[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113737089B - 一种低成本极低铝的无取向电工钢板及其制造方法 - Google Patents

一种低成本极低铝的无取向电工钢板及其制造方法 Download PDF

Info

Publication number
CN113737089B
CN113737089B CN202010472318.5A CN202010472318A CN113737089B CN 113737089 B CN113737089 B CN 113737089B CN 202010472318 A CN202010472318 A CN 202010472318A CN 113737089 B CN113737089 B CN 113737089B
Authority
CN
China
Prior art keywords
oriented electrical
less
electrical steel
percent
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010472318.5A
Other languages
English (en)
Other versions
CN113737089A (zh
Inventor
张峰
沈侃毅
宗震宇
李国保
房现石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202010472318.5A priority Critical patent/CN113737089B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to PCT/CN2021/095717 priority patent/WO2021238895A1/zh
Priority to KR1020227040497A priority patent/KR20220162179A/ko
Priority to EP21813476.5A priority patent/EP4137603A4/en
Priority to JP2022571881A priority patent/JP2023526128A/ja
Priority to US17/927,165 priority patent/US20230203613A1/en
Priority to MX2022014497A priority patent/MX2022014497A/es
Publication of CN113737089A publication Critical patent/CN113737089A/zh
Application granted granted Critical
Publication of CN113737089B publication Critical patent/CN113737089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种低成本极低铝的无取向电工钢板,其含有质量百分比如下的下述化学元素:C≤0.003%、Si:0.1%~1.2%、Mn:0.1%~0.4%、P:0.01%~0.2%、S≤0.003%、Als≤0.001%、O:0.003%~0.01%、N≤0.003%、Sn:0.005%~0.05%,且满足Si2/P:0.89~26.04。此外本发明还公开了上述无取向电工钢板的制造方法,其包括步骤:(1)冶炼;(2)连铸;(3)热轧:其中热轧板在卷取后不进行常化处理或罩式炉退火,而是利用热轧钢卷的自身余热进行均热和保温;(4)一次冷轧;(5)连续退火。本发明所述的无取向电工钢板采用合理的化学成分和工艺设计,不仅有优良的经济性,还具有高磁感和低铁损的特性。

Description

一种低成本极低铝的无取向电工钢板及其制造方法
技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种无取向电工钢板及其制造方法。
背景技术
长期以来,无取向电工钢板都在沿着两个方向不断发展:一是制造成本昂贵、生产工艺复杂,但电磁性能、机械性能优良的高效、高牌号钢种;二是制造成本低廉、生产工艺简便,具有优良电磁性能、机械性能的中低牌号钢种。
