[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013137092A1 - 無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2013137092A1
WO2013137092A1 PCT/JP2013/056228 JP2013056228W WO2013137092A1 WO 2013137092 A1 WO2013137092 A1 WO 2013137092A1 JP 2013056228 W JP2013056228 W JP 2013056228W WO 2013137092 A1 WO2013137092 A1 WO 2013137092A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
hot
rolled
Prior art date
Application number
PCT/JP2013/056228
Other languages
English (en)
French (fr)
Inventor
善彰 財前
尾田 善彦
広朗 戸田
中西 匡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147023218A priority Critical patent/KR101591222B1/ko
Priority to CN201380011687.2A priority patent/CN104136637B/zh
Priority to US14/385,397 priority patent/US9920393B2/en
Priority to EP13761949.0A priority patent/EP2826872B1/en
Priority to MX2014010846A priority patent/MX357847B/es
Publication of WO2013137092A1 publication Critical patent/WO2013137092A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for producing a non-oriented electrical steel sheet, and specifically to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss.
  • Non-oriented electrical steel sheets are widely used as core materials for electrical equipment, and in order to achieve high efficiency and downsizing of electrical equipment, the quality of non-oriented electrical steel sheets is improved, that is, high magnetic flux density. And low iron loss are indispensable.
  • the magnetic flux density is increased by increasing the crystal grain size before cold rolling and optimizing the cold rolling reduction ratio.
  • the reason is that in a rotating machine and a small transformer, the copper loss caused by the current flowing through the coil wound around the iron core cannot be ignored.
  • the same magnetic flux density is used to lower the excitation. This is because it is effective to use a high magnetic flux density material that can be achieved by an electric current.
  • Patent Document 1 discloses that a steel containing 0.1 to 3.5% of Si has a Sn content of 0.03.
  • a technique for reducing iron loss by adding in a range of ⁇ 0.40% discloses that magnetically desirable ⁇ 100 ⁇ and ⁇ 110 ⁇ aggregates by adding Sn and Cu in combination.
  • a technique for obtaining a non-oriented electrical steel sheet with low iron loss and high magnetic flux density by developing a structure and suppressing an undesired ⁇ 111 ⁇ texture is disclosed.
  • JP 55-158252 A Japanese Patent Laid-Open No. 62-180014
  • the present invention has been made in view of the above-mentioned problems in the prior art, and an object thereof is to propose a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss.
  • the inventors have intensively studied to solve the above problems. As a result, when re-annealing (finish annealing) a cold-rolled sheet to which appropriate amounts of P and Ca are added, the heating rate at the time of heating is higher than that of the prior art, resulting in high magnetic flux density and low iron loss.
  • the present invention has been developed based on the knowledge that a non-oriented electrical steel sheet can be obtained stably.
  • the present invention has C: 0.005 mass% or less, Si: 4 mass% or less, Mn: 0.03 to 3 mass%, Al: 3 mass% or less, P: 0.03 to 0.2 mass%, S: 0.005 mass% or less and N: 0.005 mass% or less, and further Ca is 0.0005 to 0.01 mass% and the atomic ratio to S (Ca (mass%) / 40) / (S (mass%)) / 32) in the range of 0.5 to 3.5, with the balance being Fe and unavoidable impurities, hot-rolled, hot-rolled sheet annealed, cold-rolled, and at least up to 740 ° C
  • the steel slab further includes one or two selected from Sn and Sb in the range of 0.003 to 0.5 mass% in addition to the above component composition. It is characterized by containing.
  • a non-oriented electrical steel sheet having excellent magnetic properties can be stably provided, and this greatly contributes to high efficiency and downsizing of electrical equipment such as a rotating machine and a small transformer.
  • the cold-rolled sheet was heated to 740 ° C. in a direct current heating furnace at two heating rates of 30 ° C./sec and 200 ° C./sec, and further heated to 1000 ° C. at 30 ° C./sec.
  • the finish annealing (recrystallization annealing) which cools was given.
  • the steel plate with P content of 0.35 mass% and 0.5 mass% broke during cold rolling, it could not proceed to the subsequent steps.
  • the cold-rolled sheet was heated to 740 ° C. in a direct current heating furnace at two heating rates of 30 ° C./sec and 300 ° C./sec, and further heated to 1000 ° C. at 30 ° C./sec. After heating and holding for 10 seconds, the finish annealing (recrystallization annealing) which cools was given.
  • the atomic ratio of Ca to S that is, ((Ca / 40) / (S / 32)) is in the range of 0.5 to 3.5, and the rate of temperature increase is 300 ° C./sec. It can be seen that good magnetic properties are obtained.
  • the reason for this is that Ca has the effect of fixing S in steel and precipitating as CaS, so that the grain growth property during hot-rolled sheet annealing is improved, and the crystal grain size before cold rolling is increased.
  • the ⁇ 111 ⁇ ⁇ 112> orientation which is the hard axis of magnetization in the recrystallized structure after hot rolling, decreases.
  • the ⁇ 111 ⁇ ⁇ 112> orientation is further reduced by increasing the rate of temperature increase in the heating of finish annealing (recrystallization annealing).
  • finish annealing finish annealing
  • C 0.0025 mass%, Si: 2.5 mass%, Mn: 0.20 mass%, Al: 0.001 mass%, N: 0.0025 mass%, P: 0.10 mass%, S: 0.0020 mass% and Ca :
  • a steel slab containing 0.003 mass% was reheated at 1100 ° C for 30 minutes, and then hot rolled to obtain a hot rolled sheet with a thickness of 1.8 mm, and subjected to hot rolling of 1000 ° C for 30 seconds. After that, a cold-rolled sheet having a thickness of 0.30 mm was obtained by one cold rolling. Thereafter, the cold-rolled sheet was heated to 740 ° C.
  • C 0.005 mass% or less
  • C is set to 0.005 mass% or less.
  • Si 4 mass% or less Si is added to increase the specific resistance of steel and improve iron loss. However, if it exceeds 4 mass%, it is difficult to roll and manufacture. Therefore, in the present invention, the upper limit of Si is set to 4 mass%. Preferably, it is in the range of 1 to 4 mass%.
  • Mn 0.03 to 3 mass%
  • Mn is an element necessary for improving the hot workability, but if the amount is less than 0.03 mass%, the above effect cannot be obtained. On the other hand, addition exceeding 3 mass% causes a decrease in saturation magnetic flux density and an increase in raw material cost. Therefore, Mn is set to a range of 0.03 to 3 mass%. Preferably, it is in the range of 0.05 to 2 mass%.
  • Al 3 mass% or less Al, like Si, is added to increase the specific resistance of steel and improve iron loss. However, the addition exceeding 3 mass% lowers the rollability. Therefore, in the present invention, the upper limit of Al is set to 3 mass%. Preferably it is 2 mass% or less. Note that Al does not have to be positively added.
  • P 0.03-0.2 mass%
  • P has the effect of increasing the ⁇ 100 ⁇ ⁇ 012> orientation, which is the easy axis of magnetization, and improving magnetic properties, and is an essential additive element in the present invention. As shown in FIGS. 1 and 2, the above effect can be obtained by adding 0.03 mass% or more. However, addition exceeding 0.2 mass% inhibits cold rolling properties and makes it difficult to roll and manufacture. Therefore, P is set in the range of 0.03 to 0.2 mass%. Preferably, it is in the range of 0.05 to 0.15 mass%.
  • S 0.005 mass% or less
  • N 0.005 mass% or less
  • S and N are inevitable impurities mixed in the steel, and if contained in excess of 0.0050 mass%, the magnetic properties are likely to be deteriorated. Therefore, each is limited to 0.0050 mass% or less.
  • S is 0.004 mass% or less
  • N is 0.004 mass% or less.
  • Ca 0.0005 to 0.01 mass% and (Ca (mass%) / 40) / (S (mass%) / 32): 0.5 to 3.5 Ca fixes S, promotes grain growth in hot-rolled sheet annealing, coarsens the crystal grain size before cold rolling, and reduces the ⁇ 111 ⁇ ⁇ 112> orientation in the recrystallized structure after cold rolling There is an effect to. If the addition amount of Ca is less than 0.0005 mass%, the above effect is not sufficient. On the other hand, addition of more than 0.01 mass% leads to excessive precipitation of CaS and increases the hysteresis loss, which is not preferable.
  • the atomic ratio of Ca to S (Ca (mass%) / 40) / (S (mass%) / 32)) Needs to be added in the range of 0.5 to 3.5.
  • the atomic ratio of Ca to S is less than 0.5, the above effect cannot be obtained sufficiently.
  • the atomic ratio of Ca to S exceeds 3.5, the amount of precipitated CaS is excessive and hysteresis loss is reduced. On the contrary, the iron loss increases. Therefore, Ca needs to be added in an atomic ratio with respect to S in the range of 0.5 to 3.5. A range of 1 to 3 is preferable.
  • the non-oriented electrical steel sheet according to the present invention further contains any one or two of Sn: 0.003-0.5 mass% and Sb: 0.003-0.5 mass% in addition to the above components. can do.
  • Sn and Sb not only improve the texture and improve the magnetic flux density, but also prevent the deterioration of magnetic properties by suppressing the oxidation and nitridation of the steel sheet surface layer and the formation of surface layer fine grains accompanying it, etc. It has a preferable effect. In order to express the effect, it is preferable to contain 0.003 mass% or more of any one of Sn and Sb.
  • the addition exceeding 0.5 mass% may inhibit the growth of crystal grains and may cause a decrease in magnetic properties.
  • the content when adding Sn and Sb, it is preferable to set the content in the range of 0.003 to 0.5 mass%. More preferable addition amounts are in the range of 0.005 to 0.4 mass%, respectively.
  • the remainder other than the said component in the non-oriented electrical steel sheet of this invention is Fe and an unavoidable impurity.
  • the non-oriented electrical steel sheet of the present invention is obtained by melting a steel adjusted to the above-mentioned composition suitable for the present invention by a refining process using a converter, electric furnace, vacuum degassing equipment, etc.
  • steel slab is made by the lump-slab rolling method, then the steel slab is hot-rolled to form a hot-rolled sheet, subjected to hot-rolled sheet annealing, cold-rolled, and recrystallized annealing (finish annealing) It can be produced by a known method.
  • the manufacturing conditions up to the hot rolling process including hot-rolled sheet annealing may be in accordance with conventionally known conditions and are not particularly limited. Therefore, the manufacturing conditions after the cold rolling process will be described below.
  • Cold rolling from the hot-rolled sheet after the hot-rolled sheet annealing to the cold-rolled sheet having the final thickness may employ either one cold rolling or two or more cold rollings sandwiching the intermediate annealing. .
  • the rolling reduction may be the same as the manufacturing process of a normal non-oriented electrical steel sheet.
