WO2014046020A1 - 遷移金属化合物担持酸化チタン - Google Patents
遷移金属化合物担持酸化チタン Download PDFInfo
- Publication number
- WO2014046020A1 WO2014046020A1 PCT/JP2013/074777 JP2013074777W WO2014046020A1 WO 2014046020 A1 WO2014046020 A1 WO 2014046020A1 JP 2013074777 W JP2013074777 W JP 2013074777W WO 2014046020 A1 WO2014046020 A1 WO 2014046020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium oxide
- transition metal
- metal compound
- supported
- membrane
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 337
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 266
- 150000003623 transition metal compounds Chemical class 0.000 title claims abstract description 41
- 239000013078 crystal Substances 0.000 claims abstract description 76
- 229910052723 transition metal Inorganic materials 0.000 claims description 74
- 150000003624 transition metals Chemical class 0.000 claims description 73
- 239000010936 titanium Substances 0.000 claims description 31
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 230000001699 photocatalysis Effects 0.000 abstract description 38
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 98
- 238000000034 method Methods 0.000 description 84
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 75
- 239000000725 suspension Substances 0.000 description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 67
- 239000012528 membrane Substances 0.000 description 60
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 57
- 238000001914 filtration Methods 0.000 description 48
- 229910052742 iron Inorganic materials 0.000 description 45
- 150000002506 iron compounds Chemical class 0.000 description 39
- 238000005374 membrane filtration Methods 0.000 description 35
- 238000007254 oxidation reaction Methods 0.000 description 30
- 239000012466 permeate Substances 0.000 description 26
- 230000003647 oxidation Effects 0.000 description 23
- 238000005406 washing Methods 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 238000011001 backwashing Methods 0.000 description 17
- 239000012510 hollow fiber Substances 0.000 description 15
- 239000012535 impurity Substances 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 12
- -1 halogen ion Chemical class 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 238000000108 ultra-filtration Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 11
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 150000003609 titanium compounds Chemical class 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 239000004695 Polyether sulfone Substances 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920006393 polyether sulfone Polymers 0.000 description 8
- 230000004043 responsiveness Effects 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 238000004887 air purification Methods 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 238000009295 crossflow filtration Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010335 hydrothermal treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000011941 photocatalyst Substances 0.000 description 5
- 229920002620 polyvinyl fluoride Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000003373 anti-fouling effect Effects 0.000 description 4
- 230000000843 anti-fungal effect Effects 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000004332 deodorization Methods 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000011085 pressure filtration Methods 0.000 description 4
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920006266 Vinyl film Polymers 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- MTAYDNKNMILFOK-UHFFFAOYSA-K titanium(3+);tribromide Chemical compound Br[Ti](Br)Br MTAYDNKNMILFOK-UHFFFAOYSA-K 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
- C01G23/0536—Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/36—Compounds of titanium
- C09C1/3607—Titanium dioxide
- C09C1/3653—Treatment with inorganic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4508—Gas separation or purification devices adapted for specific applications for cleaning air in buildings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Definitions
- the present invention relates to a transition metal compound-supported titanium oxide obtained by supporting a transition metal compound on titanium oxide.
- the transition metal compound-supported titanium oxide has excellent responsiveness to visible light and can exhibit excellent photocatalytic ability.
- Transition metal compound-supported titanium oxide has photocatalytic activity, and can exhibit strong oxidizing power when irradiated with light such as visible light and ultraviolet light, and can decompose harmful chemical substances into water and carbon dioxide.
- light such as visible light and ultraviolet light
- Transition metal compound-supported titanium oxide By applying or mixing a suspension of transition metal compound-supported titanium oxide, antibacterial, antifungal, deodorizing, air purification, water purification, and antifouling effects can be imparted to the coated body or mixture.
- ionic impurities, such as a halogen ion are contained in transition metal compound carrying
- transition metal compound-supported titanium oxide can be produced through the following steps (see Patent Documents 1 and 2, etc.).
- 1. Titanium oxide production process for obtaining a titanium oxide suspension by hydrothermal treatment of a titanium compound 2.
- Transition metal compound supporting step for obtaining a transition metal compound supporting titanium oxide suspension by adding a transition metal compound to the titanium oxide suspension.
- a purification process that reduces the content of ionic impurities by subjecting the transition metal compound-supported titanium oxide suspension to solid or liquid separation by subjecting it to a treatment such as pressure or vacuum filtration using a filtration method or centrifugation.
- the transition metal compound-supported titanium oxide is consolidated by solid-liquid separation in the purification step and the exposed amount of the highly active surface is reduced, the transition metal compound-supported titanium oxide having sufficient photocatalytic ability cannot be obtained. That was the problem. Furthermore, the transition metal compound-supported titanium oxide once consolidated has not been able to obtain satisfactory photocatalytic ability even after being subjected to pulverization and the like and then redispersed.
- Japanese Patent Laid-Open No. 10-158015 Japanese Patent Laid-Open No. 62-235215
- an object of the present invention is to provide a transition metal compound-supported titanium oxide that has excellent response to visible light and exhibits excellent photocatalytic activity.
- the rod-shaped transition metal compound-supported titanium oxide is once consolidated by being subjected to a solid-liquid separation process such as centrifugation, and then pulverized. It was found that even when re-dispersed, the rod-like crystal structure was cut, and the photocatalytic ability in the visible light region was remarkably lowered due to the following reasons 1, 2 and the like. 1. 1. Since the average aspect ratio of the transition metal compound-supported titanium oxide is small and the shape is closer to a sphere, the separation between the oxidation reaction field and the reduction reaction field is reduced, and the progress of the reverse reaction and side reaction is unavoidable. The rod-like crystal structure is cut to produce a piece of titanium oxide that does not carry a transition metal compound, and the piece of titanium oxide cannot exhibit visible light responsiveness.
- the rod-like crystal structure is maintained without compacting the transition metal compound-supported titanium oxide. It has been found that ionic impurities can be efficiently removed in a state, the content of ionic impurities is extremely low, and a rod-shaped transition metal compound-supported titanium oxide can be obtained. Furthermore, it has been found that when the reaction system is stirred during hydrothermal treatment, a transition metal compound-supported titanium oxide having an extremely small average minor axis and a large average aspect ratio can be obtained. And it discovered that the transition metal compound carrying
- the present invention is a transition metal compound-supported titanium oxide in which a transition metal compound is supported on crystalline titanium oxide, having an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more.
- a transition metal compound-supported titanium oxide is provided.
- Examples of the crystalline titanium oxide include rutile type titanium oxide having a crystal plane (110) and a crystal plane (111) and / or rutile type oxide having a crystal plane (110), a crystal plane (111) and a crystal plane (001). Titanium is preferred.
- the specific surface area is preferably 10 m 2 / g or more.
- the present invention also provides titanium oxide having an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more.
- the transition metal compound-supported titanium oxide of the present invention has an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more. Therefore, it has excellent responsiveness to visible light, and can absorb light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, and LEDs, and decompose harmful chemical substances into water and carbon dioxide. That is, the transition metal compound-supported titanium oxide suspension of the present invention can be suitably used as a photocatalyst for LED illumination.
- transition metal compound-supported titanium oxide The transition metal compound-supported titanium oxide of the present invention is characterized in that the transition metal compound is supported on crystalline titanium oxide, the average minor axis is 50 nm or less, and the average aspect ratio (major axis / minor axis) is 1.5 or more. To do.
- the average minor axis of the transition metal compound-supported titanium oxide is 50 nm or less, preferably 5 to 40 nm, particularly preferably 5 to 30 nm, and most preferably 10 to 25 nm. If the average minor axis exceeds the above range, the separation between the oxidation reaction field and the reduction reaction field is lowered, the reverse reaction and the side reaction cannot be avoided, and the photocatalytic ability is lowered.
- the average aspect ratio (major axis / minor axis) of the transition metal compound-supported titanium oxide is 1.5 or more, preferably 1.5 to 100, more preferably 1.5 to 50, and particularly preferably 1.5 to 20, most preferably 2-15. If the average aspect ratio is less than the above range, the separation between the oxidation reaction field and the reduction reaction field is lowered, the reverse reaction and the side reaction cannot be avoided, and the photocatalytic ability is lowered.
- the average minor axis and the average aspect ratio are values obtained by the following measuring method for samples obtained by the following adjusting method.
- Sample preparation method> 1. Place a small amount (about half of the earpick size spatula) of the transition metal compound-supported titanium oxide in a 9 mL glass sample bottle, add 7 mL of ethanol, and disperse the ultrasonic wave in ethanol over 5 minutes using an ultrasonic cleaner. An ethanol dispersion is obtained. 2. One drop of the obtained ethanol dispersion is taken with a glass spoid, dropped on a sample stage for SEM and allowed to dry naturally, and then platinum deposition is performed for 30 seconds.
- ⁇ Measurement method> Using a field emission scanning electron microscope (trade name “FE-SEM JSM-6700F”, manufactured by JEOL Ltd., acceleration voltage: 15 kV, WD: about 3 mm, magnification: 200,000 times), crystal grains are randomly selected. Observe, extract three representative points, and 30 particles that are not extremely large or small in appearance in the entire extracted SEM photograph and have a clear outline centered on average-sized particles Are extracted and transferred to an OHP sheet, and for each of these particles, an image analysis software (trade name “WinROOF Version 5.6”, manufactured by Mitani Corp.) is used to obtain each minor axis (width orthogonal to the maximum major axis). These values were averaged to obtain an average minor axis. Further, the average major axis (maximum major axis) was determined by the same method, and the ratio (average major axis / average minor axis) was taken as the average aspect ratio.
- FE-SEM JSM-6700F manufactured by JEOL
- Examples of the crystalline titanium oxide include rutile type, anatase type, brookite type titanium oxide and the like.
- a rutile type or anatase type titanium oxide (a rutile type titanium oxide is more preferable and particularly preferable in terms of being able to exhibit more excellent photocatalytic ability in that a stable crystal face is exposed.
- the transition metal compound is supported in the state of, for example, a transition metal ion, a transition metal simple substance, a transition metal salt, a transition metal oxide, a transition metal hydroxide, or a transition metal complex.
- the loading amount of the transition metal compound is, for example, 50 ppm or more, preferably 100 ppm or more, more preferably 200 ppm or more, particularly preferably 300 ppm or more, and most preferably 500 ppm or more.
- the upper limit of the loading amount of the transition metal compound is, for example, about 5000 ppm, preferably 3000 ppm, particularly preferably 2000 ppm.
- the amount of the transition metal compound supported exceeds the above range, excited electrons do not act effectively due to reverse electron transfer of injected electrons and the photocatalytic ability tends to decrease.
- the transition metal compound is supported on the surface of the crystalline titanium oxide in a surface-selective manner, so that the separation of the reaction field between the oxidation reaction and the reduction reaction can be further improved, thereby recombination of excited electrons and holes. It is preferable in that the reverse reaction can be suppressed and the photocatalytic activity can be dramatically improved. In particular, it is preferable that the transition metal compound is selectively supported on the oxidation reaction surface.
- the transition metal compound is “face-selectively” supported means that the amount exceeding 50% (preferably 70% or more, particularly preferably 80% or more) of the transition metal compound is the two faces of crystalline titanium oxide.
- the above crystal planes it means that it is supported on a specific plane (for example, one specific plane or two planes) instead of all the planes.
- the upper limit of the surface selectivity is 100%.
- the surface selectivity can be determined by confirming a signal derived from a transition metal compound on each crystal plane using a transmission electron microscope (TEM) or an energy dispersive X-ray fluorescence analyzer (EDX).
- Any transition metal compound may be used as long as it has an absorption spectrum in the visible light region and can inject electrons into the conduction band in an excited state.
- elements in Groups 3 to 11 of the periodic table are used.
- Compounds are preferred, among which group 8 to 11 element compounds of the periodic table, particularly preferably iron compounds or platinum compounds, and most preferably trivalent iron compounds (Fe 3+ ).
- the trivalent iron compound (Fe 3+ ) is easily adsorbed on titanium oxide, and the divalent iron compound (Fe 2+ ) has a characteristic that it is difficult to adsorb. Because it can.
- the specific surface area of the transition metal compound-supported titanium oxide is, for example, 10 m 2 / g or more.
- the lower limit of the specific surface area is preferably 30 m 2 / g, more preferably 50 m 2 / g, particularly preferably 60 m 2 / g, and most preferably 70 m 2 / g.
- the upper limit of the specific surface area is, for example, 200 m 2 / g, preferably 150 m 2 / g, particularly preferably 100 m 2 / g.
- the specific surface area of the transition metal compound-supported titanium oxide is, for example, 10 to 200 m 2 / g, preferably 10 to 150 m 2 / g, more preferably 30 to 150 m 2 / g, and still more preferably 50 to 100 m 2 / g. Preferably, it is 60 to 100 m 2 / g, and most preferably 70 to 100 m 2 / g. Since the transition metal compound-supported titanium oxide having a specific surface area in the above range increases the amount of exposure of the highly active surface, it can exhibit excellent photocatalytic ability.
- the specific surface area was measured using a high-speed specific surface area / pore diameter distribution measuring device (trade name “NOVA-1200”, Quantachtome.) For a sample obtained by degassing a transition metal compound-supported titanium oxide at 100 ° C. (under vacuum) for 60 minutes. It is the average of the values obtained by measuring the sample twice under the following conditions using Co).
- the transition metal compound-supported titanium oxide of the present invention is excellent in visible light responsiveness, exhibits excellent photocatalytic ability by light irradiation, and decomposes harmful chemical substances into water and carbon dioxide, thereby providing antibacterial, antifungal, deodorizing, Various effects such as air purification, water purification, and antifouling can be exhibited.
- the amount of CO 2 produced when toluene is oxidized using the transition metal compound-supported titanium oxide (200 mg) is, for example, 300 ppm or more.
- the amount of CO 2 produced when methanol is oxidized is, for example, 500 ppm or more, preferably 600 ppm or more, more preferably 700 ppm or more, and particularly preferably 750 ppm or more.
- the measurement method of the amount of CO 2 generated upon oxidizing the toluene is as follows. 200 mg of transition metal compound-supported titanium oxide is spread on a glass dish and placed in a reaction vessel (Tedlar bag, material: vinyl fluoride resin), and 125 mL of 100 ppm toluene gas is blown into the reaction vessel. After the adsorption of toluene gas to transition metal compound-supported titanium oxide reaches equilibrium, light irradiation (LED, light intensity: 2.5 W / cm 2 , light wavelength: 455 nm) is performed at room temperature (25 ° C.) The amount of CO 2 produced 24 hours after the start of irradiation is measured.
- LED light intensity: 2.5 W / cm 2 , light wavelength: 455 nm
- the method of measuring the amount of CO 2 generated upon oxidizing the methanol is as follows. 200 mg of transition metal compound-supported titanium oxide is spread on a glass dish and placed in a reaction vessel (Tedlar bag, material: vinyl fluoride resin), and 125 mL of 800 ppm of methanol gas is blown into the reaction vessel. After the adsorption of methanol gas to the transition metal compound-supported titanium oxide reaches equilibrium, light irradiation (LED, light intensity: 2.5 W / m 2 , light wavelength: 455 nm) is performed at room temperature (25 ° C.) The amount of CO 2 produced 24 hours after the start of irradiation is measured.
- LED light intensity: 2.5 W / m 2 , light wavelength: 455 nm
- the transition metal compound-supported titanium oxide of the present invention can exhibit extremely excellent photoresponsiveness as described above, that is, because it has responsiveness to light in a wide wavelength range from the ultraviolet region to the visible light region, Absorbs light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, LEDs, etc., and exhibits high catalytic activity to decompose harmful chemical substances into water and carbon dioxide, thereby providing antibacterial (bacteria and radiation Fungicides, fungicides, algae, etc.), mold prevention, deodorization (for example, deodorization of odorous gases such as ammonia, amines, methyl mercaptan, hydrogen sulfide, etc., acetic acid, aldehydes, ethylene)
- deodorization for example, deodorization of odorous gases such as ammonia, amines, methyl mercaptan, hydrogen sulfide, etc., acetic acid, aldehydes, ethylene
- transition metal compound-supported titanium oxide of the present invention is coated or mixed in a state where a binder, a solvent, a dispersant, a thickener, a surfactant, and the like are mixed as necessary, so that an object to be coated or a mixture is mixed.
- a binder, a solvent, a dispersant, a thickener, a surfactant, and the like are mixed as necessary, so that an object to be coated or a mixture is mixed.
- Examples of the coated body and mixture of the transition metal compound-supported titanium oxide of the present invention include, for example, building materials, building exteriors, building interiors, building paints, walls, wallpaper, floors, window frames, window glass, crystallized glass, Glass, screen door, rain gutter, solar heat reflective sheet, mailbox, structural member, pavement material, display board, traffic sign, road sign reflector, display panel, display filter, road surface indicator, road decorative board, fence, gate , Lighting equipment for tunnels and roads, sound insulation walls, guard rails, tunnel interiors, road mirrors, plastic house ceiling inner surfaces, bridges, bridge fall prevention fences, interior / exterior and painting of automobiles / trains / ships, vehicle wheels, Railroad car structures, vehicle parts, machinery / equipment exterior / dustproof covers / painting, various display devices, advertising towers, insulators, solar panels, solar cell covers, solar water heaters Thermal cover, fuel cell, optical fiber, vehicle lighting cover, fishing net, rope, hose, ship bottom member, algae, shoes, bag, blind, curtain, wall cloth, screen, shoji, plastic
- the transition metal compound-supported titanium oxide of the present invention can be produced, for example, through the following steps.
- the crystalline titanium oxide production process is a process for obtaining crystalline titanium oxide from a titanium compound.
- a well-known and commonly used method can be adopted as a method for producing crystalline titanium oxide.
- rod-shaped rutile titanium oxide is obtained by hydrothermal treatment [for example, 100 to 220 ° C., 2 to 48 hours (preferably 2 to 48 hours) in an aqueous medium (for example, water or a mixture of water and a water-soluble organic solvent). 15 hours, particularly preferably 5 to 15 hours)].
- the size and surface area of the resulting particles can be adjusted. preferable.
- titanium compound examples include a trivalent titanium compound and a tetravalent titanium compound.
- examples of the trivalent titanium compound include titanium trihalides such as titanium trichloride and titanium tribromide.
- titanium trichloride TiCl 3
- TiCl 3 titanium trichloride
- the tetravalent titanium compound in this invention can mention the compound etc. which are represented by following formula (1), for example.
- formula (1) Ti (OR) t X 4-t (1)
- R represents a hydrocarbon group
- X represents a halogen atom
- t represents an integer of 0 to 3
- hydrocarbon group for R in formula (1) examples include C 1-4 aliphatic hydrocarbon groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, and the like. Can do.
- halogen atom for X in the formula (1) examples include chlorine, bromine, iodine and the like.
- titanium tetrahalides such as TiCl 4 , TiBr 4 , and Til 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (OC 4).
- Trihalogenated alkoxytitanium such as H 9 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Ti (OC 4 H 9 ) Br 3 ; Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Dihalogenated dialkoxytitanium such as Cl 2 , Ti (OC 4 H 9 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Br 2 ; Ti (OCH 3 ) 3 Cl, Ti (OC 2 H 5 ) 3 Cl, Examples thereof include monohalogenated trialkoxytitanium such as Ti (OC 4 H 9 ) 3 Cl and Ti (OC 2 H 5 ) 3 Br.
- titanium tetrahalide is preferable and titanium tetrachloride (TiCl 4 ) is particularly preferable because it is inexpensive and easily available.
- the rod-shaped rutile-type titanium oxide obtained by hydrothermal treatment can be purified by a well-known and conventional method, for example, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination thereof. it can.
- membrane filtration by the following crossflow method can reduce the content of ionic impurities while maintaining the crystal structure of titanium oxide, and there is no need to perform pulverization or the like. This is preferable in that it can be directly subjected to the transition metal compound supporting step, and a titanium oxide capable of highly supporting the transition metal compound can be obtained.
- the average minor axis of the crystalline titanium oxide obtained by the above method is 50 nm or less, preferably 5 to 40 nm, particularly preferably 5 to 30 nm, and most preferably 10 to 25 nm.
- the average aspect ratio (major axis / minor axis) of the crystalline titanium oxide obtained by the above method is 1.5 or more, preferably 1.5 to 100, more preferably 1.5 to 50, and particularly preferably 1. .5 to 20, most preferably 2 to 15.
- the specific surface area of the crystalline titanium oxide obtained by the said method is 10 m ⁇ 2 > / g or more, for example.
- the lower limit of the specific surface area is preferably 30 m 2 / g, more preferably 50 m 2 / g, particularly preferably 60 m 2 / g, and most preferably 70 m 2 / g.
- the upper limit of the specific surface area is, for example, 200 m 2 / g, preferably 150 m 2 / g, particularly preferably 100 m 2 / g.
- the transition metal compound-supporting step is a step of obtaining a transition metal compound-supported titanium oxide by supporting a transition metal compound on the crystalline titanium oxide obtained through the above steps.
- the transition metal compound can be supported, for example, by adding and impregnating crystalline titanium oxide with a solution containing the transition metal compound.
- a transition metal compound-supported titanium oxide supporting a trivalent iron compound (Fe 3+ ) as a transition metal compound is prepared by adding iron (III) nitrate, iron (III) sulfate, iron chloride ( It is obtained by adding and impregnating a solution containing III) and the like.
- the concentration of the solution containing the transition metal compound is, for example, about 0.1 to 40% by weight, preferably 1 to 40% by weight.
- the impregnation time is, for example, about 1 minute to 24 hours, preferably 5 minutes to 10 hours.
- the transition metal compound is selectively applied to a specific surface of the crystalline titanium oxide. Is preferable in that it can be supported.
- the transition metal compound When irradiated with excitation light, electrons in the valence band of crystalline titanium oxide are excited in the conduction band, holes are generated in the valence band, and excited electrons are generated in the conduction band, which are diffused to the particle surface. Excited electrons and holes are separated according to the characteristics to form an oxidation reaction surface and a reduction reaction surface.
- Excitation light is light (for example, ultraviolet light) having energy higher than the band gap energy.
- the excitation light irradiation means for example, an ultraviolet exposure apparatus having a light source that efficiently generates ultraviolet rays such as a medium / high pressure mercury lamp, a UV laser, a UV-LED, and a black light can be used.
- the irradiation amount of the excitation light is, for example, about 0.1 to 300 mW / cm 2 , preferably 0.5 to 100 mW / cm 2 .
- the transition metal compound can be supported with high selectivity on a specific crystal plane of the crystalline titanium oxide.
- the sacrificial agent it is preferable to use an organic compound that easily emits electrons.
- alcohols such as methanol and ethanol
- carboxylic acids such as acetic acid
- EDTA ethylenediaminetetraacetic acid
- TAA triethanolamine
- the amount of sacrificial agent added can be adjusted as appropriate, and is, for example, about 0.5 to 20.0% by weight, preferably about 1.0 to 5.0% by weight of the suspension of crystalline titanium oxide. An excessive amount of the sacrificial agent may be used.
- the membrane filtration treatment by the crossflow method can efficiently remove ionic impurities while maintaining the rod-like crystal structure without compacting the transition metal compound-supported titanium oxide. In view of obtaining a rod-shaped transition metal compound-supported titanium oxide, the content of ionic impurities is extremely low.
- Membrane filtration by the cross flow method means that water to be treated flows parallel to the surface of the filtration membrane, and a part of the water to be treated is moved to the side of the flow of the water to be treated while preventing filtration membrane contamination due to deposition of filter cake. It is a method of filtering.
- ionic impurities can be efficiently removed without forming a compacted filter cake on the surface of the filtration membrane.
- the content of ionic impurities can be reduced extremely low while maintaining the crystal structure of titanium oxide or transition metal compound-supported titanium oxide.
- the concentration of the suspension of titanium oxide or transition metal compound-supported titanium oxide subjected to membrane filtration by the crossflow method is, for example, about 0.1 to 40% by weight (preferably 0.1 to 30% by weight). If the concentration of the suspension of titanium oxide or transition metal compound-supported titanium oxide is out of the above range, the removal efficiency of ionic impurities tends to decrease. Moreover, when the density
- the concentration ratio is preferably adjusted to about 1 to 400 times (in particular, 1 to 20 times, particularly 1 to 10 times).
- concentration ratio exceeds the above range, it is difficult to suppress the deposition of substances adhering to the film surface, and it tends to be difficult to prevent consolidation of titanium oxide or transition metal compound-supported titanium oxide.
- fouling occurs in the filtration membrane due to the deposition of adhering substances on the membrane surface, so that the membrane life is likely to be shortened. In some cases, the filtration rate tends to decrease.
- the concentration factor is below the above range, the separation efficiency of ionic impurities tends to decrease and the amount of washing water used tends to increase.
- the concentration ratio can be adjusted, for example, by controlling the filtration pressure, the membrane surface linear velocity (cross flow velocity) of the titanium oxide or transition metal compound-supported titanium oxide suspension, and the like.
- the filtration pressure is, for example, about 0.001 to 5.0 MPa, preferably 0.005 to 3 MPa, and particularly preferably 0.01 to 2.0 MPa.
- the film surface linear velocity (cross flow velocity) is, for example, 0.02 m / s or more and less than 3 m / s, preferably 0.05 m / s or more and less than 1.5 m / s.
- the suspension of titanium oxide or transition metal compound-supported titanium oxide concentrated through membrane filtration by the cross-flow method has the concentration of the suspension of titanium oxide or transition metal compound-supported titanium oxide within the above range by adding water. It is preferable to repeat the operation of diluting in such a manner and performing membrane filtration again by the crossflow method. Thereby, the load of the filtration membrane due to fouling (clogging) or the like can be reduced, and the content of ionic impurities can be reduced extremely low while improving the lifetime of the filtration membrane.
- FIG. 1 is a schematic diagram showing an example of membrane filtration by a cross-flow method of a suspension of titanium oxide or a transition metal compound-supported titanium oxide (circulation type membrane filtration method).
- a supply liquid containing a suspension of titanium oxide or transition metal compound-supported titanium oxide charged in a preparation tank is subjected to membrane filtration by a cross-flow filtration method and concentrated to a suspension of titanium oxide or transition metal compound-supported titanium oxide. (Concentrated liquid) is obtained.
- the concentrated suspension of titanium oxide or transition metal compound-supported titanium oxide is circulated again to the charging tank, diluted with dilution water (dilution water), and membrane-filtered by a cross-flow filtration method.
- Examples of the filtration membrane used for membrane filtration by the crossflow method include an ultrafiltration membrane, a microfiltration membrane, a nanofilter, and a reverse osmosis membrane.
- an ultrafiltration membrane in terms of excellent separation performance.
- the ultrafiltration membrane is a substance having an average pore size of about 1 to 20 nm (preferably 1 to 10 nm), a molecular weight of about 1000 to 300,000 (preferably 1000 to 50000), and an average particle size of about 1 to 10 nm. It is preferable to use one that can be separated.
- the membrane shape of the ultrafiltration membrane may be, for example, any of a hollow fiber type filtration membrane, a tubular membrane, a spiral membrane, a flat membrane, etc. It is preferable to use a mold filtration membrane or a tubular membrane.
- the inner diameter of the hollow fiber membrane in the hollow fiber membrane is about 0.1 to 2.0 mm (preferably 0.5 to 0.5 mm) from the viewpoint of preventing clogging of contaminants and improving the hollow fiber filling rate of the membrane module. 1.5 mm).
- Examples of the material of the filtration membrane include general cellulose acetate, polyacrylonitrile, polysulfone, polyethersulfone (PES), polyacrylonitrile, aromatic polyamide, polyvinylidene fluoride, polyvinyl chloride, polyethylene, polypropylene, polyimide, ceramic and the like. Can be mentioned.
- cellulose acetate, polysulfone, polyethersulfone (PES), polyacrylonitrile, and aromatic polyamide are particularly preferable.
- the method of flowing a suspension of titanium oxide or transition metal compound-supported titanium oxide is the inside (inside the hollow fiber membrane) titanium oxide or transition metal compound-supported oxidation.
- a feed solution containing a titanium suspension is flowed, and permeate flows toward the outside (outside of the hollow fiber membrane) (internal pressure filtration method), and vice versa.
- Examples include a method (external pressure filtration method) in which a supply liquid containing a suspension is flowed and permeate flows inward.
- the internal pressure filtration method is preferable because the membrane surface flow rate can be kept high.
- the deposition on the filtration membrane surface is prevented to reduce the burden on the filtration membrane and the membrane filtration operation is performed for a long time. It is preferable to perform back washing.
- the reverse cleaning is preferably performed at a predetermined cycle while controlling the pressure and flow rate.
- the pressure for back washing is, for example, about 0.01 to 3.0 MPa, preferably 0.01 to 2.0 MPa, particularly preferably 0.01 to 1.0 MPa, and most preferably 0.01 to 0.5 MPa. More preferably, it is 0.05 to 0.5 MPa.
- the flow rate of backwashing is, for example, about 0.01 to 10 kg / mim, preferably 0.05 to 5 kg / mim, particularly preferably 0.1 to 5 kg / mim [or, for example, 1 ⁇ 10 ⁇ 7 to 2. ⁇ 10 ⁇ 4 m / sec, preferably 8 ⁇ 10 ⁇ 7 to 9 ⁇ 10 ⁇ 5 m / sec, and particularly preferably 1 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 5 m / sec.
- the frequency of backwashing is preferably about once every 0.5 to 3 hours, for example.
- the back washing time is preferably about 0.5 to 10 minutes.
- water for example, purified water, distilled water, pure water, ion-exchanged water, etc.
- water for example, purified water, distilled water, pure water, ion-exchanged water, etc.
- membrane filtration by the cross flow method has a permeate pH of 1 or more (preferably 1 to 7, particularly preferably 2 to 6, most preferably 2 to 5.5). It is preferable to repeat until it becomes. If membrane filtration by the cross-flow method is completed before the pH of the permeate reaches the above range, removal of ionic impurities (especially hydrogen ions, chlorine ions, titanium ions) becomes insufficient, and it is difficult to carry transition metal compounds. It may become.
- the membrane filtration by the cross flow method has an electric conductivity of the permeate of 300 ⁇ S / cm or less (for example, 0.5 to 300 ⁇ S / cm, preferably 0. It is preferable to repeat the process until it reaches 5 to 250 ⁇ S / cm, particularly preferably 1 to 200 ⁇ S / cm. If the membrane filtration by the cross flow method is finished before the electric conductivity of the permeate falls within the above range, removal of ionic impurities (particularly, iron ions and chlorine ions) may be insufficient.
- transition metal compound-supported titanium oxide suspension obtained by membrane filtration by the crossflow method is then dried (for example, under FV (1.3 kPa [A]) or less) at 60 ° C. for 15 hours. Or about 1 hour at 105 ° C. under normal pressure (atmospheric pressure), a transition metal compound-supported titanium oxide can be obtained.
- Example 1 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight.
- the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
- the obtained crude titanium oxide suspension (1) was diluted three-fold with pure water to obtain a hollow fiber type ultrafiltration membrane (trade name “FS03-FC-FUS03C1”, material: PES, nominal molecular weight cut off: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) at room temperature (25 ° C.) and filtration pressure of 0.02 MPa, filtered with a cross flow method while adding the same amount of pure water as the amount of permeate. It was.
- the concentrate obtained through the filtration treatment was circulated again into the charging tank, and repeatedly subjected to the filtration treatment until the pH of the permeate became 4.0. The pH was measured using a pH test paper.
- a rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), 525 g of titanium oxide (1) (specific surface area: 77 m 2 / g, average aspect ratio: 6, average minor axis: 18 nm), which is a mixture of rod-shaped rutile-type titanium oxide having crystal face (111) and crystal face (001) was obtained (see FIG. 3).
- the photocatalytic ability of the obtained titanium oxide (1) evaluated by the following toluene oxidation method using ultraviolet rays was 625 ppm (decomposition rate: 94%).
- the crude iron compound-supported titanium oxide suspension (1) was diluted three-fold with pure water to form a hollow fiber ultrafiltration membrane (trade name “FS03-FC-FUS03C1”, material: PES, nominal molecular weight cut off: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) at room temperature (25 ° C.) and filtration pressure of 0.02 MPa, filtered with a cross flow method while adding the same amount of pure water as the amount of permeate. It was.
- the concentrate obtained through the filtration treatment was circulated again into the charging tank, and repeatedly subjected to filtration treatment until the electric conductivity of the permeate reached 200 ⁇ S / cm.
- support titanium oxide (1) (specific surface area: 77m ⁇ 2 > / g, average aspect-ratio: 6, average minor axis: 18nm).
- the iron compound content of the obtained iron compound-supported titanium oxide (1) was 800 ppm.
- the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 734 ppm.
- the obtained iron compound-supported titanium oxide (1) has a crystal face (110) and a crystal face (111), and a rod-shaped rutile type titanium oxide in which an iron compound is supported only on the crystal face (111).
- a rod-shaped rutile titanium oxide having a crystal plane (110), a crystal plane (111), and a crystal plane (001), and an iron compound supported on the crystal plane (001) and the crystal plane (111) Met.
- Example 2 Preparation of crystalline titanium oxide
- titanium tetrachloride aqueous solution Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.
- Ti concentration was diluted with pure water so as to be 5.6% by weight.
- the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
- titanium oxide suspension (2-1) When the titanium oxide suspension (2-1) was dried at 105 ° C. for 1 hour under normal pressure, a rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), As a result, 533 g of titanium oxide (2), which is a mixture of rod-shaped rutile-type titanium oxide having crystal face (111) and crystal face (001), was obtained.
- the photocatalytic ability of the obtained titanium oxide (2) evaluated by a toluene oxidation method using the following ultraviolet rays was 647 ppm (decomposition rate: 95%).
- the crude iron compound-supported titanium oxide suspension (2) was diluted twice with pure water, and a hollow fiber ultrafiltration membrane (trade name “FS03-FC-FUS03C1”, material: PES, nominal molecular weight cut off: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) at room temperature (25 ° C.) and filtration pressure of 0.02 MPa, filtered with a cross flow method while adding the same amount of pure water as the amount of permeate. It was.
- the concentrate obtained through the filtration treatment was circulated again into the charging tank, and repeatedly subjected to filtration treatment until the electric conductivity of the permeate reached 200 ⁇ S / cm.
- the obtained iron compound-supported titanium oxide (2) has a crystal face (110) and a crystal face (111), and the rod-shaped rutile type titanium oxide in which the iron compound is supported only on the crystal face (111).
- a rod-shaped rutile titanium oxide having a crystal plane (110), a crystal plane (111), and a crystal plane (001), and an iron compound supported on the crystal plane (001) and the crystal plane (111) (FIG. 4).
- Example 3 Crystalline iron compound-supported titanium oxide (3) in the same manner as in Example 2 except that the electrical conductivity of the permeate was 150 ⁇ S / cm in the above (cross-flow filtration process (2)). (Specific surface area: 78.5 m 2 / g, average aspect ratio: 3, average minor axis: 16 nm) 530 g was obtained. The iron compound content of the obtained iron compound-supported titanium oxide (3) was 890 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 795 ppm.
- Example 4 Crystalline iron compound-supported titanium oxide (4) in the same manner as in Example 2 except that the above-described (filtration treatment by cross-flow method (2)) was repeated until the electric conductivity of the permeate reached 100 ⁇ S / cm. (Specific surface area: 79 m 2 / g, average aspect ratio: 3, average minor axis: 15 nm) 530 g was obtained. The iron compound content of the obtained iron compound-supported titanium oxide (4) was 950 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 800 ppm.
- Example 5 Crystalline iron compound-supported titanium oxide (5) in the same manner as in Example 2 except that the electrical conductivity of the permeate was 50 ⁇ S / cm in the above (cross-flow filtration process (2)). (Specific surface area: 80 m 2 / g, average aspect ratio: 3, average minor axis: 14 nm) 530 g was obtained. The iron compound content of the obtained iron compound-supported titanium oxide (5) was 1200 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 800 ppm.
- Example 6 In the above (iron compound supporting treatment), a crystalline iron compound-supported titanium oxide (35% by weight) was changed in the same manner as in Example 2 except that the amount of iron chloride aqueous solution (35% by weight) was changed from 7.5 g to 6.5 g. 6) 530 g (specific surface area: 76 m 2 / g, average aspect ratio: 3, average minor axis: 17 nm) was obtained.
- the iron compound content of the obtained iron compound-supported titanium oxide (6) was 700 ppm.
- the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 780 ppm.
- Example 7 In the above (iron compound supporting treatment), a crystalline iron compound-supported titanium oxide (35% by weight) was changed in the same manner as in Example 2 except that the amount of iron chloride aqueous solution (35% by weight) was changed from 7.5 g to 15.0 g. 7) 530 g (specific surface area: 80 m 2 / g, average aspect ratio: 3, average minor axis: 16 nm) was obtained. The iron compound content in the obtained iron compound-supported titanium oxide (7) was 2000 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 753 ppm.
- Example 8 In the above (preparation of crystalline titanium oxide), a crude titanium oxide suspension (8) was obtained in the same manner as in Example 2 except that the reaction temperature (temperature in the autoclave) was changed from 140 ° C to 120 ° C. The obtained crude titanium oxide suspension (8) was subjected to the above (membrane filtration treatment (1) by the cross flow method) in the same manner as in Example 2 to obtain a titanium oxide suspension (8-1). A rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111) and a rod-like rutile titanium oxide having a crystal face (110), a crystal face (111) and a crystal face (001). 530 g of titanium oxide (8) was obtained. The photocatalytic ability of the obtained titanium oxide (8) evaluated by the toluene oxidation method with the following ultraviolet rays was 600 ppm (CO 2 generation rate: 90%).
- Example 2 iron compound supporting treatment
- (membrane filtration treatment by crossflow method (2)) crystalline iron compound supporting titanium oxide (8) (specific surface area: 85 m 2 / g). , Average aspect ratio: 2, average minor axis: 10 nm).
- the iron compound content of the obtained iron compound-supported titanium oxide (8) was 780 ppm.
- the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 691 ppm.
- Example 9 In the above (Preparation of crystalline titanium oxide), a crude titanium oxide suspension (9) was obtained in the same manner as in Example 2 except that the reaction temperature (temperature in the autoclave) was changed from 140 ° C to 160 ° C. The obtained crude titanium oxide suspension (9) was subjected to the above (membrane filtration treatment (1) by cross flow method) in the same manner as in Example 2, to obtain a titanium oxide suspension (9-1). A rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111) and a rod-like rutile titanium oxide having a crystal face (110), a crystal face (111) and a crystal face (001). 530 g of titanium oxide (9) was obtained. The photocatalytic ability of the obtained titanium oxide (9) evaluated by a toluene oxidation method with the following ultraviolet rays was 645 ppm (decomposition rate: 95%).
- Example 2 iron compound supporting treatment
- the crystalline iron compound supporting titanium oxide (9) (specific surface area: 55 m 2 / g). , Average aspect ratio: 12, average minor axis: 25 nm).
- the iron compound content in the obtained iron compound-supported titanium oxide (9) was 820 ppm.
- the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 727 ppm.
- Example 10 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight.
- the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
- titanium oxide suspension (10-1) was dried at 105 ° C. for 1 hour under normal pressure, a rod-shaped rutile-type titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), Titanium oxide (10) which is a mixture of rod-shaped rutile type titanium oxide having crystal face (111) and crystal face (001) was obtained.
- the photocatalytic ability of the obtained titanium oxide (10) evaluated by a toluene oxidation method using the following ultraviolet rays was 647 ppm (decomposition rate: 95%).
- Example 11 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight. 560 g of diluted titanium tetrachloride aqueous solution was placed in a 1 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
- titanium oxide suspension (11-1) was dried at 60 ° C. under reduced pressure for 15 hours, rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), Titanium oxide (11), which is a mixture of rod-shaped rutile titanium oxide having crystal face (111) and crystal face (001), was obtained.
- the photocatalytic ability of the obtained titanium oxide (11) evaluated by a toluene oxidation method using the following ultraviolet rays was 617 ppm (CO 2 generation rate: 93%).
- Comparative Example 1 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight. 560 g of diluted titanium tetrachloride aqueous solution was placed in a 1 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
- the crystalline iron compound-supported titanium oxide (12) (specific surface area: 9 m) was used in the same manner as in Example 11 except that the crude titanium oxide suspension (12) was used instead of the crude titanium oxide suspension (11). 2 / g, average aspect ratio: 1.2, average minor axis: 100 nm).
- the iron compound content of the obtained iron compound-supported titanium oxide (12) was 30 ppm.
- the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 250 ppm.
- LED light intensity: 2.5 mW / cm 2 , light wavelength: 455 nm
- a gas chromatograph with a flame ionization detector attached to a methanizer (trade name “MT221”, manufactured by GL Science Co., Ltd.) for the amount of CO 2 produced (CO 2 concentration in the reaction vessel) 24 hours after the start of light irradiation. Measurement was performed using a trade name “GC-14B” (manufactured by Shimadzu Corporation).
- a gas chromatograph with a flame ionization detector attached with a methanizer (trade name “MT221”, manufactured by GL Science Co., Ltd.) for the amount of CO 2 produced (CO 2 concentration in the reaction vessel) 24 hours after the start of light irradiation. Measurement was performed using a trade name “GC-14B” (manufactured by Shimadzu Corporation).
- the transition metal compound-supported titanium oxide of the present invention has an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more. Therefore, it has excellent responsiveness to visible light, and can absorb light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, and LEDs, and decompose harmful chemical substances into water and carbon dioxide. That is, the transition metal compound-supported titanium oxide suspension of the present invention can be suitably used as a photocatalyst for LED illumination.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
1.チタン化合物を水熱処理して酸化チタン懸濁液を得る酸化チタン製造工程
2.酸化チタン懸濁液に遷移金属化合物を添加することにより遷移金属化合物担持酸化チタン懸濁液を得る遷移金属化合物担持工程
3.遷移金属化合物担持酸化チタン懸濁液を全量濾過方式を使用した加圧若しくは減圧濾過や、遠心分離等の処理に付して固液分離することによりイオン性不純物の含有量を低減する精製工程
しかし、前記方法では、精製工程において固液分離により遷移金属化合物担持酸化チタンが圧密化されて高活性面の露出量が低下するため、十分な光触媒能を有する遷移金属化合物担持酸化チタンが得られないことが問題であった。更に、一旦圧密化された遷移金属化合物担持酸化チタンは、その後、粉砕処理等を施して再分散してもやはり満足できる光触媒能は得られなかった。
1.遷移金属化合物担持酸化チタンの平均アスペクト比が小さくなり、球状により近い形状となるため、酸化反応場と還元反応場の分離性が低下し、逆反応や副反応の進行が避けられなくなる
2.ロッド状の結晶構造が切断されることにより遷移金属化合物が担持されていない酸化チタン片が生じ、その酸化チタン片は可視光応答性を発揮することができなくなる
本発明の遷移金属化合物担持酸化チタンは、結晶性酸化チタンに遷移金属化合物が担持され、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上であることを特徴とする。
<サンプル調製方法>
1.少量(耳かきサイズのスパチュラで半分程度)の遷移金属化合物担持酸化チタンを9mLのガラス製サンプル瓶に入れ、エタノールを7mL入れ、超音波洗浄器にて超音波を5分間かけてエタノール中に分散させエタノール分散液を得る。
2.得られたエタノール分散液をガラス製スポイドで1滴取り、SEM用試料台の上に落として自然乾燥させた後、30秒間白金蒸着を行う。
<測定方法>
電界放出型走査電子顕微鏡(商品名「FE−SEM JSM−6700F」、日本電子(株)製、加速電圧:15kV、WD:約3mm、倍率:20万倍)を使用して結晶粒子をランダムに観察し、代表的な3カ所を抽出し、抽出されたSEM写真全体の中で、見た目に極端に大きく又は小さくなく、平均的な大きさの粒子を中心に輪郭がはっきりしている粒子30個を抽出してOHPシートに写し、それらの粒子について、画像解析ソフトウェア(商品名「WinROOF Version5.6」、三谷商事(株)製)を用いて各短径(最大長径に直交する幅)を求め、それらの値を平均して平均短径とした。また、同様の方法で平均長径(最大長径)を求め、これらの比(平均長径/平均短径)を平均アスペクト比とした。
測定原理:定容法(ブランク補正型)
検出法:相対圧力(圧力トランスデューサによるサンプルセル内の吸着平衡圧力(P)と飽和蒸気圧(P0)の比)と吸着ガス量(圧力トランスデューサによる圧力検出とサーミスタによるマニホールド温度検出から理想気体での注入ガス量を計算)
吸着ガス:窒素ガス
セルサイズ:スモールペレットセル(セル容量:1.8cm3、ステム外径:9mm)
測定項目:P/P0=0.1、0.2、0.3の吸着側3点
解析項目:BET多点法による比表面積
遷移金属化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、100ppmのトルエンガス125mLを反応容器内に吹き込む。トルエンガスの遷移金属化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5W/cm2、光の波長:455nm)を行い、光照射開始から24時間後のCO2の生成量を測定する。
遷移金属化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、800ppmのメタノールガス125mLを反応容器内に吹き込む。メタノールガスの遷移金属化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5W/m2、光の波長:455nm)を行い、光照射開始から24時間後のCO2の生成量を測定する。
本発明の遷移金属化合物担持酸化チタンは、例えば、下記工程を経て製造することができる。
結晶性酸化チタン製造工程は、チタン化合物から結晶性酸化チタンを得る工程である。結晶性酸化チタンの製造方法としては周知慣用の方法を採用することができる。例えばロッド状ルチル型酸化チタンは、チタン化合物を水性媒体(例えば、水又は水と水溶性有機溶媒との混合液)中で水熱処理[例えば100~220℃、2~48時間(好ましくは2~15時間、特に好ましくは5~15時間)]することにより合成することができる。また、水熱処理の際にハロゲン化物を添加及び/又は撹拌(例えば、撹拌所要動力Pv値:0.1~1500W/m3程度)すると、得られる粒子のサイズ及び表面積を調整することができるため好ましい。
Ti(OR)tX4−t (1)
(式中、Rは炭化水素基を示し、Xはハロゲン原子を示す。tは0~3の整数を示す)
遷移金属化合物担持工程は、上記工程を経て得られた結晶性酸化チタンに遷移金属化合物を担持して遷移金属化合物担持酸化チタンを得る工程である。遷移金属化合物の担持は、例えば結晶性酸化チタンに遷移金属化合物を含む溶液を添加して含浸させることにより行うことができる。例えば、遷移金属化合物として三価の鉄化合物(Fe3+)を担持した遷移金属化合物担持酸化チタンは、結晶性酸化チタンの懸濁液に硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)等を含む溶液を添加して含浸させることにより得られる。
前記クロスフロー方式による膜濾過とは、濾過膜面に平行に被処理水を流し、濾滓の沈着による濾過膜汚染を防ぎながら被処理水の一部を、被処理水の流れの側方で濾過する方法である。上記酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液をクロスフロー方式による膜濾過に付すことにより、濾過膜表面に圧密化された濾滓を形成することなくイオン性不純物を効率よく取り除くことができ、酸化チタン又は遷移金属化合物担持酸化チタンの結晶構造を維持しつつ、イオン性不純物の含有量を極めて低く低減することができる。
(結晶性酸化チタンの調製)
室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)1360W/m3で撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で5時間保持した後、熱媒を冷却することによりオートクレーブを40℃以下まで冷却した。その後、更に、温度:140℃、圧力:その温度における蒸気圧の条件下で5時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(1)5650gを取り出した。
得られた粗酸化チタン懸濁液(1)を純水で3倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが4.0になるまで繰り返し濾過処理に付した。尚、pHはpH試験紙を使用して測定した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、酸化チタン濃度を濃縮させて酸化チタン懸濁液(1−1)を得た。酸化チタン懸濁液(1−1)を常圧下、105℃で1時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(1)(比表面積:77m2/g、平均アスペクト比:6、平均短径:18nm)525gを得た(図3参照)。得られた酸化チタン(1)の下記紫外線によるトルエン酸化法で評価した光触媒能は625ppm(分解率:94%)であった。
上記で得られた酸化チタン懸濁液(1−1)に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm2)、粗鉄化合物担持酸化チタン懸濁液(1)を得た。
粗鉄化合物担持酸化チタン懸濁液(1)を純水で3倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が200μS/cmになるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、鉄化合物担持酸化チタン濃度を濃縮させて、鉄化合物担持酸化チタン懸濁液(1−1)を得た。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。
(結晶性酸化チタンの調製)
室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)220W/m3で撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(2)5650gを取り出した。
得られた粗酸化チタン懸濁液(2)を純水で3倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが4.0になるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、酸化チタン濃度を濃縮させて酸化チタン懸濁液(2−1)を得た。酸化チタン懸濁液(2−1)を常圧下、105℃で1時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(2)533gを得た。得られた酸化チタン(2)の下記紫外線によるトルエン酸化法により評価した光触媒能は647ppm(分解率:95%)であった。
上記で得られた酸化チタン懸濁液(2−1)に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm2)、粗鉄化合物担持酸化チタン懸濁液(2)を得た。
粗鉄化合物担持酸化チタン懸濁液(2)を純水で2倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が200μS/cmになるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、鉄化合物担持酸化チタン濃度を濃縮させて鉄化合物担持酸化チタン懸濁液(2−1)を得た。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。
上記(クロスフロー方式による濾過処理(2))において、透過液の電気伝導度が150μS/cmになるまで繰り返した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(3)(比表面積:78.5m2/g、平均アスペクト比:3、平均短径:16nm)530gを得た。得られた鉄化合物担持酸化チタン(3)の鉄化合物の含有量は890ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は795ppmであった。
上記(クロスフロー方式による濾過処理(2))において、透過液の電気伝導度が100μS/cmになるまで繰り返した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(4)(比表面積:79m2/g、平均アスペクト比:3、平均短径:15nm)530gを得た。得られた鉄化合物担持酸化チタン(4)の鉄化合物の含有量は950ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は800ppmであった。
上記(クロスフロー方式による濾過処理(2))において、透過液の電気伝導度が50μS/cmになるまで繰り返した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(5)(比表面積:80m2/g、平均アスペクト比:3、平均短径:14nm)530gを得た。得られた鉄化合物担持酸化チタン(5)の鉄化合物の含有量は1200ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は800ppmであった。
上記(鉄化合物担持処理)において、塩化鉄水溶液(35重量%)の使用量を7.5gから6.5gに変更した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(6)(比表面積:76m2/g、平均アスペクト比:3、平均短径:17nm)530gを得た。得られた鉄化合物担持酸化チタン(6)の鉄化合物の含有量は700ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は780ppmであった。
上記(鉄化合物担持処理)において、塩化鉄水溶液(35重量%)の使用量を7.5gから15.0gに変更した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(7)(比表面積:80m2/g、平均アスペクト比:3、平均短径:16nm)530gを得た。得られた鉄化合物担持酸化チタン(7)の鉄化合物の含有量は2000ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は753ppmであった。
上記(結晶性酸化チタンの調製)において、反応温度(オートクレーブ内温度)を140℃から120℃に変更した以外は実施例2と同様にして、粗酸化チタン懸濁液(8)を得、得られた粗酸化チタン懸濁液(8)について、実施例2と同様に上記(クロスフロー方式による膜濾過処理(1))を施したところ、酸化チタン懸濁液(8−1)を得、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(8)530gを得た。得られた酸化チタン(8)の下記紫外線によるトルエン酸化法により評価した光触媒能は600ppm(CO2発生率:90%)であった。
上記(結晶性酸化チタンの調製)において、反応温度(オートクレーブ内温度)を140℃から160℃に変更した以外は実施例2と同様にして、粗酸化チタン懸濁液(9)を得、得られた粗酸化チタン懸濁液(9)について、実施例2と同様に上記(クロスフロー方式による膜濾過処理(1))を施したところ、酸化チタン懸濁液(9−1)を得、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(9)530gを得た。得られた酸化チタン(9)の下記紫外線によるトルエン酸化法により評価した光触媒能は645ppm(分解率:95%)であった。
(結晶性酸化チタンの調製)
室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)13W/m3で撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(10)5650gを取り出した。
得られた粗酸化チタン懸濁液(10)を純水で希釈することなく、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが4.0になるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。これにより、酸化チタン懸濁液(10−1)5650gを得た。酸化チタン懸濁液(10−1)を常圧下、105℃で1時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(10)を得た。得られた酸化チタン(10)の下記紫外線によるトルエン酸化法により評価した光触媒能は647ppm(分解率:95%)であった。
上記で得られた酸化チタン懸濁液(10−1)に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm2)、粗鉄化合物担持酸化チタン懸濁液(10)を得た。
粗鉄化合物担持酸化チタン懸濁液(10)を純水で希釈することなく、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が200μS/cmになるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。これにより、鉄化合物担持酸化チタン懸濁液(10−1)を得た。
(結晶性酸化チタンの調製)
室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液560gを容量1Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)13W/m3で撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(11)560gを取り出した。
得られた粗酸化チタン懸濁液(11)を純水で10倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.05MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが2.9になるまで繰り返し濾過処理に付した。その後、純水の仕込みを停止し、酸化チタン濃度を濃縮させて酸化チタン懸濁液(11−1)を得た。この間、1時間に1回の割合で0.15MPaの圧力、0.1kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。酸化チタン懸濁液(11−1)を減圧下、60℃で15時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(11)を得た。得られた酸化チタン(11)の下記紫外線によるトルエン酸化法により評価した光触媒能は617ppm(CO2発生率:93%)であった。
上記で得られた酸化チタン懸濁液(11−1)に塩化鉄水溶液(35重量%)0.3gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール9.6g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:0.9mW/cm2)、粗鉄化合物担持酸化チタン懸濁液(11)を得た。
粗鉄化合物担持酸化チタン懸濁液(11)を純水で10倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.05MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が21μS/cmになるまで繰り返し濾過処理に付した。その後、純水の仕込みを停止し、鉄化合物担持酸化チタン濃度を濃縮させて鉄化合物担持酸化チタン懸濁液(11−1)を得た。この間、1時間に1回の割合で0.15MPaの圧力、0.1kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。
(結晶性酸化チタンの調製)
室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液560gを容量1Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌することなく、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(12)560gを取り出した。
(可視光によるトルエン酸化法)
実施例で得られた鉄化合物担持酸化チタンを光触媒として使用し、気相にてトルエンを酸化し、生成するCO2量を測定することにより光触媒能を評価した。
鉄化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、100ppmのトルエンガス125mLを反応容器内に吹き込んだ。トルエンガスの鉄化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5mW/cm2、光の波長:455nm)を行った。光照射開始から24時間後のCO2の生成量(反応容器内のCO2濃度)をメタナイザー(商品名「MT221」、GLサイエンス(株)製)に付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定した。
実施例及び比較例で得られた鉄化合物担持酸化チタンを光触媒として使用し、気相にてメタノールを酸化し、生成するCO2量を測定することにより光触媒能を評価した。
鉄化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、800ppmのメタノールガス125mLを反応容器内に吹き込んだ。メタノールガスの鉄化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5W/m2、光の波長:455nm)を行った。光照射開始から24時間後のCO2の生成量(反応容器内のCO2濃度)をメタナイザー(商品名「MT221」、GLサイエンス(株)製)を付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定した。
実施例で得られた酸化チタンを光触媒として使用し、気相にてトルエンを酸化し、生成するCO2量を測定することにより光触媒能を評価した。
酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、100ppmのトルエンガス125mLを反応容器内に吹き込んだ。トルエンガスの酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:0.1mW/cm2、光の波長:365nm)を行った。光照射開始から24時間後のCO2の生成量(反応容器内のCO2濃度)をメタナイザー(商品名「MT221」、GLサイエンス(株)製)を付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定した。
Claims (4)
- 結晶性酸化チタンに遷移金属化合物が担持された遷移金属化合物担持酸化チタンであって、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上である遷移金属化合物担持酸化チタン。
- 結晶性酸化チタンが結晶面(110)及び結晶面(111)を有するルチル型酸化チタン及び/又は結晶面(110)、結晶面(111)及び結晶面(001)を有するルチル型酸化チタンである請求項1に記載の遷移金属化合物担持酸化チタン。
- 比表面積が10m2/g以上である請求項1又は2に記載の遷移金属化合物担持酸化チタン。
- 平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上である酸化チタン。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380048744.4A CN104640631B (zh) | 2012-09-19 | 2013-09-06 | 负载有过渡金属化合物的氧化钛 |
KR1020157005419A KR102207479B1 (ko) | 2012-09-19 | 2013-09-06 | 전이 금속 화합물 담지 산화티타늄 |
JP2014536820A JP6263123B2 (ja) | 2012-09-19 | 2013-09-06 | 遷移金属化合物担持酸化チタン |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012206259 | 2012-09-19 | ||
JP2012-206259 | 2012-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014046020A1 true WO2014046020A1 (ja) | 2014-03-27 |
Family
ID=50341333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074777 WO2014046020A1 (ja) | 2012-09-19 | 2013-09-06 | 遷移金属化合物担持酸化チタン |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6263123B2 (ja) |
KR (1) | KR102207479B1 (ja) |
CN (1) | CN104640631B (ja) |
TW (1) | TWI627999B (ja) |
WO (1) | WO2014046020A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017095307A (ja) * | 2015-11-25 | 2017-06-01 | 株式会社ダイセル | ナノダイヤモンド水分散液の製造方法 |
JP2018079432A (ja) * | 2016-11-17 | 2018-05-24 | 株式会社ダイセル | 鉄化合物担持酸化チタン光触媒 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109603919B (zh) * | 2018-12-13 | 2021-10-15 | 西南林业大学 | 一种能够循环使用的高效光催化降解材料及其制备方法 |
CN112439268B (zh) * | 2020-10-16 | 2022-05-17 | 北京理韩汽车配件有限公司 | 一种过滤气体的过滤滤芯及净化方法 |
KR102689277B1 (ko) * | 2022-08-10 | 2024-07-29 | 경북대학교 산학협력단 | 틈 수열 합성 방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004255332A (ja) * | 2003-02-27 | 2004-09-16 | Ichikoh Ind Ltd | 可視光線応答型光触媒 |
JP2005052718A (ja) * | 2003-08-01 | 2005-03-03 | Catalysts & Chem Ind Co Ltd | 一酸化炭素酸化触媒および該触媒の製造方法 |
JP2008189497A (ja) * | 2007-02-02 | 2008-08-21 | Fujifilm Corp | ルチル型酸化チタン粒子及びその製造方法 |
JP2008230950A (ja) * | 2007-02-21 | 2008-10-02 | Kyushu Institute Of Technology | Nおよび/またはsドープ管状酸化チタン粒子およびその製造方法 |
JP2009179521A (ja) * | 2008-01-31 | 2009-08-13 | Jgc Catalysts & Chemicals Ltd | ルチル型酸化チタン微粒子の製造方法 |
JP2011219346A (ja) * | 2010-03-25 | 2011-11-04 | Daicel Chemical Industries Ltd | 結晶面(001)を有するルチル型酸化チタンの製造方法 |
JP2011225422A (ja) * | 2010-01-09 | 2011-11-10 | Daicel Chemical Industries Ltd | 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法 |
JP2012096133A (ja) * | 2010-10-29 | 2012-05-24 | Jgc Catalysts & Chemicals Ltd | 消臭性ルチル型酸化チタン微粒子および該微粒子を含む消臭性塗膜形成用塗布液、消臭性塗膜付基材 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62235215A (ja) | 1986-04-07 | 1987-10-15 | Nippon Shokubai Kagaku Kogyo Co Ltd | ルチル型酸化チタンゾルの製造方法 |
JP3898792B2 (ja) | 1996-10-02 | 2007-03-28 | 石原産業株式会社 | 表面処理された酸化チタンゾルの製造方法 |
JP2006224084A (ja) * | 2004-03-30 | 2006-08-31 | Toto Ltd | 光触媒性材料および光触媒性部材 |
CN100346874C (zh) * | 2005-03-17 | 2007-11-07 | 华中科技大学 | 二氧化钛为基体的复合型光催化剂的制备方法 |
JP2010046621A (ja) * | 2008-08-22 | 2010-03-04 | Asahi Kasei Corp | 無機ナノ粒子の分離精製方法 |
-
2013
- 2013-09-06 WO PCT/JP2013/074777 patent/WO2014046020A1/ja active Application Filing
- 2013-09-06 KR KR1020157005419A patent/KR102207479B1/ko active IP Right Grant
- 2013-09-06 JP JP2014536820A patent/JP6263123B2/ja not_active Expired - Fee Related
- 2013-09-06 CN CN201380048744.4A patent/CN104640631B/zh not_active Expired - Fee Related
- 2013-09-18 TW TW102133754A patent/TWI627999B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004255332A (ja) * | 2003-02-27 | 2004-09-16 | Ichikoh Ind Ltd | 可視光線応答型光触媒 |
JP2005052718A (ja) * | 2003-08-01 | 2005-03-03 | Catalysts & Chem Ind Co Ltd | 一酸化炭素酸化触媒および該触媒の製造方法 |
JP2008189497A (ja) * | 2007-02-02 | 2008-08-21 | Fujifilm Corp | ルチル型酸化チタン粒子及びその製造方法 |
JP2008230950A (ja) * | 2007-02-21 | 2008-10-02 | Kyushu Institute Of Technology | Nおよび/またはsドープ管状酸化チタン粒子およびその製造方法 |
JP2009179521A (ja) * | 2008-01-31 | 2009-08-13 | Jgc Catalysts & Chemicals Ltd | ルチル型酸化チタン微粒子の製造方法 |
JP2011225422A (ja) * | 2010-01-09 | 2011-11-10 | Daicel Chemical Industries Ltd | 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法 |
JP2011219346A (ja) * | 2010-03-25 | 2011-11-04 | Daicel Chemical Industries Ltd | 結晶面(001)を有するルチル型酸化チタンの製造方法 |
JP2012096133A (ja) * | 2010-10-29 | 2012-05-24 | Jgc Catalysts & Chemicals Ltd | 消臭性ルチル型酸化チタン微粒子および該微粒子を含む消臭性塗膜形成用塗布液、消臭性塗膜付基材 |
Non-Patent Citations (1)
Title |
---|
MISA NAKAMURA ET AL.: "Improvement of visible light responsivity of rutile Ti02 nanorods by site-selective modification of iron(III) ion on newly exposed faces formed by chemical etching treatment", APPL. CATAL. B ENVIRON., vol. 130-131, 7 February 2013 (2013-02-07), pages 264 - 269 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017095307A (ja) * | 2015-11-25 | 2017-06-01 | 株式会社ダイセル | ナノダイヤモンド水分散液の製造方法 |
JP2018079432A (ja) * | 2016-11-17 | 2018-05-24 | 株式会社ダイセル | 鉄化合物担持酸化チタン光触媒 |
CN108067269A (zh) * | 2016-11-17 | 2018-05-25 | 株式会社大赛璐 | 担载有铁化合物的氧化钛光催化剂 |
CN108067269B (zh) * | 2016-11-17 | 2022-09-16 | 株式会社大赛璐 | 担载有铁化合物的氧化钛光催化剂 |
Also Published As
Publication number | Publication date |
---|---|
CN104640631B (zh) | 2017-07-14 |
CN104640631A (zh) | 2015-05-20 |
KR20150054782A (ko) | 2015-05-20 |
KR102207479B1 (ko) | 2021-01-26 |
TWI627999B (zh) | 2018-07-01 |
JPWO2014046020A1 (ja) | 2016-08-18 |
TW201420182A (zh) | 2014-06-01 |
JP6263123B2 (ja) | 2018-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI547311B (zh) | 光觸媒塗膜及其製造方法 | |
JP6231550B2 (ja) | 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜 | |
JP6263123B2 (ja) | 遷移金属化合物担持酸化チタン | |
JP5918580B2 (ja) | 微粒子の精製方法、及び該微粒子の精製方法を含む遷移金属化合物担持酸化チタン微粒子の製造方法 | |
JP6046732B2 (ja) | 遷移金属化合物担持酸化チタン懸濁液の製造方法、及び遷移金属化合物担持酸化チタンの製造方法 | |
JP6010718B1 (ja) | 鉄化合物担持酸化チタン光触媒 | |
CN108067269B (zh) | 担载有铁化合物的氧化钛光催化剂 | |
JP6143168B2 (ja) | 光触媒塗布体 | |
KR100631337B1 (ko) | 가시광선 응답형 광촉매 코팅용 졸의 제조방법 | |
JP6370698B2 (ja) | 抗微生物剤 | |
JP5986799B2 (ja) | 遷移金属化合物担持酸化チタンにおける遷移金属化合物担持量の調整方法 | |
JP6315791B2 (ja) | 鉄化合物担持酸化チタン粒子 | |
JP6263082B2 (ja) | 暗所用抗微生物剤 | |
JP2014177384A (ja) | 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13838123 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536820 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157005419 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13838123 Country of ref document: EP Kind code of ref document: A1 |