据统计,由于使用场合不同的缘故,中低牌号无取向电工钢板的数量,占到了全部无取向电工钢板的70%或以上。因此,研究如何更加经济、便捷的生产中低牌号无取向电工钢板,进一步提高其性价比具有十分重要的现实意义。同时,考虑到中低牌号无取向电工钢板,绝大多数都应用于中小型电机、EI铁芯、小型发电机等方面,因此,用户市场在不断要求降低钢板铁损的同时,对钢板磁感的提高需求更为迫切,目的就是为了更加有效地降低铁芯铜损。
此外,研究表明,在无取向电工钢板的电磁性能指标中,铁损、磁感两者之间相互制约,很难同时实现低铁损、高磁感,除非采用增加热轧钢板常化处理或罩式炉退火处理等,但这无形之中会大大增加成品钢板的制造成本。
近年来,围绕在不进行热轧板常化处理或罩式炉退火处理的前提下,如何有效地改善无取向电工钢板的电磁性能,同时降低其制造成本,大量的科技工作者做了很多有益的尝试。
公开号为CN101992210A,公开日为2011年3月30日,名称为“一种生产冷轧无取向硅钢无铝钢种的方法”的中国专利文献,公开了一种涉及生产冷轧无取向硅钢无铝钢种的方法,指出通过控制Als≤0.0010%及易形成氮化物的残余元素含量,热轧采取低温加热及控温轧制,冷轧材一次或带有中间退火的二次冷轧轧制,实行湿氢脱碳、再结晶温度退火等综合性能控制措施,从而在现有设备条件下,以较低的生产成本,实现了批量生产高效无铝冷轧无取向硅钢,其电磁新更能均优于同牌号常规工艺生产的冷轧无取向硅钢,铁损平均降低了0.4W/kg左右,磁感平均提高了0.2T。其具体控制方法为,控制包含脱氧铝、辅材和耐火材料合金化过程中带入的残铝含量,控制Als≤0.0010%,精炼脱氧工艺采用Si脱氧;控制冶炼氮含量及其易形成氮化物的残余元素含量,控制N、Ti、Nb、V含量分别≤0.0020%;热轧采取低温加热及精轧实行控温轧制,即铁素体单相区轧制,并控制二相析出状态;热轧钢坯加热温度为1000~1150℃,开轧温度≥950℃,终轧温度≥840℃,卷取温度≥690℃;冷轧采用一次或者带有中间退火的二次冷轧法轧制为成品厚度;退火采用罩式炉火连续退火炉进行湿氢脱碳、再结晶温度退火。无取向电工钢板及其制造方法。其组分按重量百分比计为:C:0.03~0.15%,Si≤0.15%,Mn:1.0-1.8%,P≤0.025%,S≤0.015%,Ti:0.08~0.18%,Nb:0.02~0.07%,Al:0.02~0.10%,N≤0.010%,其余为铁及残余含量。
公开号为CN101306434A,公开日为2008年11月19日,名称为“一种低碳低硅无铝半工艺无取向电工钢的制备方法”的中国专利文献,公开了一种低碳低硅无铝半工艺无取向电工钢的制备方法。其工艺步骤为:热轧原料成分设计要求其铸坯化学成分满足,C≤0.005%,Si:0.1~1.0%,Mn≤0.35%,P≤0.08%,S≤0.01%,N≤0.008%,O≤0.015%,其余为Fe和不可避免的杂质;铸坯热装、热轧,临界变形冷轧,用户消除应力退火后得到磁性优良的半工艺无取向电工钢。其特征在于,所述的铸坯加热温度为900~1150℃,要求终轧温度低于Ar3相变点10~50℃,热轧板厚度为2.0~2.5mm;所述的中间退火温度为600~850℃,时间为1~2min,中间退火气氛为H2、N2混合气体,H2的比例为10~40%,且不需要加湿脱碳,并保证中间退火后再结晶率≥40%;所述的临界变形冷轧是指,中间退火后的钢带经过压下率为0.5~15%的临界变形冷轧至0.5mm,临界变形冷轧后钢板硬度为130~180HV;所述的用户消除应力退火是指,临界变形后的冷轧冲片、叠片后经温度为700~850℃、时间为1~2h的用户消除应力退火,要求退火气氛为H2、N2混合气体,H2的比例为10~40%,冷却方式为缓冷,要求以冷却速度10~100℃/h冷却至450℃,然后随炉冷却,得到最终需要的产品。其优点在于,最终产品磁性能优良,P15/50=3.35~5.05W/kg、B5000=1.69~1.76T。铸坯中不含Al、Sn、Sb、Cu、Cr、Ni、B、稀土等合金元素,生产成本大幅度降低。采用了较大的临界压下量,且优化了退火工艺,生产出的成品磁性能更优。
发明内容
