- output
- value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/50—Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
- H02J50/502—Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a power receiving device, a power transmission device, and a contactless power transmission device.
- a power receiving device using magnetic field resonance is known as a power receiving device of a non-contact power transmission device that does not use a power cord or a power transmission cable.
- the power receiving device of Patent Literature 1 includes a secondary coil that can resonate with a primary coil provided in the power transmitting device. Then, AC power is transmitted from the power transmitting device to the power receiving device due to magnetic field resonance between the primary side coil and the secondary side coil. Further, the power receiving device is provided with a rectifier and a vehicle battery, and the received AC power is rectified into DC power by the rectifier and input to the vehicle battery. Thereby, the vehicle battery is charged.
- An object of the present invention is to provide a power receiving device, a power transmitting device, and a non-contact power transmission device including the power receiving device and the power transmitting device that can suitably suppress a decrease in transmission efficiency.
- AC power can be received in a non-contact manner from a power transmission device having an AC power source that outputs AC power and a primary coil to which the AC power is input.
- Power receiving device is provided.
- the power receiving device includes a secondary coil, a variable load, an impedance conversion unit, and a grasping unit.
- the secondary coil can receive the AC power from the primary coil.
- the variable load varies in impedance according to the power value of the input power.
- the impedance converter is provided between the secondary coil and the variable load, and is configured such that the impedance is variable.
- the grasping unit grasps the power value of the AC power output from the AC power supply.
- the impedance of the impedance conversion unit is such that the primary side coil and the secondary side coil in a situation where the grasping unit grasps that the power value of the AC power output from the alternating current power source does not fluctuate.
- the electrical characteristics depending on the relative position of the sensor fluctuate, it is variably controlled.
- the impedance of the impedance converter is variably controlled. As a result, a decrease in transmission efficiency can be suppressed.
- the impedance of the fluctuating load is unlikely to fluctuate. For this reason, even if the electrical characteristics depend on the impedance of the variable load, even if the electrical characteristics vary in a situation where the power value of the AC power output from the AC power supply does not vary Can be considered that the relative position of the coil has changed. Therefore, the variable control of the impedance of the impedance converter can be performed without considering the fluctuation of the impedance of the variable load, so that the variable control can be simplified and the configuration of the impedance converter can be simplified.
- the electrical characteristics are at least collision between transmission efficiency, power value of AC power received by the secondary coil, power value of reflected wave power, and impedance.
- the electrical characteristics are at least collision between transmission efficiency, power value of AC power received by the secondary coil, power value of reflected wave power, and impedance.
- the cause of the fluctuation of each parameter is the fluctuation of the relative position of the coil.
- the impedance converter includes a first impedance converter and a second impedance converter.
- the second impedance converter is provided between the first impedance converter and the variable load, and the impedance is configured to be variable.
- the impedance of the second impedance converter is variably controlled when the power value of the AC power output from the AC power supply fluctuates.
- the impedance converter corresponding to the fluctuation of the relative position of the coil and the impedance converter corresponding to the fluctuation of the impedance of the variable load accompanying the fluctuation of the power value of the AC power are distinguished.
- the non-contact power transmission device includes the power transmission device and the power reception device. According to the said structure, the fall of transmission efficiency can be suppressed suitably in a non-contact electric power transmission apparatus.
- the circuit diagram of the non-contact electric power transmission apparatus concerning one embodiment of the present invention.
- (A) is a conceptual diagram for demonstrating the relative position of the power transmission device and power receiving device of FIG.
- the non-contact power transmission apparatus 10 includes a ground side device 11 provided on the ground and a vehicle side device 21 mounted on the vehicle.
- the ground side device 11 corresponds to a power transmission device (primary side device)
- the vehicle side device 21 corresponds to a power receiving device (secondary side device).
- the ground side device 11 includes a high frequency power source 12 (AC power source) capable of outputting high frequency power (AC power) having a predetermined frequency.
- the high-frequency power source 12 is configured to convert power input from a system power source as infrastructure into high-frequency power and output the converted high-frequency power.
- the high frequency power supply 12 is configured to be able to output high frequency power having different power values.
- the high-frequency power output from the high-frequency power supply 12 is transmitted to the vehicle-side device 21 in a non-contact manner and input to a load 22 provided in the vehicle-side device 21.
- the non-contact power transmission device 10 is configured to transmit power between the ground side device 11 and the vehicle side device 21, and a power transmitter 13 (primary side resonance circuit) provided in the ground side device 11. And a power receiver 23 (secondary resonance circuit) provided in the vehicle-side device 21.
- the power transmitter 13 and the power receiver 23 have the same configuration, and both are configured to be capable of magnetic field resonance.
- the power transmitter 13 includes a resonance circuit including a primary side coil 13a and a primary side capacitor 13b connected in parallel.
- the power receiver 23 includes a resonance circuit including a secondary coil 23a and a secondary capacitor 23b connected in parallel.
- the resonance frequencies of the power transmitter 13 and the power receiver 23 are set to be the same.
- the power transmitter 13 when high frequency power is input from the high frequency power supply 12 to the power transmitter 13 (primary coil 13a), the power transmitter 13 and the power receiver 23 (secondary coil 23a) magnetically resonate. As a result, the power receiver 23 receives a part of the energy of the power transmitter 13. That is, the power receiver 23 receives high frequency power from the power transmitter 13.
- the load 22 to which the high frequency power received by the power receiver 23 is input includes a rectifier (rectifying unit) and a vehicle battery (power storage device).
- the rectifier rectifies high-frequency power into direct-current power, and includes a semiconductor element (diode) that operates by applying a predetermined threshold voltage value.
- the rectified DC power is input to the vehicle battery.
- the high frequency power received by the power receiver 23 is used for charging the vehicle battery.
- the ground side device 11 is provided with a power source side controller 14 for controlling the high frequency power source 12. Further, the vehicle-side device 21 is provided with a vehicle-side controller 24 that can wirelessly communicate with the power supply-side controller 14.
- the non-contact power transmission apparatus 10 starts or ends power transmission through the exchange of information between the controllers 14 and 24.
- Each of the controllers 14 and 24 corresponds to a “control unit”.
- the power supply side controller 14 Information on the power value of the power is transmitted to the vehicle-side controller 24.
- the vehicle-side controller 24 grasps the power value of the high-frequency power output from the high-frequency power supply 12 by receiving the information. That is, it can be said that the vehicle-side controller 24 is a grasping unit that grasps the power value of the high-frequency power output from the high-frequency power source 12. In this case, unless the vehicle-side controller 24 receives information on the power value of the high-frequency power, the power value is not changed, that is, the power value of the high-frequency power output from the high-frequency power source 12 is not changed. Judge.
- the vehicle-side device 21 is provided with a detection sensor 25 that detects the charge amount of the vehicle battery.
- the detection sensor 25 transmits the detection result to the vehicle-side controller 24. Thereby, the vehicle side controller 24 can grasp
- the non-contact power transmission device 10 includes a plurality of impedance converters 31 to 33.
- the non-contact power transmission device 10 includes a first impedance converter 31 as a primary impedance conversion unit provided between the high frequency power supply 12 and the power transmitter 13 in the ground side device 11.
- the vehicle-side device 21 includes a second impedance converter 32 and a third impedance converter 33 provided between the power receiver 23 and the load 22.
- the second impedance converter 32 corresponds to an “impedance converter” or “first impedance converter”
- the third impedance converter 33 corresponds to a “second impedance converter”.
- the second impedance converter 32 is connected to the power receiver 23, and the third impedance converter 33 is connected to the load 22.
- the first impedance converter 31 includes an inverted L-type LC circuit including a first inductor 31a and a first capacitor 31b.
- the second impedance converter 32 includes an L-type LC circuit including a second inductor 32a and a second capacitor 32b.
- the third impedance converter 33 includes an inverted L-type LC circuit including a third inductor 33a and a third capacitor 33b.
- the present inventors show that the real part of the impedance from the output end of the power receiver 23 (secondary coil 23a) to the load 22 contributes to the transmission efficiency between the power transmitter 13 and the power receiver 23.
- a specific resistance value Rout that makes the transmission efficiency relatively higher than other resistance values exists in the real part of the impedance from the output terminal of the power receiver 23 to the load 22.
- a specific resistance value Rout (second resistance value) that makes the transmission efficiency higher than a predetermined resistance value (first resistance value).
- the resistance value of the virtual load X1 is Ra1
- the virtual load X1 is received from the power receiver 23 (specifically, the output end of the power receiver 23).
- the specific resistance value Rout is ⁇ (Ra1 ⁇ Rb1) where the resistance value up to is Rb1.
- the second impedance converter 32 and the third impedance converter 33 are such that the impedance from the output terminal of the power receiver 23 to the load 22 (impedance at the input terminal of the second impedance converter 32) is a specific resistance value.
- the impedance ZL of the load 22 is subjected to impedance conversion so as to approach (preferably match) Rout.
- the power value of the high-frequency power output from the high-frequency power source 12 depends on the impedance from the output end of the high-frequency power source 12 to the load 22, that is, the impedance of the input end of the first impedance converter 31.
- the impedance from the output end of the power receiver 23 to the load 22 approaches the specific resistance value Rout so that the high-frequency power having a desired power value is output from the high-frequency power source 12.
- Impedance conversion is performed on the impedance Zin from the input end of the power transmitter 13 to the load 22 in the situation.
- the power value of the output power of the high-frequency power source 12 required for the power value of the DC power input to the vehicle battery of the load 22 to be a power value suitable for charging is set to the high frequency of the power value suitable for charging. Use electricity.
- the impedance from the output end of the high frequency power supply 12 to the load 22 is charged.
- a suitable input impedance Zt is used.
- the first impedance converter 31 has an impedance Zin from the input end of the power transmitter 13 to the load 22 such that the impedance from the output end of the high frequency power supply 12 to the load 22 becomes the input impedance Zt suitable for the charging.
- the impedance is converted.
- the input impedance Zt suitable for charging corresponds to “predetermined impedance”.
- the specific resistance value Rout is the configuration of the power transmitter 13 and the power receiver 23 (the shape and inductance of the coils 13a and 23a, the capacitance of the capacitors 13b and 23b, etc.), and the relative position of the power transmitter 13 and the power receiver 23. Determined by. For this reason, when the power transmitter 13 and the power receiver 23 deviate from a predetermined reference position, that is, when the relative position of the power transmitter 13 and the power receiver 23 varies, the specific resistance value Rout varies.
- FIGS. 2 (a) and 2 (b) Examples of fluctuations in the relative positions of the power transmitter 13 and the power receiver 23 are shown in FIGS. 2 (a) and 2 (b).
- FIG. 2A in a situation where the position where the entire power transmitter 13 and the entire power receiver 23 face each other is set as the reference position, they are arranged in a state of being deviated from the reference position.
- FIG. 2B the distance between the power transmitter 13 and the power receiver 23 may vary depending on the mounting mode of the vehicle-side device 21 in the vehicle, the variation in the vehicle height of the vehicle, and the like.
- the impedance of the vehicle battery included in the load 22 varies according to the power value of the input DC power. That is, the load 22 is a fluctuating load 22 in which the impedance ZL fluctuates (changes) according to the power value of the input power.
- the non-contact power transmission apparatus 10 has a configuration for following (corresponding) to a change in the relative position between the power transmitter 13 and the power receiver 23 and a change in the impedance ZL of the variable load 22. .
- the configuration will be described.
- the real part (resistance) and / or the imaginary part (reactance) are variable (adjustable).
- the capacitances of the capacitors 31b to 33b of the impedance converters 31 to 33 are variable.
- the constant (impedance) can be said to be a conversion ratio, an inductance, or a capacitance.
- the constant of the initial state of the second impedance converter 32 is the third impedance converter 33 in a situation where the power transmitter 13 and the power receiver 23 are arranged at the reference position and the high frequency power for charging is output from the high frequency power supply 12. Is a value for converting the impedance from the input terminal of the third impedance converter 33 in the initial state to the variable load 22 into the specific resistance value Rout.
- the initial state constant of the first impedance converter 31 is that the power transmitter 13 and the power receiver 23 are disposed at the reference position, and the high frequency power for charging is output from the high frequency power source 12.
- the impedance Zin from the input end of the power transmitter 13 to the variable load 22 is set to a value that converts the input impedance Zt suitable for charging.
- a primary-side measuring device 41 as a measuring unit is provided between the high-frequency power source 12 and the power transmitter 13, specifically between the high-frequency power source 12 and the first impedance converter 31.
- the primary side measuring instrument 41 is electrically connected to the power supply side controller 14, measures a voltage waveform and a current waveform in response to a request from the power supply side controller 14, and sends the measurement results to the power supply side controller 14. To send.
- a secondary-side measuring instrument 42 as a measuring unit is provided.
- the secondary-side measuring instrument 42 is electrically connected to the vehicle-side controller 24, measures a voltage waveform and a current waveform in response to a request from the vehicle-side controller 24, and sends the measurement results to the vehicle-side controller 24.
- the controllers 14 and 24 variably control the constants of the impedance converters 31 to 33 based on the measurement results of the measuring instruments 41 and 42.
- a fixed resistor (fixed load) 51 having the same resistance value (impedance) is provided between the second impedance converter 32 and the third impedance converter 33 regardless of the power value of the input high-frequency power. It has been.
- the relay 52 as a switching part which switches to the vehicle side apparatus 21 so that the connection destination of the 2nd impedance converter 32 may become the 3rd impedance converter 33 to which the fixed resistance 51 or the variable load 22 was connected. Is provided. It can be said that the connection destination of the second impedance converter 32 is an output destination of high-frequency power received by the power receiver 23 and output from the second impedance converter 32.
- the controllers 14 and 24 control the relay 52 together with variable control of the constants of the impedance converters 31 to 33 in a charging sequence for charging the vehicle battery.
- the charging sequence will be described in detail below.
- the charging sequence is executed while the controllers 14 and 24 exchange information with each other.
- the controllers 14 and 24 confirm, through the exchange of information, that the vehicle can be charged, specifically, that the power transmitter 13 and the power receiver 23 are disposed at a position where magnetic resonance can be performed.
- the vehicle-side controller 24 sets the connection destination of the second impedance converter 32 to the fixed resistor 51 by controlling the relay 52.
- the power supply side controller 14 controls the high frequency power source 12 so that the high frequency power for adjustment (small AC power) set in advance is output from the high frequency power source 12.
- controllers 14 and 24 grasp the measurement results of the measuring instruments 41 and 42. And each controller 14 and 24 determines whether there is no trouble in electric power transmission. For example, the controllers 14 and 24 first determine whether or not the transmission efficiency is equal to or higher than a predetermined threshold efficiency.
- the vehicle-side controller 24 variably controls the constant of the second impedance converter 32 so as to approach the specific resistance value Rout (variable control before charging).
- the specific resistance value Rout is specified using various parameters (power value, power factor, etc.) derived from the voltage waveform and current waveform measured by the secondary-side measuring instrument 42.
- the power supply side controller 14 determines the power value of the high frequency power output from the high frequency power supply 12 ( It is determined whether or not the power value of the high-frequency power measured by the primary-side measuring instrument 41 matches the power value of the high-frequency power for adjustment.
- the impedance from the output end of the high-frequency power source 12 to the variable load 22 is the input impedance suitable for charging. It is assumed that it is deviated from Zt.
- the power supply side controller 14 variably controls the constant of the first impedance converter 31 based on the measurement result of the primary side measuring device 41 so as to approach the input impedance Zt suitable for charging. That is, after the variable control of the constant of the second impedance converter 32, the variable control of the constant of the first impedance converter 31 is performed.
- the power supply side controller 14 When there is no problem in power transmission, the power supply side controller 14 outputs the high frequency power for charging (large AC power) having a power value larger than the high frequency power for adjustment from the high frequency power source 12. To control. And the power supply side controller 14 notifies the vehicle side controller 24 that the high frequency electric power for charge is output.
- the vehicle-side controller 24 controls the relay 52 to change the connection destination of the second impedance converter 32 to the third impedance converter 33. change.
- the resistance value (impedance) Rx of the fixed resistor 51 and the impedance from the input end of the third impedance converter 33 to the variable load 22 in a state where the high frequency power for charging is being output are close (preferably coincident).
- the resistance value Rx of the fixed resistor 51 and the initial state constant of the third impedance converter 33 are set. For this reason, even when the relay 52 is switched, the impedance after the output terminal of the second impedance converter 32 is less likely to fluctuate.
- each controller 14, 24 uses the measurement result of each measuring instrument 41, 42 at a predetermined frequency in a situation where high-frequency power for charging is output from the high-frequency power supply 12, and the relative position of the coils 13 a, 23 a.
- the transmission efficiency which is a type of electrical characteristic that depends on, is calculated.
- Each of the controllers 14 and 24 determines whether or not the transmission efficiency is lowered in a situation where high-frequency power for charging is output from the high-frequency power source 12.
- the “situation in which high-frequency power for charging is output from the high-frequency power source 12” means that the power value of the high-frequency power output from the high-frequency power source 12 is output from the high-frequency power source 12. It can be said that the power value of the high-frequency power is constant.
- the controllers 14 and 24 store the previously calculated transmission efficiency, and determine whether or not the difference between the currently calculated transmission efficiency and the previously calculated transmission efficiency is within a predetermined allowable range.
- the transmission efficiency to be compared is not limited to the previously calculated transmission efficiency, and may be the transmission efficiency calculated in a situation where high-frequency power for adjustment is being output or there is a problem in power transmission.
- the threshold efficiency used for determining whether or not may be used.
- each controller 14, 24 determines that the transmission efficiency is not lowered, it performs power transmission as it is. On the other hand, if the vehicle-side controller 24 determines that the transmission efficiency has decreased, it is determined that the positional deviation of the coils 13a and 23a has occurred, so that the transmission efficiency is increased (the amount of decrease in transmission efficiency is reduced).
- the variable control of the constant of the second impedance converter 32 is performed (variable control during charging). Then, after the variable control of the constant of the second impedance converter 32, the power supply side controller 14 makes the first impedance so that the impedance from the output terminal of the high frequency power supply 12 to the variable load 22 becomes the input impedance Zt suitable for charging. Variable control of the constant of the impedance converter 31 is performed.
- the relay 52 is not switched when variable control of the constants of the impedance converters 31 and 32 is performed during charging. That is, the variable control of the constants of the impedance converters 31 and 32 during charging is performed in a state where the second impedance converter 32, the third impedance converter 33, and the variable load 22 are connected.
- the vehicle-side controller 24 periodically grasps the charge amount of the vehicle battery during charging. Then, when the charge amount of the vehicle battery becomes the change trigger amount, the vehicle side controller 24 notifies the power source side controller 14 to that effect. In response to the notification, the power supply side controller 14 changes the power value of the high frequency power output from the high frequency power supply 12 and notifies the vehicle side controller 24 of the change. As the power value varies (changes), the impedance ZL of the variable load 22 varies, and the impedance from the output terminal of the power receiver 23 to the variable load 22 deviates from the specific resistance value Rout.
- the impedance from the output end of the power receiver 23 to the variable load 22 is constant (specific resistance value Rout) regardless of the change in the power value.
- the constant of the third impedance converter 33 is variably controlled. Specifically, the vehicle-side controller 24 adjusts the third impedance converter corresponding to the fluctuation of the impedance ZL of the variable load 22 so that the impedance from the input terminal of the third impedance converter 33 to the variable load 22 is constant. 33 constants are variably controlled.
- variable control of the constant of the 3rd impedance converter 33 is arbitrary, you may perform feedback control, referring the measurement result of each measuring device 41 and 42, for example.
- power value information regarding the power value of the high-frequency power output from the high-frequency power source 12 and information regarding the third impedance converter 33 (specifically, constant information for specifying a constant of the third impedance converter 33) and Map data set in a one-to-one correspondence may be provided.
- the vehicle-side controller 24 acquires constant information corresponding to the currently output high-frequency power by referring to the map data, and performs the third impedance conversion so that the constant specified by the constant information is obtained. Variable control of the constant of the device 33 is performed.
- Each controller 14, 24 periodically calculates transmission efficiency after variable control of the constant of the third impedance converter 33, and when the transmission efficiency decreases, the first impedance converter 31 and the second impedance converter The constant of the device 32 is variably controlled.
- the vehicle-side controller 24 determines whether or not the charge amount of the vehicle battery has reached the full charge amount (end trigger amount) based on the detection result of the detection sensor 25, and when the full charge amount has been reached. Notifies the power supply side controller 14 to that effect. Upon receiving the notification, the power supply side controller 14 controls the high frequency power supply 12 to stop the output of the high frequency power.
- the second impedance converter 32 performs impedance conversion so that the impedance from the output terminal of the power receiver 23 to the variable load 22 becomes the specific resistance value Rout. Therefore, improvement of transmission efficiency is realized.
- the first impedance converter 31 performs impedance conversion so that the impedance from the output terminal of the high-frequency power source 12 to the variable load 22 becomes the input impedance Zt suitable for charging. Therefore, high-frequency power having a power value suitable for charging is supplied to the variable load 22.
- variable control of the constant of the third impedance converter 33 is performed, and from the input terminal of the third impedance converter 33 to the variable load 22.
- the impedance is not changed. For this reason, the state where the impedance from the output terminal of the power receiver 23 to the variable load 22 approaches the specific resistance value Rout is maintained.
- a second impedance converter 32 having a variable constant (impedance) is provided between the power receiver 23 and the variable load 22 in the vehicle-side device 21. Then, in a situation where the vehicle-side controller 24 knows that the power value of the high-frequency power output from the high-frequency power source 12 is not fluctuating, a kind of electrical characteristic that depends on the relative positions of the coils 13a and 23a. Based on the fluctuation (decrease) in the transmission efficiency, the constant of the second impedance converter 32 is variably controlled. Thereby, the fall of the transmission efficiency when the relative position of coil 13a, 23a fluctuates can be suppressed suitably.
- both the specific resistance value Rout and the impedance ZL of the variable load 22 vary. Will be.
- the constant of the second impedance converter 32 having the specific resistance value Rout cannot be specified, or the control until the constant is specified may be complicated. Further, in order to follow the above two fluctuations, there is a concern that the configuration of the second impedance converter 32 is complicated (for example, the constant variable range is widened).
- the impedance ZL of the variable load 22 As a factor that the impedance ZL of the variable load 22 varies, there is a power value of the high-frequency power input to the variable load 22, and the power value is output from the high-frequency power source 12.
- the power value is output from the high-frequency power source 12.
- Variable control of the constant of the impedance converter 32 is performed. Thereby, the variable control of the constant of the second impedance converter 32 can be performed without considering the variation of the impedance ZL of the variable load 22, and thus the above inconvenience can be avoided.
- the transmission efficiency is adopted as a kind of electrical characteristics depending on the relative positions of the coils 13a and 23a. Thereby, the fluctuation
- the transmission efficiency depends not only on the relative positions of the coils 13a and 23a but also on the impedance ZL of the variable load 22, when the transmission efficiency varies, it may be difficult to specify the cause of the variation. .
- a third impedance converter 33 having a variable constant is provided between the second impedance converter 32 and the variable load 22. Then, when the power value of the high-frequency power output from the high-frequency power source 12 fluctuates, variable control of the constant of the third impedance converter 33 is performed. Thereby, the impedance converter that follows the fluctuation of the relative position of the coils 13a and 23a and the impedance converter that follows the fluctuation of the impedance ZL of the variable load 22 are distinguished. Therefore, it is possible to avoid the inconvenience that it is impossible to follow the other variation due to following one variation. Therefore, it is possible to suitably follow both the fluctuation of the relative positions of the coils 13a and 23a and the fluctuation of the impedance ZL of the variable load 22.
- a fixed resistor 51 is provided separately from the variable load 22, and the second impedance converter 32 is connected to the fixed resistor 51, the third impedance converter 33, and the relay 52 that switches to the variable load 22.
- the connection destination of the second impedance converter 32 is set to the fixed resistor 51, and the variable control of the constant of the second impedance converter 32 (variable control before charging) is performed in that state.
- the variable control of the constant of the 2nd impedance converter 32 can be performed, without considering the fluctuation
- the constant control of the second impedance converter 32 is performed in a situation where the second impedance converter 32 and the third impedance converter 33 are connected, the input terminal of the third impedance converter 33 will be described.
- the power value of the high-frequency power input to can vary.
- the constant of the second impedance converter 32 can be changed without variably controlling the constant of the third impedance converter 33. Control can be performed. Thereby, the variable control of the constant corresponding to the fluctuation
- the connection destination of the second impedance converter 32 is the third impedance converter 33 connected to the variable load 22.
- the variable control of the constant of the second impedance converter 32 (variable control during charging) is performed without being connected to the fixed resistor 51. Thereby, the fall of transmission efficiency can be suppressed, without interrupting charging.
- the impedance fluctuation range between the coils 13a and 23a is large.
- the impedance fluctuation range between the coils 13a and 23a is small.
- the variable control of the constant of the second impedance converter 32 tends to be relatively simple, the constant of the second impedance converter 32 can be controlled without connecting the second impedance converter 32 to the fixed resistor 51. Variable control can be performed.
- the relay 52 of the first second impedance converter 32 after the vehicle side device 21 starts to receive power from the ground side device 11.
- the connection destination of the second impedance converter 32 is the fixed resistor 51.
- the relay 52 connects the connection destination of the 2nd impedance converter 32 with the 3rd impedance converter 33 and the variable load 22.
- the “variable control of the first constant of the second impedance converter 32” is the first one after the charging sequence is started. For example, it is the first when the charging sequence is temporarily interrupted and then restarted. except for.
- the inventors of the present invention have a specific resistance value Rout that relatively increases the transmission efficiency in the real part of the impedance from the output terminal of the power receiver 23 to the variable load 22 as compared with other resistance values. Found it to exist. Then, the second impedance converter 32 performs impedance conversion so that the impedance from the output terminal of the power receiver 23 to the variable load 22 approaches the specific resistance value Rout. Thereby, the transmission efficiency can be improved.
- the constant of the second impedance converter 32 is variably controlled in accordance with the fluctuation of the specific resistance value Rout with the fluctuation of the relative positions of the coils 13a and 23a. Thereby, even if the relative positions of the coils 13a and 23a vary, high transmission efficiency can be maintained.
- a first impedance converter for impedance-converting the impedance Zin from the input end of the power transmitter 13 to the variable load 22 in a situation where the impedance from the output end of the power receiver 23 to the variable load 22 approaches the specific resistance value Rout. 31 was provided. Specifically, the first impedance converter 31 performs impedance conversion so that the impedance from the output terminal of the high-frequency power source 12 to the variable load 22 becomes the input impedance Zt suitable for charging. Thereby, charging of the battery for vehicles can be performed suitably.
- the power supply side controller 14 performs variable control of the constants of the first impedance converter 31 corresponding to the positional deviation of the coils 13a and 23a.
- the impedance from the output end of the high frequency power supply 12 to the variable load 22 becomes the input impedance Zt suitable for charging, regardless of the positional deviation. That is, the power supply side controller 14 sets the constant of the first impedance converter 31 so that the impedance from the output end of the high frequency power supply 12 to the variable load 22 approaches a constant value regardless of the change in the relative position of the coils 13a and 23a. Perform variable control. Thereby, the stable electric power supply is implement
- variable control of the constant of the second impedance converter 32 when the variable control of the constant of the second impedance converter 32 is performed after the variable control of the constant of the first impedance converter 31 is performed, the high frequency is controlled by the variable control of the constant of the second impedance converter 32.
- the impedance from the output terminal of the power supply 12 to the variable load 22 deviates from the input impedance Zt suitable for charging. For this reason, the variable control of the constant of the first impedance converter 31 is required again.
- the above inconvenience can be avoided by performing variable control of the constant of the second impedance converter 32 first. Thereby, simplification of control can be achieved.
- the high-frequency power source 12 is controlled so that the high-frequency power for adjustment whose power value is smaller than the high-frequency power for charging is output.
- the high-frequency power source 12 was controlled so that high-frequency power for charging was output. Thereby, it is possible to suppress power loss that may occur when variable control of the constants of the impedance converters 31 and 32 is performed.
- each of the impedance converters 31 to 33 is configured by an LC circuit, but is not limited thereto.
- a primary induction coil 61 having a variable inductance may be provided in place of the first impedance converter 31.
- the primary side induction coil 61 constitutes a transformer in cooperation with the primary side coil 13a. Power is transmitted between the primary induction coil 61 and the power transmitter 13 by electromagnetic induction.
- the inductance of the primary side induction coil 61 may be set so that the primary side induction coil 61 functions as the first impedance converter 31.
- a secondary induction coil 62 having a variable inductance may be provided between the power receiver 23 and the secondary side measuring instrument 42 instead of the second impedance converter 32.
- the secondary induction coil 62 constitutes a transformer in cooperation with the secondary coil 23a. Electric power is transmitted between the power receiver 23 and the secondary induction coil 62 by electromagnetic induction.
- the inductance of the secondary induction coil 62 may be set so that the secondary induction coil 62 operates as the second impedance converter 32.
- At least one of the impedance converters 31 to 33 may be replaced with a transformer.
- the first impedance converter 31 converts the impedance Zin from the input end of the power transmitter 13 to the variable load 22 so as to improve the power factor (so that the reactance of the predetermined impedance approaches 0). Good.
- the three impedance converters 31 to 33 are provided, but the present invention is not limited to this.
- the first impedance converter 31 may be omitted.
- the ground side device 11 may be provided with an impedance converter that improves the power factor.
- the third impedance converter 33 may be omitted.
- the constant of the third impedance converter 33 is variable, but is not limited thereto, and the constant of the third impedance converter 33 may be fixed.
- the constant of the second impedance converter 32 may be variably controlled so as to follow the fluctuation of the impedance ZL of the variable load 22.
- the constant of the 3rd impedance converter 33 may be fixed.
- the resistance value Rx of the fixed resistor 51 may be set arbitrarily. In this case, the resistance of the fixed resistor 51 is set so that the impedance from the input terminal of the third impedance converter 33 to the variable load 22 matches the resistance value Rx of the fixed resistor 51 in a situation where high-frequency power for charging is being output.
- the initial state constant of the third impedance converter 33 may be set in correspondence with the value Rx.
- the constant of the third impedance converter 33 may be set arbitrarily, and the resistance value Rx of the fixed resistor 51 may be set in correspondence with the constant of the third impedance converter 33.
- the power value is different between the high-frequency power for adjustment and the high-frequency power for charging.
- the present invention is not limited to this, and both power values may be set to be the same.
- the variable control of the constants of the first impedance converters 31 and 32 may be performed in a situation where high-frequency power for charging is being output.
- the connection destination of the second impedance converter 32 may be either the fixed resistor 51 or the third impedance converter 33.
- the power value of the high-frequency power output from the high-frequency power source 12 matches the power value of the high-frequency power for adjustment.
- each of the impedance converters 31 to 33 is not limited to that of the above embodiment, but is arbitrary.
- a ⁇ type, a T type, or the like may be used.
- the voltage waveform of the high frequency power output from the high frequency power supply 12 is arbitrary such as a pulse waveform or a sine wave.
- the resonance frequency of the power transmitter 13 and the resonance frequency of the power receiver 23 are set to be the same.
- the present invention is not limited to this, and both may be different within a range where power transmission is possible.
- the power transmitter 13 and the power receiver 23 have the same configuration, but are not limited thereto, and may have different configurations.
- the capacitors 13b and 23b are provided, but these may be omitted.
- magnetic field resonance is performed using the parasitic capacitances of the coils 13a and 23a.
- magnetic field resonance is used to realize non-contact power transmission.
- the present invention is not limited to this, and electromagnetic induction may be used.
- the non-contact power transmission device 10 is applied to a vehicle, but is not limited thereto, and may be applied to other devices. For example, it may be applied to charge a battery of a mobile phone.
- the variable load 22 includes the rectifier and the vehicle battery, but is not limited thereto, and may include other electronic devices.
- the subject of control of the high-frequency power supply 12 is not limited to the power supply controller 14 and may be, for example, the vehicle controller 24.
- the vehicle-side controller 24 transmits a high-frequency power on / off command of the high-frequency power source 12 and a command of the power value of the high-frequency power output from the high-frequency power source 12 to the power source-side controller 14, and the power source side controller 14 is based on the command.
- the high frequency power supply 12 may be driven.
- the power value of the output power of the high frequency power supply 12 can be grasped without receiving information related to the power value of the high frequency power from the power supply side controller 14. That is, the “grasping part” is not limited to the structure that is grasped by receiving information from the power supply side controller 14, but includes a structure that is grasped by itself by controlling the high frequency power supply 12.
- the power supply side controller 14 grasps the power value of the high frequency power output from the high frequency power supply 12 by receiving a command from the vehicle side controller 24 or the like. That is, both the ground-side device 11 and the vehicle-side device 21 include a grasping unit that grasps the power value of the high-frequency power output from the high-frequency power source 12. In addition, it is not restricted to this, Either one of the ground side apparatus 11 and the vehicle side apparatus 21 may be provided with the grasping
- the main body that controls the relay 52 is the vehicle-side controller 24, but is not limited thereto, and may be, for example, the power-side controller 14.
- the control subject of each of the impedance converters 31 to 33 is arbitrary.
- only one of the controllers 14 and 24 may control the impedance converters 31 to 33, or separate from each of the controllers 14 and 24.
- a control unit may be provided.
- the connection destination of the second impedance converter 32 is maintained in the third impedance converter 33.
- the connection destination of the second impedance converter 32 may be switched to the fixed resistor 51.
- the power transmitter 13 may include a resonance circuit including a primary side coil 13a and a primary side capacitor 13b, and a primary side coupling coil that is coupled to the resonance circuit by electromagnetic induction.
- the resonant circuit receives high frequency power from the primary side coupling coil by electromagnetic induction.
- the power receiver 23 includes a resonance circuit including a secondary side coil 23a and a secondary side capacitor 23b, and a secondary side coupling coil coupled to the resonance circuit by electromagnetic induction. The power may be taken out from the resonance circuit of the power receiver 23 by using it.
- the high frequency power supply 12 may be any of a power source, a voltage source, and a current source.
- a power source may be adopted as the high-frequency power source 12 and the impedance converters 31 to 33 may be used for impedance matching.
- the first impedance converter 31 connects the input end of the power transmitter 13 to the variable load 22 so that the impedance from the output end of the high frequency power source 12 to the variable load 22 matches the output impedance of the high frequency power source 12. Impedance conversion is performed on the impedance Zin. In this case, the impedance that matches the output impedance of the high-frequency power source 12 corresponds to the “predetermined impedance”.
- the second impedance converter 32 is configured so that the impedance from the output terminal of the power receiver 23 to the variable load 22 matches the impedance from the output terminal of the power receiver 23 to the high frequency power supply 12. Impedance conversion is performed on the impedance from the input end to the variable load 22.
- the primary side measuring device 41 measures the reflected wave power from the power transmitter 13 toward the high frequency power source 12, and the secondary side measuring device 42 reflects from the second impedance converter 32 toward the high frequency power source 12. Measure wave power.
- each controller 14 and 24 is the power value of each reflected wave power, when the power value of each reflected wave power becomes large in the situation where the power value of the high frequency power output from the high frequency power supply 12 is not fluctuating. It is advisable to perform variable control of the constants of the impedance converters 31 and 32 so as to be small. Moreover, in the said structure, it is good to variably control the constant of each impedance converter 31 and 32 simultaneously.
- the transmission efficiency is employed as an electrical characteristic depending on the relative position of each of the coils 13a and 23a.
- the present invention is not limited to this.
- the power value or impedance of the high-frequency power received by the power receiver 23 is employed. May be. These parameters may be combined.
- the electrical characteristics may be at least one of transmission efficiency, the power value of the high frequency power received by the power receiver 23, the power value of the reflected wave power, and the impedance.
- the impedance referred to here may be, for example, the impedance from the output end of the power receiver 23 to the high-frequency power source 12, the impedance Zin from the input end of the power transmitter 13 to the variable load 22, or the like.
- Two or more impedance converters may be provided in the ground side device 11. Moreover, you may provide three or more impedance converters in the vehicle side apparatus 21.
- FIG. instead of the third impedance converter 33, a DC / DC converter having a switching element that periodically switches may be provided between the rectifier and the vehicle battery.
- the impedance ZL of the variable load 22 depends on the ON / OFF duty ratio of the switching element, the duty ratio is adjusted by adjusting the duty ratio according to the power value of the high frequency power output from the high frequency power supply 12.
- the impedance ZL can be made constant.
- the vehicle battery corresponds to the “fluctuating load”
- the DC / DC converter corresponds to the “second impedance converter”.
- the adjustment of the duty ratio can be said to be the adjustment of the impedance of the DC / DC converter. That is, the “fluctuating load” is input with high frequency power received by the secondary coil 23a or DC power rectified therefrom.
- a DC / DC converter may be provided.
- the ON / OFF duty ratio of the switching element of the DC / DC converter may be adjusted with the constant of the third impedance converter 33 fixed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
送電機器から非接触で交流電力を受電可能な受電機器は、2次側コイルと変動負荷とインピーダンス変換部と把握部とを含む。2次側コイルは1次側コイルから交流電力を受電可能である。変動負荷は、入力される電力の電力値に応じてインピーダンスが変動する。インピーダンス変換部は、2次側コイルと変動負荷との間に設けられ、インピーダンスが可変に構成されている。把握部は、交流電源から出力されている交流電力の電力値を把握する。インピーダンス変換部のインピーダンスは、交流電源から出力されている交流電力の電力値が変動していないことが把握部により把握されている状況において1次側コイル及び2次側コイルの相対位置に依存する電気的特性が変動した場合に可変制御される。
Description
本発明は、受電機器、送電機器及び非接触電力伝送装置に関する。
従来から、電源コードや送電ケーブルを用いない非接触電力伝送装置の受電機器として、例えば磁場共鳴を用いた受電機器が知られている。例えば特許文献1の受電機器は、送電機器に設けられた1次側コイルと磁場共鳴可能な2次側コイルを備えている。そして、1次側コイルと2次側コイルとが磁場共鳴することにより、送電機器から受電機器に交流電力が伝送される。また、受電機器には、整流器と車両用バッテリとが設けられており、受電した交流電力は、整流器により直流電力に整流され、車両用バッテリに入力される。これにより、車両用バッテリが充電される。
ここで、上記のような受電機器及び非接触電力伝送装置においては、例えばバッテリ等といった、入力される電力の電力値に応じてインピーダンスが変動する変動負荷が設けられている構成において両コイルの位置ずれが発生すると、伝送効率が低下し易い。
なお、上記の事情は、磁場共鳴を用いて非接触の電力伝送を行う伝送装置に限られず、電磁誘導を用いて非接触で電力伝送を行う伝送装置についても同様である。
本発明の目的は、伝送効率の低下を好適に抑制することができる受電機器、送電機器及びその受電機器及び送電機器を備えた非接触電力伝送装置を提供することにある。
本発明の目的は、伝送効率の低下を好適に抑制することができる受電機器、送電機器及びその受電機器及び送電機器を備えた非接触電力伝送装置を提供することにある。
上記目的を達成するために、本発明の一態様によれば、交流電力を出力する交流電源及び前記交流電力が入力される1次側コイルを有する送電機器から非接触で前記交流電力を受電可能な受電機器が提供される。前記受電機器は、2次側コイルと変動負荷とインピーダンス変換部と把握部とを含む。前記2次側コイルは前記1次側コイルから前記交流電力を受電可能である。前記変動負荷は、入力される電力の電力値に応じてインピーダンスが変動する。前記インピーダンス変換部は、前記2次側コイルと前記変動負荷との間に設けられ、インピーダンスが可変に構成されている。前記把握部は、前記交流電源から出力されている前記交流電力の電力値を把握する。前記インピーダンス変換部のインピーダンスは、前記交流電源から出力されている前記交流電力の電力値が変動していないことが前記把握部により把握されている状況において前記1次側コイル及び前記2次側コイルの相対位置に依存する電気的特性が変動した場合に可変制御される。
上記構成によれば、交流電源から出力されている交流電力の電力値が変動していない状況においてコイルの相対位置に依存する電気的特性が変動した場合に、インピーダンス変換部のインピーダンスを可変制御することにより、伝送効率の低下を抑制することができる。
また、交流電源から出力されている交流電力の電力値が変動していない状況においては、変動負荷のインピーダンスは変動しにくい。このため、仮に上記電気的特性が変動負荷のインピーダンスにも依存する場合であっても、交流電源から出力されている交流電力の電力値が変動していない状況において上記電気的特性が変動した場合には、コイルの相対位置が変動したとみなすことができる。よって、変動負荷のインピーダンスの変動を考慮することなく、インピーダンス変換部のインピーダンスの可変制御を行うことができるため、可変制御の簡素化及びインピーダンス変換部の構成の簡素化を図ることができる。
好ましくは、前記電気的特性は、伝送効率、前記2次側コイルにて受電される交流電力の電力値、反射波電力の電力値、及びインピーダンスの少なくとも保突である。
上記構成によれば、電気的特性として、伝送効率、2次側コイルにて受電される交流電力の電力値、反射波電力の電力値、及びインピーダンスの少なくとも一つを採用することにより、コイルの相対位置の変動を検知することができる。
上記構成によれば、電気的特性として、伝送効率、2次側コイルにて受電される交流電力の電力値、反射波電力の電力値、及びインピーダンスの少なくとも一つを採用することにより、コイルの相対位置の変動を検知することができる。
この場合、上記各パラメータは、コイルの相対位置だけでなく、変動負荷のインピーダンスにも依存するため、上記各パラメータが変動した場合、その変動の要因を特定することが困難な場合がある。
これに対して、交流電源から出力されている交流電力の電力値が変動していないことに着目することにより、各パラメータの変動の要因がコイルの相対位置の変動であると特定することができる。これにより、上記各パラメータを用いて、コイルの相対位置の変動に好適に対応することができる。
好ましくは、前記インピーダンス変換部は第1のインピーダンス変換部と第2のインピーダンス変換部とを含む。前記第2のインピーダンス変換部は、前記第1のインピーダンス変換部と前記変動負荷との間に設けられ、インピーダンスが可変に構成される。前記第2のインピーダンス変換部のインピーダンスは、前記交流電源から出力されている前記交流電力の電力値が変動した場合に可変制御される。
上記構成によれば、コイルの相対位置の変動に対応するインピーダンス変換部と、交流電力の電力値の変動に伴う変動負荷のインピーダンスの変動に対応するインピーダンス変換部とが区別されている。これにより、一方の変動に対応することに起因して他方の変動に対応することができないといった不都合を回避することができる。
好ましくは、非接触電力伝送装置は、前記送電機器と前記受電機器とを含む。
上記構成によれば、非接触電力伝送装置において伝送効率の低下を好適に抑制することができる。
上記構成によれば、非接触電力伝送装置において伝送効率の低下を好適に抑制することができる。
以下、本発明に係る受電機器を備えた非接触電力伝送装置(非接触電力伝送システム)の一実施形態について説明する。
図1に示すように、非接触電力伝送装置10は、地上に設けられた地上側機器11と、車両に搭載された車両側機器21とを備えている。地上側機器11が送電機器(1次側機器)に対応し、車両側機器21が受電機器(2次側機器)に対応する。
図1に示すように、非接触電力伝送装置10は、地上に設けられた地上側機器11と、車両に搭載された車両側機器21とを備えている。地上側機器11が送電機器(1次側機器)に対応し、車両側機器21が受電機器(2次側機器)に対応する。
地上側機器11は、所定の周波数の高周波電力(交流電力)を出力可能な高周波電源12(交流電源)を備えている。高周波電源12は、インフラとしての系統電源から入力される電力を高周波電力に変換し、その変換された高周波電力を出力可能に構成されている。なお、高周波電源12は、異なる電力値の高周波電力を出力可能に構成されている。
高周波電源12から出力された高周波電力は、非接触で車両側機器21に伝送され、車両側機器21に設けられた負荷22に入力される。具体的には、非接触電力伝送装置10は、地上側機器11及び車両側機器21間の電力伝送を行うものとして、地上側機器11に設けられた送電器13(1次側共振回路)と、車両側機器21に設けられた受電器23(2次側共振回路)とを備えている。
送電器13及び受電器23は同一の構成となっており、両者は磁場共鳴可能に構成されている。具体的には、送電器13は、並列に接続された1次側コイル13a及び1次側コンデンサ13bからなる共振回路を含んでいる。受電器23は、並列に接続された2次側コイル23a及び2次側コンデンサ23bからなる共振回路を含んでいる。送電器13及び受電器23の共振周波数は同一に設定されている。
かかる構成によれば、高周波電源12から高周波電力が送電器13(1次側コイル13a)に入力された場合、送電器13と受電器23(2次側コイル23a)とが磁場共鳴する。これにより、受電器23は送電器13のエネルギの一部を受け取る。すなわち、受電器23は、送電器13から高周波電力を受電する。
受電器23にて受電された高周波電力が入力される負荷22には整流器(整流部)と車両用バッテリ(蓄電装置)とが含まれている。整流器は、高周波電力を直流電力に整流するものであって、予め定められた閾値電圧値が印加されることで動作する半導体素子(ダイオード)を有する。車両用バッテリには、整流された直流電力が入力される。受電器23にて受電された高周波電力は、車両用バッテリの充電に用いられる。
地上側機器11には、高周波電源12の制御を行う電源側コントローラ14が設けられている。また、車両側機器21には、電源側コントローラ14と無線通信可能な車両側コントローラ24が設けられている。非接触電力伝送装置10は、コントローラ14,24間での情報のやり取りを通じて、電力伝送の開始又は終了等を行う。各コントローラ14,24は「制御部」に対応する。
情報のやり取りの具体的な例としては、例えば、電源側コントローラ14は、高周波電源12からの高周波電力の出力が開始された場合、又は当該高周波電力の電力値が変更された場合には、高周波電力の電力値に関する情報を車両側コントローラ24に送信する。車両側コントローラ24は、その情報を受信することにより、高周波電源12から出力されている高周波電力の電力値を把握する。つまり、車両側コントローラ24は、高周波電源12から出力されている高周波電力の電力値を把握する把握部であるとも言える。この場合、車両側コントローラ24は、高周波電力の電力値に関する情報を受信しない限り、電力値の変更が行われていない、すなわち高周波電源12から出力されている高周波電力の電力値が変動していないと判断する。
車両側機器21には、車両用バッテリの充電量を検知する検知センサ25が設けられている。検知センサ25は、検知結果を車両側コントローラ24に送信する。これにより、車両側コントローラ24は、車両用バッテリの充電量を把握することが可能となっている。
非接触電力伝送装置10は、複数のインピーダンス変換器31~33を備えている。詳細には、非接触電力伝送装置10は、地上側機器11において高周波電源12と送電器13との間に設けられた1次側インピーダンス変換部としての第1インピーダンス変換器31を備えているとともに、車両側機器21において受電器23と負荷22との間に設けられた第2インピーダンス変換器32及び第3インピーダンス変換器33を備えている。第2インピーダンス変換器32が「インピーダンス変換部」又は「第1のインピーダンス変換部」に対応し、第3インピーダンス変換器33が「第2のインピーダンス変換部」に対応する。第2インピーダンス変換器32は受電器23に接続されており、第3インピーダンス変換器33は負荷22に接続されている。
第1インピーダンス変換器31は、第1インダクタ31a及び第1キャパシタ31bからなる逆L型のLC回路を含んでいる。第2インピーダンス変換器32は、第2インダクタ32a及び第2キャパシタ32bからなるL型のLC回路を含んでいる。第3インピーダンス変換器33は、第3インダクタ33a及び第3キャパシタ33bからなる逆L型のLC回路を含んでいる。
ここで、本発明者らは、受電器23(2次側コイル23a)の出力端から負荷22までのインピーダンスの実部が、送電器13及び受電器23間の伝送効率に寄与していることを見出した。具体的には、受電器23の出力端から負荷22までのインピーダンスの実部には、相対的に他の抵抗値よりも伝送効率を高くする特定抵抗値Routが存在することを見出した。換言すれば、受電器23の出力端から負荷22までのインピーダンスの実部には、所定の抵抗値(第1抵抗値)よりも伝送効率を高くする特定抵抗値Rout(第2抵抗値)が存在することを見出した。
詳細には、仮に送電器13の入力端に仮想負荷X1を設けた場合において、当該仮想負荷X1の抵抗値をRa1とし、受電器23(詳細には受電器23の出力端)から仮想負荷X1までの抵抗値をRb1とすると、特定抵抗値Routは√(Ra1×Rb1)である。
第2インピーダンス変換器32及び第3インピーダンス変換器33は、上記知見に基づいて、受電器23の出力端から負荷22までのインピーダンス(第2インピーダンス変換器32の入力端のインピーダンス)が特定抵抗値Routに近づく(好ましくは一致する)ように負荷22のインピーダンスZLをインピーダンス変換する。
ここで、高周波電源12から出力される高周波電力の電力値は、高周波電源12の出力端から負荷22までのインピーダンス、すなわち第1インピーダンス変換器31の入力端のインピーダンスに依存する。
かかる構成において、第1インピーダンス変換器31は、高周波電源12から所望の電力値の高周波電力が出力されるべく、受電器23の出力端から負荷22までのインピーダンスが特定抵抗値Routに近づいている状況における送電器13の入力端から負荷22までのインピーダンスZinをインピーダンス変換する。例えば、負荷22の車両用バッテリに対して入力される直流電力の電力値が充電に適した電力値となるのに要する高周波電源12の出力電力の電力値を、充電に適した電力値の高周波電力とする。そして、高周波電源12から充電に適した電力値の高周波電力が出力されるための高周波電源12の出力端から負荷22までのインピーダンス(第1インピーダンス変換器31の入力端のインピーダンス)を、充電に適した入力インピーダンスZtとする。この場合、第1インピーダンス変換器31は、高周波電源12の出力端から負荷22までのインピーダンスが上記充電に適した入力インピーダンスZtとなるように、送電器13の入力端から負荷22までのインピーダンスZinをインピーダンス変換する。なお、充電に適した入力インピーダンスZtが「所定のインピーダンス」に対応する。
ここで、特定抵抗値Routは、送電器13及び受電器23の構成(各コイル13a,23aの形状及びインダクタンス、各コンデンサ13b,23bのキャパシタンス等)、及び送電器13及び受電器23の相対位置によって決定される。このため、送電器13及び受電器23が予め定められた基準位置からずれた場合、すなわち送電器13及び受電器23の相対位置が変動した場合、特定抵抗値Routは変動する。
送電器13及び受電器23の相対位置の変動としては、例えば、図2(a)及び図2(b)に示す場合がある。図2(a)においては、送電器13の全体と受電器23の全体とが対向する位置を基準位置として設定している状況において、両者が基準位置からずれた状態で配置されている。図2(b)においては、車両における車両側機器21の搭載態様や、車両の車高のばらつき等によって、送電器13及び受電器23間の距離が変動し得る。
また、負荷22に含まれている車両用バッテリのインピーダンスは、入力される直流電力の電力値に応じて変動する。つまり、負荷22は、入力される電力の電力値に応じてインピーダンスZLが変動(変化)する変動負荷22である。
このように、特定抵抗値Routや変動負荷22のインピーダンスZLが変動すると、伝送効率が低下したり所望の電力値の高周波電力が得られなかったりする事態が生じ得る。これに対して、本非接触電力伝送装置10は、送電器13及び受電器23間の相対位置の変動や、変動負荷22のインピーダンスZLの変動に追従(対応)するための構成を備えている。当該構成について説明する。
図1に示すように、各インピーダンス変換器31~33の定数(インピーダンス)において、実部(レジスタンス)及び虚部(リアクタンス)、あるいはそのいずれかが可変(調整可能)となっている。本実施形態では、図1に示すように、各インピーダンス変換器31~33の各キャパシタ31b~33bのキャパシタンスは可変となっている。なお、定数(インピーダンス)は、変換比とも、インダクタンスやキャパシタンスとも言える。
第2インピーダンス変換器32の初期状態の定数は、送電器13及び受電器23が基準位置に配置され、高周波電源12から充電用の高周波電力が出力されている状況において、第3インピーダンス変換器33の定数が初期状態の第3インピーダンス変換器33の入力端から変動負荷22までのインピーダンスを特定抵抗値Routに変換する値である。また、第1インピーダンス変換器31の初期状態の定数は、送電器13及び受電器23が基準位置に配置されており、且つ、高周波電源12から充電用の高周波電力が出力されている状況において、送電器13の入力端から変動負荷22までのインピーダンスZinを、充電に適した入力インピーダンスZtに変換する値に設定されている。
高周波電源12と送電器13との間、詳細には高周波電源12と第1インピーダンス変換器31との間には、測定部としての1次側測定器41が設けられている。1次側測定器41は電源側コントローラ14に電気的に接続されており、当該電源側コントローラ14からの要求に応じて電圧波形及び電流波形を測定し、その測定結果を電源側コントローラ14に対して送信する。
受電器23と変動負荷22との間、詳細には受電器23と第2インピーダンス変換器32との間には、測定部としての2次側測定器42が設けられている。2次側測定器42は車両側コントローラ24に電気的に接続されており、当該車両側コントローラ24からの要求に応じて電圧波形及び電流波形を測定し、その測定結果を車両側コントローラ24に対して送信する。各コントローラ14,24は、各測定器41,42の測定結果に基づいて各インピーダンス変換器31~33の定数を可変制御する。
また、第2インピーダンス変換器32と第3インピーダンス変換器33との間には、入力される高周波電力の電力値に関わらず同一の抵抗値(インピーダンス)を有する固定抵抗(固定負荷)51が設けられている。そして、車両側機器21には、第2インピーダンス変換器32の接続先が、固定抵抗51か、変動負荷22が接続された第3インピーダンス変換器33になるように切り換わる切換部としてのリレー52が設けられている。なお、第2インピーダンス変換器32の接続先は、受電器23で受電し第2インピーダンス変換器32から出力される高周波電力の出力先とも言える。
各コントローラ14,24は、車両用バッテリの充電を行う充電シーケンスにて、各インピーダンス変換器31~33の定数の可変制御とともに、リレー52の制御を行う。上記充電シーケンスについて以下に詳細に説明する。なお、本充電シーケンスは、コントローラ14,24が互いに情報のやり取りを行いながら実行する。
先ず、コントローラ14,24は、情報のやり取りを通じて、車両が充電可能な位置、詳細には送電器13と受電器23とが磁場共鳴可能な位置に配置されていることを確認する。
その後、車両側コントローラ24は、リレー52を制御することにより、第2インピーダンス変換器32の接続先を固定抵抗51に設定する。
続いて、電源側コントローラ14は、高周波電源12から予め設定された調整用の高周波電力(小交流電力)が出力されるように高周波電源12を制御する。
続いて、電源側コントローラ14は、高周波電源12から予め設定された調整用の高周波電力(小交流電力)が出力されるように高周波電源12を制御する。
その後、各コントローラ14,24は、各測定器41,42の測定結果を把握する。そして、各コントローラ14,24は、電力伝送に支障が無いか否かを判定する。例えば、先ず各コントローラ14,24は、伝送効率が予め定められた閾値効率以上であるか否かを判定する。
伝送効率が閾値効率以上でない場合には、受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routからずれていることが想定される。この場合、車両側コントローラ24は、特定抵抗値Routに近づくように、第2インピーダンス変換器32の定数を可変制御する(充電前可変制御)。なお、この場合、例えば2次側測定器42にて測定される電圧波形及び電流波形から導出される各種パラメータ(電力値、力率等)を用いて、特定抵抗値Routを特定する。
第2インピーダンス変換器32の定数の可変制御によって、伝送効率が閾値効率以上となったことを確認した場合には、電源側コントローラ14は、高周波電源12から出力されている高周波電力の電力値(1次側測定器41にて測定される高周波電力の電力値)が調整用の高周波電力の電力値と一致しているか否かを判定する。高周波電源12から出力されている高周波電力の電力値が調整用の高周波電力の電力値からずれている場合には、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtからずれていることが想定される。この場合、電源側コントローラ14は、充電に適した入力インピーダンスZtに近づくように、1次側測定器41の測定結果に基づいて第1インピーダンス変換器31の定数を可変制御する。つまり、第2インピーダンス変換器32の定数の可変制御の後に、第1インピーダンス変換器31の定数の可変制御を行う。
なお、各インピーダンス変換器31,32の定数の可変制御を行っても、伝送効率が閾値効率未満、又は、高周波電源12からの出力電力の電力値が調整用の高周波電力の電力値からずれる場合には、電力伝送に支障があるとして、充電を中止するとともに、その旨を報知する。
電力伝送に支障がない場合には、電源側コントローラ14は、高周波電源12から調整用の高周波電力よりも電力値が大きい充電用の高周波電力(大交流電力)が出力されるように高周波電源12を制御する。そして、電源側コントローラ14は、充電用の高周波電力が出力されていることを車両側コントローラ24に通知する。
車両側コントローラ24は、上記高周波電力の電力値が変動した場合(上記通知を受信した場合)に、リレー52を制御して、第2インピーダンス変換器32の接続先を第3インピーダンス変換器33に変更する。
ここで、固定抵抗51の抵抗値(インピーダンス)Rxと、充電用の高周波電力が出力されている状態における第3インピーダンス変換器33の入力端から変動負荷22までのインピーダンスとが近づく(好ましくは一致する)ように、固定抵抗51の抵抗値Rx及び第3インピーダンス変換器33の初期状態の定数が設定されている。このため、リレー52の切換が行われた場合であっても、第2インピーダンス変換器32の出力端以降のインピーダンスが変動しにくくなっている。
その後、各コントローラ14,24は、高周波電源12から充電用の高周波電力が出力されている状況において、所定の頻度で各測定器41,42の測定結果を用いて、コイル13a,23aの相対位置に依存する電気的特性の一種である伝送効率を算出する。そして、各コントローラ14,24は、高周波電源12から充電用の高周波電力が出力されている状況において伝送効率が低下しているか否かを判定する。
なお、「高周波電源12から充電用の高周波電力が出力されている状況」とは、高周波電源12から出力されている高周波電力の電力値が変動していない状況とも、高周波電源12から出力されている高周波電力の電力値が一定である状況とも言える。
上記伝送効率の低下の判定は次のように行うことが考えられる。例えば各コントローラ14,24は、前回算出された伝送効率を記憶しておき、今回算出された伝送効率と、前回算出された伝送効率との差が予め定められた許容範囲内か否かを判定する。なお、比較対象の伝送効率としては、前回算出された伝送効率に限られず、調整用の高周波電力が出力されている状況において算出された伝送効率を用いてもよいし、電力伝送に支障があるか否かの判定に用いた閾値効率を用いてもよい。
各コントローラ14,24は、伝送効率が低下していないと判定した場合には、そのまま電力伝送を行う。一方、車両側コントローラ24は、伝送効率が低下したと判定した場合には、コイル13a,23aの位置ずれが発生したとして、伝送効率が高くなるように(伝送効率の低下量が低減されるように)、第2インピーダンス変換器32の定数の可変制御を行う(充電中可変制御)。そして、電源側コントローラ14は、第2インピーダンス変換器32の定数の可変制御の後に、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtとなるように、第1インピーダンス変換器31の定数の可変制御を行う。
なお、充電中に各インピーダンス変換器31,32の定数の可変制御を行う場合には、リレー52の切換は行わない。つまり、充電中の各インピーダンス変換器31,32の定数の可変制御は、第2インピーダンス変換器32と第3インピーダンス変換器33と変動負荷22とが接続された状態で行われる。
また、車両側コントローラ24は、充電中定期的に車両用バッテリの充電量を把握する。そして、車両側コントローラ24は、車両用バッテリの充電量が変更契機量となった場合に、電源側コントローラ14にその旨の通知を行う。電源側コントローラ14は、上記通知を受けて、高周波電源12から出力される高周波電力の電力値を変更し、車両側コントローラ24に対して変更した旨の通知を行う。この電力値の変動(変更)に伴い、変動負荷22のインピーダンスZLが変動し、受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routからずれる。
車両側コントローラ24は、電力値の変更に係る通知を受信した場合、上記電力値の変動に関わらず、受電器23の出力端から変動負荷22までのインピーダンスが一定(特定抵抗値Rout)となるように、第3インピーダンス変換器33の定数を可変制御する。詳細には、車両側コントローラ24は、第3インピーダンス変換器33の入力端から変動負荷22までのインピーダンスが一定となるように、変動負荷22のインピーダンスZLの変動に対応させて第3インピーダンス変換器33の定数を可変制御する。
なお、第3インピーダンス変換器33の定数の可変制御は任意であるが、例えば各測定器41,42の測定結果を参照しながらフィードバック制御を行ってもよい。また、例えば、高周波電源12から出力される高周波電力の電力値に関する電力値情報と第3インピーダンス変換器33に関する情報(詳細には第3インピーダンス変換器33の定数を特定するための定数情報)とを1対1で対応させて設定されたマップデータを設けてもよい。この場合、車両側コントローラ24は、マップデータを参照することにより、現在出力されている高周波電力に対応した定数情報を取得し、その定数情報にて特定される定数となるように第3インピーダンス変換器33の定数の可変制御を行う。
また、各コントローラ14,24は、第3インピーダンス変換器33の定数の可変制御後に、定期的に伝送効率を算出し、伝送効率が低下した場合には第1インピーダンス変換器31及び第2インピーダンス変換器32の定数を可変制御する。
その後、車両側コントローラ24は、検知センサ25の検知結果に基づいて、車両用バッテリの充電量が満充電量(終了契機量)となったか否かを判定し、満充電量となった場合には、電源側コントローラ14にその旨を通知する。電源側コントローラ14は、その通知を受けて、高周波電力の出力を停止するよう高周波電源12を制御する。
本実施形態の非接触電力伝送装置10の作用について以下に説明する。
第2インピーダンス変換器32は、受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routとなるようにインピーダンス変換している。そのため、伝送効率の向上が実現されている。
第2インピーダンス変換器32は、受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routとなるようにインピーダンス変換している。そのため、伝送効率の向上が実現されている。
また、第1インピーダンス変換器31は、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtとなるようにインピーダンス変換している。そのため、充電に適した電力値の高周波電力が変動負荷22に供給されている。
ここで、高周波電源12から出力されている高周波電力の電力値が変動していない状況において伝送効率が低下した場合には、コイル13a,23aの相対位置が変動した蓋然性が高い。この場合、第1インピーダンス変換器31の定数及び第2インピーダンス変換器32の定数の可変制御が行われる。これにより、コイル13a,23aの相対位置の変動に伴う伝送効率の低下や、高周波電源12から出力されている高周波電力の電力値の変動が抑制されている。
また、高周波電源12から出力される高周波電力の電力値が変動した場合には、第3インピーダンス変換器33の定数の可変制御が行われ、第3インピーダンス変換器33の入力端から変動負荷22までのインピーダンスが変動しないようになっている。このため、受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routに近づいた状態が維持される。
以上詳述した本実施形態は、以下の優れた利点を有する。
(1)車両側機器21における受電器23と変動負荷22との間に、定数(インピーダンス)が可変の第2インピーダンス変換器32を設けた。そして、高周波電源12から出力されている高周波電力の電力値が変動していないことが車両側コントローラ24にて把握されている状況において、コイル13a,23aの相対位置に依存する電気的特性の一種である伝送効率の変動(低下)に基づいて、第2インピーダンス変換器32の定数の可変制御が行われる。これにより、コイル13a,23aの相対位置が変動した場合における伝送効率の低下を好適に抑制することができる。
(1)車両側機器21における受電器23と変動負荷22との間に、定数(インピーダンス)が可変の第2インピーダンス変換器32を設けた。そして、高周波電源12から出力されている高周波電力の電力値が変動していないことが車両側コントローラ24にて把握されている状況において、コイル13a,23aの相対位置に依存する電気的特性の一種である伝送効率の変動(低下)に基づいて、第2インピーダンス変換器32の定数の可変制御が行われる。これにより、コイル13a,23aの相対位置が変動した場合における伝送効率の低下を好適に抑制することができる。
特に、仮に高周波電源12から出力されている高周波電力の電力値が変動している状況においてコイル13a,23aの相対位置が変動すると、特定抵抗値Routと変動負荷22のインピーダンスZLとの双方が変動することとなる。この場合、特定抵抗値Routとなる第2インピーダンス変換器32の定数を特定することができなかったり、その定数を特定するまでの制御が複雑なものとなったりし得る。また、上記2つの変動に追従するために、第2インピーダンス変換器32の構成の複雑化(例えば定数の可変範囲の広域化)が懸念される。
これに対して、本実施形態では、変動負荷22のインピーダンスZLが変動する要因として、変動負荷22に入力される高周波電力の電力値があり、その電力値は、高周波電源12から出力されている高周波電力の電力値に依存している点に着目した。すなわち、高周波電源12から出力されている高周波電力の電力値が変動していない状況において伝送効率が低下した場合には、コイル13a,23aの相対位置の変動が発生した蓋然性が高いとして、第2インピーダンス変換器32の定数の可変制御を行う。これにより、変動負荷22のインピーダンスZLの変動を考慮することなく、第2インピーダンス変換器32の定数の可変制御を行うことができるため、上記不都合を回避することができる。
(2)コイル13a,23aの相対位置に依存する電気的特性の一種として伝送効率を採用した。これにより、コイル13a,23aの相対位置の変動を好適に検知することができる。
ここで、伝送効率は、コイル13a,23aの相対位置だけでなく、変動負荷22のインピーダンスZLに依存するため、伝送効率が変動した場合、その変動の要因を特定することが困難な場合がある。
これに対して、本実施形態では、上述した通り、高周波電源12から出力されている高周波電力の電力値の変動の有無に着目することにより、伝送効率の変動の要因を特定することができる。これにより、伝送効率を用いてコイル13a,23aの相対位置の変動に好適に追従することができる。
(3)第2インピーダンス変換器32と変動負荷22との間に、定数が可変の第3インピーダンス変換器33を設けた。そして、高周波電源12から出力されている高周波電力の電力値が変動した場合に、第3インピーダンス変換器33の定数の可変制御が行われる。これにより、コイル13a,23aの相対位置の変動に追従するインピーダンス変換器と、変動負荷22のインピーダンスZLの変動に追従するインピーダンス変換器とが区別されている。そのため、一方の変動に追従することに起因して他方の変動に追従することができないといった不都合を回避することができる。よって、コイル13a,23aの相対位置の変動及び変動負荷22のインピーダンスZLの変動の双方に対して、好適に追従することができる。
(4)特に、既に説明した通り、伝送効率のみでは、どちらの変動が発生しているのかを特定することができない。これに対して、本実施形態によれば、伝送効率の低下に加えて、高周波電源12から出力されている高周波電力の電力値が変動したか否かを把握することにより、上記2つの変動のうちどちらが発生しているのかを特定することができる。これにより、第2インピーダンス変換器32及び第3インピーダンス変換器33のうちどちらのインピーダンス変換器の定数を可変制御するのかを特定することができる。
(5)変動負荷22とは別に固定抵抗51を設け、第2インピーダンス変換器32の接続先が、固定抵抗51か、第3インピーダンス変換器33及び変動負荷22になるように切り換わるリレー52を設けた。そして、充電を開始する前においては、第2インピーダンス変換器32の接続先を固定抵抗51にし、その状態で第2インピーダンス変換器32の定数の可変制御(充電前可変制御)を行う。これにより、変動負荷22のインピーダンスZLの変動を考慮することなく、第2インピーダンス変換器32の定数の可変制御を行うことができる。そのため、コイル13a,23aの相対位置の変動に対応した定数の可変制御を容易に行うことができる。
詳細には、仮に第2インピーダンス変換器32と第3インピーダンス変換器33とが接続されている状況において第2インピーダンス変換器32の定数の可変制御を行うと、第3インピーダンス変換器33の入力端に入力される高周波電力の電力値が変動し得る。このため、変動負荷22のインピーダンスZLの変動に対応するべく、第3インピーダンス変換器33の定数の可変制御を行う必要が生じる。すなわち、第2インピーダンス変換器32の定数、及び第3インピーダンス変換器33の定数の双方を同時に可変制御する必要が生じ、制御が煩雑となる。これに対して、本実施形態によれば、固定抵抗51の抵抗値Rxは一定であるため、第3インピーダンス変換器33の定数を可変制御することなく、第2インピーダンス変換器32の定数の可変制御を行うことができる。これにより、コイル13a,23aの相対位置の変動に対応した定数の可変制御を容易に行うことができる。
(6)充電前の第2インピーダンス変換器32の定数の可変制御の終了後には、第2インピーダンス変換器32の接続先を、変動負荷22に接続された第3インピーダンス変換器33にした。そして、充電中における各コイル13a,23aの相対位置が変動した場合には、固定抵抗51に接続することなく、第2インピーダンス変換器32の定数の可変制御(充電中可変制御)を行う。これにより、充電を中断することなく、伝送効率の低下を抑制することができる。
ここで、通常、充電の開始前においては、車両の駐車態様の自由度の高さに起因して、コイル13a,23a間のインピーダンスの変動範囲が大きい。一方、充電中にあっては、コイル13a,23a間のインピーダンスの変動範囲は小さい。このため、第2インピーダンス変換器32の定数の可変制御は、比較的簡素なものとなり易いため、第2インピーダンス変換器32を固定抵抗51に接続することなく、第2インピーダンス変換器32の定数の可変制御を行うことができる。
なお、第2インピーダンス変換器32の定数の可変制御の回数に着目すれば、リレー52は、車両側機器21が地上側機器11からの受電を開始してから最初の第2インピーダンス変換器32の定数の可変制御が行われる場合には、第2インピーダンス変換器32の接続先を固定抵抗51とする。そして、リレー52は、2回目目以降の第2インピーダンス変換器32の定数の可変制御が行われる場合には、第2インピーダンス変換器32の接続先を第3インピーダンス変換器33及び変動負荷22とする。この場合、「最初の第2インピーダンス変換器32の定数の可変制御」とは、充電シーケンスが開始されてから最初のものであり、例えば充電シーケンスの途中で一旦中断し、その後再開した場合の最初を除く。
(7)本発明者らは、受電器23の出力端から変動負荷22までのインピーダンスの実部には、他の抵抗値と比較して、相対的に伝送効率を高くする特定抵抗値Routが存在することを見出した。そして、第2インピーダンス変換器32は、受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routに近づくようにインピーダンス変換する。これにより、伝送効率の向上を図ることができる。
そして、コイル13a,23aの相対位置の変動に伴い特定抵抗値Routが変動することに対応させて、第2インピーダンス変換器32の定数を可変制御する。これにより、コイル13a,23aの相対位置が変動した場合であっても、高い伝送効率を維持することができる。
(8)受電器23の出力端から変動負荷22までのインピーダンスが特定抵抗値Routに近づいている状況における送電器13の入力端から変動負荷22までのインピーダンスZinをインピーダンス変換する第1インピーダンス変換器31を設けた。詳細には、第1インピーダンス変換器31は、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtとなるようにインピーダンス変換する。これにより、車両用バッテリの充電を好適に行うことができる。
また、電源側コントローラ14は、コイル13a,23aの位置ずれに対応させて、第1インピーダンス変換器31の定数の可変制御を行う。これにより、上記位置ずれに関わらず、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtとなる。すなわち、電源側コントローラ14は、高周波電源12の出力端から変動負荷22までのインピーダンスがコイル13a,23aの相対位置の変動に関わらず一定値に近づくように、第1インピーダンス変換器31の定数の可変制御を行う。これにより、安定した電力供給が実現されている。
(9)上記送電器13の入力端から変動負荷22までのインピーダンスZinは、第2インピーダンス変換器32の定数によって変動する。この点に着目し、第2インピーダンス変換器32の定数の可変制御を行った後に、第1インピーダンス変換器31の定数の可変制御を行う。これにより、無駄な可変制御が行われることを回避することができる。
詳述すると、例えば第1インピーダンス変換器31の定数の可変制御を行った後に、第2インピーダンス変換器32の定数の可変制御を行うと、第2インピーダンス変換器32の定数の可変制御によって、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtからずれてしまう。このため、再度、第1インピーダンス変換器31の定数の可変制御を要することとなる。
これに対して、本実施形態によれば、先に第2インピーダンス変換器32の定数の可変制御を行うことによって、上記不都合を回避することができる。これにより、制御の簡素化を図ることができる。
(10)第2インピーダンス変換器32が固定抵抗51に接続されている場合には、充電用の高周波電力よりも電力値が小さい調整用の高周波電力が出力されるように高周波電源12を制御した。第2インピーダンス変換器32が第3インピーダンス変換器33に接続されている場合には、充電用の高周波電力が出力されるように高周波電源12を制御した。これにより、各インピーダンス変換器31,32の定数の可変制御を行う場合に生じ得る電力損失を抑制することができる。
なお、上記実施形態は以下のように変更してもよい。
実施形態では、各インピーダンス変換器31~33はLC回路で構成されていたが、これに限られない。例えば、図3に示すように、第1インピーダンス変換器31に代えて、インダクタンスが可変の1次側誘導コイル61を設けてもよい。1次側誘導コイル61は1次側コイル13aと協動してトランスを構成する。当該1次側誘導コイル61及び送電器13間は、電磁誘導によって電力伝送される。この場合、1次側誘導コイル61が第1インピーダンス変換器31として機能するように、当該1次側誘導コイル61のインダクタンスを設定するとよい。
実施形態では、各インピーダンス変換器31~33はLC回路で構成されていたが、これに限られない。例えば、図3に示すように、第1インピーダンス変換器31に代えて、インダクタンスが可変の1次側誘導コイル61を設けてもよい。1次側誘導コイル61は1次側コイル13aと協動してトランスを構成する。当該1次側誘導コイル61及び送電器13間は、電磁誘導によって電力伝送される。この場合、1次側誘導コイル61が第1インピーダンス変換器31として機能するように、当該1次側誘導コイル61のインダクタンスを設定するとよい。
同様に、受電器23と2次側測定器42との間に、第2インピーダンス変換器32に代えて、インダクタンスが可変の2次側誘導コイル62を設けてもよい。2次側誘導コイル62は2次側コイル23aと協働してトランスを構成する。受電器23及び2次側誘導コイル62間は、電磁誘導によって電力伝送される。この場合、2次側誘導コイル62が第2インピーダンス変換器32として動作するように、当該2次側誘導コイル62のインダクタンスを設定するとよい。
インピーダンス変換器31~33のうち少なくとも一つを、トランスに置換してもよい。
第1インピーダンス変換器31は、力率が改善されるように(所定のインピーダンスのリアクタンスが0に近づくように)、送電器13の入力端から変動負荷22までのインピーダンスZinをインピーダンス変換してもよい。
第1インピーダンス変換器31は、力率が改善されるように(所定のインピーダンスのリアクタンスが0に近づくように)、送電器13の入力端から変動負荷22までのインピーダンスZinをインピーダンス変換してもよい。
実施形態では、3つのインピーダンス変換器31~33が設けられていたが、これに限られない。例えば、第1インピーダンス変換器31を省略してもよい。また、地上側機器11に、第1インピーダンス変換器31とは別に、力率を改善させるインピーダンス変換器を設けてもよい。また、第3インピーダンス変換器33を省略してもよい。
実施形態では、第3インピーダンス変換器33の定数が可変であったが、これに限られず、第3インピーダンス変換器33の定数が固定であってもよい。この場合、変動負荷22のインピーダンスZLの変動に追従するように第2インピーダンス変換器32の定数を可変制御するとよい。但し、コイル13a,23aの相対位置の変動、及び変動負荷22のインピーダンスZLの変動の双方に好適に追従することができる点に着目すれば、第3インピーダンス変換器33の定数を可変とするとよい。また、第1インピーダンス変換器31の定数を固定としてもよい。
固定抵抗51の抵抗値Rxを任意に設定してもよい。この場合、充電用の高周波電力が出力されている状況における第3インピーダンス変換器33の入力端から変動負荷22までのインピーダンスが固定抵抗51の抵抗値Rxと一致するように、固定抵抗51の抵抗値Rxに対応させて、第3インピーダンス変換器33の初期状態の定数を設定すればよい。逆に、第3インピーダンス変換器33の定数を任意に設定し、その第3インピーダンス変換器33の定数に対応させて、固定抵抗51の抵抗値Rxを設定してもよい。
実施形態では、調整用の高周波電力と、充電用の高周波電力とで電力値が異なっていたが、これに限られず、両者の電力値を同一に設定してもよい。
また、充電用の高周波電力が出力されている状況にて、最初の各インピーダンス変換器31,32の定数の可変制御を行ってもよい。この場合、第2インピーダンス変換器32の接続先は、固定抵抗51及び第3インピーダンス変換器33のいずれであってもよい。
また、充電用の高周波電力が出力されている状況にて、最初の各インピーダンス変換器31,32の定数の可変制御を行ってもよい。この場合、第2インピーダンス変換器32の接続先は、固定抵抗51及び第3インピーダンス変換器33のいずれであってもよい。
実施形態では、高周波電源12から出力されている高周波電力の電力値が調整用の高周波電力の電力値と一致しているか否かの判定を行っている。これに代えて、高周波電源12の出力端から変動負荷22までのインピーダンスが充電に適した入力インピーダンスZtと一致しているか(又は両者の差が許容範囲内か)否かの判定を行ってもよい。
各インピーダンス変換器31~33の具体的な構成は、上記実施形態のものに限定されず、任意である。例えば、π型、T型等を用いてもよい。
高周波電源12から出力される高周波電力の電圧波形としては、パルス波形、正弦波等任意である。
高周波電源12から出力される高周波電力の電圧波形としては、パルス波形、正弦波等任意である。
実施形態では、送電器13の共振周波数と受電器23の共振周波数とは同一に設定されていたが、これに限られず、電力伝送が可能な範囲内で両者を異ならせてもよい。
実施形態では、送電器13と受電器23とは同一の構成であったが、これに限られず、異なる構成であってもよい。
実施形態では、送電器13と受電器23とは同一の構成であったが、これに限られず、異なる構成であってもよい。
実施形態では、各コンデンサ13b,23bを設けたが、これらを省略してもよい。この場合、各コイル13a,23aの寄生容量を用いて磁場共鳴させる。
実施形態では、非接触の電力伝送を実現させるために磁場共鳴を用いたが、これに限られず、電磁誘導を用いてもよい。
実施形態では、非接触の電力伝送を実現させるために磁場共鳴を用いたが、これに限られず、電磁誘導を用いてもよい。
実施形態では、非接触電力伝送装置10は、車両に適用されていたが、これに限られず、他の機器に適用してもよい。例えば、携帯電話のバッテリを充電するのに適用してもよい。
実施形態では、変動負荷22には、整流器及び車両用バッテリが含まれていたが、これに限られず、他の電子機器が含まれていてもよい。
高周波電源12の制御の主体は、電源側コントローラ14に限られず、例えば車両側コントローラ24であってもよい。例えば、車両側コントローラ24が、高周波電源12の高周波電力のオンオフ指令及び高周波電源12から出力される高周波電力の電力値の指令を電源側コントローラ14に送信し、電源側コントローラ14がその指令に基づいて高周波電源12を駆動させてもよい。この場合、電源側コントローラ14から高周波電力の電力値に関する情報を受信することなく、高周波電源12の出力電力の電力値を把握することができる。つまり、「把握部」とは、電源側コントローラ14から情報を受信することにより把握する構成に限られず、自らが高周波電源12を制御することにより把握する構成を含む。
高周波電源12の制御の主体は、電源側コントローラ14に限られず、例えば車両側コントローラ24であってもよい。例えば、車両側コントローラ24が、高周波電源12の高周波電力のオンオフ指令及び高周波電源12から出力される高周波電力の電力値の指令を電源側コントローラ14に送信し、電源側コントローラ14がその指令に基づいて高周波電源12を駆動させてもよい。この場合、電源側コントローラ14から高周波電力の電力値に関する情報を受信することなく、高周波電源12の出力電力の電力値を把握することができる。つまり、「把握部」とは、電源側コントローラ14から情報を受信することにより把握する構成に限られず、自らが高周波電源12を制御することにより把握する構成を含む。
また、上記構成おいては、電源側コントローラ14は、車両側コントローラ24からの指令を受信すること等によって、高周波電源12から出力される高周波電力の電力値を把握する。すなわち、地上側機器11及び車両側機器21の双方は、高周波電源12から出力されている高周波電力の電力値を把握する把握部を備えている。なお、これに限られず、地上側機器11及び車両側機器21のいずれか一方が把握部を備えていてもよい。
リレー52を制御する主体は車両側コントローラ24であったが、これに限られず、例えば電源側コントローラ14であってもよい。また、各インピーダンス変換器31~33の制御主体は任意であり、例えばコントローラ14,24のうち一方のみがインピーダンス変換器31~33を制御してもよいし、各コントローラ14,24とは別に専用の制御部を設けてもよい。
実施形態では、充電中(2回目以降)に各インピーダンス変換器31,32の定数の可変制御を行う場合には、第2インピーダンス変換器32の接続先を第3インピーダンス変換器33に維持するが、これに限られない。例えば、充電中に各インピーダンス変換器31,32の定数の可変制御を行う場合には、第2インピーダンス変換器32の接続先を固定抵抗51に切り換えてもよい。
送電器13は、1次側コイル13a及び1次側コンデンサ13bからなる共振回路と、その共振回路と電磁誘導で結合する1次側結合コイルとを有していてもよい。この場合、上記共振回路は、上記1次側結合コイルから電磁誘導によって高周波電力を受ける。同様に、受電器23は、2次側コイル23a及び2次側コンデンサ23bからなる共振回路と、その共振回路と電磁誘導で結合する2次側結合コイルとを有し、2次側結合コイルを用いて受電器23の共振回路から電力を取り出してもよい。
高周波電源12は、電力源、電圧源及び電流源のいずれであってもよい。
高周波電源12として電力源を採用し、各インピーダンス変換器31~33を、インピーダンス整合させるのに用いてもよい。詳細には、第1インピーダンス変換器31は、高周波電源12の出力端から変動負荷22までのインピーダンスが高周波電源12の出力インピーダンスと整合するように、送電器13の入力端から変動負荷22までのインピーダンスZinをインピーダンス変換する。この場合、高周波電源12の出力インピーダンスと整合するインピーダンスが、「所定のインピーダンス」に対応する。
高周波電源12として電力源を採用し、各インピーダンス変換器31~33を、インピーダンス整合させるのに用いてもよい。詳細には、第1インピーダンス変換器31は、高周波電源12の出力端から変動負荷22までのインピーダンスが高周波電源12の出力インピーダンスと整合するように、送電器13の入力端から変動負荷22までのインピーダンスZinをインピーダンス変換する。この場合、高周波電源12の出力インピーダンスと整合するインピーダンスが、「所定のインピーダンス」に対応する。
また、第2インピーダンス変換器32は、受電器23の出力端から変動負荷22までのインピーダンスが受電器23の出力端から高周波電源12までのインピーダンスと整合するように、第3インピーダンス変換器33の入力端から変動負荷22までのインピーダンスをインピーダンス変換する。
かかる構成においては、1次側測定器41は、送電器13から高周波電源12に向かう反射波電力を測定し、2次側測定器42は、第2インピーダンス変換器32から高周波電源12に向かう反射波電力を測定する。そして、各コントローラ14,24は、高周波電源12から出力されている高周波電力の電力値が変動していない状況において各反射波電力の電力値が大きくなった場合に、各反射波電力の電力値が小さくなるように各インピーダンス変換器31,32の定数の可変制御を行うとよい。また、上記構成においては、各インピーダンス変換器31,32の定数を同時に可変制御するとよい。
実施形態では、各コイル13a,23aの相対位置に依存する電気的特性として伝送効率を採用したが、これに限られず、例えば受電器23にて受電される高周波電力の電力値や、インピーダンスを採用してもよい。また、これらのパラメータを組み合わせてもよい。要は、電気的特性とは、伝送効率、受電器23にて受電される高周波電力の電力値、反射波電力の電力値、及びインピーダンスの少なくとも一つであればよい。
なお、ここで言うインピーダンスとは、例えば受電器23の出力端から高周波電源12までのインピーダンスや、送電器13の入力端から変動負荷22までのインピーダンスZinなどが考えられる。
地上側機器11に、2つ以上のインピーダンス変換器を設けてもよい。また、車両側機器21に3つ以上のインピーダンス変換器を設けてもよい。
第3インピーダンス変換器33に代えて、整流器と車両用バッテリとの間に、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータを設けてもよい。この場合、変動負荷22のインピーダンスZLは、スイッチング素子のオンオフのデューティ比に依存するため、高周波電源12から出力される高周波電力の電力値に応じて、デューティ比を調整することにより変動負荷22のインピーダンスZLを一定にすることができる。なお、この場合、車両用バッテリが「変動負荷」に対応し、DC/DCコンバータが「第2のインピーダンス変換部」に対応する。また、デューティ比の調整は、DC/DCコンバータのインピーダンスの調整とも言える。つまり、「変動負荷」には、2次側コイル23aにて受電された高周波電力又はそれが整流された直流電力が入力される。
第3インピーダンス変換器33に代えて、整流器と車両用バッテリとの間に、周期的にスイッチングするスイッチング素子を有するDC/DCコンバータを設けてもよい。この場合、変動負荷22のインピーダンスZLは、スイッチング素子のオンオフのデューティ比に依存するため、高周波電源12から出力される高周波電力の電力値に応じて、デューティ比を調整することにより変動負荷22のインピーダンスZLを一定にすることができる。なお、この場合、車両用バッテリが「変動負荷」に対応し、DC/DCコンバータが「第2のインピーダンス変換部」に対応する。また、デューティ比の調整は、DC/DCコンバータのインピーダンスの調整とも言える。つまり、「変動負荷」には、2次側コイル23aにて受電された高周波電力又はそれが整流された直流電力が入力される。
なお、第3インピーダンス変換器33に加えて、DC/DCコンバータを設けてもよい。この場合、第3インピーダンス変換器33の定数を固定として、DC/DCコンバータのスイッチング素子のオンオフのデューティ比を調整するとよい。
Claims (12)
- 交流電力を出力する交流電源及び前記交流電力が入力される1次側コイルを有する送電機器から非接触で前記交流電力を受電可能な受電機器において、
前記1次側コイルから前記交流電力を受電可能な2次側コイルと、
入力される電力の電力値に応じてインピーダンスが変動する変動負荷と、
前記2次側コイルと前記変動負荷との間に設けられ、インピーダンスが可変に構成されたインピーダンス変換部と、
前記交流電源から出力されている前記交流電力の電力値を把握する把握部と、
を備え、
前記インピーダンス変換部のインピーダンスは、前記交流電源から出力されている前記交流電力の電力値が変動していないことが前記把握部により把握されている状況において前記1次側コイル及び前記2次側コイルの相対位置に依存する電気的特性が変動した場合に可変制御される受電機器。 - 前記電気的特性は、伝送効率、前記2次側コイルにて受電される交流電力の電力値、反射波電力の電力値、及びインピーダンスの少なくとも一つである請求項1に記載の受電機器。
- 前記インピーダンス変換部は第1のインピーダンス変換部と第2のインピーダンス変換部とを含み、
前記第2のインピーダンス変換部は前記第1のインピーダンス変換部と前記変動負荷との間に設けられ、インピーダンスが可変に構成されており、
前記第2のインピーダンス変換部のインピーダンスは、前記交流電源から出力されている前記交流電力の電力値が変動した場合に可変制御される請求項1又は請求項2に記載の受電機器。 - 前記第2のインピーダンス変換部のインピーダンスは、前記変動負荷のインピーダンスが変動する場合、前記第2のインピーダンス変換部の入力端から前記変動負荷までのインピーダンスが一定となるように可変制御される請求項3に記載の受電機器。
- 前記2次側コイルの出力端から前記変動負荷までのインピーダンスの実部には、相対的に他の抵抗値よりも伝送効率を高くする特定抵抗値が存在しており、
前記インピーダンス変換部は、前記2次側コイルの出力端から前記変動負荷までのインピーダンスが前記特定抵抗値に近づくようにインピーダンス変換する請求項1~4のうちいずれか一項に記載の受電機器。 - 前記1次側コイルの入力端に抵抗値がRa1の仮想負荷を設けた場合の前記2次側コイルから前記仮想負荷までの抵抗値をRb1とすると、前記特定抵抗値は√(Ra1×Rb1)である請求項5に記載の受電機器。
- 前記変動負荷とは別に設けられ、入力される電力の電力値に関わらず同一のインピーダンスを有する固定負荷と、
前記2次側コイルで受電し前記第1のインピーダンス変換部から出力される前記交流電力の出力先が、前記固定負荷か、前記第2のインピーダンス変換部及び前記変動負荷になるように切り換わる切換部と、
をさらに備えている請求項3に記載の受電機器。 - 前記切換部は、前記2次側コイルで受電し前記第1のインピーダンス変換部から出力される前記交流電力の出力先が前記第2のインピーダンス変換部及び前記変動負荷となっている状況において、前記交流電源から出力されている前記交流電力の電力値が変動していないことが前記把握部により把握され、且つ、前記電気的特性が変動した場合には、前記2次側コイルで受電し前記第1のインピーダンス変換部から出力される前記交流電力の出力先を、前記第2のインピーダンス変換部及び前記変動負荷に維持する請求項7に記載の受電機器。
- 前記切換部は、前記送電機器からの受電を開始してから最初の前記第1のインピーダンス変換部のインピーダンスの可変制御が行われる場合には、前記2次側コイルで受電し前記第1のインピーダンス変換部から出力される前記交流電力の出力先が前記固定負荷となるように切り替わり、
前記切換部は、2回目以降の前記第1のインピーダンス変換部のインピーダンスの可変制御が行われる場合には、前記2次側コイルで受電し前記第1のインピーダンス変換部から出力される前記交流電力の出力先が前記第2のインピーダンス変換部及び前記変動負荷となるように切り換わる請求項7に記載の受電機器。 - 前記送電機器と、
請求項1~9のうちいずれか一項に記載の受電機器と、
を備えている非接触電力伝送装置。 - 制御部をさらに備え、
前記送電機器は、前記交流電源と前記1次側コイルとの間に設けられる1次側インピーダンス変換部を含み、該1次側インピーダンス変換部は前記交流電源の出力端から前記変動負荷までのインピーダンスが所定のインピーダンスに近づくように、前記1次側コイルの入力端から前記変動負荷までのインピーダンスをインピーダンス変換し、
前記制御部は、前記交流電源から出力されている前記交流電力の電力値が変動していない状況において前記電気的特性が変動した場合に、前記インピーダンス変換部のインピーダンス及び前記1次側インピーダンス変換部のインピーダンスを可変制御する請求項10に記載の非接触電力伝送装置。 - 2次側コイルを有する受電機器に対して非接触で交流電力を送電可能な送電機器において、
前記交流電力を出力する交流電源と、
前記交流電力が入力される1次側コイルと、
前記交流電源と前記1次側コイルとの間に設けられ、インピーダンスが可変に構成されたインピーダンス変換部と、
前記交流電源から出力されている前記交流電力の電力値を把握する把握部と、
を備え、
前記インピーダンス変換部のインピーダンスは、前記交流電源から出力されている前記交流電力の電力値が変動していないことが前記把握部により把握されている状況において、前記1次側コイル及び前記2次側コイルの相対位置に依存する電気的特性が変動した場合に可変制御される送電機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/433,072 US20150255991A1 (en) | 2012-10-03 | 2013-09-12 | Power receiving device, power supply device, and wireless power transfer apparatus |
EP13843660.5A EP2905873A4 (en) | 2012-10-03 | 2013-09-12 | ENERGY RECEIVING DEVICE, ENERGY TRANSMISSION DEVICE AND CONTACTLESS ENERGY TRANSMISSION DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-221260 | 2012-10-03 | ||
JP2012221260A JP5962408B2 (ja) | 2012-10-03 | 2012-10-03 | 受電機器及び非接触電力伝送装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014054396A1 true WO2014054396A1 (ja) | 2014-04-10 |
Family
ID=50434726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074622 WO2014054396A1 (ja) | 2012-10-03 | 2013-09-12 | 受電機器、送電機器及び非接触電力伝送装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150255991A1 (ja) |
EP (1) | EP2905873A4 (ja) |
JP (1) | JP5962408B2 (ja) |
WO (1) | WO2014054396A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6094204B2 (ja) * | 2012-12-20 | 2017-03-15 | Tdk株式会社 | ワイヤレス電力伝送システム |
JP6111160B2 (ja) * | 2013-07-18 | 2017-04-05 | 本田技研工業株式会社 | 電動車両 |
GB2534114A (en) * | 2014-09-30 | 2016-07-20 | Drayson Tech (Europe) Ltd | Inductive power transfer system |
US20180083488A1 (en) * | 2016-09-22 | 2018-03-22 | Qualcomm Incorporated | Methods and apparatus for wireless power and communication transfer |
US11018533B2 (en) * | 2016-12-16 | 2021-05-25 | General Electric Company | Calibration device and method for determining an optimal operating frequency of a power transfer system |
US10847979B2 (en) * | 2018-12-14 | 2020-11-24 | Zhuhai Jieli Technology Co., Ltd | Charging and communication system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009106136A (ja) | 2007-10-25 | 2009-05-14 | Toyota Motor Corp | 電動車両および車両用給電装置 |
JP2010141977A (ja) * | 2008-12-09 | 2010-06-24 | Toyota Industries Corp | 非接触電力伝送装置における電力伝送方法及び非接触電力伝送装置 |
JP2010141976A (ja) * | 2008-12-09 | 2010-06-24 | Toyota Industries Corp | 非接触電力伝送装置 |
WO2011061821A1 (ja) * | 2009-11-18 | 2011-05-26 | 株式会社 東芝 | 無線電力伝送装置 |
JP2011244530A (ja) * | 2010-05-14 | 2011-12-01 | Toyota Industries Corp | 共鳴型非接触給電システムの受電側設備 |
JP2012085426A (ja) * | 2010-10-08 | 2012-04-26 | Sony Corp | 給電装置および給電システム |
JP2012110154A (ja) * | 2010-11-18 | 2012-06-07 | Toshiba Corp | 無線電力伝送装置 |
JP2012135117A (ja) * | 2010-12-21 | 2012-07-12 | Panasonic Corp | 非接触電力伝送システム |
WO2012111085A1 (ja) * | 2011-02-15 | 2012-08-23 | トヨタ自動車株式会社 | 非接触受電装置およびそれを搭載した車両、非接触給電設備、非接触受電装置の制御方法、ならびに非接触給電設備の制御方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102239622A (zh) * | 2008-12-09 | 2011-11-09 | 株式会社丰田自动织机 | 非接触电力传输装置及非接触电力传输装置中的电力传输方法 |
US9391468B2 (en) * | 2010-05-14 | 2016-07-12 | Kabushiki Kaisha Toyota Jidoshokki | Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system |
CN103270669B (zh) * | 2010-12-24 | 2016-03-09 | 丰田自动车株式会社 | 非接触供电系统、车辆、供电设备及非接触供电系统的控制方法 |
-
2012
- 2012-10-03 JP JP2012221260A patent/JP5962408B2/ja not_active Expired - Fee Related
-
2013
- 2013-09-12 EP EP13843660.5A patent/EP2905873A4/en not_active Withdrawn
- 2013-09-12 US US14/433,072 patent/US20150255991A1/en not_active Abandoned
- 2013-09-12 WO PCT/JP2013/074622 patent/WO2014054396A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009106136A (ja) | 2007-10-25 | 2009-05-14 | Toyota Motor Corp | 電動車両および車両用給電装置 |
JP2010141977A (ja) * | 2008-12-09 | 2010-06-24 | Toyota Industries Corp | 非接触電力伝送装置における電力伝送方法及び非接触電力伝送装置 |
JP2010141976A (ja) * | 2008-12-09 | 2010-06-24 | Toyota Industries Corp | 非接触電力伝送装置 |
WO2011061821A1 (ja) * | 2009-11-18 | 2011-05-26 | 株式会社 東芝 | 無線電力伝送装置 |
JP2011244530A (ja) * | 2010-05-14 | 2011-12-01 | Toyota Industries Corp | 共鳴型非接触給電システムの受電側設備 |
JP2012085426A (ja) * | 2010-10-08 | 2012-04-26 | Sony Corp | 給電装置および給電システム |
JP2012110154A (ja) * | 2010-11-18 | 2012-06-07 | Toshiba Corp | 無線電力伝送装置 |
JP2012135117A (ja) * | 2010-12-21 | 2012-07-12 | Panasonic Corp | 非接触電力伝送システム |
WO2012111085A1 (ja) * | 2011-02-15 | 2012-08-23 | トヨタ自動車株式会社 | 非接触受電装置およびそれを搭載した車両、非接触給電設備、非接触受電装置の制御方法、ならびに非接触給電設備の制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2905873A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2905873A1 (en) | 2015-08-12 |
JP2014075884A (ja) | 2014-04-24 |
JP5962408B2 (ja) | 2016-08-03 |
US20150255991A1 (en) | 2015-09-10 |
EP2905873A4 (en) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6089687B2 (ja) | 受電機器及び非接触電力伝送装置 | |
JP5880122B2 (ja) | 非接触電力伝送装置 | |
JP6089464B2 (ja) | 非接触電力伝送装置 | |
WO2014054396A1 (ja) | 受電機器、送電機器及び非接触電力伝送装置 | |
WO2013183700A1 (ja) | 受電機器及び非接触電力伝送装置 | |
WO2014007352A1 (ja) | 送電機器及び非接触電力伝送装置 | |
WO2014045873A1 (ja) | 受電機器及び非接触電力伝送装置 | |
JP5888201B2 (ja) | 受電機器、及び非接触電力伝送装置 | |
WO2014054395A1 (ja) | 送電機器、受電機器及び非接触電力伝送装置 | |
JP5942836B2 (ja) | 非接触電力伝送装置及び送電機器 | |
WO2014069148A1 (ja) | 非接触電力伝送装置および受電機器 | |
WO2015083578A1 (ja) | 非接触電力伝送装置及び受電機器 | |
WO2014003026A1 (ja) | 非接触電力伝送装置及び受電機器 | |
JP2016092959A (ja) | 送電機器及び非接触電力伝送装置 | |
JP6015608B2 (ja) | 受電機器及び非接触電力伝送装置 | |
JP5991380B2 (ja) | 非接触電力伝送装置 | |
WO2015098747A1 (ja) | 送電機器及び非接触電力伝送装置 | |
WO2014030689A1 (ja) | 非接触電力伝送装置および受電機器 | |
JP2014121171A (ja) | 送電機器及び非接触電力伝送装置 | |
JP2015019450A (ja) | 非接触電力伝送装置、送電機器、受電機器 | |
JP2014193029A (ja) | 送電機器、受電機器及び非接触電力伝送装置 | |
JP2014166093A (ja) | 受電機器及び非接触電力伝送装置 | |
JP2016208602A (ja) | 非接触電力伝送装置 | |
JP2014121114A (ja) | 受電機器、送電機器及び非接触電力伝送装置 | |
JP2014090634A (ja) | 非接触電力伝送装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13843660 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14433072 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013843660 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013843660 Country of ref document: EP |