  • the cold-rolled sheet is then subjected to finish annealing (recrystallization annealing), but the production method of the present invention requires rapid heating up to the recrystallization temperature range as the heating condition in the finish annealing. Specifically, it is necessary to rapidly heat from room temperature to 740 ° C. at an average heating rate of 100 ° C./sec or more. As shown in FIGS. 5 and 6, rapid heating at 100 ° C./sec or more suppresses recrystallization of ⁇ 111 ⁇ grains and promotes recrystallization of ⁇ 110 ⁇ grains and ⁇ 100 ⁇ grains. This is because the magnetic properties are improved.
  • the heating rate from room temperature to 740 ° C. is 150 ° C./sec or more.
  • the end point temperature for rapid heating may be at least 740 ° C., which is the temperature at which recrystallization is completed, and therefore may be a temperature exceeding 740 ° C.
  • the higher the end point temperature the higher the equipment cost and running cost required for heating, which is not preferable in terms of manufacturing cost. Therefore, in the present invention, the end point temperature for rapid heating is at least 740 ° C.
  • the cold-rolled sheet that has been recrystallized by rapid heating is then subjected to soaking annealing at a higher temperature in order to grow into crystal grains of a predetermined size.
  • the heating rate, soaking temperature, and soaking time at this time may be performed in accordance with the annealing conditions performed in a normal non-oriented electrical steel sheet, and are not particularly limited.
  • the heating rate from 740 ° C. to the soaking temperature is 1 to 50 ° C./sec
  • the soaking temperature is 800 to 1100 ° C.
  • the soaking time is 5 to 120 sec.
  • a more preferable soaking temperature is in the range of 900 to 1050 ° C.
  • the non-oriented electrical steel sheet produced by satisfying all the conditions of the present invention has excellent magnetic properties with high magnetic flux density and low iron loss.
  • No. No. 5 is P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

C:0.005mass%以下、Si:4mass%以下、Mn:0.03~3mass%、Al:3mass%以下、P:0.03~0.2mass%、S:0.005mass%以下およびN:0.005mass%以下を含有し、かつ、Caを0.0005~0.01mass%かつSに対する原子比(Ca(mass%)/40)/(S(mass%)/32)が0.5~3.5の範囲で含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延した後、少なくとも740℃までを平均昇温速度100℃/sec以上で加熱する再結晶焼鈍を施すことで、高磁束密度でかつ低鉄損の無方向性電磁鋼板を製造する。

Description

無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板の製造方法に関し、具体的には、高磁束密度でかつ低鉄損の無方向性電磁鋼板を製造する方法に関するものである。
 近年、電力を初めとする各種消費エネルギーの削減という世界的な動きの中で、電気機器の分野においても、高効率化や小型化が強く望まれるようになってきている。無方向性電磁鋼板は、電気機器の鉄心材料として広く用いられており、電気機器の高効率化や小型化を達成するためには、無方向性電磁鋼板の高品質化、すなわち、高磁束密度化、低鉄損化が不可欠となる。
 無方向性電磁鋼板に対する上記要求に応えるため、従来は、主にSiやAl等の電気抵抗を高める元素を添加して固有抵抗を高めたり、板厚を低減して渦電流損を低減したりすることで、低鉄損化が図られてきた。
 また、無方向性電磁鋼板では、上記方法以外に、冷延前の結晶粒径を粗大化することや、冷延圧下率を最適化することなどにより、高磁束密度化を図っている。その理由は、回転機や小型トランスでは、鉄心に巻くコイルに電流が流れることで生じる銅損を無視することができないため、この銅損を低減するには、同一の磁束密度を、より低い励磁電流で達成することができる高磁束密度材の使用が有効であるからである。
 したがって、高磁束密度でかつ低鉄損の無方向性電磁鋼板が開発できれば、電気機器の高効率化や小型化に大きく寄与できるものと考えられる。このような高磁束密度-低鉄損の無方向性電磁鋼板を製造する方法としては、例えば、特許文献1には、Siを0.1~3.5%含有する鋼にSnを0.03~0.40%の範囲で添加することで鉄損を低減する技術が、また、特許文献2には、SnとCuを複合添加することにより、磁気的に望ましい{100}および{110}集合組織を発達させ、望ましくない{111}集合組織を抑制することで、鉄損が低く磁束密度が高い無方向性電磁鋼板が得る技術が開示されている。
特開昭55-158252号公報 特開昭62-180014号公報
 上記特許文献1や特許文献2に開示の技術を適用することで、一次再結晶集合組織を改善し、優れた磁気特性を得ることができる。しかし、需要家からの高品質化への要求は益々厳しくなってきており、上記の技術のみでは、昨今の要求に十分に応えることができなくなってきている。
 本発明は、従来技術における上記問題点に鑑みてなされたものであり、その目的は、高磁束密度かつ低鉄損の無方向性電磁鋼板を製造する方法を提案することにある。
 発明者らは、上記課題を解決するべく鋭意検討を重ねた。その結果、PおよびCaを適正量添加した冷延板を再結晶焼鈍(仕上焼鈍)するに際して、加熱時の昇温速度を従来よりも急速加熱することで、高磁束密度でかつ低鉄損の無方向性電磁鋼板を安定して得ることができることを知見し、本発明を開発したものである。
