[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014042240A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2014042240A1
WO2014042240A1 PCT/JP2013/074825 JP2013074825W WO2014042240A1 WO 2014042240 A1 WO2014042240 A1 WO 2014042240A1 JP 2013074825 W JP2013074825 W JP 2013074825W WO 2014042240 A1 WO2014042240 A1 WO 2014042240A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonization
coal
furnace
power generation
heat
Prior art date
Application number
PCT/JP2013/074825
Other languages
English (en)
French (fr)
Inventor
達朗 原田
誠一郎 松田
持田 勲
林 潤一郎
洋介 松下
山本 剛
Original Assignee
九州電力株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九州電力株式会社, 国立大学法人九州大学 filed Critical 九州電力株式会社
Priority to AU2013316430A priority Critical patent/AU2013316430B2/en
Priority to DE112013004492.7T priority patent/DE112013004492T5/de
Priority to US14/425,912 priority patent/US10138762B2/en
Publication of WO2014042240A1 publication Critical patent/WO2014042240A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B3/00Coke ovens with vertical chambers
    • C10B3/02Coke ovens with vertical chambers with heat-exchange devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B31/00Charging devices
    • C10B31/02Charging devices for charging vertically
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/18Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
    • C10B47/20Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge according to the moving bed type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10FDRYING OR WORKING-UP OF PEAT
    • C10F5/00Drying or de-watering peat
    • C10F5/06Drying or de-watering peat combined with a carbonisation step for producing turfcoal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/20Drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/10Pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention performs dry distillation by indirect heating using the combustion heat of a fluidized bed combustion furnace or direct heating using exhaust gas while allowing low-carbonized coal to flow down in the dry distillation furnace, and the hydrocarbon gas and fixed carbon are At the same time, heat is recovered from the fluidized bed combustion furnace with steam using hydrocarbon gas as the main fuel to generate electricity. Furthermore, the fixed carbon obtained in the carbonization furnace can be used as a power generation fuel, a heat source for iron making, and a solid fuel that can be transported overseas.
  • the present invention relates to a power generation system excellent in energy saving.
  • Coal with a low degree of coalification such as subbituminous coal and lignite with a water content of more than about 20% by mass, has a low moisture content due to its high water content, and has a low calorific value. It is limited to use in coal mining areas due to high transportation costs and transportation costs.
  • low-coalizing coal has advantages not found in bituminous coal, which is considered high quality.
  • Australian and Indonesian lignite has low sulfur and low ash content, and if this is used as a fuel, air pollution due to sulfurous acid gas and the like can be suppressed, and the harmful effects of ash can be reduced.
  • Patent Document 1 and Patent Document 2 a raw material slurry is obtained by mixing an oil component and a low-coalizing coal, and the slurry is heated to dehydrate in oil, and further heated to thereby add Spontaneous ignition is prevented by decomposing or desorbing carboxyl groups and hydroxyl groups by decarboxylation or dehydration to improve the raw coal, or by allowing heavy oil to enter the pores of low-carbon coal. Techniques to do this are disclosed.
  • Patent Document 3 discloses a gasification unit that gasifies low-degree coal with a relatively high moisture content, a gas power generation unit that generates power using the gas supplied from the gasification unit, and A steam power generation unit that generates power using the heat of exhaust gas discharged from the gas power generation unit and a coal drying unit that uses exhaust heat discharged from the steam power generation unit to supply the dried coal to the gasification unit
  • a coal gasification combined cycle power plant having a coal drying section is disclosed.
  • lignite is pyrolyzed in an inert gas atmosphere or a steam atmosphere to separate it into reformed coal and tar, and the tar is carbonized by catalytic cracking in a steam atmosphere and in the presence of an iron-based catalyst.
  • a method for producing reformed coal and hydrocarbon oil to obtain hydrogen oil is disclosed.
  • JP 7-233384 A Japanese Patent No. 2776278 JP 2009-133268 A JP 2010-144094 A
  • Patent Documents 1 and 2 use oil, they require various facilities for separating oil and coal in the same container, which increases the size of the apparatus and lacks energy saving.
  • an auxiliary material called oil is required for reforming coal, a large cost is required and the environmental load factor is high.
  • the method uses oil, heat exchange loss occurs with respect to the energy given to the brown coal, and the energy loss is large.
  • oil used as a subsidiary material is mixed in the dried coal, resulting in a large loss of oil and lacking in resource saving.
  • Patent Document 3 low-coalized coal is dried, then gasified in a gasification furnace and burned as a heat source in a boiler, so high calories can be obtained, but the generated gas becomes high temperature, There are major restrictions on the materials to be constructed, resulting in lack of resource saving.
  • Patent Document 4 obtains modified coal and a compound by pyrolyzing brown coal at 500 to 800 ° C. to obtain modified coal and tar, and then catalytically cracking tar at 400 to 600 ° C. In general, when low-carbon coal is heated above 500 ° C., cracks increase and fine powder is generated, and unburned coal increases.
  • pyrolysis gas has a risk of ignition of easily combustible components and explosion of pulverized coal when the oxygen concentration is high, so it is difficult to control the operation of equipment such as control of oxygen concentration and addition of steam, and safety and operability Lack.
  • the present invention solves the above conventional problems, (1) Combustion heat of hydrocarbon gas is used for drying steam generation, pyrolysis, hydrocarbon gasification, and fixed carbon production along with heating steam for power generation. (2)
  • the boiler can be made compact by adopting oxygen fluidized bed combustion. (3) By adopting oxyfuel combustion, when carbon dioxide is separated and recovered, nitrogen gas is remarkably low, so the concentration of carbon dioxide is high and the separation energy of carbon dioxide can be reduced. (4) Since the fixed carbon is produced by dry distillation by effectively using the waste heat of the boiler, it is excellent in resource saving, and since no auxiliary materials such as oil are added, the weight of the fixed carbon is light and the transportability is excellent.
  • Sub-bituminous coal or lignite with high water content that is difficult to use outside the land can be used outside the coal-producing area.
  • the product gas temperature can be kept low, and there are few restrictions on the materials such as gas piping, and the maintenance is excellent.
  • the thermal decomposition reaction time can be taken long, the product gas temperature is low, the problems due to tar components (such as sticking and coking) can be solved, and a relatively long chain hydrocarbon component can be obtained.
  • the purpose is to provide a power generation system.
  • the power generation system of the present invention has the following configuration.
  • the power generation system according to claim 1 of the present invention is a carbonization process for carbonizing low-degree coal, a cooling process for cooling fixed carbon obtained in the carbonization process, and a hydrocarbon gas obtained in the carbonization process.
  • a power generation process including a power generator that moves a steam turbine with main steam generated in the combustion process and a condenser.
  • the specific gravity is lightened by drying, and the dry distillation furnace can be designed compactly, including the amount of heat that evaporates moisture, so it is excellent in resource saving. Moreover, since the carbonization gas recovery equipment of the carbonization furnace can be made compact, it is excellent in resource saving. (3) Since it has a carbonization process and produces fixed carbon by using hydrocarbon gas produced by carbonization as the main fuel of the combustion process, it can be used as a solid fuel that can be transported overseas together with a power generation system. (4) Since there is a cooling step for cooling the fixed carbon obtained in the dry distillation step, the tar component floating on the surface due to cooling after dry distillation is fixed in the fixed carbon, so that the problem of obstacles due to the tar component is eliminated.
  • the combustion heat of hydrocarbon gas (volatile matter) is used to heat and steam steam for power generation, as well as to dry and carbonize low-coalizing coal. By doing so, it can be used for production of fixed carbon. Further, when carbon dioxide gas is separated and recovered, nitrogen gas is remarkably low, so the concentration of carbon dioxide gas is high, the separation energy of carbon dioxide gas can be reduced, and energy saving is excellent.
  • a drying process may be installed before the carbonization process.
  • the load on the dry distillation furnace is reduced, and the size of the dry distillation furnace can be reduced, so the equipment can be made compact and excellent in resource saving. .
  • a carbonization furnace using a moving bed is preferably used as the carbonization furnace in the carbonization process.
  • dry distillation dry coal is charged from the top of the distillation furnace, and the particles of the dry coal expand, shrink, and then flow down by gravity. Fixed carbon can be obtained by continuous contact with gas and dry distillation. Further, it is not always necessary to introduce gas into the dry distillation, and a wide range of flow rates can be used for the gas introduced into the furnace.
  • the dry distillation temperature in the dry distillation step 300 ° C. to 900 ° C., preferably 350 ° C. to 500 ° C. is suitably used. Thereby, the specification of the special material which the material of a furnace material can endure high temperature can be reduced.
  • one having an angle of the bottom portion equal to or more than the repose angle is preferably used.
  • the angle of repose becomes smaller than the angle of repose, a bridge of fixed carbon is likely to occur at the outlet, and the fixed carbon tends not to flow smoothly.
  • the cooling tank in the cooling process may be any structure that can cool and collect the fixed carbon obtained in the carbonization process, and a bottom shape having a bottom angle greater than the repose angle is preferably used. As the angle of repose becomes less than the angle of repose, a bridge of fixed carbon is likely to be generated in the cooling tank, and there is a tendency that the fixed carbon cannot be smoothly taken out at the lower fixed carbon take-out port.
  • the cooling tank is preferably cooled by a heat medium such as cooling water using piping for cooling. By doing so, the cooling tank can be made compact. Indirect cooling by piping or the like can prevent accidents such as ignition when the cooling tank is filled with an inert gas.
  • the fixed carbon is obtained by carbonizing brown coal or the like in the carbonization process.
  • hydrocarbon gas volatile matter escapes and is converted into high-grade coal, which exceeds the high-quality Newlands fuel ratio of 2 at approximately 400 ° C. Can be manufactured.
  • the carbonization temperature can be appropriately selected in consideration of the final quality.
  • a fluidized bed combustion furnace or a hydrocarbon gas / fixed carbon combustion boiler is preferably used.
  • a fluidized bed combustion furnace limestone, dolomite, or the like is used as a fluidized medium.
  • a mixed gas of oxygen and carbon dioxide that adjusts (dilutes) the oxygen concentration is preferable.
  • the fuel hydrocarbon gas obtained by dry distillation, low-coalized dry coal obtained by drying in a drying section, low-modified coal modified by a reformer, or char is used. In the case of using hydrocarbon gas or low-coalized coal dried in the drying section as the main fuel, it is possible to produce fixed carbon and use it as a solid fuel outside the coal producing area.
  • a catalyst reformer may be provided downstream of the dry distillation furnace. In this case, the catalyst reformer is used to perform reforming by contacting the catalyst with CO 2 , CO, or H 2 O of volatile components or furnace gas (combustion exhaust gas) obtained from low-coalification coal. Gas, methanol synthesis gas, ammonia synthesis gas, hydrogen gas, synthetic natural gas, etc. can be obtained.
  • the power generation process is not particularly specified as long as power is generated by turning the turbine with main steam generated using the combustion furnace of the combustion process as a heat source. This is because it is possible to construct a power generation system that excels in energy efficiency by using the exhaust heat after turning the turbine with main steam.
  • a pretreatment process for heating the dried low-carbonized coal obtained in the drying process may be provided.
  • a temperature lower than the same temperature as the dry distillation step and higher than the drying step is suitably used.
  • high-quality fixed carbon can be obtained more stably and in a high yield in the dry distillation step.
  • the carbonization furnace of the carbonization process can be made small, it is excellent in resource saving.
  • By improving the calorific value of the coal used it is possible to contribute to higher efficiency of the entire power generation system.
  • a part of the fixed carbon after the carbonization step can be used.
  • dry coal or fixed carbon more dry coal reduces the burden on the coal handling system and transportation in the power plant. Dryer coal is more transportable and eliminates the need for extensive equipment, reducing maintenance costs and increasing availability.
  • Invention of Claim 2 is the electric power generation system of Claim 1, Comprising: It has the structure provided with the drying process which dries the low-coalizing degree coal dry-distilled in the said carbonization process before a carbonization process. Yes. With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained. (1) Since a drying step for drying high-moisture content low-coalized coal is provided, the amount of heat input in the dry distillation step can be reduced, and energy efficiency is excellent. (2) Since it has a carbonization process for carbonizing dry coal dried in the drying process, the specific gravity is reduced by drying, and the dry distillation furnace can be designed compactly, including the amount of heat that evaporates moisture. Excellent resource. Moreover, since the carbonization gas recovery equipment of the carbonization furnace can be made compact, it is excellent in resource saving.
  • the drying process means any device useful for reducing the moisture content of particulate matter by direct or indirect application of heat, such as, but not limited to, a fluid bed dryer, vibration Fluidized bed dryers, fixed bed dryers, traveling bed dryers, cascade-type swivel bed dryers, long slot dryers, hopper dryers, kilns and the like are included.
  • These dryers include those comprised of single or multiple vessels, those comprised of single or multiple stages, those that are stacked or not stacked, those that have internal or external heat exchangers, and the like.
  • the low-coalizing coal having a high water content to be dried in the drying process the name and the production area are not particularly limited as long as the water content exceeds about 20%. Further, it is not necessary that all coal used as fuel is low-degree coal, and high-degree coal having a water content of less than about 20% by mass may be added. (Hereinafter, low-coalized coal dried through the drying process is called dry coal.)
  • the drying process is performed in an inert gas atmosphere such as nitrogen gas.
  • the target moisture of the low-rank coal can be 20% by mass or less. In the experiment, it could be reduced to 16% by mass. Thereby, the water content of the low-rank coal can be reduced to 1/3 or less, and the transportation efficiency can be greatly improved. Furthermore, by performing carbonization and using fixed carbon, spontaneous ignition can be prevented and safety can be improved.
  • Nitrogen gas is preferably used as the inert gas. Nitrogen gas separated by an enzyme separator is used as nitrogen gas. Nitrogen gas may be heated by an air preheater heated with hot water of a condenser. In this case, since the oxygen concentration is low, it is possible to prevent low-carbonized coal that is naturally oxidized and easily heated and ignited from being ignited and dried at a higher temperature. Further, since the relative humidity of the nitrogen gas separated by the oxygen separator is low, the drying efficiency can be increased. Furthermore, since waste heat is used and no additional heat energy is required, it is environmentally friendly and excellent in energy saving. Moreover, clean water can be recovered from the high-humidity exhaust gas discharged from the drying section, and water can be effectively used.
  • low-carbonized coal it is preferable to grind as a pretreatment before drying. By crushing, the drying process can be simplified and the drying time can be shortened.
  • the low-carbonized coal is heated by heating the drying chamber of the drying process using a cooling drain pipe of a condenser of a steam turbine that generates power with steam superheated in a combustion furnace.
  • air, CO 2 or N 2 gas with low oxygen content is heat-exchanged with the heated cooling wastewater and heated to counteract the flow of low-coalizing coal to the drying process. Pour and dry.
  • a third aspect of the present invention is the power generation system according to the second aspect, wherein the drying temperature in the drying step is 30 ° C. to 50 ° C.
  • the drying temperature in the drying step is 30 ° C. to 50 ° C.
  • the reduction rate of the drying time with respect to the input heat amount for raising the temperature is large, and the energy efficiency is excellent.
  • the equipment capacity can be made compact and the cost is excellent.
  • the temperature for drying in the drying step is preferably 30 ° C. to 50 ° C.
  • drying in the temperature range of around 40 ° C. has a high effect of about 1/3 of the time for drying the moisture of the raw material coal from 60% to 50% compared to drying at 30 ° C., and is excellent in thermal efficiency.
  • Low moisture coal with a high water content is not preferred because the water content decreases in a dry atmosphere even at room temperature, but it takes a very long time.
  • the drying time tends to be longer as the drying temperature falls below 30 ° C., and it is not preferable, and the drying time is shortened as the temperature is raised to 50 ° C. or higher.
  • waste heat can be utilized effectively and it is preferable.
  • a fourth aspect of the present invention is the power generation system according to any one of the first to third aspects, wherein the temperature of the dry distillation step is 350 ° C. to 500 ° C.
  • the temperature of the dry distillation step is 350 ° C. to 500 ° C.
  • the following action is obtained. (1) Since carbonization is performed at 350 ° C. to 500 ° C., hydrocarbon gas (volatile matter) is easily volatilized and can be converted to high quality coal, and high quality coal with a fuel ratio of 2 or more can be obtained. I can do it.
  • dry distillation can be performed at a low temperature of 350 ° C. to 500 ° C., the cost of the apparatus itself and the cost saving are excellent in the amount of input heat.
  • 350 ° C. to 500 ° C. is suitably used as the temperature of the carbonization process.
  • 350 ° C. to 450 ° C. is suitably used. If the temperature is lower than 350 ° C., the fuel ratio is less than 2 and an efficient dry distillation treatment cannot be performed, which is not preferable. If the temperature exceeds 450 ° C., the benefit to the input heat amount tends to be small. A tendency becomes remarkable and is not preferable.
  • the hydrocarbon gas (volatile matter) that escapes by dry distillation increases, but with this, the amount of heavy oil increases, which tends to increase problems such as clogging of the reactor, and is also preferable. Absent.
  • hydrocarbon gas volatile matter
  • gas components are known to volatilize in the range of 100 ° C to 300 ° C. It can be seen that it is possible to produce fixed carbon of high-grade coal that is currently distributed in the market because the fuel ratio of Newlands coal exceeds 2. Furthermore, compared to the conventional general high temperature dry distillation, the temperature is much lower at 350 ° C. to 500 ° C., so that the energy saving property is excellent.
  • the fixed carbon manufacturing apparatus containing the said carbonization process and the said cooling process is a cooling tank of the said cooling process.
  • each mini dry distillation furnace has pipe-shaped heating means, indirect heating with a high-temperature heat medium is possible, the inside of the dry distillation furnace can be easily brought to a uniform temperature, and the yield of fixed carbon is excellent. .
  • the internal volume of the furnace is simply increased for mass production, it is difficult to make the temperature in the furnace uniform, and a high-quality fixed carbon such as a place where partial carbonization easily proceeds is possible.
  • the yield of is low, it is excellent in mass productivity because it is equipped with a dry distillation unit equipped with multiple rows of mini-dry distillation furnaces and a dry distillation furnace equipped with multiple rows of dry distillation units.
  • a furnace having a size of about 4500 mm in the vertical direction ⁇ about 4500 mm in the horizontal direction and having a height of about 5000 mm is preferably used.
  • a partition wall is provided so that one carbonization unit is approximately 1500 mm in the vertical direction ⁇ 1500 mm in the horizontal direction and approximately 5000 mm in height, so that the carbonization unit can be arranged in 3 columns ⁇ 3 rows in the carbonization furnace.
  • a partition plate is provided in the dry distillation unit so that the cross-sectional area is about 500 mm in the vertical direction ⁇ about 500 mm in the horizontal direction and the height is about 5000 mm, and the mini dry distillation furnace can be arranged in 3 rows x 3 rows in the dry distillation unit, etc. Are preferably used.
  • the cross-sectional shape is not limited to a rectangle, and a triangle, a pentagon, a hexagon, and other polygons can be used as appropriate.
  • indirect heating is performed using a heat medium such as water vapor, but it can also be attached so as to be parallel to the partition wall or partition, or orthogonally so as to penetrate the partition plate or partition wall. It can be attached, if it is attached perpendicularly, it will act as a baffle itself, allowing dry charcoal to flow down naturally and trap properly when dry distillation, leading to improved quality during dry distillation. Therefore, it is preferable.
  • the cooling tank for collecting fixed carbon it is preferable to cool at a temperature below room temperature. Thereby, oxidation of fixed carbon can be prevented.
  • the structure which receives fixed carbon in a closed state is preferable. Filling this with an inert gas prevents oxidation of the dry-distilled coal, and indirectly cools the dry-distilled coal to room temperature by a water-cooled heat transfer tube installed in the container, thereby obtaining fixed carbon.
  • a structure for receiving in a closed state it is preferable to provide a dry distillation furnace and a cooling tank, such as a rotary valve, on both the receiving side from the carbonization furnace and the fixed carbon take-out side. In this way, the cooling tank can be closed by indirect heating, and an inert gas atmosphere can be obtained, which is preferable because accidents such as ignition can be prevented.
  • lignite As the coal charged into the carbonization furnace, dried lignite is preferably used. In addition to brown coal, lignite and subbituminous coal can be used in the same manner. Moreover, although there exist Victoria charcoal, North Dakota charcoal, Berga charcoal, etc. in lignite, it can be used similarly. These coals have favorable properties of low ash and sulfur, but they tend to have a high moisture content because they are porous, and because they contain a lot of moisture, they are low in calories and treated as low-grade coal. Yes. These porous materials having a high water content can be used in the same manner.
  • partition walls and partition plates those having a structure provided with heating means for controlling the internal temperature of each partitioned carbonization unit and each mini-dry distillation furnace are arranged so as to partition from the upper part to the lower part.
  • a heating means can also be arrange
  • a sixth aspect of the present invention is the power generation system according to any one of the first to fifth aspects, wherein the dry coal used in the dry distillation furnace has a water content of 20 in a low coal content in the drying step. It has the structure dried to mass% or less. With this configuration, in addition to the action obtained in any one of claims 1 to 5, the following action is obtained. (1) Since it has a drying process to dry low-coal coal with high water content, stable quality dry coal is put into the dry distillation path, so high-quality fixed carbon (product dry distillation in the dry distillation furnace) Char) is obtained and the quality performance is excellent.
  • the low moisture coal with high water content to be dried in the drying process its name and production area are not particularly limited as long as the water content exceeds about 20%, such as subbituminous coal, lignite, lignite. Further, it is not necessary that all coal used as fuel is low-degree coal, and high-degree coal having a water content of less than about 20% by mass may be added.
  • the dryer in the drying process is dried in an inert gas atmosphere such as N 2 gas having a low temperature (30 ° C. to 80 ° C.) and a low humidity (RH 70 to 0%).
  • the interior of the drying section is composed of hot water (about 60 to 90 ° C.) piping for warming coal and gas piping for injecting an inert dry gas.
  • moisture content of low coal degree coal can be 20 mass% or less. In the experiment, it could be reduced to 16% by mass. Thereby, the water content of the low-rank coal can be reduced to 1/3 or less, and the transportation efficiency can be greatly improved.
  • spontaneous ignition can be prevented and safety can be improved.
  • N 2 gas N 2 gas separated by the O 2 separator is used.
  • the N 2 gas may be heated by an air preheater heated with hot water of a condenser.
  • the O 2 concentration is low, it is possible to prevent the low-coalized coal, which is naturally oxidized and easily raised in temperature and easily ignited, from being ignited and dried at a higher temperature.
  • the relative humidity of the N 2 gas separated by the O 2 separator is low, the drying efficiency can be increased.
  • waste heat is used and no additional heat energy is required, it is environmentally friendly and excellent in energy saving.
  • clean water can be recovered from the high-humidity exhaust gas discharged from the drying section, and water can be effectively used.
  • the invention according to claim 7 is the power generation system according to any one of claims 1 to 6, wherein a particle diameter of the raw coal used in the drying step is adjusted to 0.1 ⁇ m to 5 mm. It has a configuration. With this configuration, in addition to the action obtained in any one of claims 1 to 6, the following action is obtained. (1) Since the particle diameter is adjusted to 0.1 ⁇ m to 5 mm, the drying process can be simplified, the drying time can be shortened, and the energy saving property is excellent.
  • the particle size is adjusted to 0.1 ⁇ m to 5 mm by rough pulverization as a pretreatment before drying.
  • the low-carbonized coal is heated using the cooling drain (about 60-90 ° C) piping of the condenser of the steam turbine that generates electricity with steam superheated in the fluidized bed combustion furnace in the drying process.
  • the cooling drain about 60-90 ° C
  • As a heat transfer medium air, CO 2 or N 2 gas with low oxygen content is heat-exchanged with the heated cooling wastewater and heated (temperature: 60 to 90 ° C., RH: 0 to 70%). In the drying process, it is counterflowed with the flow of low-coalizing coal and dried.
  • the invention according to claim 8 is the power generation system according to any one of claims 1 to 7, wherein the exhaust heat from the condenser in the power generation process is used for drying in the drying process. It has the structure provided with the heat supply part used for heating. With this configuration, in addition to the action obtained in any one of claims 1 to 7, the following action is obtained. (1) By using exhaust heat effectively, it excels in energy saving.
  • the invention according to claim 9 is the power generation system according to any one of claims 1 to 8, wherein the exhaust heat generated in the combustion process is heated by steam, combustion exhaust gas, or the combustion process. It has the structure provided with the heat supply part supplied to a dry distillation process using a heat medium. With this configuration, in addition to the action obtained in any one of claims 1 to 8, the following action is obtained. (1) By using exhaust heat effectively, it excels in energy saving. (2) By using indirect heating using the condenser exhaust heat in the generator, it is possible to reduce the latent heat loss in the dry distillation process, and the equipment can be made more compact. (3) Since it has a configuration using indirect heating using condenser exhaust heat, a heat medium having a high pressure and a high heat capacity can be used, and the apparatus can be manufactured compactly and is excellent in cost.
  • the exhaust gas generated in the combustion process may be directly supplied to the dry distillation furnace, or the steam that rotates the turbine of the generator in the combustion process. If the steam is generated, the steam after rotating the turbine is reheated in the combustion process and supplied to the heat exchanger of the dry distillation furnace to be indirectly heated.
  • low-carbonized coal which has a high moisture content other than the coal-producing area, can be used as fuel in the combustion process.
  • a power generation system with integrated manufacturing facilities can be constructed.
  • the power generation system of the present invention the following advantageous effects can be obtained.
  • the invention of claim 1 (1) It is possible to provide a power generation system with excellent energy efficiency that can reduce the amount of input heat. (2) It is possible to provide a power generation system excellent in resource saving that can reduce the specific gravity by drying and can design a dry distillation furnace compactly, including the amount of heat that evaporates moisture. In addition, it is possible to provide a power generation system with excellent resource saving that can make the carbonization gas recovery equipment of the carbonization furnace compact. (3) An excellent power generation system for producing fixed carbon can be provided by using hydrocarbon gas produced by dry distillation as a main fuel in the combustion process.
  • the following advantageous effects can be obtained. (1) It is possible to provide a power generation system with excellent energy efficiency that can reduce the amount of input heat. (2) It is possible to provide a power generation system excellent in resource saving that can reduce the specific gravity by drying and can design a dry distillation furnace compactly, including the amount of heat that evaporates moisture. In addition, it is possible to provide a power generation system with excellent resource saving that can make the carbonization gas recovery equipment of the carbonization furnace compact.
  • Outline diagram of power generation system in embodiment Schematic diagram of fixed carbon production equipment in the embodiment
  • Outline diagram of simulated moving bed indirect heating distillation furnace Graph showing the result of carbonization analysis according to the carbonization temperature
  • Graph showing the results of thermogravimetric analysis of carbonized coal according to the carbonization temperature
  • Graph showing temperature change of lignite in dry distillation equipment
  • Graph showing changes in various combustion-related components of fixed carbon by brown coal carbonization temperature
  • FIG. 1 is a schematic diagram of a power generation system according to an embodiment.
  • 1 is a power generation system
  • 2 is a mining / coalring facility for mining and transporting low-coalized coal
  • 3 is a particle size in an N 2 gas atmosphere heated by an inert gas preheater 30 described later.
  • Low-coalized coal such as brown coal transported from the mining and coal transportation facility 2 with a coal content of 1 ⁇ m to 5 mm and a moisture content of approximately 60% by mass until the moisture content reaches 20% by mass at approximately 30 to 50 ° C.
  • a drying process dryer for drying 4 is a dryer heat exchanging unit that heats the dryer using hot water of 60 to 90 ° C. connected to a condenser 33 described later, 5 is a dust collector that collects exhaust gas, and 6 is A pre-treatment device for heating dry coal obtained in the dryer 3 to 200 to 350 ° C. as a pre-drying treatment, 7 is a reheat to be described later with reheat steam at 500 to 600 ° C. obtained in a fluidized bed combustion furnace 13 described later. Pre-treatment device heat exchange supplied by steam pre-treatment supply unit 45 and heated to 200 to 350 ° C.
  • Section 8 is a dry coal bunker where dry coal heated as a pretreatment by the pretreatment device 6 is put into the carbonization furnace, and 9 is a dry coal transported from the dry coal bunker 8 to evaporate and desorb volatile components, tar components, etc.
  • a carbonization furnace 10 for carbonizing into fixed carbon and hydrocarbon gas is supplied by a reheat steam dry distillation furnace supply unit 44 described later with reheat steam heated at 500 to 600 ° C. heated in a fluidized bed combustion furnace 13 described later to 350 to 500.
  • a heat exchanger for heating the carbonization furnace to 11 ° C., 11 is a cooling tank for cooling and taking out the fixed carbon obtained in the carbonization furnace 9, and 12 is a cooling system for cooling the cooling tank 8 from the water supply unit 38, which will be described later.
  • a tank heat exchanging unit 13 is a fluidized bed combustion furnace 13 which is supplied with hydrocarbon gas produced by dry distillation of the carbonization furnace 9 as a main fuel and generates heat for main steam for a steam turbine 32 which will be described later. It will be described later by the heat of the combustion furnace 13.
  • a combustion furnace main steam heat exchanging section 15 for generating main steam for the gas turbine 32 is reheated by reheating the steam after turning the steam turbine 32 described later by the heat of the fluidized bed combustion furnace 13 to reheat steam.
  • a steam heat exchange unit, 16 is a cyclone that separates solid components from the exhaust gas of the fluidized bed combustion furnace 9 by centrifugal force
  • 17 is an ash treatment device that processes the ash separated by the cyclone 16
  • 18 is supplied from the cyclone 16 by piping.
  • 19 is a combustion air preheater heat exchange section of the combustion air preheater 18 , 20 the removal of dust from the heat recovered CO 2 separation device for separating the CO 2 from the exhaust gas, the exhaust gas after separation of CO 2 in the CO 2 separation device 20 in the combustion air preheater 18 Carried out in the dust machine 5.
  • N 2 gas obtained at the same time is heated by an inert gas preheater 30 described later and used for drying low-carbonized coal.
  • 28 N 2 gas supply unit for supplying the inert gas preheater 30, which will be described later with N 2 gas separated from the atmosphere by the O 2 separator 25, 29 is composed mainly of N 2 gas N 2 gas supply unit 28
  • a dry air pushing fan that pushes the inert gas into an inert gas preheater 30 described later, 30 is an inert gas preheater that preheats the inert gas
  • the inert gas preheater 30 is the pretreatment device heat exchanger 7 or The exhaust heat after heat exchange in the dry distillation furnace heat exchanging unit 4 is used.
  • 31 is a preheating N 2 supply section for supplying N 2 heated by the inert gas preheater 30 to the dryer heat exchanging section 4
  • 32 is a steam turbine for rotating the generator with the main steam of the fluidized bed combustion furnace 13
  • 33 Is a condenser
  • 34 is a generator
  • 35 is a cooling tower
  • 36 is a condenser exhaust heat supply unit for supplying the exhaust heat of the condenser to the dryer heat exchanging unit 4 of the dryer 3
  • 37 is a steam-driven water supply
  • a pump 38 is a water supply unit that feeds water from the condenser into a cooling tank heat exchange unit 12 of the cooling tank 11 and a feed water heater 39 to be described later
  • 39 is a cooling unit for the pretreatment device heat exchange unit 7 and the dry distillation furnace heat exchange unit 10.
  • a feed water heater 40 preheats water from the tank heat exchange unit 12, the inert gas preheater 30, and the feed water unit 38 to the combustion furnace main steam heat exchange unit 14 by steam (bleeding) from the turbine, and 40 is a feed water heater 39.
  • a heating water supply unit for supplying heating water to the combustion furnace main steam heat exchange unit 14 from 14 is a main steam supply section for supplying main steam to the turbine from 14 combustion furnace main steam heat exchange sections 14, and 42 is a reheat supplied to the reheat steam heat exchange section for reheating the steam after turning the turbine.
  • Steam supply section 43 is a reheat steam return section for returning a part of the reheat steam to the turbine again, 44 is a reheat steam dry distillation furnace supply section for supplying the reheat steam to the dry distillation furnace heat exchanging section 10, and 45 is a reheat steam recovery section. It is a reheat steam pretreatment device supply section for supplying hot steam to the pretreatment device heat exchange section 7. 55 is fixed carbon such as manufactured char. More specifically, in this embodiment, the heating water supplied from the heating water supply unit 40 in the combustion furnace main steam heat exchanging unit 14 of the fluidized bed combustion furnace 13 is used as the main steam. The main steam is supplied to the steam turbine 32 using the main steam supply unit 41.
  • the steam after rotating the steam turbine 32 is supplied to the reheat steam heat exchange unit 15 using the reheat steam supply unit 42 and is reheated by the reheat steam heat exchange unit 15 to be reheated steam. A part of this reheated steam is supplied again to the steam turbine 32 using the reheated steam return section 43.
  • the reheat steam is supplied to the dry distillation furnace heat exchange unit 10 and the pretreatment device heat exchange unit 7 mainly by the reheat steam dry distillation furnace supply unit 44 and the reheat steam pretreatment device supply unit 45. Further, the reheat steam used in the dry distillation furnace heat exchange unit 10 and the pretreatment device heat exchange unit 7 is supplied to the feed water heater 39 after being partially used in the inert gas preheater 30 or as it is.
  • a part of the cold water in the water supply unit 38 is used to cool the fixed carbon in the cooling bath heat exchange unit 12 and is heated to the water supply heating unit 39. Since exhaust heat is utilized between heat media such as water and steam in this way, the loads on the fluidized bed combustion furnace 13, the cooling tower 35, and the feed water heater 39 can be reduced, and resource saving is excellent.
  • a part of the fixed carbon 55 can also be used as a fuel for the combustion furnace. In this case, when the fixed carbon 55 is input to the fluidized bed combustion furnace 13 as a heat input necessary for the dryer 3 and the carbonization furnace 9, an energy necessary for generating itself is lost. Also, it can be used as a means for securing a heat source for the dryer 3 and the carbonization furnace 9, and is excellent in fuel selectivity.
  • Low-carbonized coal is coarsely pulverized in advance with a ball mill or the like, separated and transported by an air current, and supplied to the dryer 3 of the power generation system.
  • the moisture content of the low-carbonized coal whose particle size is adjusted to 0.1 ⁇ m to 5 mm is lowered to 20% by mass or less, so that the relative humidity is 0 to 70% in the dryer.
  • exhaust heat from the condenser 33, exhaust heat recovered from the steam turbine, combustion furnace fluidized medium, and fixed carbon is used for the drying gas.
  • the carbonization furnace 9 it is preferable to adopt a moving bed system by indirect heating at 350 ° C. to 500 ° C. Thereby, fixed carbon can be obtained with the tar component retained, and obstacles such as coking of the tar component can be prevented. Further, it is possible to take out the hydrocarbon gas of the light oil component, and the handling of the combustion furnace can be facilitated.
  • the fluidized bed combustion furnace 13 uses an auxiliary combustor obtained by diluting oxygen separated by an O 2 separator 25 that separates oxygen from the atmosphere with carbon dioxide gas produced as a by-product or separated from the CO 2 separator 20. .
  • the CO 2 separation device 20 uses a solid reforming catalyst such as iron or an alkali component.
  • a fixed bed using a perovskite-supported alkaline earth catalyst can be used. Thereby, heavy components, such as a tar part, can be decomposed
  • the low-coalized coal adjusted to a particle size of 0.1 ⁇ m to 5 mm has a dry distillation step of dry-drying the dry coal dried to a moisture content of 20% by mass or less in the drying step.
  • the specific gravity is reduced, and there is an advantage that the dry distillation furnace can be designed compactly, including the amount of heat that evaporates moisture. For this reason, since there is little load concerning a carbonization furnace and an installation can be made small, it is excellent in resource-saving property.
  • the tar component floating on the surface due to cooling after dry distillation is fixed in the fixed carbon, so that the problem of obstacles due to the tar component can be solved. It can be solved and has excellent stable operability.
  • Waste heat can be effectively utilized by the heat medium that moves between the bed combustion furnace and the condenser.
  • it because it produces hydrocarbon gas and fixed carbon in a carbonization furnace, it is excellent in resource saving and does not contain auxiliary materials such as oil, so it is light in weight, excellent in transportability, and difficult to use outside production areas.
  • Sub-bituminous coal and lignite with a high water volume can be used outside the coal producing area.
  • the specific gravity is reduced by drying, and the dry distillation furnace can be designed compactly, including the amount of heat that evaporates moisture, and is excellent in resource saving. Furthermore, since the carbonization gas recovery equipment of the carbonization furnace can be made compact, it is excellent in resource saving. (12) Since it has a fluidized bed combustion furnace using hydrocarbon gas as the main fuel, and a power generation process including a generator and a condenser for moving the steam turbine by main steam generated in the fluidized bed combustion furnace, Waste heat can be effectively utilized by the heat medium that moves between the bed combustion furnace and the condenser.
  • each of the mini dry distillation furnaces is equipped with pipe-shaped heating means, indirect heating with a high-temperature heat medium is possible, the inside of the dry distillation furnace can be easily set to a uniform temperature, and the yield of fixed carbon is excellent. .
  • it is equipped with a dry distillation unit equipped with this mini dry distillation furnace in multiple rows and a dry distillation furnace equipped with multiple dry distillation units, it is excellent in mass productivity.
  • the cooling tank for collecting fixed carbon is provided in the lower part of the dry distillation furnace, the product fixed carbon can be collected and collected stably. (19) By using exhaust heat effectively, energy saving is excellent. (20) By using indirect heating using the condenser exhaust heat in the generator, it is possible to reduce the latent heat loss in the dry distillation process, and the equipment can be made more compact. (21) Since it has a configuration using indirect heating utilizing condenser exhaust heat, it is a heat medium having a high pressure and a high heat capacity, so that the apparatus can be manufactured compactly and is excellent in cost.
  • FIG. 2 is a schematic diagram of a fixed carbon production apparatus according to the embodiment.
  • 9A has a carbonization unit partitioned by a partition wall described later, which is erected on the upper part of the cooling tank, and a mini carbonization furnace partitioned by a partition plate described later in the carbonization unit.
  • 9a is a carbonization unit 9A.
  • 11A is a cooling tank that cools and receives fixed carbon (product carbonization char)
  • 46 is a fixed carbon production apparatus including a carbonization furnace and a cooling tank
  • 47 is carbonization provided in the upper or lower part. Therefore, a dry distillation gas pipe for recovering the produced dry distillation gas
  • 48 is a dry lignite charging device for charging dry lignite dried to a water content of 20% by mass or less of low-coalizing coal
  • 49 is fixed carbon. This is the outlet for (product dry distillation char).
  • each of the mini dry distillation furnaces is provided with pipe-shaped heating means, indirect heating with a high-temperature heat medium is possible, and it is easy to uniformly heat the inside of the dry distillation furnace and prevent heating spots.
  • the dry distillation unit equipped with this mini carbonization furnace in multiple rows and the dry distillation furnace equipped with the dry distillation units in multiple rows it is excellent in rigidity and durability.
  • the pipe-shaped heating means is formed in the partition wall or partition plate of the carbonization furnace, it can be stably heated by a high-temperature heat medium such as steam, so that the operation stability is excellent.
  • FIG. 3 is a schematic diagram of a simulated moving bed indirect heating distillation furnace used to obtain test data of this example.
  • 50 is a simulated moving bed indirect heating distillation furnace
  • 51 is a lignite sample (Loy Yang lignite (raw charcoal) is preheated and dried in the air at room temperature to reduce the moisture content to around 20% by mass
  • the particle size is adjusted to 0.3 to 0.5 mm by pulverization and classification, dried in an inert gas atmosphere at 110 ° C. and water is removed, and filled with SUS mesh and partitioned perpendicular to the length direction (horizontal plane direction).
  • the inert gas flows from the inert gas inlet 51a in FIG. 3 to the inert gas outlet 51b (from the upper side to the lower side in FIG. 3).
  • the simulated moving bed indirect heating carbonization furnace 50 is an apparatus that simulates brown coal conversion characteristics and gasification characteristics in dry distillation.
  • a container furnace 51 of a cylindrical reactor made of SUS is fixed in 15 stages in a multistage series, and this is raised by a motor 53 in the direction of movement 54 from the lower part to the upper part where the vertical electric furnaces 52 are arranged in multiple stages.
  • the container furnace 51 was numbered 1, 2,..., 15 in order from the upper side in FIG.
  • the electric furnace 52 has nine stages, and in order from the lower side in FIG.
  • the first to fourth stages are 165 ° C.
  • the fifth stage is 300 ° C.
  • the sixth stage is 400 ° C.
  • the seventh stage is 500 ° C.
  • 8 The stage was set to 600 ° C. and the ninth stage was set to 700 ° C., respectively.
  • the container furnace 51 was raised in the electric furnace 52 at a speed of 6.9 mm / min. At this time, the temperature increase rate of the container furnace 51 was about 10 ° C./min.
  • the container furnaces 51 that have passed through the top of the furnace are Nos. 1 to 6 of the container furnaces 51.
  • FIG. 4 and (Table 1) are graphs showing the results of carbonization analysis according to the carbonization temperature.
  • FIG. 4 shows the solid yield of each container determined based on the mass of the solid remaining after the end of the experiment using the simulated moving bed indirect heating carbonization furnace 50 of FIG.
  • No. 1 to No. 6 of the container furnace 51 have already passed through the furnace, No. 7 to No. 11 are heated by 200 to 595 ° C. of the pyrolysis zone, and No. 12 to No. 15 are heated by 165 ° C.
  • the temperature is about 140 ° C.
  • the carbide yield in No. 1 of the container furnace 51 is 55% by mass, and the carbide yield increases as the container furnace 51 goes to the lower stage from No. 2 to No.
  • FIG. 5 and (Table 2) and (Table 3) are graphs showing the results of thermogravimetric analysis of carbonized carbon depending on the carbonization temperature. Specifically, in order to confirm the carbonization temperature by pyrolysis of lignite, Loy Yang lignite (raw coal) is preheated and dried in the air at room temperature to reduce the water content to around 20% by mass, and then pulverized and classified.
  • thermogravimetric analyzer manufactured by SII nanotechnology: EXSTAR TG / DTA6000. It is a result. As shown in FIG. 5 and (Table 2) and (Table 3), the weight of lignite begins to decrease from around 350 ° C., and it can be confirmed that dry distillation becomes remarkable from this temperature. In a fixed bed dry distillation furnace, a similar sample was subjected to dry distillation at 500 ° C., 550 ° C., 600 ° C., and 650 ° C.
  • thermogravimetric analysis has a good correlation with the temperature definition in the carbonization furnace.
  • Table 2 shows the results of the weight analysis of carbonized carbon in FIG. 5, and
  • Table 3) shows a plot showing the relationship between the fixed carbon yield and temperature in FIG.
  • FIG. 6 and (Table 4) are graphs showing the temperature change of the lignite in the dry distillation apparatus. Specifically, in the state where N 2 gas was circulated in a horizontal tubular furnace, the temperature in the furnace was increased to each measurement temperature, and the temperature change time and each temperature were measured. As shown in FIG. 6, even after the water has evaporated near 100 ° C., the temperature gradually rises, and there is a latent heat component even when the set temperature is 300 ° C., and the conversion to high-grade coal is occurring. I understand.
  • FIG. 7 and (Table 5) are graphs showing changes in various components related to fixed carbon combustion depending on the brown coal carbonization temperature. Specifically, Lo Yang lignite (raw charcoal) is preheated and dried in the air at room temperature to reduce the water content to about 20% by mass, and N 2 gas is circulated in a horizontal tube furnace. The furnace temperature was raised to 400 ° C., 600 ° C., 700 ° C., and 800 ° C., and the intrinsic moisture, volatile content, ash content, fixed carbon yield (%), and fuel ratio were measured. 7 and (Table 5), what was processed at 400 degreeC is the fuel cost 2.5, and it turns out that the fuel ratio like the bituminous coal like Newlands coal is implement
  • FIG. 8 and (Table 6) are graphs showing water content by temperature and time by low temperature drying.
  • Loy Yang lignite raw charcoal
  • thermo-hygrostat manufactured by Yamato Kagaku Co., Ltd .: IW222
  • the drying time is shortened, but the rate of shortening the drying time is larger at around 30 ° C., which is slightly higher than the room temperature, compared to the room temperature. For this reason, when the drying temperature is high, the benefit is smaller than the amount of heat consumed to raise the temperature. (The degree of shortening the drying time is reduced.) Therefore, drying at about 40 ° C. can perform the drying process with the least amount of input heat and high efficiency. This also shows that the temperature range at 30 ° C. to 50 ° C. is most preferable. When the temperature is lower than 30 ° C, the drying time becomes too long, which is not preferable because the processing apparatus becomes large.
  • FIG. 9 shows the heat balance and material balance in the embodiment.
  • the calorific value of the raw lignite is 2400 kcal / kg
  • the calorific value of the fixed carbon is 7000 kcal / kg.
  • the fixed carbon can be produced with high efficiency and excellent in energy saving.
  • the produced fixed carbon can generate electricity in the same way as high-grade coal such as Newlands coal.
  • the weight at that time can be reduced to about 1/4 (26%) compared to the raw coal, it is possible to transport nearly 4 times as much fixed carbon by the same means, so it is excellent in energy saving and transportability, Since it can be used in power generation facilities near power consumption areas other than coal-producing areas, it excels in energy operability.
  • the present invention performs dry distillation with the combustion heat of the combustion process while moving the dry distillation furnace in the dry distillation process and drying low-degree coal in the dry process, and generates electricity using the hydrocarbon gas obtained in the dry distillation as the main fuel.
  • it can be used as a solid fuel that can be transported overseas by recovering fixed carbon obtained by dry distillation.
  • the exhaust heat of the combustion process is supplied to the drying process and the carbonization process and used for temperature control to circulate or recover CO 2 gas and generate electricity. This provides a power generation system in which power generation and solid fuel production are integrated to enable advanced use of CO 2 , electricity, and solid fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Coke Industry (AREA)

Abstract

 炭化水素ガスの燃焼熱を発電用の蒸気の加熱とともに、その排熱を低石炭化度炭の乾燥や乾留に利用する。移動層乾留炉を用いることで、製品ガス温度が低く抑えることができガス配管などの材質の制約が少なくメンテナンス性に優れる。また、低温の乾留によって、製品ガス温度が低く、タール成分による障害問題を解決し、燃焼工程や発電工程の排熱を利用して固定炭素を製造するので省エネルギー性、省資源性に優れ、生産地以外で利用が困難な高含水量の低石炭化度炭を産炭地以外で利用することができる発電システムの提供。 高含水率の低石炭化度炭を乾留する乾留工程と、乾留工程で得られた固定炭素を冷却する冷却工程と、乾留工程で得られる炭化水素ガスを主燃料とする燃焼工程と燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程と、を備えている。

Description

発電システム
 本発明は、低石炭化度炭を乾留炉内で流下させながら、流動層燃焼炉の燃焼熱を利用した間接加熱や排ガス等を利用した直接加熱で乾留を行い、炭化水素ガスと固定炭素を得るとともに、炭化水素ガスを主燃料として流動層燃焼炉から水蒸気で熱回収をして発電を行う。さらに、乾留炉で得られた固定炭素は適宜発電燃料、製鉄用熱源、海外輸送可能な固体燃料として利用できる。省エネルギー性に優れた発電システムに関する。
 含水量が約20質量%を超える亜瀝青炭や褐炭など石炭化度の低い石炭は、高水分含量であるが故にカロリーが低く、燃焼発熱量が少ない上に、乾燥すると自然発火性が高まり、吸湿性も高く、輸送コストが割高になる等の理由により産炭地での利用に限られている。
 しかし、低石炭化度炭には、高品位とされる瀝青炭等にはない利点がある。例えば、オーストラリアやインドネシアの褐炭は低硫黄でかつ低灰分であり、これを燃料として使用すれば、亜硫酸ガスなどによる大気汚染を抑制することができる上に、捨灰の有害性を低減できる。
 そこで、これまでにも、これら低石炭化度炭を脱水改質や熱改質で炭化することによって有効利用すべく、その欠点を補うための技術が提案されてきた。例えば、特許文献1や特許文献2には、油分と低石炭化度炭を混合して原料スラリーを得て、当該スラリーを加熱して油中脱水し、更に加熱することによって、原料炭中のカルボキシル基や水酸基等を脱炭酸反応や脱水反応により分解若しくは脱離し、原料炭を改質する技術、または低石炭化度炭の細孔内に重質油分等を侵入せしめることにより自然発火を防止する技術が開示されている。
 また、特許文献3には、水分の含有率が比較的高い低石炭化度炭のガス化を行うガス化部と、ガス化部から供給されたガスを用いて発電を行うガス発電部と、ガス発電部から排出された排気ガスの熱を用いて発電を行う蒸気発電部と、蒸気発電部から排出された排熱を用いて石炭の乾燥を行い、ガス化部に乾燥された石炭を供給する石炭乾燥部と、を備えた石炭ガス化複合発電設備が、開示されている。特許文献4には、褐炭を不活性ガス雰囲気下もしくは水蒸気雰囲気下で熱分解して改質炭とタールに分離し、前記タールを水蒸気雰囲気下、かつ鉄系触媒存在下で接触分解して炭化水素油を得る改質炭と炭化水素油の製造法が開示されている。
特開平7-233384号公報 特許第2776278号公報 特開2009-133268号公報 特開2010-144094号公報
 しかしながら、上記従来の技術においては以下の課題を有していた。
(1)特許文献1,2は油分を使用するために、油と石炭を同一容器で分離するための種々の設備を要し、装置が大型化するとともに省エネルギー性に欠ける。
(2)石炭の改質に際して油分という副資材が必要となるので、大きなコストが必要で、かつ、環境負荷率が高い。
(3)油分を介した方法なので、褐炭に与えるエネルギーに関して熱交換損失が生じ、エネルギーロスが大きい。
(4)さらに乾燥後の石炭に副資材として利用する油分が混入し、油分のロスが多く、省資源性に欠ける。
(5)特許文献3は、低石炭化度炭を乾燥し、次いでガス化炉でガス化させてボイラーで熱源として燃焼させるので高カロリーを得ることができるが、発生ガスが高温となり、設備を構成する材料に大きな制約があり、省資源性に欠ける。
(6)特許文献4は、褐炭を500~800℃で熱分解し改質炭とタールを得て、次いでタールを400~600℃で接触分解することにより、改質炭と化合物を得るが、一般に低石炭化度炭は500℃を超えて加熱すると亀裂が増え微粉が発生し未燃炭が増加する。また、熱分解ガスは、酸素濃度が高いと易燃焼成分の着火や、微粉炭の爆発の危険があるので、酸素濃度の制御やスチームの添加等装置の運転制御が困難で安全性や運転性に欠ける。
 本発明は上記従来の課題を解決するもので、
(1)炭化水素ガスの燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、熱分解、炭化水素ガス化、固定炭素製造に利用する。
(2)ボイラーを酸素流動層燃焼採用でコンパクト化できる。
(3)酸素燃焼を採用することで、炭酸ガスを分離・回収する場合、窒素ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができる。
(4)ボイラーの排熱を有効利用し、乾留によって、固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、固定炭素の重量が軽く、運搬性に優れ、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用することができる。
(5)乾留炉として、移動層乾留炉を採用することで、製品ガス温度が低く抑えられ、ガス配管などの材質の制約条件が少なくメンテナンス性に優れる。
(6)熱分解反応時間を長く取れるので、製品ガス温度が低く、タール成分による障害(固着やコーキングなど)問題を解決し、かつ比較的長鎖の炭化水素成分を多く得ることができる。
 という発電システム提供することを目的とする。
 上記従来の課題を解決するため、本発明の発電システムは、以下の構成を有している。
 本発明の請求項1に記載の発電システムは、低石炭化度炭を乾留する乾留工程と、前記乾留工程で得られた固定炭素を冷却する冷却工程と、前記乾留工程で得られる炭化水素ガスを主燃料とする燃焼工程と、前記燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程と、を備えた構成を有している。
 この構成により、以下のような作用が得られる。
(1)高含水率の低石炭化度炭を乾燥する乾燥工程を備えた場合は、乾留するので投入熱量を少なくすることができ、エネルギー効率に優れる。
(2)乾燥された乾燥炭を乾留する場合は、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できるため、省資源性に優れる。また、乾留炉の乾留ガス回収設備などをコンパクトにすることができるので省資源性に優れる。
(3)乾留工程を有し、乾留で生成される炭化水素ガスを燃焼工程の主燃料とすることで固定炭素を製造するので、発電システムと共に海外輸送可能な固体燃料として利用できる。
(4)乾留工程で得られた固定炭素を冷却する冷却工程を有しているので、乾留後の冷却により表面に浮き出ているタール成分を固定炭素内で定着させることでタール成分による障害問題を解決することができ、安定的な操業性に優れる。
(5)炭化水素ガスを主燃料とする燃焼工程と、燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、燃焼工程と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬に掛る費用が安く、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
(6)乾留炉で発生する炭化水素ガスを主燃料として発電を行う複合システムなので、炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥や乾留をすることで、固定炭素製造に利用することができる。
 また、炭酸ガスを分離・回収する場合、窒素ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、省エネルギー性に優れる。
 ここで、乾留工程の前に乾燥工程を設置しても良い。低石炭化度炭を乾燥して乾燥炭とすることで乾留炉での負荷が減り、乾留炉の大きさも小型にすることが出来るので、装置をコンパクトにすることができ、省資源性に優れる。
 乾留工程の乾留炉としては、移動層を用いた乾留炉が好適に用いられる。乾留は、乾燥炭を乾留炉の炉頂から装入され乾燥炭の粒子群が膨張した後収縮し重力によって順次流下する間に、粒子と向流あるいは並流する高温の水蒸気や窒素ガスあるいは炭酸ガスと連続的に接触し乾留が行われ固定炭素を得ることができる。また、乾留には必ずしもガスを導入する必要はなく、炉内に投入されるガスは広い範囲の流速が利用出来る。
 乾留工程の乾留温度としては、300℃~900℃、好ましくは350℃~500℃が好適に用いられる。これにより炉材の材料が高温に耐える特殊材料の仕様を減らすことができる。
 乾留炉の払い出し口としては、底部の角度が安息角以上であるものが好適に用いられる。安息角以下になるにつれて払い出し口に固定炭素のブリッジが発生し易く、スムーズに固定炭素が流下しなくなる傾向にあり好ましくない。
 冷却工程の冷却槽としては、乾留工程で乾留された固定炭素を冷却し捕集出来る構造であれば良く、底部の形状としては、底部の角度が安息角以上であるものが好適に用いられる。安息角以下になるにつれて冷却槽内に固定炭素のブリッジが発生し易く、下部の固定炭素取り出し口においてスムーズに固定炭素が取り出せなくなる傾向にあり好ましくない。また、冷却槽には冷却の為に配管を用いて冷却水等の熱媒体によって冷却することが好ましい。そうすることで冷却槽をコンパクトに作成できる。配管等によって間接的に冷却することで冷却槽は不活性ガスを充填する場合は、発火等の事故を防止することができる。
 固定炭素としては、褐炭等を乾留工程で乾留して得られる。また、炭化水素ガス(揮発分)が抜けることで高品位の石炭へ転化し略400℃において高品質なニューランズの燃料比2を越えることから現在市場に流通する高品位炭レベルの固定炭素を製造することが出来る。乾留温度は、最終品質を考慮して適宜選択できる。固定炭素とすることで、含水量が高い低石炭化度炭を生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
 燃焼工程としては、流動層燃焼炉や炭化水素ガス・固定炭素燃焼ボイラーが好適に用いられる。
 流動層燃焼炉としては、流動媒体として石灰石、ドロマイト等が用いられる。助燃剤としては、酸素と酸素濃度を調節(希釈)する炭酸ガスの混合ガスが好ましい。燃料は、乾留で得られ炭化水素ガスや乾燥部で乾燥された低石炭化度炭の乾燥炭や改質器で改質された低石炭化度炭の改質後石炭やチャーが用いられる。
 炭化水素ガスや、乾燥部で乾燥された低石炭化度炭を主燃料とした場合、固定炭素を製造し、産炭地以外で固体燃料として使用することが出来る。また、固定炭素の一部を燃焼炉で用いた場合、炭化水素ガスの余剰分を回収し有用な化学原料として利用出来るのでケミカルコンプレックスを構築することが出来る。
 また、流動層燃焼炉の燃焼温度は800~900℃に調節される。これにより炉材の材料が高温に耐える特殊材料の使用を減らすことができ、さらに流動層内での灰熔解などの障害を防ぐことができる。
 乾留炉の下流に触媒改質装置を設けてもよい。この場合、触媒改質装置により、低石炭化度炭から得られた揮発成分や炉ガス(燃焼排ガス)のCO2やCO,H2Oと触媒を接触させ改質を行うもので、FT合成ガスやメタノール合成ガス,アンモニア合成ガス,水素ガス,合成天然ガス等を得ることができる。
 発電工程としては、燃焼工程の燃焼炉を熱源として発生した主蒸気によってタービンを回し発電を行うものであれば特に、指定はしない。主蒸気によってタービンを回した後の排熱を利用しエネルギー効率に優れる発電システムを構築できるからである。
 乾燥工程と乾留工程の間には、乾燥工程で得られた乾燥した低石炭化度炭を加熱する前処理工程を設けても良い。前処理工程の温度としては、乾留工程と同様の温度より低く乾燥工程よりも高い温度が好適に用いられる。そうすることで、乾留工程において、より安定して高品位の固定炭素を収率良く得ることが出来る。また、乾留工程の乾留炉を小さくできるので省資源性に優れる。また、乾燥工程で得られた乾燥炭の一部を燃焼工程で用いても良い。使用する石炭の発熱量を改善することで発電システム全体の高効率化に貢献することが出来る。更に乾留工程後の固定炭素を一部使用することも出来る。乾燥炭や、固定炭素を用いることで、より乾燥した石炭は、発電プラントにおいて、石炭取扱いシステム、搬送に対する負荷を軽減させる。より乾燥した石炭は運搬性が高く、大掛かりな設備が不要になるのでメンテナンスコストを軽減させ、利用可能性を増大させる。
 請求項2に記載の発明は、請求項1に記載の発電システムであって、前記乾留工程で乾留する低石炭化度炭を、乾留工程前に乾燥する乾燥工程を備えた構成を有している。
 この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)高含水率の低石炭化度炭を乾燥する乾燥工程を備えているので、乾留工程の投入熱量を少なくすることができ、エネルギー効率に優れる。
(2)乾燥工程で乾燥された乾燥炭を乾留する乾留工程を有しているので、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できるため、省資源性に優れる。また、乾留炉の乾留ガス回収設備などをコンパクトにすることができるので省資源性に優れる。
 ここで、乾燥工程としては、直接的又は間接的な熱の適用により粒状物質の水分量を減少させるのに有用な任意の装置を意味し、制限するものではないが例えば、流動床ドライヤー、振動流動床ドライヤー、固定床ドライヤー、走行床ドライヤー、カスケード形旋回床ドライヤー、長尺スロットドライヤー、ホッパードライヤー、キルンなどが含まれる。これらドライヤーは、単一又は多重容器からなるもの、単一又は多重段階からなるもの、積重ねたもの若しくは積重ねられていないもの、内部又は外部熱交換器を有するものなどが含まれる。
 乾燥工程で乾燥する高含水率の低石炭化度炭としては、含水量が約20%を越えるものであれば亜瀝青炭、亜炭、褐炭などその名称、産地は特に問わない。また、燃料として使用する石炭が全て低石炭化度炭である必要はなく、含水量が約20質量%未満の高石炭化度炭を添加しても良い。(以後、乾燥工程を経て乾燥された低石炭化度炭を乾燥炭という)
 乾燥工程は、窒素ガス等の不活性ガス雰囲気で乾燥される。低石炭化度炭の目標水分は20質量%以下とすることができる。実験では16質量%まで下げることができた。これにより、低石炭化度炭の含水量を1/3以下にすることができ、輸送効率を大幅に改善できる。更に、乾留を行い固定炭素とすることにより自然発火を防ぎ安全性を向上できる。
 不活性ガスとしては、窒素ガスが好適に用いられる。窒素ガスは、酵素分離器で分離された窒素ガスが用いられる。窒素ガスは復水器の熱水で加熱された空気予熱器で加熱されるようにしてもよい。この場合、酸素濃度が低いので、自然酸化し昇温し易く発火し易い低石炭化度炭の発火を防ぎ、より高い温度で乾燥することができる。また、酸素分離器で分離された窒素ガスは相対湿度が低いので、乾燥効率を大きくすることができる。更に、廃熱を利用し、別途熱エネルギーを要しないので、環境に優しく省エネルギー性に優れる。また、乾燥部から排出される高湿度排ガスから清浄水を回収でき水の有効利用が図れる。
 低石炭化度炭としては、乾燥される前に前処理として粉砕することが好ましい。粉砕することにより、乾燥工程を簡略化し、乾燥時間を短縮化できる。低石炭化度炭の加熱は、乾燥工程の乾燥室を燃焼炉でスーパーヒートされた蒸気で発電する蒸気タービンの復水器の冷却排水配管を用いて加熱して行う。また、伝熱媒体として、酸素含有量の少ない空気、CO2あるいはN2ガスを該加熱された冷却排水で熱交換して加温して乾燥工程へ低石炭化度炭の流れと向流して流し乾燥させる。
 請求項3に記載の発明は、請求項2に記載の発電システムであって、前記乾燥工程の乾燥温度が30℃~50℃である構成を有している。
 この構成により、請求項2で得られる作用に加え、以下のような作用が得られる。
(1)前記乾燥工程の乾燥温度が30℃~50℃である構成を有しているので、温度を上げる投入熱量に対する乾燥時間の減少割合が大きく、エネルギー効率に優れる。
(2)また、30℃~50℃である構成を有し、エネルギー効率に優れるので設備容量をコンパクトにすることが可能でコスト面に優れる。
 ここで、乾燥工程で乾燥する温度は、30℃~50℃が好適に用いられる。特に40℃前後の温度範囲での乾燥は、30℃での乾燥に比べ、原料の石炭の水分を60%から50%に乾燥する時間が1/3程度と効果が高く、熱効率に優れる。高含水率の低石炭化度炭は、常温においても乾燥雰囲気では含水率は減少するが、非常に時間がかかる為、好ましくない。乾燥温度が30℃を下回るにつれて乾燥時間が長くなる傾向にあり好ましくなく、温度を50℃以上に上げるほど乾燥時間は短くなるが、その効果に対する投入熱量から考えられる便益が小さくなり、好ましくない。また、復水器からの排熱を乾燥に用いる場合、50℃以下の乾燥であれば適用可能なため、排熱を効果的に利用することができ、好ましい。
 請求項4に記載の発明は、請求項1乃至3の内いずれか1項に記載の発電システムであって、前記乾留工程の温度が350℃~500℃である構成を有している。
 この構成により、請求項1乃至3の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)350℃~500℃で乾留を行うので、炭化水素ガス(揮発分)が揮発し易く、高品位の石炭へ転換を進めることができ、燃料比2以上の高品位炭を得ることが出来る。
(2)350℃~500℃の低温で、乾留を行うことが出来るので、装置自体のコスト及び、投入熱量において省コスト性に優れる。
(3)重質油を保持したまま乾留が出来るのでリアクターの閉塞等の問題が起こらない。
 ここで、乾留工程の温度としては、350℃~500℃が好適に用いられる。好ましくは350℃~450℃が好適に用いられる。温度が350℃を下回ると燃料比が2を下回り効率的な乾留処理を行うことができないので好ましくなく、450℃を超えると、投入熱量に対する便益が小さくなる傾向にあり500℃を超えると、その傾向が著しくなり好ましくない。また、温度が高くなるにつれ乾留により抜ける炭化水素ガス(揮発分)が多くなるが、それに伴い、重質油分が多くなる、これにより、リアクターの閉塞等の問題が多くなる傾向にあり同様に好ましくない。さらに、一般に低石炭化度炭は500℃を超えて加熱すると亀裂が増え微粉が発生し未燃炭が増加する。そして、熱分解ガスは、酸素濃度が高いと易燃焼成分の着火や、微粉炭の爆発の危険があるので、酸素濃度の制御やスチームの添加等装置の運転制御が困難で安全性や運転性に欠ける。加えて、処理温度の上昇につれて、乾留工程の乾留炉の材質は耐熱性向上、追加投入熱量の増加等、省資源性に欠ける。よって350℃~500℃、より好ましくは350℃~450℃の範囲で温度管理を行うことで、固定炭素内に重質油を保持したまま乾留を行うことが出来るのでリアクターの閉塞等の問題が起こらず、安定操業に大きく寄与する。
 また、炭化水素ガス(揮発分)が揮発分離することで高品位の石炭へ転化が進むが、100℃~300℃の範囲でもガス成分が揮発すことが分かっており、略400℃において高品質なニューランズ炭の燃料比2を越えることから現在市場に流通する高品位炭レベルの固定炭素を製造することが出来ることがわかる。
 更に、従来一般的な高温での乾留に比べ、350℃~500℃という遥かに低温なので、省エネルギー性に優れる。
 請求項5に記載の発明は、請求項1乃至4の内いずれか1項に記載の発電システムであって、前記乾留工程と前記冷却工程を含む固定炭素製造装置が前記冷却工程の冷却槽に立設された乾留工程の乾留炉と、前記乾留炉内の水平方向断面上を隔壁によって矩形又は多角形に鉛直方向に上部から下部まで区切られた乾留ユニットと、前記乾留ユニット内に水平方向断面上を仕切り板によって矩形又は多角形に鉛直方向に上部から下部まで区切られたミニ乾留炉と、前記乾留ユニットの隔壁と前記ミニ乾留炉のしきりに配設された加熱の為のパイプ状の加熱手段と、原料炭を上部から投入してそれぞれの前記ミニ乾留炉内で前記パイプ状の加熱手段によって乾留され冷却槽に製造された固定炭素を捕集する捕集路と、を備えた構成を有している。
 この構成により、請求項1乃至4の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)ミニ乾留炉がパイプ状の加熱手段をそれぞれ備えているので、高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れる。
また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪いが、ミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えているので、大量生産性に優れる。
(2)ミニ乾留炉を多列に形成する乾留ユニットやそれを多列に形成する乾留炉を有しているので、剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に圧がかかる時でも変形することがなく、操業安定性に優れる。
(3)パイプ状の加熱手段を形成しているので、蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る為、操業の安定性に優れる。
(4)固定炭素を捕集する冷却槽を乾留炉の下部に有しているので、製品固定炭素を捕集安定的に捕集することが出来る。
(5)パイプ状の加熱手段を有しているので、乾留炉の熱交換媒体として、燃焼炉の排ガスを供給する直接加熱とは異なり、間接加熱を用いることで発生する揮発分の単位体積当たりの熱量を最大限活用することができ、省エネルギー性に優れる。
 ここで、乾留炉の例としては、縦方向略4500mm×横方向略4500mmで高さが略5000mmのサイズのもの等が好適に用いられる。この中にひとつの乾留ユニットが縦方向略1500mm×横方向略1500mmで高さが略5000mmになる様に隔壁を設け、乾留炉内に乾留ユニットが3列×3列出来るようにし、更に、この乾留ユニット内に断面積が縦方向略500mm×横方向略500mmで高さが略5000mmになる様に仕切り板を設け、乾留ユニット内にミニ乾留炉が3列×3列出来るようにしたもの等が好適に用いられる。
 この様に安定した高収率の乾留炉を組み合わせることで、大量の固定炭素を製造する場合にも構造上の強度と生産の安定性を図ることが出来る。断面形状は、矩形に限らず、三角形や、五角形、六角形等の多角形も適宜使用可能である。また、ミニ乾留炉を1つの乾留炉としてテストを行うことが可能で、実験設備から実施設備まで状況に応じて応用性と拡張性に優れる。
 パイプ状の加熱手段としては、水蒸気等の熱媒体を用いて間接加熱を行うが、隔壁や仕切りに対して平行になるように取り付けることも出来るし、仕切り板や隔壁を貫くように直交して取り付けることが出来る、直交して取り付けた場合はそれ自体が邪魔板の役目を果たし、乾燥炭を自然に流下するとともに乾留する際に適度にトラップすることができ、乾留の際の品質向上に繋がるため好ましい。
 固定炭素を捕集する冷却槽としては、常温以下の温度で冷却することが好ましい。これにより、固定炭素の酸化を防止することが出来る。また、冷却槽の構造としては、固定炭素を閉鎖状態で受け入れる構造が好ましい。この中に不活性ガスを充填することで、乾留炭の酸化を防止すると共に、容器内に設置された水冷伝熱管により間接的に乾留炭を常温まで冷却することで固定炭素を得る。閉鎖状態で受け入れる構造としては、乾留炉からの受け入れ側、固定炭素の取出し口側共にロータリーバルブのように乾留炉、冷却槽、共にシールするような構造の弁を設けることが好ましい。この様に、間接加熱で冷却槽を閉鎖状態にすることができ、不活性ガス雰囲気にすることができるので、発火等の事故を防止することができ好ましい。
 乾留炉に投入される石炭としては、褐炭を乾燥したものが好適に用いられる。褐炭の他には亜炭、亜瀝青炭当も同様にして用いることが出来る。また、褐炭には、ビクトリア炭、ノースダコタ炭、ベルガ炭等が存在するが同様にして用いることが出来る。これらの石炭は、低灰分、低硫黄という好ましい性質があるが、多孔質なので高含水率になる傾向があり、水分が多く含まれているので、カロリーが低くなり、低品位炭として取り扱われている。これら多孔質で高い含水量を有するものを同様にして用いることが出来る。
 隔壁、仕切り板としては、各乾留ユニット、各ミニ乾留炉を上部から下部まで仕切るようにして配設され、区切られた内部の温度を制御する為の加熱手段を備えた構造のものを好適に用いる。また、加熱手段は上部から順に複数段階に分けるように仕切り板に配設することもできる。乾留工程で乾留速度を急激にしたり、緩やかにする、などの加温パターンを制御し、高品位炭を高効率で得るため条件設定が容易になり、生産性に優れる。
 請求項6に記載の発明は、請求項1乃至5の内いずれか1項に記載の発電システムであって、前記乾留炉で用いる乾燥炭が前記乾燥工程で低石炭化度炭を含水率20質量%以下まで乾燥されている構成を有している。
 この構成により、請求項1乃至5の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)高含水率の低石炭化度炭を乾燥する乾燥工程を備えているので、安定した品質の乾燥炭が乾留路に投入されるので、乾留炉で、高品位の固定炭素(製品乾留チャー)が得られ、品質性能に優れる。
 ここで、乾燥工程で乾燥する高含水率の低石炭化度炭としては、含水量が約20%を越えるものであれば亜瀝青炭、亜炭、褐炭などその名称、産地は特に問わない。また、燃料として使用する石炭が全て低石炭化度炭である必要はなく、含水量が約20質量%未満の高石炭化度炭を添加しても良い。
 乾燥工程の乾燥器は、低温(30℃~80℃)で低湿度(RH70~0%)のN2ガス等の不活性ガス雰囲気で乾燥される。乾燥部の内部は石炭を温める温水(60~90℃程度)配管と不活性ガスの乾燥ガスを注入するガス配管で構成されている。また、低石炭化度炭の目標水分は20質量%以下とすることができる。実験では16質量%まで下げることができた。これにより、低石炭化度炭の含水量を1/3以下にすることができ、輸送効率を大幅に改善できる。更に、乾留を行い固定炭素とすることにより自然発火を防ぎ安全性を向上できる。
 N2ガスは、O2分離器で分離されたN2ガスが用いられる。N2ガスは復水器の熱水で加熱された空気予熱器で加熱されるようにしてもよい。この場合、O2濃度が低いので、自然酸化し昇温し易く発火し易い低石炭化度炭の発火を防ぎ、より高い温度で乾燥することができる。また、O2分離器で分離されたN2ガスは相対湿度が低いので、乾燥効率を大きくすることができる。更に、廃熱を利用し、別途熱エネルギーを要しないので、環境に優しく省エネルギー性に優れる。また、乾燥部から排出される高湿度排ガスから清浄水を回収でき水の有効利用が図れる。
 請求項7に記載の発明は、請求項1乃至6の内いずれか1項に記載の発電システムであって、前記乾燥工程で用いる原料炭の粒子径が0.1μm~5mmに調整されている構成を有している。
 この構成により、請求項1乃至6の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)0.1μm~5mmの粒径に調整されているので、乾燥工程を簡略化し、乾燥時間を短縮化でき、省エネルギー性に優れる。
 ここで、低石炭化度炭を0.1μm~5mmの粒径に調整する方法としては、乾燥前に前処理として粗粉砕して粒径が0.1μm~5mmに調整される。粉砕することにより、乾燥工程を簡略化し、乾燥時間を短縮化できる。低石炭化度炭の加熱は、乾燥工程の乾燥室を流動層燃焼炉でスーパーヒートされた蒸気で発電する蒸気タービンの復水器の冷却排水(60~90℃程度)配管を用いて加熱して行う。また、伝熱媒体として、酸素含有量の少ない空気、CO2あるいはN2ガスを該加熱された冷却排水で熱交換して加温(温度:60~90℃,RH:0~70%)して乾燥工程へ低石炭化度炭の流れと向流して流し乾燥させる。
 請求項8に記載の発明は、請求項1乃至7の内いずれか1項に記載の発電システムであって、前記発電工程の復水器からの排熱を乾燥工程で乾燥に用いる不活性ガスの加熱に用いる熱供給部を備えた構成を有している。
 この構成により、請求項1乃至7の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)排熱を有効利用することで、省エネルギー性に優れる。
 請求項9に記載の発明は、請求項1乃至8の内いずれか1項に記載の発電システムであって、前記燃焼工程で発生する排熱を蒸気又は燃焼排ガス又は前記燃焼工程で加熱された熱媒体を利用して乾留工程へ供給する熱供給部を備えた構成を有している。
 この構成により、請求項1乃至8の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)排熱を有効利用することで、省エネルギー性に優れる。
(2)発電機における復水器排熱を利用した間接加熱を用いることで、乾留工程における潜熱損失を軽減することが可能で設備をよりコンパクトに製作できる。
(3)復水器排熱を利用した間接加熱を用いる構成を有しているので、圧力が高く、熱容量が高い熱媒体を用いることができ、装置がコンパクトに製作できコスト面に優れる。
 ここで、燃焼工程で発生する熱を、乾留工程に供給する熱供給方法としては、燃焼工程で発生する排ガスを乾留炉に直接供給してもよいし、燃焼工程が発電機のタービンを回す蒸気を発生している場合、タービンを回した後の蒸気を燃焼工程において再加熱したものを乾留炉熱交換部に供給し間接的に加熱することもできる。
 また、産炭地以外では含水率が重く用いられない低石炭化度炭を燃焼工程で燃料として用いることも出来るので産炭地においてこの発電システムを用いた場合、安価な低石炭化度炭を有効に活用し電力を発電しながら、固体燃料(固定炭素)を製造でき、発電の排熱を有効に利用したシステムなので省エネルギー製に優れ、燃料費の高い固体燃料を効率的に生産出来る固体燃料製造設備を一体とした発電システムを構築できる。
 以上のように、本発明の発電システムによれば、以下の有利な効果が得られる。
 請求項1に記載の発明によれば、
(1)投入熱量を少なくすることができるエネルギー効率に優れた発電システムを提供することができる。
(2)乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できる省資源性に優れた発電システムを提供することができる。
 また、乾留炉の乾留ガス回収設備などをコンパクトにできる省資源性に優れた発電システムを提供することができる。
(3)乾留で生成される炭化水素ガスを燃焼工程の主燃料とすることで固定炭素を製造する優れた発電システムを提供することができる。
(4)乾留後の冷却により表面に浮き出ているタール成分を固定炭素内で定着させることでタール成分による障害問題を解決することができる安定的な操業性に優れた発電システムを提供することができる。
(5)炭化水素ガスを主燃料とする燃焼工程と、燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、燃焼工程と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬に掛る費用が安く、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる運用面で優れた発電システムを提供することができる。
(6)炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、乾留する固定炭素製造に利用することができる省資源性に優れた発電システムを提供することができる。
 また、炭酸ガスを分離・回収する場合、N2ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、更に省資源性に優れた発電システムを提供することができる。
 請求項2に記載の発明によれば、請求項1に記載の効果に加えて以下のような有利な効果が得られる。
(1)投入熱量を少なくすることができるエネルギー効率に優れた発電システムを提供することができる。
(2)乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できる省資源性に優れた発電システムを提供することができる。
 また、乾留炉の乾留ガス回収設備などをコンパクトにすることができる省資源性に優れた発電システムを提供することができる。
 請求項3に記載の発明によれば、請求項2に記載の効果に加えて以下のような有利な効果が得られる。
(1)温度を上げる投入熱量に対する乾燥時間の減少割合が大きく、エネルギー効率に優れた発電システムを提供することができる。
(2)エネルギー効率に優れるので設備容量をコンパクトにすることが可能でコスト面に優れた発電システムを提供することができる。
 請求項4に記載の発明によれば、請求項1乃至3のうちいずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)炭化水素ガス(揮発分)が抜け、高品位の石炭へ転換を進めることができ、燃料比2以上の高品位炭を得ることが出来る品質に優れた発電システムを提供することができる。また、350℃~500℃の低温で、乾留を行うことが出来るので、装置自体のコスト及び、投入熱量において省コスト性に優れた発電システムを提供することができる。更に、重質油を保持したまま乾留が出来るのでリアクターの閉塞等の問題が起こらない操業安定性の優れた発電システムを提供することができる。
 請求項5に記載の発明によれば、請求項1乃至4のうちいずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れた発電システムを提供することができる。また、このミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えた大量生産性に優れた発電システムを提供することができる。
 また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪い。
(2)剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に矩形に区切っていない場合、圧がかかる時でも変形することがない操業安定性に優れた発電システムを提供することができる。
(3)蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る操業の安定性に優れた発電システムを提供することができる。
(4)製品固定炭素を捕集安定的に捕集することが出来る生産性に優れた発電システムを提供することができる。
(5)乾留炉の熱交換媒体として、燃焼炉の排ガスを供給する直接加熱とは異なり、間接加熱を用いることで発生する揮発分の単位体積当たりの熱量を最大限活用することができる省エネルギー性に優れた固定炭素製造装置を提供することができる。
 請求項6に記載の発明によれば、請求項1乃至5のうちいずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)安定した品質の乾燥炭が乾留路に投入されるので、乾留炉で、高品位の固定炭素(製品乾留チャー)が得られる品質性能に優れた発電システムを提供することができる。
 請求項7に記載の発明によれば、請求項1乃至6の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)乾燥工程を簡略化し、乾燥時間を短縮化できる省エネルギー性に優れた発電システムを提供することができる。
 請求項8に記載の発明によれば、請求項1乃至7の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)排熱を有効利用することで、省エネルギー性に優れた発電システムを提供することができる。
 請求項9に記載の発明によれば、請求項1乃至8の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)排熱を有効利用する省エネルギー性に優れた発電システムを提供することができる。
(2)発電機における復水器排熱を利用した間接加熱を用いる乾留工程における潜熱損失を軽減することが可能で設備をよりコンパクトに製作できる省資源性に優れた発電システムを提供することができる。
(3)圧力が高く、熱容量が高い熱媒体を用いることができ、装置がコンパクトに製作できるコスト面に優れた発電システムを提供することができる。
実施の形態における発電システムの概要図 実施の形態における固定炭素製造装置の模式図 模擬移動層間接加熱乾留炉の概要図 乾留温度に応じた乾留炭分析結果を示すグラフ 乾留温度に応じた乾留炭熱重量分析結果を示すグラフ 乾留装置内褐炭の温度変化を示すグラフ 褐炭乾留処理温度による固定炭素各種燃焼関連成分変化を示すグラフ 低温乾燥による温度と時間による含水量を示すグラフ 実施の形態におけるヒートバランスとマテリアルバランス図
 以下、本発明を実施するための形態について、図面を用いながら説明する。
(実施の形態)
 図1は実施の形態における発電システムの概要図である。
 図中、1は発電システム、2は低石炭化度炭を採掘・運炭する採掘・運炭設備、3は後述する不活性ガス予熱器30によって温められたN2ガス雰囲気下で粒径が1μm~5mmの塊炭状で含水率が略60質量%の採掘・運炭設備2から搬送された褐炭等の低石炭化度炭を略30~50℃で含水率が20質量%になるまで乾燥する乾燥工程の乾燥器、4は後述する復水器33に接続された60~90℃の温水を用いて乾燥器を温める乾燥器熱交換部、5は排気を集塵する集塵機、6は乾燥器3で得られた乾燥炭を乾留前処理として200~350℃に温める前処理装置、7は後述する流動層燃焼炉13で得られた500~600℃の再熱蒸気を後述する再熱蒸気前処理供給部45によって供給され200~350℃に加熱する前処理装置熱交換部、8は前処理装置6で前処理として温めた乾燥炭を乾留炉に投入する乾燥炭バンカ、9は乾燥炭バンカ8から搬送された乾燥炭を揮発分やタール分等を蒸発脱離させ固定炭素と炭化水素ガスに乾留する乾留炉、10は後述する流動層燃焼炉13で加熱された500~600℃の再熱蒸気を後述する再熱蒸気乾留炉供給部44によって供給され350~500℃に加熱する乾留炉熱交換部、11は乾留炉9で得られた固定炭素を冷却し取出す冷却槽、12は後述する給水部38から冷却槽8の冷却の為に常温以下に冷却する冷却槽熱交換部、13は乾留炉9の乾留によって製造される炭化水素ガスが主燃料として供給され後述する蒸気タービン32用の主蒸気の為の熱を発生する流動層燃焼炉、14は流動層燃焼炉13の熱によって後述する蒸気タービン32用の主蒸気を発生させる燃焼炉主蒸気熱交換部、15は流動層燃焼炉13の熱によって後述する蒸気タービン32を回したあとの蒸気を再び加熱し再熱蒸気とする再熱蒸気熱交換部、16は流動層燃焼炉9の排ガスから固形成分を遠心力によって分離するサイクロン、17はサイクロン16によって分離された灰分を処理する灰処理装置、18はサイクロン16から配管によって供給される排ガスを後述するO2分離器25から得られたO2を温めることに利用するため熱交換を行う燃焼用空気予熱器、19は燃焼用空気予熱器18の燃焼用空気予熱器熱交換部、20は燃焼用空気予熱器18で熱回収された排ガスからCO2を分離するCO2分離装置、CO2分離装置20でCO2を分離した後の排ガス中から粉塵等の除去は集塵機5で行う。21は集塵機5によって粉塵等を除去した排ガスを排出する煙突、22はCO2分離装置20で分離したCO2を冷却槽11や後述する予熱O2供給部27に供給するCO2供給部、23は冷却槽11を通過したCO2を回収・利用するCCS、24は大気中から後述するO2分離器に空気を送り込む押込ファン、25は押込ファン24によって押込まれた大気中の空気からO2ガスとN2ガスを分離し燃焼用空気予熱器18に送り込むO2分離器、26はO2分離器25によって分離されたO2を燃焼用空気予熱器18に供給するO2供給部、27は燃焼用空気予熱器18によって温められたO2とCO2供給部22からのCO2を混合して流動層燃焼炉に供給する予熱O2供給部、O2分離器25から得られたO2ガスは、O2供給部26を通り燃焼用空気予熱器18で予熱され流動層燃焼炉13の助燃剤として使用される。また、同時に得られたN2ガスは、後述する不活性ガス予熱器30で加熱されて低石炭化度炭の乾燥に用いられる。28はO2分離機25によって大気から分離したN2ガスを後述する不活性ガス予熱器30に供給するN2ガス供給部、29はN2ガス供給部28のN2ガスを主成分とする不活性ガスを後述する不活性ガス予熱器30に押込む乾燥空気用押込ファン、30は不活性ガスを予熱する不活性ガス予熱器、不活性ガス予熱器30は前処理装置熱交換部7または乾留炉熱交換部4で熱交換した後の排熱を用いる。31は不活性ガス予熱器30で温められたN2を乾燥器熱交換部4に供給する予熱N2供給部、32は流動層燃焼炉13の主蒸気で発電機を回転させる蒸気タービン、33は復水器、34は発電機、35はクーリングタワー、36は復水器の排熱を乾燥器3の乾燥器熱交換部4に供給する復水器排熱供給部、37は蒸気駆動式給水ポンプ、38は復水器の水を冷却槽11の冷却槽熱交換部12や後述する給水加熱器39に送り込む給水部、39は前処理装置熱交換部7と乾留炉熱交換部10と冷却槽熱交換部12と不活性ガス予熱器30と給水部38からの水を燃焼炉主蒸気熱交換部14とをタービンからの蒸気(抽気)により予熱する給水加熱器、40は給水加熱器39から燃焼炉主蒸気熱交換部14に加熱水を供給する加熱水供給部、41は14の燃焼炉主蒸気熱交換部14から主蒸気をタービンに供給する主蒸気供給部、42はタービンを回した後の蒸気を再加熱するために再熱蒸気熱交換部へ供給する再熱蒸気用供給部、43は再熱蒸気の一部を再びタービンに戻す再熱蒸気戻り部、44は再熱蒸気を乾留炉熱交換部10に供給する再熱蒸気乾留炉供給部、45は再熱蒸気を前処理装置熱交換部7に供給する再熱蒸気前処理装置供給部である。55は製造されたチャー等の固定炭素である。
 詳しく説明すると本実施例では流動層燃焼炉13の燃焼炉主蒸気熱交換部14で加熱水供給部40から供給された加熱水を主蒸気にする。この主蒸気を主蒸気供給部41を用いて蒸気タービン32に供給している。蒸気タービン32を回した後の蒸気を再熱蒸気用供給部42を用いて再熱蒸気熱交換部15に供給し、再熱蒸気熱交換部15で再加熱し再熱蒸気にする。この再熱蒸気の一部は再熱蒸気戻り部43を用いて再び蒸気タービン32に供給される。再熱蒸気は主に再熱蒸気乾留炉供給部44と再熱蒸気前処理装置供給部45によって、乾留炉熱交換部10と前処理装置熱交換部7に供給される。また、乾留炉熱交換部10と前処理装置熱交換部7で用いられた再熱蒸気は不活性ガス予熱器30で一部用いられた後に、もしくはそのまま給水加熱器39に供給される。また給水部38の冷水の一部は冷却槽熱交換部12で固定炭素を冷却する為に用いられ温められたものを給水加熱部39に供給している。このように水、蒸気等の熱媒体間で排熱利用を行っているので流動層燃焼炉13、クーリングタワー35、給水加熱器39の負荷を減らすことができ省資源性に優れている。
 また燃焼炉の燃料として固定炭素55の一部を用いることもできる。この場合、乾燥器3、乾留炉9に必要な入熱分として固定炭素55を流動層燃焼炉13に投入する場合は、それ自体を生成するのに必要なエネルギー分を損失することになるが、乾燥器3や乾留炉9の熱源の確保の手段として利用することもでき、燃料の選択性に優れる。
 以上のように構成された発電システムについて、以下、各単位操作について説明する。
(1)低石炭化度炭はあらかじめボールミルなどで粗粉砕し、気流による分離、搬送を行い、発電システムの乾燥器3に供給する。
(2)乾燥器3では、粒径を0.1μm~5mmに調整した低石炭化度炭の含水率を20質量%以下まで下げるため、相対湿度が0~70%の乾燥ガスで乾燥器内の温度が30~50℃で乾燥する。乾燥ガスは復水器33からの排熱、蒸気タービン、燃焼炉流動媒体、固定炭素から回収された排熱が利用される。
(3)乾留炉9としては、350℃~500℃の間接加熱による移動床方式を採用するのが好ましい。これにより、タール成分を保持したまま固定炭素を得ることができ、タール成分のコーキングなどの障害を防止することができる。また、軽質油成分の炭化水素ガスを取り出すことが可能で燃焼炉の取り扱いを容易化することができる。
(4)流動層燃焼炉13は、大気から酸素を分離するO2分離器25で分離された酸素を、CO2分離装置20から副生あるいは分離した炭酸ガスで希釈した助燃剤を用いている。
(5)CO2分離装置20は、鉄あるいはアルカリ成分などの固体改質触媒が用いられる。具体的にはペロブスカイト担持アルカリ土類触媒を用いた固定床等が利用できる。これにより、タール分等の重質成分を軽質成分に分解できる。
(6)高含水率の低石炭化度炭を30℃~50℃で乾燥する乾燥工程を備える構成を有しているので、投入熱量を少なくすることができ、エネルギー効率に優れる。
(7)0.1μm~5mmの粒径に調整された低石炭化度炭を乾燥工程で含水率20質量%以下まで乾燥した乾燥炭を乾留する乾留工程を有しているので、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できる利点がある。このため、乾留炉にかかる負荷が少なく設備を小さくすることが出来るので、省資源性に優れる。
(8)乾留炉で得られた固定炭素を冷却する冷却槽を有しているので、乾留後の冷却により表面に浮き出ているタール成分を固定炭素内で定着させることでタール成分による障害問題を解決することができ、安定的な操業性に優れる。
(9)炭化水素ガスを主燃料とする流動層燃焼炉と、流動層燃焼炉で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電機とを有しているので、流動層燃焼炉と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬性に優れ、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
(10)乾留炉で発生する炭化水素ガス主燃料として発電を行う複合システムなので、炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、乾留することで、固定炭素製造に利用することができる。
 また、炭酸ガスを分離・回収する場合、N2ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、省エネルギー性に優れる。
(11)350℃~500℃で乾留を行うので、投入熱量が少なくエネルギー効率に優れた発電システムを提供することができる。また、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計でき、省資源性に優れる。さらに、乾留炉の乾留ガス回収設備などをコンパクトにすることができるので省資源性に優れる。
(12)炭化水素ガスを主燃料とする流動層燃焼炉と、流動層燃焼炉で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、流動層燃焼炉と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬に掛る費用が安く、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる運用面で優れる。
 また、これらの固定炭素は350℃~500℃で乾留を行うことで、炭化水素ガス(揮発分)が抜け、高品位の石炭への転換が進むことができ、燃料比2以上の高品位炭を得ることが可能で、装置自体の製造コストを下げ省資源性及び、投入熱量が少なく省エネルギー性に優れる。
(13)炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、乾留する固定炭素製造に利用することができる省資源性に優れる。
 また、炭酸ガスを分離・回収する場合、窒素ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、更に省資源性に優れる。
(14)前記乾燥工程の乾燥温度が30℃~50℃である構成を有しているので、温度を上げる投入熱量に対する乾燥時間の減少割合が大きく、エネルギー効率に優れる。
 また、乾燥温度が30℃~50℃である構成を有し、エネルギー効率に優れるので設備容量をコンパクトにすることが可能でコスト面に優れる。
 更に、30℃~50℃である構成を有しているため、復水器からの排熱によって乾燥温度まで加熱できるのでエネルギー効率に優れる。
(15)ミニ乾留炉がパイプ状の加熱手段をそれぞれ備えているので、高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れる。また、このミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えているので、大量生産性に優れる。
 また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪い。
(16)ミニ乾留炉を多列に形成する乾留ユニットやそれを多列に形成する乾留炉を有しているので、剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に矩形に区切っていない場合圧がかかる時でも変形することがなく、操業安定性に優れる。
(17)パイプ状の加熱手段を形成しているので、蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る為、操業の安定性に優れる。
(18)固定炭素を捕集する冷却槽を乾留炉の下部に有しているので、製品固定炭素を捕集安定的に捕集することが出来る。
(19)排熱を有効利用することで、省エネルギー性に優れる。
(20)発電機における復水器排熱を利用した間接加熱を用いることで、乾留工程における潜熱損失を軽減することが可能で設備をよりコンパクトに製作できる。
(21)復水器排熱を利用した間接加熱を用いる構成を有しているので、圧力が高く、熱容量が高い熱媒体なので、装置がコンパクトに製作できコスト面に優れる。
 図2は実施の形態における固定炭素製造装置の模式図である。
 図2中、9Aは冷却槽の上部に立設された後述する隔壁部に区切られた乾留ユニットと、乾留ユニット内に後述する仕切り板によって区切られたミニ乾留炉を持ち乾留炉内面及び隔壁及び仕切り板に500℃~600℃に加熱された蒸気配管や高温廃ガス配管を備え投入された乾燥褐炭を350℃~500℃で乾留する乾留炉、9aは乾留炉9Aを矩形状の乾留ユニットに分割するため鉛直方向に乾留炉の上部から下部まで配設された隔壁、9bは隔壁9aで区切られた各乾留ユニットを矩形状のミニ乾留炉に分割するため鉛直方向に乾留炉の上部から下部まで配設された仕切り板、11Aは固定炭素(製品乾留チャー)を冷却し受け入れる冷却槽、46は乾留炉と冷却槽からなる固定炭素製造装置、47は上部または下部に設けられた乾留によって製造された乾留ガスを回収するための乾留ガス配管、48は低石炭化度炭の含水率20質量%以下まで乾燥させた乾燥褐炭を乾留炉に投入する乾燥褐炭投入装置、49は固定炭素(製品乾留チャー)の取出口である。
 以上のように実施の形態における発電システムの固定炭素製造装置は構成されているので、以下のような作用が得られる。
(1)ミニ乾留炉がパイプ状の加熱手段をそれぞれ備えているので、高温熱媒体による間接加熱が可能で、乾留炉内を均一に加熱することが容易で、加熱斑を防ぐことができる。また、このミニ乾留炉を多列に備える乾留ユニットと、その乾留ユニットを多列に備える乾留炉を備えているので、剛性に優れ耐久性に優れる。
(2)ミニ乾留炉を多列に形成する乾留ユニットやそれを多列に形成した乾留炉を有しているので、剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に矩形に区切っていない場合圧がかかる時でも変形することがなく、操業安定性に優れる。
(3)パイプ状の加熱手段を乾留炉の隔壁や仕切り板に形成しているので、蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る為、操業の安定性に優れる。
(4)固定炭素を捕集する冷却槽を乾留炉の下部に有しているので、乾留炉で改質された固定炭素を冷却し固定炭素(製品乾留チャー)を安定的に捕集することが出来る。
(5)350℃~600℃で乾留を行うので、炭化水素ガス(揮発分)が抜け、高品位の石炭への転換が進むことができ、燃料比2以上の高品位炭を得ることが出来る。
(6)350℃~600℃の低温で、乾留を行うことが出来るので、装置自体のコスト及び、投入熱量において省コスト性に優れる。
(7)重質油を保持したまま乾留が出来るのでリアクターの閉塞等の問題が起こらない。 
(実験例1)・・・乾留試験
 実験例1では移動層間接加熱乾留炉の乾留温度について検討した。
 図3は、本実施例の試験データを取る為に用いた模擬移動層間接加熱乾留炉の概要図である。
 図3中、50は模擬移動層間接加熱乾留炉、51は褐炭試料(Loy Yang褐炭(生炭)を室温、大気中で予備加熱乾燥して水分含有率を20質量%前後に低下させ、ついで粉砕・分級によって粒子径を0.3から0.5mmに揃え、110℃の不活性ガス雰囲気で乾燥し、水分を除去したもの)を充填させSUSメッシュで長さ方向と垂直(水平面方向)仕切ったコンテナ炉、51aはコンテナ炉51を不活性ガス雰囲気にするためにN2ガス200ml/minで流す不活性ガス投入口、51bは不活性ガス投入口51aから入れられた不活性ガス出口、52は温度分布を形成する為に多段で配置した電気炉、53はコンテナ炉51を電気炉52の間を炭素が炉内を流下するデータを疑似的に作成させるため一定速度で移動させるモーター、54はコンテナ炉の移動方向である。
 不活性ガスは図3中の不活性ガス投入口51aから不活性ガス出口51b(図3中上側から下側)に流れる。
 模擬移動層間接加熱乾留炉50は、乾留における褐炭転換特性をおよびガス化特性を模擬する装置である。SUS製の円筒型反応器のコンテナ炉51を多段直列に15段固定し、これを縦型の電気炉52を多段に並べた下部から上部に向けて移動方向54の方向にモーター53によって上昇させることで、コンテナ炉51に充填した褐炭が、移動層の上部から下部へ流下する時の試験データを得た。コンテナ炉51は図3中の上側から順番に1番、2番、・・・15番とした。電気炉52は9段あり、図3中の下側から順番に1段目から4段目が165℃、5段目が300℃、6段目が400℃、7段目が500℃、8段目が600℃、9段目が700℃、の温度にそれぞれなるように設定した。尚、コンテナ炉51は電気炉52内を6.9mm/minの速度で上昇させた。また、この時のコンテナ炉51の温度上昇速度は略10℃/minであった。15個のコンテナ炉51のうち、炉の最上部を通過したコンテナ炉51は、コンテナ炉51の内1番から6番までである。
 図4及び(表1)は乾留温度に応じた乾留炭分析結果を示すグラフである。詳しくは、図3の模擬移動層間接加熱乾留炉50を用いて実験終了後に残存した固体の質量に基づいて求めた各コンテナの固体収率を示したものが図4である。
 このときコンテナ炉51の1番から6番までが炉を通過済みで、7番から11番までが熱分解帯の200℃から595℃、12番から15番までが165℃によって加熱される部分で略140℃程度である。
 コンテナ炉51の1番における炭化物収率は55質量%で、コンテナ炉51の2番から6番にかけてより下段にいくほど炭化物収率が増加し、コンテナ炉51の6番では60質量%に達した。これは上段のコンテナから生成する重質油を含む揮発成分が下段の褐炭炭化、反炭化物と接触し、重質油の収着、重質油・褐炭共炭化により炭化物の収率が増加した結果によるものである。また、コンテナ炉51の12番以降では、主として重質油の収着に由来すると考えられる自重の10~20%の重量増加が認められる。また、反応器下流(コンテナ炉51の12番~15番において生成ガス及び凝縮成分を回収し、これらの生成物回収率は99%以上であった。回収した凝縮成分を分析した結果、炉内に低温部が存在することで高沸点重質油の凝縮、さらにここに存在する褐炭粒子による重質油補足により、軽質油成分の選択的製造が可能で、図4及び(表1)に示すように200℃~595℃温度域において移動層間接加熱乾留炉で乾留が急速に進み、固定炭素内に重質油成分を留めることが可能であることがわかる。
Figure JPOXMLDOC01-appb-T000001
(実験例2)・・・熱重量分析による評価試験
 実験例2では、熱重量分析を用いて乾留温度について検討した。
 図5及び(表2)、(表3)は乾留温度に応じた乾留炭熱重量分析結果を示すグラフである。詳しくは、褐炭の熱分解による乾留温度を確認する為、Loy Yang褐炭(生炭)を室温、大気中で予備加熱乾燥して水分含有率を20質量%前後に低下させ、ついで粉砕・分級によって粒子径を0.3から0.5mmに揃え、110℃の不活性ガス雰囲気で乾燥し、水分を除去したものを熱重量分析装置(SII nanotechnology社製:EXSTAR TG/DTA6000)を用いて測定した結果である。
 図5及び(表2)、(表3)に示すように350℃前後から褐炭重量が減少し始めており、この温度から乾留が顕著になることが確認できる。また、固定層乾留炉において同様の試料を窒素気流中で、昇温速度10℃/min、ピーク温度における保持時間を0秒とし、500℃、550℃、600℃、650℃で乾留した。この時の、固定炭素収率と温度の関係を図5中にプロットした。これを確認すると、熱重量分析の結果が乾留炉での温度定義と良好な相関関係にあることが分かる。(表2)に図5の乾留炭重量分析の結果を、(表3)に図5中の固定炭素収率と温度の関係を示したプロットを示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実験例3)・・・高品位転化温度実証試験
 実験例3では、低石炭化度炭の高品位転化に必要な温度について検討した。
 図6及び(表4)は、乾留装置内褐炭の温度変化を示すグラフである。詳しくは、Loy Yang褐炭(生炭)を、横置きの管状炉にN2ガスを流通させた状態で炉内温度を各測定温度まで上昇させ、その時の温度変化時間と各温度を測定した。
 図6に示すように、100℃付近で水分が蒸発した後も、緩やかに温度は上昇し、設定温度が300℃であっても潜熱成分があり、高品位炭への転換が起こっていることがわかる。
Figure JPOXMLDOC01-appb-T000004
(実験例4)・・・乾留温度効果試験
 実験例4では、乾留温度と得られる固定炭素の性能について検討した。
 図7及び(表5)は、褐炭乾留処理温度による固定炭素各種燃焼関連成分変化を示すグラフである。詳しくは、Loy Yang褐炭(生炭)を室温、大気中で予備加熱乾燥して水分含有率を略20質量%に低下させたものを、横置きの管状炉にN2ガスを流通させた状態で炉内温度を400℃、600℃、700℃、800℃まで上昇させ、その時の固有水分、揮発分、灰分、固定炭素収率(%)、燃料比を測定した。
 図7及び(表5)に示すように、400℃で処理したものは、燃料費2.5であり、ニューランズ炭のような瀝青炭並みの燃料比を実現していることがわかる。
Figure JPOXMLDOC01-appb-T000005
(実験例5)・・・乾燥温度効果試験
 実験例5では、乾燥温度について検討した。
 図8及び(表6)は、低温乾燥による温度と時間による含水量を示すグラフである。
試料として、Loy Yang褐炭(生炭)を、恒温恒湿器(ヤマト科学製:IW222)内の温度を各測定条件に、湿度を40%に設定したときの、時間と各試料の重量を測定した。
 図8及び(表6)に示すように、30℃での乾燥と40℃での乾燥にかかる時間が大きく減少していることがわかる。温度を高くすれば乾燥時間は短くなるが、温度常温より少し高い30℃近辺の時のほうが常温に比べると乾燥時間の短縮の割合は大きくなる。このため乾燥温度が高い場合、温度を上げるために消費する熱量と比べ、その便益が小さくなる。(乾燥時間の短くなる度合いが小さくなる。)このため、略40℃で乾燥することで最も投入熱量が小さく高効率に乾燥処理を行うことができる。また、このことから、30℃~50℃の時の温度範囲が最も好ましいことがわかる。30℃より低くなると、乾燥時間が長くなりすぎる為、処理装置が大きくなり好ましくなく、50℃以上になると、復水器からの排熱(60℃~90℃)を用いるには温度差が少なく、乾燥器を温める為に設備が大きくなる、温度を上げる為にヒートポンプ等の副設備を加える必要があるなど、省資源性に乏しく好ましくない。
Figure JPOXMLDOC01-appb-T000006
 次に、本実施の形態の発電システムについて、コンピュータシミュレーションで熱収支と物質収支を求めた。条件として、低炭素化度炭として未加工のヴィクトリア産のブラウンコールを用いた。ブラウンコールの初期水分は60mass%、乾燥部3での乾燥によるドライブラウンコールの水分は20mass%、燃料比は1.2、発電効率は30%で行った。
 図9はその結果で、実施の形態のおけるヒートバランスとマテリアルバランス図である。
 図9に示すように、原料褐炭の熱量は2400kcal/kgであり、固定炭素の熱量は7000kcal/kgであるから、乾燥と乾留を行うことで、重量あたりの熱量が略2.9倍に増大するので高熱量性に優れる。略2.9倍の熱量の固体燃料である固定炭素を製造することができる上、水分を蒸発させ乾留することで重量は、原料炭3850万トンを、26%の1003万トンまで重量を減らすことができるので、搬送性に優れ、産炭地以外に搬送し固体燃料として有効利用を図ることができる。
 また、褐炭等の低石炭化度炭の有効利用を図るべく我々が鋭意研究し、低石炭化度炭から、チャーと原料ガスを高効率に製造する複合システムを完成したので、国際出願PCT/JP2012/056706を行っている。この複合システムでは、主燃料として固定炭素を用いる。この場合、乾燥や乾留に必要な入熱分として固定炭素を投入するので、それ自体を生成するのに必要なエネルギー分を損失することになる。
 本発明では、更に鋭意研究を進め、炭化水素ガスを主燃料として発電し、固定炭素を製造するので、固定炭素を高効率に製造することができ省エネルギー性に優れる。製造された固定炭素は、ニューランズ炭の様な高品位炭と同じく発電を行うことが出来る。また、その際の重量も原料炭と比較すると略1/4(26%)まで重量が削減できるので、同様の手段で略4倍近くの固定炭素が運搬できるので省エネルギー性や運搬性に優れ、産炭地以外、電力消費地に近い発電設備等でも利用することができるのでエネルギー運用性に優れる。
 また、図9から、生成するタール分や副生ガスのうち発電工程や、発電工程の復水器の排熱を利用して乾燥工程への熱利用が図られ、乾燥工程や、乾留工程を合わせて熱量ベースで26.5%、発電工程に熱量ベースで4.5%もの排熱利用が図られており、高効率な発電システムを構築していることがわかる。
 本発明は、乾燥工程で低石炭化度炭を乾燥させ乾留工程で乾留炉を移動させながら燃焼工程の燃焼熱で乾留を行い、乾留で得られた炭化水素ガスを主燃料として発電を行うと供に、乾留で得られた固定炭素を回収することで海外輸送可能な固体燃料として利用できる。また、燃焼工程の排熱を乾燥工程、乾留工程に供給して温度のコントロールに利用しCO2ガスの循環又は回収と発電を行う。これにより、発電と固体燃料の製造が融合しCO2と電気と固体燃料の高度利用を図ることのできる発電システムを提供する。
 1  発電システム
 2  採掘・運炭設備
 3  乾燥器
 4  乾燥器熱交換部
 5  集塵機
 6  前処理装置
 7  前処理装置熱交換部
 8  乾燥炭バンカ
 9,9A  乾留炉
 9a  隔壁
 9b  仕切り板
 10  乾留炉熱交換部
 11,11A  冷却槽
 12  冷却槽熱交換部
 13  流動層燃焼炉
 14  燃焼炉主蒸気熱交換部
 15  再熱蒸気熱交換部
 16  サイクロン
 17  灰処理装置
 18  燃焼用空気予熱器
 19  燃焼用空気予熱器熱交換部
 20  CO2分離装置
 21  煙突
 22  CO2供給部
 23  CCS
 24  押込ファン
 25  O2分離器
 26  O2供給部
 27  予熱O2供給部
 28  N2供給部
 29  乾燥空気用押込ファン
 30  不活性ガス予熱器
 31  予熱N2供給部
 32  蒸気タービン
 33  復水器
 34  発電機
 35  クーリングタワー
 36  復水器排熱供給部
 37  蒸気駆動式給水ポンプ
 38  給水部
 39  給水加熱器
 40  加熱水供給部
 41  主蒸気供給部
 42  再熱蒸気用供給部
 43  再熱蒸気戻り部
 44  再熱蒸気乾留炉供給部
 45  再熱蒸気前処理装置供給部
 46  固定炭素製造装置
 47  乾留ガス配管
 48  乾燥褐炭投入装置
 49  固定炭素の取出口の経路
 50  模擬移動層間接加熱乾留炉
 51  コンテナ炉
 51a  不活性ガス投入口
 51b  不活性ガス出口
 52  電気炉
 53  モーター
 54  コンテナ炉の移動方向
 55  固定炭素
                                                                                

Claims (9)

  1.  低石炭化度炭を乾留する乾留工程と、前記乾留工程で得られた固定炭素を冷却する冷却工程と、前記乾留工程で得られる炭化水素ガスを主燃料とする燃焼工程と、前記燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程と、を備えたことを特徴とする発電システム。
  2.  前記乾留工程で乾留する低石炭化度炭を、乾留工程前に乾燥する乾燥工程を備えることを特徴とする請求項1に記載の発電システム。
  3.  前記乾燥工程の乾燥温度が30℃~50℃であることを特徴とする請求項2に記載の発電システム。
  4.  前記乾留工程の温度が350℃~500℃であることを特徴とする請求項1乃至3の内いずれか1項に記載の発電システム。
  5.  前記乾留工程と前記冷却工程を含む固定炭素製造装置が前記冷却工程の冷却槽に立設された乾留工程の乾留炉と、前記乾留炉内の水平方向断面上を隔壁によって矩形又は多角形に鉛直方向に上部から下部まで区切られた乾留ユニットと、前記乾留ユニット内に水平方向断面上を仕切り板によって矩形又は多角形に鉛直方向に上部から下部まで区切られたミニ乾留炉と、前記乾留ユニットの隔壁と前記ミニ乾留炉のしきりに配設された加熱の為のパイプ状の加熱手段と、原料炭を上部から投入してそれぞれの前記ミニ乾留炉内で前記パイプ状の加熱手段によって乾留され冷却槽に製造された固定炭素を捕集する捕集路と、を備えることを特徴とする請求項1乃至4の内いずれか1項に記載の発電システム。
  6.  前記乾留炉で用いる乾燥炭が前記乾燥工程で低石炭化度炭を含水率20質量%以下まで乾燥されていることを特徴とする請求項1乃至5の内いずれか1項に記載の発電システム。
  7.  前記乾燥工程で用いる原料炭の粒子径が0.1μm~5mmに調整されていることを特徴とする請求項1乃至6の内いずれか1項に記載の発電システム。
  8.  前記発電工程の復水器からの排熱を乾燥工程で乾燥に用いる不活性ガスの加熱に用いる熱供給部を備えたことを特徴とする請求項1乃至7の内いずれか1項に記載の発電システム。
  9.  前記燃焼工程で発生する排熱を蒸気又は燃焼排ガス又は前記燃焼工程で加熱された熱媒体を利用して乾留工程へ供給する熱供給部を備えたことを特徴とする請求項1乃至8の内いずれか1項に記載の発電システム。
                                                                                    
PCT/JP2013/074825 2012-09-14 2013-09-13 発電システム WO2014042240A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2013316430A AU2013316430B2 (en) 2012-09-14 2013-09-13 Power generation system
DE112013004492.7T DE112013004492T5 (de) 2012-09-14 2013-09-13 Energieerzeugungssystem
US14/425,912 US10138762B2 (en) 2012-09-14 2013-09-13 Power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012203637A JP6130114B2 (ja) 2012-09-14 2012-09-14 発電システム
JP2012-203637 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042240A1 true WO2014042240A1 (ja) 2014-03-20

Family

ID=50278345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074825 WO2014042240A1 (ja) 2012-09-14 2013-09-13 発電システム

Country Status (5)

Country Link
US (1) US10138762B2 (ja)
JP (1) JP6130114B2 (ja)
AU (1) AU2013316430B2 (ja)
DE (1) DE112013004492T5 (ja)
WO (1) WO2014042240A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142945A1 (en) * 2012-03-29 2013-10-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Supplemental burner for conversion of biomass and related solid fuel
CN105091546B (zh) * 2014-05-20 2017-06-06 天华化工机械及自动化研究设计院有限公司 一种发电机组高水分、低热值褐煤干燥和水回收方法及其装置
CN104676798B (zh) * 2015-03-17 2017-04-05 黄国和 一种全天候太阳能水源热泵空调系统
CN107387180B (zh) * 2017-07-17 2019-08-20 浙江陆特能源科技股份有限公司 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法
CN107620975A (zh) * 2017-09-29 2018-01-23 西安热工研究院有限公司 一种利用循环冷却水加热原煤的发电系统
CN108251144B (zh) * 2018-01-29 2023-08-01 中冶焦耐(大连)工程技术有限公司 利用热泵机组回收余热实现焦油最终脱水的工艺及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461205A (en) * 1977-10-25 1979-05-17 Kansai Coke & Chem Co Ltd Coke oven for briquette
JPS6262892A (ja) * 1985-09-13 1987-03-19 Hitachi Ltd 低品位炭の改質方法
JPH04140406A (ja) * 1990-09-29 1992-05-14 Fuji Electric Co Ltd 復水器冷却水熱回収設備
JPH11264528A (ja) * 1998-03-19 1999-09-28 Kubota Corp 廃棄物処理設備
JP2010059383A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd ガス化炉装置
WO2010097999A1 (ja) * 2009-02-27 2010-09-02 三菱重工業株式会社 低品位炭を燃料とする火力発電プラント
JP4939662B1 (ja) * 2011-03-22 2012-05-30 三菱重工業株式会社 石炭改質システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658743A (en) * 1949-10-21 1953-11-10 Johns Manville Melting furnace
JPS5738893A (en) * 1980-08-20 1982-03-03 Electric Power Dev Co Ltd Method and apparatus for heating and dehydrating organic solid
JPS61171796A (ja) * 1985-01-25 1986-08-02 Hitachi Ltd 低品位炭の高品質化方法
AU666833B2 (en) 1993-12-27 1996-02-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Thermal treated coal, and process and apparatus for preparing the same
JPH07233384A (ja) 1993-12-27 1995-09-05 Kobe Steel Ltd 熱改質炭、その製造方法及び製造装置
JP2776278B2 (ja) 1993-12-27 1998-07-16 株式会社神戸製鋼所 多孔質炭を原料とする固形燃料及びその製造方法
AU668328B2 (en) 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
CN100445349C (zh) * 2003-11-27 2008-12-24 王守峰 油页岩类物质流化床干馏及脱碳工艺
JP5030750B2 (ja) 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
US9121606B2 (en) * 2008-02-19 2015-09-01 Srivats Srinivasachar Method of manufacturing carbon-rich product and co-products
JP5326481B2 (ja) 2008-10-14 2013-10-30 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP5498692B2 (ja) 2008-12-19 2014-05-21 出光興産株式会社 改質炭と炭化水素油の製造法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461205A (en) * 1977-10-25 1979-05-17 Kansai Coke & Chem Co Ltd Coke oven for briquette
JPS6262892A (ja) * 1985-09-13 1987-03-19 Hitachi Ltd 低品位炭の改質方法
JPH04140406A (ja) * 1990-09-29 1992-05-14 Fuji Electric Co Ltd 復水器冷却水熱回収設備
JPH11264528A (ja) * 1998-03-19 1999-09-28 Kubota Corp 廃棄物処理設備
JP2010059383A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd ガス化炉装置
WO2010097999A1 (ja) * 2009-02-27 2010-09-02 三菱重工業株式会社 低品位炭を燃料とする火力発電プラント
JP4939662B1 (ja) * 2011-03-22 2012-05-30 三菱重工業株式会社 石炭改質システム

Also Published As

Publication number Publication date
JP2014059085A (ja) 2014-04-03
US20150218971A1 (en) 2015-08-06
AU2013316430A1 (en) 2015-03-19
AU2013316430B2 (en) 2017-09-07
US10138762B2 (en) 2018-11-27
JP6130114B2 (ja) 2017-05-17
DE112013004492T5 (de) 2015-06-03

Similar Documents

Publication Publication Date Title
US8579999B2 (en) Method of enhancing the quality of high-moisture materials using system heat sources
CN103740389B (zh) 低阶煤梯级利用的多联产工艺
JP5857340B2 (ja) 石炭をチャー・原料ガス製造と発電に利用する複合システム
WO2014042240A1 (ja) 発電システム
CN101775296B (zh) 一种基于焦载热的褐煤干馏工艺及装置
CN102358841B (zh) 多级粉煤多管回转低温干馏工艺及系统
CN102358840B (zh) 单级粉煤多管回转低温干馏工艺及系统
BRPI0517570B1 (pt) Processo para converter biossólidos num combustível
CN101289621B (zh) 用悬浮热解装置处理褐煤制备半焦、焦油和煤气的方法
JP2014059085A5 (ja)
CN104745222A (zh) 一种移动床自热式加压气化富氢环境干馏炉及其干馏方法
CN103980920B (zh) 一种低质燃料热解工艺
JP5851884B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP2012233073A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP5960003B2 (ja) 固定炭素製造装置
CN204529755U (zh) 一种移动床自热式加压气化富氢环境干馏炉
JP5812896B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP5922338B2 (ja) 流動層乾燥設備及び流動層乾燥設備を用いたガス化複合発電システム
JP2013167378A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP2012233634A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
JP2012233635A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013004492

Country of ref document: DE

Ref document number: 1120130044927

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2013316430

Country of ref document: AU

Date of ref document: 20130913

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201502123

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13836584

Country of ref document: EP

Kind code of ref document: A1