[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014046020A1 - 遷移金属化合物担持酸化チタン - Google Patents

遷移金属化合物担持酸化チタン Download PDF

Info

Publication number
WO2014046020A1
WO2014046020A1 PCT/JP2013/074777 JP2013074777W WO2014046020A1 WO 2014046020 A1 WO2014046020 A1 WO 2014046020A1 JP 2013074777 W JP2013074777 W JP 2013074777W WO 2014046020 A1 WO2014046020 A1 WO 2014046020A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
transition metal
metal compound
supported
membrane
Prior art date
Application number
PCT/JP2013/074777
Other languages
English (en)
French (fr)
Inventor
渡邊 仁志
美緒 松岡
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201380048744.4A priority Critical patent/CN104640631B/zh
Priority to KR1020157005419A priority patent/KR102207479B1/ko
Priority to JP2014536820A priority patent/JP6263123B2/ja
Publication of WO2014046020A1 publication Critical patent/WO2014046020A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a transition metal compound-supported titanium oxide obtained by supporting a transition metal compound on titanium oxide.
  • the transition metal compound-supported titanium oxide has excellent responsiveness to visible light and can exhibit excellent photocatalytic ability.
  • Transition metal compound-supported titanium oxide has photocatalytic activity, and can exhibit strong oxidizing power when irradiated with light such as visible light and ultraviolet light, and can decompose harmful chemical substances into water and carbon dioxide.
  • light such as visible light and ultraviolet light
  • Transition metal compound-supported titanium oxide By applying or mixing a suspension of transition metal compound-supported titanium oxide, antibacterial, antifungal, deodorizing, air purification, water purification, and antifouling effects can be imparted to the coated body or mixture.
  • ionic impurities, such as a halogen ion are contained in transition metal compound carrying
  • transition metal compound-supported titanium oxide can be produced through the following steps (see Patent Documents 1 and 2, etc.).
  • 1. Titanium oxide production process for obtaining a titanium oxide suspension by hydrothermal treatment of a titanium compound 2.
  • Transition metal compound supporting step for obtaining a transition metal compound supporting titanium oxide suspension by adding a transition metal compound to the titanium oxide suspension.
  • a purification process that reduces the content of ionic impurities by subjecting the transition metal compound-supported titanium oxide suspension to solid or liquid separation by subjecting it to a treatment such as pressure or vacuum filtration using a filtration method or centrifugation.
  • the transition metal compound-supported titanium oxide is consolidated by solid-liquid separation in the purification step and the exposed amount of the highly active surface is reduced, the transition metal compound-supported titanium oxide having sufficient photocatalytic ability cannot be obtained. That was the problem. Furthermore, the transition metal compound-supported titanium oxide once consolidated has not been able to obtain satisfactory photocatalytic ability even after being subjected to pulverization and the like and then redispersed.
  • Japanese Patent Laid-Open No. 10-158015 Japanese Patent Laid-Open No. 62-235215
  • an object of the present invention is to provide a transition metal compound-supported titanium oxide that has excellent response to visible light and exhibits excellent photocatalytic activity.
  • the rod-shaped transition metal compound-supported titanium oxide is once consolidated by being subjected to a solid-liquid separation process such as centrifugation, and then pulverized. It was found that even when re-dispersed, the rod-like crystal structure was cut, and the photocatalytic ability in the visible light region was remarkably lowered due to the following reasons 1, 2 and the like. 1. 1. Since the average aspect ratio of the transition metal compound-supported titanium oxide is small and the shape is closer to a sphere, the separation between the oxidation reaction field and the reduction reaction field is reduced, and the progress of the reverse reaction and side reaction is unavoidable. The rod-like crystal structure is cut to produce a piece of titanium oxide that does not carry a transition metal compound, and the piece of titanium oxide cannot exhibit visible light responsiveness.
  • the rod-like crystal structure is maintained without compacting the transition metal compound-supported titanium oxide. It has been found that ionic impurities can be efficiently removed in a state, the content of ionic impurities is extremely low, and a rod-shaped transition metal compound-supported titanium oxide can be obtained. Furthermore, it has been found that when the reaction system is stirred during hydrothermal treatment, a transition metal compound-supported titanium oxide having an extremely small average minor axis and a large average aspect ratio can be obtained. And it discovered that the transition metal compound carrying
  • the present invention is a transition metal compound-supported titanium oxide in which a transition metal compound is supported on crystalline titanium oxide, having an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more.
  • a transition metal compound-supported titanium oxide is provided.
  • Examples of the crystalline titanium oxide include rutile type titanium oxide having a crystal plane (110) and a crystal plane (111) and / or rutile type oxide having a crystal plane (110), a crystal plane (111) and a crystal plane (001). Titanium is preferred.
  • the specific surface area is preferably 10 m 2 / g or more.
  • the present invention also provides titanium oxide having an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more.
  • the transition metal compound-supported titanium oxide of the present invention has an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more. Therefore, it has excellent responsiveness to visible light, and can absorb light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, and LEDs, and decompose harmful chemical substances into water and carbon dioxide. That is, the transition metal compound-supported titanium oxide suspension of the present invention can be suitably used as a photocatalyst for LED illumination.
  • transition metal compound-supported titanium oxide The transition metal compound-supported titanium oxide of the present invention is characterized in that the transition metal compound is supported on crystalline titanium oxide, the average minor axis is 50 nm or less, and the average aspect ratio (major axis / minor axis) is 1.5 or more. To do.
  • the average minor axis of the transition metal compound-supported titanium oxide is 50 nm or less, preferably 5 to 40 nm, particularly preferably 5 to 30 nm, and most preferably 10 to 25 nm. If the average minor axis exceeds the above range, the separation between the oxidation reaction field and the reduction reaction field is lowered, the reverse reaction and the side reaction cannot be avoided, and the photocatalytic ability is lowered.
  • the average aspect ratio (major axis / minor axis) of the transition metal compound-supported titanium oxide is 1.5 or more, preferably 1.5 to 100, more preferably 1.5 to 50, and particularly preferably 1.5 to 20, most preferably 2-15. If the average aspect ratio is less than the above range, the separation between the oxidation reaction field and the reduction reaction field is lowered, the reverse reaction and the side reaction cannot be avoided, and the photocatalytic ability is lowered.
  • the average minor axis and the average aspect ratio are values obtained by the following measuring method for samples obtained by the following adjusting method.
  • Sample preparation method> 1. Place a small amount (about half of the earpick size spatula) of the transition metal compound-supported titanium oxide in a 9 mL glass sample bottle, add 7 mL of ethanol, and disperse the ultrasonic wave in ethanol over 5 minutes using an ultrasonic cleaner. An ethanol dispersion is obtained. 2. One drop of the obtained ethanol dispersion is taken with a glass spoid, dropped on a sample stage for SEM and allowed to dry naturally, and then platinum deposition is performed for 30 seconds.
  • ⁇ Measurement method> Using a field emission scanning electron microscope (trade name “FE-SEM JSM-6700F”, manufactured by JEOL Ltd., acceleration voltage: 15 kV, WD: about 3 mm, magnification: 200,000 times), crystal grains are randomly selected. Observe, extract three representative points, and 30 particles that are not extremely large or small in appearance in the entire extracted SEM photograph and have a clear outline centered on average-sized particles Are extracted and transferred to an OHP sheet, and for each of these particles, an image analysis software (trade name “WinROOF Version 5.6”, manufactured by Mitani Corp.) is used to obtain each minor axis (width orthogonal to the maximum major axis). These values were averaged to obtain an average minor axis. Further, the average major axis (maximum major axis) was determined by the same method, and the ratio (average major axis / average minor axis) was taken as the average aspect ratio.
  • FE-SEM JSM-6700F manufactured by JEOL
  • Examples of the crystalline titanium oxide include rutile type, anatase type, brookite type titanium oxide and the like.
  • a rutile type or anatase type titanium oxide (a rutile type titanium oxide is more preferable and particularly preferable in terms of being able to exhibit more excellent photocatalytic ability in that a stable crystal face is exposed.
  • the transition metal compound is supported in the state of, for example, a transition metal ion, a transition metal simple substance, a transition metal salt, a transition metal oxide, a transition metal hydroxide, or a transition metal complex.
  • the loading amount of the transition metal compound is, for example, 50 ppm or more, preferably 100 ppm or more, more preferably 200 ppm or more, particularly preferably 300 ppm or more, and most preferably 500 ppm or more.
  • the upper limit of the loading amount of the transition metal compound is, for example, about 5000 ppm, preferably 3000 ppm, particularly preferably 2000 ppm.
  • the amount of the transition metal compound supported exceeds the above range, excited electrons do not act effectively due to reverse electron transfer of injected electrons and the photocatalytic ability tends to decrease.
  • the transition metal compound is supported on the surface of the crystalline titanium oxide in a surface-selective manner, so that the separation of the reaction field between the oxidation reaction and the reduction reaction can be further improved, thereby recombination of excited electrons and holes. It is preferable in that the reverse reaction can be suppressed and the photocatalytic activity can be dramatically improved. In particular, it is preferable that the transition metal compound is selectively supported on the oxidation reaction surface.
  • the transition metal compound is “face-selectively” supported means that the amount exceeding 50% (preferably 70% or more, particularly preferably 80% or more) of the transition metal compound is the two faces of crystalline titanium oxide.
  • the above crystal planes it means that it is supported on a specific plane (for example, one specific plane or two planes) instead of all the planes.
  • the upper limit of the surface selectivity is 100%.
  • the surface selectivity can be determined by confirming a signal derived from a transition metal compound on each crystal plane using a transmission electron microscope (TEM) or an energy dispersive X-ray fluorescence analyzer (EDX).
  • Any transition metal compound may be used as long as it has an absorption spectrum in the visible light region and can inject electrons into the conduction band in an excited state.
  • elements in Groups 3 to 11 of the periodic table are used.
  • Compounds are preferred, among which group 8 to 11 element compounds of the periodic table, particularly preferably iron compounds or platinum compounds, and most preferably trivalent iron compounds (Fe 3+ ).
  • the trivalent iron compound (Fe 3+ ) is easily adsorbed on titanium oxide, and the divalent iron compound (Fe 2+ ) has a characteristic that it is difficult to adsorb. Because it can.
  • the specific surface area of the transition metal compound-supported titanium oxide is, for example, 10 m 2 / g or more.
  • the lower limit of the specific surface area is preferably 30 m 2 / g, more preferably 50 m 2 / g, particularly preferably 60 m 2 / g, and most preferably 70 m 2 / g.
  • the upper limit of the specific surface area is, for example, 200 m 2 / g, preferably 150 m 2 / g, particularly preferably 100 m 2 / g.
  • the specific surface area of the transition metal compound-supported titanium oxide is, for example, 10 to 200 m 2 / g, preferably 10 to 150 m 2 / g, more preferably 30 to 150 m 2 / g, and still more preferably 50 to 100 m 2 / g. Preferably, it is 60 to 100 m 2 / g, and most preferably 70 to 100 m 2 / g. Since the transition metal compound-supported titanium oxide having a specific surface area in the above range increases the amount of exposure of the highly active surface, it can exhibit excellent photocatalytic ability.
  • the specific surface area was measured using a high-speed specific surface area / pore diameter distribution measuring device (trade name “NOVA-1200”, Quantachtome.) For a sample obtained by degassing a transition metal compound-supported titanium oxide at 100 ° C. (under vacuum) for 60 minutes. It is the average of the values obtained by measuring the sample twice under the following conditions using Co).
  • the transition metal compound-supported titanium oxide of the present invention is excellent in visible light responsiveness, exhibits excellent photocatalytic ability by light irradiation, and decomposes harmful chemical substances into water and carbon dioxide, thereby providing antibacterial, antifungal, deodorizing, Various effects such as air purification, water purification, and antifouling can be exhibited.
  • the amount of CO 2 produced when toluene is oxidized using the transition metal compound-supported titanium oxide (200 mg) is, for example, 300 ppm or more.
  • the amount of CO 2 produced when methanol is oxidized is, for example, 500 ppm or more, preferably 600 ppm or more, more preferably 700 ppm or more, and particularly preferably 750 ppm or more.
  • the measurement method of the amount of CO 2 generated upon oxidizing the toluene is as follows. 200 mg of transition metal compound-supported titanium oxide is spread on a glass dish and placed in a reaction vessel (Tedlar bag, material: vinyl fluoride resin), and 125 mL of 100 ppm toluene gas is blown into the reaction vessel. After the adsorption of toluene gas to transition metal compound-supported titanium oxide reaches equilibrium, light irradiation (LED, light intensity: 2.5 W / cm 2 , light wavelength: 455 nm) is performed at room temperature (25 ° C.) The amount of CO 2 produced 24 hours after the start of irradiation is measured.
  • LED light intensity: 2.5 W / cm 2 , light wavelength: 455 nm
  • the method of measuring the amount of CO 2 generated upon oxidizing the methanol is as follows. 200 mg of transition metal compound-supported titanium oxide is spread on a glass dish and placed in a reaction vessel (Tedlar bag, material: vinyl fluoride resin), and 125 mL of 800 ppm of methanol gas is blown into the reaction vessel. After the adsorption of methanol gas to the transition metal compound-supported titanium oxide reaches equilibrium, light irradiation (LED, light intensity: 2.5 W / m 2 , light wavelength: 455 nm) is performed at room temperature (25 ° C.) The amount of CO 2 produced 24 hours after the start of irradiation is measured.
  • LED light intensity: 2.5 W / m 2 , light wavelength: 455 nm
  • the transition metal compound-supported titanium oxide of the present invention can exhibit extremely excellent photoresponsiveness as described above, that is, because it has responsiveness to light in a wide wavelength range from the ultraviolet region to the visible light region, Absorbs light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, LEDs, etc., and exhibits high catalytic activity to decompose harmful chemical substances into water and carbon dioxide, thereby providing antibacterial (bacteria and radiation Fungicides, fungicides, algae, etc.), mold prevention, deodorization (for example, deodorization of odorous gases such as ammonia, amines, methyl mercaptan, hydrogen sulfide, etc., acetic acid, aldehydes, ethylene)
  • deodorization for example, deodorization of odorous gases such as ammonia, amines, methyl mercaptan, hydrogen sulfide, etc., acetic acid, aldehydes, ethylene
  • transition metal compound-supported titanium oxide of the present invention is coated or mixed in a state where a binder, a solvent, a dispersant, a thickener, a surfactant, and the like are mixed as necessary, so that an object to be coated or a mixture is mixed.
  • a binder, a solvent, a dispersant, a thickener, a surfactant, and the like are mixed as necessary, so that an object to be coated or a mixture is mixed.
  • Examples of the coated body and mixture of the transition metal compound-supported titanium oxide of the present invention include, for example, building materials, building exteriors, building interiors, building paints, walls, wallpaper, floors, window frames, window glass, crystallized glass, Glass, screen door, rain gutter, solar heat reflective sheet, mailbox, structural member, pavement material, display board, traffic sign, road sign reflector, display panel, display filter, road surface indicator, road decorative board, fence, gate , Lighting equipment for tunnels and roads, sound insulation walls, guard rails, tunnel interiors, road mirrors, plastic house ceiling inner surfaces, bridges, bridge fall prevention fences, interior / exterior and painting of automobiles / trains / ships, vehicle wheels, Railroad car structures, vehicle parts, machinery / equipment exterior / dustproof covers / painting, various display devices, advertising towers, insulators, solar panels, solar cell covers, solar water heaters Thermal cover, fuel cell, optical fiber, vehicle lighting cover, fishing net, rope, hose, ship bottom member, algae, shoes, bag, blind, curtain, wall cloth, screen, shoji, plastic
  • the transition metal compound-supported titanium oxide of the present invention can be produced, for example, through the following steps.
  • the crystalline titanium oxide production process is a process for obtaining crystalline titanium oxide from a titanium compound.
  • a well-known and commonly used method can be adopted as a method for producing crystalline titanium oxide.
  • rod-shaped rutile titanium oxide is obtained by hydrothermal treatment [for example, 100 to 220 ° C., 2 to 48 hours (preferably 2 to 48 hours) in an aqueous medium (for example, water or a mixture of water and a water-soluble organic solvent). 15 hours, particularly preferably 5 to 15 hours)].
  • the size and surface area of the resulting particles can be adjusted. preferable.
  • titanium compound examples include a trivalent titanium compound and a tetravalent titanium compound.
  • examples of the trivalent titanium compound include titanium trihalides such as titanium trichloride and titanium tribromide.
  • titanium trichloride TiCl 3
  • TiCl 3 titanium trichloride
  • the tetravalent titanium compound in this invention can mention the compound etc. which are represented by following formula (1), for example.
  • formula (1) Ti (OR) t X 4-t (1)
  • R represents a hydrocarbon group
  • X represents a halogen atom
  • t represents an integer of 0 to 3
  • hydrocarbon group for R in formula (1) examples include C 1-4 aliphatic hydrocarbon groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, and the like. Can do.
  • halogen atom for X in the formula (1) examples include chlorine, bromine, iodine and the like.
  • titanium tetrahalides such as TiCl 4 , TiBr 4 , and Til 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (OC 4).
  • Trihalogenated alkoxytitanium such as H 9 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Ti (OC 4 H 9 ) Br 3 ; Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Dihalogenated dialkoxytitanium such as Cl 2 , Ti (OC 4 H 9 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Br 2 ; Ti (OCH 3 ) 3 Cl, Ti (OC 2 H 5 ) 3 Cl, Examples thereof include monohalogenated trialkoxytitanium such as Ti (OC 4 H 9 ) 3 Cl and Ti (OC 2 H 5 ) 3 Br.
  • titanium tetrahalide is preferable and titanium tetrachloride (TiCl 4 ) is particularly preferable because it is inexpensive and easily available.
  • the rod-shaped rutile-type titanium oxide obtained by hydrothermal treatment can be purified by a well-known and conventional method, for example, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination thereof. it can.
  • membrane filtration by the following crossflow method can reduce the content of ionic impurities while maintaining the crystal structure of titanium oxide, and there is no need to perform pulverization or the like. This is preferable in that it can be directly subjected to the transition metal compound supporting step, and a titanium oxide capable of highly supporting the transition metal compound can be obtained.
  • the average minor axis of the crystalline titanium oxide obtained by the above method is 50 nm or less, preferably 5 to 40 nm, particularly preferably 5 to 30 nm, and most preferably 10 to 25 nm.
  • the average aspect ratio (major axis / minor axis) of the crystalline titanium oxide obtained by the above method is 1.5 or more, preferably 1.5 to 100, more preferably 1.5 to 50, and particularly preferably 1. .5 to 20, most preferably 2 to 15.
  • the specific surface area of the crystalline titanium oxide obtained by the said method is 10 m ⁇ 2 > / g or more, for example.
  • the lower limit of the specific surface area is preferably 30 m 2 / g, more preferably 50 m 2 / g, particularly preferably 60 m 2 / g, and most preferably 70 m 2 / g.
  • the upper limit of the specific surface area is, for example, 200 m 2 / g, preferably 150 m 2 / g, particularly preferably 100 m 2 / g.
  • the transition metal compound-supporting step is a step of obtaining a transition metal compound-supported titanium oxide by supporting a transition metal compound on the crystalline titanium oxide obtained through the above steps.
  • the transition metal compound can be supported, for example, by adding and impregnating crystalline titanium oxide with a solution containing the transition metal compound.
  • a transition metal compound-supported titanium oxide supporting a trivalent iron compound (Fe 3+ ) as a transition metal compound is prepared by adding iron (III) nitrate, iron (III) sulfate, iron chloride ( It is obtained by adding and impregnating a solution containing III) and the like.
  • the concentration of the solution containing the transition metal compound is, for example, about 0.1 to 40% by weight, preferably 1 to 40% by weight.
  • the impregnation time is, for example, about 1 minute to 24 hours, preferably 5 minutes to 10 hours.
  • the transition metal compound is selectively applied to a specific surface of the crystalline titanium oxide. Is preferable in that it can be supported.
  • the transition metal compound When irradiated with excitation light, electrons in the valence band of crystalline titanium oxide are excited in the conduction band, holes are generated in the valence band, and excited electrons are generated in the conduction band, which are diffused to the particle surface. Excited electrons and holes are separated according to the characteristics to form an oxidation reaction surface and a reduction reaction surface.
  • Excitation light is light (for example, ultraviolet light) having energy higher than the band gap energy.
  • the excitation light irradiation means for example, an ultraviolet exposure apparatus having a light source that efficiently generates ultraviolet rays such as a medium / high pressure mercury lamp, a UV laser, a UV-LED, and a black light can be used.
  • the irradiation amount of the excitation light is, for example, about 0.1 to 300 mW / cm 2 , preferably 0.5 to 100 mW / cm 2 .
  • the transition metal compound can be supported with high selectivity on a specific crystal plane of the crystalline titanium oxide.
  • the sacrificial agent it is preferable to use an organic compound that easily emits electrons.
  • alcohols such as methanol and ethanol
  • carboxylic acids such as acetic acid
  • EDTA ethylenediaminetetraacetic acid
  • TAA triethanolamine
  • the amount of sacrificial agent added can be adjusted as appropriate, and is, for example, about 0.5 to 20.0% by weight, preferably about 1.0 to 5.0% by weight of the suspension of crystalline titanium oxide. An excessive amount of the sacrificial agent may be used.
  • the membrane filtration treatment by the crossflow method can efficiently remove ionic impurities while maintaining the rod-like crystal structure without compacting the transition metal compound-supported titanium oxide. In view of obtaining a rod-shaped transition metal compound-supported titanium oxide, the content of ionic impurities is extremely low.
  • Membrane filtration by the cross flow method means that water to be treated flows parallel to the surface of the filtration membrane, and a part of the water to be treated is moved to the side of the flow of the water to be treated while preventing filtration membrane contamination due to deposition of filter cake. It is a method of filtering.
  • ionic impurities can be efficiently removed without forming a compacted filter cake on the surface of the filtration membrane.
  • the content of ionic impurities can be reduced extremely low while maintaining the crystal structure of titanium oxide or transition metal compound-supported titanium oxide.
  • the concentration of the suspension of titanium oxide or transition metal compound-supported titanium oxide subjected to membrane filtration by the crossflow method is, for example, about 0.1 to 40% by weight (preferably 0.1 to 30% by weight). If the concentration of the suspension of titanium oxide or transition metal compound-supported titanium oxide is out of the above range, the removal efficiency of ionic impurities tends to decrease. Moreover, when the density
  • the concentration ratio is preferably adjusted to about 1 to 400 times (in particular, 1 to 20 times, particularly 1 to 10 times).
  • concentration ratio exceeds the above range, it is difficult to suppress the deposition of substances adhering to the film surface, and it tends to be difficult to prevent consolidation of titanium oxide or transition metal compound-supported titanium oxide.
  • fouling occurs in the filtration membrane due to the deposition of adhering substances on the membrane surface, so that the membrane life is likely to be shortened. In some cases, the filtration rate tends to decrease.
  • the concentration factor is below the above range, the separation efficiency of ionic impurities tends to decrease and the amount of washing water used tends to increase.
  • the concentration ratio can be adjusted, for example, by controlling the filtration pressure, the membrane surface linear velocity (cross flow velocity) of the titanium oxide or transition metal compound-supported titanium oxide suspension, and the like.
  • the filtration pressure is, for example, about 0.001 to 5.0 MPa, preferably 0.005 to 3 MPa, and particularly preferably 0.01 to 2.0 MPa.
  • the film surface linear velocity (cross flow velocity) is, for example, 0.02 m / s or more and less than 3 m / s, preferably 0.05 m / s or more and less than 1.5 m / s.
  • the suspension of titanium oxide or transition metal compound-supported titanium oxide concentrated through membrane filtration by the cross-flow method has the concentration of the suspension of titanium oxide or transition metal compound-supported titanium oxide within the above range by adding water. It is preferable to repeat the operation of diluting in such a manner and performing membrane filtration again by the crossflow method. Thereby, the load of the filtration membrane due to fouling (clogging) or the like can be reduced, and the content of ionic impurities can be reduced extremely low while improving the lifetime of the filtration membrane.
  • FIG. 1 is a schematic diagram showing an example of membrane filtration by a cross-flow method of a suspension of titanium oxide or a transition metal compound-supported titanium oxide (circulation type membrane filtration method).
  • a supply liquid containing a suspension of titanium oxide or transition metal compound-supported titanium oxide charged in a preparation tank is subjected to membrane filtration by a cross-flow filtration method and concentrated to a suspension of titanium oxide or transition metal compound-supported titanium oxide. (Concentrated liquid) is obtained.
  • the concentrated suspension of titanium oxide or transition metal compound-supported titanium oxide is circulated again to the charging tank, diluted with dilution water (dilution water), and membrane-filtered by a cross-flow filtration method.
  • Examples of the filtration membrane used for membrane filtration by the crossflow method include an ultrafiltration membrane, a microfiltration membrane, a nanofilter, and a reverse osmosis membrane.
  • an ultrafiltration membrane in terms of excellent separation performance.
  • the ultrafiltration membrane is a substance having an average pore size of about 1 to 20 nm (preferably 1 to 10 nm), a molecular weight of about 1000 to 300,000 (preferably 1000 to 50000), and an average particle size of about 1 to 10 nm. It is preferable to use one that can be separated.
  • the membrane shape of the ultrafiltration membrane may be, for example, any of a hollow fiber type filtration membrane, a tubular membrane, a spiral membrane, a flat membrane, etc. It is preferable to use a mold filtration membrane or a tubular membrane.
  • the inner diameter of the hollow fiber membrane in the hollow fiber membrane is about 0.1 to 2.0 mm (preferably 0.5 to 0.5 mm) from the viewpoint of preventing clogging of contaminants and improving the hollow fiber filling rate of the membrane module. 1.5 mm).
  • Examples of the material of the filtration membrane include general cellulose acetate, polyacrylonitrile, polysulfone, polyethersulfone (PES), polyacrylonitrile, aromatic polyamide, polyvinylidene fluoride, polyvinyl chloride, polyethylene, polypropylene, polyimide, ceramic and the like. Can be mentioned.
  • cellulose acetate, polysulfone, polyethersulfone (PES), polyacrylonitrile, and aromatic polyamide are particularly preferable.
  • the method of flowing a suspension of titanium oxide or transition metal compound-supported titanium oxide is the inside (inside the hollow fiber membrane) titanium oxide or transition metal compound-supported oxidation.
  • a feed solution containing a titanium suspension is flowed, and permeate flows toward the outside (outside of the hollow fiber membrane) (internal pressure filtration method), and vice versa.
  • Examples include a method (external pressure filtration method) in which a supply liquid containing a suspension is flowed and permeate flows inward.
  • the internal pressure filtration method is preferable because the membrane surface flow rate can be kept high.
  • the deposition on the filtration membrane surface is prevented to reduce the burden on the filtration membrane and the membrane filtration operation is performed for a long time. It is preferable to perform back washing.
  • the reverse cleaning is preferably performed at a predetermined cycle while controlling the pressure and flow rate.
  • the pressure for back washing is, for example, about 0.01 to 3.0 MPa, preferably 0.01 to 2.0 MPa, particularly preferably 0.01 to 1.0 MPa, and most preferably 0.01 to 0.5 MPa. More preferably, it is 0.05 to 0.5 MPa.
  • the flow rate of backwashing is, for example, about 0.01 to 10 kg / mim, preferably 0.05 to 5 kg / mim, particularly preferably 0.1 to 5 kg / mim [or, for example, 1 ⁇ 10 ⁇ 7 to 2. ⁇ 10 ⁇ 4 m / sec, preferably 8 ⁇ 10 ⁇ 7 to 9 ⁇ 10 ⁇ 5 m / sec, and particularly preferably 1 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 5 m / sec.
  • the frequency of backwashing is preferably about once every 0.5 to 3 hours, for example.
  • the back washing time is preferably about 0.5 to 10 minutes.
  • water for example, purified water, distilled water, pure water, ion-exchanged water, etc.
  • water for example, purified water, distilled water, pure water, ion-exchanged water, etc.
  • membrane filtration by the cross flow method has a permeate pH of 1 or more (preferably 1 to 7, particularly preferably 2 to 6, most preferably 2 to 5.5). It is preferable to repeat until it becomes. If membrane filtration by the cross-flow method is completed before the pH of the permeate reaches the above range, removal of ionic impurities (especially hydrogen ions, chlorine ions, titanium ions) becomes insufficient, and it is difficult to carry transition metal compounds. It may become.
  • the membrane filtration by the cross flow method has an electric conductivity of the permeate of 300 ⁇ S / cm or less (for example, 0.5 to 300 ⁇ S / cm, preferably 0. It is preferable to repeat the process until it reaches 5 to 250 ⁇ S / cm, particularly preferably 1 to 200 ⁇ S / cm. If the membrane filtration by the cross flow method is finished before the electric conductivity of the permeate falls within the above range, removal of ionic impurities (particularly, iron ions and chlorine ions) may be insufficient.
  • transition metal compound-supported titanium oxide suspension obtained by membrane filtration by the crossflow method is then dried (for example, under FV (1.3 kPa [A]) or less) at 60 ° C. for 15 hours. Or about 1 hour at 105 ° C. under normal pressure (atmospheric pressure), a transition metal compound-supported titanium oxide can be obtained.
  • Example 1 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight.
  • the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
  • the obtained crude titanium oxide suspension (1) was diluted three-fold with pure water to obtain a hollow fiber type ultrafiltration membrane (trade name “FS03-FC-FUS03C1”, material: PES, nominal molecular weight cut off: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) at room temperature (25 ° C.) and filtration pressure of 0.02 MPa, filtered with a cross flow method while adding the same amount of pure water as the amount of permeate. It was.
  • the concentrate obtained through the filtration treatment was circulated again into the charging tank, and repeatedly subjected to the filtration treatment until the pH of the permeate became 4.0. The pH was measured using a pH test paper.
  • a rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), 525 g of titanium oxide (1) (specific surface area: 77 m 2 / g, average aspect ratio: 6, average minor axis: 18 nm), which is a mixture of rod-shaped rutile-type titanium oxide having crystal face (111) and crystal face (001) was obtained (see FIG. 3).
  • the photocatalytic ability of the obtained titanium oxide (1) evaluated by the following toluene oxidation method using ultraviolet rays was 625 ppm (decomposition rate: 94%).
  • the crude iron compound-supported titanium oxide suspension (1) was diluted three-fold with pure water to form a hollow fiber ultrafiltration membrane (trade name “FS03-FC-FUS03C1”, material: PES, nominal molecular weight cut off: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) at room temperature (25 ° C.) and filtration pressure of 0.02 MPa, filtered with a cross flow method while adding the same amount of pure water as the amount of permeate. It was.
  • the concentrate obtained through the filtration treatment was circulated again into the charging tank, and repeatedly subjected to filtration treatment until the electric conductivity of the permeate reached 200 ⁇ S / cm.
  • support titanium oxide (1) (specific surface area: 77m ⁇ 2 > / g, average aspect-ratio: 6, average minor axis: 18nm).
  • the iron compound content of the obtained iron compound-supported titanium oxide (1) was 800 ppm.
  • the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 734 ppm.
  • the obtained iron compound-supported titanium oxide (1) has a crystal face (110) and a crystal face (111), and a rod-shaped rutile type titanium oxide in which an iron compound is supported only on the crystal face (111).
  • a rod-shaped rutile titanium oxide having a crystal plane (110), a crystal plane (111), and a crystal plane (001), and an iron compound supported on the crystal plane (001) and the crystal plane (111) Met.
  • Example 2 Preparation of crystalline titanium oxide
  • titanium tetrachloride aqueous solution Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.
  • Ti concentration was diluted with pure water so as to be 5.6% by weight.
  • the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
  • titanium oxide suspension (2-1) When the titanium oxide suspension (2-1) was dried at 105 ° C. for 1 hour under normal pressure, a rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), As a result, 533 g of titanium oxide (2), which is a mixture of rod-shaped rutile-type titanium oxide having crystal face (111) and crystal face (001), was obtained.
  • the photocatalytic ability of the obtained titanium oxide (2) evaluated by a toluene oxidation method using the following ultraviolet rays was 647 ppm (decomposition rate: 95%).
  • the crude iron compound-supported titanium oxide suspension (2) was diluted twice with pure water, and a hollow fiber ultrafiltration membrane (trade name “FS03-FC-FUS03C1”, material: PES, nominal molecular weight cut off: 30,000, manufactured by Daisen Membrane Systems Co., Ltd.) at room temperature (25 ° C.) and filtration pressure of 0.02 MPa, filtered with a cross flow method while adding the same amount of pure water as the amount of permeate. It was.
  • the concentrate obtained through the filtration treatment was circulated again into the charging tank, and repeatedly subjected to filtration treatment until the electric conductivity of the permeate reached 200 ⁇ S / cm.
  • the obtained iron compound-supported titanium oxide (2) has a crystal face (110) and a crystal face (111), and the rod-shaped rutile type titanium oxide in which the iron compound is supported only on the crystal face (111).
  • a rod-shaped rutile titanium oxide having a crystal plane (110), a crystal plane (111), and a crystal plane (001), and an iron compound supported on the crystal plane (001) and the crystal plane (111) (FIG. 4).
  • Example 3 Crystalline iron compound-supported titanium oxide (3) in the same manner as in Example 2 except that the electrical conductivity of the permeate was 150 ⁇ S / cm in the above (cross-flow filtration process (2)). (Specific surface area: 78.5 m 2 / g, average aspect ratio: 3, average minor axis: 16 nm) 530 g was obtained. The iron compound content of the obtained iron compound-supported titanium oxide (3) was 890 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 795 ppm.
  • Example 4 Crystalline iron compound-supported titanium oxide (4) in the same manner as in Example 2 except that the above-described (filtration treatment by cross-flow method (2)) was repeated until the electric conductivity of the permeate reached 100 ⁇ S / cm. (Specific surface area: 79 m 2 / g, average aspect ratio: 3, average minor axis: 15 nm) 530 g was obtained. The iron compound content of the obtained iron compound-supported titanium oxide (4) was 950 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 800 ppm.
  • Example 5 Crystalline iron compound-supported titanium oxide (5) in the same manner as in Example 2 except that the electrical conductivity of the permeate was 50 ⁇ S / cm in the above (cross-flow filtration process (2)). (Specific surface area: 80 m 2 / g, average aspect ratio: 3, average minor axis: 14 nm) 530 g was obtained. The iron compound content of the obtained iron compound-supported titanium oxide (5) was 1200 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 800 ppm.
  • Example 6 In the above (iron compound supporting treatment), a crystalline iron compound-supported titanium oxide (35% by weight) was changed in the same manner as in Example 2 except that the amount of iron chloride aqueous solution (35% by weight) was changed from 7.5 g to 6.5 g. 6) 530 g (specific surface area: 76 m 2 / g, average aspect ratio: 3, average minor axis: 17 nm) was obtained.
  • the iron compound content of the obtained iron compound-supported titanium oxide (6) was 700 ppm.
  • the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 780 ppm.
  • Example 7 In the above (iron compound supporting treatment), a crystalline iron compound-supported titanium oxide (35% by weight) was changed in the same manner as in Example 2 except that the amount of iron chloride aqueous solution (35% by weight) was changed from 7.5 g to 15.0 g. 7) 530 g (specific surface area: 80 m 2 / g, average aspect ratio: 3, average minor axis: 16 nm) was obtained. The iron compound content in the obtained iron compound-supported titanium oxide (7) was 2000 ppm. Moreover, the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 753 ppm.
  • Example 8 In the above (preparation of crystalline titanium oxide), a crude titanium oxide suspension (8) was obtained in the same manner as in Example 2 except that the reaction temperature (temperature in the autoclave) was changed from 140 ° C to 120 ° C. The obtained crude titanium oxide suspension (8) was subjected to the above (membrane filtration treatment (1) by the cross flow method) in the same manner as in Example 2 to obtain a titanium oxide suspension (8-1). A rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111) and a rod-like rutile titanium oxide having a crystal face (110), a crystal face (111) and a crystal face (001). 530 g of titanium oxide (8) was obtained. The photocatalytic ability of the obtained titanium oxide (8) evaluated by the toluene oxidation method with the following ultraviolet rays was 600 ppm (CO 2 generation rate: 90%).
  • Example 2 iron compound supporting treatment
  • (membrane filtration treatment by crossflow method (2)) crystalline iron compound supporting titanium oxide (8) (specific surface area: 85 m 2 / g). , Average aspect ratio: 2, average minor axis: 10 nm).
  • the iron compound content of the obtained iron compound-supported titanium oxide (8) was 780 ppm.
  • the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 691 ppm.
  • Example 9 In the above (Preparation of crystalline titanium oxide), a crude titanium oxide suspension (9) was obtained in the same manner as in Example 2 except that the reaction temperature (temperature in the autoclave) was changed from 140 ° C to 160 ° C. The obtained crude titanium oxide suspension (9) was subjected to the above (membrane filtration treatment (1) by cross flow method) in the same manner as in Example 2, to obtain a titanium oxide suspension (9-1). A rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111) and a rod-like rutile titanium oxide having a crystal face (110), a crystal face (111) and a crystal face (001). 530 g of titanium oxide (9) was obtained. The photocatalytic ability of the obtained titanium oxide (9) evaluated by a toluene oxidation method with the following ultraviolet rays was 645 ppm (decomposition rate: 95%).
  • Example 2 iron compound supporting treatment
  • the crystalline iron compound supporting titanium oxide (9) (specific surface area: 55 m 2 / g). , Average aspect ratio: 12, average minor axis: 25 nm).
  • the iron compound content in the obtained iron compound-supported titanium oxide (9) was 820 ppm.
  • the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 727 ppm.
  • Example 10 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight.
  • the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
  • titanium oxide suspension (10-1) was dried at 105 ° C. for 1 hour under normal pressure, a rod-shaped rutile-type titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), Titanium oxide (10) which is a mixture of rod-shaped rutile type titanium oxide having crystal face (111) and crystal face (001) was obtained.
  • the photocatalytic ability of the obtained titanium oxide (10) evaluated by a toluene oxidation method using the following ultraviolet rays was 647 ppm (decomposition rate: 95%).
  • Example 11 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight. 560 g of diluted titanium tetrachloride aqueous solution was placed in a 1 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
  • titanium oxide suspension (11-1) was dried at 60 ° C. under reduced pressure for 15 hours, rod-shaped rutile titanium oxide having a crystal face (110) and a crystal face (111), a crystal face (110), Titanium oxide (11), which is a mixture of rod-shaped rutile titanium oxide having crystal face (111) and crystal face (001), was obtained.
  • the photocatalytic ability of the obtained titanium oxide (11) evaluated by a toluene oxidation method using the following ultraviolet rays was 617 ppm (CO 2 generation rate: 93%).
  • Comparative Example 1 (Preparation of crystalline titanium oxide) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight. 560 g of diluted titanium tetrachloride aqueous solution was placed in a 1 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
  • the crystalline iron compound-supported titanium oxide (12) (specific surface area: 9 m) was used in the same manner as in Example 11 except that the crude titanium oxide suspension (12) was used instead of the crude titanium oxide suspension (11). 2 / g, average aspect ratio: 1.2, average minor axis: 100 nm).
  • the iron compound content of the obtained iron compound-supported titanium oxide (12) was 30 ppm.
  • the photocatalytic ability evaluated by the methanol oxidation method by the following visible light was 250 ppm.
  • LED light intensity: 2.5 mW / cm 2 , light wavelength: 455 nm
  • a gas chromatograph with a flame ionization detector attached to a methanizer (trade name “MT221”, manufactured by GL Science Co., Ltd.) for the amount of CO 2 produced (CO 2 concentration in the reaction vessel) 24 hours after the start of light irradiation. Measurement was performed using a trade name “GC-14B” (manufactured by Shimadzu Corporation).
  • a gas chromatograph with a flame ionization detector attached with a methanizer (trade name “MT221”, manufactured by GL Science Co., Ltd.) for the amount of CO 2 produced (CO 2 concentration in the reaction vessel) 24 hours after the start of light irradiation. Measurement was performed using a trade name “GC-14B” (manufactured by Shimadzu Corporation).
  • the transition metal compound-supported titanium oxide of the present invention has an average minor axis of 50 nm or less and an average aspect ratio (major axis / minor axis) of 1.5 or more. Therefore, it has excellent responsiveness to visible light, and can absorb light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, and LEDs, and decompose harmful chemical substances into water and carbon dioxide. That is, the transition metal compound-supported titanium oxide suspension of the present invention can be suitably used as a photocatalyst for LED illumination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 可視光に対する応答性に優れ、優れた光触媒能を発揮する遷移金属化合物担持酸化チタンを提供する。 本発明の遷移金属化合物担持酸化チタンは、結晶性酸化チタンに遷移金属化合物が担持された遷移金属化合物担持酸化チタンであって、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上であることを特徴とする。前記結晶性酸化チタンとしては、結晶面(110)及び結晶面(111)を有するルチル型酸化チタン及び/又は結晶面(110)、結晶面(111)及び結晶面(001)を有するルチル型酸化チタンが好ましい。

Description

遷移金属化合物担持酸化チタン
 本発明は、酸化チタンに遷移金属化合物を担持して得られる遷移金属化合物担持酸化チタンに関する。前記遷移金属化合物担持酸化チタンは可視光に対する応答性に優れ、優れた光触媒能を発揮することができる。
 遷移金属化合物担持酸化チタンは光触媒能を有し、可視光や紫外線等の光を照射することにより強い酸化力を発揮して、有害化学物質を水や二酸化炭素にまで分解することが可能であり、遷移金属化合物担持酸化チタンの懸濁液を塗布又は混合することにより、被塗布体又は被混合物に抗菌、防かび、脱臭、大気浄化、水質浄化、及び防汚効果等を付与することができる。そして、遷移金属化合物担持酸化チタンにハロゲンイオン等のイオン性不純物が含まれる場合は紫外線及び可視光に対する応答性が低下することが知られている。
 遷移金属化合物担持酸化チタンは、下記工程を経て製造できることが知られている(特許文献1、2等参照)。
1.チタン化合物を水熱処理して酸化チタン懸濁液を得る酸化チタン製造工程
2.酸化チタン懸濁液に遷移金属化合物を添加することにより遷移金属化合物担持酸化チタン懸濁液を得る遷移金属化合物担持工程
3.遷移金属化合物担持酸化チタン懸濁液を全量濾過方式を使用した加圧若しくは減圧濾過や、遠心分離等の処理に付して固液分離することによりイオン性不純物の含有量を低減する精製工程
 しかし、前記方法では、精製工程において固液分離により遷移金属化合物担持酸化チタンが圧密化されて高活性面の露出量が低下するため、十分な光触媒能を有する遷移金属化合物担持酸化チタンが得られないことが問題であった。更に、一旦圧密化された遷移金属化合物担持酸化チタンは、その後、粉砕処理等を施して再分散してもやはり満足できる光触媒能は得られなかった。
特開平10−158015号公報 特開昭62−235215号公報
 従って、本発明の目的は、可視光に対する応答性に優れ、優れた光触媒能を発揮する遷移金属化合物担持酸化チタンを提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、ロッド状遷移金属化合物担持酸化チタンは、遠心分離等の固液分離処理に付されることにより一旦圧密化されると、その後、粉砕により再分散してもロッド状の結晶構造が切断され、下記1、2等の理由により可視光領域における光触媒能が著しく低下することを見いだした。
1.遷移金属化合物担持酸化チタンの平均アスペクト比が小さくなり、球状により近い形状となるため、酸化反応場と還元反応場の分離性が低下し、逆反応や副反応の進行が避けられなくなる
2.ロッド状の結晶構造が切断されることにより遷移金属化合物が担持されていない酸化チタン片が生じ、その酸化チタン片は可視光応答性を発揮することができなくなる
 そして、精製工程において、遠心分離等の固液分離処理に代えてクロスフロー濾過方式による膜濾過処理を採用すると、遷移金属化合物担持酸化チタンを圧密化することなく、ロッド状の結晶構造を維持した状態でイオン性不純物を効率よく取り除くことができ、イオン性不純物の含有量が極めて低く、且つロッド状の遷移金属化合物担持酸化チタンが得られることを見いだした。更に、水熱処理時に反応系内を撹拌すると、平均短径が極めて小さく、平均アスペクト比が大きい遷移金属化合物担持酸化チタンが得られることを見いだした。そして、そのようにして得られた遷移金属化合物担持酸化チタンは可視光に対する応答性に優れ、優れた光触媒能を発揮することができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、結晶性酸化チタンに遷移金属化合物が担持された遷移金属化合物担持酸化チタンであって、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上である遷移金属化合物担持酸化チタンを提供する。
 前記結晶性酸化チタンとしては、結晶面(110)及び結晶面(111)を有するルチル型酸化チタン及び/又は結晶面(110)、結晶面(111)及び結晶面(001)を有するルチル型酸化チタンが好ましい。
 比表面積は10m/g以上であることが好ましい。
 本発明は、また、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上である酸化チタンを提供する。
 本発明の遷移金属化合物担持酸化チタンは平均短径が50nm以下、且つ平均アスペクト比(長径/短径)が1.5以上である。そのため、可視光に対する応答性に優れ、太陽光や白熱灯、蛍光灯、LED等の通常の生活空間における光を吸収して、有害化学物質を水や二酸化炭素にまで分解することができる。すなわち、本発明の遷移金属化合物担持酸化チタン懸濁液はLED照明下用光触媒として好適に使用することができる。そして、抗菌防かび、脱臭、大気浄化、水浄化等さまざまに応用することができ、室内の壁紙や家具をはじめ家庭内や病院、学校等の公共施設内での環境浄化、家電製品の高機能化等、広範囲への応用が可能である。
クロスフロー方式による膜濾過の一例を示す概略図である。 クロスフロー方式による膜濾過における逆洗浄の一例を示す概略図である。 結晶面(110)(111)を有するロッド状ルチル型酸化チタン、及び結晶面(110)(111)(001)を有するロッド状ルチル型酸化チタンの斜視図である。 電界放出型走査電子顕微鏡を使用して撮影した、実施例2で得られた鉄化合物担持酸化チタンの写真(×200000、スケールバー:100nm)である。
 [遷移金属化合物担持酸化チタン]
 本発明の遷移金属化合物担持酸化チタンは、結晶性酸化チタンに遷移金属化合物が担持され、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上であることを特徴とする。
 遷移金属化合物担持酸化チタンの平均短径は、50nm以下であり、好ましくは5~40nm、特に好ましくは5~30nm、最も好ましくは10~25nmである。平均短径が上記範囲を上回ると、酸化反応場と還元反応場の分離性が低下し、逆反応や副反応の進行が避けられなくなり、光触媒能が低下するため好ましくない。
 また、遷移金属化合物担持酸化チタンの平均アスペクト比(長径/短径)は1.5以上であり、好ましくは1.5~100、より好ましくは1.5~50、特に好ましくは1.5~20、最も好ましくは2~15である。平均アスペクト比が上記範囲を下回ると、酸化反応場と還元反応場の分離性が低下し、逆反応や副反応の進行が避けられなくなり、光触媒能が低下するため好ましくない。
 尚、本発明において平均短径、及び平均アスペクト比は下記調整方法で得られたサンプルについて、下記測定方法で求めた値である。
 <サンプル調製方法>
 1.少量(耳かきサイズのスパチュラで半分程度)の遷移金属化合物担持酸化チタンを9mLのガラス製サンプル瓶に入れ、エタノールを7mL入れ、超音波洗浄器にて超音波を5分間かけてエタノール中に分散させエタノール分散液を得る。
 2.得られたエタノール分散液をガラス製スポイドで1滴取り、SEM用試料台の上に落として自然乾燥させた後、30秒間白金蒸着を行う。
 <測定方法>
 電界放出型走査電子顕微鏡(商品名「FE−SEM JSM−6700F」、日本電子(株)製、加速電圧:15kV、WD:約3mm、倍率:20万倍)を使用して結晶粒子をランダムに観察し、代表的な3カ所を抽出し、抽出されたSEM写真全体の中で、見た目に極端に大きく又は小さくなく、平均的な大きさの粒子を中心に輪郭がはっきりしている粒子30個を抽出してOHPシートに写し、それらの粒子について、画像解析ソフトウェア(商品名「WinROOF Version5.6」、三谷商事(株)製)を用いて各短径(最大長径に直交する幅)を求め、それらの値を平均して平均短径とした。また、同様の方法で平均長径(最大長径)を求め、これらの比(平均長径/平均短径)を平均アスペクト比とした。
 前記結晶性酸化チタンとしては、例えば、ルチル型、アナターゼ型、ブルッカイト型酸化チタン等を挙げることができる。本発明においては、なかでも、安定な結晶面が露出している点でルチル型又はアナターゼ型酸化チタン(より優れた光触媒能を発揮することができる点でルチル型酸化チタンが更に好ましく、特に好ましくは結晶面(110)及び結晶面(111)を有するルチル型酸化チタン及び/又は結晶面(110)、結晶面(111)及び結晶面(001)を有するルチル型酸化チタン)が好ましい。
 遷移金属化合物は、例えば、遷移金属イオン、遷移金属単体、遷移金属塩、遷移金属酸化物、遷移金属水酸化物、又は遷移金属錯体の状態で担持される。遷移金属化合物の担持量としては、例えば50ppm以上、好ましくは100ppm以上、更に好ましくは200ppm以上、特に好ましくは300ppm以上、最も好ましくは500ppm以上である。遷移金属化合物の担持量の上限は、例えば5000ppm程度、好ましくは3000ppm、特に好ましくは2000ppmである。遷移金属化合物の担持量が上記範囲を下回ると、可視光応答性が低下する傾向がある。一方、遷移金属化合物の担持量が上記範囲を上回ると、注入電子の逆電子移動等により励起電子が有効に作用せず、光触媒能が低下する傾向がある。
 前記遷移金属化合物は、結晶性酸化チタンの表面に面選択的に担持されることが、酸化反応と還元反応の反応場の分離性をより高めることができ、それにより励起電子とホールの再結合を抑制し、逆反応の進行を抑制することができ、光触媒活性を飛躍的に向上できる点で好ましく、特に、酸化反応面に選択的に遷移金属化合物が担持されていることが好ましい。
 尚、本発明において遷移金属化合物が「面選択的に」担持とは、遷移金属化合物の50%を超える量(好ましくは70%以上、特に好ましくは80%以上)が結晶性酸化チタンの2面以上の結晶面のうち、全ての面ではなく、特定の面(例えば、特定の1面又は2面等)に担持されていることをいう。尚、面選択率の上限は100%である。面選択性は、透過型電子顕微鏡(TEM)やエネルギー分散型蛍光X線分析装置(EDX)を使用し、各結晶面上の遷移金属化合物由来のシグナルを確認することで判定することができる。
 遷移金属化合物としては、可視光領域に吸収スペクトルを有し、励起状態で伝導帯に電子を注入することができるものであればよいが、本発明においては、周期表第3~第11族元素化合物が好ましく、なかでも周期表第8~第11族元素化合物、特に好ましくは鉄化合物又は白金化合物、最も好ましくは三価の鉄化合物(Fe3+)である。三価の鉄化合物(Fe3+)は酸化チタンに吸着しやすく、二価の鉄化合物(Fe2+)は吸着しにくい特性を有するため、その特性を利用することにより容易に面選択的に担持することができるからである。
 前記遷移金属化合物担持酸化チタンの比表面積は、例えば10m/g以上である。比表面積の下限は、好ましくは30m/g、より好ましくは50m/g、特に好ましくは60m/g、最も好ましくは70m/gである。比表面積の上限は、例えば200m/g、好ましくは150m/g、特に好ましくは100m/gである。
 前記遷移金属化合物担持酸化チタンの比表面積は、例えば10~200m/g、好ましくは10~150m/g、より好ましくは30~150m/g、更に好ましくは50~100m/g、特に好ましくは60~100m/g、最も好ましくは70~100m/gである。比表面積が上記範囲の遷移金属化合物担持酸化チタンは、高活性面の露出量が多くなるため、優れた光触媒能を発揮することができる。
 前記比表面積は、遷移金属化合物担持酸化チタンを100℃(真空下)で60分間脱気して得られるサンプルについて、高速比表面積・細孔径分布測定装置(商品名「NOVA−1200」、Quantachtome.Co製)を使用して下記条件下でサンプルを換えて2回測定して得られた値の平均である。
 <比表面積測定条件>
 測定原理:定容法(ブランク補正型)
 検出法:相対圧力(圧力トランスデューサによるサンプルセル内の吸着平衡圧力(P)と飽和蒸気圧(P)の比)と吸着ガス量(圧力トランスデューサによる圧力検出とサーミスタによるマニホールド温度検出から理想気体での注入ガス量を計算)
 吸着ガス:窒素ガス
 セルサイズ:スモールペレットセル(セル容量:1.8cm、ステム外径:9mm)
 測定項目:P/P=0.1、0.2、0.3の吸着側3点
 解析項目:BET多点法による比表面積
 本発明の遷移金属化合物担持酸化チタンは可視光応答性に優れ、光照射により優れた光触媒能を発揮して有害化学物質を水や二酸化炭素にまで分解することにより、抗菌、防かび、脱臭、大気浄化、水質浄化、防汚などさまざまな効果を発揮することができる。
 例えば、上記遷移金属化合物担持酸化チタン(200mg)を使用してトルエンを酸化した際に生成するCO量は、例えば300ppm以上である。また、メタノールを酸化した際に生成するCO量は、例えば500ppm以上、好ましくは600ppm以上、さらに好ましくは700ppm以上、特に好ましくは750ppm以上である。
 尚、前記トルエンを酸化した際に生成するCO量の測定方法は、下記の通りである。
 遷移金属化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、100ppmのトルエンガス125mLを反応容器内に吹き込む。トルエンガスの遷移金属化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5W/cm、光の波長:455nm)を行い、光照射開始から24時間後のCOの生成量を測定する。
 また、前記メタノールを酸化した際に生成するCO量の測定方法は、下記の通りである。
 遷移金属化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、800ppmのメタノールガス125mLを反応容器内に吹き込む。メタノールガスの遷移金属化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5W/m、光の波長:455nm)を行い、光照射開始から24時間後のCOの生成量を測定する。
 本発明の遷移金属化合物担持酸化チタンは、上記のように極めて優れた光応答性を発揮することができるため、すなわち紫外線域から可視光線域までの広い波長範囲の光に対する応答性を有するため、太陽光や白熱灯、蛍光灯、LED等の通常の生活空間における光を吸収して、高い触媒活性を発揮して有害化学物質を水や二酸化炭素にまで分解することにより、抗菌(細菌、放線菌、菌類、藻類などの殺菌・殺藻)、防かび、脱臭(例えば、アンモニア、アミン類、メチルメルカプタン、硫化水素などの硫黄含有物質、酢酸、アルデヒド類、エチレンなどの悪臭ガスの脱臭)、大気浄化、水質浄化、防汚などさまざまな効果を発揮することができる。また、本発明の遷移金属化合物担持酸化チタンは、必要に応じてバインダー、溶剤、分散剤、増粘剤、界面活性剤等を混合した状態で塗布又は混合することにより、被塗布体又は被混合物に前記効果を付与することができる。
 本発明の遷移金属化合物担持酸化チタンの被塗布体、及び被混合物としては、例えば、建材、建物外装、建物内装、建築用塗料、壁、壁紙、床、窓枠、窓ガラス、結晶化ガラス、ガラス、網戸、雨樋、日射熱反射シート、郵便受け箱、構造部材、舗装材料、表示板、交通標識、道路標識反射板、ディスプレイパネル、ディスプレイフィルター、路面表示材、道路用化粧板、フェンス、門扉、トンネル用・道路用照明装置、遮音壁、ガードレ−ル、トンネル内装、道路用ミラー、ビニールハウス天井内面、橋梁、橋梁の転落防止柵、自動車・列車・船の内外装及び塗装、車両用ホイール、鉄道車両の構体、車輛用部品、機械装置や物品の外装・防塵カバー・塗装、各種表示装置、広告塔、碍子、太陽光パネル、太陽電池カバー、太陽熱温水器集熱カバー、燃料電池、光ファイバー、車両用照明灯のカバー、漁網、ロープ、ホース、船底部材、防藻材、靴、カバン、ブラインド、カーテン、壁布、衝立、障子、プラスチック障子、襖、合成皮革、テーブルクロス、衣類、レインコート、文房具、本、ノート、紙、ダンボール、乗り物や家電などの各種プラスチックスボディー、玩具、スポーツ用具、楽器、釣具、車内アクセサリー、プラスチック容器、カード類、テント、材木・柱・天井板・板壁などの建築用材、家具、プリント合板、内装用ボード、造花、観葉植物、人工植物、プール・風呂・河川・海・工場排水・生活排水・地下水・池・人工河川等の水処理用充填剤、鏡、洗面用ボウル、タイル、タイルの目地、浴槽、浴室部材、トイレ用床仕上げ材、院内感染防止用病院内部材、窯業系多機能材、釉薬、冷蔵庫内外壁、台、キッチンパネル、流し台、レンジ、加熱調理容器、換気装置、空調、熱交換器、各種フィルター、便器、繊維、不繊布、マスク、衣類、寝具、帽子、ヘルメット、玄関マット、絨毯、医療器具、食品、フォーク、ナイフ、スプーン、食器、包装材、食品用ラップ、食品保存容器、食器洗浄装置、浄水器、生ゴミ処理装置、メラミン化粧板、カーペット、照明装置、照明器具、照明灯、照明傘、ブラックライト、防汚塗料、フィルター、農業用ビニールフィルムなど各種フィルム・シート、超親水性フィルム、防草シート、電子部品、電気製品、電気機器、コロナ帯電器、プラズマ発生装置、オゾン発生装置、露光装置、加湿器、ハンドドライヤー、頭皮ケア装置、電気掃除機、電話機、携帯端末、携帯機器、タッチパネル表示器、有機ELデバイス・ディスプレイパネル、インクジェット記録装置、空気清浄機、冷凍機器、集塵器、装飾品、機械部品、磁気ディスク、ショーケース、計器用カバーガラス、カメラ、メガネ、カメラのレンズ、メガネのレンズ、コンタクトレンズ、ホワイトニング剤、歯科・口腔用材料、歯牙漂白材、インプラント、口腔用器具、化粧品、シャンプー等を挙げることができる。
 (遷移金属化合物担持酸化チタンの製造方法)
 本発明の遷移金属化合物担持酸化チタンは、例えば、下記工程を経て製造することができる。
 (結晶性酸化チタン製造工程)
 結晶性酸化チタン製造工程は、チタン化合物から結晶性酸化チタンを得る工程である。結晶性酸化チタンの製造方法としては周知慣用の方法を採用することができる。例えばロッド状ルチル型酸化チタンは、チタン化合物を水性媒体(例えば、水又は水と水溶性有機溶媒との混合液)中で水熱処理[例えば100~220℃、2~48時間(好ましくは2~15時間、特に好ましくは5~15時間)]することにより合成することができる。また、水熱処理の際にハロゲン化物を添加及び/又は撹拌(例えば、撹拌所要動力Pv値:0.1~1500W/m程度)すると、得られる粒子のサイズ及び表面積を調整することができるため好ましい。
 前記チタン化合物としては、3価のチタン化合物、4価のチタン化合物を挙げることができる。3価のチタン化合物としては、例えば、三塩化チタンや三臭化チタンなどのトリハロゲン化チタン等を挙げることができる。本発明における3価のチタン化合物としては、安価且つ入手が容易な点で三塩化チタン(TiCl)が好ましい。
 また、本発明における4価のチタン化合物は、例えば、下記式(1)で表される化合物等を挙げることができる。
 Ti(OR)4−t   (1)
(式中、Rは炭化水素基を示し、Xはハロゲン原子を示す。tは0~3の整数を示す)
 式(1)中のRにおける炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、n−ブチル、sec−ブチル、tert−ブチル等のC1−4脂肪族炭化水素基等を挙げることができる。
 式(1)中のXにおけるハロゲン原子としては、塩素、臭素、ヨウ素等を挙げることができる。
 このような4価のチタン化合物としては、例えば、TiCl、TiBr、Tilなどのテトラハロゲン化チタン;Ti(OCH)Cl、Ti(OC)Cl、Ti(OC)Cl、Ti(OC)Br、Ti(OC)Brなどのトリハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(OCCl、Ti(OCBrなどのジハロゲン化ジアルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(OCCl、Ti(OCBrなどのモノハロゲン化トリアルコキシチタン等を挙げることができる。本発明における4価のチタン化合物としては、安価且つ入手が容易な点で、テトラハロゲン化チタンが好ましく、特に四塩化チタン(TiCl)が好ましい。
 水熱処理により得られたロッド状ルチル型酸化チタンは、周知慣用の方法、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーや、これらを組み合わせた方法により精製することができる。本発明においては、なかでも、下記クロスフロー方式により膜濾過することが、酸化チタンの結晶構造を維持しつつ、イオン性不純物の含有量を低減することができ、粉砕処理等を施す必要がなくそのまま遷移金属化合物担持工程に付すことができ、遷移金属化合物を高担持することができる酸化チタンが得られる点で好ましい。
 上記方法により得られる結晶性酸化チタンの平均短径は50nm以下であり、好ましくは5~40nm、特に好ましくは5~30nm、最も好ましくは10~25nmである。
 また、上記方法により得られる結晶性酸化チタンの平均アスペクト比(長径/短径)は1.5以上であり、好ましくは1.5~100、より好ましくは1.5~50、特に好ましくは1.5~20、最も好ましくは2~15である。
 更に、上記方法により得られる結晶性酸化チタンの比表面積は、例えば10m/g以上である。比表面積の下限は、好ましくは30m/g、より好ましくは50m/g、特に好ましくは60m/g、最も好ましくは70m/gである。比表面積の上限は、例えば200m/g、好ましくは150m/g、特に好ましくは100m/gである。
 (遷移金属化合物担持工程)
 遷移金属化合物担持工程は、上記工程を経て得られた結晶性酸化チタンに遷移金属化合物を担持して遷移金属化合物担持酸化チタンを得る工程である。遷移金属化合物の担持は、例えば結晶性酸化チタンに遷移金属化合物を含む溶液を添加して含浸させることにより行うことができる。例えば、遷移金属化合物として三価の鉄化合物(Fe3+)を担持した遷移金属化合物担持酸化チタンは、結晶性酸化チタンの懸濁液に硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)等を含む溶液を添加して含浸させることにより得られる。
 遷移金属化合物を含む溶液の濃度は、例えば0.1~40重量%程度、好ましくは1~40重量%である。また、含浸時間としては、例えば1分から24時間程度、好ましくは5分から10時間である。
 本発明においては、遷移金属化合物を含浸する際に励起光を照射することが、大掛かりな設備などを要することなく容易に、且つ効率よく、結晶性酸化チタンの特定面に選択的に遷移金属化合物を担持することができる点で好ましい。励起光を照射すると、結晶性酸化チタンの価電子帯の電子が伝導帯に励起し、価電子帯にホール、伝導帯に励起電子が生成し、これらは粒子表面へ拡散し、各結晶面の特性に従って励起電子とホールとが分離されて酸化反応面と還元反応面とを形成する。この状態で遷移金属化合物として、例えば三価の鉄化合物の含浸を行うと、三価の鉄化合物(Fe3+)は酸化反応面には吸着するが、還元反応面では三価の鉄化合物(Fe3+)は二価の鉄化合物(Fe2+)に還元され、二価の鉄化合物(Fe2+)は吸着しにくい特性を有するため、溶液中に溶出し、結果として酸化反応面に選択的に鉄化合物(Fe3+)が担持された鉄化合物担持酸化チタンを得ることができる。
 励起光とはバンドギャップエネルギー以上のエネルギーを有する光(例えば、紫外線)である。励起光照射手段としては、例えば、中・高圧水銀灯、UVレーザー、UV−LED、ブラックライト等の紫外線を効率よく発生させる光源を有する紫外線露光装置等を使用することができる。励起光の照射量としては、例えば0.1~300mW/cm程度、好ましくは0.5~100mW/cmである。
 さらに、本発明においては、含浸の際に犠牲剤を添加することが好ましい。犠牲剤を添加することにより、結晶性酸化チタンの特定の結晶面に高い選択率で遷移金属化合物を担持することができる。犠牲剤としては、それ自体が電子を放出しやすい有機化合物を使用することが好ましく、例えば、メタノール、エタノール等のアルコール;酢酸等のカルボン酸;エチレンジアミン四酢酸(EDTA)、トリエタノールアミン(TEA)等のアミン等を挙げることができる。
 犠牲剤の添加量は適宜調整することができ、例えば、結晶性酸化チタンの懸濁液の0.5~20.0重量%程度、好ましくは1.0~5.0重量%程度である。犠牲剤は過剰量を使用してもよい。
 上記遷移金属化合物担持工程後は精製処理を施すことが好ましい。本発明においてはクロスフロー方式により膜濾過する処理を施すことが、遷移金属化合物担持酸化チタンを圧密化することなく、ロッド状の結晶構造を維持した状態でイオン性不純物を効率よく取り除くことができ、イオン性不純物の含有量が極めて低く、且つロッド状の遷移金属化合物担持酸化チタンが得られる点で好ましい。
 (クロスフロー方式による膜濾過)
 前記クロスフロー方式による膜濾過とは、濾過膜面に平行に被処理水を流し、濾滓の沈着による濾過膜汚染を防ぎながら被処理水の一部を、被処理水の流れの側方で濾過する方法である。上記酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液をクロスフロー方式による膜濾過に付すことにより、濾過膜表面に圧密化された濾滓を形成することなくイオン性不純物を効率よく取り除くことができ、酸化チタン又は遷移金属化合物担持酸化チタンの結晶構造を維持しつつ、イオン性不純物の含有量を極めて低く低減することができる。
 クロスフロー方式による膜濾過に付す酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液の濃度は、例えば0.1~40重量%程度(好ましくは0.1~30重量%)である。酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液の濃度が上記範囲を外れると、イオン性不純物の除去効率が低下する傾向がある。また、酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液の濃度が上記範囲を上回る場合は、粘度が高くなりすぎ、ファウリング(目詰まり)し易くなる。
 酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液をクロスフロー方式による膜濾過に付すと、イオン性不純物が透過液と共に分離除去され、濃縮された酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液が得られる。
 濃縮倍率は1~400倍程度(なかでも1~20倍、特に1~10倍)に調整することが好ましい。濃縮倍率が上記範囲を上回ると、膜面への付着物質の堆積抑制が困難となり、酸化チタン又は遷移金属化合物担持酸化チタンの圧密化を防止することが困難となる傾向がある。また、膜面への付着物質の堆積により濾過膜にファウリング(目詰まり)が発生することにより、膜寿命が低下し易くなり、逆洗浄を頻繁に行う必要が生じたり、濾過処理が運転不能となる場合が生じる等、濾過速度が低下し易くなる傾向もある。一方、濃縮倍率が上記範囲を下回ると、イオン性不純物の分離効率が低下し、洗浄水の使用量が増加する傾向がある。
 前記濃縮倍率は、例えば、濾過圧力、酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液の膜面線速(クロスフロー速度)等をコントロールすることにより調整することができる。濾過圧力は、例えば0.001~5.0MPa程度、好ましくは0.005~3MPa、特に好ましくは0.01~2.0MPaである。
 また、酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液を含む供給液の膜面線速は大きいほど膜面への付着物質の堆積が抑制され、高い濾過流束(フラックス)が得られる。膜面線速(クロスフロー速度)は、例えば0.02m/s以上、3m/s未満、好ましくは0.05m/s以上、1.5m/s未満である。
 クロスフロー方式による膜濾過を経て濃縮された酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液は、水を加えて酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液の濃度が上記範囲となるように希釈し、再びクロスフロー方式により膜濾過する操作を繰り返すことが好ましい。それにより、ファウリング(目詰まり)等による濾過膜の負荷を軽減し、濾過膜の寿命を向上させつつイオン性不純物の含有量を極めて低く低減することができる。
 図1は、酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液のクロスフロー方式による膜濾過の一例(循環型膜濾過方式)を示す概略図である。仕込みタンクに仕込まれた酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液を含む供給液は、クロスフロー濾過方式で膜濾過され、濃縮された酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液(濃縮液)が得られる。濃縮された酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液は、再度、仕込みタンクへ循環し、希釈用の水(希釈用水)で希釈され、クロスフロー濾過方式で膜濾過される。
 クロスフロー方式による膜濾過に使用する濾過膜としては、例えば、限外濾過膜、精密濾過膜、ナノフィルター、逆浸透膜等を挙げることができる。本発明においては、なかでも、分離性能に優れる点で限外濾過膜を使用することが好ましい。
 限外濾過膜としては、平均細孔径が1~20nm程度(好ましくは、1~10nm)であり、分子量1000~300000程度(好ましくは、1000~50000)、平均粒子径が1~10nm程度の物質を分離することができるものを使用することが好ましい。
 限外濾過膜の膜形状としては、例えば、中空糸型濾過膜、チューブラー膜、スパイラル膜、平膜等の何れであっても良いが、逆洗浄が比較的容易に行える点から、中空糸型濾過膜、又はチューブラー膜を使用することが好ましい。
 中空糸型濾過膜における中空糸膜の内径は、汚染物質の閉塞の防止、膜モジュールへの中空糸充填率の向上という観点から、0.1~2.0mm程度(好ましくは、0.5~1.5mm)である。
 濾過膜の材質としては、例えば、酢酸セルロース、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホン(PES)、ポリアクリロニトリル、芳香族ポリアミド、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリイミド、セラミックなどの一般的な材質を挙げることができる。本発明においては、なかでも、酢酸セルロース、ポリスルホン、ポリエーテルスルホン(PES)、ポリアクリロニトリル、芳香族ポリアミドが好ましい。
 中空糸型濾過膜を使用する場合、酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液を流す方法(濾過方式)としては、内側(中空糸膜の内側)に酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液を含む供給液を流し、外側(中空糸膜の外側)に向けて透過水が流れる方式(内圧濾過方式)と、その逆に外側に酸化チタン又は遷移金属化合物担持酸化チタンの懸濁液を含む供給液を流し、内側に向けて透過水が流れる方式(外圧濾過方式)が挙げられる。本発明においては、なかでも、膜面流速を高く維持できる点で内圧濾過方式が好ましい。
 クロスフロー方式による膜濾過においては、濾過膜面への付着物質の堆積を防止して濾過膜への負担を軽減し、長期間膜濾過運転を行うため、濾過膜に対し洗浄水により間欠的な逆洗浄を施すことが好ましい。逆洗浄は圧力及び流速を制御しつつ予め定められた周期で行うことが好ましい。
 逆洗浄の圧力としては、例えば0.01~3.0MPa程度であり、好ましくは0.01~2.0MPa、特に好ましくは0.01~1.0MPa、最も好ましくは0.01~0.5MPa、さらに好ましくは0.05~0.5MPaである。また、逆洗浄の流速としては、例えば0.01~10kg/mim程度、好ましくは0.05~5kg/mim、特に好ましくは0.1~5kg/mim[或いは、例えば1×10−7~2×10−4m/sec程度、好ましくは8×10−7~9×10−5m/sec、特に好ましくは1×10−6~9×10−5m/sec]である。逆洗浄の頻度としては、例えば0.5~3時間に1回程度行うことが好ましい。逆洗浄の時間は0.5~10分程度が好ましい。
 なお、逆洗浄に用いる洗浄水としては、水(例えば、精製水、蒸留水、純水、イオン交換水等)を使用することが好ましい。また、逆洗浄により膜通過した洗浄水は、濃縮された遷移金属化合物担持酸化チタンの懸濁液の希釈用の水として再利用することが好ましい(図2参照)。
 酸化チタンの懸濁液を濾過する場合、クロスフロー方式による膜濾過は、透過液のpHが1以上(好ましくは1~7、特に好ましくは2~6、最も好ましくは2~5.5)となるまで繰り返し行うことが好ましい。クロスフロー方式による膜濾過を透過液のpHが上記範囲となる前に終了すると、イオン性不純物(特に、水素イオン、塩素イオン、チタンイオン)の除去が不十分となり、遷移金属化合物の担持が困難となる場合がある。
 また、遷移金属化合物担持酸化チタンの懸濁液を濾過する場合、クロスフロー方式による膜濾過は、透過液の電気伝導度が300μS/cm以下(例えば0.5~300μS/cm、好ましくは0.5~250μS/cm、特に好ましくは1~200μS/cm)となるまで繰り返し行うことが好ましい。クロスフロー方式による膜濾過を透過液の電気伝導度が上記範囲となる前に終了すると、イオン性不純物(特に、鉄イオン、塩素イオン)の除去が不十分となる場合がある。
 クロスフロー方式により膜濾過して得られた遷移金属化合物担持酸化チタンの懸濁液は、その後、乾燥(例えば、F.V.下(1.3kPa[A])以下)、60℃で15時間程度、又は常圧(大気圧)下、105℃で1時間程度)することにより遷移金属化合物担持酸化チタンが得られる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1
 (結晶性酸化チタンの調製)
 室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)1360W/mで撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で5時間保持した後、熱媒を冷却することによりオートクレーブを40℃以下まで冷却した。その後、更に、温度:140℃、圧力:その温度における蒸気圧の条件下で5時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(1)5650gを取り出した。
 (クロスフロー方式による膜濾過処理(1))
 得られた粗酸化チタン懸濁液(1)を純水で3倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが4.0になるまで繰り返し濾過処理に付した。尚、pHはpH試験紙を使用して測定した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、酸化チタン濃度を濃縮させて酸化チタン懸濁液(1−1)を得た。酸化チタン懸濁液(1−1)を常圧下、105℃で1時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(1)(比表面積:77m/g、平均アスペクト比:6、平均短径:18nm)525gを得た(図3参照)。得られた酸化チタン(1)の下記紫外線によるトルエン酸化法で評価した光触媒能は625ppm(分解率:94%)であった。
 (鉄化合物担持処理)
 上記で得られた酸化チタン懸濁液(1−1)に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm)、粗鉄化合物担持酸化チタン懸濁液(1)を得た。
 (クロスフロー方式による膜濾過処理(2))
 粗鉄化合物担持酸化チタン懸濁液(1)を純水で3倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が200μS/cmになるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、鉄化合物担持酸化チタン濃度を濃縮させて、鉄化合物担持酸化チタン懸濁液(1−1)を得た。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。
 その後、常圧下、105℃で1時間乾燥して、鉄化合物担持酸化チタン(1)(比表面積:77m/g、平均アスペクト比:6、平均短径:18nm)を得た。得られた鉄化合物担持酸化チタン(1)の鉄化合物の含有量は800ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は734ppmであった。更に、得られた鉄化合物担持酸化チタン(1)は、結晶面(110)及び結晶面(111)を有し、前記結晶面(111)にのみ鉄化合物が担持されたロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有し、前記結晶面(001)及び結晶面(111)に鉄化合物が担持されたロッド状ルチル型酸化チタンの混合物であった。
 実施例2
 (結晶性酸化チタンの調製)
 室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)220W/mで撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(2)5650gを取り出した。
 (クロスフロー方式による膜濾過処理(1))
 得られた粗酸化チタン懸濁液(2)を純水で3倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが4.0になるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、酸化チタン濃度を濃縮させて酸化チタン懸濁液(2−1)を得た。酸化チタン懸濁液(2−1)を常圧下、105℃で1時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(2)533gを得た。得られた酸化チタン(2)の下記紫外線によるトルエン酸化法により評価した光触媒能は647ppm(分解率:95%)であった。
 (鉄化合物担持処理)
 上記で得られた酸化チタン懸濁液(2−1)に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm)、粗鉄化合物担持酸化チタン懸濁液(2)を得た。
 (クロスフロー方式による膜濾過処理(2))
 粗鉄化合物担持酸化チタン懸濁液(2)を純水で2倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が200μS/cmになるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。その後、純水の仕込みを停止し、鉄化合物担持酸化チタン濃度を濃縮させて鉄化合物担持酸化チタン懸濁液(2−1)を得た。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。
 その後、常圧下、105℃で1時間乾燥して、結晶性の鉄化合物担持酸化チタン(2)(比表面積:78m/g、平均アスペクト比:3、平均短径:17nm)530gを得た。得られた鉄化合物担持酸化チタン(2)の鉄化合物の含有量は830ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は775ppmであった。更に、得られた鉄化合物担持酸化チタン(2)は、結晶面(110)及び結晶面(111)を有し、前記結晶面(111)にのみ鉄化合物が担持されたロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有し、前記結晶面(001)及び結晶面(111)に鉄化合物が担持されたロッド状ルチル型酸化チタンの混合物であった(図4)。
 実施例3
 上記(クロスフロー方式による濾過処理(2))において、透過液の電気伝導度が150μS/cmになるまで繰り返した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(3)(比表面積:78.5m/g、平均アスペクト比:3、平均短径:16nm)530gを得た。得られた鉄化合物担持酸化チタン(3)の鉄化合物の含有量は890ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は795ppmであった。
 実施例4
 上記(クロスフロー方式による濾過処理(2))において、透過液の電気伝導度が100μS/cmになるまで繰り返した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(4)(比表面積:79m/g、平均アスペクト比:3、平均短径:15nm)530gを得た。得られた鉄化合物担持酸化チタン(4)の鉄化合物の含有量は950ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は800ppmであった。
 実施例5
 上記(クロスフロー方式による濾過処理(2))において、透過液の電気伝導度が50μS/cmになるまで繰り返した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(5)(比表面積:80m/g、平均アスペクト比:3、平均短径:14nm)530gを得た。得られた鉄化合物担持酸化チタン(5)の鉄化合物の含有量は1200ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は800ppmであった。
 実施例6
 上記(鉄化合物担持処理)において、塩化鉄水溶液(35重量%)の使用量を7.5gから6.5gに変更した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(6)(比表面積:76m/g、平均アスペクト比:3、平均短径:17nm)530gを得た。得られた鉄化合物担持酸化チタン(6)の鉄化合物の含有量は700ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は780ppmであった。
 実施例7
 上記(鉄化合物担持処理)において、塩化鉄水溶液(35重量%)の使用量を7.5gから15.0gに変更した以外は実施例2と同様にして、結晶性の鉄化合物担持酸化チタン(7)(比表面積:80m/g、平均アスペクト比:3、平均短径:16nm)530gを得た。得られた鉄化合物担持酸化チタン(7)の鉄化合物の含有量は2000ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は753ppmであった。
 実施例8
 上記(結晶性酸化チタンの調製)において、反応温度(オートクレーブ内温度)を140℃から120℃に変更した以外は実施例2と同様にして、粗酸化チタン懸濁液(8)を得、得られた粗酸化チタン懸濁液(8)について、実施例2と同様に上記(クロスフロー方式による膜濾過処理(1))を施したところ、酸化チタン懸濁液(8−1)を得、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(8)530gを得た。得られた酸化チタン(8)の下記紫外線によるトルエン酸化法により評価した光触媒能は600ppm(CO発生率:90%)であった。
 その後、実施例2と同様に(鉄化合物担持処理)、(クロスフロー方式による膜濾過処理(2))を施して、結晶性の鉄化合物担持酸化チタン(8)(比表面積:85m/g、平均アスペクト比:2、平均短径:10nm)を得た。得られた鉄化合物担持酸化チタン(8)の鉄化合物の含有量は780ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は691ppmであった。
 実施例9
 上記(結晶性酸化チタンの調製)において、反応温度(オートクレーブ内温度)を140℃から160℃に変更した以外は実施例2と同様にして、粗酸化チタン懸濁液(9)を得、得られた粗酸化チタン懸濁液(9)について、実施例2と同様に上記(クロスフロー方式による膜濾過処理(1))を施したところ、酸化チタン懸濁液(9−1)を得、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(9)530gを得た。得られた酸化チタン(9)の下記紫外線によるトルエン酸化法により評価した光触媒能は645ppm(分解率:95%)であった。
 その後、実施例2と同様に(鉄化合物担持処理)、(クロスフロー方式による膜濾過処理(2))を施して、結晶性の鉄化合物担持酸化チタン(9)(比表面積:55m/g、平均アスペクト比:12、平均短径:25nm)を得た。得られた鉄化合物担持酸化チタン(9)の鉄化合物の含有量は820ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は727ppmであった。
 実施例10
 (結晶性酸化チタンの調製)
 室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)13W/mで撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(10)5650gを取り出した。
 (クロスフロー方式による膜濾過処理(1))
 得られた粗酸化チタン懸濁液(10)を純水で希釈することなく、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが4.0になるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。これにより、酸化チタン懸濁液(10−1)5650gを得た。酸化チタン懸濁液(10−1)を常圧下、105℃で1時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(10)を得た。得られた酸化チタン(10)の下記紫外線によるトルエン酸化法により評価した光触媒能は647ppm(分解率:95%)であった。
 (鉄化合物担持処理)
 上記で得られた酸化チタン懸濁液(10−1)に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm)、粗鉄化合物担持酸化チタン懸濁液(10)を得た。
 (クロスフロー方式による膜濾過処理(2))
 粗鉄化合物担持酸化チタン懸濁液(10)を純水で希釈することなく、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が200μS/cmになるまで繰り返し濾過処理に付した。この間、1時間に1回の割合で0.1MPaの圧力、2kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。これにより、鉄化合物担持酸化チタン懸濁液(10−1)を得た。
 その後、常圧下、105℃で1時間乾燥して、結晶性の鉄化合物担持酸化チタン(10)(比表面積:76m/g、平均アスペクト比:5、平均短径:16nm)530gを得た。得られた鉄化合物担持酸化チタン(10)の鉄化合物の含有量は820ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は778ppmであった。
 実施例11
 (結晶性酸化チタンの調製)
 室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液560gを容量1Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌所要動力(Pv値)13W/mで撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(11)560gを取り出した。
 (クロスフロー方式による膜濾過処理(1))
 得られた粗酸化チタン懸濁液(11)を純水で10倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.05MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液のpHが2.9になるまで繰り返し濾過処理に付した。その後、純水の仕込みを停止し、酸化チタン濃度を濃縮させて酸化チタン懸濁液(11−1)を得た。この間、1時間に1回の割合で0.15MPaの圧力、0.1kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。酸化チタン懸濁液(11−1)を減圧下、60℃で15時間乾燥したところ、結晶面(110)及び結晶面(111)を有するロッド状ルチル型酸化チタンと、結晶面(110)、結晶面(111)及び結晶面(001)を有するロッド状ルチル型酸化チタンの混合物である酸化チタン(11)を得た。得られた酸化チタン(11)の下記紫外線によるトルエン酸化法により評価した光触媒能は617ppm(CO発生率:93%)であった。
 (鉄化合物担持処理)
 上記で得られた酸化チタン懸濁液(11−1)に塩化鉄水溶液(35重量%)0.3gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール9.6g(酸化チタン懸濁液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:0.9mW/cm)、粗鉄化合物担持酸化チタン懸濁液(11)を得た。
 (クロスフロー方式による膜濾過処理(2))
 粗鉄化合物担持酸化チタン懸濁液(11)を純水で10倍に希釈して、中空糸型限外濾過膜(商品名「FS03−FC−FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.05MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行った。濾過処理を経て得られた濃縮液は再度仕込みタンクに循環し、透過液の電気伝導度が21μS/cmになるまで繰り返し濾過処理に付した。その後、純水の仕込みを停止し、鉄化合物担持酸化チタン濃度を濃縮させて鉄化合物担持酸化チタン懸濁液(11−1)を得た。この間、1時間に1回の割合で0.15MPaの圧力、0.1kg/minの流速で1分間逆洗浄を実施した。この逆洗浄により膜通過した洗浄水は仕込みタンクに循環した。
 その後、減圧下、60℃で15時間乾燥して、結晶性の鉄化合物担持酸化チタン(11)(比表面積:71m/g、平均アスペクト比:9、平均短径:20nm)40gを得た。得られた鉄化合物担持酸化チタン(11)の鉄化合物の含有量は420ppmであった。また、下記可視光によるトルエン酸化法により評価した光触媒能は416ppmであり、下記可視光によるメタノール酸化法により評価した光触媒能は716ppmであった。
 比較例1
 (結晶性酸化チタンの調製)
 室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液560gを容量1Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌することなく、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン懸濁液(12)560gを取り出した。
 粗酸化チタン懸濁液(11)に代えて粗酸化チタン懸濁液(12)を使用した以外は実施例11と同様にして、結晶性の鉄化合物担持酸化チタン(12)(比表面積:9m/g、平均アスペクト比:1.2、平均短径:100nm)を得た。得られた鉄化合物担持酸化チタン(12)の鉄化合物の含有量は30ppmであった。また、下記可視光によるメタノール酸化法により評価した光触媒能は250ppmであった。
 <光触媒能の評価方法>
 (可視光によるトルエン酸化法)
 実施例で得られた鉄化合物担持酸化チタンを光触媒として使用し、気相にてトルエンを酸化し、生成するCO量を測定することにより光触媒能を評価した。
 鉄化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、100ppmのトルエンガス125mLを反応容器内に吹き込んだ。トルエンガスの鉄化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5mW/cm、光の波長:455nm)を行った。光照射開始から24時間後のCOの生成量(反応容器内のCO濃度)をメタナイザー(商品名「MT221」、GLサイエンス(株)製)に付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定した。
 (可視光によるメタノール酸化法)
 実施例及び比較例で得られた鉄化合物担持酸化チタンを光触媒として使用し、気相にてメタノールを酸化し、生成するCO量を測定することにより光触媒能を評価した。
 鉄化合物担持酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、800ppmのメタノールガス125mLを反応容器内に吹き込んだ。メタノールガスの鉄化合物担持酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:2.5W/m、光の波長:455nm)を行った。光照射開始から24時間後のCOの生成量(反応容器内のCO濃度)をメタナイザー(商品名「MT221」、GLサイエンス(株)製)を付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定した。
 (紫外線によるトルエン酸化法)
 実施例で得られた酸化チタンを光触媒として使用し、気相にてトルエンを酸化し、生成するCO量を測定することにより光触媒能を評価した。
 酸化チタン200mgをガラス製皿に広げて反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、100ppmのトルエンガス125mLを反応容器内に吹き込んだ。トルエンガスの酸化チタンへの吸着が平衡に達した後、室温(25℃)で光照射(LED、光強度:0.1mW/cm、光の波長:365nm)を行った。光照射開始から24時間後のCOの生成量(反応容器内のCO濃度)をメタナイザー(商品名「MT221」、GLサイエンス(株)製)を付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定した。
 本発明の遷移金属化合物担持酸化チタンは平均短径が50nm以下、且つ平均アスペクト比(長径/短径)が1.5以上である。そのため、可視光に対する応答性に優れ、太陽光や白熱灯、蛍光灯、LED等の通常の生活空間における光を吸収して、有害化学物質を水や二酸化炭素にまで分解することができる。すなわち、本発明の遷移金属化合物担持酸化チタン懸濁液はLED照明下用光触媒としても好適に使用することができる。そして、抗菌防かび、脱臭、大気浄化、水浄化等さまざまに応用することができ、室内の壁紙や家具をはじめ家庭内や病院、学校等の公共施設内での環境浄化、家電製品の高機能化等、広範囲への応用が可能である。

Claims (4)

  1.  結晶性酸化チタンに遷移金属化合物が担持された遷移金属化合物担持酸化チタンであって、平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上である遷移金属化合物担持酸化チタン。
  2.  結晶性酸化チタンが結晶面(110)及び結晶面(111)を有するルチル型酸化チタン及び/又は結晶面(110)、結晶面(111)及び結晶面(001)を有するルチル型酸化チタンである請求項1に記載の遷移金属化合物担持酸化チタン。
  3.  比表面積が10m/g以上である請求項1又は2に記載の遷移金属化合物担持酸化チタン。
  4.  平均短径が50nm以下、平均アスペクト比(長径/短径)が1.5以上である酸化チタン。
PCT/JP2013/074777 2012-09-19 2013-09-06 遷移金属化合物担持酸化チタン WO2014046020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380048744.4A CN104640631B (zh) 2012-09-19 2013-09-06 负载有过渡金属化合物的氧化钛
KR1020157005419A KR102207479B1 (ko) 2012-09-19 2013-09-06 전이 금속 화합물 담지 산화티타늄
JP2014536820A JP6263123B2 (ja) 2012-09-19 2013-09-06 遷移金属化合物担持酸化チタン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012206259 2012-09-19
JP2012-206259 2012-09-19

Publications (1)

Publication Number Publication Date
WO2014046020A1 true WO2014046020A1 (ja) 2014-03-27

Family

ID=50341333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074777 WO2014046020A1 (ja) 2012-09-19 2013-09-06 遷移金属化合物担持酸化チタン

Country Status (5)

Country Link
JP (1) JP6263123B2 (ja)
KR (1) KR102207479B1 (ja)
CN (1) CN104640631B (ja)
TW (1) TWI627999B (ja)
WO (1) WO2014046020A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095307A (ja) * 2015-11-25 2017-06-01 株式会社ダイセル ナノダイヤモンド水分散液の製造方法
JP2018079432A (ja) * 2016-11-17 2018-05-24 株式会社ダイセル 鉄化合物担持酸化チタン光触媒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603919B (zh) * 2018-12-13 2021-10-15 西南林业大学 一种能够循环使用的高效光催化降解材料及其制备方法
CN112439268B (zh) * 2020-10-16 2022-05-17 北京理韩汽车配件有限公司 一种过滤气体的过滤滤芯及净化方法
KR102689277B1 (ko) * 2022-08-10 2024-07-29 경북대학교 산학협력단 틈 수열 합성 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255332A (ja) * 2003-02-27 2004-09-16 Ichikoh Ind Ltd 可視光線応答型光触媒
JP2005052718A (ja) * 2003-08-01 2005-03-03 Catalysts & Chem Ind Co Ltd 一酸化炭素酸化触媒および該触媒の製造方法
JP2008189497A (ja) * 2007-02-02 2008-08-21 Fujifilm Corp ルチル型酸化チタン粒子及びその製造方法
JP2008230950A (ja) * 2007-02-21 2008-10-02 Kyushu Institute Of Technology Nおよび/またはsドープ管状酸化チタン粒子およびその製造方法
JP2009179521A (ja) * 2008-01-31 2009-08-13 Jgc Catalysts & Chemicals Ltd ルチル型酸化チタン微粒子の製造方法
JP2011219346A (ja) * 2010-03-25 2011-11-04 Daicel Chemical Industries Ltd 結晶面(001)を有するルチル型酸化チタンの製造方法
JP2011225422A (ja) * 2010-01-09 2011-11-10 Daicel Chemical Industries Ltd 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法
JP2012096133A (ja) * 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd 消臭性ルチル型酸化チタン微粒子および該微粒子を含む消臭性塗膜形成用塗布液、消臭性塗膜付基材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235215A (ja) 1986-04-07 1987-10-15 Nippon Shokubai Kagaku Kogyo Co Ltd ルチル型酸化チタンゾルの製造方法
JP3898792B2 (ja) 1996-10-02 2007-03-28 石原産業株式会社 表面処理された酸化チタンゾルの製造方法
JP2006224084A (ja) * 2004-03-30 2006-08-31 Toto Ltd 光触媒性材料および光触媒性部材
CN100346874C (zh) * 2005-03-17 2007-11-07 华中科技大学 二氧化钛为基体的复合型光催化剂的制备方法
JP2010046621A (ja) * 2008-08-22 2010-03-04 Asahi Kasei Corp 無機ナノ粒子の分離精製方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255332A (ja) * 2003-02-27 2004-09-16 Ichikoh Ind Ltd 可視光線応答型光触媒
JP2005052718A (ja) * 2003-08-01 2005-03-03 Catalysts & Chem Ind Co Ltd 一酸化炭素酸化触媒および該触媒の製造方法
JP2008189497A (ja) * 2007-02-02 2008-08-21 Fujifilm Corp ルチル型酸化チタン粒子及びその製造方法
JP2008230950A (ja) * 2007-02-21 2008-10-02 Kyushu Institute Of Technology Nおよび/またはsドープ管状酸化チタン粒子およびその製造方法
JP2009179521A (ja) * 2008-01-31 2009-08-13 Jgc Catalysts & Chemicals Ltd ルチル型酸化チタン微粒子の製造方法
JP2011225422A (ja) * 2010-01-09 2011-11-10 Daicel Chemical Industries Ltd 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法
JP2011219346A (ja) * 2010-03-25 2011-11-04 Daicel Chemical Industries Ltd 結晶面(001)を有するルチル型酸化チタンの製造方法
JP2012096133A (ja) * 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd 消臭性ルチル型酸化チタン微粒子および該微粒子を含む消臭性塗膜形成用塗布液、消臭性塗膜付基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MISA NAKAMURA ET AL.: "Improvement of visible light responsivity of rutile Ti02 nanorods by site-selective modification of iron(III) ion on newly exposed faces formed by chemical etching treatment", APPL. CATAL. B ENVIRON., vol. 130-131, 7 February 2013 (2013-02-07), pages 264 - 269 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095307A (ja) * 2015-11-25 2017-06-01 株式会社ダイセル ナノダイヤモンド水分散液の製造方法
JP2018079432A (ja) * 2016-11-17 2018-05-24 株式会社ダイセル 鉄化合物担持酸化チタン光触媒
CN108067269A (zh) * 2016-11-17 2018-05-25 株式会社大赛璐 担载有铁化合物的氧化钛光催化剂
CN108067269B (zh) * 2016-11-17 2022-09-16 株式会社大赛璐 担载有铁化合物的氧化钛光催化剂

Also Published As

Publication number Publication date
CN104640631B (zh) 2017-07-14
CN104640631A (zh) 2015-05-20
KR20150054782A (ko) 2015-05-20
KR102207479B1 (ko) 2021-01-26
TWI627999B (zh) 2018-07-01
JPWO2014046020A1 (ja) 2016-08-18
TW201420182A (zh) 2014-06-01
JP6263123B2 (ja) 2018-01-17

Similar Documents

Publication Publication Date Title
TWI547311B (zh) 光觸媒塗膜及其製造方法
JP6231550B2 (ja) 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
JP6263123B2 (ja) 遷移金属化合物担持酸化チタン
JP5918580B2 (ja) 微粒子の精製方法、及び該微粒子の精製方法を含む遷移金属化合物担持酸化チタン微粒子の製造方法
JP6046732B2 (ja) 遷移金属化合物担持酸化チタン懸濁液の製造方法、及び遷移金属化合物担持酸化チタンの製造方法
JP6010718B1 (ja) 鉄化合物担持酸化チタン光触媒
CN108067269B (zh) 担载有铁化合物的氧化钛光催化剂
JP6143168B2 (ja) 光触媒塗布体
KR100631337B1 (ko) 가시광선 응답형 광촉매 코팅용 졸의 제조방법
JP6370698B2 (ja) 抗微生物剤
JP5986799B2 (ja) 遷移金属化合物担持酸化チタンにおける遷移金属化合物担持量の調整方法
JP6315791B2 (ja) 鉄化合物担持酸化チタン粒子
JP6263082B2 (ja) 暗所用抗微生物剤
JP2014177384A (ja) 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536820

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157005419

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838123

Country of ref document: EP

Kind code of ref document: A1