本发明的目的之一在于提供一种低成本极低铝的无取向电工钢板,该无取向电工钢板通过优化钢的化学成分,借助钢中含有极低铝含量,以及钢、渣含有适量的氧化性技术特点,调低了RH精炼脱氧、合金化专用合金品质,以大幅降低钢的制造成本,有效控制了合金成本。该无取向电工钢板与常规同牌号产品相比,其铁损P15/50平均降低0.2~0.8W/kg,磁感B50平均升高0.01~0.04T,不仅有优良的经济性,还具有高磁感和低铁损的特性。
为了实现上述目的,本发明提供了一种低成本极低铝的无取向电工钢板,其含有质量百分比如下的下述化学元素:
C≤0.003%、Si:0.1%~1.2%、Mn:0.1%~0.4%、P:0.01%~0.2%、S≤0.003%、Als≤0.001%、O:0.003%~0.01%、N≤0.003%、Sn:0.005%~0.05%,且满足Si2/P:0.89~26.04。
进一步地,在本发明所述的无取向电工钢板中,其各化学元素质量百分比为:
C≤0.003%、Si:0.1%~1.2%、Mn:0.1%~0.4%、P:0.01%~0.2%、S≤0.003%、Als≤0.001%、O:0.003%~0.01%、N≤0.003%、Sn:0.005%~0.05%,余量为Fe及其他不可避免的杂质;且满足Si2/P:0.89~26.04。
在本发明所述的无取向电工钢板中,各化学元素的设计原理如下所述:
C:在本发明所述的无取向电工钢板中,碳是强时效形成元素之一。当钢中C元素含量高于0.003%时,容易与Nb、V、Ti等结合,形成大量的微细夹杂物,从而导致成品钢板的损耗显著增加。因此在本发明所述的无取向电工钢板中控制C的质量百分比为C≤0.003%。
Si:在本发明所述的无取向电工钢板中,Si元素能显著增加材料的电阻率。但需要注意的是,若钢中Si元素含量低于0.1%时,则不能有效降低成品钢板铁损;而若钢中Si元素含量高于1.2%时,则会显著劣化成品钢板磁感。因此,在本发明所述的无取向电工钢板中控制Si的质量百分比在0.1%~1.2%之间。
Mn:在本发明所述的无取向电工钢板中,Mn元素可以与S元素结合形成MnS,从而有效改善成品钢板的磁性。为了保证Mn元素能有效起到作用,钢中需要添加0.1%以上的Mn,但需要注意的是,Mn元素含量也不宜过高,若钢中Mn元素含量高于0.4%,会显著破坏成品钢板再结晶织构。因此,在本发明所述的无取向电工钢板中控制Mn的质量百分比在0.1%~0.4%之间。
P:在本发明所述的无取向电工钢板中,P元素能显著提高材料的强度。当钢中P元素含量低于0.01%时,不能起到有效改善成品钢板强度的作用,而若钢中P元素含量高于0.2%时,则会显著降低冷轧可轧性。因此,在本发明所述的无取向电工钢板中控制P的质量百分比在0.01%~0.2%之间。
S:在本发明所述的无取向电工钢板中,S元素含量不宜过高,当钢中S元素含量高于0.003%时,会显著增加MnS、Cu2S等夹杂物数量,阻碍晶粒长大,劣化成品钢板的磁性。因此,在本发明所述的无取向电工钢板中控制S的质量百分比为S≤0.003%。
Als:在本发明所述的无取向电工钢板中,钢中Als元素含量不宜过高,当钢中Als含量高于0.001%时,会生成大量的AlN有害夹杂物,显著劣化成品钢板的磁性。因此,在本发明所述的无取向电工钢板中控制Als的质量百分比为Als≤0.001%。
在一些优选的实施方式中,Als的质量百分比可以控制为Als≤0.0005%。
O:在本发明所述的无取向电工钢板中,当钢中O元素含量低于0.003%时,不利于Al、Ti含量控制,而若钢中O元素含量高于0.01%时,则会生成大量的氧化物夹杂物,劣化成品钢板的磁性。因此,在本发明所述的无取向电工钢板中控制O的质量百分比在0.003%~0.01%之间。
在一些优选的实施方式中,O的质量百分比可以控制在0.045%~0.007%之间。
N:在本发明所述的无取向电工钢板中,钢中N元素含量不宜过高,当钢中N元素含量超过0.003%时,会使N的Nb、V、Ti、Al夹杂物显著增加,阻碍晶粒长大,劣化成品钢板的磁性。因此,在本发明所述的无取向电工钢板中控制N的质量百分比为N≤0.003%。
Sn:在本发明所述的无取向电工钢板中,Sn是晶界偏聚元素。钢中添加的适量有益元素Sn,可以在热轧轧制过程中,可以起到改善晶界偏聚和改善微观的有利织构的作用。当钢中Sn元素含量低于0.005%时,不能有效获得偏聚效果,而若钢中Sn元素含量超过0.05%时,则会导致晶粒细化,劣化成品钢板的磁性。因此,在本发明所述的无取向电工钢板中控制Sn的质量百分比在0.005%~0.05%之间。
在一些优选的实施方式中,Sn的质量百分比可以控制在0.005%~0.02%之间。
此外,在本发明所述的无取向电工钢板中,在控制单一化学元素含量的同时,还控制Si元素和P元素满足Si2/P:0.89~26.04,其中,式中Si和P均表示相应元素的质量百分比百分号前的数字。需要说明的是,Si元素和P元素的性质相近,都能显著提高材料的电阻率和降低成品钢板的铁损,但同时会劣化成品钢板的磁感。而在改善成品钢板的机械轻度方面,P元素具有十分优良的显著作用,但会劣化高Si含量条件时的冷轧可轧性。因此,针对成品钢板的电磁性能、机械性能进行综合考虑,在本发明所述的无取向电工钢板中控制Si2/P在0.89~26.04之间。
在一些优选的实施方式中,为了得到更优的实施效果,Si2/P可以控制在0.89~16.67之间。
另外,在本发明所述的无取向电工钢板中,需要说明的是,钢中的不可避免的杂质包括Nb、V、Ti、Ca、Mg和REM。
进一步地,在本发明所述的无取向电工钢板中,其中Als≤0.0005%。
进一步地,在本发明所述的无取向电工钢板中,其中O:0.045%~0.007%。
进一步地,在本发明所述的无取向电工钢板中,其中Sn:0.005%~0.02%。
进一步地,在本发明所述的无取向电工钢板中,其中Si2/P:0.89~16.67。
进一步地,在本发明所述的无取向电工钢板中,其与常规同牌号产品相比,其铁损P15/50平均降低0.2~0.8W/kg,磁感B50平均升高0.01~0.04T。
进一步地,在本发明所述的无取向电工钢板中,其厚度为0.5±0.1mm。
相应地,本发明的另一目的在于提供一种低成本极低铝的无取向电工钢板的制造方法,该制造方法生产工艺简便、制造成本低廉,采用该制造方法制得的无取向电工钢板与常规同牌号产品相比,其铁损P15/50平均降低0.2~0.8W/kg,磁感B50平均升高0.01~0.04T,具有高磁感和低铁损的特性。
为了实现上述目的,本发明提出了上述的无取向电工钢板的制造方法,包括步骤:
(1)冶炼;
(2)连铸;
(3)热轧:其中热轧板在卷取后不进行常化处理或罩式炉退火,而是利用热轧钢卷的自身余热进行均热和保温;
(4)一次冷轧;
(5)连续退火。
在本发明所述的制造方法中,在所述步骤(3)中,热轧板在卷取后不进行常化处理或罩式炉退火,而是利用热轧钢卷的自身余热进行均热和保温,可以有效促进微量元素Sn偏聚,改善热轧钢板再结晶组织和促进晶粒尺寸长大,从而可以实现代替或者补充常化退火或者罩式炉退火效果。此外,这一操作还可以有效简便工艺,减轻生产负担和制造难度,降低成产成本。
进一步地,在本发明所述的制造方法中,在步骤(1)中,在RH精炼的脱氧、合金化时,依次加入磷铁、硅铁和锰铁。
在本发明所述的无取向电工钢板的制造方法中,在所述步骤(1)中,在RH精炼的脱氧、合金化时,依次加入磷铁、硅铁和锰铁。这样,钢液在有氧的状态下,磷铁、硅铁中的Al、Ti、Nb、V、Ca、Mg、REM等,会迅速发生氧化、还原反应,并陆续生成了大颗粒氧化物和上浮进入顶渣中,这样就不会劣化钢质洁净度。因此,经过大量的试验研究,已有效降低对磷铁、硅铁的部分有害元素控制要求,从而可以大大降低炼钢环节的生产制造成本。
此外,需要说明的是,硅铁的加入量需要考虑两个方面:一方面,根据化学成分P加入硅铁,以确保Si2/P控制在0.89~26.04之间,另一方面,需要根据化学成分O加入硅铁,以确保在极低铝含量条件下,依靠Si脱氧调节钢中的O含量,以免O含量出现过低或过高。当硅铁加入量过大时,脱氧能力强,钢中的O含量偏低,生成的大量脱氧产物SiO2进入渣中,会导致Al、Ti、Nb、V、Ca、Mg、REM等元素还原重新进入钢中;当硅铁加入量过小时,脱氧能力弱,钢中的O含量偏高,并在最终CC连铸浇铸时,随着钢液温度的不断降低,过饱和而再次生成大量尺寸细小的二次脱氧化物SiO2,此时,其已无法上浮和去除,残留在钢中,并为后续热轧期间MnS夹杂物析出提供核心。因此,需要根据化学成分O加入硅铁,确保钢中O含量严格控制在0.003%~0.01%之间。
进一步地,在本发明所述的制造方法中,其中,在所述硅铁中,Al≤0.1%并且/或者Ti≤0.03%。
进一步地,在本发明所述的制造方法中,在步骤(3)中,控制开轧温度为1050~1150℃,终轧温度为650~950℃,卷取温度为650~850℃,均热和保温温度为650~850℃,保温时间至少为10s。
上述方案中,在所述步骤(3)中,控制均热和保温温度为650~850℃,可以有效促进微量元素Sn偏聚,以改善热轧钢板再结晶组织和促进晶粒尺寸长大。控制保温时间至少为10s,在温度条件允许的情况下,可以适当延长以扩大改善效果。
进一步地,在本发明所述的制造方法中,在步骤(3)中,粗轧和精轧分2~8个道次完成。
进一步地,在本发明所述的制造方法中,在步骤(5)中,退火温度为650~950℃,退火气氛为H2和N2混合气体,其中H2的体积比例为20%~60%。
本发明所述的低成本极低铝的无取向电工钢板及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的低成本极低铝的无取向电工钢板通过优化钢的化学成分设计,借助钢中含有极低铝含量,以及钢、渣含有适量的氧化性技术特点,调低了RH精炼脱氧、合金化专用合金品质,以大幅降低钢的制造成本,有效控制了合金成本。该无取向电工钢板与常规同牌号产品相比,其铁损P15/50平均降低0.2~0.8W/kg,磁感B50平均升高0.01~0.04T,实现了在具有良好经济性的同时,还具有高磁感和低铁损的特性。
此外,本发明所述的制造方法生产工艺简便、制造成本低廉,其通过对工艺条件尤其是热轧工艺的控制,控制热轧板在卷取后不进行常化处理或罩式炉退火,而是利用热轧钢卷的自身余热进行均热和保温,可以使钢中微量元素Sn偏聚,起到改善热轧钢板再结晶组织和促进晶粒尺寸长大的效果。
附图说明
图1示意性地显示了本发明所述的无取向电工钢板中氧含量与成品钢板铁损P15/50之间的关系。
图2为实施例2的热轧钢板的显微组织图。
图3为对比例2的热轧钢板的显微组织图。
图4为实施例3的成品无取向电工钢板的显微组织图。
图5为对比例3的成品钢板的显微组织图。
具体实施方式
下面将结合具体的实施例和说明书附图对本发明所述的低成本极低铝的无取向电工钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6和对比例1-6
表1列出了实施例1-6的无取向电工钢板中各化学元素质量百分比。需要说明的是,钢种中不可避免的杂质主要包括:Nb、V、Ti、Ca、Mg和REM。
表1.(wt%,余量为Fe和其他不可避免的杂质)
Figure BDA0002514706760000081
本发明所述实施例1-6的无取向电工钢板均采用以下步骤制得:
(1)冶炼:高炉铁水以及适量废钢经转炉冶炼之后,在RH精炼依次完成脱碳、脱氧、合金化,然后浇铸成合格板坯。在RH精炼的脱氧、合金化时,依次加入磷铁、硅铁和锰铁,其中,在硅铁中,Al≤0.1%,Ti≤0.03%;
(2)连铸;
(3)热轧:控制开轧温度为1050~1150℃,终轧温度为650~950℃,卷取温度为650~850℃,均热和保温温度为650~850℃,保温时间至少为10s,粗轧和精轧分2~8个道次完成,热轧目标厚度为1.2~2.8mm。其中热轧板在卷取后不进行常化处理或罩式炉退火,而是利用热轧钢卷的自身余热进行均热和保温。热轧完成后,对热轧钢卷进行酸洗;
(4)一次冷轧:一次性轧制成目标厚度;
(5)连续退火:控制退火温度为650~950℃,退火时间≤180s,退火气氛为H2和N2混合气体,其中H2的体积比例为20%~60%。
表2-1和表2-2列出了实施例1-6的无取向电工钢板的制造方法的具体工艺参数。
表2-1.
Figure BDA0002514706760000091
表2-2.
Figure BDA0002514706760000092
需要说明的是,对比例1-6的钢板并不采用本发明的制造工艺,其仅采用常规的工艺条件制得,且对比例1-6的钢板分别与实施例1-6一一对应。其中,实施例1对应的是对比例1的国标B50A1300牌号钢,实施例2对应的是对比例2的国标B50A800牌号钢,实施例3对应的是对比例3的国标B50A470牌号钢;实施例4对应的是对比例4的国标B50A1300牌号钢,实施例5对应的是对比例5的国标B50A800牌号钢,实施例6对应的是对比例6的国标B50A470牌号钢。
将冷轧得到的最终目标厚度0.5±0.1mm的实施例1-6的无取向电工钢板以及对比例1-6的钢板行各项性能测试,所得的测试结果列于表3中。
表3列出了实施例1-6的无取向电工钢板以及对比例1-6钢板的性能测试结果。
表3.
Figure BDA0002514706760000101
由表3可看出,采用常规的工艺条件制得的对比例1-6钢板与实施例1-6的无取向电工钢板在铁损P15/50和磁感B50性能上均存在明显差异。电磁性能测试密度为7.85g/cm3时,实施例1较对比例1铁损P15/50降低了0.4W/kg,磁感B50升高了0.04T;电磁性能测试密度为7.80g/cm3时,实施例2较对比例2铁损P15/50降低了0.6W/kg,磁感B50升高了0.02T;电磁性能测试密度为7.70g/cm3时,实施例3较对比例3铁损P15/50降低了0.8W/kg,磁感B50升高了0.01T;电磁性能测试密度为7.85g/cm3时,实施例4较对比例4铁损P15/50降低了0.8W/kg,磁感B50升高了0.04T;电磁性能测试密度为7.80g/cm3时,实施例5较对比例5铁损P15/50降低了0.7W/kg,磁感B50升高了0.03T;电磁性能测试密度为7.70g/cm3时,实施例6较对比例6铁损P15/50降低了0.8W/kg,磁感B50升高了0.04T。
由此可见,本发明各实施例的无取向电工钢板通过合理的化学成分设计和工艺设计,具有优异的性能。该无取向电工钢板与常规同牌号产品相比,其铁损P15/50平均降低0.2~0.8W/kg,磁感B50平均升高0.01~0.04T,实现了在具有良好经济性的同时,还具有高磁感和低铁损的特性。
图1示意性地显示了本发明所述的无取向电工钢板中氧含量与成品钢板铁损P15/50之间的关系。
如图1所示,图1示意性地显示了氧含量与成品钢板铁损P15/50之间的关系,对于国标B50A1300牌号而言,在本发明成分体系下,成品钢板的铁损与钢中的氧含量密切相关。氧含量低于30ppm时,钢板的铁损会超出6.0W/kg,并且氧含量越低,钢板的铁损越高;而在氧含量位于30-100ppm之间时,钢板的铁损总体较低,且控制效果可以稳定在5.5W/kg或以下;而在氧含量高于100ppm之后,随着氧含量的不断升高,钢板铁损单调、快速增加,而在氧含量达到130ppm时,钢板铁损甚至可以达到8.5W/kg,大大高于低氧含量对应的钢板铁损。
图2为实施例2的热轧钢板的显微组织图。
图3为对比例2的热轧钢板的显微组织图。
如图2和图3所示,实施例2对应的热轧钢板能够实现完全再结晶,晶粒尺寸均匀、粗大,平均晶粒尺寸可以达到80μm,而相应的对比例2对应的热轧钢板没有实现完全再结晶,仅靠近热轧钢板上下表面约5%的位置实现了再结晶,钢板中间位置即为纤维状未完全再结晶组织,其中能够实现再结晶的晶粒尺寸相对较小,平均不足50μm。
图4为实施例3的成品无取向电工钢板的显微组织图。
图5为对比例3的成品钢板的显微组织图。
结合图4和图5可以看出,对于实施例3而言,其成品带钢的显微组织以粗大的等轴晶粒为主,晶粒之间的长短轴尺寸接近,形状规则且平均再结晶尺寸为75μm,同牌号的对比例3中,存在晶粒不能有效长大的现象,细小的晶粒表现出局部团簇、偏聚,其余能够正常完成再结晶的等轴晶粒,则表现出晶粒尺寸细小,分布不均匀现象。
需要注意的是,以上所列举实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (13)

1.一种低成本极低铝的无取向电工钢板,其特征在于,其含有质量百分比如下的下述化学元素:
C≤0.003%、Si:0.1%~1.2%、Mn:0.1%~0.4%、P:0.01%~0.2%、S≤0.003%、Als≤0.001%、O:0.003%~0.01%、N≤0.003%、Sn:0.005%~0.05%,且满足Si2/P:0.89~26.04。
2.如权利要求1所述的无取向电工钢板,其特征在于,其各化学元素质量百分比为:
C≤0.003%、Si:0.1%~1.2%、Mn:0.1%~0.4%、P:0.01%~0.2%、S≤0.003%、Als≤0.001%、O:0.003%~0.01%、N≤0.003%、Sn:0.005%~0.05%,余量为Fe及其他不可避免的杂质;且满足Si2/P:0.89~26.04。
3.如权利要求1或2所述的无取向电工钢板,其特征在于,其中Als≤0.0005%。
4.如权利要求1或2所述的无取向电工钢板,其特征在于,其中O:0.045%~0.007%。
5.如权利要求1或2所述的无取向电工钢板,其特征在于,其中Sn:0.005%~0.02%。
6.如权利要求1或2所述的无取向电工钢板,其特征在于,其中Si2/P:0.89~16.67。
7.如权利要求1或2所述的无取向电工钢板,其特征在于,与常规同牌号产品相比,其铁损P15/50平均降低0.2~0.8W/kg,磁感B50平均升高0.01~0.04T。
8.一种如权利要求1-7中任意一项所述的无取向电工钢板的制造方法,其特征在于,包括步骤:
(1)冶炼;
(2)连铸;
(3)热轧:其中热轧板在卷取后不进行常化处理或罩式炉退火,而是利用热轧钢卷的自身余热进行均热和保温;
(4)一次冷轧;
(5)连续退火。
9.如权利要求8所述的制造方法,其特征在于,在步骤(1)中,在RH精炼的脱氧、合金化时,依次加入磷铁、硅铁和锰铁。
10.如权利要求9所述的制造方法,其特征在于,其中,在所述硅铁中,Al≤0.1%并且/或者Ti≤0.03%。
11.如权利要求8所述的制造方法,其特征在于,在步骤(3)中,控制开轧温度为1050~1150℃,终轧温度为650~950℃,卷取温度为650~850℃,均热和保温温度为650~850℃,保温时间至少为10s。
12.如权利要求8或11所述的制造方法,其特征在于,在步骤(3)中,粗轧和精轧分2~8个道次完成。
13.如权利要求8所述的制造方法,其特征在于,在步骤(5)中,退火温度为650~950℃,退火气氛为H2和N2混合气体,其中H2的体积比例为20%~60%。
CN202010472318.5A 2020-05-29 2020-05-29 一种低成本极低铝的无取向电工钢板及其制造方法 Active CN113737089B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202010472318.5A CN113737089B (zh) 2020-05-29 2020-05-29 一种低成本极低铝的无取向电工钢板及其制造方法
KR1020227040497A KR20220162179A (ko) 2020-05-29 2021-05-25 알루미늄 함량이 매우 낮은 저가형 무방향성 전기 스틸 플레이트 및 그 제조방법
EP21813476.5A EP4137603A4 (en) 2020-05-29 2021-05-25 LOW-COST NON-ORIENTED ELECTRICAL STEEL PLATE WITH EXTREMELY LOW ALUMINUM CONTENT AND PRODUCTION PROCESS THEREOF
JP2022571881A JP2023526128A (ja) 2020-05-29 2021-05-25 アルミニウム含有量の極めて少ない低コストの無方向性電磁鋼板およびその製造方法
PCT/CN2021/095717 WO2021238895A1 (zh) 2020-05-29 2021-05-25 一种低成本极低铝的无取向电工钢板及其制造方法
US17/927,165 US20230203613A1 (en) 2020-05-29 2021-05-25 Low-Cost Non-Oriented Electrical Steel Plate With Extremely Low Aluminum Content and Manufacturing Method Therefor
MX2022014497A MX2022014497A (es) 2020-05-29 2021-05-25 Placa de acero electrico no orientado de bajo costo con contenido de aluminio extremadamente bajo y metodo para su fabricacion.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010472318.5A CN113737089B (zh) 2020-05-29 2020-05-29 一种低成本极低铝的无取向电工钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN113737089A CN113737089A (zh) 2021-12-03
CN113737089B true CN113737089B (zh) 2022-07-15

Family

ID=78724369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010472318.5A Active CN113737089B (zh) 2020-05-29 2020-05-29 一种低成本极低铝的无取向电工钢板及其制造方法

Country Status (7)

Country Link
US (1) US20230203613A1 (zh)
EP (1) EP4137603A4 (zh)
JP (1) JP2023526128A (zh)
KR (1) KR20220162179A (zh)
CN (1) CN113737089B (zh)
MX (1) MX2022014497A (zh)
WO (1) WO2021238895A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418550A (zh) * 2022-09-26 2022-12-02 江苏沙钢集团有限公司 一种含磷无铝高强度无取向硅钢生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930008167A (ko) * 1991-10-22 1993-05-21 정명식 자성이 우수한 무방향성 전기강판 및 그 제조방법
CN102796948A (zh) * 2011-05-27 2012-11-28 宝山钢铁股份有限公司 极低Ti含量的无取向电工钢板及其冶炼方法
CN104136637A (zh) * 2012-03-15 2014-11-05 杰富意钢铁株式会社 无取向性电磁钢板的制造方法
CN105925884A (zh) * 2016-05-30 2016-09-07 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
JP2016199787A (ja) * 2015-04-10 2016-12-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN106702260A (zh) * 2016-12-02 2017-05-24 武汉钢铁股份有限公司 一种高磁感低铁损无取向硅钢及其生产方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158907B2 (ja) * 1994-06-27 2001-04-23 日本鋼管株式会社 磁気特性に優れた無方向性電磁鋼板の製造方法
JP3492075B2 (ja) * 1996-04-17 2004-02-03 新日本製鐵株式会社 熱伝導率に優れる無方向性電磁鋼板およびその製造方法
JP3852419B2 (ja) * 2003-02-06 2006-11-29 住友金属工業株式会社 無方向性電磁鋼板
CN101306434B (zh) 2008-06-23 2012-05-30 首钢总公司 一种低碳低硅无铝半工艺无取向电工钢的制备方法
CN101992210B (zh) 2009-08-25 2013-03-13 鞍钢股份有限公司 一种生产冷轧无取向硅钢无铝钢种的方法
CN102134675B (zh) * 2011-02-22 2012-10-03 武汉钢铁(集团)公司 薄板坯连铸连轧生产的无取向电工钢及其方法
CN102634742B (zh) * 2012-04-01 2013-09-25 首钢总公司 一种无Al的无取向电工钢的制备方法
CN102925793B (zh) * 2012-11-27 2014-12-10 武汉钢铁(集团)公司 一种磁感≥1.8t的无取向电工钢及其生产方法
JP5853983B2 (ja) * 2013-03-29 2016-02-09 Jfeスチール株式会社 無方向性電磁鋼板用熱延鋼板の製造方法および無方向性電磁鋼板の製造方法
CN104017949B (zh) * 2014-06-12 2017-10-03 鞍钢股份有限公司 一种无铝无取向硅钢的rh精炼方法
CN104404396B (zh) * 2014-11-24 2017-02-08 武汉钢铁(集团)公司 一种无需常化的高磁感无取向硅钢及用薄板坯生产方法
CN106756491B (zh) * 2016-12-15 2019-05-24 武汉钢铁有限公司 一种焊接性和磁性优良的无取向电工钢及生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930008167A (ko) * 1991-10-22 1993-05-21 정명식 자성이 우수한 무방향성 전기강판 및 그 제조방법
CN102796948A (zh) * 2011-05-27 2012-11-28 宝山钢铁股份有限公司 极低Ti含量的无取向电工钢板及其冶炼方法
CN104136637A (zh) * 2012-03-15 2014-11-05 杰富意钢铁株式会社 无取向性电磁钢板的制造方法
JP2016199787A (ja) * 2015-04-10 2016-12-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN105925884A (zh) * 2016-05-30 2016-09-07 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
CN106702260A (zh) * 2016-12-02 2017-05-24 武汉钢铁股份有限公司 一种高磁感低铁损无取向硅钢及其生产方法

Also Published As

Publication number Publication date
JP2023526128A (ja) 2023-06-20
CN113737089A (zh) 2021-12-03
MX2022014497A (es) 2022-12-13
EP4137603A1 (en) 2023-02-22
EP4137603A4 (en) 2023-10-11
KR20220162179A (ko) 2022-12-07
US20230203613A1 (en) 2023-06-29
WO2021238895A1 (zh) 2021-12-02

Similar Documents

Publication Publication Date Title
EP4206353A1 (en) High-grade non-oriented silicon steel and production method therefor
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
CN102041367A (zh) 薄带连铸冷轧无取向电工钢的制造方法
CN102605267B (zh) 一种低温加热工艺优化的高磁感取向电工钢板及生产方法
JP2021502489A (ja) 磁気特性に優れる無方向性電磁鋼板およびその製造方法
CN111793771A (zh) 一种低铁损低时效高强度50w800无取向硅钢及其制造方法
CN111778452A (zh) 一种磁性能优良的无取向电工钢板及其冶炼方法
CN113737089B (zh) 一种低成本极低铝的无取向电工钢板及其制造方法
US4702780A (en) Process for producing a grain oriented silicon steel sheet excellent in surface properties and magnetic characteristics
CN113604743B (zh) 一种分步调控制备高磁感高强度无取向电工钢的方法
CN115198203B (zh) 一种免常化中间退火的无取向电工钢板及其制造方法
CN105385937B (zh) 一种高磁感取向硅钢极薄带的减量化制备方法
JP3458683B2 (ja) 歪取り焼鈍後の磁気特性に優れる無方向性電磁鋼板の製造方法
JP2784687B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
CN108823372B (zh) 一种取向高硅钢薄带及其高效退火模式的制备方法
RU2806222C1 (ru) Экономичный лист из нетекстурированной электротехнической стали с очень низким содержанием алюминия и способ его изготовления
CN101463447B (zh) 一种低温板坯加热生产取向硅钢的方法
EP4435131A1 (en) Non-oriented electrical steel plate with good magnetic performance and manufacturing method therefor
CN111961980B (zh) 一种csp流程无常化工艺生产薄规格中高牌号无取向硅钢的方法
CN115261732B (zh) 一种350MPa级低成本高磁感冷轧磁极钢及其制造方法
JPH0797628A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
EP4450669A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JPH08283853A (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
KR102528345B1 (ko) 무방향성 전자 강판 및 그의 소재가 되는 슬래브 주편의 제조 방법
CN117385288A (zh) 一种中频磁性能优良的高强度无取向电工钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant