[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014050225A1 - 人体検知センサ及び自動水栓 - Google Patents

人体検知センサ及び自動水栓 Download PDF

Info

Publication number
WO2014050225A1
WO2014050225A1 PCT/JP2013/066329 JP2013066329W WO2014050225A1 WO 2014050225 A1 WO2014050225 A1 WO 2014050225A1 JP 2013066329 W JP2013066329 W JP 2013066329W WO 2014050225 A1 WO2014050225 A1 WO 2014050225A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
determination
unit
human body
Prior art date
Application number
PCT/JP2013/066329
Other languages
English (en)
French (fr)
Inventor
雄喜 白井
安住 鎌田
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Priority to US14/430,920 priority Critical patent/US10072403B2/en
Priority to CN201380050253.3A priority patent/CN104685383B/zh
Priority to EP13842954.3A priority patent/EP2902813A4/en
Priority to CA 2885986 priority patent/CA2885986A1/en
Publication of WO2014050225A1 publication Critical patent/WO2014050225A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/05Arrangements of devices on wash-basins, baths, sinks, or the like for remote control of taps
    • E03C1/055Electrical control devices, e.g. with push buttons, control panels or the like
    • E03C1/057Electrical control devices, e.g. with push buttons, control panels or the like touchless, i.e. using sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Definitions

  • the present invention relates to a human body detection sensor that optically detects a human body.
  • an electronic faucet for kitchens has been realized in which the sensor surface of a non-contact type touchless sensor is disposed on the outer peripheral surface of a water discharge pipe (for example, see Patent Document 1).
  • a water discharge pipe for example, see Patent Document 1
  • the sensor surface is arranged near the water discharge pipe at the front end side of the water discharge pipe, it is possible to operate on the near side without having to extend the hand beyond the sink, so that the usability is improved.
  • the present invention has been made in view of the above-described conventional problems, and intends to provide a human body detection sensor with high detection performance that can be applied to an automatic water faucet for kitchens, and an automatic water faucet with high operational reliability. To do.
  • a first aspect of the present invention is a photoelectric human body detection sensor including a light emitting unit that projects light toward a detection target and a light receiving unit that receives reflected light generated by light projected by the light emitting unit.
  • a received light amount determination means for determining whether the received light amount of the reflected light received by the light receiving unit is greater than or less than a predetermined threshold; Using the reflected light incident on the light receiving unit, a distance index indicating the distance to the detection target or the degree of the distance is obtained, and the presence or absence of the detection target is determined based on whether or not the distance index is included in a predetermined range.
  • Ranging determination means A moving object determining means for detecting a temporal change in reflected light incident on the light receiving unit to determine the presence or absence of a moving object; Detection determination means for determining whether the detection target is detected or non-detected, The detection determination unit is configured to detect the non-detection from the detection state on the condition that the distance measurement determination unit determines that there is no detection target when the amount of reflected light received in the detection state is equal to or greater than the predetermined threshold. While switching judgment to state, When the amount of received reflected light is less than the predetermined threshold value under the detection state, the human body detection sensor switches the determination from the detection state to the non-detection state on condition that the moving body determination unit determines that there is no moving body. It is in.
  • a second aspect of the present invention is a faucet for discharging water to a sink provided with a drain outlet at the bottom,
  • a human body detection sensor according to the first aspect of the present invention
  • the automatic faucet is provided with water supply control means for switching water discharge / stop of water or adjusting the amount of water discharged.
  • the human body detection sensor is a sensor capable of executing the determination of the presence or absence of a moving object in addition to the determination of the presence or absence of a detection target based on a distance determination regarding the distance index.
  • reflected light that is reflected and returned from a relatively narrow range is suitable. If the range in which the light is projected is widened, there is a high possibility that other objects such as a background object are included in the range as well as the detection target. In a situation where objects other than the detection target are included in the range in which the light is projected, the accuracy of the distance index cannot be sufficiently secured or it is difficult to obtain the distance index.
  • the accuracy of the distance index is lowered, and there is a possibility that the determination of the presence or absence of the detection target becomes unstable.
  • the accuracy of the distance index is affected by the surface property or the like caused by the posture or material of the detection target. If the accuracy of the distance index decreases, the accuracy of determining the presence / absence of a detection target using the distance index decreases.
  • the human body detection sensor When switching from the detection state to the non-detection state, the human body detection sensor according to the present invention combines two types of determination methods: determination of presence / absence of a detection target based on the distance index and determination of presence / absence of a moving object. ing.
  • This human body detection sensor improves the detection accuracy by combining two types of determination methods.
  • the two types of determination means are selectively used depending on whether the amount of received light in the detection state is greater than or less than the predetermined threshold. In a situation where the amount of reflected light received under the detection state is equal to or greater than a threshold and the accuracy of the distance index is easily secured, the state is switched to the non-detection state according to the determination result of the presence or absence of the detection target based on the distance index.
  • the state is switched to the non-detection state according to the determination result of the presence or absence of moving objects.
  • erroneous determination due to disturbance light that changes from moment to moment such as light through a curtain swaying in the wind or light from a tree leak tends to be a problem.
  • the detection target is present, the disturbance light is likely to be blocked by the detection target, and there is little possibility of erroneous determination.
  • the human body detection sensor according to the present invention is an excellent sensor that particularly improves the detection performance under the detection state by properly using the two types of determination methods according to the incident state of the reflected light under the detection state.
  • the automatic faucet employing this human body detection sensor is a faucet having high operational reliability with little risk of switching to water stoppage during use and stopping water.
  • an image sensor such as a CCD or a CMOS can be employed in addition to PSD. If a light receiving unit that measures the amount of light without positional resolution is employed, the amount of reflected light may be applied as the distance index.
  • the human body detection sensor according to the present invention can be applied to an automatic faucet for a washstand, an automatic faucet for a kitchen, an automatic water supply device for a toilet bowl with an automatic washing function, and the like. Furthermore, the human body detection sensor of this example may be applied to various automatic devices such as a hand-holding operation, lighting that automatically turns on in response to a human body, and an automatic door.
  • the human body detection sensor it is preferable to set a threshold value with which the accuracy of the distance index can be secured as the threshold value of the received light amount.
  • the pixel for which the threshold value of the received light amount is determined corresponds to a specific position such as a pixel that exhibits the maximum value of the received light amount or a barycentric position of the received light waveform. Pixels and the like can be selected.
  • a threshold value determination regarding the amount of received light may be performed on the received light waveform after applying the low-pass filter. In this case, it is possible to suppress the influence of pixels that suddenly exhibit an excessive amount of received light.
  • the threshold may be determined for the total amount of light received in the received light waveform.
  • the detection determination means in the human body detection sensor maintains the determination that the non-detection state is present when the distance measurement determination means determines that there is no detection target in the non-detection state. While When the distance measurement determination unit determines that there is a detection target in the non-detection state, the determination is switched from the non-detection state to the detection state regardless of the presence / absence of the determination result by the moving object determination unit and the content of the determination result. .
  • the determination of the presence or absence of a moving object may exhibit an unstable operation due to the sunbeams or the light that enters through the gap of the curtain swaying in the wind.
  • the presence or absence of the non-detection target can be determined with high certainty under the non-detection state.
  • it is possible to suppress the possibility that the determination is switched from the non-detection state to the detection state even though the human body is not in proximity.
  • the moving body determination unit determines that there is a moving body, and thereby the detection determination
  • the detection determination means The determination is switched from the detection state to the non-detection state regardless of the presence / absence of the determination result by the determination means and the content of the determination result.
  • positioned offset with respect to the said light-receiving part, and the spreading of the light of the offset direction was suppressed.
  • the light receiving unit has a resolution in the offset direction with respect to an incident position of light
  • the distance measurement determination unit obtains the distance index by specifying an incident position with respect to the light receiving unit with respect to the reflected light generated by the light projected by the first light emitting unit
  • the moving object determination means determines the presence or absence of a moving object using reflected light generated by the light projected by the second light emitting unit.
  • the slit light in which the spread of the light in the offset direction by the first light emitting unit is suppressed is suitable for distance measurement based on the principle of triangulation.
  • the light spreading in the offset direction by the second light emitting unit can form a wide range in which the moving body can be determined in the offset direction. Note that suppressing the spread of light in the direction orthogonal to the offset direction for the light from the second light emitting unit is effective in improving the determination accuracy of the presence or absence of moving objects.
  • the moving body determination means in the human body detection sensor determines the presence or absence of a moving body by threshold determination regarding the temporal displacement amount of the incident position of the light incident on the light receiving unit.
  • the distance measurement determination unit and the moving body determination unit can share the configuration for obtaining the incident position of light with respect to the light receiving unit.
  • Hardware or software resources (resources) can be used efficiently, and attractive product costs can be realized by suppressing hardware costs or software development costs.
  • the light receiving part in the human body detection sensor is shared by the first light emitting part and the second light emitting part,
  • the second light emitting unit is disposed in a gap in the offset direction between the first light emitting unit and the light receiving unit. If the light receiving unit is shared, the cost of the human body detection sensor can be reduced and downsizing can be realized. Further, if the second light emitting unit is disposed in the gap between the first light emitting unit and the light receiving unit, the gap in the offset direction can be effectively used, which is useful for downsizing the human body detection sensor.
  • FIG. 1 is a block diagram showing a system configuration of a human body detection sensor in Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a light reception waveform of reflected light when projecting light from a first light emitting unit in the first embodiment. Explanatory drawing explaining the calculation method and detection method of the gravity center position of a light reception waveform in Example 1. FIG. Explanatory drawing explaining the principle of triangulation in Example 1.
  • FIG. FIG. 3 is a flowchart showing a flow of detection processing in the first embodiment.
  • FIG. 3 is a first explanatory diagram illustrating the state of reflected light generated under a detection state and the light reception waveform of reflected light by the light receiving unit in the first embodiment.
  • FIG. 4 is a second explanatory diagram illustrating the state of reflected light generated under a detection state and the light reception waveform of reflected light by the light receiving unit in the first embodiment.
  • FIG. 4 is a third explanatory diagram illustrating the state of reflected light generated under a detection state and the light reception waveform of reflected light by the light receiving unit in the first embodiment.
  • FIG. 6 is a flowchart showing the flow of other detection processing in the first embodiment.
  • FIG. 9 is a flowchart showing the flow of detection processing in the second embodiment.
  • FIG. 10 is a flowchart showing the flow of other detection processing in the second embodiment.
  • the human body detection sensor 1 is applied to the faucet (automatic faucet) 16 of the kitchen counter 15.
  • the kitchen counter 15 of this example includes a counter 155 provided with a sink 151 that is recessed in a concave shape, and a faucet 16 having a water outlet 168.
  • the faucet 16 is erected on a counter top 156 that forms the upper surface of the counter 155.
  • the sink 151 has a drain port 152 at the deepest portion thereof.
  • the faucet 16 includes a water discharge pipe 160 that discharges water.
  • the water discharge pipe 160 is erected on the countertop 156 with a base 161 serving as a base interposed therebetween.
  • the water discharge pipe 160 is bent in a substantially J shape, and its tip is directed toward the sink 151.
  • a straight portion connected to the base 161 of the water discharge pipe 160 has a substantially circular cross-sectional shape.
  • the front end face toward the sink 151 has a substantially rectangular shape.
  • the cross-sectional shape of the water discharge pipe 160 changes from a circular shape to a rectangular shape due to a smooth change in the cross-sectional shape in a range from the bent part to the tip.
  • a sensor surface of a non-contact type touchless sensor 167 is disposed on the upper surface of the water discharge pipe 160.
  • the touchless sensor 167 is a photoelectric proximity sensor using a combination of a light receiving element such as a phototransistor and a light emitting element.
  • the touchless sensor 167 determines that it is detected when the light receiving element can receive the reflected light from the hand or finger in the vicinity of the detection range of several centimeters from the sensor surface. If a finger or a hand is placed over the sensor surface, water discharge and water stop can be switched to each other according to detection by the touchless sensor 167.
  • a filter plate 165 that forms a detection surface of the human body detection sensor 1 is disposed on the upper side, and a water discharge port 168 having a substantially rectangular cross section is disposed on the lower side. Is provided.
  • a sensor unit 2 (FIG. 2) that constitutes the human body detection sensor 1 is disposed inside the resin filter plate 165 that selectively transmits light in the infrared region.
  • the faucet 16 of this example is characterized in that in addition to the touchless sensor 167, the sensor unit 2 incorporated at the tip of the water discharge pipe 160 is provided.
  • the sensor unit 2 When the sensor unit 2 is not provided, when washing a large pan or dish that needs to be supported with both hands, it is necessary to place the pan or dish on the counter top 156 and then hold it over the sensor surface of the touchless sensor 167.
  • the faucet 16 of this example in which the sensor unit 2 is incorporated at the tip of the water discharge pipe 160, water discharge is started by an operation of inserting a pan, a dish or the like supported by both hands into the water discharge space on the tip side of the water discharge pipe 160. it can. When washing is completed, it is convenient to stop the water by simply pulling out a pan or dish from the water discharge space.
  • the human body detection sensor 1 of this example is composed of a sensor unit 2 incorporated in a faucet 16 and a control unit 3 for controlling the sensor unit 2 as shown in FIGS.
  • an automatic water supply device is formed by a combination of the human body detection sensor 1 and a solenoid (water supply control means) 11 that is a water discharge valve (electromagnetic valve) provided in the water supply pipe 12.
  • the sensor unit 2 is a unit in which two LED elements 251 and one line sensor (imaging element) 261 are accommodated in a housing 21, and power is supplied from the control unit 3. Operates upon supply.
  • a first light emission unit 25A for distance measurement by a distance measurement determination unit 321 described later, a second light emission unit 25B for movement determination by a moving object determination unit 322 described later, and a shared imaging unit (light reception) Part) 26 is arranged in parallel facing the filter plate 165 of the faucet 16.
  • Each of the light emitting sections 25A and 25B that emit infrared light includes an LED element 251 and a light projecting lens 255.
  • the imaging unit 26 includes a line sensor 261 and a condenser lens 265.
  • the light emitting units 25A and B and the imaging unit 26 are arranged offset in the horizontal direction (offset direction corresponding to the left and right direction in FIG. 2) with the partition wall 211 having light shielding properties interposed therebetween.
  • the light emitting unit 25A and the imaging unit 26 are arranged at both ends, and the light emitting unit 25B is arranged close to the imaging unit 26 side in the gap between the light emitting unit 25A and the imaging unit 26.
  • the LED element 251 is a light emitting element including an LED chip 250 as shown in FIG.
  • the LED chip 250 is mounted in the cavity of the package substrate and sealed with a transparent resin 254.
  • the LED element 251 is covered with a light-shielding element case 252 provided with a slit hole 253.
  • a light-shielding element case 252 provided with a slit hole 253.
  • the line sensor 261 is a one-dimensional imaging sensor in which pixels 260 that convert the amount of received light into an electrical physical quantity are linearly arranged.
  • the line sensor 261 includes 64 pixels 260 as effective pixels. In the line sensor 261, a light receiving region 263 is formed by these 64 pixels 260.
  • the line sensor 261 includes an electronic shutter (not shown), and the light reception (exposure) time can be adjusted using the electronic shutter.
  • the line sensor 261 outputs imaging data every time the light receiving operation is executed in synchronization with the light emitting operation of the light emitting unit 25A or the light emitting unit 25B.
  • the imaging data in this example is one-dimensional digital data in which pixel values of 256 gradations corresponding to the amount of received light are arranged in the order in which the pixels 260 are arranged.
  • the line sensor 261 is incorporated so that the longitudinal direction of the light receiving region 263 coincides with the offset direction of the light emitting units 25A and 25B and the imaging unit 26.
  • the control unit 3 is a unit that controls the sensor unit 2 and the solenoid 11 as shown in FIGS. 1 and 4, and operates by receiving power from a commercial power source.
  • the control unit 3 includes a control board 30 that controls the sensor unit 2 and the solenoid 11.
  • the control board 30 is provided with an imaging control unit 31 that controls the line sensor 261 and the two LED elements 251, a detection processing unit 32 that executes detection processing, and a water supply control unit 33 that controls the solenoid 11. ing.
  • the imaging control unit 31 has functions as an imaging control unit 311 that controls the two LED elements 251 and the line sensor 261 and a reading unit 312 that reads imaging data from the line sensor 261.
  • the imaging control unit 311 controls the line sensor 261 so that an intermittent operation in which an operation period in which an imaging operation is performed and a non-operation period are alternately performed is performed.
  • the imaging control means 311 stops supplying power to the line sensor 261 until a predetermined interval time (in this example, about 0.3 to 0.5 seconds) has elapsed since the end of the previous operation period. A non-operation period is set, and when the interval time elapses, the power supply is resumed to set the operation period.
  • a predetermined interval time in this example, about 0.3 to 0.5 seconds
  • the imaging control means 311 performs light reception (exposure) of the line sensor 261 synchronized with light emission (LED light) of the LED element 251 and light reception (exposure) of the line sensor 261 under no light emission in one imaging operation. Run continuously. Then, the difference received light amount at the time of receiving light twice is obtained for each pixel. In this difference light reception waveform, the influence of ambient light is suppressed, and the component of the reflected light caused by the LED light is extracted.
  • the detection processing unit 32 includes a ranging determination unit 321 and a moving body determination unit 322 that are detection processing execution units, a detection determination unit 324 that determines whether the detection state is a non-detection state, and a detection signal (sensor signal) under the detection state. It has a function as detection output means 325 for outputting.
  • the distance measurement determination unit 321 determines the presence or absence of a detection target using the principle of triangulation based on the incident position (distance index) of the reflected light according to the light emission of the light emitting unit 25A.
  • the distance measurement determination unit 321 receives the light reception waveform of FIG.
  • the amount of light received by each pixel 260 obtained in accordance with one imaging operation including the light emission operation of the light emitting unit 25A (referred to as an imaging operation for distance measurement as appropriate).
  • the incident position of the reflected light is specified by using the imaging data in which the detection object is distributed, and the presence / absence of the detection target is determined based on whether the incident position belongs to a predetermined detection area.
  • the horizontal axis x indicates the pixel number (pixel position)
  • the vertical axis D (x) indicates the amount of received light (pixel value) of the pixel 260 having the pixel number x.
  • the distance measurement determination unit 321 in this example handles the barycentric position of the received light waveform as the incident position.
  • the received light amount data D (x) for each pixel constituting the received light waveform is integrated to obtain the sum SD of the pixel values of 64 pixels.
  • This total SD corresponds to the area of the region indicated by hatching in the lower right direction in FIG.
  • the position of the pixel with the pixel number N shown by a black circle) when the integrated value obtained by integrating the pixel values of the pixels 260 in order from the pixel 260 with the pixel number zero at the left end of the light receiving region 263 reaches SD / 2. Calculated as the barycentric position of the received light waveform.
  • the integrated value SD / 2 corresponds to the area of the region indicated by the hatching with the upward slope. This area is included in the area of the total SD, and is a cross-hatched area in FIG.
  • the distribution of the amount of received light for each pixel in FIG. 6 schematically represents the received light waveform in FIG.
  • FIG. 7 schematically shows the positional relationship between the sensor unit 2, the inner peripheral surface 150 of the sink 151, and the user's hand in the kitchen counter 15 of this example.
  • the light emitting unit 25A and the imaging unit 26 are illustrated, while the light emitting unit 25B for moving object determination is omitted.
  • the incident position varies depending on the distance H to the detection target.
  • the incident position of the reflected light incident on the line sensor 261 is farther from the light emitting unit 25A, and as the distance H is longer, the incident position is closer to the light emitting unit 25A.
  • the incident position of the reflected light with respect to the line sensor 261 is proportional to the distance to the detection target, and can be a distance index indicating the degree of this distance.
  • the detection area (FIG. 6) set in the light receiving area 263 is an area corresponding to the detection distance (FIG. 7) to be detected.
  • the center of gravity calculated as described above is treated as an incident position, and whether or not the center of gravity is within the detection region is determined by determining whether the distance to the detection target that causes the reflected light is within the detection distance shown in FIG. Is substantially synonymous with the determination of whether or not.
  • the moving object determining means 322 determines the presence or absence of a moving object using a temporal change in reflected light according to the light emission of the light emitting unit 25B.
  • the moving body determination unit 322 compares the two received light waveforms respectively acquired by two temporally continuous imaging operations (referred to as an imaging operation for moving body determination as appropriate), and determines the presence or absence of a moving body.
  • the moving body determination unit 322 of this example obtains the center of gravity position by the same calculation method as that described with reference to FIG. 6 for the two light reception waveforms corresponding to the two imaging operations, and the incident position of the light reception waveform Treat as. Then, it is determined that there is a moving object when the obtained displacement amounts of the two center-of-gravity positions exceed a predetermined threshold value, and it is determined that there is no moving object when the displacement amount is less than the predetermined threshold value.
  • a received light waveform acquisition routine including the imaging operation for distance measurement is executed (P101), and a distance measurement determination routine (P102) using the acquired received light waveform (see FIG. 5). Is executed.
  • the barycentric position (see FIG. 6) of the received light waveform is specified as the incident position of the reflected light, and whether or not the barycentric position belongs to a predetermined detection area (FIG. 6). A determination is made.
  • the detection signal is output in response to the determination that there is a detection target.
  • the water discharge is started (S104).
  • a received light waveform acquisition routine including the distance measurement imaging operation and the moving object determination imaging operation is executed every time a predetermined interval time elapses and the operation period starts. (P105).
  • a light receiving waveform for distance measurement corresponding to an imaging operation for distance measurement and a light reception waveform for moving object determination corresponding to the imaging operation for moving object determination are acquired.
  • two light reception waveforms that are temporally continuous are acquired as the light reception waveforms for moving object determination.
  • a predetermined threshold As shown in FIG. 9, when reflected light from a dish being dished or the like enters the sensor unit 2 and the amount of light received by any pixel 260 is equal to or greater than the threshold (S106: NO), the received light waveform is used as it is. Then, a distance measurement determination routine having the same specifications as P102 is executed (P117). If the position of the center of gravity (incident position) belongs to the predetermined detection area and the distance to the detection target is within the predetermined detection distance (S118: YES), detection is performed according to the determination that there is a detection target. The output of the signal is continued and water discharge is continued (S119).
  • the moving object determination routine is executed using the two received light waveforms (P107).
  • the gravity center position is calculated for each of two light reception waveforms that are temporally continuous for moving object determination.
  • the displacement amount of these gravity center positions is equal to or greater than a predetermined threshold value, it is determined that there is a moving object (S108: NO).
  • the situation in which the amount of light received by the pixel 260 in S106 is less than the threshold includes the situation in which there is no detection target, the situation in which the projection light is transmitted through a dish such as glass, and the water in which the cup is washed. A situation where the projection light is irregularly reflected by a bubble or the like is considered.
  • the situation in which the direction of the reflected light is deviated and does not enter the sensor unit 2 is more likely to occur as sharp specularly reflected light from a specular object such as a stainless steel knife or silver plateware.
  • step S108 If it is determined in step S108 that there is a moving object (S108: NO), the output of the detection signal is continued and water discharge is continued (S119). In this case, the process proceeds to the received light waveform acquisition routine of P105, and thereafter, a series of processes from P105 to S119 are repeatedly executed until no detection target is detected.
  • step S108 If it is determined in step S108 that there is no moving body (S108: YES), it is determined that the state is not detected, and the output of the detection signal is stopped and switched to water stop (S109). In this case, the process proceeds to the received light waveform acquisition routine of P101, and thereafter, a series of processing from P101 to S103 is repeatedly executed until the detection target is detected.
  • the detection target can be detected with high reliability regardless of the color or reflectance of the detection target.
  • the distance measurement determination routine for determining the presence / absence of a detection target using the center of gravity position (incident position) of the reflected light
  • the detection target can be detected with high reliability regardless of the color or reflectance of the detection target.
  • the LED light is transmitted or diffusely reflected and sufficient reflected light cannot be obtained. If sufficient reflected light cannot be obtained, it becomes difficult to specify the position of the center of gravity with high accuracy, and the determination accuracy by the distance measuring determination means 321 tends to decrease.
  • the moving object determination routine works effectively. Whether it is glass tableware or a dish whose surface is covered with a layer of water, fine movements are constantly occurring during dishwashing. In the middle of such a fine movement, even if it is a glass tableware, the LED light is reflected or the portion where it is reflected fluctuates from moment to moment depending on its posture, etc. Will occur. According to the moving object determination routine for determining the presence or absence of a moving object according to the temporal change of the reflected light, it is possible to determine the glass tableware or the like being washed relatively easily.
  • the human body detection sensor 1 of the present example successfully improves the detection performance by combining the advantages of the distance measurement determination unit 321 for executing the distance measurement determination routine and the moving object determination unit 322 for executing the moving object determination routine. It is a sensor. In the non-detection state where the water faucet 16 is in the water stoppage, erroneous detection is suppressed by executing detection determination using only the distance measurement determination unit 321. On the other hand, in the detection state corresponding to the water discharged from the faucet 16, the determination by the distance measurement determination unit 321 is combined with the determination by the moving object determination unit 322. When the amount of received light exceeds the threshold value under the detection state, priority is given to the determination result by the distance measurement determination unit 321. When the amount of received light is less than the threshold value under the detection state, the determination result by the moving object determination unit 322 Priority is given to switching to the non-detection state.
  • the human body detection sensor 1 for example, when a glass cup is washed with a kitchen faucet, projection light (LED light) passes through the cup and does not return sufficient reflected light, making a distance determination. Even if it becomes unstable, the detection state can be maintained by moving object determination. Thereby, it is possible to avoid the possibility that the water will be switched to the non-detection state and the water will be stopped even though the cup is being washed.
  • LED light projection light
  • the human body detection sensor 1 of this example is a sensor that improves the detection performance by combining the determination of the presence / absence of a detection target based on distance determination and the moving object determination.
  • the detection performance when the reflected light from the detection target is insufficient is ensured, and there is a risk that it may be erroneously determined as the non-detection state even though the detection target exists. Suppressed.
  • the faucet 16 employing the human body detection sensor 1 is a product with excellent operational reliability, and is suitable as an automatic faucet for a kitchen.
  • an electronic shutter is used to control the length of the exposure time of the line sensor 261.
  • an electronic shutter is not essential and can be omitted, a mechanical shutter that physically blocks light from entering the line sensor 261 may be employed instead of the electronic shutter.
  • the detection process may be executed after correcting the pixel value of each pixel 260.
  • the position of the center of gravity of the received light waveform is used as the incident position of the reflected light.
  • the peak position of the received light waveform may be specified as the incident position.
  • the center of gravity position is calculated by simple calculation. However, if there is a margin in calculation processing capacity, the center of gravity position may be calculated mathematically strictly.
  • this example is an example in which the human body detection sensor 1 is applied to the kitchen counter 15, a faucet for a wash basin may be used. Furthermore, it is also possible to apply the human body detection sensor 1 of this example as a sensor of an automatic water supply device for a toilet bowl with an automatic cleaning function. Furthermore, the human body detection sensor 1 of this example can also be applied to various automatic devices such as a hand-holding operation and lighting or automatic doors that automatically turn on in response to a human body.
  • the sensor unit 2 and the control unit 3 are configured separately.
  • the sensor unit 2 and the control unit 3 may be configured integrally and accommodated in the faucet 16.
  • the human body detection sensor 1 of this example contains the water supply control part 33, the water supply control part 33 can also be comprised separately.
  • the sensor unit 2 of the present example is a unit that is compactly configured by sharing the imaging unit (light receiving unit) 26 between the light emitting unit 25A and the light emitting unit 25B. Instead of this, a light receiving unit may be provided. As the light receiving unit 26 corresponding to the light emitting unit 25B for moving object determination, a light receiving unit including a PSD element that can output the position of the center of gravity of the received light waveform may be employed. Since it is not necessary to calculate and obtain the position of the center of gravity, the calculation load for moving object determination can be suppressed.
  • the light emitting units 25A and B and the imaging unit 26 are arranged on a straight line.
  • the distance measuring light emitting unit 25A needs to be offset in the horizontal direction with respect to the image pickup unit 26, but the light emitting unit 25B for moving object determination is located at any position around the image pickup unit 26. There may be.
  • the light emitting unit 25B is preferably arranged closer to the imaging unit 26 than the light emitting unit 25A.
  • the detection process shown in the flowchart of FIG. 12 may be adopted.
  • the detection process in FIG. 12 is different from the above detection process in which the detection process is immediately switched to water discharge or water stop according to the detection determination (S103: YES) or the non-detection determination (S108: YES) as shown in FIG.
  • the detection process of FIG. 12 when the number of repetitions of the same determination reaches the specified number, switching to water discharge or water stop is executed. According to such an operation specification, malfunction of the faucet 16 can be further suppressed, and operation reliability can be improved.
  • a step process or program routine of the 200th series such as S201, S202... Is added to the detection process of FIG. Steps S201, S202, and S211 relate to detection processing including a distance measurement determination routine (P102) in still water (non-detection state).
  • the distance measurement determination routine is repeatedly executed until the number of times that it is determined that there is a detection target reaches the specified number of times (S202: NO), and when the specified number of times is reached (S202: YES), the detection state is determined.
  • water discharge is started (S104).
  • Steps S205, S206, and S215 relate to a detection process including a received light waveform acquisition routine (P105) in water discharge (detection state).
  • a received light waveform acquisition routine P105
  • S205, S215 the number of non-detection determinations
  • S208, S215 the water discharge state is maintained (S119).
  • the non-detection determination in step S205 by the moving object determination routine (P107) is a non-detection determination based on the determination that there is no moving object (S108: YES).
  • the non-detection determination in step S215 by the distance measurement determination routine (P117) is a non-detection determination based on the determination (S118: NO) that the distance to the detection target is not within the range of the predetermined detection distance.
  • the determination S118: NO
  • it is determined that there is a detection target in the distance measurement determination routine in the middle of repetition S118: YES
  • it is determined that there is a moving object in the moving object determination routine S108: NO
  • water discharge is continued. (S119).
  • Example 2 In this example, the content of the detection process by the human body detection sensor is changed based on the automatic faucet of the first embodiment.
  • the contents will be described with reference to the flowcharts of FIGS.
  • the flowcharts of FIGS. 13 and 14 represent processing in which the determination of step S301 is added to the flowcharts of FIGS.
  • This step S301 is a processing step that is executed when it is determined that there is a moving object (S108: NO), although the amount of reflected light becomes insufficient during water discharge (detection state) (S104 ⁇ S106: YES). is there.
  • the projection light LED light
  • the reflected light does not return.
  • the water stop during the washing operation can be avoided as described in the first embodiment.
  • Such control specifications may cause inconveniences in the following situations. That is, the bowl or the like placed in the sink for storing the washing water is left as it is after the washing operation is finished. In such a situation, incomplete reflection occurs on the water surface in the bowl, and a low amount of reflected light is returned. On the other hand, the presence of a moving object may be repeated due to the shaking of the water surface. In such a case, there is a possibility that the water discharge may be continued without determining the non-detection state even though the washing operation is finished.
  • step S301 of this example which is a threshold determination regarding the number of continuous determinations of the presence of moving objects, works effectively.
  • the number of continuous determinations of the presence of a moving object exceeds the threshold value, so that a non-detection state is determined by the determination of YES in step S301, and switching to water stopping is performed. realizable.
  • three times are set as a threshold value (predetermined number) for the continuous number of times of determination that there is a moving object.
  • the process of step S301 in this example is a threshold determination process related to the number of consecutive determinations that there is a moving object in step S108.
  • the processing routines of FIGS. 13 and 14 are executed at a cycle of about 200 milliseconds. Therefore, the continuous number of times of 3 as the threshold corresponds to about 0.6 seconds (200 milliseconds ⁇ 3 times).
  • threshold determination regarding the duration of the situation determined to have a moving object in step S108 may be executed.
  • the predetermined time serving as the threshold for example, a time of about 0.6 seconds can be set.
  • the numerical value of the predetermined number of times or predetermined time used as a threshold value is not limited to this example. It is preferable to set as appropriate according to the usage situation. It is also possible to provide an operating means for adjusting the predetermined number of times or the predetermined time. By providing such an operation means, it becomes possible to set a threshold value that matches the user's preference and usage method.
  • SYMBOLS 1 Human body detection sensor, 15 ... Kitchen counter, 16 ... Water faucet (automatic water faucet), 11 ... Solenoid (water supply control means), 12 ... Water supply piping, 167 ... Touchless sensor, 2 ... Sensor unit, 25A and B ... Light emitting unit, 251 ... LED element, 26 ... imaging unit (light receiving unit), 260 ... pixel, 261 ... line sensor (imaging device), 263 ... light receiving region, 3 ... control unit, 30 ... control board, 31 ... imaging control unit 311 ... Imaging control means, 312 ... Reading means, 32 ... Detection processing section, 321 ... Distance measurement determination means, 322 ... Moving object determination means, 324 ... Detection determination means, 325 ... Detection output means, 33 ... Water supply control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Domestic Plumbing Installations (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

 検知性能の高い人体検知センサ、及び動作信頼性の高い自動水栓を提供する。 人体検知センサ1は、検知対象までの距離あるいは距離の度合いを表す距離指標が所定の範囲に含まれているか否かによって検知対象の有無を判定する測距判定手段321と、撮像部26に入射する反射光の時間的な変化を検出して動体の有無を判定する動体判定手段322と、を備え、検知状態下で反射光の受光量が所定の閾値以上であるときには、測距判定手段321により検知対象無しと判定されたことを条件として検知状態から非検知状態に切り換える一方、検知状態下で反射光の受光量が所定の閾値未満であるときには、動体判定手段322によって動体無しと判定されたことを条件として検知状態から非検知状態に切り換える。

Description

人体検知センサ及び自動水栓
 本発明は、人体を光学的に検知する人体検知センサに関する。
 従来より、吐水パイプの外周表面に非接触式のタッチレスセンサのセンサ面が配設されたキッチン用の電子水栓が実現されている(例えば、特許文献1参照。)。この電子水栓であれば、センサ面に指や手などをかざすだけで非接触で吐水・止水の切り換えができるので、手が濡れているときなどは非常に便利である。吐水パイプの先端側、吐水口の近くにセンサ面を配置すれば、シンクを越えて手を伸ばす必要もなく手前側で操作できるので使い勝手が向上する。
 一方、大きな鍋や大皿などの洗い物を両手で持っている場合、吐水、止水を切り換えるためには、その都度、洗い物をカウンタートップ等に置いてから手かざし操作を行う必要がある。吐水空間に手を差し入れるだけで吐水が開始される洗面台用の自動水栓の構成をキッチン用の電子水栓に採用すれば、吐水空間に洗い物を差し入れるだけで吐水が開始されるようになって、利便性を一層向上できる可能性がある。
 しかしながら、光を投射したときに返ってくる反射光を利用して検知を行う洗面台用の自動水栓をキッチン用にそのまま適用することは難しい。例えば、透明ガラスの皿など洗っているときなど、光が透過してしまって十分な反射光が得られなくなり、非検知と判定されて食器洗い中に水が止められてしまうおそれがある。
特開2010-127010号公報
 本発明は、前記従来の問題点に鑑みてなされたものであり、キッチン用の自動水栓にも適用可能な検知性能の高い人体検知センサ、及び動作信頼性の高い自動水栓を提供しようとするものである。
 本発明の第1の態様は、検知対象に向けて光を投射する発光部と、この発光部が投射した光によって生じた反射光を受光する受光部と、を含む光電式の人体検知センサにおいて、
 前記受光部が受光した反射光の受光量が所定の閾値以上か未満かを判定する受光量判定手段と、
 前記受光部に入射する反射光を利用して検知対象までの距離あるいは距離の度合いを表す距離指標を求めると共に、その距離指標が所定の範囲に含まれているか否かによって検知対象の有無を判定する測距判定手段と、
 前記受光部に入射する反射光の時間的な変化を検出して動体の有無を判定する動体判定手段と、
 検知対象を検知している検知状態か非検知状態かを判断する検知判断手段と、を備え、
 この検知判断手段は、前記検知状態下で反射光の受光量が前記所定の閾値以上であるときには、前記測距判定手段により検知対象無しと判定されたことを条件として前記検知状態から前記非検知状態に判断を切り換える一方、
 前記検知状態下で反射光の受光量が前記所定の閾値未満であるときには、前記動体判定手段によって動体無しと判定されたことを条件として前記検知状態から前記非検知状態に判断を切り換える人体検知センサにある。
 本発明の第2の態様は、底部に排水口を設けたシンクに吐水する水栓と、
 本発明の第1の態様をなす人体検知センサと、
 この人体検知センサが出力するセンサ信号に応じて、前記水栓の吐水・止水の切換、あるいは吐水量の調整を実行する給水制御手段と、を備えた自動水栓にある。
 本発明に係る人体検知センサは、前記距離指標に関する距離的な判断に基づく検知対象の有無の判定に加えて、動体の有無の判定を実行可能なセンサである。
 距離的な判断に適用される前記距離指標を求めるためには、比較的狭い範囲から反射されて返ってくる反射光が適している。光を投射する範囲を広くすると、検知対象だけでなく背景物などの他の物がその範囲に含まれてくる可能性が高くなる。光を投射する範囲に検知対象以外の他の物が含まれる状況では、前記距離指標の精度を十分確保できなくなったり、求めること自体が難しくなる。
 前記距離指標を求めるために比較的狭い範囲に向けて光を投射する場合、検知対象が存在しているにも関わらず十分な反射光が返ってこないことがある。このような場合、前記距離指標の精度が低下し、検知対象の有無の判定が不安定になるおそれがある。例えば、キッチン用の自動水栓の場合、ガラスのコップを洗っているとき等、投射光がコップを透過したり、気泡を含む水によって乱反射して反射光が不十分になることがある。また、ステンレスの包丁を洗っているときには、そのシャープな鏡面反射光の反射方向が逸れて前記受光部に入射しないこともある。このように、前記距離指標の精度は、検知対象の姿勢や材質等に起因する面性状等によって影響を受ける。前記距離指標の精度が低下すれば、この距離指標を利用した検知対象の有無の判定精度が低下する。
 本発明に係る人体検知センサは、前記検知状態から前記非検知状態へ切り換えるに当たって、上記のような距離指標に基づく検知対象の有無の判定、及び動体の有無の判定という2種類の判定手法を組み合わせている。この人体検知センサは、2種類の判定手法の組み合わせにより、その検知精度を向上している。2種類の判定手段は、前記検知状態下の前記受光量が前記所定の閾値以上か未満かに応じて使い分けされる。
 検知状態下の反射光の受光量が閾値以上であって前記距離指標の精度を確保し易い状況では、前記距離指標に基づく検知対象の有無の判定結果に応じて前記非検知状態に切り換える。一方、検知状態下の反射光の受光量が閾値未満であるために前記距離指標の精度を確保し難い状況では、動体の有無の判定結果に応じて前記非検知状態に切り換える。一般的に、反射光を利用する動体の判定では、風にそよぐカーテン越しの光や木漏れ日の光など時々刻々変化する外乱光による誤判定が問題になり易い。しかし、検知対象が存在している検知状態下であれば、その検知対象によって上記の外乱光が遮断される可能性が高く、誤判定が発生する可能性が少ない。
 このように本発明に係る人体検知センサは、検知状態下の反射光の入射状況に応じて2種類の判定手法を使い分けることで、特に、検知状態下の検知性能を向上した優れたセンサである。この人体検知センサを採用した自動水栓は、使用の最中に止水に切り換わって水が止まってしまうようなおそれが少なく、動作信頼性の高い水栓である。
 本発明に係る人体検知センサが備える受光部としては、PSDのほか、CCDやCMOS等の撮像素子を採用可能である。位置的な分解能を有さず光量を計測する受光部を採用する場合であれば、前記距離指標として反射光の光量を適用することも良い。
 本発明に係る人体検知センサは、洗面台の自動水栓や、キッチン用の自動水栓や、自動洗浄機能付きの小用便器の自動給水装置等に適用できる。さらに、手かざし操作や人体に反応して自動点灯する照明や自動扉等、各種の自動装置に対して、本例の人体検知センサを適用することも良い。
 本発明に係る人体検知センサでは、前記受光量の閾値としては、前記距離指標の精度が確保できる程度の閾値を設定するのが良い。例えば、CCDやCMOS等の撮像素子を採用した場合であれば、前記受光量の閾値判断をする対象の画素として、受光量の最大値を呈する画素や、受光波形の重心位置など特定の位置に当たる画素等を選択できる。ローパスフィルタ-を適用した後の受光波形について、前記受光量に関する閾値判断を行っても良い。この場合には、突発的に過大な受光量を呈する画素の影響を抑制できる。さらには、受光波形の受光量の総和について閾値判断しても良い。
 本発明に係る好適な一態様の人体検知センサにおける検知判断手段は、前記非検知状態下で前記測距判定手段が検知対象無しと判定しているときには前記非検知状態である旨の判断を維持する一方、
 前記非検知状態下で前記測距判定手段が検知対象有りと判定したときには、前記動体判定手段による判定結果の有無及びその判定結果の内容に関わらず前記非検知状態から前記検知状態に判断を切り換える。
 動体の有無の判定は、木漏れ日や、風にそよぐカーテンの隙間から入り込む光などによって不安定な動作を呈することがある。一方、距離的な判断によれば前記非検知状態下で確実性高く非検知対象の有無を判定できる。上記のように構成した場合には、人体が近接していないのにも関わらず、前記非検知状態から前記検知状態に判断が切り換わってしまうおそれを未然に抑制できる。
 本発明の好適な一態様の人体検知センサにおいては、前記検知状態下で反射光の受光量が前記所定の閾値未満であるときに前記動体判定手段により動体有りと判定され、これにより前記検知判断手段が前記非検知状態への切り換えを行わなかった判断が、所定回数に渡って連続的に発生するか、あるいは所定時間に渡って継続的に維持されたとき、前記検知判断手段は、前記動体判定手段による判定結果の有無及びその判定結果の内容に関わらず前記検知状態から前記非検知状態に判断を切り換える。
 検知対象が存在しており、かつ、その検知対象に動きがあるような状況では、反射光が十分でない状態が発生しても一時的である可能性が高く、その状態が長く継続する可能性は低い。すなわち、反射光の受光量が十分ではないが動体が有るという判定が、連続的に発生したり長く継続する可能性は低い。このような動体有りの判定によって前記非検知状態への切り換えを行わないという判断が連続的に発生したり長い期間に渡って継続するような場合、検知対象以外の「何か」によって動体有りの判定が発生している可能性が高い。
 例えば、キッチン用の自動水栓の場合、水が溜まったボウル等がシンク内に放置されたとき、ボウル内の水面の揺れによって動体有りの判定が繰り返され、これにより前記非検知状態への切り換えを行わない判断が連続的に発生するおそれがある。そこで、このような判断が連続的に発生したり、長時間に渡って継続したときには、前記動体判定手段による判定結果の内容等によらず、前記非検知状態に判断を切り換えることが良い。
 一方、例えば、上記のように動体判定が有効となり得るガラスのコップなどの洗い作業中では、コップや手の動きなどによって、反射光が十分になったり不十分になったりする状態が交互に繰り返すと考えられる。ガラスのコップなどの洗い作業中では、反射光が不十分であるが動体有りの判定によって非検知状態への切り換えを行わないという判断が連続的に発生したり、長時間に渡って継続する可能性は少ない。したがって、このような判断が所定回数に渡って連続的に発生するか、あるいは所定時間に渡って継続的に維持されたという条件を前記非検知状態への切り換え条件として設定しておけば、洗い作業中に前記非検知状態への切り換えが行われて水が止まってしまうこともない。
 本発明の好適な一態様の人体検知センサにおける発光部としては、前記受光部に対してオフセットして配置されていると共にそのオフセット方向の光の拡がりが抑制されたスリット光を投射する第1の発光部と、少なくとも前記オフセット方向に拡がる光を投射する第2の発光部と、が設けられ、
 前記受光部は、光の入射位置について前記オフセット方向に分解能を有しており、
 前記測距判定手段は、前記第1の発光部が投射した光によって生じた反射光について、前記受光部に対する入射位置を特定することにより前記距離指標を求め、
 前記動体判定手段は、前記第2の発光部が投射した光によって生じた反射光を利用して動体の有無を判定する。
 前記第1の発光部による前記オフセット方向の光の拡がりが抑制されたスリット光は、三角測量の原理に基づく測距に適している。前記第2の発光部による前記オフセット方向に拡がる光は、動体を判定できる範囲を前記オフセット方向に広く形成できる。なお、前記第2の発光部の光につき、前記オフセット方向に直交する方向の光の拡がりを抑制することは、動体の有無の判定精度の向上に有効である。
 本発明に係る好適な一態様の人体検知センサにおける動体判定手段は、前記受光部に入射した光の入射位置の時間的な変位量に関する閾値判断により動体の有無を判定する。
 この場合には、前記測距判定手段と前記動体判定手段とで、前記受光部に対する光の入射位置を求める構成を共用できる。ハードウェア的あるいはソフトウェア的な資源(リソース)を効率良く活用できるようになり、ハードウェアのコストあるいはソフトウェアの開発コスト等を抑制して魅力ある製品コストを実現できる。
 本発明に係る好適な一態様の人体検知センサにおける受光部は、前記第1の発光部と前記第2の発光部とで共用されており、
 前記第2の発光部は、前記第1の発光部と前記受光部との前記オフセット方向の間隙に配置されている。
 前記受光部を共用すれば、人体検知センサのコストを低減できると共に、小型化を実現できる。また、前記第1の発光部と前記受光部との間隙に前記第2の発光部を配置すれば、前記オフセット方向の間隙を有効に活用でき、人体検知センサの小型化に役立つ。
実施例1における、自動水栓を備えたキッチンカウンターを示す斜視断面図。 実施例1における、センサユニットの断面構造を示す断面図(図1中のA-A線矢視断面図)。 実施例1における、ラインセンサを示す斜視図。 実施例1における、人体検知センサのシステム構成を示すブロック図。 実施例1における、第1の発光部の光を投射時の反射光の受光波形の例を示す図。 実施例1における、受光波形の重心位置の計算方法、及び検知方法を説明する説明図。 実施例1における、三角測量の原理を説明する説明図。 実施例1における、検知処理の流れを示すフロー図。 実施例1における、検知状態下で発生する反射光の様子、受光部による反射光の受光波形を例示する第1の説明図。 実施例1における、検知状態下で発生する反射光の様子、受光部による反射光の受光波形を例示する第2の説明図。 実施例1における、検知状態下で発生する反射光の様子、受光部による反射光の受光波形を例示する第3の説明図。 実施例1における、その他の検知処理の流れを示すフロー図。 実施例2における、検知処理の流れを示すフロー図。 実施例2における、その他の検知処理の流れを示すフロー図。
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、キッチンカウンター15の水栓(自動水栓)16に人体検知センサ1を適用した例である。この内容について、図1~図12を参照して説明する。
 本例のキッチンカウンター15は、図1のごとく、凹状に窪むシンク151が設けられたカウンター155と、吐水口168を有する水栓16と、を備えている。水栓16は、カウンター155の上面をなすカウンタートップ156に立設されている。シンク151は、その最深部に排水口152を備えている。
 水栓16は、水を吐出する吐水パイプ160を備えている。吐水パイプ160は、台座をなす基部161を介在してカウンタートップ156に立設されている。吐水パイプ160は略J字状に屈曲され、その先端はシンク151に向かっている。吐水パイプ160のうち基部161に連なる直線的な部分は略円形状の断面形状である。一方、シンク151に向かう先端面は略矩形状を呈している。吐水パイプ160の断面形状は、屈曲部分を越えてから先端に向かう範囲での滑らかな断面形状の変化により円形状から矩形状に変化している。
 吐水パイプ160の上面には、非接触式のタッチレスセンサ167のセンサ面が配設されている。このタッチレスセンサ167は、フォトトランジスターなどの受光素子と発光素子との組合せによる光電式の近接センサである。タッチレスセンサ167は、センサ面から数cm程度の検知範囲内に近接した手や指による反射光を受光素子によって受光できたとき、検知と判断する。センサ面に指や手などをかざせば、タッチレスセンサ167による検知に応じて吐水と止水とを相互に切り換えできる。
 略矩形状を呈する吐水パイプ160の先端面では、図1のごとく、人体検知センサ1の検知面を形成するフィルタ板165が上段側に配設され、断面略矩形状の吐水口168が下段側に設けられている。赤外領域の光を選択的に透過する樹脂製のフィルタ板165の裏側に当たる内部には、人体検知センサ1を構成するセンサユニット2(図2)が配置されている。
 本例の水栓16は、このタッチレスセンサ167に加えて、吐水パイプ160の先端に組み込まれたセンサユニット2を備えている点に特徴を有している。センサユニット2がない場合、両手で支える必要がある大きな鍋や皿等を洗うとき、一旦、鍋や皿をカウンタートップ156に置いてからタッチレスセンサ167のセンサ面に手かざしする必要がある。一方、吐水パイプ160の先端にセンサユニット2が組み込まれた本例の水栓16では、両手で支えた鍋や皿等を、吐水パイプ160の先端側の吐水空間に差し入れる動作によって吐水を開始できる。洗い終えたときには、吐水空間から鍋や皿等を引き抜くだけで、止水でき便利である。
 本例の人体検知センサ1は、図1及び図2のごとく、水栓16に組み込まれたセンサユニット2と、センサユニット2を制御する制御ユニット3と、により構成されている。キッチンカウンター15では、この人体検知センサ1と、給水配管12に設けられた吐水弁(電磁弁)であるソレノイド(給水制御手段)11と、の組合せにより自動給水装置が形成されている。
 センサユニット2は、図1及び図2のごとく、2基のLED素子251と、1基のラインセンサ(撮像素子)261と、が筐体21に収容されたユニットであり、制御ユニット3から電力供給を受けて動作する。センサユニット2では、後述する測距判定手段321による測距用の第1の発光部25A、後述する動体判定手段322による動体判定用の第2の発光部25B、及び共用される撮像部(受光部)26が、水栓16のフィルタ板165に面して並列配置されている。
 赤外光を発光する発光部25A・Bは、いずれも、LED素子251と投光レンズ255とにより構成されている。撮像部26は、ラインセンサ261と集光レンズ265とにより構成されている。発光部25A・B及び撮像部26は、遮光性を備えた隔壁211を挟んで水平方向(図2中の左右方向に当たるオフセット方向)にオフセットして配置されている。発光部25A及び撮像部26が両端に配置され、発光部25Bは、発光部25Aと撮像部26との間隙において、撮像部26側に近づけて配置されている。
 LED素子251は、図2のごとく、LEDチップ250を備える発光素子である。LEDチップ250は、パッケージ基板のキャビティに実装され、透明樹脂254により封止されている。発光部25A・Bでは、スリット孔253を設けた遮光性の素子ケース252によってLED素子251が覆われている。測距用の発光部25Aと、動体判定用の発光部25Bとでは、スリット孔253の形成方向に相違がある。鉛直方向のスリット孔253を備える発光部25Aによれば、水平方向の拡がり角が抑制されたシャープな光を検知対象に向けて投射可能である。水平方向のスリット孔253を備える発光部25Bによれば、鉛直方向の拡がり角が抑制され、水平方向に拡がる光を検知対象に向けて投射可能である。
 ラインセンサ261は、図2及び図3のごとく、受光量を電気的な物理量に変換する画素260が直線的に配列された1次元の撮像センサである。ラインセンサ261は、有効画素として64個の画素260を備えている。ラインセンサ261では、これら64個の画素260により受光領域263が形成されている。このラインセンサ261は、図示しない電子シャッターを備えており、この電子シャッターを用いて受光(露光)時間を調整可能である。ラインセンサ261は、発光部25A又は発光部25Bの発光動作に同期して受光動作を実行する毎に撮像データを出力する。本例の撮像データは、受光量に応じた256階調の画素値が各画素260の並び順に配列された1次元のデジタルデータである。なお、本例のセンサユニット2では、受光領域263の長手方向が、発光部25A・Bと撮像部26とのオフセット方向に一致するようにラインセンサ261が組み込まれている。
 制御ユニット3は、図1及び図4のごとく、センサユニット2及びソレノイド11を制御するユニットであり、商用電源から電力の供給を受けて動作する。この制御ユニット3は、センサユニット2及びソレノイド11を制御する制御基板30を備えている。制御基板30には、ラインセンサ261及び2基のLED素子251を制御する撮像制御部31と、検知処理を実行する検知処理部32と、ソレノイド11を制御する給水制御部33と、が設けられている。
 撮像制御部31は、2基のLED素子251及びラインセンサ261を制御する撮像制御手段311、ラインセンサ261から撮像データを読み出す読出手段312としての機能を備えている。
 撮像制御手段311は、撮像動作が行われる動作期間と非動作期間が交互に現れる間欠動作が行われるようにラインセンサ261を制御する。撮像制御手段311は、前回の動作期間が終了してから所定のインターバル時間(本例では、0.3~0.5秒程度。)が経過するまでラインセンサ261への電源供給を停止して非動作期間を設定し、インターバル時間が経過したときに電源供給を再開して動作期間を設定する。
 撮像制御手段311は、1回の撮像動作において、LED素子251の発光(LED光)と同期したラインセンサ261の受光(露光)と、無発光下のラインセンサ261の受光(露光)と、を連続的に実行する。そして、2度の受光時の差分の受光量が画素毎に求められる。この差分の受光波形では、周囲光の影響が抑圧され、LED光に起因した反射光の成分が抽出される。
 検知処理部32は、検知処理の実行手段である測距判定手段321及び動体判定手段322、検知状態か非検知状態かを判断する検知判断手段324、検知状態下で検知信号(センサ信号)を出力する検知出力手段325としての機能を備えている。
 測距判定手段321は、発光部25Aの発光に応じた反射光の入射位置(距離指標)に基づき、三角測量の原理を利用して検知対象の有無を判定する。測距判定手段321は、発光部25Aの発光動作を含む1回の撮像動作(適宜、測距用の撮像動作という。)に応じて取得された図5の受光波形(各画素260の受光量が分布する撮像データ)を利用して反射光の入射位置を特定し、その入射位置が所定の検知領域内に属しているか否かによって検知対象の有無を判定する。同図の横軸xは、画素番号(画素位置)を示し、縦軸D(x)は、画素番号xの画素260の受光量(画素値)を示している。
 本例の測距判定手段321は、受光波形の重心位置を入射位置として取り扱う。重心位置を特定するに当たっては、まず、図6のごとく、受光波形を構成する画素毎の受光量データD(x)を積算し、64画素の画素値の総和SDを求める。この総和SDは、図6中の右下がりの斜線ハッチングで示す領域の面積に相当している。受光領域263の左端の画素番号ゼロの画素260から順番に各画素260の画素値を積算した積算値がSD/2に達したときの画素番号Nの画素(黒丸で図示)の位置が、この受光波形の重心位置として計算される。ここで、積算値SD/2は、右上がりの斜線ハッチングで示す領域の面積に相当している。この領域は、前記総和SDの領域に包含されており、同図において、クロスハッチングの領域となっている。なお、図6の画素毎の受光量の分布は、図5の受光波形を模式的に表したものである。
 測距判定手段321が利用する三角測量の原理は、本例のキッチンカウンター15におけるセンサユニット2、シンク151の内周面150、使用者の手の位置関係を模式的に表す図7を用いて説明される。なお、同図では、発光部25A及び撮像部26を図示する一方、動体判定用の発光部25Bの図示を省略してある。LED光のうち検知対象である手による反射光がラインセンサ261に入射する際、検知対象までの距離Hに応じてその入射位置(距離指標)が異なってくる。距離Hが短いほど、ラインセンサ261に入射する反射光の入射位置が発光部25Aから遠ざかり、距離Hが長くなるほど発光部25Aに近く位置する。このように、ラインセンサ261に対する反射光の入射位置は、検知対象までの距離に比例しており、この距離の度合いを表す距離指標となり得る。受光領域263内に設定された検知領域(図6)は、検知の対象となる検知距離(図7)に対応する領域である。上記のように計算された重心位置を入射位置として取り扱い、その重心位置が検知領域内であるか否かの判定は、反射光を生じた検知対象までの距離が図7の検知距離の範囲内であるか否かの判定と実質的に同義となっている。
 前記動体判定手段322は、発光部25Bの発光に応じた反射光の時間的な変化を利用して動体の有無を判定する。動体判定手段322は、時間的に連続する2回の撮像動作(適宜、動体判定用の撮像動作という。)によって、それぞれ取得された2つの受光波形を比較し、動体の有無を判定する。
 本例の動体判定手段322は、2回の撮像動作に対応する2つの受光波形について、それぞれ、図6を参照して説明した方法と同様の計算方法により重心位置を求め、受光波形の入射位置として取り扱う。そして、求められた2つの重心位置の変位量が所定の閾値を超えているときに動体が有ると判定し、この変位量が所定の閾値未満であるときに動体が無いと判定する。
 以下、図8のフローチャートを利用して、制御ユニット3による制御によって実現される人体検知センサ1の動作を説明する。
 電源投入されると、まず、前記測距用の撮像動作を含む受光波形取得ルーチンが実行され(P101)、取得された受光波形(図5参照。)を利用して測距判定ルーチン(P102)が実行される。この測距判定ルーチンでは、受光波形の重心位置(図6参照。)が反射光の入射位置として特定されると共に、その重心位置が所定の検知領域(図6)内に属しているか否かの判定が行われる。重心位置が所定の検知領域内に属しており、検知対象までの距離が所定の検知距離の範囲内であれば(S103:YES)、検知対象が有る旨の判定に応じて検知信号の出力が開始され、吐水が開始される(S104)。
 吐水中、すなわち検知状態下では、所定のインターバル時間が経過して動作期間に移行する毎に、前記測距用の撮像動作、及び前記動体判定用の撮像動作を含む受光波形取得ルーチンが実行される(P105)。このルーチンでは、測距用の撮像動作に対応する測距用の受光波形、及び動体判定用の撮像動作に対応する動体判定用の受光波形が取得される。特に、動体判定用の受光波形としては、時間的に連続する2つの受光波形が取得される。
 まず、測距用の受光波形を利用して、そのピークの受光量が所定の閾値を超えているか否かの判断が実行される(S106)。図9のごとく、食器洗い中の皿などによる反射光がセンサユニット2に入射し、いずれかの画素260の受光量が閾値以上の場合であれば(S106:NO)、そのままその受光波形を利用し、上記P102と同じ仕様の測距判定ルーチンが実行される(P117)。重心位置(入射位置)が所定の検知領域内に属しており、検知対象までの距離が所定の検知距離の範囲内であれば(S118:YES)、検知対象が有る旨の判定に応じて検知信号の出力が継続され、吐水が継続される(S119)。
 一方、図10のごとく食器洗い中の皿などによる反射光の方向が逸れてセンサユニット2に入射せず、受光量が閾値以上の画素260が無い場合には(S106:YES)、動体判定用の2つの受光波形を利用し、動体判定ルーチンが実行される(P107)。この動体判定ルーチンでは、図11のごとく、動体判定用の時間的に連続する2つの受光波形について、それぞれ、重心位置が計算される。これら重心位置の変位量が所定の閾値以上であったとき、動体が有ると判定される(S108:NO)。
 なお、S106の画素260の受光量が閾値未満となる状況としては、上記のほか、検知対象が存在しない状況や、ガラス等の皿を投射光が透過した状況や、コップ等を洗う水に含まれる気泡等によって投射光が乱反射した状況などが考えられる。また、上記のように反射光の方向が逸れてセンサユニット2に入射しない状況は、ステンレスの包丁や銀のプレート食器などの鏡面物によるシャープな鏡面反射光ほど、発生する可能性が高くなる。
 ステップS108において動体が有ると判定された場合には(S108:NO)、検知信号の出力が継続され、吐水が継続される(S119)。この場合には、P105の受光波形取得ルーチンに移行し、その後、検知対象が検知されなくなるまで、P105~S119に至る一連の処理が繰り返し実行される。
 ステップS108において動体が無いと判定された場合には(S108:YES)、非検知状態と判断されて検知信号の出力が停止され、止水に切り換えられる(S109)。この場合には、P101の受光波形取得ルーチンに移行し、その後、検知対象が検知されるまで、P101~S103に至る一連の処理が繰り返し実行される。
 ここで、ステップP117等の測距判定ルーチン、ステップP107の動体判定ルーチンによる判定の傾向について説明する。
 反射光の重心位置(入射位置)を利用して検知対象の有無を判定する測距判定ルーチンによれば、検知対象の色や反射率によらず、信頼性高く検知対象を検知可能である。一方、透明なガラス食器や、泡立つ水の層に覆われた皿などの場合、LED光が透過したり乱反射して十分な反射光が得られないおそれがある。十分な反射光が得られないと、その重心位置を精度良く特定することが難しくなるため、測距判定手段321による判定精度が低下する傾向にある。
 このような場合には動体判定ルーチンが有効に作用する。ガラス食器であれ、表面が水の層に覆われた皿であれ、食器洗いの最中では細かい動きが絶え間なく発生している。このような細かい動きの最中では、たとえガラス食器であっても、その姿勢等に応じてLED光を反射したり、反射する箇所が時々刻々変動し、これにより、反射光の時間的な変化が発生する。このような反射光の時間的な変化に応じて動体の有無を判定する動体判定ルーチンによれば、洗い中のガラス食器等を比較的容易に判定できる。
 このように、本例の人体検知センサ1は、測距判定ルーチンを実行する測距判定手段321、及び動体判定ルーチンを実行する動体判定手段322の長所を上手く組み合わせ、検知性能の向上を実現したセンサである。水栓16の止水中に当たる非検知状態では、測距判定手段321のみを利用して検知判定を実行することで誤検知が未然に抑制されている。一方、水栓16の吐水中に当たる検知状態では、測距判定手段321による判定に、動体判定手段322による判定を組み合わせている。検知状態下で受光量が閾値を超えている場合には、測距判定手段321による判定結果を優先し、検知状態下で受光量が閾値未満である場合には、動体判定手段322による判定結果を優先して、非検知状態への切換判断を行っている。
 この人体検知センサ1によれば、例えば、キッチン用の水栓でガラスのコップを洗っているとき、投射光(LED光)がコップを透過して十分な反射光を返さず距離的な判断が不安定になっても、動体判定により検知状態を維持できる。これにより、コップを洗っている最中にも関わらず、非検知状態に切り換わって止水されてしまうおそれを未然に回避できる。
 以上の通り、本例の人体検知センサ1は、距離的な判断による検知対象の有無の判定と、動体判定と、を組み合わせることで検知性能を向上したセンサである。特に、検知状態下において動体判定を活用することで検知対象からの反射光が不足する場合の検知性能を確保し、検知対象が存在しているにも関わらず非検知状態と誤判断するおそれを抑制している。この人体検知センサ1を採用した水栓16は、動作信頼性に優れた製品となり、キッチン用の自動水栓として好適である。
 本例は、ラインセンサ261の露光時間の長さを制御するために電子シャッターを採用している。電子シャッターは必須ではなく省略することもできるが、電子シャッターに代えて、ラインセンサ261への光の入射を物理的に遮断する機械式シャッターを採用しても良い。
 ラインセンサ261の各画素260に感度のばらつきがある場合には、各画素260の画素値を補正してから検知処理を実行することも良い。
 本例では、反射光の入射位置として、受光波形の重心位置を利用している。重心位置に代えて、受光波形のピークの位置を入射位置として特定しても良い。さらに、本例では、簡易的な計算により重心位置を算出しているが、計算処理能力に余裕があれば数学的に厳密に重心位置を算出することも良い。
 なお、本例は、キッチンカウンター15に人体検知センサ1を適用した例であるが、洗面台の水栓であっても良い。さらに、自動洗浄機能付きの小用便器の自動給水装置のセンサとして、本例の人体検知センサ1を適用することも可能である。さらには、手かざし操作や人体に反応して自動点灯する照明や自動扉等、各種の自動装置に対して、本例の人体検知センサ1を適用することもできる。
 なお、本例では、センサユニット2と制御ユニット3とを別体で構成している。これに代えて、センサユニット2と制御ユニット3とを一体的に構成し、水栓16に収容することも良い。
 また、本例の人体検知センサ1は、給水制御部33を含んでいるが、給水制御部33を別体で構成することもできる。
 本例のセンサユニット2は、発光部25Aと発光部25Bとで撮像部(受光部)26が共用されてコンパクトに構成されたユニットである。これに代えて、受光部をそれぞれ設けても良い。動体判定用の発光部25Bに対応する受光部26として、受光波形の重心位置を出力可能なPSD素子を含む受光部を採用することも良い。重心位置を計算して求める必要がなくなるので、動体判定のための計算負荷を抑制できる。
 さらに、本例のセンサユニット2では、発光部25A・B及び撮像部26が一直線上に配置されている。測距用の発光部25Aは撮像部26に対して水平方向にオフセット配置されている必要があるが、動体判定用の発光部25Bについては、撮像部26の周囲であればどのような位置であっても良い。発光部25Bについては、発光部25Aよりも撮像部26に近づけて配置されていることが良い。
 本例の図8の検知処理に代えて、図12のフローチャート図に示す検知処理を採用することも良い。図12の検知処理は、図8のごとく検知判定(S103:YES)あるいは非検知判定(S108:YES)に応じて直ちに吐水あるいは止水に切り換える上記の検知処理とは相違している。図12の検知処理では、同様の判定の繰り返し回数が規定回数に到達したときに、吐水あるいは止水への切換が実行される。このような動作仕様によれば、水栓16の誤作動を一層抑制して動作信頼性を向上できる。
 図12の検知処理では、図8の検知処理に対して、S201、S202・・・など200番台のステップ処理あるいはプログラムルーチンが追加されている。
 ステップS201、S202、S211は、止水中(非検知状態)における測距判定ルーチン(P102)を含む検知処理に関する。この検知処理では、検知対象が有ると判定された回数が規定回数に達するまで測距判定ルーチンが繰り返し実行され(S202:NO)、規定回数に達したとき(S202:YES)、検知状態と判断されて吐水が開始される(S104)。繰り返し途中の測距判定ルーチンで検知対象が無いと判定された場合には(S103:NO)、非検知状態と判定され(S211)、止水状態が維持される。
 ステップS205、S206、S215は、吐水中(検知状態)における受光波形取得ルーチン(P105)を含む検知処理に関する。この検知処理では、非検知判定(S205、S215)の回数が規定回数に未到達の間(S206:NO)、吐水状態が維持される(S119)。動体判定ルーチン(P107)によるステップS205の非検知判定は、動体が無い旨の判定(S108:YES)に基づく非検知判定である。測距判定ルーチン(P117)によるステップS215の非検知判定は、検知対象までの距離が所定の検知距離の範囲内ではない旨の判定(S118:NO)に基づく非検知判定である。
 一方、繰り返し途中の測距判定ルーチンで検知対象が有ると判定されるか(S118:YES)、あるいは動体判定ルーチンで動体が有ると判定された場合には(S108:NO)、吐水が継続される(S119)。
(実施例2)
 本例は、実施例1の自動水栓を基にして、人体検知センサによる検知処理の内容を変更したものである。この内容について、図13及び図14のフロー図を参照して説明する。
 図13及び図14のフロー図は、図8、図12のフロー図に対して、それぞれ、ステップS301の判断を追加した処理を表している。このステップS301は、吐水中(検知状態)に反射光の光量が不十分となったが(S104→S106:YES)、動体有りと判定されたとき(S108:NO)に実行される処理ステップである。
 吐水中に反射光の光量が不十分になるような状況としては、例えば、キッチン用の水栓でガラスのコップを洗っている最中に、投射光(LED光)がコップを透過して十分な反射光が返って来ない状況がある。このようなとき、動体有りの判定に応じて吐水を継続すれば、実施例1で説明したように洗い作業中の止水を未然に回避できる。
 このような制御仕様は、次のような状況において不都合を生じるおそれがある。すなわち、洗い水を溜めるためのシンク内に置かれたボウル等が、洗い作業が終わった後、そのまま放置されたような状況である。このような状況では、ボウル内の水面で不完全な反射が生じて低光量の反射光が返ってくる一方、その水面の揺れによって動体有りの判定が繰り返されるおそれがある。このような場合、洗い作業が終わっているにも関わらず、非検知状態の判断が行われずに吐水が継続されてしまうおそれがある。
 このように吐水が継続されてしまう状況に対して、動体有りの判定の連続回数に関する閾値判断である本例のステップS301の処理が有効に作用する。シンク内に水を張ったボウル等が放置されたような状況では、動体有りの判定の連続回数が閾値を超えることからステップS301のYESの判断によって非検知状態と判断し止水への切り換えを実現できる。なお、本例では、動体有りの判定の連続回数に対する閾値(所定回数)として、3回を設定している。
 一方、ガラスのコップなどを洗っている最中では、ガラスのコップの動きや洗い作業を行う手の動きなどによって、反射光を十分に返す状況と、十分に返さない状況と、が交互に繰り返し発生すると考えられる。そのため、洗い作業中等では、反射光の光量が不十分であるが動体が有るという判定が連続的に発生する可能性が少ない。したがって、動体有りの判定の連続回数に上限を設定しても不都合が生じるおそれは少なく、洗い作業中に水が止められてしまうといった不具合が生じることもない。
 なお、その他の構成及び作用効果については、実施例1と同様である。
 本例のステップS301の処理は、ステップS108における動体が有る旨の判定の連続回数に関する閾値判断の処理である。本例では、図13及び図14の処理ルーチンを約200ミリ秒周期で実行している。したがって、閾値である3回という連続回数は、約0.6秒(200ミリ秒×3回)に対応している。
 連続回数に関する閾値判断に代えて、ステップS108において動体が有ると判定された状況の継続時間に関する閾値判断を実行することも良い。閾値となる所定時間としては、例えば、0.6秒程度の時間を設定できる。
 なお、閾値となる所定回数あるいは所定時間の数値は、本例には限定されない。使用状況等に応じて適宜設定することが良い。
 所定回数あるいは所定時間を調整するための操作手段を設けることも良い。このような操作手段を設ければ、使用者の好みや使用方法に合致した閾値を設定できるようになる。
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更、あるいは適宜組み合わせた技術を包含している。
1…人体検知センサ、15…キッチンカウンター、16…水栓(自動水栓)、11…ソレノイド(給水制御手段)、12…給水配管、167…タッチレスセンサ、2…センサユニット、25A・B…発光部、251…LED素子、26…撮像部(受光部)、260…画素、261…ラインセンサ(撮像素子)、263…受光領域、3…制御ユニット、30…制御基板、31…撮像制御部、311…撮像制御手段、312…読出手段、32…検知処理部、321…測距判定手段、322…動体判定手段、324…検知判断手段、325…検知出力手段、33…給水制御部

Claims (7)

  1.  検知対象に向けて光を投射する発光部と、この発光部が投射した光によって生じた反射光を受光する受光部と、を含む光電式の人体検知センサにおいて、
     前記受光部が受光した反射光の受光量が所定の閾値以上か未満かを判定する受光量判定手段と、
     前記受光部に入射する反射光を利用して検知対象までの距離あるいは距離の度合いを表す距離指標を求めると共に、その距離指標が所定の範囲に含まれているか否かによって検知対象の有無を判定する測距判定手段と、
     前記受光部に入射する反射光の時間的な変化を検出して動体の有無を判定する動体判定手段と、
     検知対象を検知している検知状態か非検知状態かを判断する検知判断手段と、を備え、
     この検知判断手段は、前記検知状態下で反射光の受光量が前記所定の閾値以上であるときには、前記測距判定手段により検知対象無しと判定されたことを条件として前記検知状態から前記非検知状態に判断を切り換える一方、
     前記検知状態下で反射光の受光量が前記所定の閾値未満であるときには、前記動体判定手段によって動体無しと判定されたことを条件として前記検知状態から前記非検知状態に判断を切り換える人体検知センサ。
  2.  請求項1において、前記検知判断手段は、前記非検知状態下で前記測距判定手段が検知対象無しと判定しているときには前記非検知状態である旨の判断を維持する一方、
     前記非検知状態下で前記測距判定手段が検知対象有りと判定したときには、前記動体判定手段による判定結果の有無及びその判定結果の内容に関わらず前記非検知状態から前記検知状態に判断を切り換える人体検知センサ。
  3.  請求項1又は2において、前記検知状態下で反射光の受光量が前記所定の閾値未満であるときに前記動体判定手段により動体有りと判定され、これにより前記検知判断手段が前記非検知状態への切り換えを行わなかった判断が、所定回数に渡って連続的に発生するか、あるいは所定時間に渡って継続的に維持されたとき、前記検知判断手段は、前記動体判定手段による判定結果の有無及びその判定結果の内容に関わらず前記検知状態から前記非検知状態に判断を切り換える人体検知センサ。
  4.  請求項1~3のいずれか1項において、前記発光部としては、前記受光部に対してオフセットして配置されていると共にそのオフセット方向の光の拡がりが抑制されたスリット光を投射する第1の発光部と、少なくとも前記オフセット方向に拡がる光を投射する第2の発光部と、が設けられ、
     前記受光部は、光の入射位置について前記オフセット方向に分解能を有しており、
     前記測距判定手段は、前記第1の発光部が投射した光によって生じた反射光について、前記受光部に対する入射位置を特定することにより前記距離指標を求め、
     前記動体判定手段は、前記第2の発光部が投射した光によって生じた反射光を利用して動体の有無を判定する人体検知センサ。
  5.  請求項4において、前記動体判定手段は、前記受光部に入射した光の入射位置の時間的な変位量に関する閾値判断により動体の有無を判定する人体検知センサ。
  6.  請求項4又は5において、前記受光部は、前記第1の発光部と前記第2の発光部とで共用されており、
     前記第2の発光部は、前記第1の発光部と前記受光部との前記オフセット方向の間隙に配置されている人体検知センサ。
  7.  底部に排水口を設けたシンクに吐水する水栓と、
     請求項1~6のいずれか1項に記載された人体検知センサと、
     この人体検知センサが出力するセンサ信号に応じて、前記水栓の吐水・止水の切換、あるいは吐水量の調整を実行する給水制御手段と、を備えた自動水栓。
PCT/JP2013/066329 2012-09-28 2013-06-13 人体検知センサ及び自動水栓 WO2014050225A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/430,920 US10072403B2 (en) 2012-09-28 2013-06-13 Human body detection sensor and automatic faucet
CN201380050253.3A CN104685383B (zh) 2012-09-28 2013-06-13 人体检测传感器以及自动水龙头
EP13842954.3A EP2902813A4 (en) 2012-09-28 2013-06-13 HUMAN BODY DETECTION SENSOR AND AUTOMATIC VALVE
CA 2885986 CA2885986A1 (en) 2012-09-28 2013-06-13 Human body detection sensor and automatic faucet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012217483 2012-09-28
JP2012-217483 2012-09-28
JP2012-288860 2012-12-28
JP2012288860A JP5990800B2 (ja) 2012-09-28 2012-12-28 人体検知センサ及び自動水栓

Publications (1)

Publication Number Publication Date
WO2014050225A1 true WO2014050225A1 (ja) 2014-04-03

Family

ID=50387642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066329 WO2014050225A1 (ja) 2012-09-28 2013-06-13 人体検知センサ及び自動水栓

Country Status (6)

Country Link
US (1) US10072403B2 (ja)
EP (1) EP2902813A4 (ja)
JP (1) JP5990800B2 (ja)
CN (1) CN104685383B (ja)
CA (1) CA2885986A1 (ja)
WO (1) WO2014050225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3237782A4 (en) * 2014-12-23 2018-12-19 AS IP Holdco, LLC Sensor-operated pull-out faucet
US20230250620A1 (en) * 2020-01-30 2023-08-10 Jason Alan Appler Configurable collaborative communal culinary workspaces

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032565B2 (en) 2009-12-16 2015-05-19 Kohler Co. Touchless faucet assembly and method of operation
WO2016208214A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 距離センサ
CN204962012U (zh) * 2015-07-23 2016-01-13 厦门建霖工业有限公司 实现感应出皂液、出水、吹风的龙头
JP2017032314A (ja) * 2015-07-29 2017-02-09 シャープ株式会社 人体部分検出センサ
JP6767072B2 (ja) * 2015-10-06 2020-10-14 アズビル株式会社 距離設定型光電センサ
CN205173692U (zh) * 2015-10-20 2016-04-20 厦门建霖工业有限公司 一体式感应龙头给皂器
AU2016350486B2 (en) * 2015-11-04 2021-01-28 Sumitomo Chemical Company, Limited Drive device and spray device using said drive device
US10835912B2 (en) 2015-11-04 2020-11-17 Sumitomo Chemical Company, Limited Detector and spraying device provided with said detector
JP6812661B2 (ja) * 2016-05-13 2021-01-13 Toto株式会社 水栓装置
JP6784933B2 (ja) * 2016-05-13 2020-11-18 Toto株式会社 吐水装置及び光電センサ
JP6847373B2 (ja) * 2017-02-22 2021-03-24 株式会社Lixil 物体検知センサ及び電気機器ユニット
JP7064167B2 (ja) * 2018-01-18 2022-05-10 オムロン株式会社 光学計測装置及び光学計測方法
CN110098180B (zh) * 2018-01-31 2023-10-20 光宝新加坡有限公司 晶圆级感应模块及其制造方法
CN108533815A (zh) * 2018-04-14 2018-09-14 刘素青 用户自适应式水龙头
CN108758053A (zh) * 2018-08-01 2018-11-06 深圳鑫宏图工业设计有限公司 一种盥洗装置
US10597854B1 (en) * 2019-04-18 2020-03-24 Hsiang-Hung Wang Sensing faucet for integration of soap supply with water exit
CN111142432A (zh) * 2019-12-20 2020-05-12 广东华艺卫浴实业有限公司 基于距离分段的智能马桶控制方法、装置和存储介质
US11618666B2 (en) 2020-07-15 2023-04-04 Deltrol Corp. Contactless liquid dispensing valve
US12023692B2 (en) * 2021-02-08 2024-07-02 Kohler Co. Shower system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322152A (ja) * 2006-05-30 2007-12-13 Saraya Kk 物体感知センサの制御方法
JP2010127010A (ja) 2008-11-27 2010-06-10 Inax Corp 自動水栓
JP2010148671A (ja) * 2008-12-25 2010-07-08 Toto Ltd システムキッチン
WO2012043663A1 (ja) * 2010-09-30 2012-04-05 株式会社Lixil 人体検知センサ及び自動水栓

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9406298U1 (de) * 1993-06-30 1994-08-04 Geberit Technik Ag, Jona Anordnung zur berührungslosen Steuerung des Wasserflusses einer Sanitäranlage und Waschtischarmatur mit einer solchen Anordnung
TW286345B (ja) 1993-12-20 1996-09-21 Toto Ltd
US5691815A (en) * 1996-01-02 1997-11-25 Lockheed Missiles & Space Co., Inc. Laser inspection tool system
US5868311A (en) * 1997-09-03 1999-02-09 Cretu-Petra; Eugen Water faucet with touchless controls
WO1999004283A1 (en) 1997-07-18 1999-01-28 Kohler Company Advanced touchless plumbing systems
JP3286219B2 (ja) 1997-09-11 2002-05-27 トヨタ自動車株式会社 座席の使用状況判定装置
US8104113B2 (en) * 2005-03-14 2012-01-31 Masco Corporation Of Indiana Position-sensing detector arrangement for controlling a faucet
US7278624B2 (en) * 2005-04-25 2007-10-09 Masco Corporation Automatic faucet with polarization sensor
CN101393262B (zh) * 2008-11-05 2011-04-27 上海科勒电子科技有限公司 距离检测感应装置及其近距离检测方法
CN202302197U (zh) * 2011-09-15 2012-07-04 深圳成霖洁具股份有限公司 自动水龙头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322152A (ja) * 2006-05-30 2007-12-13 Saraya Kk 物体感知センサの制御方法
JP2010127010A (ja) 2008-11-27 2010-06-10 Inax Corp 自動水栓
JP2010148671A (ja) * 2008-12-25 2010-07-08 Toto Ltd システムキッチン
WO2012043663A1 (ja) * 2010-09-30 2012-04-05 株式会社Lixil 人体検知センサ及び自動水栓

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902813A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3237782A4 (en) * 2014-12-23 2018-12-19 AS IP Holdco, LLC Sensor-operated pull-out faucet
US10227759B2 (en) 2014-12-23 2019-03-12 As Ip Holdco, Llc Sensor-operated pull-out faucet
US10676902B2 (en) 2014-12-23 2020-06-09 As America, Inc. Sensor-operated pull-out faucet
US20230250620A1 (en) * 2020-01-30 2023-08-10 Jason Alan Appler Configurable collaborative communal culinary workspaces
US11920331B2 (en) * 2020-01-30 2024-03-05 Jason Alan Appler Configurable collaborative communal culinary workspaces

Also Published As

Publication number Publication date
US20150259890A1 (en) 2015-09-17
CN104685383A (zh) 2015-06-03
JP5990800B2 (ja) 2016-09-14
EP2902813A1 (en) 2015-08-05
CA2885986A1 (en) 2014-04-03
US10072403B2 (en) 2018-09-11
CN104685383B (zh) 2017-10-27
EP2902813A4 (en) 2016-07-13
JP2014081349A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5990800B2 (ja) 人体検知センサ及び自動水栓
JP5976531B2 (ja) 人体検知センサ及び自動水栓
WO2014192230A1 (ja) 人体検知センサ及び自動水栓
US8576384B2 (en) Distance detecting sensor and close range detecting method
JP6169935B2 (ja) 自動水栓
JP2014234620A (ja) 人体検知センサ及び自動水栓
CN108983998B (zh) 可增加工作表面适用性的轨迹追踪装置
JP6029229B2 (ja) 人体検知センサ及び自動水栓
JP5722688B2 (ja) 人体検知センサ及び自動水栓
JP5678318B2 (ja) 自動給水装置及び測距センサ
JP5909171B2 (ja) 人体検知センサ及び自動水栓
JP6008540B2 (ja) 人体検知センサ及び自動水栓
JP5947739B2 (ja) 自動水栓
JP5909170B2 (ja) 人体検知センサ及び自動水栓
JP7391711B2 (ja) 給水装置
KR101632384B1 (ko) 세가지 모드로 물 배출 방식을 제어할 수 있는 수도꼭지장치
JP2019173489A (ja) 水栓装置
JP2017032314A (ja) 人体部分検出センサ
WO2014006869A1 (ja) 自動水栓

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2885986

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14430920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013842954

Country of ref document: EP