 上記知見に基く本発明は、C:0.005mass%以下、Si:4mass%以下、Mn:0.03~3mass%、Al:3mass%以下、P:0.03~0.2mass%、S:0.005mass%以下およびN:0.005mass%以下を含有し、さらに、Caを0.0005~0.01mass%かつSに対する原子比(Ca(mass%)/40)/(S(mass%)/32)で0.5~3.5の範囲で含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延した後、少なくとも740℃までを平均昇温速度100℃/sec以上で加熱する再結晶焼鈍を施す無方向性電磁鋼板の製造方法を提案する。
 本発明の無方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.003~0.5mass%の範囲で含有することを特徴とする。
 本発明によれば、優れた磁気特性を有する無方向性電磁鋼板を安定して提供することができるので、特に回転機や小型トランスなど電気機器の高効率化や小型化に大いに寄与する。
磁束密度B50に及ぼすP含有量の影響を示すグラフである。 鉄損W15/50に及ぼすP含有量の影響を示すグラフである。 磁束密度B50に及ぼすCa/S(原子比)の影響を示すグラフである。 鉄損W15/50に及ぼすCa/S(原子比)の影響を示すグラフである。 磁束密度B50に及ぼす昇温速度の影響を示すグラフである。 鉄損W15/50に及ぼす昇温速度の影響を示すグラフである。
 まず、磁気特性に及ぼすP含有量の影響を調査するため、以下の実験を行った。
 C:0.0025mass%、Si:3.0mass%、Mn:0.10mass%、Al:0.001mass%、N:0.0019mass%、S:0.0020mass%およびCa:0.0025mass%を含有し、かつ、P:0.01~0.5mass%の範囲で変化させた鋼スラブを、1100℃×30分の再加熱後、熱間圧延して板厚2.0mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で板厚0.35mmの冷延板とした。その後、上記冷延板を、直接通電加熱炉で昇温速度を30℃/secと200℃/secの2水準に変えて740℃まで加熱した後、さらに、30℃/secで1000℃まで昇温して10秒間保持した後、冷却する仕上焼鈍(再結晶焼鈍)を施した。なお、P含有量が0.35mass%と0.5mass%の鋼板は、冷間圧延時に破断したため、以降の工程へは進めなかった。
 斯くして得られた冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよびL:30mm×C:180mmのC方向サンプルを採取し、エプスタイン試験で磁気特性(磁束密度B50、鉄損W15/50)を測定し、その結果を図1および図2に示した。
 図1および図2から、P含有量が0.03mass%以上、かつ、昇温速度が200℃/secで、良好な磁気特性が得られることがわかる。この原因は、Pを0.03mass%以上添加したことで、磁化容易軸である{100}<012>方位が増加したこと、また、仕上焼鈍時の740℃までの昇温速度を高めたことで、{100}<012>方位への集積度が高まり、さらに、その後の高温焼鈍で{100}<012>方位が成長することで、良好な磁気特性が得られたものと考えられる。
 次に、磁気特性に及ぼすCaの影響を調査するため、以下の実験を行った。
 C:0.0028mass%、Si:3.3mass%、Mn:0.50mass%、Al:0.004mass%、N:0.0022mass%、P:0.08mass%およびS:0.0024mass%を含有し、かつ、Caの添加量を0.0001~0.015mass%の範囲で変化させた鋼スラブを、1100℃×30分の再加熱後、熱間圧延して板厚1.8mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で板厚0.25mmの冷延板とした。その後、上記冷延板を、直接通電加熱炉で昇温速度を30℃/secと300℃/secの2水準に変えて740℃まで加熱した後、さらに、30℃/secで1000℃まで昇温して10秒間保持した後、冷却する仕上焼鈍(再結晶焼鈍)を施した。
 斯くして得られた冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよびL:30mm×C:180mmのC方向サンプルを採取し、エプスタイン試験で磁気特性(磁束密度B50、鉄損W15/50)を測定し、それらの結果を図3および図4に示した。
 図3および図4から、Sに対するCaの原子比、すなわち、((Ca/40)/(S/32))が0.5~3.5の範囲でかつ昇温速度が300℃/secで良好な磁気特性が得られていることがわかる。この理由は、Caは鋼中のSを固定し、CaSとして析出する効果があるので、熱延板焼鈍時の粒成長性が改善され、冷延前の結晶粒径が粗大化した結果、冷間圧延後の再結晶組織における磁化困難軸である{111}<112>方位が減少する。さらに、仕上焼鈍(再結晶焼鈍)の加熱における昇温速度を高めたことで、{111}<112>方位がより減少する。その結果、磁化容易軸である{100}<012>方位が増加し、大幅な磁気特性の向上が得られたものと考えている。
 次に、磁気特性に及ぼす昇温速度の影響を調査するため、以下の実験を行った。
 C:0.0025mass%、Si:2.5mass%、Mn:0.20mass%、Al:0.001mass%、N:0.0025mass%、P:0.10mass%、S:0.0020mass%およびCa:0.003mass%を含有する鋼スラブを、1100℃×30分の再加熱後、熱間圧延して板厚1.8mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で板厚0.30mmの冷延板とした。その後、上記冷延板を、直接通電加熱炉で昇温速度を30~300℃/secの範囲で種々に変化させて740℃まで加熱した後、さらに、30℃/secで1020℃まで昇温して10秒間保持した後、冷却する仕上焼鈍(再結晶焼鈍)を施した。
 斯くして得られた冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよびL:30mm×C:180mmのC方向サンプルを採取し、エプスタイン試験で磁気特性(磁束密度B50、鉄損W15/50)を測定し、それらの結果を図5および図6に示した。
 図5および図6から、740℃までの昇温速度を100℃/sec以上とすることで、良好な磁気特性が得られることがわかる。これは昇温速度を高めることで、{111}粒の再結晶が抑制され、{110}粒、{100}粒の再結晶が促進されたことにより、磁気特性が向上したものと考えられる。
 本発明は、上記の知見に基いて開発したものである。
 次に、本発明の無方向性電磁鋼板(製品板)の成分組成について説明する。
C:0.005mass%以下
 Cは、0.005mass%を超えて含有すると、磁気時効を起こして鉄損特性の劣化を招く。よって、Cは0.005mass%以下とする。好ましくは0.003mass%以下である。
Si:4mass%以下
 Siは、鋼の固有抵抗を高め、鉄損を改善するために添加するが、4mass%を超えて添加すると、圧延して製造することが困難となる。よって、本発明ではSiの上限を4mass%とする。好ましくは、1~4mass%の範囲である。
Mn:0.03~3mass%
 Mnは、熱間加工性を改善するために必要な元素であるが、0.03mass%未満では上記効果が得られない。一方、3mass%を超える添加は、飽和磁束密度の低下や原料コストの上昇を招く。よって、Mnは0.03~3mass%の範囲とする。好ましくは0.05~2mass%の範囲である。
Al:3mass%以下
 Alは、Siと同様に、鋼の固有抵抗を高め、鉄損を改善するために添加されるが、3mass%を超える添加は、圧延性を低下させる。よって、本発明では、Alの上限を3mass%とする。好ましくは2mass%以下である。なお、Alは、積極的に添加しなくてもよい。
P:0.03~0.2mass%
 Pは、磁化容易軸である{100}<012>方位を増加し、磁気特性を向上する効果があり、本発明においては必須の添加元素である。上記効果は、図1,2に示したように、0.03mass%以上の添加で得られる。しかし、0.2mass%を超える添加は、冷間圧延性を阻害し、圧延して製造することを困難とする。よって、Pは0.03~0.2mass%の範囲とする。好ましくは、0.05~0.15mass%の範囲である。
S:0.005mass%以下、N:0.005mass%以下
 SおよびNは、鋼中に混入してくる不可避的不純物であり、0.0050mass%を超えて含有すると、磁気特性の低下を招くようになるので、それぞれ0.0050mass%以下に制限する。好ましくはS:0.004mass%以下、N:0.004mass%以下である。
Ca:0.0005~0.01mass%かつ(Ca(mass%)/40)/(S(mass%)/32):0.5~3.5
 Caは、Sを固定し、熱延板焼鈍での粒成長を促進し、冷延前の結晶粒径を粗大化して、冷間圧延後の再結晶組織における{111}<112>方位を低減する効果がある。Caの添加量が0.0005mass%未満では、上記効果が十分ではなく、一方、0.01mass%を超える添加は、CaSの過析出を招き、ヒステリシス損が増加するため好ましくない。
 さらに、Caの上記効果を確実に得るためには、上記組成範囲とすることに加えて、CaのSに対する原子比(Ca(mass%)/40)/(S(mass%)/32))が0.5~3.5の範囲となるよう添加する必要がある。CaのSに対する原子比が0.5未満では、上記効果が十分に得られず、一方、CaのSに対する原子比が3.5を超えると、CaSの析出量が多くなり過ぎ、ヒステリシス損が増加するため、却って鉄損が増加する。よって、Caは、Sに対する原子比で0.5~3.5の範囲で添加する必要がある。好ましくは1~3の範囲である。
 本発明の無方向性電磁鋼板は、上記成分に加えてさらに、Sn:0.003~0.5mass%およびSb:0.003~0.5mass%のうちのいずれか1種または2種を含有することができる。
 SnおよびSbは、集合組織を改善して磁束密度を向上させるだけでなく、鋼板表層の酸化や窒化およびそれに伴う表層微細粒の生成を抑制することによって、磁気特性の低下を防止する等、種々の好ましい作用効果を有する。掛かる効果を発現させるためには、SnおよびSbのうちのいずれか1種以上を0.003mass%以上含有させることが好ましい。一方、0.5mass%を超える添加は、結晶粒の成長を阻害し、却って磁気特性の低下を招くおそれがある。よって、SnおよびSbを添加する場合は、それぞれ0.003~0.5mass%の範囲とするのが好ましい。より好ましい添加量は、それぞれ0.005~0.4mass%の範囲である。
 なお、本発明の無方向性電磁鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 本発明の無方向性電磁鋼板は、本発明に適合する上記成分組成に調整した鋼を、転炉や電気炉、真空脱ガス設備等を用いた精錬プロセスで溶製し、連続鋳造法あるいは造塊-分塊圧延法で鋼スラブとした後、上記鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、冷間圧延し、再結晶焼鈍(仕上焼鈍)する通常公知の方法で製造することができる。上記製造工程のうち、熱延板焼鈍を含む熱間圧延工程までの製造条件は、従来公知の条件に従えばよく、特に制限はない。よって、以下、冷間圧延工程以降の製造条件について説明する。
 熱延板焼鈍後の熱延板から最終板厚の冷延板とする冷間圧延は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延のいずれを採用してもよい。また、その圧下率も、通常の無方向性電磁鋼板の製造プロセスと同様で構わない。
 上記冷延板は、その後、仕上焼鈍(再結晶焼鈍)を施すが、本発明の製造方法は、上記仕上焼鈍における加熱条件として、再結晶温度域までを急速加熱することが必要であり、具体的には、室温~740℃までを、平均加熱速度100℃/sec以上で急速加熱することが必要である。図5,6に示したように、100℃/sec以上で急速加熱することで、{111}粒の再結晶が抑制され、{110}粒や{100}粒の再結晶が促進されるため、磁気特性が改善されるからである。好ましくは、室温~740℃までの加熱速度は150℃/sec以上である。
 なお、急速加熱する終点温度は、少なくとも再結晶が完了する温度である740℃であればよく、したがって、740℃を超える温度としてもよい。しかし、終点温度が高温になればなるほど、加熱に要する設備コストやランニングコストが増加するため、製造コスト上は好ましくない。よって、本発明では急速加熱する終点温度を少なくとも740℃とする。
 急速加熱して再結晶させた上記冷延板は、その後、所定の大きさの結晶粒に粒成長させるため、さらに温度を上げて均熱焼鈍を施す。この際の昇温速度、均熱温度、均熱時間は、通常の無方向性電磁鋼板で行われている焼鈍条件に従って行えばよく、特に制限はない。例えば、740℃以上均熱温度までの昇温速度は1~50℃/sec、均熱温度は800~1100℃、均熱時間は5~120secの範囲とするのが好ましい。より好ましい均熱温度は、900~1050℃の範囲である。
 なお、前述した加熱時の昇温速度を100℃/sec以上とする方法については、特に制限はなく、例えば、直接通電加熱法あるいは誘導加熱法などを好適に用いることができる。
 表1に示した各種成分組成の鋼を溶製して鋼スラブとした後、1080℃×30分の再加熱後、熱間圧延して板厚2.0mmとし、1000℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で表2に示した最終板厚tの冷延板とした。
 次いで、表2に記載したように、直接通電加熱炉で、昇温速度と急速加熱終点温度を種々に変えて加熱し、その後、同じく表2に示した均熱温度まで30℃/secで加熱し、10秒間保持した後、冷却する仕上焼鈍(再結晶焼鈍)を施して冷延焼鈍板とした。
 斯くして得られた冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよびC:180mm×L:30mmのC方向サンプルを切り出し、エプスタイン試験で磁気特性(磁束密度B50、鉄損W15/50)を測定し、その結果を表2に併記した。
 表1および表2から、本発明の条件を全て満たして製造した無方向性電磁鋼板は、磁束密度が高くて鉄損が低い優れた磁気特性を有することがわかる。なお、表2中のNo.5の鋼板はPが、また、No.18の鋼板はSiが高いため、いずれも冷間圧延で亀裂が生じたり、破断したため、その後の工程に進めることはできなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (2)

  1. C:0.005mass%以下、Si:4mass%以下、Mn:0.03~3mass%、Al:3mass%以下、P:0.03~0.2mass%、S:0.005mass%以下およびN:0.005mass%以下を含有し、さらに、Caを0.0005~0.01mass%かつSに対する原子比(Ca(mass%)/40)/(S(mass%)/32)で0.5~3.5の範囲で含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延した後、少なくとも740℃までを平均昇温速度100℃/sec以上で加熱する再結晶焼鈍を施す無方向性電磁鋼板の製造方法。
  2. 前記鋼スラブは、前記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.003~0.5mass%の範囲で含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
     
     
PCT/JP2013/056228 2012-03-15 2013-03-07 無方向性電磁鋼板の製造方法 WO2013137092A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147023218A KR101591222B1 (ko) 2012-03-15 2013-03-07 무방향성 전기 강판의 제조 방법
CN201380011687.2A CN104136637B (zh) 2012-03-15 2013-03-07 无取向性电磁钢板的制造方法
US14/385,397 US9920393B2 (en) 2012-03-15 2013-03-07 Method of producing non-oriented electrical steel sheet
EP13761949.0A EP2826872B1 (en) 2012-03-15 2013-03-07 Method of producing Non-Oriented Electrical Steel Sheet
MX2014010846A MX357847B (es) 2012-03-15 2013-03-07 Método para la producción de una lámina de acero eléctrico de grano no orientado..

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-058429 2012-03-15
JP2012058429A JP5892327B2 (ja) 2012-03-15 2012-03-15 無方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2013137092A1 true WO2013137092A1 (ja) 2013-09-19

Family

ID=49161002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056228 WO2013137092A1 (ja) 2012-03-15 2013-03-07 無方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US9920393B2 (ja)
EP (1) EP2826872B1 (ja)
JP (1) JP5892327B2 (ja)
KR (1) KR101591222B1 (ja)
CN (1) CN104136637B (ja)
MX (1) MX357847B (ja)
TW (1) TWI516612B (ja)
WO (1) WO2013137092A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129034A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3144399A1 (en) * 2014-05-12 2017-03-22 JFE Steel Corporation Method for producing oriented electromagnetic steel sheet
CN107075640A (zh) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 无取向性电磁钢板和无取向性电磁钢板的制造方法
EP3239309A4 (en) * 2014-12-24 2017-12-20 Posco Non-oriented electrical steel sheet and method for manufacturing the same
EP3184661A4 (en) * 2014-08-20 2017-12-20 JFE Steel Corporation Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
EP3184660A4 (en) * 2014-08-21 2017-12-27 JFE Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
EP3546609A4 (en) * 2016-11-25 2019-10-23 JFE Steel Corporation NON-ALIGNED ELECTRIC STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
US11114227B2 (en) * 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995002B2 (ja) 2013-08-20 2016-09-21 Jfeスチール株式会社 高磁束密度無方向性電磁鋼板およびモータ
JP5790953B2 (ja) 2013-08-20 2015-10-07 Jfeスチール株式会社 無方向性電磁鋼板とその熱延鋼板
JP6048699B2 (ja) 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
EP3263719B1 (en) * 2015-02-24 2019-05-22 JFE Steel Corporation Method for producing non-oriented electrical steel sheets
JP6451832B2 (ja) 2015-03-17 2019-01-16 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP6453683B2 (ja) * 2015-03-24 2019-01-16 株式会社神戸製鋼所 軟磁性用線材、棒鋼及び軟磁性鋼部品
CN107849632A (zh) * 2015-08-04 2018-03-27 杰富意钢铁株式会社 磁特性优异的无方向性电磁钢板的制造方法
BR112018009722B1 (pt) 2015-11-20 2022-04-05 Jfe Steel Corporation Método para produção de uma chapa de aço elétrica não orientada
JP6402865B2 (ja) * 2015-11-20 2018-10-10 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
TWI622655B (zh) * 2016-01-15 2018-05-01 Jfe Steel Corp 無方向性電磁鋼板及其製造方法
WO2020094230A1 (de) * 2018-11-08 2020-05-14 Thyssenkrupp Steel Europe Ag Elektroband oder -blech für höherfrequente elektromotoranwendungen mit verbesserter polarisation und geringen ummagnetisierungsverlusten
CN113727788B (zh) * 2019-04-22 2023-09-01 杰富意钢铁株式会社 无取向性电磁钢板的制造方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
CN112143962A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种高磁感低铁损的无取向电工钢板及其制造方法
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
US20220359108A1 (en) * 2019-07-11 2022-11-10 Jfe Steel Corporation Non-oriented electrical steel sheet, method for producing the same, and motor core
CN112430777A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种超高磁感无取向电工钢板及其制造方法
CN112430779A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种高频铁损优良的无取向电工钢板及其制造方法
CN112430780B (zh) * 2019-08-26 2022-03-18 宝山钢铁股份有限公司 一种含Cu高洁净度无取向电工钢板及其制造方法
CN112430775A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN112430778A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种薄规格无取向电工钢板及其制造方法
KR102325011B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN113737089B (zh) * 2020-05-29 2022-07-15 宝山钢铁股份有限公司 一种低成本极低铝的无取向电工钢板及其制造方法
CN113969371B (zh) * 2020-07-24 2022-09-20 宝山钢铁股份有限公司 一种定子、转子铁芯同时套裁用无取向电工钢板及其制造方法
CN114000045B (zh) * 2020-07-28 2022-09-16 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
NL2027728B1 (nl) * 2021-03-09 2022-09-26 Bilstein Gmbh & Co Kg Werkwijze voor het vervaardigen van een zachtmagnetisch voorproduct van metaal

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158252A (en) 1979-05-30 1980-12-09 Kawasaki Steel Corp Cold rolled nonoriented electrical steel sheet of low iron loss
JPS62180014A (ja) 1986-02-04 1987-08-07 Nippon Steel Corp 鉄損が低くかつ磁束密度の優れた無方向性電磁鋼板およびその製造方法
JPS644455A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having high magnetic flux density
JPH03126845A (ja) * 1989-10-13 1991-05-30 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板
JPH0651889B2 (ja) * 1988-03-25 1994-07-06 アームコ・インコーポレイテッド 無方向性珪素鋼の超高速焼なましによる製造方法
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP2001158949A (ja) * 1999-12-01 2001-06-12 Nkk Corp 電動パワーステアリングモータコア用鋼板
JP2005200755A (ja) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JP2005206887A (ja) * 2004-01-23 2005-08-04 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JP2007217744A (ja) * 2006-02-16 2007-08-30 Jfe Steel Kk 無方向性電磁鋼板およびその製造方法
JP2012046806A (ja) * 2010-08-30 2012-03-08 Jfe Steel Corp 無方向性電磁鋼板の製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948691A (en) * 1970-09-26 1976-04-06 Nippon Steel Corporation Method for manufacturing cold rolled, non-directional electrical steel sheets and strips having a high magnetic flux density
US3935038A (en) 1971-10-28 1976-01-27 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet and strip having no ridging
JPS58151453A (ja) 1982-01-27 1983-09-08 Nippon Steel Corp 鉄損が低くかつ磁束密度のすぐれた無方向性電磁鋼板およびその製造法
JPS6134118A (ja) * 1984-07-24 1986-02-18 Kawasaki Steel Corp 磁束密度が高く鉄損の低い一方向性けい素鋼板の製造方法
JPH07116512B2 (ja) 1990-01-29 1995-12-13 日本鋼管株式会社 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
JP2639227B2 (ja) 1991-03-15 1997-08-06 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JPH05214444A (ja) 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd 磁気特性面内異方性の小さい無方向性電磁鋼板の製造法
DE4209346A1 (de) 1992-03-23 1993-09-30 Agfa Gevaert Ag Fotografisches Aufzeichnungsmaterial
JP3087435B2 (ja) 1992-04-22 2000-09-11 日本電気株式会社 遠隔操作用キーボード付きコンピュータシステム
JPH06228644A (ja) 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP3022074B2 (ja) 1993-08-09 2000-03-15 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
US6139650A (en) 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
US5955201A (en) 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
JP4422220B2 (ja) * 1998-05-26 2010-02-24 新日本製鐵株式会社 磁束密度が高く鉄損の低い無方向性電磁鋼板及びその製造方法
JP4126479B2 (ja) 2000-04-28 2008-07-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2001323344A (ja) 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2001323347A (ja) 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性、リサイクル性および歪み取り焼鈍後の磁気特性に優れた無方向性電磁鋼板
WO2003095684A1 (en) 2002-05-08 2003-11-20 Ak Properties, Inc. Method of continuous casting non-oriented electrical steel strip
JP4358550B2 (ja) 2003-05-07 2009-11-04 新日本製鐵株式会社 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
EP1679386B1 (en) 2003-10-06 2019-12-11 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP5009514B2 (ja) 2005-08-10 2012-08-22 Jfeスチール株式会社 無方向性電磁鋼板
JP4855220B2 (ja) 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
JP2008150697A (ja) 2006-12-20 2008-07-03 Jfe Steel Kk 電磁鋼板の製造方法
JP5417689B2 (ja) 2007-03-20 2014-02-19 Jfeスチール株式会社 無方向性電磁鋼板
JP5447167B2 (ja) * 2010-05-13 2014-03-19 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP5668460B2 (ja) 2010-12-22 2015-02-12 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP5884153B2 (ja) 2010-12-28 2016-03-15 Jfeスチール株式会社 高強度電磁鋼板およびその製造方法
JP5892327B2 (ja) 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN104937118A (zh) * 2013-02-21 2015-09-23 杰富意钢铁株式会社 磁特性优异的半工艺无取向性电磁钢板的制造方法
TWI531663B (zh) 2013-04-09 2016-05-01 新日鐵住金股份有限公司 無方向性電磁鋼板及其製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158252A (en) 1979-05-30 1980-12-09 Kawasaki Steel Corp Cold rolled nonoriented electrical steel sheet of low iron loss
JPS62180014A (ja) 1986-02-04 1987-08-07 Nippon Steel Corp 鉄損が低くかつ磁束密度の優れた無方向性電磁鋼板およびその製造方法
JPS644455A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having high magnetic flux density
JPH0651889B2 (ja) * 1988-03-25 1994-07-06 アームコ・インコーポレイテッド 無方向性珪素鋼の超高速焼なましによる製造方法
JPH03126845A (ja) * 1989-10-13 1991-05-30 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP2001158949A (ja) * 1999-12-01 2001-06-12 Nkk Corp 電動パワーステアリングモータコア用鋼板
JP2005200755A (ja) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JP2005206887A (ja) * 2004-01-23 2005-08-04 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JP2007217744A (ja) * 2006-02-16 2007-08-30 Jfe Steel Kk 無方向性電磁鋼板およびその製造方法
JP2012046806A (ja) * 2010-08-30 2012-03-08 Jfe Steel Corp 無方向性電磁鋼板の製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826872A1

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
WO2014129034A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3095887A4 (en) * 2014-01-14 2017-04-05 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3144399A1 (en) * 2014-05-12 2017-03-22 JFE Steel Corporation Method for producing oriented electromagnetic steel sheet
EP3144399A4 (en) * 2014-05-12 2017-05-10 JFE Steel Corporation Method for producing oriented electromagnetic steel sheet
US10294544B2 (en) 2014-05-12 2019-05-21 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
EP3184661A4 (en) * 2014-08-20 2017-12-20 JFE Steel Corporation Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
EP3184660A4 (en) * 2014-08-21 2017-12-27 JFE Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
EP3214195A4 (en) * 2014-10-30 2017-09-13 JFE Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
CN107075640A (zh) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 无取向性电磁钢板和无取向性电磁钢板的制造方法
US10704115B2 (en) 2014-10-30 2020-07-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US20170362676A1 (en) * 2014-12-24 2017-12-21 Posco Non-oriented electrical steel sheet and method for manufacturing the same
EP3239309A4 (en) * 2014-12-24 2017-12-20 Posco Non-oriented electrical steel sheet and method for manufacturing the same
US10941457B2 (en) 2014-12-24 2021-03-09 Posco Non-oriented electrical steel sheet and method for manufacturing the same
US11114227B2 (en) * 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
EP3546609A4 (en) * 2016-11-25 2019-10-23 JFE Steel Corporation NON-ALIGNED ELECTRIC STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
US11142813B2 (en) 2016-11-25 2021-10-12 Jfe Steel Corporation Non-oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
EP2826872A1 (en) 2015-01-21
TWI516612B (zh) 2016-01-11
US20150059929A1 (en) 2015-03-05
KR20140113739A (ko) 2014-09-24
KR101591222B1 (ko) 2016-02-02
EP2826872B1 (en) 2018-05-16
EP2826872A4 (en) 2015-05-06
TW201402834A (zh) 2014-01-16
CN104136637B (zh) 2017-05-31
JP2013189693A (ja) 2013-09-26
JP5892327B2 (ja) 2016-03-23
MX357847B (es) 2018-07-26
US9920393B2 (en) 2018-03-20
CN104136637A (zh) 2014-11-05
MX2014010846A (es) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5892327B2 (ja) 無方向性電磁鋼板の製造方法
JP5854182B2 (ja) 無方向性電磁鋼板の製造方法
JP5668460B2 (ja) 無方向性電磁鋼板の製造方法
JP6008157B2 (ja) 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
JP5273235B2 (ja) 無方向性電磁鋼板の製造方法
JP6236470B2 (ja) 磁気特性に優れる無方向性電磁鋼板
TWI457443B (zh) Manufacturing method of non - directional electromagnetic steel sheet
JP6496413B2 (ja) 無方向性電磁鋼板およびその製造方法
KR102062184B1 (ko) 자기 특성이 우수한 무방향성 전자 강판의 제조 방법
JP2013139629A (ja) 低鉄損方向性電磁鋼板の製造方法
JP2023052264A (ja) 無方向性電磁鋼板およびその製造方法
JP5871137B2 (ja) 方向性電磁鋼板
WO2016111088A1 (ja) 無方向性電磁鋼板およびその製造方法
JP2015212403A (ja) 無方向性電磁鋼板の製造方法
JP2008260996A (ja) 圧延方向の磁気特性に優れる無方向性電磁鋼板およびその製造方法
JP2001140046A (ja) 高磁場特性に優れた無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023218

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013761949

Country of ref document: EP

Ref document number: MX/A/2014/010846

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14385397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE