WO2013133170A1 - Transmission device - Google Patents
Transmission device Download PDFInfo
- Publication number
- WO2013133170A1 WO2013133170A1 PCT/JP2013/055702 JP2013055702W WO2013133170A1 WO 2013133170 A1 WO2013133170 A1 WO 2013133170A1 JP 2013055702 W JP2013055702 W JP 2013055702W WO 2013133170 A1 WO2013133170 A1 WO 2013133170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- amplifier unit
- signal
- amplifier
- power
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 68
- 239000003990 capacitor Substances 0.000 claims description 17
- 238000010586 diagram Methods 0.000 description 24
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 230000003321 amplification Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/555—A voltage generating circuit being realised for biasing different circuit elements
Definitions
- the present invention relates to a transmission apparatus mainly used for wireless communication, and in particular, from a power supply apparatus having a function of changing an output voltage according to the magnitude of an input signal, and an amplifier using the output voltage of the power supply apparatus as a power supply voltage.
- This relates to a transmission apparatus.
- Digital modulation methods used in recent wireless communications such as cellular phones and wireless LANs (Local Area Networks) employ modulation formats such as QPSK (Quadrature Phase Shift Keying) and multilevel QAM (Quadrature Amplitude Modulation).
- modulation formats such as QPSK (Quadrature Phase Shift Keying) and multilevel QAM (Quadrature Amplitude Modulation).
- the signal trajectory is generally accompanied by amplitude modulation at the time of transition between symbols. Therefore, the amplitude (envelope) of the signal changes with time in the high frequency modulation signal superimposed on the carrier signal in the microwave band.
- PAPR Peak-to-Average Power Ratio
- the PAPR tends to increase, so the average efficiency of the amplifier Is further reduced. Therefore, it is desirable that the amplifier has high efficiency even in a power region with a large back-off.
- a transmission method called envelope tracking (ET) is known as a method for amplifying a signal with high efficiency over a wide dynamic range in a power region with a large back-off.
- E envelope tracking
- a modulation power supply device used in an ET transmission device generally, an amplitude modulation component is converted into a pulse modulation signal, and switching amplification is performed using a class D amplifier or the like.
- a modulation power supply apparatus having a wide band high power and high speed switching amplification is required. Therefore, as a method of modulating the power supply in a high efficiency and wide band, a technique for linking a broadband wide-band linear amplifier and a narrow-band high-efficiency switching amplifier has been proposed. It is described in Patent Document 2.
- FIG. 9 shows the configuration of an envelope tracking transmission device described in Non-Patent Document 2 as Related Technology 1.
- the transmission device 100 includes a power amplifier 120 and a power supply device 130.
- the power supply device 130 includes a current detection unit 140, a switching amplifier unit 150, and a linear amplifier unit 160.
- the linear amplifier unit 160 having a wide band but low power efficiency and the switching amplifier unit 150 having a narrow band and high power efficiency are linked to each other, whereby a high-efficiency and wide-band power supply voltage Vout (waveform 114 ) Is supplied to the power amplifier 120.
- Vout waveform 114
- the analog amplitude signal 112a When the analog amplitude signal 112a is input to the linear amplifier unit 160 having the voltage follower configuration configured by the operational amplifier 161, the current Ic output from the linear amplifier unit 160 is converted into a voltage by the current detection resistor 141. Input to the comparator 142. At this time, the polarity of the output of the comparator 142 is selected so that the current flows out from the linear amplifier section 160 (Ic> 0) is High, and the current flows (Ic ⁇ 0) is Low. Thereby, the pulse width modulation signal 113 becomes a signal corresponding to the intensity of the analog amplitude signal 112a. This pulse width modulation signal 113 is used as a control signal for the switching element 152.
- the switching element 152 constitutes a switching converter together with the diode 153.
- the switching element 152 When the pulse width modulation signal 113 is High, the switching element 152 is turned on (conductive state). At this time, the switching element 152 flows the current Im from the DC power supply 132 toward the power amplifier 120 that is a load.
- the pulse width modulation signal 113 is Low, the switching element 152 is turned off (non-conducting state). At this time, the inductor 154 outputs a current Im from the ground (hereinafter referred to as “GND”) via the diode 153 in order to maintain the flowing current.
- GND ground
- the power supply device 130 combines the current Im and the current Ic and supplies the current Iout to the power amplifier 120.
- the current Iout is supplied alternately to the power amplifier 120 mainly from the DC power supply 132 and GND.
- the power supply voltage Vout (waveform 114) becomes a voltage waveform following the waveform of the analog amplitude signal 112a by the operation of the linear amplifier unit 160.
- Patent Document 1 Another modulation power supply device that modulates the power supply with high efficiency and wide bandwidth is proposed in Patent Document 1.
- the configuration of the power supply circuit of Patent Document 1 is a modification of a part of the configuration of the modulation power supply device of Non-Patent Document 2 shown in FIG.
- the configuration of an envelope tracking transmission device described in Patent Document 1 is shown in FIG.
- a power amplifier 201 is connected to the digital modulation signal generation unit 220 via a harmonic modulation circuit 221.
- the harmonic modulation circuit 221 is connected between the digital modulation signal generation unit 220 and the power amplifier 201, and generates a high frequency signal H by performing high frequency modulation on the baseband signal SB output from the digital modulation signal generation unit 220.
- the high frequency signal H is sent to the power amplifier 201.
- the power amplifier 201 amplifies and outputs the high frequency signal H output from the harmonic modulation circuit 221.
- the saturation output power changes according to the magnitudes of the drain voltage Vds and the drain current Ids. For example, in the power amplifier 201, when the drain voltage Vds decreases, the saturation output power decreases, and when the drain voltage Vds increases, the saturation output power increases. Even if the power of the high-frequency signal H changes, the power amplifier 201 has a level close to the saturation output. It is possible to increase the efficiency by operating with The power amplifier 201 is composed of an FET.
- the drain terminal of the power amplifier 201 is connected to the digital modulation signal generation unit 220 via the linear amplifier unit 213.
- the linear amplifier unit 213 supplies the first drain voltage corresponding to the amplitude value of the envelope signal (first control signal E) output from the digital modulation signal generation unit 220 to the power amplifier 201.
- the drain current value supplied from the linear amplifier unit 213 to the power amplifier 201 is small.
- a switching amplifier unit 223 is connected to the digital modulation signal generation unit 220 via a time correction circuit 222.
- the switching amplifier unit 223 includes a switch driver circuit 224 and a low speed switch power source 216.
- the switch driver circuit 224 receives an on / off signal SH output from the digital modulation signal generation unit 220 and corrected at an earlier timing by the time correction circuit 222, and a low-speed switch according to the on / off signal SH.
- the power source 216 is turned on / off.
- the low speed switch power source 216 is for supplying a large current to the power amplifier 201.
- a DC power source 217 is connected to one end side of the low-speed switch power source 216, and a drain terminal of the power amplifier 201 is connected to the other end side via a low-pass filter 218.
- the DC power supply 217 can supply a large current to the power amplifier 201 in order to supplement the amount of current to the power amplifier 201.
- the digital modulation signal generation unit 220 generates a first control signal E that follows a change in the amplitude signal, outputs the first control signal E to the linear amplifier unit 213, and also controls a second control signal S that is turned on / off according to the amplitude signal. Is output to the switching amplifier unit 223.
- the power supply device 230 adds up the output current of the linear amplifier unit 213 and the output current of the switching amplifier unit 223 and supplies the sum to the power amplifier 201.
- the transmission apparatus of Related Technology 3 is an envelope tracking type high-frequency power amplifying apparatus that expands an output power level at which high efficiency characteristics can be obtained by switching amplification paths.
- a delay time correcting means for matching the timings of the modulation signal and the amplitude signal is provided in the path of the modulation signal. This delay time correcting means is common in an envelope tracking type high frequency power amplifier.
- the transmission apparatus 100 of Related Technology 1 shown in FIG. 9 has the following problems.
- the problem is that when a high-speed and high-power analog amplitude signal 112a is input, the power efficiency of the power supply device 130 is lowered, or the power supply device 130 cannot accurately track the analog amplitude signal 112a.
- the power efficiency of the entire transmission apparatus 100 is reduced and the output signal 115 of the transmission apparatus 100 is distorted. This is because the timings of the operations of the linear amplifier unit 160 and the switching amplifier unit 150 are shifted. The reason will be described below.
- the direction of the current Ic flowing through the linear amplifier unit 160 is detected by the comparator 142, and the switching amplifier unit 150 is controlled based on the result. Accordingly, the switching amplifier unit 150 and the linear amplifier unit 160 operate in a coordinated manner so that the current Ic flowing through the low efficiency linear amplifier unit 160 is minimized.
- the switching element 152 constituting the switching amplifier unit 150 an FET is normally used. However, in order to operate with high efficiency, it is necessary to have a sufficiently low on-resistance with respect to the load resistance. For this reason, in high load (high power) applications, it is necessary to increase the element size, which increases the input capacitance of the FET.
- a driver amplifier 151 is required to drive the switching element 152 with a pulse modulation signal 113 made of a rectangular wave.
- the input capacitance of the switching element 152 that is the load of the driver amplifier 151 is large, the rise time and the fall time of the pulse modulation signal 113 formed of a rectangular wave are increased, and the detection result of the comparator 142 is transmitted to the switching amplifier unit 150. There is a delay before it is done. As a result, the linear amplifier unit 160 and the switching amplifier unit 150 do not cooperate. Then, since the linear amplifier unit 160 needs a large current to track the waveform of the analog amplitude signal 112a, the power efficiency of the power supply device 130 decreases. Alternatively, since the linear amplifier unit 160 cannot obtain a sufficient current, the waveform of the analog amplitude signal 112a cannot be tracked.
- the transmission apparatus 200 of Related Technology 2 shown in FIG. 10 has the following problems.
- the first problem is that the power efficiency of the power supply device 230 decreases due to load fluctuations and variations in element characteristics, and the power supply device 230 cannot accurately track the amplitude signal. As a result, there arises a problem that the power efficiency of the entire transmission apparatus 200 is reduced and the output signal of the transmission apparatus 200 is distorted. This is because, in the power supply device 230, feedback is not applied to any of the linear amplifier unit 213, the switching amplifier unit 223, and the power amplifier 201. The reason will be described below.
- the time correction circuit 222 operates in a feed-forward manner so that the timing of the switching amplifier unit 223 matches the linear amplifier unit 213. Therefore, even if the linear amplifier unit 213 and the switching amplifier unit 223 perform an ideal operation under a certain condition, it cannot be compensated if the condition is shifted due to a load variation or a variation in element characteristics.
- a case where a plurality of transmission apparatuses are connected in parallel to the common control signal generation unit 220 can be considered. In this case, it is considered that the amount of delay varies depending on the variation of individual components. However, since the delay cannot be adjusted individually, the power efficiency of the entire apparatus is reduced, and the amplitude signal cannot be accurately tracked.
- the second problem is that a delay occurs in the power supply device 230. Therefore, in order to compensate for the delay of the switch driver circuit 224, it is necessary to advance the second control signal S input to the switching amplifier unit 223 earlier than the first control signal E input to the linear amplifier unit 213. is there. Actually, since the event cannot be prefetched, it is necessary to delay the first control signal E with respect to the second control signal S in the digital modulation signal generation unit 220. Furthermore, since it takes a finite time to generate the second control signal S, a delay occurs in the input / output of the power supply device 230. There is also a problem that the scale and power consumption of the digital modulation signal generation unit 220 are increased.
- an object of the present invention is to provide a highly efficient and highly linear device comprising a power supply device having a function of changing an output voltage according to the magnitude of an input signal and an amplifier using the output voltage of the power supply device as a power supply voltage. Is to provide a transmission apparatus.
- the transmission device is: An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage; A power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal; A delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit; Is provided.
- a delay device connected between the power supply terminal and the input terminal of the amplifier compensates for a timing shift in operation between the switching amplifier unit and the linear amplifier unit of the power supply device, thereby enabling simple and high accuracy.
- the efficiency of the transmission apparatus can be improved.
- FIG. 2 is a block diagram illustrating an overview of a transmission apparatus according to Embodiment 1.
- FIG. 2 is a circuit diagram illustrating a specific example of a power supply device according to Embodiment 1.
- FIG. 3 is a circuit diagram illustrating a specific example of a power amplifier and a delay device in the first embodiment.
- FIG. 4A is a waveform diagram for explaining an ideal operation of the transmitting apparatus (comparative example) of related technology 1, and FIG. 4A shows the timing relationship between the analog amplitude signal and the output voltage of the switching element.
- B] shows the timing relationship between the current output from the switching amplifier unit and the current flowing through the power amplifier, and
- FIG. 4C shows the current flowing through the linear amplifier unit.
- FIG. 5 [A] shows a timing relation between an analog amplitude signal and an output voltage of a switching element, and FIG. The timing relationship between the current output from the switching amplifier unit and the current flowing through the power amplifier is shown.
- FIG. 5C shows the current flowing through the linear amplifier unit.
- 6A and 6B are waveform diagrams for explaining the operation of the transmission apparatus according to the first embodiment.
- FIG. 6A shows the timing relationship between the analog amplitude signal and the output voltage of the switching element, and FIG. The timing relationship between the output current and the current flowing through the power amplifier is shown
- FIG. 6 [C] shows the current flowing through the linear amplifier section.
- FIG. 6 is a block diagram illustrating an outline of a transmission apparatus according to Embodiment 2.
- FIG. 6 is a circuit diagram illustrating a specific example of a power supply device according to Embodiment 2.
- FIG. It is a circuit diagram which shows the transmission apparatus of related technology 1. It is a circuit diagram which shows the transmission apparatus of related technology 2.
- FIG. 1 is a block diagram illustrating an outline of the transmission apparatus according to the first embodiment.
- FIG. 2 is a circuit diagram illustrating a specific example of the power supply device according to the first embodiment.
- FIG. 3 is a circuit diagram illustrating a specific example of the power amplifier and the delay device in the transmission apparatus according to the first embodiment. The outline of the transmission apparatus according to the first embodiment will be described below with reference to these drawings.
- the transmission device 10 includes a power amplifier 20 as an amplifier, a power supply device 30, and a delay device 40.
- the power amplifier 20 includes an input terminal 21 that inputs a modulation signal 11 including an amplitude modulation component 12 and a phase modulation component, and a power supply terminal 22 that inputs a power supply voltage Vout.
- the power amplifier 20 uses the power supply voltage Vout to output the modulation signal 11.
- the power supply device 30 includes a switching amplifier unit 50 and a linear amplifier unit 60, and supplies a power supply voltage Vout that follows the waveform of the amplitude modulation component 12 of the modulation signal 11 to the power supply terminal 22.
- the delay device 40 is connected between the power supply terminal 22 and the input terminal 21 and compensates for a timing shift in operation between the switching amplifier unit 50 and the linear amplifier unit 60.
- the power supply device 30 further includes a control signal generation unit 70.
- the control signal generation unit 70 receives the amplitude modulation component 12, generates a signal (analog amplitude signal 12 a) that represents the amplitude modulation component 12 in analog form, outputs the signal to the switching amplifier unit 50, and pulse-modulates the amplitude modulation component 12.
- the generated signal (pulse modulated signal 13) is generated and output to the linear amplifier unit 60.
- the switching amplifier unit 50 has a switching converter configuration including at least one switching element 52 and an inductor 54 that smoothes the output current of the switching element 52.
- the linear amplifier unit 60 has a voltage follower configuration including at least one operational amplifier 61 and a feedback path for returning the output signal of the operational amplifier 61 to the input.
- the delay device 40 includes resistors 41 and 42 and capacitors 43 and 44.
- the delay amount ⁇ is determined by a time constant consisting of ⁇ (C1 // C2).
- operation delay between the switching amplifier unit 50 and the linear amplifier unit 60 of the power supply device 30 is caused by the delay device 40 connected between the power supply terminal 22 and the input terminal 21 of the power amplifier 20.
- FIG. 1 is a block diagram illustrating a configuration of the transmission apparatus 10 according to the first embodiment.
- the modulation signal 11 is input to the power amplifier 20.
- the power amplifier 20 outputs the amplified modulation signal 15.
- the amplitude modulation component 12 of the modulation signal 11 is input to the power supply device 30 including the switching amplifier unit 50 and the linear amplifier unit 60.
- the power supply voltage Vout output from the power supply device 30 is supplied to the power supply terminal 22 of the power amplifier 20.
- the power supply voltage 14 is a waveform of the power supply voltage Vout.
- the power supply terminal 22 is connected to the input terminal 21 via the delay device 40.
- FIG. 2 is a diagram more specifically showing the configuration of the power supply device 30 in FIG.
- the amplitude modulation component 12 of the modulation signal 11 is input to the control signal generator 70.
- the control signal generation unit 70 outputs an analog amplitude signal 12a obtained by analog conversion of the amplitude modulation component 12, and a pulse modulation signal 13 obtained by pulse modulation of the amplitude modulation component 12.
- the pulse modulation signal 13 is generated in the control signal generation unit 70 by, for example, pulse width modulation (PWM), delta sigma modulation, or the like.
- PWM pulse width modulation
- the analog amplitude signal 12 a is input to the linear amplifier unit 60.
- the linear amplifier unit 60 has a voltage follower configuration including an operational amplifier 61, and outputs a power supply voltage Vout having a waveform following the voltage waveform of the analog amplitude signal 12a of the amplitude modulation component 12, and also outputs a current Ic. .
- the pulse modulation signal 13 of the amplitude modulation component 12 is input to the driver amplifier 51.
- the driver amplifier 51 amplifies the input pulse while maintaining the waveform, and outputs the amplified pulse to the switching element 52.
- the switching amplifier unit 50 includes a driver amplifier 51, a switching element 52, a diode 53 as a rectifying element, and an inductor 54.
- the switching element 52 performs an on / off operation according to the output signal of the driver amplifier 51.
- a current is alternately supplied from the DC power source 32 when the switching element 52 is on, and from the diode 53 when the switching element 52 is off.
- the switching amplifier unit 50 outputs a current Im smoothed by the inductor 54.
- the output side of the linear amplifier unit 60 and the output side of the switching amplifier unit 50 are coupled by an output terminal 31, and the output terminal 31 is connected to the power supply terminal 22 of the power amplifier 20.
- the power supply terminal 22 is connected to the input terminal 21 of the power amplifier 20 via the delay device 40.
- FIG. 3 is a diagram more specifically showing the configuration of the power amplifier 20 and the delay device 40 in FIG.
- the power amplifier 20 is composed of a source grounded FET 24 having a source terminal 24s grounded.
- the modulation signal 11 is input to the gate terminal 24 g of the FET 24, and the power supply terminal 22 is connected to the drain terminal 24 d of the FET 24.
- the drain terminal 24d is connected to the gate terminal 24g via a delay device 40 formed by resistors 41 and 42 and capacitors 43 and 44. That is, a series circuit composed of the capacitor 43 and the resistor 41 is connected between the power supply terminal 22 and the input terminal 21, and a series circuit composed of the resistor 42 and the capacitor 44 is connected between the input terminal 21 and GND.
- FIG. 3 also shows a gate voltage Vg which is a DC bias voltage. The gate voltage Vg is applied to the gate terminal 24g via the inductor 24L and the input terminal 21, and determines the operating point of the FET 24.
- the resistance values of the resistors 41 and 42 are R1 and R2, and the capacitance values of the capacitors 43 and 44 are C1 and C2.
- the common source FET 24 is a voltage controlled current source in which the current Iout which is a drain current is determined by the gate-source voltage Vgs.
- the change in the voltage Vgs is delayed by ⁇ with respect to the power supply voltage Vout by the delay device 40. Therefore, the current Iout is also delayed by ⁇ with respect to the power supply voltage Vout.
- the linear amplifier unit 60 is broadband and highly linear. Therefore, the power supply voltage Vout output from the linear amplifier unit 60 has a voltage waveform that follows the analog amplitude signal 12a with high accuracy. On the other hand, the linear amplifier unit 60 has low power efficiency. Therefore, the current Im output from the linear amplifier unit 60 is supplied by synchronizing the current Im output from the switching amplifier unit 50 having a narrow band but high power efficiency with the analog amplitude signal 12a. It is desirable to operate so that Im becomes small. However, since the driver amplifier 51 usually has a delay of about several tens [ns] to several hundreds [ns], the current Im output from the switching amplifier unit 50 is output from the linear amplifier unit 60 as it is. Delayed from the current Ic.
- the delay amount ⁇ of the delay device 40 shown in FIG. 3 is adjusted so as to match the delay amount of the driver amplifier 51, thereby matching the timings of the current Iout and the current Im.
- the current Ic flowing through 60 is reduced.
- FIG. 4 and 5 show waveform diagrams of the transmission apparatus 100 of the related technique 1 shown in FIG. 9 as a comparative example.
- FIG. 6 shows a waveform diagram of the transmission apparatus 10 of the first embodiment shown in FIG.
- the comparative example and the first embodiment will be described in comparison.
- FIG. 4 is a waveform diagram for explaining an ideal operation of the transmission apparatus 100 of the related technique 1.
- 4A shows the timing relationship between the analog amplitude signal 112a and the output voltage Vsw of the switching element 152
- FIG. 4B shows the current Im output from the switching amplifier unit 150 and the current Iout flowing through the power amplifier 120
- 4C shows the current Ic flowing through the linear amplifier section 160.
- FIG. 4 shows ideal current and voltage waveforms when a 2 [MHz] sine wave is input to the power supply device 130.
- the pulse modulation signal 113 is generated so that the pulse becomes high.
- the switching element 152 is turned on / off so as to be synchronized with the pulse modulation signal 113, whereby the output voltage Vsw is obtained (FIG. 4 [A]).
- the current Im smoothed by the inductor 154 and output from the switching amplifier unit 150 and the current Iout flowing through the power amplifier 120 take values close to each other (FIG. 4B). Since the current Ic flowing through the low-efficiency linear amplifier unit 160 is the difference between the current Im and the current Iout, only a small value flows, so the efficiency of the entire power supply device 130 is increased.
- FIG. 5 is a waveform diagram for explaining the problem of the transmission apparatus 100 of the related technique 1.
- 5A shows the timing relationship between the analog amplitude signal 112a and the output voltage Vsw of the switching element 152
- FIG. 5B shows the current Im output from the switching amplifier unit 150 and the current Iout flowing through the power amplifier 120
- FIG. 5C shows the current Ic flowing through the linear amplifier unit 160.
- FIG. 5 shows actual current and voltage waveforms when a sine wave of 2 [MHz] is input to the power supply device 130. Even if the pulse modulation signal 113 is generated so that the pulse becomes high in the region where the amplitude of the analog amplitude signal 112a is large, the driver amplifier 151 has a delay of about 50 [ns], so that the output voltage of the switching element 152 There is a delay in Vsw (FIG. 5 [A]). As a result, the phase of the current Iout flowing through the power amplifier 120 and the current Im output from the switching amplifier unit 150 are shifted (FIG. 5 [B]).
- the current Ic flowing through the linear amplifier section 160 is the difference between the current Iout and the current Im, the current Ic has a large value as shown in FIG. 5C, and the power consumption of the entire power supply device 130 increases. Alternatively, since the current Ic exceeds the allowable value of the linear amplifier unit 160, the power supply device 130 cannot follow the analog amplitude signal 112a.
- FIG. 6 is a waveform diagram for explaining the operation of the transmission apparatus 10 according to the first embodiment.
- 6A shows the timing relationship between the analog amplitude signal 12a and the output voltage Vsw of the switching element 52
- FIG. 6B shows the current Im output from the switching amplifier unit 50 and the current Iout flowing through the power amplifier 20
- 6C shows the current Ic flowing through the linear amplifier unit 60.
- FIG. 6 shows current and voltage waveforms when a 2 [MHz] sine wave is input to the power supply device 30.
- the control signal generation unit 70 generates the pulse modulation signal 13 so that the pulse becomes High in a region where the amplitude of the analog amplitude signal 12a is large.
- the delay of about 50 [ns] of the driver amplifier 51 causes a delay in the pulse modulation signal 13 (FIG. 6 [A]).
- the phase of the current Iout and the current Im output from the switching amplifier unit 50 can be made uniform. (FIG. 6 [B]).
- the digital modulation signal generation unit 220 When an analog filter is provided in the analog amplitude signal path and delayed, waveform distortion is likely to occur. In the digital modulation signal generation unit 220, it is possible to delay using a digital filter. However, when multiple transmitters are connected in parallel to the common digital modulation signal generator 220 for high power applications such as terrestrial digital transmitters, the delay amount is considered to vary depending on the variation of individual components. Cannot adjust the delay individually.
- the delay amount ⁇ can be generated individually and in a small size, and since the delay is generated by feedback, there is an effect that the waveform distortion hardly occurs.
- the transmission apparatus 10 includes a switching amplifier unit 50 that switches and amplifies the amplitude modulation component 12 of the input modulation signal 11 with high efficiency, and a linear amplifier unit that linearly amplifies the amplitude modulation component 12 with high accuracy. 60, and a power amplifier 20 that amplifies the modulation signal 11 using the power supply voltage Vout output from the power supply device 30.
- the transmission device 10 further includes a delay device 40 that connects the power supply terminal 22 and the input terminal 21 of the power amplifier 20, and the linear amplifier unit 60 of the power supply device 30 is controlled by the delay amount ⁇ obtained by the delay device 40. The delay of the switching amplifier unit 50 is compensated.
- the transmission apparatus 10 operates with the power supply voltage Vout that follows the waveform of the amplitude modulation component 12 of the input modulation signal 11 and the power supply voltage Vout, and outputs the modulation signal 11.
- the power supply device 30 includes a linear amplifier unit 60 that linearly amplifies the amplitude modulation component 12 and outputs a current Ic, and a switching amplifier unit 50 that performs switching amplification of the amplitude modulation component 12 and outputs a current Im.
- the power amplifier 20 can be regarded as a voltage controlled current source, and the flowing current Iout is determined by the average voltage Vin of the input terminal 21.
- the average voltage Vin of the input terminal 21 operates with a delay by the delay device 40 with respect to the power supply voltage Vout of the power amplifier 20.
- the current Iout that is the average current of the power amplifier 20 also flows with a delay from the power supply voltage Vout.
- the delay of the current Im of the switching amplifier unit 50 with respect to the current Ic of the linear amplifier unit 60 is caused by the delay device 40 connected between the power supply terminal 22 and the input terminal 21 of the power amplifier 20.
- the first effect is that the transmitter 10 having high power efficiency and high linearity can be provided.
- the reason for this is that in the envelope tracking type transmitter 10, the delay of the switching amplifier 50 with respect to the linear amplifier 60 of the power supply 30 is compensated by delaying the current Iout of the power amplifier 20 with respect to the power supply voltage Vout. This is because the current Ic flowing through the linear amplifier unit 60 with low efficiency can be minimized.
- the current flowing through the linear amplifier unit 60 is small, there is a margin in operation, and the input signal can be followed with high accuracy.
- the second effect is that it is possible to provide an envelope tracking transmission device 10 that is resistant to load fluctuations and variations of the power amplifier 20. As a result, a large-scale transmission apparatus including a plurality of ET envelope tracking amplifiers can be realized. The reason is to perform feedback control that generates a delay by feeding back the power supply voltage Vout of the power amplifier 20 to the input side. In addition, since delay compensation is performed with the power amplifier 20 electrically closed, delay compensation can be performed independently even when there are a plurality of amplifiers.
- the amplitude modulation component 12 of the modulation signal 11 is processed by the analog amplitude signal 12a.
- the interface may be digital, and the amplitude modulation component 12 may be processed by a digital signal.
- the switching amplifier unit 50 is not limited to the configuration shown in FIG. 2, but may be a synchronous rectification type switching converter configuration in which the diode 53 is replaced with an FET switch, or a forward type using a transformer or the like. Type switching converter configuration.
- FIG. 7 is a block diagram illustrating an outline of the transmission apparatus according to the second embodiment.
- FIG. 8 is a circuit diagram illustrating a specific example of the power supply device according to the second embodiment.
- the transmission device 80 of the second embodiment is different from the transmission device of the first embodiment in a power supply device 35 and a delay device 45. That is, the delay unit 45 has a function of varying the delay amount by varying at least one of the resistance value of the resistor and the capacitance value of the capacitor.
- the delay unit 45 has a function of varying the delay amount by varying at least one of the resistance value of the resistor and the capacitance value of the capacitor.
- at least one of the resistance values R1, R2 of the resistors 41, 42 and the capacitance values C1, C2 of the capacitors 43, 44 is variable.
- the resistors 41 and 42 may be replaced with variable resistance elements such as a linear region of transistors
- the capacitors 43 and 44 may be replaced with variable capacitance elements such as varactor diodes.
- the power supply device 35 further includes a delay amount control unit 90 that controls the delay amount ⁇ so that the power consumption of the power supply device 35 is reduced.
- the delay amount control unit 90 detects the current supplied to the linear amplifier unit 60 and controls the delay amount ⁇ so that the value becomes small.
- the delay amount control unit 90 illustrated in FIG. 7 includes a DC power supply 91 that supplies current to the linear amplifier unit 60, a resistor 92 that is provided in a path of current that is supplied to the linear amplifier unit 60, and both ends of the resistor 92. And a detector 93 made up of a differential amplifier for inputting the voltage. The output signal of the detector 93 is input to the delay unit 45 and applied to, for example, a variable resistance element or a variable capacitance element.
- FIG. 7 is a block diagram illustrating a configuration of the transmission device 80 according to the second embodiment.
- the delay unit 45 is configured by a variable delay unit.
- the delay amount ⁇ of the delay unit 45 is variable according to the state of the power supply device 35.
- FIG. 8 is a diagram showing the configuration of the power supply device 35 in FIG. 7 more specifically.
- the power supply terminal 22 of the power amplifier 20 is connected to the input terminal 21 via the delay unit 45.
- the delay unit 45 monitors the current supplied to the linear amplifier unit 60 of the power supply device 35 with the detector 93 and changes the delay amount ⁇ so that the current becomes small.
- the function of the delay unit 45 is realized by replacing the resistors 41 and 42 and the capacitors 43 and 44 shown in FIG. 3 with variable resistance elements and variable capacitance elements.
- the overall power efficiency of 10 is improved.
- the delay amount ⁇ is adaptively adjusted by monitoring the current of the linear amplifier 60 that is most sensitive to the delay of the driver amplifier 51. Therefore, according to the second embodiment, in addition to the effects of the first embodiment, even when the optimum delay amount ⁇ is changed due to component characteristic variation due to aging degradation or load impedance variation during operation of the apparatus, the power efficiency Has a synergistic effect that does not deteriorate. Furthermore, since the transmitter 80 can be closed locally to adjust the delay, when using a plurality of transmitters 80 simultaneously for high power applications such as a terrestrial digital transmitter, it is necessary to individually correct delay variations due to element variations and the like. There is also an effect that there is no.
- the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.
- An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage
- a power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal;
- a delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit;
- a transmission device comprising:
- the power supply device receives the amplitude modulation component, generates a signal representing the amplitude modulation component in an analog form, outputs the signal to the switching amplifier unit, and generates a signal obtained by pulse-modulating the amplitude modulation component And further has a control signal generation unit for outputting to the linear amplifier unit,
- the transmission device according to attachment 1.
- the switching amplifier unit has a switching converter configuration including at least one switching element and an inductor that smoothes an output current of the switching element.
- the transmission device according to appendix 1 or 2.
- the linear amplifier has a voltage follower configuration including at least one operational amplifier and a feedback path for returning an output signal of the operational amplifier to the input.
- the transmission device according to any one of supplementary notes 1 to 3.
- the delay device includes a resistor and a capacitor, and a delay amount is determined by a time constant formed by a product of a resistance value of the resistor and a capacitance value of the capacitor.
- the transmission device according to any one of supplementary notes 1 to 4.
- the delay device has a function of changing the delay amount by changing at least one of a resistance value of the resistor and a capacitance value of the capacitor.
- the power supply device further includes a delay amount control unit that controls the delay amount so that power consumption of the power supply device is reduced.
- the transmission device according to attachment 5.
- the delay amount control unit detects the current supplied to the linear amplifier unit, and controls the delay amount so that the value becomes small.
- the present invention can be used for applications such as mobile phones, wireless LANs, terminals for WiMAX (Worldwide Interoperability for Microwave Access), base stations, and digital terrestrial broadcasting stations.
- applications such as mobile phones, wireless LANs, terminals for WiMAX (Worldwide Interoperability for Microwave Access), base stations, and digital terrestrial broadcasting stations.
- WiMAX Worldwide Interoperability for Microwave Access
- base stations and digital terrestrial broadcasting stations.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
[Problem] To provide a transmission device (10) which amplifies and outputs a modulation signal (11) with high efficiency and high linearity.
[Solution] A transmission device (10) is provided with a power amplifier (20) as an amplifier, a power supply device (30), and a delayer (40). The power amplifier (20) comprises an input terminal (21) which receives as input a modulation signal (11) containing an amplitude modulation component (12) and a phase modulation component, and a power supply terminal (22) which receives as input a power supply voltage (Vout), said power amplifier (20) using the power supply voltage (Vout) to amplify and output a modulation signal (11). The power supply device (30) comprises a switching amplifier section (50) and a linear amplifier section (60) and feeds to the power supply terminal (22) a power supply voltage (Vout) following the waveform of the amplitude modulation component (12) of the modulation signal (11). The delayer (40) is connected between the power supply terminal (22) and the input terminal (21) and compensates for the timing deviation between the operations of the switching amplifier section (50) and the linear amplifier section (60).
Description
本発明は、主として無線通信に用いられる送信装置に関し、特に、入力信号の大きさに応じて出力電圧が変化する機能を有する電源装置と、その電源装置の出力電圧を電源電圧として用いる増幅器とからなる、送信装置に関する。
The present invention relates to a transmission apparatus mainly used for wireless communication, and in particular, from a power supply apparatus having a function of changing an output voltage according to the magnitude of an input signal, and an amplifier using the output voltage of the power supply apparatus as a power supply voltage. This relates to a transmission apparatus.
携帯電話や無線LAN(Local Area Network)など、近年の無線通信に用いられているデジタル変調方式は、QPSK(Quadrature Phase Shift Keying)や多値QAM(Quadrature Amplitude Modulation)などの変調フォーマットが採用されている。このような変調フォーマットでは、一般にシンボル間の遷移時に信号の軌跡が振幅変調を伴う。そのため、マイクロ波帯のキャリア信号に重畳された高周波変調信号では、時間とともに信号の振幅(包絡線)が変化する。このとき、高周波変調信号のピーク電力と平均電力との比は、PAPR(Peak-to-Average Power Ratio)と呼ばれている。PAPRが大きい信号を増幅する場合、高い線形性を確保するために、ピーク電力に対しても波形が歪まないように電源から十分に大きな電力を増幅器に供給する必要がある。言い換えると、電源電圧で制限される飽和電力よりも十分低い電力領域で、余裕(バックオフ)を持たせて増幅器を動作させる必要がある。一般に、A級動作やB級動作をする線形増幅器では、その飽和出力電力付近で電力効率が最大になるので、バックオフが大きい領域で動作させると平均的な効率は低くなる。
Digital modulation methods used in recent wireless communications such as cellular phones and wireless LANs (Local Area Networks) employ modulation formats such as QPSK (Quadrature Phase Shift Keying) and multilevel QAM (Quadrature Amplitude Modulation). Yes. In such a modulation format, the signal trajectory is generally accompanied by amplitude modulation at the time of transition between symbols. Therefore, the amplitude (envelope) of the signal changes with time in the high frequency modulation signal superimposed on the carrier signal in the microwave band. At this time, the ratio between the peak power and the average power of the high-frequency modulation signal is called PAPR (Peak-to-Average Power Ratio). When a signal having a large PAPR is amplified, in order to ensure high linearity, it is necessary to supply a sufficiently large power from the power source to the amplifier so that the waveform is not distorted even with respect to the peak power. In other words, it is necessary to operate the amplifier with a margin (backoff) in a power region sufficiently lower than the saturation power limited by the power supply voltage. In general, in a linear amplifier that performs class A operation or class B operation, the power efficiency is maximized in the vicinity of the saturated output power, so that the average efficiency is lowered when operated in a region where the back-off is large.
次世代携帯電話や無線LAN、デジタルテレビ放送に採用されているマルチキャリアを用いた直交波周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)方式では、PAPRが大きくなる傾向にあるので、増幅器の平均効率が更に低下する。したがって、増幅器の特性としては、バックオフの大きい電力領域でも高い効率を有していることが望ましい。
In the orthogonal frequency division multiplexing (OFDM) system using multicarriers used in next-generation mobile phones, wireless LANs, and digital TV broadcasting, the PAPR tends to increase, so the average efficiency of the amplifier Is further reduced. Therefore, it is desirable that the amplifier has high efficiency even in a power region with a large back-off.
バックオフの大きい電力領域で広いダイナミックレンジに渡って高効率に信号を増幅する方式として、包絡線追跡(ET:Envelope Tracking)という送信方法が知られている。例えば、非特許文献1にその一例が報告されている。
A transmission method called envelope tracking (ET) is known as a method for amplifying a signal with high efficiency over a wide dynamic range in a power region with a large back-off. For example, an example is reported in Non-Patent Document 1.
ET方式の送信装置に用いる変調電源装置では、一般に、振幅変調成分をパルス変調信号に変換し、D級アンプなどを用いてスイッチング増幅する。しかし、広い帯域の変調電源装置を実現するためには、大電力で高速なスイッチング増幅が必要となる。そこで、高効率かつ広帯域に電源を変調する方法として、広帯域である一方効率の低い線形アンプと、狭帯域である一方効率の高いスイッチングアンプとを連動させる技術が提案されており、その一例が非特許文献2に記載されている。
In a modulation power supply device used in an ET transmission device, generally, an amplitude modulation component is converted into a pulse modulation signal, and switching amplification is performed using a class D amplifier or the like. However, in order to realize a modulation power supply apparatus having a wide band, high power and high speed switching amplification is required. Therefore, as a method of modulating the power supply in a high efficiency and wide band, a technique for linking a broadband wide-band linear amplifier and a narrow-band high-efficiency switching amplifier has been proposed. It is described in Patent Document 2.
非特許文献2に記載されたエンベロープトラッキング方式の送信装置の構成を、関連技術1として図9に示す。送信装置100は、電力増幅器120と電源装置130とからなる。電源装置130は、電流検出部140、スイッチングアンプ部150及び線形アンプ部160からなる。電源装置130では、広帯域であるものの電力効率の低い線形アンプ部160と、狭帯域であるものの電力効率の高いスイッチングアンプ部150とを連動させることによって、高効率かつ広帯域な電源電圧Vout(波形114)を電力増幅器120に供給している。
FIG. 9 shows the configuration of an envelope tracking transmission device described in Non-Patent Document 2 as Related Technology 1. The transmission device 100 includes a power amplifier 120 and a power supply device 130. The power supply device 130 includes a current detection unit 140, a switching amplifier unit 150, and a linear amplifier unit 160. In the power supply device 130, the linear amplifier unit 160 having a wide band but low power efficiency and the switching amplifier unit 150 having a narrow band and high power efficiency are linked to each other, whereby a high-efficiency and wide-band power supply voltage Vout (waveform 114 ) Is supplied to the power amplifier 120.
オペアンプ161で構成されたボルテージフォロア構成の線形アンプ部160にアナログ振幅信号112aが入力されると、線形アンプ部160から出力される電流Icは、電流検出用の抵抗器141で電圧に変換されて比較器142に入力される。この際、比較器142の出力は、線形アンプ部160から電流が流れ出る(Ic>0)ときがHigh、流れ込む(Ic<0)ときがLowとなるように極性を選ぶ。これにより、パルス幅変調信号113は、アナログ振幅信号112aの強度に応じた信号になる。このパルス幅変調信号113を、スイッチング素子152の制御信号として用いる。
When the analog amplitude signal 112a is input to the linear amplifier unit 160 having the voltage follower configuration configured by the operational amplifier 161, the current Ic output from the linear amplifier unit 160 is converted into a voltage by the current detection resistor 141. Input to the comparator 142. At this time, the polarity of the output of the comparator 142 is selected so that the current flows out from the linear amplifier section 160 (Ic> 0) is High, and the current flows (Ic <0) is Low. Thereby, the pulse width modulation signal 113 becomes a signal corresponding to the intensity of the analog amplitude signal 112a. This pulse width modulation signal 113 is used as a control signal for the switching element 152.
スイッチング素子152は、ダイオード153とともにスイッチングコンバータを構成している。パルス幅変調信号113がHighの場合、スイッチング素子152はオン(導通状態)になる。このとき、スイッチング素子152は、負荷である電力増幅器120に向かって直流電源132から電流Imを流す。一方、パルス幅変調信号113がLowの場合、スイッチング素子152はオフ(非導通状態)になる。このとき、インダクタ154は、流れる電流を維持するために、グランド(以下「GND」という。)からダイオード153を介して電流Imを出力する。
The switching element 152 constitutes a switching converter together with the diode 153. When the pulse width modulation signal 113 is High, the switching element 152 is turned on (conductive state). At this time, the switching element 152 flows the current Im from the DC power supply 132 toward the power amplifier 120 that is a load. On the other hand, when the pulse width modulation signal 113 is Low, the switching element 152 is turned off (non-conducting state). At this time, the inductor 154 outputs a current Im from the ground (hereinafter referred to as “GND”) via the diode 153 in order to maintain the flowing current.
そして、電源装置130は、電流Imと電流Icとを結合し、電力増幅器120へ電流Ioutを供給する。上記のスイッチング動作を繰り返すことにより、電力増幅器120には、主に直流電源132とGNDとから交互に電流Ioutが供給される。一方、電源電圧Vout(波形114)は、線形アンプ部160の動作によって、アナログ振幅信号112aの波形に追従した電圧波形になる。
The power supply device 130 combines the current Im and the current Ic and supplies the current Iout to the power amplifier 120. By repeating the above switching operation, the current Iout is supplied alternately to the power amplifier 120 mainly from the DC power supply 132 and GND. On the other hand, the power supply voltage Vout (waveform 114) becomes a voltage waveform following the waveform of the analog amplitude signal 112a by the operation of the linear amplifier unit 160.
また、高効率かつ広帯域に電源を変調する別の変調電源装置が、特許文献1に提案されている。特許文献1の電源回路の構成は、図9に示す非特許文献2の変調電源装置の構成の一部を変形したものである。特許文献1に記載されたエンベロープトラッキング方式の送信装置の構成を、関連技術2として図10に示す。
Further, another modulation power supply device that modulates the power supply with high efficiency and wide bandwidth is proposed in Patent Document 1. The configuration of the power supply circuit of Patent Document 1 is a modification of a part of the configuration of the modulation power supply device of Non-Patent Document 2 shown in FIG. The configuration of an envelope tracking transmission device described in Patent Document 1 is shown in FIG.
以下、関連技術2の送信装置200について図10を参照して説明する。デジタル変調信号生成部220には、高調波変調回路221を介して電力増幅器201が接続されている。高調波変調回路221は、デジタル変調信号生成部220と電力増幅器201との間に接続され、デジタル変調信号生成部220から出力されたベースバンド信号SBを高周波変調して高周波信号Hを生成し、高周波信号Hを電力増幅器201に送る。
Hereinafter, the transmission apparatus 200 of the related technique 2 will be described with reference to FIG. A power amplifier 201 is connected to the digital modulation signal generation unit 220 via a harmonic modulation circuit 221. The harmonic modulation circuit 221 is connected between the digital modulation signal generation unit 220 and the power amplifier 201, and generates a high frequency signal H by performing high frequency modulation on the baseband signal SB output from the digital modulation signal generation unit 220. The high frequency signal H is sent to the power amplifier 201.
電力増幅器201は、高調波変調回路221から出力される高周波信号Hを増幅出力する。電力増幅器201は、ドレイン電圧Vds及びドレイン電流Idsの大きさに応じて飽和出力電力が変化する。例えば、電力増幅器201は、ドレイン電圧Vdsが低下すると、飽和出力電力が小さくなり、ドレイン電圧Vdsが上昇すると、飽和出力電力が大きくなり、高周波信号Hの電力が変化しても飽和出力に近いレベルで動作して高効率化が図れる。電力増幅器201はFETからなる。
The power amplifier 201 amplifies and outputs the high frequency signal H output from the harmonic modulation circuit 221. In the power amplifier 201, the saturation output power changes according to the magnitudes of the drain voltage Vds and the drain current Ids. For example, in the power amplifier 201, when the drain voltage Vds decreases, the saturation output power decreases, and when the drain voltage Vds increases, the saturation output power increases. Even if the power of the high-frequency signal H changes, the power amplifier 201 has a level close to the saturation output. It is possible to increase the efficiency by operating with The power amplifier 201 is composed of an FET.
デジタル変調信号生成部220には、線形アンプ部213を介して電力増幅器201のドレイン端子が接続されている。線形アンプ部213は、デジタル変調信号生成部220から出力されるエンベロープ信号(第1の制御信号E)の振幅値に応じた第1のドレイン電圧を電力増幅器201に供給する。線形アンプ部213から電力増幅器201へに供給されるドレイン電流値は小さい。
The drain terminal of the power amplifier 201 is connected to the digital modulation signal generation unit 220 via the linear amplifier unit 213. The linear amplifier unit 213 supplies the first drain voltage corresponding to the amplitude value of the envelope signal (first control signal E) output from the digital modulation signal generation unit 220 to the power amplifier 201. The drain current value supplied from the linear amplifier unit 213 to the power amplifier 201 is small.
デジタル変調信号生成部220には、時間補正回路222を介してスイッチングアンプ部223が接続されている。スイッチングアンプ部223は、スイッチドライバ回路224と、低速スイッチ電源216とからなる。スイッチドライバ回路224は、デジタル変調信号生成部220から出力されて時間補正回路222により時間的に早いタイミングに補正されたオン・オフ信号SHを入力し、このオン・オフ信号SHに応じて低速スイッチ電源216をオン・オフ動作する。低速スイッチ電源216は、電力増幅器201に大きな電流を供給するためのものである。低速スイッチ電源216の一端側には直流電源217が接続され、その他端側にはローパスフィルタ218を介して電力増幅器201のドレイン端子が接続されている。直流電源217は、電力増幅器201への電流量を補うために電力増幅器201に大きな電流を供給することを可能とするものである。
A switching amplifier unit 223 is connected to the digital modulation signal generation unit 220 via a time correction circuit 222. The switching amplifier unit 223 includes a switch driver circuit 224 and a low speed switch power source 216. The switch driver circuit 224 receives an on / off signal SH output from the digital modulation signal generation unit 220 and corrected at an earlier timing by the time correction circuit 222, and a low-speed switch according to the on / off signal SH. The power source 216 is turned on / off. The low speed switch power source 216 is for supplying a large current to the power amplifier 201. A DC power source 217 is connected to one end side of the low-speed switch power source 216, and a drain terminal of the power amplifier 201 is connected to the other end side via a low-pass filter 218. The DC power supply 217 can supply a large current to the power amplifier 201 in order to supplement the amount of current to the power amplifier 201.
デジタル変調信号生成部220は、振幅信号の変化に追従する第1の制御信号Eを生成して線形アンプ部213へ出力するとともに、振幅信号に応じてオン・オフ制御する第2の制御信号Sを生成してスイッチングアンプ部223へ出力する。そして、電源装置230は、線形アンプ部213の出力電流とスイッチングアンプ部223の出力電流とを合計して、電力増幅器201に供給する。このような構成にすることより、線形アンプ部213に対するスイッチングアンプ部223のタイミングの遅れを抑え、高速かつ大電流の信号でも、ある程度正確に振幅信号をトラッキングする。
The digital modulation signal generation unit 220 generates a first control signal E that follows a change in the amplitude signal, outputs the first control signal E to the linear amplifier unit 213, and also controls a second control signal S that is turned on / off according to the amplitude signal. Is output to the switching amplifier unit 223. The power supply device 230 adds up the output current of the linear amplifier unit 213 and the output current of the switching amplifier unit 223 and supplies the sum to the power amplifier 201. By adopting such a configuration, a delay in timing of the switching amplifier unit 223 with respect to the linear amplifier unit 213 is suppressed, and the amplitude signal is accurately tracked to some extent even with a high-speed and large-current signal.
次に、特許文献2に開示されている技術を、関連技術3の送信装置として説明する。関連技術3の送信装置は、エンベロープトラッキング方式の高周波電力増幅装置において、増幅経路を切り替えることにより、高効率特性が得られる出力電力レベルを拡大するものである。そして、変調信号の経路に、変調信号と振幅信号とのタイミングを一致させるための遅延時間補正手段が設けられている。この遅延時間補正手段は、エンベロープトラッキング方式の高周波電力増幅装置では一般的なものである。
Next, the technique disclosed in Patent Document 2 will be described as a transmission apparatus of Related Technique 3. The transmission apparatus of Related Technology 3 is an envelope tracking type high-frequency power amplifying apparatus that expands an output power level at which high efficiency characteristics can be obtained by switching amplification paths. A delay time correcting means for matching the timings of the modulation signal and the amplitude signal is provided in the path of the modulation signal. This delay time correcting means is common in an envelope tracking type high frequency power amplifier.
しかしながら、図9に示す関連技術1の送信装置100には、次のような問題がある。その問題点とは、高速かつ大電力のアナログ振幅信号112aを入力すると、電源装置130の電力効率が低下したり、電源装置130がアナログ振幅信号112aを正確にトラッキングできなくなったりすることである。その結果、送信装置100全体の電力効率が低下したり、送信装置100の出力信号115が歪んだりする問題が発生する。この原因は、線形アンプ部160とスイッチングアンプ部150との動作のタイミングがずれることに起因する。その理由について、以下に説明する。
However, the transmission apparatus 100 of Related Technology 1 shown in FIG. 9 has the following problems. The problem is that when a high-speed and high-power analog amplitude signal 112a is input, the power efficiency of the power supply device 130 is lowered, or the power supply device 130 cannot accurately track the analog amplitude signal 112a. As a result, there arises a problem that the power efficiency of the entire transmission apparatus 100 is reduced and the output signal 115 of the transmission apparatus 100 is distorted. This is because the timings of the operations of the linear amplifier unit 160 and the switching amplifier unit 150 are shifted. The reason will be described below.
電源装置130の本来の動作原理では、線形アンプ部160に流れる電流Icの向きを比較器142で検知し、その結果に基づいてスイッチングアンプ部150を制御する。これによって、効率の低い線形アンプ部160に流れる電流Icが最小になるように、スイッチングアンプ部150と線形アンプ部160とが協調して動作する。スイッチングアンプ部150を構成するスイッチング素子152は、通常、FETが用いられるが、高効率で動作するためには、負荷抵抗に対して十分に低いオン抵抗を有する必要がある。そのため、高負荷(大電力)の用途では、素子サイズを大きくする必要があるので、FETの入力容量が大きくなる。
In the original operation principle of the power supply apparatus 130, the direction of the current Ic flowing through the linear amplifier unit 160 is detected by the comparator 142, and the switching amplifier unit 150 is controlled based on the result. Accordingly, the switching amplifier unit 150 and the linear amplifier unit 160 operate in a coordinated manner so that the current Ic flowing through the low efficiency linear amplifier unit 160 is minimized. As the switching element 152 constituting the switching amplifier unit 150, an FET is normally used. However, in order to operate with high efficiency, it is necessary to have a sufficiently low on-resistance with respect to the load resistance. For this reason, in high load (high power) applications, it is necessary to increase the element size, which increases the input capacitance of the FET.
スイッチング素子152を矩形波からなるパルス変調信号113で駆動するために、一般にドライバアンプ151が必要になる。ドライバアンプ151の負荷であるスイッチング素子152の入力容量が大きいと、矩形波からなるパルス変調信号113の立ち上がり時間と立下り時間とが大きくなり、比較器142の検知結果がスイッチングアンプ部150に伝達されるまでに遅延が生じる。その結果、線形アンプ部160とスイッチングアンプ部150とが、協調動作しなくなる。そうなると、線形アンプ部160はアナログ振幅信号112aの波形をトラッキングするために大きな電流が必要になるので、電源装置130の電力効率が低下する。あるいは、線形アンプ部160が十分な電流を得られなくなるので、アナログ振幅信号112aの波形をトラッキングできなくなる。
In general, a driver amplifier 151 is required to drive the switching element 152 with a pulse modulation signal 113 made of a rectangular wave. When the input capacitance of the switching element 152 that is the load of the driver amplifier 151 is large, the rise time and the fall time of the pulse modulation signal 113 formed of a rectangular wave are increased, and the detection result of the comparator 142 is transmitted to the switching amplifier unit 150. There is a delay before it is done. As a result, the linear amplifier unit 160 and the switching amplifier unit 150 do not cooperate. Then, since the linear amplifier unit 160 needs a large current to track the waveform of the analog amplitude signal 112a, the power efficiency of the power supply device 130 decreases. Alternatively, since the linear amplifier unit 160 cannot obtain a sufficient current, the waveform of the analog amplitude signal 112a cannot be tracked.
また、図10に示す関連技術2の送信装置200には、次のような問題がある。その第1の問題点は、負荷の変動や、素子の特性のばらつきにより、電源装置230の電力効率が低下したり、電源装置230が振幅信号を正確にトラッキングできなくなったりすることである。その結果、送信装置200全体の電力効率が低下したり、送信装置200の出力信号が歪んだりする問題が発生する。この原因は、電源装置230では、線形アンプ部213、スイッチングアンプ部223及び電力増幅器201のいずれにもフィードバックがかかっていないことに起因する。その理由について、以下に説明する。
Further, the transmission apparatus 200 of Related Technology 2 shown in FIG. 10 has the following problems. The first problem is that the power efficiency of the power supply device 230 decreases due to load fluctuations and variations in element characteristics, and the power supply device 230 cannot accurately track the amplitude signal. As a result, there arises a problem that the power efficiency of the entire transmission apparatus 200 is reduced and the output signal of the transmission apparatus 200 is distorted. This is because, in the power supply device 230, feedback is not applied to any of the linear amplifier unit 213, the switching amplifier unit 223, and the power amplifier 201. The reason will be described below.
スイッチドライバ回路224の遅延を補償するべく、線形アンプ部213にスイッチングアンプ部223のタイミングが合うように、時間補正回路222がフィードフォワードで動作する。そのため、ある条件で線形アンプ部213とスイッチングアンプ部223とが理想的な動作をしていても、負荷の変動や素子の特性のばらつきによって条件がずれると、それを補償することができない。特に、大規模な送信装置では、共通の制御信号生成部220に、複数の送信装置を並列して接続する場合が考えられる。この場合、個々の部品のバラツキによって、遅延量も異なると考えられるが、個別に遅延調整ができないため、装置全体の電力効率が低下したり、振幅信号を正確にトラッキングできなくなったりする。
In order to compensate for the delay of the switch driver circuit 224, the time correction circuit 222 operates in a feed-forward manner so that the timing of the switching amplifier unit 223 matches the linear amplifier unit 213. Therefore, even if the linear amplifier unit 213 and the switching amplifier unit 223 perform an ideal operation under a certain condition, it cannot be compensated if the condition is shifted due to a load variation or a variation in element characteristics. In particular, in a large-scale transmission apparatus, a case where a plurality of transmission apparatuses are connected in parallel to the common control signal generation unit 220 can be considered. In this case, it is considered that the amount of delay varies depending on the variation of individual components. However, since the delay cannot be adjusted individually, the power efficiency of the entire apparatus is reduced, and the amplitude signal cannot be accurately tracked.
第2の問題点は、電源装置230に遅延が発生することである。そのため、スイッチドライバ回路224の遅延を補償するために、スイッチングアンプ部223に入力される第2の制御信号Sを、線形アンプ部213に入力される第1の制御信号Eよりも早く進める必要がある。実際には、事象を先読みすることはできないので、デジタル変調信号生成部220の中で、第1の制御信号Eを第2の制御信号Sに対して遅らせる必要がある。更に、第2の制御信号Sを生成するにも有限の時間を要するため、電源装置230の入出力に遅延が発生する。また、デジタル変調信号生成部220の規模や消費電力が大きくなるという問題もある。
The second problem is that a delay occurs in the power supply device 230. Therefore, in order to compensate for the delay of the switch driver circuit 224, it is necessary to advance the second control signal S input to the switching amplifier unit 223 earlier than the first control signal E input to the linear amplifier unit 213. is there. Actually, since the event cannot be prefetched, it is necessary to delay the first control signal E with respect to the second control signal S in the digital modulation signal generation unit 220. Furthermore, since it takes a finite time to generate the second control signal S, a delay occurs in the input / output of the power supply device 230. There is also a problem that the scale and power consumption of the digital modulation signal generation unit 220 are increased.
そこで、本発明の目的は、入力信号の大きさに応じて出力電圧が変化する機能を有する電源装置と、その電源装置の出力電圧を電源電圧として用いる増幅器とからなる、高効率かつ高線形性の送信装置を提供することにある。
Therefore, an object of the present invention is to provide a highly efficient and highly linear device comprising a power supply device having a function of changing an output voltage according to the magnitude of an input signal and an amplifier using the output voltage of the power supply device as a power supply voltage. Is to provide a transmission apparatus.
本発明に係る送信装置は、
振幅変調成分及び位相変調成分を含む変調信号を入力する入力端子と、電源電圧を入力する電源端子とを有し、前記電源電圧を用いて前記変調信号を増幅して出力する増幅器と、
スイッチングアンプ部と線形アンプ部とを有し、前記変調信号の振幅変調成分の波形に追従した前記電源電圧を前記電源端子に供給する電源装置と、
前記電源端子と前記入力端子との間に接続され、前記スイッチングアンプ部と線形アンプ部との動作のタイミングずれを補償する遅延器と、
を備える。 The transmission device according to the present invention is:
An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage;
A power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal;
A delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit;
Is provided.
振幅変調成分及び位相変調成分を含む変調信号を入力する入力端子と、電源電圧を入力する電源端子とを有し、前記電源電圧を用いて前記変調信号を増幅して出力する増幅器と、
スイッチングアンプ部と線形アンプ部とを有し、前記変調信号の振幅変調成分の波形に追従した前記電源電圧を前記電源端子に供給する電源装置と、
前記電源端子と前記入力端子との間に接続され、前記スイッチングアンプ部と線形アンプ部との動作のタイミングずれを補償する遅延器と、
を備える。 The transmission device according to the present invention is:
An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage;
A power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal;
A delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit;
Is provided.
本発明によれば、増幅器の電源端子と入力端子との間に接続された遅延器によって、電源装置のスイッチングアンプ部と線形アンプ部との動作のタイミングずれを補償することにより、簡単かつ高精度に送信装置の効率化を図ることができる。
According to the present invention, a delay device connected between the power supply terminal and the input terminal of the amplifier compensates for a timing shift in operation between the switching amplifier unit and the linear amplifier unit of the power supply device, thereby enabling simple and high accuracy. In addition, the efficiency of the transmission apparatus can be improved.
以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。なお、本明細書及び図面において、実質的に同一の構成要素については同一の符号を用いる。
Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. In the present specification and drawings, the same reference numerals are used for substantially the same components.
図1は、実施形態1の送信装置の概要を示すブロック図である。図2は、実施形態1における電源装置の具体例を示す回路図である。図3は、実施形態1の送信装置における電力増幅器及び遅延器の具体例を示す回路図である。以下、これらの図面に基づき、本実施形態1の送信装置の概要を説明する。
FIG. 1 is a block diagram illustrating an outline of the transmission apparatus according to the first embodiment. FIG. 2 is a circuit diagram illustrating a specific example of the power supply device according to the first embodiment. FIG. 3 is a circuit diagram illustrating a specific example of the power amplifier and the delay device in the transmission apparatus according to the first embodiment. The outline of the transmission apparatus according to the first embodiment will be described below with reference to these drawings.
本実施形態1の送信装置10は、増幅器としての電力増幅器20、電源装置30、及び、遅延器40を備えている。電力増幅器20は、振幅変調成分12及び位相変調成分を含む変調信号11を入力する入力端子21と、電源電圧Voutを入力する電源端子22とを有し、電源電圧Voutを用いて変調信号11を増幅して出力する。電源装置30は、スイッチングアンプ部50と線形アンプ部60とを有し、変調信号11の振幅変調成分12の波形に追従した電源電圧Voutを電源端子22へ供給する。遅延器40は、電源端子22と入力端子21との間に接続され、スイッチングアンプ部50と線形アンプ部60との動作のタイミングずれを補償する。
The transmission device 10 according to the first embodiment includes a power amplifier 20 as an amplifier, a power supply device 30, and a delay device 40. The power amplifier 20 includes an input terminal 21 that inputs a modulation signal 11 including an amplitude modulation component 12 and a phase modulation component, and a power supply terminal 22 that inputs a power supply voltage Vout. The power amplifier 20 uses the power supply voltage Vout to output the modulation signal 11. Amplify and output. The power supply device 30 includes a switching amplifier unit 50 and a linear amplifier unit 60, and supplies a power supply voltage Vout that follows the waveform of the amplitude modulation component 12 of the modulation signal 11 to the power supply terminal 22. The delay device 40 is connected between the power supply terminal 22 and the input terminal 21 and compensates for a timing shift in operation between the switching amplifier unit 50 and the linear amplifier unit 60.
電源装置30は、制御信号生成部70を更に有する。制御信号生成部70は、振幅変調成分12を入力し、振幅変調成分12をアナログ表現した信号(アナログ振幅信号12a)を生成してスイッチングアンプ部50へ出力するとともに、振幅変調成分12をパルス変調した信号(パルス変調信号13)を生成して線形アンプ部60へ出力する。
The power supply device 30 further includes a control signal generation unit 70. The control signal generation unit 70 receives the amplitude modulation component 12, generates a signal (analog amplitude signal 12 a) that represents the amplitude modulation component 12 in analog form, outputs the signal to the switching amplifier unit 50, and pulse-modulates the amplitude modulation component 12. The generated signal (pulse modulated signal 13) is generated and output to the linear amplifier unit 60.
スイッチングアンプ部50は、少なくとも一つのスイッチング素子52と、スイッチング素子52の出力電流を平滑化するインダクタ54と、を有するスイッチングコンバータ構成である。線形アンプ部60は、少なくとも一つのオペアンプ61と、オペアンプ61の出力信号を入力に戻すフィードバック経路と、を有するボルテージフォロア構成である。
The switching amplifier unit 50 has a switching converter configuration including at least one switching element 52 and an inductor 54 that smoothes the output current of the switching element 52. The linear amplifier unit 60 has a voltage follower configuration including at least one operational amplifier 61 and a feedback path for returning the output signal of the operational amplifier 61 to the input.
遅延器40は、抵抗器41,42とキャパシタ43,44とを有し、抵抗器41,42の抵抗値R1,R2とキャパシタ43,44の容量値C1,C2との積(R1+R2)×(C1//C2)からなる時定数によって遅延量τが決定される。
The delay device 40 includes resistors 41 and 42 and capacitors 43 and 44. The product of the resistance values R1 and R2 of the resistors 41 and 42 and the capacitance values C1 and C2 of the capacitors 43 and 44 (R1 + R2). The delay amount τ is determined by a time constant consisting of × (C1 // C2).
本実施形態1によれば、電力増幅器20の電源端子22と入力端子21との間に接続された遅延器40によって、電源装置30のスイッチングアンプ部50と線形アンプ部60との動作のタイミングずれを補償することにより、簡単かつ高精度に送信装置10の効率化を図ることができる。
According to the first embodiment, operation delay between the switching amplifier unit 50 and the linear amplifier unit 60 of the power supply device 30 is caused by the delay device 40 connected between the power supply terminal 22 and the input terminal 21 of the power amplifier 20. By compensating for this, the efficiency of the transmitter 10 can be improved easily and with high accuracy.
次に、本実施形態1の送信装置10について更に詳細に説明する。
Next, the transmission device 10 according to the first embodiment will be described in more detail.
図1は、本実施形態1の送信装置10の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of the transmission apparatus 10 according to the first embodiment.
変調信号11は電力増幅器20に入力される。電力増幅器20は、増幅した変調信号15を出力する。変調信号11の振幅変調成分12は、スイッチングアンプ部50と線形アンプ部60とから構成される電源装置30に入力される。電源装置30から出力された電源電圧Voutは、電力増幅器20の電源端子22に供給される。電源電圧14は、電源電圧Voutの波形である。電源端子22は、遅延器40を介して入力端子21に接続される。
The modulation signal 11 is input to the power amplifier 20. The power amplifier 20 outputs the amplified modulation signal 15. The amplitude modulation component 12 of the modulation signal 11 is input to the power supply device 30 including the switching amplifier unit 50 and the linear amplifier unit 60. The power supply voltage Vout output from the power supply device 30 is supplied to the power supply terminal 22 of the power amplifier 20. The power supply voltage 14 is a waveform of the power supply voltage Vout. The power supply terminal 22 is connected to the input terminal 21 via the delay device 40.
図2は、図1における電源装置30の構成をより具体的に示した図である。
FIG. 2 is a diagram more specifically showing the configuration of the power supply device 30 in FIG.
変調信号11の振幅変調成分12は、制御信号生成部70に入力される。制御信号生成部70は、振幅変調成分12をアナログ変換したアナログ振幅信号12aと、振幅変調成分12をパルス変調したパルス変調信号13とを出力する。パルス変調信号13は、制御信号生成部70の中で、例えばパルス幅変調(PWM:Pulse Width Modulation)やデルタシグマ変調などによって生成される。アナログ振幅信号12aは、線形アンプ部60に入力される。線形アンプ部60は、オペアンプ61からなるボルテージフォロア構成をとり、振幅変調成分12のアナログ振幅信号12aの電圧波形に追従した波形を持つ電源電圧Voutを出力するとともに、これに伴い電流Icを出力する。
The amplitude modulation component 12 of the modulation signal 11 is input to the control signal generator 70. The control signal generation unit 70 outputs an analog amplitude signal 12a obtained by analog conversion of the amplitude modulation component 12, and a pulse modulation signal 13 obtained by pulse modulation of the amplitude modulation component 12. The pulse modulation signal 13 is generated in the control signal generation unit 70 by, for example, pulse width modulation (PWM), delta sigma modulation, or the like. The analog amplitude signal 12 a is input to the linear amplifier unit 60. The linear amplifier unit 60 has a voltage follower configuration including an operational amplifier 61, and outputs a power supply voltage Vout having a waveform following the voltage waveform of the analog amplitude signal 12a of the amplitude modulation component 12, and also outputs a current Ic. .
振幅変調成分12のパルス変調信号13は、ドライバアンプ51に入力される。ドライバアンプ51は、入力パルスをその波形を保ったまま増幅して、スイッチング素子52へ出力する。スイッチングアンプ部50は、ドライバアンプ51、スイッチング素子52、整流素子としてのダイオード53及びインダクタ54から構成されている。スイッチング素子52は、ドライバアンプ51の出力信号に従い、オン・オフ動作を行う。スイッチング素子52がオンのときは直流電源32から、スイッチング素子52がオフのときはダイオード53から、交互に電流が供給される。スイッチングアンプ部50は、インダクタ54によって平滑化された電流Imを出力する。
The pulse modulation signal 13 of the amplitude modulation component 12 is input to the driver amplifier 51. The driver amplifier 51 amplifies the input pulse while maintaining the waveform, and outputs the amplified pulse to the switching element 52. The switching amplifier unit 50 includes a driver amplifier 51, a switching element 52, a diode 53 as a rectifying element, and an inductor 54. The switching element 52 performs an on / off operation according to the output signal of the driver amplifier 51. A current is alternately supplied from the DC power source 32 when the switching element 52 is on, and from the diode 53 when the switching element 52 is off. The switching amplifier unit 50 outputs a current Im smoothed by the inductor 54.
線形アンプ部60の出力側とスイッチングアンプ部50の出力側とは出力端子31で結合され、出力端子31は電力増幅器20の電源端子22に接続される。電源端子22は、遅延器40を介して電力増幅器20の入力端子21と接続される。電源装置30の出力端子31において、線形アンプ部60から出力された電流Icとスイッチングアンプ部50から出力された電流Imと電力増幅器20に流れる電流Ioutとの間に、Ic+Im=Ioutの関係が成り立つ。
The output side of the linear amplifier unit 60 and the output side of the switching amplifier unit 50 are coupled by an output terminal 31, and the output terminal 31 is connected to the power supply terminal 22 of the power amplifier 20. The power supply terminal 22 is connected to the input terminal 21 of the power amplifier 20 via the delay device 40. At the output terminal 31 of the power supply device 30, a relationship of Ic + Im = Iout is established between the current Ic output from the linear amplifier unit 60, the current Im output from the switching amplifier unit 50, and the current Iout flowing through the power amplifier 20. .
図3は、図2における電力増幅器20及び遅延器40の構成をより具体的に示した図である。
FIG. 3 is a diagram more specifically showing the configuration of the power amplifier 20 and the delay device 40 in FIG.
電力増幅器20は、ソース端子24sが接地されたソース接地のFET24で構成されている。FET24のゲート端子24gには変調信号11が入力され、FET24のドレイン端子24dには電源端子22が接続される。ドレイン端子24dは、抵抗器41,42とキャパシタ43,44とで形成される遅延器40を介してゲート端子24gに接続される。すなわち、キャパシタ43と抵抗器41とからなる直列回路が電源端子22と入力端子21との間に接続され、抵抗器42とキャパシタ44とからなる直列回路が入力端子21とGNDとの間に接続されている。なお、図3では、直流バイアス電圧であるゲート電圧Vgも示している。ゲート電圧Vgは、インダクタ24L及び入力端子21を介してゲート端子24gに印加され、FET24の動作点を定める。
The power amplifier 20 is composed of a source grounded FET 24 having a source terminal 24s grounded. The modulation signal 11 is input to the gate terminal 24 g of the FET 24, and the power supply terminal 22 is connected to the drain terminal 24 d of the FET 24. The drain terminal 24d is connected to the gate terminal 24g via a delay device 40 formed by resistors 41 and 42 and capacitors 43 and 44. That is, a series circuit composed of the capacitor 43 and the resistor 41 is connected between the power supply terminal 22 and the input terminal 21, and a series circuit composed of the resistor 42 and the capacitor 44 is connected between the input terminal 21 and GND. Has been. FIG. 3 also shows a gate voltage Vg which is a DC bias voltage. The gate voltage Vg is applied to the gate terminal 24g via the inductor 24L and the input terminal 21, and determines the operating point of the FET 24.
ここで、抵抗器41,42の抵抗値をR1,R2とし、キャパシタ43,44の容量値をC1,C2とする。このとき、ドレイン電圧である電源電圧Voutは、R2/(R1+R2)の減衰を受けて、およそτ=(R1+R2)×(C1//C2)で決まる時定数をもって、FET24の入力側へフィードバックされる。ソース接地のFET24は、ドレイン電流である電流Ioutが、ゲート-ソース間の電圧Vgsで決まる電圧制御電流源である。電圧Vgsの変化は、遅延器40によって、電源電圧Voutに対してτだけ遅れる。そのため、電流Ioutも電源電圧Voutに対してτだけ遅れる。
Here, the resistance values of the resistors 41 and 42 are R1 and R2, and the capacitance values of the capacitors 43 and 44 are C1 and C2. At this time, the power supply voltage Vout which is a drain voltage is attenuated by R2 / (R1 + R2) and is fed back to the input side of the FET 24 with a time constant determined by approximately τ = (R1 + R2) × (C1 // C2). Is done. The common source FET 24 is a voltage controlled current source in which the current Iout which is a drain current is determined by the gate-source voltage Vgs. The change in the voltage Vgs is delayed by τ with respect to the power supply voltage Vout by the delay device 40. Therefore, the current Iout is also delayed by τ with respect to the power supply voltage Vout.
図2に示す電源装置30において、線形アンプ部60は広帯域かつ高線形である。そのため、線形アンプ部60が出力する電源電圧Voutは、高い精度で、アナログ振幅信号12aを追従した電圧波形になる。その一方で、線形アンプ部60は電力効率が低い。そこで、狭帯域であるものの電力効率の高いスイッチングアンプ部50から出力される電流Imを、アナログ振幅信号12aに同期するように供給することにより、線形アンプ部60から出力される電流Ic=Iout-Imが小さくなるように動作させることが望ましい。しかしながら、ドライバアンプ51は、通常、数10[ns]から数100[ns]程度の遅延を持つため、そのままでは、スイッチングアンプ部50から出力される電流Imは、線形アンプ部60から出力される電流Icから遅れる。その結果、電源装置30全体の電力効率が低下する。そこで、本実施形態1では、図3に示す遅延器40の遅延量τを調整して、ドライバアンプ51の遅延量と一致させることによって、電流Ioutと電流Imとのタイミングを合わせ、線形アンプ部60に流れる電流Ic=Iout-Imを小さくする。
In the power supply device 30 shown in FIG. 2, the linear amplifier unit 60 is broadband and highly linear. Therefore, the power supply voltage Vout output from the linear amplifier unit 60 has a voltage waveform that follows the analog amplitude signal 12a with high accuracy. On the other hand, the linear amplifier unit 60 has low power efficiency. Therefore, the current Im output from the linear amplifier unit 60 is supplied by synchronizing the current Im output from the switching amplifier unit 50 having a narrow band but high power efficiency with the analog amplitude signal 12a. It is desirable to operate so that Im becomes small. However, since the driver amplifier 51 usually has a delay of about several tens [ns] to several hundreds [ns], the current Im output from the switching amplifier unit 50 is output from the linear amplifier unit 60 as it is. Delayed from the current Ic. As a result, the power efficiency of the entire power supply device 30 is reduced. Therefore, in the first embodiment, the delay amount τ of the delay device 40 shown in FIG. 3 is adjusted so as to match the delay amount of the driver amplifier 51, thereby matching the timings of the current Iout and the current Im. The current Ic flowing through 60 is reduced.
図4及び図5に、比較例として、図9に示す関連技術1の送信装置100の波形図を示す。図6に、図2に示す本実施形態1の送信装置10の波形図を示す。以下、比較例と本実施形態1とを対比して説明する。
4 and 5 show waveform diagrams of the transmission apparatus 100 of the related technique 1 shown in FIG. 9 as a comparative example. FIG. 6 shows a waveform diagram of the transmission apparatus 10 of the first embodiment shown in FIG. Hereinafter, the comparative example and the first embodiment will be described in comparison.
図4は、関連技術1の送信装置100の理想的な動作を説明するための波形図である。以下、図4及び図9に基づき説明する。図4[A]はアナログ振幅信号112aとスイッチング素子152の出力電圧Vswとのタイミング関係を示し、図4[B]はスイッチングアンプ部150から出力される電流Imと電力増幅器120に流れる電流Ioutとのタイミング関係を示し、図4[C]は線形アンプ部160に流れる電流Icを示す。
FIG. 4 is a waveform diagram for explaining an ideal operation of the transmission apparatus 100 of the related technique 1. Hereinafter, a description will be given based on FIGS. 4 and 9. 4A shows the timing relationship between the analog amplitude signal 112a and the output voltage Vsw of the switching element 152, and FIG. 4B shows the current Im output from the switching amplifier unit 150 and the current Iout flowing through the power amplifier 120. 4C shows the current Ic flowing through the linear amplifier section 160. FIG.
図4は、電源装置130に2[MHz]の正弦波を入力した場合の、理想的な電流及び電圧の波形である。アナログ振幅信号112aの振幅が大きくなる領域で、パルスがHighになるようなパルス変調信号113を生成する。そして、パルス変調信号113と同期するようにスイッチング素子152をオン・オフ動作させることにより、出力電圧Vswが得られる(図4[A])。その結果、インダクタ154で平滑化され、スイッチングアンプ部150から出力された電流Imと、電力増幅器120に流れる電流Ioutとは、互いに近い値をとる(図4[B])。効率の低い線形アンプ部160に流れる電流Icは、電流Imと電流Ioutとの差分であるため、小さな値しか流れないので、電源装置130全体の効率は高くなる。
FIG. 4 shows ideal current and voltage waveforms when a 2 [MHz] sine wave is input to the power supply device 130. In the region where the amplitude of the analog amplitude signal 112a is large, the pulse modulation signal 113 is generated so that the pulse becomes high. Then, the switching element 152 is turned on / off so as to be synchronized with the pulse modulation signal 113, whereby the output voltage Vsw is obtained (FIG. 4 [A]). As a result, the current Im smoothed by the inductor 154 and output from the switching amplifier unit 150 and the current Iout flowing through the power amplifier 120 take values close to each other (FIG. 4B). Since the current Ic flowing through the low-efficiency linear amplifier unit 160 is the difference between the current Im and the current Iout, only a small value flows, so the efficiency of the entire power supply device 130 is increased.
図5は、関連技術1の送信装置100の課題を説明するための波形図である。以下、図5及び図9に基づき説明する。図5[A]はアナログ振幅信号112aとスイッチング素子152の出力電圧Vswとのタイミング関係を示し、図5[B]はスイッチングアンプ部150から出力される電流Imと電力増幅器120に流れる電流Ioutとのタイミング関係を示し、図5[C]は線形アンプ部160に流れる電流Icを示す。
FIG. 5 is a waveform diagram for explaining the problem of the transmission apparatus 100 of the related technique 1. Hereinafter, a description will be given based on FIGS. 5 and 9. 5A shows the timing relationship between the analog amplitude signal 112a and the output voltage Vsw of the switching element 152, and FIG. 5B shows the current Im output from the switching amplifier unit 150 and the current Iout flowing through the power amplifier 120. FIG. 5C shows the current Ic flowing through the linear amplifier unit 160.
図5は、電源装置130に2[MHz]の正弦波を入力した場合の、実際の電流及び電圧の波形である。アナログ振幅信号112aの振幅が大きくなる領域で、パルスがHighになるようなパルス変調信号113を生成しても、ドライバアンプ151が約50[ns]の遅延を持つため、スイッチング素子152の出力電圧Vswに遅れが生じる(図5[A])。その結果、電力増幅器120に流れる電流Ioutとスイッチングアンプ部150から出力される電流Imとの位相がずれる(図5[B])。線形アンプ部160に流れる電流Icは、電流Ioutと電流Imとの差分であるため、図5[C]に示すように大きな値となり、電源装置130全体の消費電力が大きくなる。あるいは、電流Icが線形アンプ部160の許容値を越えるため、電源装置130がアナログ振幅信号112aに追従できなくなる。
FIG. 5 shows actual current and voltage waveforms when a sine wave of 2 [MHz] is input to the power supply device 130. Even if the pulse modulation signal 113 is generated so that the pulse becomes high in the region where the amplitude of the analog amplitude signal 112a is large, the driver amplifier 151 has a delay of about 50 [ns], so that the output voltage of the switching element 152 There is a delay in Vsw (FIG. 5 [A]). As a result, the phase of the current Iout flowing through the power amplifier 120 and the current Im output from the switching amplifier unit 150 are shifted (FIG. 5 [B]). Since the current Ic flowing through the linear amplifier section 160 is the difference between the current Iout and the current Im, the current Ic has a large value as shown in FIG. 5C, and the power consumption of the entire power supply device 130 increases. Alternatively, since the current Ic exceeds the allowable value of the linear amplifier unit 160, the power supply device 130 cannot follow the analog amplitude signal 112a.
図6は、実施形態1の送信装置10の動作を説明するための波形図である。以下、図2及び図6に基づき説明する。図6[A]はアナログ振幅信号12aとスイッチング素子52の出力電圧Vswとのタイミング関係を示し、図6[B]はスイッチングアンプ部50から出力される電流Imと電力増幅器20に流れる電流Ioutとのタイミング関係を示し、図6[C]は線形アンプ部60に流れる電流Icを示す。
FIG. 6 is a waveform diagram for explaining the operation of the transmission apparatus 10 according to the first embodiment. Hereinafter, a description will be given based on FIGS. 2 and 6. 6A shows the timing relationship between the analog amplitude signal 12a and the output voltage Vsw of the switching element 52, and FIG. 6B shows the current Im output from the switching amplifier unit 50 and the current Iout flowing through the power amplifier 20. 6C shows the current Ic flowing through the linear amplifier unit 60. FIG.
図6は、電源装置30に2[MHz]の正弦波を入力した場合の電流及び電圧の波形である。制御信号生成部70は、アナログ振幅信号12aの振幅が大きくなる領域でパルスがHighになるような、パルス変調信号13を生成する。しかし、ドライバアンプ51の約50[ns]の遅延によって、パルス変調信号13に遅れが生じる(図6[A])。しかしながら、遅延器40の作用により、電力増幅器20に流れる電流Ioutを電源電圧Voutに対して遅らせることができるので、電流Ioutとスイッチングアンプ部50から出力される電流Imとの位相を揃えることができる(図6[B])。その結果、線形アンプ部60に流れる電流Icは、電流Ioutと電流Imの差分であるため、図6[C]に示すように小さな値となり、電源装置30全体の消費電力が小さくなるという効果がもたらされる。
FIG. 6 shows current and voltage waveforms when a 2 [MHz] sine wave is input to the power supply device 30. The control signal generation unit 70 generates the pulse modulation signal 13 so that the pulse becomes High in a region where the amplitude of the analog amplitude signal 12a is large. However, the delay of about 50 [ns] of the driver amplifier 51 causes a delay in the pulse modulation signal 13 (FIG. 6 [A]). However, since the current Iout flowing through the power amplifier 20 can be delayed with respect to the power supply voltage Vout by the action of the delay device 40, the phase of the current Iout and the current Im output from the switching amplifier unit 50 can be made uniform. (FIG. 6 [B]). As a result, since the current Ic flowing through the linear amplifier unit 60 is the difference between the current Iout and the current Im, the current Ic becomes a small value as shown in FIG. 6C, and the power consumption of the entire power supply device 30 is reduced. Brought about.
次に、別の比較例としての関連技術2と本実施形態1とを対比して説明する。
Next, the related technology 2 as another comparative example will be described in comparison with the first embodiment.
前述の特許文献1には、図10で説明すると、スイッチドライバ回路224での遅延を見越して、パルス信号(第2の制御信号S)の時間を時間補正回路222で時間的に早く進める、と記載されている。しかし、任意の信号が入力される実使用状態において、時間的に早く進めることは不可能である。また、相対的に、アナログ振幅信号(第1の制御信号E)を遅らせることでも同じ効果が得られるが、アナログ信号を数10[ns]から数100[ns]、歪みなく遅延させることは極めて難しい。アナログ振幅信号経路の線路長で遅延させる場合は、非常に長い線路が必要になるので、装置が大型化する。アナログ振幅信号経路にアナログフィルタを設け、遅延させる場合、波形歪みが生じ易い。デジタル変調信号生成部220内で、デジタルフィルタを用いて遅延させることは可能である。しかし、地デジ送信機など大電力用途で、共通のデジタル変調信号生成部220に複数の送信装置を並列して接続する場合、個々の部品のバラツキによって遅延量も異なると考えられるが、それらを個別に遅延調整ができない。
In the above-mentioned Patent Document 1, as described with reference to FIG. 10, the time of the pulse signal (second control signal S) is advanced in time by the time correction circuit 222 in anticipation of the delay in the switch driver circuit 224. Are listed. However, in an actual use state where an arbitrary signal is input, it is impossible to advance in time. In addition, relatively the same effect can be obtained by delaying the analog amplitude signal (first control signal E), but it is extremely difficult to delay the analog signal from several tens [ns] to several hundreds [ns] without distortion. difficult. When delaying by the line length of the analog amplitude signal path, a very long line is required, so that the apparatus becomes large. When an analog filter is provided in the analog amplitude signal path and delayed, waveform distortion is likely to occur. In the digital modulation signal generation unit 220, it is possible to delay using a digital filter. However, when multiple transmitters are connected in parallel to the common digital modulation signal generator 220 for high power applications such as terrestrial digital transmitters, the delay amount is considered to vary depending on the variation of individual components. Cannot adjust the delay individually.
これに対し、本実施形態1の送信装置10では、小型、簡便、個別に遅延量τを生成でき、また、フィードバックによって遅延を発生させるので、波形歪みもほとんど生じないという効果が得られる。
On the other hand, in the transmission apparatus 10 of the first embodiment, the delay amount τ can be generated individually and in a small size, and since the delay is generated by feedback, there is an effect that the waveform distortion hardly occurs.
次に、本実施形態1の送信装置100について、構成、作用及び効果を総括する。
Next, the configuration, operation, and effects of the transmission device 100 of the first embodiment will be summarized.
[構成]本実施形態1の送信装置10は、入力した変調信号11の振幅変調成分12を高効率にスイッチング増幅するスイッチングアンプ部50と、振幅変調成分12を高精度に線形増幅する線形アンプ部60とを並列に設けた電源装置30を有し、更に、電源装置30から出力された電源電圧Voutを用いて変調信号11を増幅する電力増幅器20を有する。そして、送信装置10は、電力増幅器20の電源端子22と入力端子21とを接続する遅延器40を更に有し、遅延器40で得られる遅延量τによって、電源装置30の線形アンプ部60に対するスイッチングアンプ部50の遅延を補償する。
[Configuration] The transmission apparatus 10 according to the first embodiment includes a switching amplifier unit 50 that switches and amplifies the amplitude modulation component 12 of the input modulation signal 11 with high efficiency, and a linear amplifier unit that linearly amplifies the amplitude modulation component 12 with high accuracy. 60, and a power amplifier 20 that amplifies the modulation signal 11 using the power supply voltage Vout output from the power supply device 30. The transmission device 10 further includes a delay device 40 that connects the power supply terminal 22 and the input terminal 21 of the power amplifier 20, and the linear amplifier unit 60 of the power supply device 30 is controlled by the delay amount τ obtained by the delay device 40. The delay of the switching amplifier unit 50 is compensated.
[作用]本実施形態1の送信装置10は、入力した変調信号11の振幅変調成分12の波形に追従した電源電圧Voutを出力する電源装置30と、電源電圧Voutによって動作して変調信号11を増幅する電力増幅器20とを備える。電源装置30は、振幅変調成分12を線形に増幅し、電流Icを出力する線形アンプ部60と、振幅変調成分12をスイッチング増幅し、電流Imを出力するスイッチングアンプ部50とを有し、両者の電流の合計Ic+Im=Ioutを電力増幅器20に出力する。電力増幅器20は、電圧制御電流源とみなすことができ、流れる電流Ioutは、入力端子21の平均電圧Vinによって決定される。本実施形態1の送信装置10では、電力増幅器20の電源電圧Voutに対して、入力端子21の平均電圧Vinが遅延器40によって、遅れて動作する。その結果、電力増幅器20の平均電流である電流Ioutも電源電圧Voutに対して遅れて流れる。本実施形態1における電源装置30において、線形アンプ部60の電流Icに対するスイッチングアンプ部50の電流Imの遅れを、電力増幅器20の電源端子22と入力端子21との間に接続した遅延器40による電源電圧Voutに対する電流Ioutの遅れで補償することにより、効率の低い線形アンプ部60の電流Ic(=Iout-Im)を小さく設定することができ、電源装置30すなわち送信装置10全体の電力効率を向上することができる。
[Operation] The transmission apparatus 10 according to the first embodiment operates with the power supply voltage Vout that follows the waveform of the amplitude modulation component 12 of the input modulation signal 11 and the power supply voltage Vout, and outputs the modulation signal 11. A power amplifier 20 for amplification. The power supply device 30 includes a linear amplifier unit 60 that linearly amplifies the amplitude modulation component 12 and outputs a current Ic, and a switching amplifier unit 50 that performs switching amplification of the amplitude modulation component 12 and outputs a current Im. The total current Ic + Im = Iout is output to the power amplifier 20. The power amplifier 20 can be regarded as a voltage controlled current source, and the flowing current Iout is determined by the average voltage Vin of the input terminal 21. In the transmission apparatus 10 according to the first embodiment, the average voltage Vin of the input terminal 21 operates with a delay by the delay device 40 with respect to the power supply voltage Vout of the power amplifier 20. As a result, the current Iout that is the average current of the power amplifier 20 also flows with a delay from the power supply voltage Vout. In the power supply device 30 according to the first embodiment, the delay of the current Im of the switching amplifier unit 50 with respect to the current Ic of the linear amplifier unit 60 is caused by the delay device 40 connected between the power supply terminal 22 and the input terminal 21 of the power amplifier 20. By compensating for the delay of the current Iout with respect to the power supply voltage Vout, the current Ic (= Iout−Im) of the low-efficiency linear amplifier unit 60 can be set small, and the power efficiency of the power supply device 30, that is, the transmission device 10 as a whole can be reduced. Can be improved.
[効果]第1の効果は、高い電力効率と高い線形性を有する送信装置10を提供することができることである。その理由は、エンベロープトラッキング方式の送信装置10において、電源装置30の線形アンプ部60に対するスイッチングアンプ部50の遅延を、電力増幅器20の電流Ioutを電源電圧Voutに対して遅延させることによって補償し、効率の低い線形アンプ部60に流れる電流Icを最小にすることができるためである。また、線形アンプ部60に流れる電流が小さいため、動作に余裕ができ、高い精度で、入力信号に追従することができる。
[Effect] The first effect is that the transmitter 10 having high power efficiency and high linearity can be provided. The reason for this is that in the envelope tracking type transmitter 10, the delay of the switching amplifier 50 with respect to the linear amplifier 60 of the power supply 30 is compensated by delaying the current Iout of the power amplifier 20 with respect to the power supply voltage Vout. This is because the current Ic flowing through the linear amplifier unit 60 with low efficiency can be minimized. In addition, since the current flowing through the linear amplifier unit 60 is small, there is a margin in operation, and the input signal can be followed with high accuracy.
第2の効果は、電力増幅器20の負荷変動やばらつきに強いエンベロープトラッキング方式の送信装置10を提供することができることである。その結果、複数のET方式エンベロープトラッキング方式増幅器からなる大規模な送信装置を実現できる。その理由は、電力増幅器20の電源電圧Voutを入力側にフィードバックすることによって遅延を発生する、フィードバック制御を行うためである。また、電力増幅器20を電気的に閉じた状態にして遅延補償を行うため、複数の増幅器があっても、個別に自立的に遅延補償を行えるためである。
The second effect is that it is possible to provide an envelope tracking transmission device 10 that is resistant to load fluctuations and variations of the power amplifier 20. As a result, a large-scale transmission apparatus including a plurality of ET envelope tracking amplifiers can be realized. The reason is to perform feedback control that generates a delay by feeding back the power supply voltage Vout of the power amplifier 20 to the input side. In addition, since delay compensation is performed with the power amplifier 20 electrically closed, delay compensation can be performed independently even when there are a plurality of amplifiers.
なお、本実施形態1では、変調信号11の振幅変調成分12をアナログ振幅信号12aで処理しているが、インターフェースはデジタルでもよく、振幅変調成分12をデジタル信号で処理にしてもよい。また、スイッチングアンプ部50も、図2に示した構成に限らず、例えば、ダイオード53をFETスイッチに置き換えた同期整流タイプのスイッチングコンバータ構成にしてもよいし、トランスを用いたフォワード型など、絶縁型のスイッチングコンバータ構成にしてもよい。
In the first embodiment, the amplitude modulation component 12 of the modulation signal 11 is processed by the analog amplitude signal 12a. However, the interface may be digital, and the amplitude modulation component 12 may be processed by a digital signal. In addition, the switching amplifier unit 50 is not limited to the configuration shown in FIG. 2, but may be a synchronous rectification type switching converter configuration in which the diode 53 is replaced with an FET switch, or a forward type using a transformer or the like. Type switching converter configuration.
図7は、実施形態2の送信装置の概要を示すブロック図である。図8は、実施形態2における電源装置の具体例を示す回路図である。以下、これらの図面に基づき、実施形態1と異なる部分を中心に説明する。
FIG. 7 is a block diagram illustrating an outline of the transmission apparatus according to the second embodiment. FIG. 8 is a circuit diagram illustrating a specific example of the power supply device according to the second embodiment. Hereinafter, based on these drawings, a description will be given focusing on differences from the first embodiment.
本実施形態2の送信装置80は、実施形態1の送信装置に対して、電源装置35及び遅延器45が異なる。すなわち、遅延器45は、抵抗器の抵抗値とキャパシタの容量値との少なくとも一つを可変とすることにより、遅延量を可変とする機能を有する。図3で説明すると、抵抗器41,42の抵抗値R1,R2とキャパシタ43,44の容量値C1,C2との少なくとも一つを可変とする。例えば、抵抗器41,42をトランジスタの線形領域などの可変抵抗素子に置き換えたり、キャパシタ43,44をバラクタダイオードなどの可変容量素子に置き換えたりすればよい。電源装置35は、電源装置35の消費電力が小さくなるように遅延量τを制御する遅延量制御部90を更に有する。例えば、遅延量制御部90は、線形アンプ部60に供給される電流を検知し、その値が小さくなるように遅延量τを制御する。図7に示す遅延量制御部90は、線形アンプ部60へ電流を供給する直流電源91と、線形アンプ部60へ供給される電流の経路に設けられた抵抗器92と、抵抗器92の両端の電圧を入力する差動アンプからなる検出器93とを有する。検出器93の出力信号は、遅延器45に入力され、例えば可変抵抗素子や可変容量素子に印加される。
The transmission device 80 of the second embodiment is different from the transmission device of the first embodiment in a power supply device 35 and a delay device 45. That is, the delay unit 45 has a function of varying the delay amount by varying at least one of the resistance value of the resistor and the capacitance value of the capacitor. Referring to FIG. 3, at least one of the resistance values R1, R2 of the resistors 41, 42 and the capacitance values C1, C2 of the capacitors 43, 44 is variable. For example, the resistors 41 and 42 may be replaced with variable resistance elements such as a linear region of transistors, and the capacitors 43 and 44 may be replaced with variable capacitance elements such as varactor diodes. The power supply device 35 further includes a delay amount control unit 90 that controls the delay amount τ so that the power consumption of the power supply device 35 is reduced. For example, the delay amount control unit 90 detects the current supplied to the linear amplifier unit 60 and controls the delay amount τ so that the value becomes small. The delay amount control unit 90 illustrated in FIG. 7 includes a DC power supply 91 that supplies current to the linear amplifier unit 60, a resistor 92 that is provided in a path of current that is supplied to the linear amplifier unit 60, and both ends of the resistor 92. And a detector 93 made up of a differential amplifier for inputting the voltage. The output signal of the detector 93 is input to the delay unit 45 and applied to, for example, a variable resistance element or a variable capacitance element.
次に、本実施形態2の送信装置80について更に詳細に説明する。
Next, the transmission device 80 of the second embodiment will be described in more detail.
図7は、本実施形態2の送信装置80の構成を示すブロック図である。本実施形態2では、遅延器45を可変遅延器で構成している。遅延器45の遅延量τは、電源装置35の状態に応じて可変される。
FIG. 7 is a block diagram illustrating a configuration of the transmission device 80 according to the second embodiment. In the second embodiment, the delay unit 45 is configured by a variable delay unit. The delay amount τ of the delay unit 45 is variable according to the state of the power supply device 35.
図8は、図7における電源装置35の構成をより具体的に示した図である。電力増幅器20の電源端子22は、遅延器45を介して、入力端子21と接続される。遅延器45は、電源装置35の線形アンプ部60に供給される電流を検出器93でモニタし、その電流が小さくなるように遅延量τを変化させる。遅延器45の機能は、図3に示す抵抗器41,42やキャパシタ43,44を可変抵抗素子や可変容量素子に置き換えることで実現される。本実施形態2では、線形アンプ部60の電流をモニタし、これが小さくなる方向に遅延器45の遅延量τを調整する。このような制御を行うと、電流Ioutと電流Imとのタイミングをより正確に合わせることができるので、線形アンプ部60に流れる電流Ic=Iout-Imをより小さくすることができ、これにより送信装置10全体の電力効率が向上する。
FIG. 8 is a diagram showing the configuration of the power supply device 35 in FIG. 7 more specifically. The power supply terminal 22 of the power amplifier 20 is connected to the input terminal 21 via the delay unit 45. The delay unit 45 monitors the current supplied to the linear amplifier unit 60 of the power supply device 35 with the detector 93 and changes the delay amount τ so that the current becomes small. The function of the delay unit 45 is realized by replacing the resistors 41 and 42 and the capacitors 43 and 44 shown in FIG. 3 with variable resistance elements and variable capacitance elements. In the second embodiment, the current of the linear amplifier unit 60 is monitored, and the delay amount τ of the delay unit 45 is adjusted in the direction in which the current becomes smaller. When such control is performed, the timings of the current Iout and the current Im can be more accurately matched, so that the current Ic = Iout−Im flowing through the linear amplifier unit 60 can be further reduced. The overall power efficiency of 10 is improved.
本実施形態2では、ドライバアンプ51の遅延に最も敏感な線形アンプ部60の電流をモニタして遅延量τを適応的に調整している。そのため、本実施形態2によれば、実施形態1の効果に加え、装置稼働中に経年劣化による部品の特性変動や、負荷インピーダンスの変動によって、最適な遅延量τが変化した場合でも、電力効率が劣化しないという相乗的な効果を奏する。更に、送信装置80においてローカルに閉じて遅延調整を行えるので、地デジ送信機など大電力用途で送信装置80を複数同時に使用する場合に、素子のバラツキなどによる遅延バラツキを個別に補正する必要がないという効果も奏する。
In the second embodiment, the delay amount τ is adaptively adjusted by monitoring the current of the linear amplifier 60 that is most sensitive to the delay of the driver amplifier 51. Therefore, according to the second embodiment, in addition to the effects of the first embodiment, even when the optimum delay amount τ is changed due to component characteristic variation due to aging degradation or load impedance variation during operation of the apparatus, the power efficiency Has a synergistic effect that does not deteriorate. Furthermore, since the transmitter 80 can be closed locally to adjust the delay, when using a plurality of transmitters 80 simultaneously for high power applications such as a terrestrial digital transmitter, it is necessary to individually correct delay variations due to element variations and the like. There is also an effect that there is no.
本実施形態2のその他の構成、作用及び効果は、実施形態1の構成、作用及び効果と同様である。
Other configurations, operations, and effects of the second embodiment are the same as those of the first embodiment.
以上、上記各実施形態を参照して本発明を説明したが、本発明は上記各実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。
As described above, the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.
上記の実施形態の一部又は全部は以下の付記のようにも記載され得るが、本発明は以下の構成に限定されるものではない。
Some or all of the above embodiments can be described as in the following supplementary notes, but the present invention is not limited to the following configurations.
[付記1]振幅変調成分及び位相変調成分を含む変調信号を入力する入力端子と、電源電圧を入力する電源端子とを有し、前記電源電圧を用いて前記変調信号を増幅して出力する増幅器と、
スイッチングアンプ部と線形アンプ部とを有し、前記変調信号の振幅変調成分の波形に追従した前記電源電圧を前記電源端子に供給する電源装置と、
前記電源端子と前記入力端子との間に接続され、前記スイッチングアンプ部と線形アンプ部との動作のタイミングずれを補償する遅延器と、
を備えた送信装置。 [Supplementary Note 1] An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage When,
A power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal;
A delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit;
A transmission device comprising:
スイッチングアンプ部と線形アンプ部とを有し、前記変調信号の振幅変調成分の波形に追従した前記電源電圧を前記電源端子に供給する電源装置と、
前記電源端子と前記入力端子との間に接続され、前記スイッチングアンプ部と線形アンプ部との動作のタイミングずれを補償する遅延器と、
を備えた送信装置。 [Supplementary Note 1] An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage When,
A power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal;
A delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit;
A transmission device comprising:
[付記2]前記電源装置は、前記振幅変調成分を入力し、この振幅変調成分をアナログ表現した信号を生成して前記スイッチングアンプ部へ出力するとともに、前記振幅変調成分をパルス変調した信号を生成して前記線形アンプ部へ出力する制御信号生成部を、更に有する、
付記1記載の送信装置。 [Appendix 2] The power supply device receives the amplitude modulation component, generates a signal representing the amplitude modulation component in an analog form, outputs the signal to the switching amplifier unit, and generates a signal obtained by pulse-modulating the amplitude modulation component And further has a control signal generation unit for outputting to the linear amplifier unit,
The transmission device according to attachment 1.
付記1記載の送信装置。 [Appendix 2] The power supply device receives the amplitude modulation component, generates a signal representing the amplitude modulation component in an analog form, outputs the signal to the switching amplifier unit, and generates a signal obtained by pulse-modulating the amplitude modulation component And further has a control signal generation unit for outputting to the linear amplifier unit,
The transmission device according to attachment 1.
[付記3]前記スイッチングアンプ部は、少なくとも一つのスイッチング素子と、このスイッチング素子の出力電流を平滑化するインダクタと、を有するスイッチングコンバータ構成である、
付記1又は2記載の送信装置。 [Appendix 3] The switching amplifier unit has a switching converter configuration including at least one switching element and an inductor that smoothes an output current of the switching element.
The transmission device according to appendix 1 or 2.
付記1又は2記載の送信装置。 [Appendix 3] The switching amplifier unit has a switching converter configuration including at least one switching element and an inductor that smoothes an output current of the switching element.
The transmission device according to appendix 1 or 2.
[付記4]前記線形アンプは、少なくとも一つのオペアンプと、このオペアンプの出力信号を入力に戻すフィードバック経路と、を有するボルテージフォロア構成である、
付記1乃至3のいずれか一つに記載の送信装置。 [Supplementary Note 4] The linear amplifier has a voltage follower configuration including at least one operational amplifier and a feedback path for returning an output signal of the operational amplifier to the input.
The transmission device according to any one of supplementary notes 1 to 3.
付記1乃至3のいずれか一つに記載の送信装置。 [Supplementary Note 4] The linear amplifier has a voltage follower configuration including at least one operational amplifier and a feedback path for returning an output signal of the operational amplifier to the input.
The transmission device according to any one of supplementary notes 1 to 3.
[付記5]前記遅延器は、抵抗器とキャパシタとを有し、前記抵抗器の抵抗値と前記キャパシタの容量値との積からなる時定数によって遅延量が決定される、
付記1乃至4のいずれか一つに記載の送信装置。 [Supplementary Note 5] The delay device includes a resistor and a capacitor, and a delay amount is determined by a time constant formed by a product of a resistance value of the resistor and a capacitance value of the capacitor.
The transmission device according to any one of supplementary notes 1 to 4.
付記1乃至4のいずれか一つに記載の送信装置。 [Supplementary Note 5] The delay device includes a resistor and a capacitor, and a delay amount is determined by a time constant formed by a product of a resistance value of the resistor and a capacitance value of the capacitor.
The transmission device according to any one of supplementary notes 1 to 4.
[付記6]前記遅延器は、前記抵抗器の抵抗値と前記キャパシタの容量値との少なくとも一つを可変とすることにより、前記遅延量を可変とする機能を有し、
前記電源装置は、当該電源装置の消費電力が小さくなるように前記遅延量を制御する遅延量制御部を更に有する、
付記5記載の送信装置。 [Appendix 6] The delay device has a function of changing the delay amount by changing at least one of a resistance value of the resistor and a capacitance value of the capacitor.
The power supply device further includes a delay amount control unit that controls the delay amount so that power consumption of the power supply device is reduced.
The transmission device according toattachment 5.
前記電源装置は、当該電源装置の消費電力が小さくなるように前記遅延量を制御する遅延量制御部を更に有する、
付記5記載の送信装置。 [Appendix 6] The delay device has a function of changing the delay amount by changing at least one of a resistance value of the resistor and a capacitance value of the capacitor.
The power supply device further includes a delay amount control unit that controls the delay amount so that power consumption of the power supply device is reduced.
The transmission device according to
[付記7]前記遅延量制御部は、前記線形アンプ部に供給される電流を検知し、その値が小さくなるように前記遅延量を制御する、
付記6記載の送信装置。 [Supplementary Note 7] The delay amount control unit detects the current supplied to the linear amplifier unit, and controls the delay amount so that the value becomes small.
The transmission device according to attachment 6.
付記6記載の送信装置。 [Supplementary Note 7] The delay amount control unit detects the current supplied to the linear amplifier unit, and controls the delay amount so that the value becomes small.
The transmission device according to attachment 6.
この出願は2012年3月6日に出願された日本出願特願2012-049233を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2012-049233 filed on March 6, 2012, the entire disclosure of which is incorporated herein.
本発明は、例えば携帯電話、無線LAN、WiMAX(Worldwide Interoperability for Microwave Access)向けの端末、基地局、地上波デジタル放送局といった用途に利用可能である。
The present invention can be used for applications such as mobile phones, wireless LANs, terminals for WiMAX (Worldwide Interoperability for Microwave Access), base stations, and digital terrestrial broadcasting stations.
10 送信装置
11 変調信号
12 振幅変調成分
12a アナログ振幅信号
13 パルス変調信号
14 電源電圧
15 変調信号
20 電力増幅器(増幅器)
21 入力端子
22 電源端子
23 出力端子
24 FET
24g ゲート端子
24d ドレイン端子
24s ソース端子
24L インダクタ
30 電源装置
31 出力端子
32 直流電源
35 電源装置
40 遅延器
41,42 抵抗器
43,44 キャパシタ
45 遅延器
50 スイッチングアンプ部
51 ドライバアンプ
52 スイッチング素子
53 ダイオード(整流素子)
54 インダクタ
60 線形アンプ部
61 オペアンプ
70 制御信号生成部
80 送信装置
90 遅延量制御部
91 直流電源
92 抵抗器
93 検出器
Ic,Im,Iout 電流
Vout 電源電圧
Vsw 出力電圧
τ 遅延量 DESCRIPTION OFSYMBOLS 10 Transmitter 11 Modulation signal 12 Amplitude modulation component 12a Analog amplitude signal 13 Pulse modulation signal 14 Power supply voltage 15 Modulation signal 20 Power amplifier (amplifier)
21Input terminal 22 Power supply terminal 23 Output terminal 24 FET
24g Gate terminal 24d Drain terminal 24s Source terminal 24L Inductor 30 Power supply 31 Output terminal 32 DC power supply 35 Power supply 40 Delay device 41, 42 Resistor 43, 44 Capacitor 45 Delay device 50 Switching amplifier section 51 Driver amplifier 52 Switching element 53 Diode (Rectifier element)
54Inductor 60 Linear Amplifier Unit 61 Operational Amplifier 70 Control Signal Generation Unit 80 Transmitter 90 Delay Amount Control Unit 91 DC Power Supply 92 Resistor 93 Detector Ic, Im, Iout Current Vout Power Supply Voltage Vsw Output Voltage τ Delay Amount
11 変調信号
12 振幅変調成分
12a アナログ振幅信号
13 パルス変調信号
14 電源電圧
15 変調信号
20 電力増幅器(増幅器)
21 入力端子
22 電源端子
23 出力端子
24 FET
24g ゲート端子
24d ドレイン端子
24s ソース端子
24L インダクタ
30 電源装置
31 出力端子
32 直流電源
35 電源装置
40 遅延器
41,42 抵抗器
43,44 キャパシタ
45 遅延器
50 スイッチングアンプ部
51 ドライバアンプ
52 スイッチング素子
53 ダイオード(整流素子)
54 インダクタ
60 線形アンプ部
61 オペアンプ
70 制御信号生成部
80 送信装置
90 遅延量制御部
91 直流電源
92 抵抗器
93 検出器
Ic,Im,Iout 電流
Vout 電源電圧
Vsw 出力電圧
τ 遅延量 DESCRIPTION OF
21
54
Claims (7)
- 振幅変調成分及び位相変調成分を含む変調信号を入力する入力端子と、電源電圧を入力する電源端子とを有し、前記電源電圧を用いて前記変調信号を増幅して出力する増幅器と、
スイッチングアンプ部と線形アンプ部とを有し、前記変調信号の振幅変調成分の波形に追従した前記電源電圧を前記電源端子に供給する電源装置と、
前記電源端子と前記入力端子との間に接続され、前記スイッチングアンプ部と線形アンプ部との動作のタイミングずれを補償する遅延器と、
を備えた送信装置。 An amplifier having an input terminal for inputting a modulation signal including an amplitude modulation component and a phase modulation component, and a power supply terminal for inputting a power supply voltage, and amplifying and outputting the modulation signal using the power supply voltage;
A power supply device having a switching amplifier unit and a linear amplifier unit, and supplying the power supply voltage following the waveform of the amplitude modulation component of the modulation signal to the power supply terminal;
A delay device connected between the power supply terminal and the input terminal to compensate for a timing shift in operation between the switching amplifier unit and the linear amplifier unit;
A transmission device comprising: - 前記電源装置は、前記振幅変調成分を入力し、この振幅変調成分をアナログ表現した信号を生成して前記線形アンプ部へ出力するとともに、前記振幅変調成分をパルス変調した信号を生成して前記スイッチングアンプ部へ出力する制御信号生成部を、更に有する、
請求項1記載の送信装置。 The power supply device receives the amplitude modulation component, generates a signal representing the amplitude modulation component in an analog form, outputs the signal to the linear amplifier unit, and generates a signal obtained by pulse-modulating the amplitude modulation component to perform the switching. A control signal generator for outputting to the amplifier unit;
2. The transmission device according to claim 1. - 前記スイッチングアンプ部は、少なくとも一つのスイッチング素子と、このスイッチング素子の出力電流を平滑化するインダクタと、を有するスイッチングコンバータ構成である、
請求項1又は2記載の送信装置。 The switching amplifier unit has a switching converter configuration having at least one switching element and an inductor that smoothes an output current of the switching element.
The transmission apparatus according to claim 1 or 2. - 前記線形アンプは、少なくとも一つのオペアンプと、このオペアンプの出力信号を入力に戻すフィードバック経路と、を有するボルテージフォロア構成である、
請求項1乃至3のいずれか一つに記載の送信装置。 The linear amplifier has a voltage follower configuration including at least one operational amplifier and a feedback path for returning an output signal of the operational amplifier to an input.
The transmission device according to any one of claims 1 to 3. - 前記遅延器は、抵抗器とキャパシタとを有し、前記抵抗器の抵抗値と前記キャパシタの容量値との積からなる時定数によって遅延量が決定される、
請求項1乃至4のいずれか一つに記載の送信装置。 The delay device includes a resistor and a capacitor, and a delay amount is determined by a time constant formed by a product of a resistance value of the resistor and a capacitance value of the capacitor.
The transmission device according to any one of claims 1 to 4. - 前記遅延器は、前記抵抗器の抵抗値と前記キャパシタの容量値との少なくとも一つを可変とすることにより、前記遅延量を可変とする機能を有し、
前記電源装置は、当該電源装置の消費電力が小さくなるように前記遅延量を制御する遅延量制御部を更に有する、
請求項5記載の送信装置。 The delay device has a function of changing the delay amount by changing at least one of a resistance value of the resistor and a capacitance value of the capacitor.
The power supply device further includes a delay amount control unit that controls the delay amount so that power consumption of the power supply device is reduced.
The transmission device according to claim 5. - 前記遅延量制御部は、前記線形アンプ部に供給される電流を検知し、その値が小さくなるように前記遅延量を制御する、
請求項6記載の送信装置。 The delay amount control unit detects the current supplied to the linear amplifier unit, and controls the delay amount so that the value becomes small.
The transmission device according to claim 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012049233 | 2012-03-06 | ||
JP2012-049233 | 2012-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133170A1 true WO2013133170A1 (en) | 2013-09-12 |
Family
ID=49116650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055702 WO2013133170A1 (en) | 2012-03-06 | 2013-03-01 | Transmission device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013133170A1 (en) |
WO (1) | WO2013133170A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016039451A (en) * | 2014-08-06 | 2016-03-22 | ローム株式会社 | Power supply circuit for audio amplifier, electronic apparatus, supply method of power supply voltage to audio amplifier |
JP2018129711A (en) * | 2017-02-09 | 2018-08-16 | 株式会社村田製作所 | Power amplifier circuit and high frequency module |
WO2018146901A1 (en) * | 2017-02-08 | 2018-08-16 | 日本電気株式会社 | High frequency measurement method and high frequency measurement device |
US10484024B2 (en) | 2017-12-07 | 2019-11-19 | Murata Manufacturing Co., Ltd. | Transmission unit |
JP2020195061A (en) * | 2019-05-28 | 2020-12-03 | ルネサスエレクトロニクス株式会社 | Amplification device and method |
US10879847B2 (en) | 2017-12-20 | 2020-12-29 | Murata Manufacturing Co., Ltd. | Transmission unit |
JP2021507595A (en) * | 2017-12-14 | 2021-02-22 | ノースロップ グラマン システムズ コーポレーション | High voltage, high speed GaN drive circuit |
US11705305B2 (en) | 2021-06-09 | 2023-07-18 | XP Power Limited | Radio frequency generator including pulse generator circuit to provide complex RF pulse pattern |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004534469A (en) * | 2001-07-03 | 2004-11-11 | シーメンス アクチエンゲゼルシヤフト | How to control high frequency signal amplification |
JP2005176331A (en) * | 2003-11-21 | 2005-06-30 | Matsushita Electric Ind Co Ltd | Amplifier, transmitter using the same and communication device |
JP2010016794A (en) * | 2008-01-11 | 2010-01-21 | Toshiba Corp | Power amplifying apparatus |
-
2013
- 2013-03-01 WO PCT/JP2013/055702 patent/WO2013133170A1/en active Application Filing
- 2013-03-01 JP JP2014503816A patent/JPWO2013133170A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004534469A (en) * | 2001-07-03 | 2004-11-11 | シーメンス アクチエンゲゼルシヤフト | How to control high frequency signal amplification |
JP2005176331A (en) * | 2003-11-21 | 2005-06-30 | Matsushita Electric Ind Co Ltd | Amplifier, transmitter using the same and communication device |
JP2010016794A (en) * | 2008-01-11 | 2010-01-21 | Toshiba Corp | Power amplifying apparatus |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016039451A (en) * | 2014-08-06 | 2016-03-22 | ローム株式会社 | Power supply circuit for audio amplifier, electronic apparatus, supply method of power supply voltage to audio amplifier |
US11480604B2 (en) | 2017-02-08 | 2022-10-25 | Nec Corporation | High-frequency method and apparatus for measuring an amplifier |
WO2018146901A1 (en) * | 2017-02-08 | 2018-08-16 | 日本電気株式会社 | High frequency measurement method and high frequency measurement device |
JP2018129711A (en) * | 2017-02-09 | 2018-08-16 | 株式会社村田製作所 | Power amplifier circuit and high frequency module |
US10484024B2 (en) | 2017-12-07 | 2019-11-19 | Murata Manufacturing Co., Ltd. | Transmission unit |
US11368176B2 (en) | 2017-12-07 | 2022-06-21 | Murata Manufacturing Co., Ltd. | Transmission unit |
US10855318B2 (en) | 2017-12-07 | 2020-12-01 | Murata Manufacturing Co., Ltd. | Transmission unit |
JP2021507595A (en) * | 2017-12-14 | 2021-02-22 | ノースロップ グラマン システムズ コーポレーション | High voltage, high speed GaN drive circuit |
US10879847B2 (en) | 2017-12-20 | 2020-12-29 | Murata Manufacturing Co., Ltd. | Transmission unit |
JP2020195061A (en) * | 2019-05-28 | 2020-12-03 | ルネサスエレクトロニクス株式会社 | Amplification device and method |
JP7366589B2 (en) | 2019-05-28 | 2023-10-23 | ルネサスエレクトロニクス株式会社 | Amplification device and method |
US11705305B2 (en) | 2021-06-09 | 2023-07-18 | XP Power Limited | Radio frequency generator including pulse generator circuit to provide complex RF pulse pattern |
TWI827038B (en) * | 2021-06-09 | 2023-12-21 | 新加坡商藹克彼電源有限公司 | Radio frequency generator providing complex rf pulse pattern and method of generating pulse radio frequency signal in radio frequency generator |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013133170A1 (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013133170A1 (en) | Transmission device | |
US9093960B2 (en) | Transmitter and method with RF power amplifier having predistorted bias | |
JP5929906B2 (en) | Power supply device, transmission device using the same, and operation method of power supply device | |
JP5472119B2 (en) | Power amplifier | |
US7394233B1 (en) | High efficiency modulated power supply | |
US7116946B2 (en) | Transmitter | |
KR101821294B1 (en) | Apparatus and Method for Reduced Bandwidth Envelope Tracking and Corresponding Digital Pre-Distortion | |
CN108463945B (en) | Digital dynamic bias circuit | |
US8693578B2 (en) | Transmission device | |
JP5505311B2 (en) | Power amplifier | |
US20140179248A1 (en) | High efficiency linearization power amplifier for wireless communication | |
JP5867501B2 (en) | Power supply device and control method | |
US9031520B2 (en) | Transmitter and method with RF power amplifier having control loop stabilized bias | |
US20130194037A1 (en) | Power amplifier, radio-frequency power amplification device, and amplification control method | |
JP5472115B2 (en) | Power amplifier | |
JP2004173249A (en) | Transmitter | |
JP5991199B2 (en) | Power supply device and power amplification device using the same | |
Hsia et al. | Wideband high efficiency digitally-assisted envelope amplifier with dual switching stages for radio base-station envelope tracking power amplifiers | |
WO2013115039A1 (en) | Power supply device and transmission device using same | |
Lazarević et al. | System linearity-based characterization of high-frequency multilevel dc–dc converters for S-band EER transmitters | |
Kimball et al. | Analog & digital envelope tracking power amplifier reduced bandwidth techniques for 5G Nr | |
WO2016071888A1 (en) | An amplifier system for amplifying an rf signal | |
WO2007084033A1 (en) | Linc out-phasing amplifier system | |
WO2015006441A2 (en) | Transmitter and method with rf power amplifier having stabilized bias | |
KR20040106018A (en) | Analog adaptive predistorter for power amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757529 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014503816 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13757529 Country of ref document: EP Kind code of ref document: A1 |