[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013129854A1 - 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자 - Google Patents

실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자 Download PDF

Info

Publication number
WO2013129854A1
WO2013129854A1 PCT/KR2013/001608 KR2013001608W WO2013129854A1 WO 2013129854 A1 WO2013129854 A1 WO 2013129854A1 KR 2013001608 W KR2013001608 W KR 2013001608W WO 2013129854 A1 WO2013129854 A1 WO 2013129854A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
silicon oxynitride
compound
sson
Prior art date
Application number
PCT/KR2013/001608
Other languages
English (en)
French (fr)
Inventor
김영진
이승재
Original Assignee
경기대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120019646A external-priority patent/KR101409489B1/ko
Application filed by 경기대학교 산학협력단 filed Critical 경기대학교 산학협력단
Priority to US14/380,986 priority Critical patent/US9030092B2/en
Priority to CN201380011037.8A priority patent/CN104245882B/zh
Priority claimed from KR1020130021608A external-priority patent/KR101449639B1/ko
Publication of WO2013129854A1 publication Critical patent/WO2013129854A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor mainly composed of a silicon compound, and more particularly, to a silicon oxynitride phosphor, a manufacturing method thereof, and an optical device including the same.
  • LEDs white light emitting diode lamps
  • the white LED can not only use energy saving effect due to its efficiency, but also exclude the use of materials with high environmental burden, such as mercury, and can be installed in a narrow space due to the miniaturization of a lamp. Long range of applications.
  • the conventional white light emitting diode lamp includes a light emitting diode element that generates short wavelength light in a blue region and a phosphor that absorbs some or all of the light to emit long wavelength yellow light.
  • white light is obtained by mixing blue light generated by the blue light emitting diode and yellow light generated by the excited phosphor.
  • Conventional yellow light emitting phosphors include garnet-based phosphors composed of yttrium and aluminum activated with cerium, in which case white light is obtained by mixing blue light emission near 450 nm of the blue LED chip with yellow light emission near 560 nm of the phosphor. Can be.
  • the white light thus obtained lacks a red component, making it difficult to improve color rendering of illumination.
  • due to the lack of such red components it is difficult to obtain a white lighting device having a low color temperature similar to that of a light bulb.
  • red phosphor As another method for obtaining an illumination device with improved color rendering and low color temperature, a small amount of red phosphor may be mixed with the yellow phosphor, or green phosphor and red phosphor may be used instead of the yellow phosphor. In this case, development of a red phosphor having excellent color purity is required. However, since red phosphors generally have relatively low excitation spectra in the ultraviolet or blue bands, they are less efficient than green or blue phosphors and must be mixed in a relatively large proportion (over 60 wt%) of the entire phosphor. There is this. In addition, the red phosphor needs to have excellent temperature stability in order to ensure long life and high power in optical elements such as lighting elements and display elements.
  • the technical problem to be solved by the present invention is to provide a red light emitting phosphor having high luminous efficiency and excellent temperature stability while providing high purity and high luminance red light for improving color rendering.
  • Another technical problem to be solved by the present invention is to provide a method for producing a silicon oxynitride phosphor having the aforementioned advantages.
  • Another technical problem to be solved by the present invention is to provide various optical devices using the silicon oxynitride phosphor having the above-described advantages.
  • Silicon oxynitride phosphor according to an embodiment of the present invention for solving the above problems includes a compound represented by the following formula (1) irradiated by an excitation light source to emit light.
  • the silicon oxynitride phosphor according to another embodiment for solving the above problems may include a compound represented by the following formula (2) irradiated by an excitation light source to emit light.
  • M is any one or a combination of Ca, Ba, and Mg,
  • a method of manufacturing a silicon nitride phosphor including: mixing precursor compositions having a chemical formula of SrCO 3 , Si 3 N 4, and Eu 2 O 3 ; And heat treating the mixed result to form a compound represented by Chemical Formula 1.
  • a method of making a silicon nitride phosphor comprises mixing precursor compositions having the formula SrCO 3 , Si 3 N 4, and Eu 2 O 3 with oxides, nitrides, nitrides, carbonates, hydroxides or chlorides of metal M Making; And heat treating the mixed result to form a compound represented by Chemical Formula 2.
  • the excitation light source for emitting light belonging to at least one of the near ultraviolet region, ultraviolet region and blue region and on the optical path of the excitation light source
  • the silicon oxynitride phosphor may be disposed to emit light by being irradiated with the light.
  • the color rendering property can be improved by providing red light having high purity and high brightness, and the red light region in the blue region, the green region in the blue region, Alternatively, an oxynitride phosphor having a wide emission band from the green region to the red region may be provided. Further, according to the embodiment of the present invention, a red light emitting phosphor capable of controlling the position and intensity of the main light emitting wavelength of the red band can be provided.
  • a manufacturing method which can reliably produce a red light-emitting phosphor having the above-described advantages.
  • red light using the red light-emitting phosphor as well as a portion of the light emitted from any light source and the wavelength-converted light emitted by the red light-emitting phosphor excited by this is mixed to implement white to provide a white color with excellent color rendering properties Can be provided.
  • FIG. 2 is a photoluminescence excitation (PLE) spectrum of Sr 2 SiO 4 : Eu 2+ when the heat treatment temperatures of SSON according to Example 1 of the present invention are 1,400 ° C., 1,500 ° C., 1,600 ° C., and 1,700 ° C., respectively.
  • PLE photoluminescence excitation
  • 3A to 3C are light emission spectra of samples according to examples and comparative examples of the present invention excited by a light source having wavelengths of 320 nm, 377 nm and 466 nm, respectively.
  • FIG. 4 is a graph showing the ratio (R em ) of the emission intensity at 477 nm and the emission intensity at 610 nm of the SSON compound according to the heat treatment temperature when the excitation wavelengths are 320 nm and 377 nm, respectively.
  • FIG. 5 is a graph showing X-ray diffraction analysis results of samples obtained at a heat treatment temperature of 1,700 ° C. of SSON compound, SMSON compound, SCSON compound, and SBSON compound according to various embodiments of the present disclosure.
  • 7A-7C are emission spectra of SSON compounds, SCSON compounds, and SBSON compounds according to an embodiment of the present invention excited by electromagnetic waves having wavelengths of 320 nm, 377 nm and 466 nm, respectively.
  • Curves a to d are the measurement results of SSON compounds having Eu 2+ concentrations of 0.5 mol%, 1.0 mol%, 5 mol%, and 10 mol%, respectively.
  • 9 is a graph showing the emission spectrum of SSON compounds according to the change in concentration of Eu 2+ at an excitation wavelength of 377 nm.
  • FIG. 10 is a graph showing the emission spectrum of SSON compound according to the concentration change of Eu 2+ at the excitation wavelength 466 nm.
  • FIG. 11 is a graph showing a change in red emission intensity according to temperature change of the SSON compound according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view schematically showing an encapsulated lighting element that is an optical device according to an embodiment of the present invention.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • the green region in the blue region is in the wavelength region of approximately 440 nm to 580 nm
  • the red region in the green region is in the wavelength region of approximately 490 nm to 750 nm
  • the red region in the blue region is approximately 440 nm. It can be said that the wavelength range of 750nm.
  • Silicon oxynitride phosphors according to embodiments of the present invention are a non-protonic solid solution, a compound represented by the following formula.
  • the compound represented by Chemical Formula 1 is referred to as an SSON compound.
  • the phosphor compound according to another embodiment of the present invention may include a compound represented by the following Chemical Formula 2 in which a part or all of Sr of the above-described phosphor compound is substituted with an alkali metal, for example, Ca, Ba, and Mg. have.
  • M is any one or a combination of Ca, Ba, and Mg,
  • the excitation light source may have a wavelength in the ultraviolet region of 300 nm to 330 nm, the near ultraviolet region of 370 nm to 410 nm, and the blue visible region of 450 nm to 470 nm, and in each of the following embodiments, Wavelengths of 320 nm, 377 nm and 466 nm belonging are exemplary and the invention is not limited thereto. That is, it is to be understood that the emission characteristics by the excitation wavelength of 320 nm are representative of the emission characteristics obtained at other wavelengths in the ultraviolet region, so that the wavelengths exemplified above as well as the entire wavelength bands listed are included in the scope of the present invention. .
  • SSON compound, SCSON compound, SBSON compound and SMSON compound can be easily prepared by mixing a certain ratio of solid phase raw materials, by a solid phase method undergoing a long heat treatment at a high temperature.
  • precursors of the elements included in Chemical Formula 1 are prepared.
  • the precursor may be a carbonate, nitrate, hydroxide or chloride of each element.
  • the precursor may be a carbonate of Sr, a nitride of Si and an oxide of Eu.
  • the carbonate of Sr may be SrCO 3
  • the nitride of Si may be Si 3 N 4
  • the oxide of Eu may be Eu 2 O 3 .
  • the precursors may be provided in powder form.
  • an intermediate product is prepared using only carbonates and nitrides thereof as precursors of Sr and Si, and then silicon oxynitride phosphors through a nitriding process by heat treatment.
  • the heat treatment may be performed in a reducing atmosphere, for example, a nitrogen atmosphere for 30 minutes to 20 hours, and may control light emission characteristics of the red phosphor by controlling nitrogen substitution by a temperature change of the heat treatment.
  • a relatively low temperature e.g., 500
  • the firing process may be performed at 1 ° C. to 1,000 ° C. for 1 to 10 hours.
  • the firing process may also be carried out in a reducing atmosphere.
  • the sintered body obtained through the heat treatment may be pulverized into a powder form and subjected to a washing process as necessary.
  • the compounds may have a ⁇ phase or an ⁇ 'phase or a mixed phase thereof, as described below.
  • the above-mentioned red light emitting phosphor may be manufactured together with the precursor of Sr or using precursors of Ca, Ba or Mg, which is an alkali metal.
  • Each precursor of the alkali metals included in the above formula may be a carbonate, nitrate, hydroxide or chloride of each element.
  • oxides of these metals for example, materials such as MgO may be used as the precursor.
  • the luminescence properties can be controlled through temperature control of the heat treatment in a reducing atmosphere.
  • red light emitting phosphor of the present invention can be produced by known liquid phase or vapor phase methods.
  • Fig. 1 is Sr 2 SiO when the heat treatment temperature of the SSON compound according to Example 1 of the present invention is 1,400 °C (curve T1), 1,500 °C (curve T2), 1,600 °C (curve T3), 1,700 °C (curve T4) 4 : It is a graph showing the result of X-ray diffraction (XRD) analysis of Eu 2+ (curve R). In addition, Fig. 1 shows the results of X-ray diffraction analysis of ⁇ -Sr 2 SiO 4 (# 38-0271) and ⁇ '-Sr 2 SiO 4 (# 39-1256) on a Joint Committee on Power Diffraction Standards (JCPDS) card. Added.
  • JCPDS Joint Committee on Power Diffraction Standards
  • SSO Sr 2 SiO 4 : Eu 2+
  • the SSON phosphor according to Example 1 heat-treated at 1,650 °C to 1,800 °C including 1,700 °C comprises a single phase having a crystal structure of ⁇ -Sr 2 SiO 4 (# 38-0271).
  • the phase transition from ( ⁇ '+ ⁇ ) -SSON (curve T1 to T3) to ⁇ -SSON (curve T4) indicates that the phase transition between the ⁇ ' phase and the beta phase causes It is presumably because it is very sensitive to thermal conditions such as temperature because it can easily occur in a displacive transition mode without breaking.
  • the XRD peaks of SSON according to Example 1 are all Sr on JCRDS. 2 SiO 4 The position is slightly different compared to the peak of the crystal structure. This is ⁇ '- or ⁇ -Sr 2 SiO 4 Nitrogen partially substituted at the oxygen site of SiO 2 Si instead 3 N 4 Is a substituted solid solution, Sr 2 Si (O 1-x N x ) 4 To form.
  • the nitrogen-substituted silicates (nitrido-silicaties) according to Example 1 are Sr. 2 SiO 4 Eu 2+ Although completely similar in crystal structure to It will be described with respect to the other light emission characteristics.
  • FIG. 2 shows Sr 2 SiO when the heat treatment temperatures of SSON according to Example 1 of the present invention are 1,400 ° C. (curve a), 1,500 ° C. (curve b), 1,600 ° C. (curve c) and 1,700 ° C. (curve d) 4 : Photoluminescence excitation (PLE) spectrum of Eu 2+ (curve e). These excitation spectra were measured in the wavelength range between 200 nm and 600 nm in the ultraviolet region to the visible region. Eu was added by 0.5 mol% of the total SSON compound in all measurement samples.
  • PLE Photoluminescence excitation
  • SSO in the Sr 2 SiO 4 : Eu 2+ (curve e, hereinafter referred to as SSO) according to a comparative example, two excitation centers having Eu (I) having a coordination number of 10 and Eu (II) having a coordination number of 9 From two excitation bands of 320 nm and 377 nm.
  • the SSO rapidly decreases in the excitation intensity at, for example, 400 nm or more, toward the longer wavelength near 370 nm. This is because the wavelength corresponding to the excitation energy of the electron pair of the SSO is in the ultraviolet region.
  • the position of the PLE peak at 320 nm is the peak of 320 nm of the SSO
  • the peak at 377 nm shifts toward the red wavelength, with a broad excitation band, while at the same time having a major excitation band from 400 nm to 480 nm.
  • Other SSON compounds heat-treated at low temperatures of 1,400 ° C. and 1,500 ° C., represented by curves a and b, are very low in PLE intensity, although similar to the SSON compounds indicated by curves c and d in the XRD pattern. Therefore, it can be seen that at temperatures below 1,550 ° C. including 1400 ° C. and 1500 ° C., sufficient thermal energy is not supplied for the substitution reaction of nitrogen of SSO and the activation of Eu ions.
  • the nitrogen ions inserted into the crystal structure of the SSO compound lower the large crystal field splitting and the nephelauxetic effect (E c ) due to the covalent bonding of the nitrogen ions.
  • Ec is the Eu 2+ 5d excitation level energy center (centroid energy) of the ions induced to Im)
  • the excitation wavelength band of Sr 2 Si (O 1-x N x ) 4 obtained by partial substitution of nitrogen ions in the oxygen site of Sr 2 SiO 4 is shifted to red, near ultraviolet rays.
  • the region may, of course, be provided with a phosphor having a wide excitation band with maximum excitation intensity in the short wavelength visible light region (blue visible region).
  • InGaN-based diodes capable of high luminance emission in the near-ultraviolet region and short-wavelength visible light region have attracted attention, but economical alternative materials are required due to the difficult raw materials and expensive raw materials including rare earths.
  • SSON while being able to be manufactured from inexpensive raw materials, the heat absorption at 1,550 °C to 1,800 °C including 1,600 °C and 1,700 °C by the high absorption strength not only in the near ultraviolet region but also in the short wavelength visible light region Phosphor which has is obtained.
  • the high absorption strength of the SSON phosphor can provide an optical device having high efficiency and capable of high luminance emission.
  • Table 1 below shows the contents of nitrogen and oxygen in the sample powder.
  • the content of oxygen is about 20.6 wt% but no nitrogen was detected.
  • the theoretical value calculated by the calculation is 23.9 wt%, it is assumed that this deviation is due to the oxygen deficient composition from the stoichiometric composition because the SSO compound prepared was heat-treated in a hydrogen atmosphere.
  • the SSON compound according to the embodiment of the present invention heat-treated at 1,600 ° C. and 1,700 ° C. contains about 2.0 wt% and 1.8 wt% nitrogen, respectively.
  • This content can be considered to be substantially the same when considering the measurement error, the broadband and the red shift of the above-mentioned excitation wavelength can be obtained from 1 wt% to 10 wt% including 2.0 wt%.
  • the nitrogen content is substantially the same, the ⁇ -SSON powder shows slightly higher PLE strength compared to the ( ⁇ '+ ⁇ ) -SSON powder.
  • 3A to 3C are light emission spectra of samples according to examples and comparative examples of the present invention excited by a light source having wavelengths of 320 nm, 377 nm and 466 nm, respectively.
  • Sr 2 SiO 4 : Eu 2+ (curve e) shows emission spectra having peaks at 477 nm and 540 nm, respectively, which are yellow visible light regions upon excitation by light having a wavelength of 320 nm. You can get it.
  • the emission peak at 477 nm is due to the Eu (I) site and the emission peak at 540 nm is due to the Eu (II) site.
  • both Eu (I) and Eu (II) are excited, but the peak at 477 nm is 540 nm since Eu (I) is more activated than Eu (II). Greater than in
  • the SSO compound As the SSO compound is converted into the SSON compound, it can be seen that the emission peak due to the Eu (II) position is significantly affected, but the Eu (I) position is relatively unaffected. As a result, the SSON compound according to the embodiment of the present invention obtains a broadened PLE spectrum while the emission spectrum upon excitation by 320 nm appears as a red wavelength due to a wavelength of 477 nm and a large shift from 5740 nm to 610 nm. Can be.
  • the emission peak at 477 nm and the emission peak at 610 nm are observed as in the case of irradiation with an excitation light source of 320 nm wavelength.
  • the intensity of is reduced by 50% or more, and the emission intensity of the peak at 610 nm can be increased by 200% or more.
  • the emission peak at 540 nm does not appear as described above.
  • the SSON compound (curves a and b) heat-treated at 1,400 °C to 1,500 °C has a weak emission intensity, but 1,600 °C (curve c) and In the case of SSON compounds heat-treated at 1,700 ° C. (curve d), the emission intensity increases with increasing temperature. From this, it can be seen that during the heat treatment of 1,550 °C to 1,800 °C including 1,600 °C and 1,700 °C a successful substitution of nitrogen occurs a significant influence on the crystal field from the SSO compound to the SSON compound.
  • the emission peak intensity of 477 nm can be adjusted by controlling the wavelength range of the excitation light.
  • the excitation by light of 466 nm wavelength has sufficient energy to eliminate the contribution by Eu (I). Therefore, in the case of the SSON compound, when the excitation light of the blue band is used rather than the ultraviolet band, the light emission characteristics of the long wavelength can be obtained.
  • the SSON compound when the SSON compound is excited to a near-ultraviolet LED having a light emission characteristic of an ultraviolet region or a near ultraviolet region, preferably a near ultraviolet region, the SSON compound exhibits light emission characteristics having a wide band from a blue region to a red region.
  • a broad red spectrum can be obtained by shifting a large red color to 610 nm while eliminating the emission peak of 540 nm.
  • a general LED lighting device in order to improve the color rendering index of white light, it is most effective when the emission wavelength of the red light-emitting phosphor becomes 600 nm to 630 nm. According to the embodiment of the present invention, since the center emission wavelength is 610 nm and the bandwidth is widened, color rendering with excellent color purity can be ensured.
  • the emission wavelength of the oxide-based SSO compound according to the comparative example is present in the yellow visible light region of 600 nm or less, compared with the SSON compound according to the embodiment of the present invention, the emission intensity of the SSON compound at 600 nm or more Is less than 40%.
  • the SSON according to the embodiment of the present invention has a near-ultraviolet region belonging to 320 nm and 377 nm and blue visible light belonging to 466 nm, particularly when the heat treatment temperature is 1600 ° C. (curve T3) and 1700 ° C. (curve T4).
  • the excitation light of the region both have the emission center wavelength at 610 nm, and high emission intensity of 90% or more can be obtained in the 600 nm and 630 nm regions.
  • the silicon oxynitride phosphor according to the embodiment of the present invention is capable of high purity red light emission, thereby improving color rendering and providing a white lighting device having a low color temperature.
  • the phosphor according to the embodiment of the present invention has a high light emission intensity, there is an advantage that the luminance can be improved along with the color purity.
  • FIG. 4 is a graph showing the ratio (R em ) of the emission intensity at 477 nm and the emission intensity at 610 nm of the SSON compound according to the heat treatment temperature when the excitation wavelengths are 320 nm and 377 nm, respectively.
  • the emission peak appears only at 540 nm.
  • the emission peak appears only at 610 nn, and the PLE spectrum is broadly covered up to 500 nm, so that the SSON compound may be applied as a red phosphor of a white LED using a blue light emitting chip.
  • the SSON compound (curve S1) has the same pure ⁇ phase as the SSON compound described above. Further description of this may refer to FIG. 2. However, as the other metal element M is doped, a phase change gradually occurs from the ⁇ phase to the ⁇ '+ ⁇ mixed phase to the ⁇ ' phase. This depends on the ion size of the metal element M doped as shown in Table 2. Table 2 shows the ion radius of the doped metal ions of the (Sr 1.6 M 0.4 ) Si (O 1-x N x ) 4: Eu 2+ compound according to various embodiments of the present invention and the emission spectrum characteristics thereof.
  • the ion size of Mg 2+ with coordination numbers 9 and 10 is not available and instead describes the ionic radius (0.089 nm) of Mg 2+ with coordination number 8.
  • the ionic radius of Ba 2+ with coordination numbers 9 and 10 is expected to be much smaller than the ionic radius of Ca 2+ .
  • the magnitude of the ion radius satisfies the relationship of Mg ⁇ Ca ⁇ Ba.
  • the SMSON compound (curve S2) has almost the same diffraction pattern as that of ⁇ -Sr 2 SiO 4 (# 38-0271) and ⁇ '-Sr 2 SiO 4 (# 39-1256) mixed It can be seen that.
  • the SCSON compound (curve S3) and SBSON (curve S4) have the same diffraction pattern as ⁇ '-Sr 2 SiO 4 (# 39-1256).
  • the SSON compound (curve S1) it has almost the same diffraction pattern as ⁇ -Sr 2 SiO 4 (# 38-0271).
  • curve S2 according to Example 2 has two phases in which ⁇ -Sr 2 SiO 4 (# 38-0271) and ⁇ '-Sr 2 SiO 4 (# 39-1256), which are silicate-based phosphors, are mixed.
  • curves S3 and S4 it can be predicted to have the same crystal structure as ⁇ '-Sr 2 SiO 4 (# 39-1256).
  • Each of these different crystal structures is due to the size of the ions. That is, it can be seen that as the size of the ions increases (Mg ⁇ Ca ⁇ Ba), the crystal phase of ⁇ -SSON disappears gradually, and eventually only the ⁇ '-phase remains.
  • Example 6 is an excitation (photoluminescence) when the heat treatment temperature of SSON compound (curve a), SMSON compound (curve b), SCSON compound (curve c), and SBSON compound (curve d) according to Example 2 of the present invention is 1700 ° C. excitation; PLE) spectrum.
  • the composition is (Sr 1.6 M 0.4 ) Si (O 1-x N x ) 4: Eu 2+ .
  • excitation spectra were measured in the wavelength range between 200 nm and 600 nm in the ultraviolet region to the visible region.
  • the compounds all have similar shapes and peak positions.
  • the excitation strength is increased in the order of SMSON compound ⁇ SCSON compound ⁇ SBSON compound ⁇ SSON compound.
  • 7A-7C are emission spectra of SSON compounds, SCSON compounds, and SBSON compounds according to an embodiment of the present invention excited by an excitation light source having wavelengths of 320 nm, 377 nm and 466 nm, respectively.
  • the SSON compound, SCSON compound, and SBSON compound according to an embodiment of the present invention when excited by an excitation light source having wavelengths of 320 nm and 377 nm, the SSON compound, SCSON compound, and SBSON compound according to an embodiment of the present invention are bluish green (referred to as A-band). And two emission bands, which are the red (called B-band) region. However, only red luminescence properties are exhibited when irradiated with an excitation light source of 466 nm wavelength. In addition, the SSON compound, the SCSON compound, and the SBSON compounds change the wavelength of the main emission peak depending on the ionic radius of M 2+.
  • the SMSON compound (curve b), unlike other embodiments, has only one asymmetric band around 478 nm when excited by a light source having a wavelength of 320 nm. However, it can be seen that the SSON compound has two emission bands near 477 nm and 530 nm, respectively, when irradiated with an excitation light source having a wavelength of 377 nm. From this, the nitriding reaction is not effective in causing a red shift of luminescence by Eu (II) in the SMSON compound, and thus, when excited at 466 nm, only a weak red luminescence can be obtained. The reason why the nitriding reaction is not effective in the SMSON compound is considered to be that the nitriding effect is offset because the size of the ions of Mg 2+ is relatively small.
  • the peak position is shifted blue (shifted toward smaller wavelength) for the B-band.
  • the blue shift is dependent on the ion size of M ions, and the blue shift is in the order of SCSON->SSON-> SBSON as Ca 2+ ⁇ Sr 2+ ⁇ Ba 2+ . This is because the larger the size of M ions, the smaller the crystal separation of the d levels of Eu 2+ ions is, so that the lowest energy level of Eu 2+ 5d sites shifts to larger energy.
  • Compounds according to embodiments of the present invention in the A-band band, exhibit red shift from SSON compound to SCSON compound when irradiated by excitation light sources of 320 and 377 nm wavelength, unlike the B band. This is because Ca 2+ ions are smaller than Sr 2+ ions.
  • the band A shows a red shift from the SSON compound to the SBSON compound, although the Ba 2+ is larger than the Sr 2+ ion.
  • the SSON compound, the SCSON compound, the SBSON compound, and the SMSON compound are very advantageous for the white LED light because the emission wavelength having a wide band with the excitation wavelength near the near ultraviolet is shown. That is, the SSON compound has a wide band from the blue region to the red region, the SCSON compound and the SBSON compound have a wide emission band from the green region to the red region, and the SMSON compound has a wide emission band from the blue region to the green region. Because.
  • Mg, Ba, or Ca is partially doped in place of Sr, so that a wide band of red wavelength when excited by a light source in the ultraviolet region, near ultraviolet region or blue region, for example, LED Since it is possible to obtain the emission spectrum having a, when used in a white LED, it is possible to obtain a red phosphor that can maximize the color linkage.
  • the silicon oxynitride phosphor according to the embodiment of the present invention may perform tuning of a red wavelength. Thereby, there is an advantage that the emission peak can be adjusted even under the same excitation wavelength.
  • the metal M When the metal M is Mg, it may be excited by a near-ultraviolet LED to obtain a phosphor having a wide emission band from the blue region to the green region.
  • the metal M when the metal M is Ca or Ba, the silicon oxynitride phosphor may be excited by a near ultraviolet LED to obtain a phosphor having a wide band from a green region to a red region.
  • Curves a to d are the measurement results of SSON compounds having Eu 2+ concentrations of 0.5 mol%, 1.0 mol%, 5 mol%, and 10 mol%, respectively.
  • the intensity of the excitation spectrum increases as the concentration of Eu 2+ is increased from 0.5 mol% to 1.0 mol%. However, when the concentration of Eu 2+ increases to 5 mol%, the intensity of the excitation spectrum begins to decrease, and when the concentration of Eu 2+ is 10 mol%, the intensity of the excitation spectrum decreases drastically. In addition, as the concentration of Eu 2+ increases, the intensity ratio of the emission peak of 466 nm to the emission peak intensity of 420 nm also increases.
  • the Eu 2+ concentration of the SSON compound is from 0.8 mol% to 3 mol% including 1.0 mol% having the largest excitation strength and more preferably in the range from 0.8 mol% to 1.2 mol%, SSON compounds can have maximum excitation strength.
  • the SSON powder according to the embodiment of the present invention can be applied as a red phosphor of a white light emitting diode using a near ultraviolet light emitting diode around 400 nm or a blue light emitting diode around 450 nm.
  • Curves a to d are the measurement results of SSON compounds having Eu 2+ concentrations of 0.5 mol%, 1.0 mol%, 5 mol%, and 10 mol%, respectively.
  • SSON compounds having concentrations of 0.5 mol% and 1.0 mol%, in addition to the red peak having a wide half-value width, emission intensity in a wide range from blue to green can be obtained.
  • SSON compounds comprising 0.4 mol% to 1.2 mo% Eu 2+ containing 0.5 mol% and 1.0 mol% are very advantageous in color linkage when applied to white light emitting diodes using near ultraviolet light emitting diodes.
  • FIG. 10 is a graph showing the emission spectrum of SSON compound according to the concentration change of Eu 2+ at the excitation wavelength 466 nm. Curves a to d are the measurement results of SSON compounds having Eu 2+ concentrations of 0.5 mol%, 1.0 mol%, 5 mol%, and 10 mol%, respectively.
  • the SSON compound when excited at 466 nm belonging to the blue visible region, the SSON compound exhibits the highest red emission intensity near 613 nm when the Eu 2+ concentration is 1.0 mol%. As the concentration of Eu 2+ increases, the peak shifts toward the longer wavelength. For example, a SSON compound (curve d) with 10 mol% Eu 2+ exhibits red luminescence at about 635 nm. According to the embodiment of the present invention, by adjusting the Eu 2+ concentration, a red emission peak having a wide half-value width can be obtained, and the position of the red emission peak can be controlled. therefore.
  • the SSON compound according to the embodiment of the present invention may be used as a red phosphor of a white light emitting diode using a blue light emitting diode, and may contribute to improving color linkage of the white light emitting diode due to the large half width of the peak.
  • FIG. 11 is a graph showing a change in red emission intensity according to temperature change of the SSON compound according to the embodiment of the present invention.
  • the SSON compound when excited at 466 nm, which is a blue visible light region, gradually decreases its emission intensity as the temperature is increased compared to the initial emission intensity.
  • the SSON compound maintains about 90% of the initial luminous intensity at about 150 °C. Therefore, according to the embodiment of the present invention, it can be seen that Sr 2 Si (O 1-x N x ) 4 : Eu 2+ powder is suitable as a red phosphor of a high power white light emitting diode.
  • the examples disclosed with reference to FIGS. 8 to 11 relate to SSON compounds, but similar properties are expected to occur in SMSON compounds, SCSON compounds, or SBSON compounds in which a part of Sr atoms are substituted with Mg, Ca, Ba, and combinations thereof. . These compounds are hardly influenced by substitution by Mg, Ca or Ba in brightness characteristics different with temperature, and have properties similar to SSON compounds.
  • FIG. 12 is a schematic cross-sectional view of an encapsulated illumination element 100 that is an optical device according to an embodiment of the invention.
  • the lighting device 100 includes a light source 10 emitting light and a fluorescent layer 20 disposed on an optical path of the light source 10 and excited from the light to emit light.
  • the light source 10 may be a semiconductor diode capable of emitting light during a recombination process occurring at the PN junction of the semiconductor.
  • the semiconductor diode may be a UV light emitting diode capable of emitting light in the near ultraviolet region, or a blue light emitting diode capable of emitting light in the blue visible region.
  • the fluorescent layer 20 may include a red light emitting phosphor according to the embodiment of the present invention described above. The red light-emitting phosphor may be classified and applied to have a predetermined particle size distribution in the phosphor layer 20.
  • the lighting device 100 may further include leads 11 and 12 for supplying power to the light source 10 and wires 13 electrically connecting the leads 12 and the light source 10.
  • the light source 10, the leads 11, 12 and the wire 13 may be sealed in shell form by a suitable sealant 30 such as translucent resin, rubber and glass.
  • the shell type lighting element 100 shown in FIG. 12 is exemplary, and the present invention is not limited thereto.
  • the lighting element can be provided in the form of a known chip in which the lighting element is formed on a substrate having a recessed portion with an open top.
  • a reflective lighting device may be disposed to be spaced apart from the light source and to transmit the light emitted from the fluorescent layer to the reflecting plate.
  • the lighting device 100 may be, for example, a white diode lamp.
  • a white light a part of the light emitted from the light source 10 and the wavelength-converted light emitted by the red light-emitting phosphor excited in the fluorescent layer 20 may be mixed to implement white color.
  • a green light emitting phosphor may be further included in the fluorescent layer 20 together with the red light emitting phosphor.
  • the light source 10 may be a blue light emitting diode.
  • the blue light emitting diode may be, for example, an InGaN based diode.
  • a UV light emitting diode capable of emitting excitation light in the near ultraviolet region may be applied.
  • the visible light emitter not only red phosphor but also light emitting phosphors of different colors, for example, green phosphor and blue phosphor may be mixed and used in a predetermined ratio.
  • the above-described lighting device 100 may itself be used as a lighting device or a display device.
  • the lighting device 100 may be applied to a back light unit of a display device such as a liquid crystal display device, but the present invention is not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자에 관한 것이다. 본 발명의 일 실시예에 따른 실리콘 산질화물 형광체는, 여기 광원에 의해 조사되어 광을 방출하는 하기 화학식 1로 표시되는 화합물을 포함하는 실리콘 산질화물 형광체: [화학식 1] Sr2-zSi(O1-xNx)4 :zEu2+ 이며, 0 < x < 1이고, 0 < z ≤ 0.4임.

Description

실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자
본 발명은 실리콘 화합물을 주체로 하는 형광체에 관한 것으로서, 더욱 상세하게는, 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자에 관한 것이다.
최근 반도체 발광 다이오드와 같은 고상 발광 소자를 이용한 조명 장치 또는 화상 표시 장치에 대한 연구가 광범위하게 수행되고 있다. 상기 조명 장치 중 백색 발광 다이오드 램프(LED)는 전자와 홀이 결합하여 광을 발산하는 것으로 종래의 백열 전구나 형광등을 대체하는 차세대 고효율 조명 장치로서 주목을 받고 있다. 상기 백색 LED는 그 효율에 기한 에너지 절감 효과뿐만 아니라 수은과 같은 환경 부담이 높은 물질의 사용을 배제할 수 있으며, 램프의 소형화가 가능하여 협소한 공간에 설치할 수 있고, 진동에도 강하며, 수명이 길어 그 응용 범위가 다양하다.
종래의 백색 발광 다이오드 램프는 청색 영역의 단파장 광을 발생하는 발광 다이오드 소자와 이 광의 일부 또는 전부를 흡수하여 여기됨으로써 장파장의 황색 광을 방출하는 형광체로 이루어진 것이 있다. 이 경우, 백색 광은 상기 청색광 발광 다이오드가 발생시키는 청색광과 여기된 상기 형광체가 발생시키는 황색광이 혼합되어 얻어진다. 종래의 황색 발광 형광체에는, 세륨으로 활성화된 이트륨 및 알루미늄으로 이루어진 가넷계 형광체가 있고, 이 경우 청색 LED칩의 450 nm 근방의 청색 발광과 형광체의 560 nm 부근의 황색 발광을 혼색하여 백색이 얻어질 수 있다. 그러나, 이렇게 얻어지는 백색 광은 적색 성분이 부족하여 조명의 연색성 개선이 어렵다. 또한, 이러한 적색 성분의 부족 때문에, 전구와 유사한 수준의 낮은 색온도를 갖는 백색 조명 장치를 얻기 어렵다.
상기 연색성이 개선되고 낮은 색온도를 갖는 조명 장치를 얻기 위한 다른 방법으로서, 황색 형광체에 소량의 적색 형광체를 혼합하거나 황색 형광체 대신에 녹색 형광체와 적색 형광체가 사용될 수 있다. 이 경우, 우수한 색 순도를 갖는 적색 형광체의 개발이 요구된다. 그러나, 적색 형광체는 일반적으로 자외선 대역 또는 청색 대역에서 상대적으로 낮은 여기 스펙트럼을 갖기 때문에 녹색 또는 청색 형광체에 비해 효율이 낮으며, 전체 형광체 중에 상대적으로 많은 비율(60 wt% 이상)로 혼합하여야 하는 문제점이 있다. 또한, 적색 형광체는 조명 소자 및 디스플레이 소자와 같은 광 소자에 긴 수명과 고출력을 보장하기 위해서, 우수한 온도 안정성을 가질 필요가 있다.
본 발명이 해결하고자 하는 기술적 과제는, 연색성의 개선을 위하여 고순도 및 고휘도의 적색광을 제공하면서도 발광 효율이 높고, 우수한 온도 안정성을 갖는 적색 발광 형광체를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 기술적 과제는, 전술한 이점을 갖는 실리콘 산질화물 형광체의 제조 방법을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 기술적 과제는, 전술한 이점을 갖는 상기 실리콘 산질화물 형광체를 이용한 다양한 광소자를 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 실리콘 산질화물 형광체는, 여기 광원에 의해 조사되어 광을 방출하는 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Sr2-zSi(O1-xNx)4 :zEu2+ 이며,
0 < x < 1이고, 0 < z ≤ 0.4임.
또한, 상기 과제를 해결하기 위한 다른 실시예에 따른 실리콘 산질화물 형광체는, 여기 광원에 의해 조사되어 광을 방출하는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Sr2-y-zMySi(O1-xNx)4:zEu2+
상기 M은 Ca, Ba 및 Mg 중 어느 하나 또는 이들의 조합이며,
0 < x < 1, 0 < y < 2, 0 < z ≤ 0.4 이고, 0 < y+z < 2임
상기 다른 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 실리콘 질화물 형광체의 제조 방법은, SrCO3, Si3N4 및 Eu2O3의 화학식을 갖는 전구체 조성물들을 혼합하는 단계; 및 상기 혼합된 결과물을 열처리하여 상기 화학식 1로 표시되는 화합물을 형성하는 단계를 포함한다.
다른 실시예에서, 실리콘 질화물 형광체의 제조 방법은, SrCO3, Si3N4 및 Eu2O3의 화학식을 갖는 전구체 조성물들 및 금속 M의 산화물, 질화물, 질산화물, 탄산화물, 수산화물 또는 염화물을 혼합하는 단계; 및 상기 혼합된 결과물을 열처리하여 상기 화학식 2로 표시되는 화합물을 형성하는 단계를 포함할 수 있다.
상기 또 다른 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 광소자는, 근자외선 영역, 자외선 영역 및 청색 영역 중 적어도 어느 하나에 속하는 광을 방출하는 여기 광원과 상기 여기 광원의 광 경로 상에 배치되어 상기 광에 의해 조사되어 발광하는 상기 실리콘 산질화물 형광체를 포함할 수 있다.
본 발명의 실시예에 따르면, 고순도 및 고휘도의 적색 광을 제공하여 연색성을 개선할 수 있으며, 여기 광원으로서 자외선, 근자외선 및 청색 가시광선의 선택에 의해 청색 영역에서 적색영역, 청색 영역에서 녹색 영역, 또는 녹색 영역에서 적색영역까지의 넓은 발광 대역을 갖는 산질화물 형광체가 제공될 수 있다. 또한, 본 발명의 실시예에 따르면, 적색 대역의 주 발광 파장의 위치와 강도 제어가 가능한 적색 발광 형광체가 제공될 수 있다.
또한, 본 발명의 실시예에 따르면, 전술한 이점을 갖는 적색 발광 형광체를 신뢰성있게 제조할 수 있는 제조 방법이 제공된다. 또한, 상기 적색 발광 형광체를 이용한 적색 조명은 물론 임의의 광원으로부터 방출된 광의 일부와 이에 의해 여기된 상기 적색 발광 형광체에 의해 방출되는 파장 변환된 광이 혼색되어 백색을 구현함으로써 연색성이 우수한 백색 조명이 제공될 수 있다.
도 1은 본 발명의 실시예 1에 따른 SSON의 열처리 온도가 1,400 ℃, 1,500 ℃, 1,600 ℃, 1,700 ℃인 경우의 Sr2-zSi(O1-xNx)4 :zEu2+의 X선 회절(XRD) 분석 결과를 나타내는 그래프이다.
도 2는 본 발명의 실시예 1에 따른 각각 SSON의 열처리 온도가 1,400 ℃, 1,500 ℃, 1,600 ℃ 및 1,700 ℃인 경우의 Sr2SiO4:Eu2+ 의 여기(photoluminescence excitation; PLE) 스펙트럼이다.
도 3a 내지 도 3c는 각각 320 nm, 377 nm 및 466 nm의 파장을 갖는 광원에 의해 여기된 본 발명의 실시예들 및 비교예에 따른 시료들의 발광 스펙트럼들이다.
도 4는 여기 파장이 각각 320 nm 및 377 nm일 때, 열처리 온도 변화에 따른 SSON 화합물의 477 nm에서의 발광 강도와 610 nm에서의 발광 강도의 비(Rem)를 나타내는 그래프이다.
도 5는 본 발명의 다양한 실시예들에 따른 SSON 화합물, SMSON 화합물, SCSON 화합물, SBSON 화합물의 열처리 온도 1,700℃에서 얻어진 시료들의 X선 회절 분석 결과를 나타내는 그래프이다.
도 6은 본 발명의 실시예 2에 따른 SSON 화합물, SMSON 화합물, SCSON 화합물, SBSON 화합물의 열처리 온도가 1700 ℃일 때의 여기(photoluminescence excitation; PLE) 스펙트럼이다.
도 7a 내지 도 7c는 각각 320 nm, 377 nm 및 466 nm의 파장을 갖는 전자기파에 의해 여기된 본 발명의 실시예에 따른 SSON 화합물, SCSON 화합물, 및 SBSON 화합물의 발광 스펙트럼들이다.
도 8은 본 발명의 일 실시예에 따라 서로 다른 Eu2+ 농도를 갖는 SSON 화합물의 여기 스펙트럼을 도시하는 그래프이다. 곡선 a 내지 곡선 d는 각각 0.5 mol%, 1.0 mol%, 5 mol%, 및 10 mol%의 Eu2+ 농도를 갖는 SSON 화합물의 측정 결과이다.
도 9는 여기 파장 377 nm에서 Eu2+의 농도 변화에 따른 SSON 화합물의 발광 스펙트럼을 도시하는 그래프이다.
도 10은 여기 파장 466 nm에서 Eu2+의 농도 변화에 따른 SSON 화합물의 발광 스펙트럼을 도시하는 그래프이다.
도 11은 본 발명의 실시예에 따른 SSON 화합물의 온도 변화에 따른 적색 발광 강도의 변화를 나타내는 그래프이다.
도 12는 본 발명의 일 실시예에 따른 광학 장치인 캡슐형 조명 소자를 개략적으로 도시하는 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는" 는 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
본 명세서에서 사용된 발광 영역에서, 청색 영역에서 녹색 영역은 대략 440nm에서 580nm의 파장 영역대이고, 녹색 영역에서 적색 영역은 대략 490nm에서 750nm의 파장 영역대이며, 청색 영역에서 적색 영역은 대략 440nm에서 750nm의 파장 영역대라고 할 수 있다.
본 출원은 2012년 2월 28일자로 공개된 본 발명자의 Journal of The Electrochemical Society에서 발간된 159(5)권, J163 내지 J167 쪽에 기재된 "Synthesis and Luminescent Properties of (Sr,M)2Si(O1?xNx)4:Eu2+ (M: Mg2+, Ca2+, Ba2+)" 란 제하의 논문을 기초로 하며, 상기 논문은 그 전체가 참조로서 본 명세서에 포함되며, 본 명세서의 일부로서 간주되어야 한다.
본 발명의 실시예들에 따른 실리콘 산질화물 형광체는 비양론적인 고용체이며, 하기 화학식들로 표시되는 화합물이다. 이하, 본 명세서에서는 하기 화학식 1로 표시되는 화합물을 SSON 화합물이라 지칭한다.
[화학식 1]
Sr2-zSi(O1-xNx)4 :zEu2+ 이며,
0 < x < 1이고, 0 < z ≤ 0.4임.
본 발명의 다른 실시예에 따른 형광체 화합물은, 전술한 형광체 화합물의 Sr의 일부 또는 전부를 알칼리 금속, 예를 들면, Ca, Ba, 및 Mg로 치환한 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Sr2-y-zMySi(O1-xNx)4:zEu2+
상기 M은 Ca, Ba 및 Mg 중 어느 하나 또는 이들의 조합이며,
0 < x < 1, 0 < y < 2, 0 < z ≤ 0.4 이고, 0 < y+z < 2임.
이하, 본 명세서에서는, M이 Ca인 경우 Sr2-yCaySi2(O1-xNx)4:Eu2+를 SCSON 화합물, Ba인 경우 Sr2-yBaySi2(O1-xNx)4:Eu2+를 SBSON 화합물, 그리고, Mg인 경우 Sr2-yMgySi2(O1-xNx)4:Eu2+를 SMSON 화합물이라 지칭한다.
상기 여기 광원은 300 nm 내지 330 nm의 자외선 영역, 370 nm 내지 410 nm의 근자외선 영역 및 450 nm 내지 470 nm의 청색 가시광선 영역의 파장을 가질 수 있으며, 하기 실시예들에서, 각각의 영역에 속하는 320 nm, 377 nm 및 466 nm의 파장은 예시적이며, 본 발명이 이에 의해 한정되는 것은 아니다. 즉, 320 nm의 여기 파장에 의한 발광 특성은 상기 자외선 영역의 다른 파장에서 얻어지는 발광 특성을 대표하는 것이어서, 상기 예시된 파장은 물론 열거된 각 파장 대역 전체가 본 발명의 범위에 포함됨을 이해하여야 한다.
이하에서는, 본 발명의 실시예에 따라 제조된 시료에 대한 분석 결과를 참조하여 본 발명의 특징들 및 이점들에 관하여 개시한다.
본 발명의 실시예에 따른 SSON 화합물, SCSON 화합물, SBSON 화합물 및 SMSON 화합물은 일정 비율의 고상 원료들을 혼합하여, 고온에서 장시간 열처리를 거치는 고상법에 의해 용이하게 제조될 수 있다. 상기 고상법에 의해 상기 화학식 1에 포함된 각 원소들의 전구체를 준비한다. 상기 전구체는 각 원소의 탄산화물, 질산화물, 수산화물 또는 염화물일 수 있다. 바람직하게는, 상기 전구체는, Sr의 탄산화물, Si의 질화물 및 Eu의 산화물이 사용될 수 있다. 예를 들면, 상기 Sr의 탄산염은 SrCO3이고, 상기 Si의 질화물은 Si3N4이며, 상기 Eu의 산화물은 Eu2O3일 수 있다. 상기 전구체들은 분말 형태로 제공될 수 있다. 모체가 되는 실리케이트를 형성하기 위해 Si의 전구체로 SiO2를 사용하는 경우, 안정된 상이 형성되지 않는 것을 확인하였다. 그러나, 실시예에서와 같이, Si의 전구체로서 Si3N4이 사용되는 경우 안정된 실리콘 산질화물 형광체의 결정 상이 형성된다.
종래의 형광체 질화물의 제조시 일반적으로 금속 산화물이 사용되었지만, 본 발명에서는 Sr 및 Si의 전구체로서 이의 탄산화물 및 질화물만을 사용하여 중간 생성물을 제조하고, 이후 열처리에 의한 질화 공정을 통해 실리콘 산질화물 형광체를 형성함으로써, 안정된 상을 갖는 형광제가 제조될 수 있다. 상기 열처리는 30분 내지 20 시간 동안의 환원 분위기, 예를 들면, 질소 분위기에서 수행될 수 있으며, 열처리의 온도 변화에 의해 질소 치환을 제어함으로써 적색 형광체의 발광 특성을 조절할 수 있다. 선택적으로는, 상기 중간 생성물에 포함된 수분, 유기물 또는 일부 염의 착화합물과 같은 불순물을 제거시키면서 결정 성장을 촉진하기 위하여, 상기 소결 공정 전에, 상기 혼합 분말에 대하여, 비교적 낮은 온도, 예를 들면, 500 ℃ 내지 1,000 ℃에서 1 시간 내지 10 시간 동안 소성 공정을 수행할 수도 있다. 상기 소성 공정, 또한, 환원 분위기에서 수행될 수 있다.
상기 열처리를 통해 얻어진 소결체는 필요에 따라 분말 형태로 분쇄되고 세척 공정을 거칠 수 있다. 이와 같이, 상기 화합물들은 후술하는 바와 같이, β상 또는 α'상 또는 이들의 혼합 상을 가질 수 있다.
다른 실시예에서는, 위 화학식 2의 화합물을 제조하기 위해, 상기 Sr의 전구체와 함께, 또는 알카리 금속인 Ca, Ba 또는 Mg의 전구체들를 사용하여 전술한 적색 발광 형광체를 제조할 수 있다. 상기 화학식에 포함된 알카리 금속들의 각 전구체는 각 원소의 탄산화물, 질산화물, 수산화물 또는 염화물일 수 있다. 상기 Si의 전구체와 달리 이들 금속의 산화물, 예를 들면, MgO와 같은 물질이 전구체로 사용될 수도 있다. 마찬가지로, 환원 분위기에서 열처리의 온도 제어를 통해 발광 특성이 제어될 수 있다.
전술한 실시예들은 고상법에 관한 것이지만, 이는 예시적이며, 본 발명이 이에 제한되는 것은 아니다. 당업자라면, 공지의 액상법 또는 기상법에 의해 본 발명의 적색 발광 형광체가 제조될 수 있음을 이해할 수 있을 것이다.
도 1은 본 발명의 실시예 1에 따른 SSON 화합물의 열처리 온도가 1,400 ℃(곡선 T1), 1,500 ℃(곡선 T2), 1,600℃(곡선 T3), 1,700℃(곡선 T4)인 경우의 Sr2SiO4 :Eu2+ (곡선 R)의 X선 회절(XRD) 분석 결과를 나타내는 그래프이다. 또한, 도 1에, JCPDS(Joint Committee on Power Diffraction Standards) 카드 상의 β-Sr2SiO4(#38-0271) 및 α'-Sr2SiO4(#39-1256)의 X 선 회절 분석 결과를 추가하였다.
도 1을 참조하면, 본 발명의 실시예에 따른 SSON 화합물의 열처리 온도가 1,400℃, 1,500℃, 1,600℃(곡선 T1, T2, T3)인 경우 β-Sr2SiO4(#38-0271) 및 α'-Sr2SiO4(#39-1256)가 혼합된 것과 거의 동일한 회절 패턴을 갖는 것을 알 수 있다. 그러나 열처리 온도가 1700℃(곡선 T4)의 경우에는, 상기 SSON 화합물이 β-Sr2SiO4(#38-0271)와 동일한 회절 패턴을 갖는 것을 알 수 있다. 또한, 비교예로서, Sr2SiO4 :Eu2+ (곡선 R, 이하 SSO라 지칭함)에 대하여도 분석을 하였으며, 이는 α'-Sr2SiO4(#39-1256) 상을 가짐을 알 수 있다. 따라서, 열처리 온도가 1,400℃, 1,500℃ 및 1,600℃를 포함하는 1,300 ℃ 내지 1,650 ℃ 미만의 열처리된 실시예 1에 따른 상기 SSON 형광체는 실리케이트계 형광체인 β-Sr2SiO4(#38-0271) 및 α'-Sr2SiO4(#39-1256)의 결정 구조를 갖는 상이 혼합된 상을 포함한다.
또한, 1,700 ℃를 포함하는 1,650 ℃ 내지 1,800 ℃에서 열처리된 실시예 1에 따른 상기 SSON 형광체는 β-Sr2SiO4(#38-0271)의 결정 구조를 갖는 단일 상을 포함한다. 열처리 온도가 증가하는 경우, (α'+β)-SSON(곡선 T1 ~ T3)에서 β-SSON(곡선 T4)로 상전이가 일어나는 것은, α' 상과 β 상 사이의 상전이가 원자간 주 결합을 깨뜨리지 않고 이동 전이(displacive transition) 방식으로 쉽게 일어날 수 있기 때문에 온도와 같은 열학학적 조건에 매우 민감하기 때문인 것으로 추측된다.
실시예 1에 따른 SSON의 XRD 피크는 모두 JCRDS 상의 Sr2SiO4 결정 구조의 피크와 비교시 그 위치가 약간 다르다. 이것은 α'- 또는 β-Sr2SiO4의 산소 자리에 질소가 부분적으로 치환하여, SiO2 대신에 Si3N4가 이용되면서 치환 고용체인 Sr2Si(O1-xNx)4가 형성되었음을 나타낸다. 이하에서는, 이러한 실시예 1에 따른 질소 치환된 실리케이트(nitrido-silicaties)가 Sr2SiO4: Eu2+와 유사한 결정 구조 특성을 갖는다 하더라도 이와 구별되는 완전히 다른 발광 특성을 갖는 것에 관하여 설명하기로 한다.
도 2는 본 발명의 실시예 1에 따른 각각 SSON의 열처리 온도가 1,400℃(곡선 a), 1,500℃(곡선 b), 1,600℃(곡선 c) 및 1,700℃(곡선 d)인 경우의 Sr2SiO4:Eu2+ (곡선 e)의 여기(photoluminescence excitation; PLE) 스펙트럼이다. 이들 여기 스펙트럼은 자외선 영역부터 가시광선 영역인 200 nm와 600 nm 사이의 파장 범위에서 측정되었다. 모든 측정 시료들에서 Eu는 전체 SSON 화합물의 0.5 mol%만큼 첨가되었다.
도 2를 참조하면, 비교예에 따른 Sr2SiO4:Eu2+ (곡선 e, 이하 SSO라 지칭함)에서는 배위수가 10인 Eu(I)와 배위수가 9인 Eu(II)인 2 개의 여기 센터로부터 기인하는 320 nm 및 377 nm의 2 개의 여기 대역을 포함한다. 상기 SSO는 370 nm 근처에서 장파장 쪽으로 갈수록, 예를 들면, 400 nm 이상에서 여기 강도가 급격히 감소한다. 이것은 상기 SSO의 전자쌍의 여기 에너지에 대응하는 파장이 자외선 영역에 있기 때문이다.
이와 대조적으로, 본 발명의 실시예 1에 따른 SSON 화합물 중 열처리 온도가 1,600 ℃(곡선 c) 및 1,700 ℃(곡선 d)인 경우, 320 nm 에서의 PLE 피크의 위치는 상기 SSO의 320 nm의 피크 위치와 동일하지만, 377 nm에서의 피크는 적색 파장쪽으로 편이되어, 넓은 여기 대역을 가지면서, 동시에 400 nm 내지 480 nm에서 주된 여기 대역을 갖는다. 곡선 a 및 곡선 b로 나타내어진 1,400℃ 및 1,500℃의 저온에서 열처리된 다른 SSON 화합물은 비록 XRD 패턴에 있어서는 곡선 c 및 곡선 d로 지시된 SSON 화합물과 유사하지만, PLE 강도는 매우 낮다. 따라서, 1400 ℃ 및 1500 ℃를 포함하는 1,550 ℃ 미만의 온도에서는 SSO의 질소의 치환 반응과 Eu 이온의 활성화를 위한 충분한 열 에너지가 공급되지 않는 것을 알 수 있다.
그러나, 1,600℃ 및 1,700℃를 포함하는 1,550 ℃ 내지 1,800 ℃에서 열처리된 SSON 화합물에서는, 질소의 치환이 성공적으로 이루어져, 도 2에 도시된 바와 같이 SSO 화합물과 확연히 구별되는 PLE 특성이 관측된다. 치환된 질소는 Eu(II) 자리들의 발광 특성에는 중대하게 영향을 미치면서 Eu(I) 자리들의 발광 특성에는 덜 영향을 미친다. 이것은, Eu(II)의 산소 배위수가 9이지만 Eu(I)의 산소 배위수는 10으로, Eu(II)가 Eu(I)의 결합 길이보다 더 짧아, 치환된 질소에 의해 초래된 결정장에 의해 Eu(II)가 상대적으로 더 강하게 영향을 받기 때문인 것으로 추측된다. 이러한 특징들은 후술하는 바와 Eu2+ 이온의 최저 5d 여기 레벨의 적색 천이와 PLE 스펙트럼의 광대역화를 유도하는 기초가 된다. 또한, 열처리 온도가 증가되면서, PLE 강도가 증가되는 경향성을 갖는다.
본 발명의 실시예에 따라, SSO 화합물의 결정 구조 내로 삽입된 질소 이온은 상기 질소 이온의 공유 결합으로 인한 거대 결정장 분리(large crystal field splitting)와 전자구름 퍼짐효과(nephelauxetic effect; Ec를 낮춤, 여기서 Ec는 Eu2+ 이온의 5d 여기 레벨의 중심 에너지(centroid energy)임)를 유도하여, 전술한 바와 같이 PLE 스펙트럼을 광역화하고, Eu2+ 이온들의 가장 낮은 5d 여기 레벨의 적색 편이를 유도한다. 이와 같이, 본 발명의 실시예에 따르면, Sr2SiO4 의 산소 자리에 질소 이온들이 부분적으로 치환되어 얻어진 Sr2Si(O1-xNx)4의 여기 파장 대역은 적색 편이되어, 근자외선 영역은, 물론, 단파장 가시광선 영역(청색 가시광선 영역)에서 최대의 여기 강도를 갖는 넓은 여기 대역을 갖는 형광체가 제공될 수 있다.
최근, 근자외선 영역과 단파장 가시 광선 영역에서 고휘도 발광이 가능한 InGaN계 다이오드가 주목을 받고 있지만, 제조가 어렵고 희토류를 포함하는 고가의 원재료 때문에 경제적인 대체 재료가 요구된다. 본 발명의 실시예에 따른 SSON의 경우, 저가의 원재료로부터 제조될 수 있으면서, 1,600℃ 및 1,700℃를 포함하는 1,550 ℃ 내지 1,800 ℃에서 열처리함으로써 근자외선 영역뿐만 아니라 단파장 가시광선 영역에서도 높은 흡수 강도를 갖는 형광체를 얻을 수 있다. SSON 형광체의 높은 흡수 강도는 고효율을 가지면서 고휘도 발광이 가능한 광 소자를 제공할 수 있다.
아래 표 1은 시료 분말 내의 질소 및 산소의 함량을 나타낸다. 표 1을 참조하면, 비교예에 따른 SSO 화합물에서, 산소의 함량은 약 20.6 wt%이지만 질소는 검출되지 않았다. 계산에 의한 이론 값이 23.9 wt%임을 고려할 때, 이러한 편차는 제조된 상기 SSO 화합물이 수소 분위기에서 열처리되었기 때문에, 화학양론적 조성으로부터 산소 결핍된 조성을 갖기 때문인 것으로 추측된다. 그러나, 1,600 ℃ 및 1,700 ℃에서 열처리된 본 발명의 실시예에 따른 SSON 화합물은 각각 약 2.0 wt% 및 1.8 wt%의 질소를 함유한다. 이러한 함량은 측정 오차를 고려했을 때 실질적으로 동일하다고 볼 수 있으며, 2.0 wt% 를 포함하는 1 wt% 내지 10 wt%에서 전술한 여기 파장의 광대역화와 적색 편이가 얻어질 수 있다. 질소 함량이 실질적으로 동일함에도 불구하고, β-SSON 분말은 (α'+β)-SSON 분말에 비하여 약간 더 높은 PLE 강도를 나타낸다.
표 1
시료 질소(wt%) 산소(wt%) 상(phase)
SSO 화합물 0.0 20.6 α'-Sr2SiO4
SSON 화합물(1600 oC) 2.0 18.6 (α'+β-Sr2Si(O1-xNx)4
SSON 화합물 (1700 oC) 1.8 17.2 β-Sr2Si(O1-xNx)4
도 3a 내지 도 3c는 각각 320 nm, 377 nm 및 466 nm의 파장을 갖는 광원에 의해 여기된 본 발명의 실시예들 및 비교예에 따른 시료들의 발광 스펙트럼들이다.
도 3a를 참조하면, 비교예에 따른 Sr2SiO4:Eu2+ (곡선 e)는 320 nm 파장의 광에 의한 여기시 황색 가시광선 영역인 477 nm와 540 nm에서 각각 피크를 갖는 발광 스펙트럼을 얻을 수 있다. 477 nm에서의 발광 피크는 Eu(I) 자리에 의한 것이며, 540 nm에서의 발광 피크는 Eu(II) 자리에 의한 것이다. 320 nm 파장의 광에 의한 여기의 경우, Eu(I)과 Eu(II)가 모두 여기되지만, Eu(I)이 Eu(II)에 비해 활성화가 더욱 잘되기 때문에 477 nm에서의 피크가 540 nm에서보다 더 크다.
이와 대조적으로, 본 발명의 실시예에 따른 열처리 온도가 1,400℃(곡선 a), 1,500℃(곡선 b), 1,600℃(곡선 c) 및 1,700℃(곡선 d)인 SSON 화합물의 경우에는 477 nm에서의 발광 피크는 유지되지만, 540 nm에서의 발광 피크는 완전히 소멸된다. 그 대신, 본 발명의 실시예에 따른 SSON 화합물에서는, 적색 가시광선 영역인 610 nm에서 새로이 발광 피크가 생기며, 열처리 온도가 증가될수록 발광 피크의 강도가 증가된다.
상기 SSO 화합물이 SSON 화합물로 변환되면서, Eu(II) 위치에 의한 발광 피크는 상당한 영향을 받지만 상대적으로 Eu(I) 위치는 거의 영향을 받지 않음을 알 수 있다. 그 결과, 본원 발명의 실시예에 따른 SSON 화합물은, 320 nm에 의한 여기시 발광 스펙트럼이 477 nm의 파장과 5740 nm에서 610 nm로의 큰 편이에 의한 적색 파장이 나타나면서 광대역화된 PLE 스펙트럼을 얻을 수 있다.
도 3b를 참조하면, 비교예에 따른 Sr2SiO4:Eu2+ (곡선 e)이 377 nm 파장의 광에 의해 여기될 경우, 477 nm에서의 발광 피크의 강도는 감소하지만, 540 nm에서의 발광 피크의 강도는, 320 nm의 여기시와 달리, 477 nm의 발광 피크 강도보다 증가한다.
그러나, 본 발명의 실시예에 따른 SSON 화합물에서는, 320 nm 파장의 여기 광원으로 조사된 경우와 마찬가지로, 477 nm에서의 발광 피크와 610 nm의 발광 피크가 관찰된다. 그러나, 되며, 의 강도는 50 % 이상 감소되며, 610 nm에서의 피크의 발광 강도는 200% 이상까지 증가될 수 있다. 또한, 본 발명의 실시예에 따른 SSON 화합물의 발광 스펙트럼에서는, 전술한 바와 같이 540 nm에서의 발광 피크는 나타나지 않는다.
도 3c를 참조하면, 466 nm 파장의 광에 의한 여기의 경우, 비교예에 따른 Sr2SiO4:Eu2+ (곡선 e) 및 본 발명의 실시예에 따른 SSON 화합물(곡선 a ~ 곡선 d)에서는 477 nm에서의 피크는 거의 사라지고, 각각 540 nm와 610 nm에서만 주된 발광 피크를 가짐을 알 수 있다. 상기 SSON 화합물에서 여기 파장 320 nm 내지 377 nm에서는 Eu(I)가 여기될 수 있었지만, 466 nm의 여기 파장에서는 Eu(I)도 여기되지 않는다.
도 3a 내지 도 3c에 도시된 바와 같이, 본 발명의 실시예들에 따르면, 1,400 ℃ 내지 1,500 ℃에서 열처리된 SSON 화합물(곡선 a 및 b)은 발광 강도가 약하지만, 1,600℃(곡선 c) 및 1,700℃(곡선 d)에서 열처리된 SSON 화합물의 경우에는 온도가 증가할수록 발광 강도도 증가한다. 이로부터, 1,600℃ 및 1,700℃를 포함하는 1,550 ℃ 내지 1,800 ℃의 열처리시 질소 치환이 성공적으로 일어나면서 SSO 화합물에서 SSON 화합물로 결정장에 중대한 영향을 미치는 변이가 일어남을 알 수 있다.
또한, 본 발명의 실시예에 따른 SSON 화합물에서는, 여기 광의 파장 범위를 제어함으로써, 477 nm의 발광 피크 강도를 조절할 수 있다. 본원 발명의 실시예에 따르면, 466 nm 파장의 광에 의한 여기의 경우는 Eu(I)에 의한 기여를 없애는데 충분한 에너지를 가지고 있음을 알 수 있다. 따라서, SSON 화합물의 경우, 자외선 대역보다는 청색 대역의 여기 광을 사용할 경우, 장파장의 발광 특성을 얻을 수 있다. 그러나, 상기 SSON 화합물은 자외선 영역 또는 근자외선 영역, 바람직하게는 근자외선 영역의 발광 특성을 갖는 근자외선 LED로 여기되는 경우, 청색영역에서 적색영역까지 넓은 밴드를 갖는 발광 특성을 나타낸다.
또한, 상기 SSON 화합물에서는, 540 nm의 발광 피크를 소멸시키면서 610 nm로 큰 적색 천이시켜 광대역화된 적색 스펙트럼을 얻을 수 있다. 일반적인 LED 조명 소자에서, 백색 광의 연색 지수를 향상시키기 위하여, 적색 발광 형광체의 발광 파장이 600 nm 내지 630 nm이 될 때, 가장 유효하다. 본 발명의 실시예에 따르면, 중심 발광 파장이 610 nm이고 광대역화되기 때문에 우수한 색순도와 함께 연색성을 확보할 수 있다.
이러한 본원 발명의 특징들은 질소의 결정 내 삽입에 의해 초래된 공유 결합의 강한 전자구름 퍼짐효과(nephelauxetic effect)와 결정장 분리(crystal field splitting)에 의해 발생되는 것으로 추측된다. 그러나, 비교예에 따른 산화물계 SSO 화합물의 발광 파장이 600 nm 이하의 황색 가시광선 영역에 존재하기 때문에, 본 발명의 실시예에 따른 SSON 화합물과 비교시, 600 nm 이상에서 상기 SSON 화합물의 발광 강도는 40 % 이하이다.
또한, 본 발명의 실시예에 따른 SSON은 특히 열처리 온도가 1600℃(곡선 T3), 1700℃(곡선 T4)인 경우에, 320 nm 및 377 nm가 속하는 근자외선 영역과 466 nm가 속하는 청색 가시광선 영역의 여기 광에서, 모두 610 nm에서 발광 중심 파장을 가지며, 600 nm와 630 nm 영역에서 90% 이상의 높은 발광 강도를 얻을 수 있다.
따라서, 본 발명의 실시예에 따른 실리콘 산질화물 형광체는 고순도의 적색 발광이 가능하여, 이를 이용하여 연색성이 개선되고 낮은 색온도를 갖는 백색 조명 장치가 제공될 수 있다. 또한, 본 발명의 실시예에 따른 형광체는 높은 발광 강도를 가지기 때문에, 색순도와 함께 휘도의 향상도 얻을 수 있는 이점이 있다.
도 4는 여기 파장이 각각 320 nm 및 377 nm일 때, 열처리 온도 변화에 따른 SSON 화합물의 477 nm에서의 발광 강도와 610 nm에서의 발광 강도의 비(Rem)를 나타내는 그래프이다.
도 4를 참조하면, 각각 SSON의 열처리 온도가 증가함에 따라, 예를 들면, 1,400℃, 1,500℃, 1,600℃ 및 1,700℃인 경우에 477 nm에서의 발광 강도에 대한 610 nm의 발광 강도의 비(I610/I477)는 점차 증가한다. 온도가 1600 ℃ 및 1700 도씨를 포함하는 1,550 ℃ 내지 1,800 ℃에서 열처리된 SSON 화합물은 1 보다 더 큰 Rem을 나타내며, 특히 여기 파장 λex 가 377 nm일 때는 610 nm의 발광이 477 nm의 발광 보다 더 우세하게 나타난다.
또한, 도 4에 도시하지는 않았지만, 466 nm 파장의 광에 의한 여기의 경우, 모든 시료에서 단일 발광 대역만이 얻어졌다. 즉, SSO 화합물의 경우 540 nm에서만 발광 피크가 나타난다. 본 발명의 실시예에 따른 SSON 화합물의 경우에는 610 nn에서만 발광 피크가 나타나고, 500 nm까지 PLE 스펙트럼이 넓게 커버하기 때문에 청색 발광칩을 사용하는 백색 LED의 적색 형광체로서 상기 SSON 화합물이 적용될 수 있다.
도 5는 본 발명의 다양한 실시예들에 따른 SSON 화합물(곡선 S1), SMSON 화합물(곡선 S2), SCSON 화합물(곡선 S3), SBSON 화합물(곡선 S4)의 열처리 온도 1,700℃에서 얻어진 시료들의 X선 회절 분석 결과를 나타내는 그래프이다. 참조로서, JCPDS 카드 상의 β-Sr2SiO4(#38-0271) 및 α'-Sr2SiO4(#39-1256)의 X 선 회절 분석 결과도 도시되어 있다.
도 5를 참조하면, 상기 SSON 화합물(곡선 S1)은 전술한 SSON 화합물과 동일한 순수한 β 상을 갖는다. 이에 대한 추가적인 설명은 도 2를 참조할 수 있다. 그러나, 다른 금속 원소 M이 도핑됨에 따라, β 상 →α'+β 혼합상 → α' 상으로 점차 상변화가 일어난다. 이것은 표 2에 나타낸 바와 같이 도핑되는 금속 원소 M의 이온 크기에 의존한다. 표 2는 본 발명의 다양한 실시예들에 따른 (Sr1.6M0.4)Si(O1-xNx)4:Eu2+ 화합물의 도핑된 금속 이온의 이온 반경과 그에 따른 발광 스펙트럼 특성을 나타낸다.
표 2
M 이온 반경(nm, CN=9/10) 각 λex에서의 A-/B-대역의 파장
320 nm 337 nm 466 nm** 상(Phase)
Mg 0.089 (CN=8) 478* 477/530 604 β + α
Ca 0.118/0.123 498/607 503/603 612 α'
Sr 0.131/0.136 477/606 477/602 610 β
Ba 0.147/0.152 492/596 502/596 607 α'
*는 A-대역을 나타내고, **는 B-대역을 나타냄.
표 2에서 배위수 9 및 10을 갖는 Mg2+의 이온 크기는 입수가 불가능하여 배위수 8인 Mg2+의 이온 반경 (0.089 nm)을 대신 기재하였다. 배위수 8인 Ca2+ 이온(이온 반경이 0.112 nm)과 비교시, 배위수 9 및 10인 Ba2+의 이온 반경은 Ca2+의 이온 반경보다 훨씬 작을 것으로 예상된다. 이온 반경의 크기는 Mg < Ca < Ba의 관계를 만족한다.
β 상의 SSON 화합물에 금속 이온들을 도핑하면, α' 상이 β 상(예를 들면, SMSON 화합물)과 공존하기 시작하고, 이후, β 상은 거의 사라지게 된다(예를 들면, SCSON 화합물임). 종국적으로는, 예를 들면, SBSON 화합물 분말에서, 순수한 α' 상만이 얻어진다. 이로부터, 상기 SSON 화합물 내에 치환되는 M 이온이 심지어 상온에서도 α' 상을 켄칭(quenching)하여 안정화시킴으로써, 고온 상인 α' 상이 β 상(저온 상)으로 전이되는 것을 방지함을 알 수 있다. Sr과 금속 M의 비율(M/Sr)은 제조되는 공정 조건에 따라 조절될 수 있으며, 융제 사용 유무, 온도 및 공정 시간에 의해 조절될 수 있으며, 본 발명이 이에 의해 한정되는 것은 아니다.
일 실시예에서, 상기 SMSON 화합물(곡선 S2)의 경우 β-Sr2SiO4(#38-0271) 및 α'-Sr2SiO4(#39-1256)가 혼합된 것과 거의 동일한 회절 패턴을 갖는 것을 알 수 있다. 그러나 SCSON 화합물(곡선 S3), SBSON(곡선 S4)의 경우에 α'-Sr2SiO4(#39-1256)와 동일한 회절 패턴을 갖는다. 또한, SSON 화합물(곡선 S1)의 경우에는 β-Sr2SiO4(#38-0271)과 거의 동일한 회절 패턴을 갖는다. 따라서, 실시예 2에 따른 곡선 S2는 실리케이트계 형광체인 β-Sr2SiO4(#38-0271) 및 α'-Sr2SiO4(#39-1256) 가 혼합된 2개의 상을 가짐을 알 수 있고, 곡선 S3, S4의 경우에는 α'-Sr2SiO4(#39-1256)과 동일한 결정 구조를 갖는 것으로 예측할 수 있다.
이렇게 각기 서로 다른 결정구조를 가지는 이유는 이온의 크기 때문이다. 즉, 이온의 크기가 커질수록 (Mg < Ca < Ba) β-SSON의 결정상이 서서히 사라지고, 결국에는 α'-상만 남음을 확인할 수 있다.
도 6은 본 발명의 실시예 2에 따른 SSON 화합물(곡선 a), SMSON 화합물(곡선 b), SCSON 화합물(곡선 c), SBSON 화합물(곡선 d)의 열처리 온도가 1700 ℃일 때의 여기(photoluminescence excitation; PLE) 스펙트럼이다. 조성은 (Sr1.6M0.4)Si(O1-xNx)4:Eu2+ 이다.
이들 여기 스펙트럼은 자외선 영역부터 가시광선 영역인 200 nm와 600 nm 사이의 파장 범위에서 측정되었다. 상기 화합물들은 모두 비슷한 모양과 피크 위치를 갖는다. 그러나, 그 여기 강도는 SMSON 화합물 < SCSON 화합물 < SBSON 화합물 < SSON 화합물의 순서로 증가된다.
도 7a 내지 도 7c는 각각 320 nm, 377 nm 및 466 nm의 파장을 갖는 여기 광원에 의해 여기된 본 발명의 실시예에 따른 SSON 화합물, SCSON 화합물, 및 SBSON 화합물의 발광 스펙트럼들이다.
도 7a 내지 도 7c를 참조하면, 320 nm 및 377 nm의 파장을 갖는 여기 광원에 의해 여기된 경우, 본 발명의 실시예에 따른 SSON 화합물, SCSON 화합물 및 SBSON 화합물은 청녹색(A-대역이라 함)과 적색(B-대역이라 함) 영역인 2 개의 발광 대역을 갖는다. 그러나, 466 nm 파장의 여기 광원에 의해 조사된 경우 적색 발광 특성만을 나타낸다. 또한, SSON 화합물, SCSON 화합물 및 SBSON 화합물들은 M2+의 이온 반경에 따라 주 발광 피크의 파장이 변화한다.
SMSON 화합물(곡선 b)은 다른 실시예들과 달리 320 nm의 파장을 갖는 광원에 의해 여기된 경우, 478 nm 근처에서 비대칭적인 하나의 대역만을 갖는다. 그러나, SSON 화합물은, 377 nm 파장을 갖는 여기 광원에 의해 조사된 경우, 각각 477 nm 및 530 nm 부근에서 2 개의 발광 대역을 가짐을 확인할 수 있다. 이로부터, 질화 반응은 SMSON 화합물에서 Eu(II)에 의한 발광의 적색 편이를 일으키는데에 효과적이지 않으며, 그에 따라 466 nm에서 여기시에는, 배우 약한 적색 발광만을 얻을 수 있다. 이와 같이 SMSON 화합물에서 질화 반응이 효과적이지 못한 이유는, Mg2+의 이온의 크기가 상대적으로 매우 작기 때문에 질화 효과를 오프셋시키기 때문인 것으로 여겨진다.
이들 그래프에서, B-대역의 경우 피크 위치가 청색 편이함(더 작은 파장쪽으로 편이함)을 확인할 수 있다. 상기 청색 편이는, M 이온의 이온 크기에 의존하는 것으로 Ca2+ < Sr2+ < Ba2+ 임에 따라 SCSON -> SSON -> SBSON 의 순서로 청색 편이된다. M 이온의 크기가 커질수록 Eu2+ 이온의 d 레벨의 결정장 분리가 더 작기 때문에, Eu2+ 5d 자리의 최저 에너지 레벨이 더 큰 에너지로 편이시키기 때문이다.
본 발명의 실시예에 따른 화합물들은, A-밴드 대역의 경우, 320 및 377 nm 파장의 여기 광원에 의해 조사시, B 대역과는 달리, SSON 화합물로부터 SCSON 화합물까지 적색 편이를 나타낸다. 이것은 Ca2+ 이온이 Sr2+ 이온보다 더 작기 때문이다. 상기 A대역은 Sr2+ 이온보다 Ba2+이 더 큼에도 불구하고, SSON 화합물로부터 SBSON 화합물까지 적색 편이를 나타낸다. 이러한 특징들은 M 이온의 크기에 따른 A 및 B 대역의 스펙트라 변화는 Eu(I)과 Eu(II) 자리에서의 결정장과 공유 결합을 비교하여야 설명될 수 있다.
상술한 결과를 통해, SSON 화합물, SCSON 화합물, SBSON 화합물 및 SMSON 화합물의 경우 근자외선 근처의 여기 파장으로 넓은 대역을 갖는 발광 파장을 보이기 때문에 백색 LED 조명에 매우 유리함을 알 수 있다. 즉, SSON 화합물의 경우 청색영역에서 적색영역까지의 넓은 대역, SCSON 화합물 및 SBSON 화합물의 경우 녹색영역에서 적색영역까지의 넓은 발광 대역, SMSON 화합물의 경우 청색영역에서 녹색영역까지의 넓은 발광 대역을 가지기 때문이다.
또한, 본 발명의 실시예에 따르면, Mg, Ba, 또는 Ca가 Sr 대신에 일부 도핑됨으로써, 자외선 영역, 근자외선 영역 또는 청색 영역의 광원, 예를 들면, LED에 의해 여기시 넓은 대역의 적색 파장을 갖는 발광 스펙트럼을 얻을 수 있기 때문에, 백색 LED에 사용하는 경우, 색 연계성을 극대화시킬 수 있는 적색 형광체를 얻을 수 있다. 또한, 본 발명의 실시예에 따른 실리콘 산질화물 형광체는 적색 파장의 위치 제어(tuning)를 할 수 있다. 이에 의해 같은 여기 파장 하에서도 발광 피크를 조절할 수 있는 이점이 있다. 상기 금속 M이 Mg 인 경우, 근자외선 LED로 여기하여 청색 영역에서 녹색 영역까지의 넓은 발광 대역을 갖는 형광체를 얻을 수도 있다. 또한, 상기 실리콘 산질화물 형광체는 상기 금속 M이 Ca 또는 Ba 인 경우, 근자외선 LED로 여기하여 녹색 영역에서 적색 영역까지의 넓은 밴드를 갖는 형광체를 얻을 수도 있다.
도 8은 본 발명의 일 실시예에 따라 서로 다른 Eu2+ 농도를 갖는 SSON 화합물의 여기 스펙트럼을 도시하는 그래프이다. 곡선 a 내지 곡선 d는 각각 0.5 mol%, 1.0 mol%, 5 mol%, 및 10 mol%의 Eu2+ 농도를 갖는 SSON 화합물의 측정 결과이다.
도 8을 참조하면, Eu2+의 농도를 0.5 mol%에서 1.0 mol%로 증가시킴에 따라서 여기 스펙트럼의 강도가 증가한다. 그러나, Eu2+의 농도가 5 mol%로 증가하면, 여기 스펙트럼의 강도가 감소하기 시작하며, Eu2+의 농도가 10 mol%에서는 여기 스펙트럼의 강도가 급격히 감소된다. 또한, Eu2+ 의 농도가 증가함에 따라 420 nm의 발광 피크 강도에 대한 466 nm의 발광 피크의 강도 비도 증가한다. 바람직한 실시예에서, SSON 화합물의 Eu2+ 농도는 가장 큰 여기 강도를 갖는 1.0 mol%를 포함하는 0.8 mol% 내지 3 mol%이며 더욱 바람직하게는, 0.8 mol% 내지 1.2 mol%의 범위에서, 상기 SSON 화합물은 최대 여기 강도를 가질 수 있다. 얻어진 여기 스텍트럼에 의하면 본 발명의 실시예에 따른 SSON 분말은 약 400 nm 전후의 근자외선 발광 다이오드, 또는 450 nm 근처의 청색 발광 다이오드를 사용하는 백색 발광 다이오드의 적색 형광체로서 응용이 가능하다.
도 9는 여기 파장 377 nm에서 Eu2+의 농도 변화에 따른 SSON 화합물의 발광 스펙트럼을 도시하는 그래프이다. 곡선 a 내지 곡선 d는 각각 0.5 mol%, 1.0 mol%, 5 mol%, 및 10 mol%의 Eu2+ 농도를 갖는 SSON 화합물의 측정 결과이다.
도 9를 참조하면, 본 발명의 실시예에 따르면, 근자외선 영역의 여기 파장 377 nm의 광에 의해 여기될 때, Eu2+ 농도가 1.0 mol%(곡선 b)일 때 608 nm 근처에서 가장 높은 적색의 발광 강도를 나타낸다. 또한, Eu2+의 농도가 증가함에 따라서 장파장으로의 피크 이동이 나타난다. 따라서, 본 발명의 실시예에 따르면, Eu2+ 농도를 조절함으로써, 적색 발광 형광체를 얻을 수 있을 뿐만 아니라, 적색 발광 피크의 위치를 제어할 수 있는 형광체를 얻을 수 있다. 0.5 mol% 및 1.0 mol%의 Eu2+ 농도를 갖는 SSON 화합물의 경우 넓은 반값 폭을 갖는 적색 피크 외에도 청색에서 녹색 영역까지의 넓은 영역에서의 발광 강도를 얻을 수 있다. 따라서, 0.5 mol% 및 1.0 mol%를 포함하는 0.4 mol% 내지 1.2 mo%의 Eu2+를 포함하는 SSON 화합물은, 근자외선 발광 다이오드를 사용하는 백색 발광 다이오드에 적용시 색연계성에 있어서 매우 유리한 특성을 갖는다.
도 10은 여기 파장 466 nm에서 Eu2+의 농도 변화에 따른 SSON 화합물의 발광 스펙트럼을 도시하는 그래프이다. 곡선 a 내지 곡선 d는 각각 0.5 mol%, 1.0 mol%, 5 mol%, 및 10 mol%의 Eu2+ 농도를 갖는 SSON 화합물의 측정 결과이다.
도 10을 참조하면, 청색 가시 광선 영역에 속하는 466 nm로 여기시, SSON 화합물은 Eu2+ 농도가 1.0 mol%일 때 613 nm 근처에서 가장 높은 적색의 발광 강도를 나타낸다. Eu2+의 농도가 증가함에 따라 장파장쪽으로 피크가 이동된다. 예를 들면, Eu2+가 10 mol%인 SSON 화합물(곡선 d)는 약 635 nm에서 적색 발광을 나타낸다. 본 발명의 실시예에 따르면, Eu2+ 농도를 조절함으로써 넓은 반값폭을 갖는 적색 발광 피크를 얻을 수 있으며, 적색 발광 피크의 위치를 제어할 수 있다. 따라서. 본 발명의 실시예에 따른 SSON 화합물은 청색 발광 다이오드를 사용하는 백색 발광 다이오드의 적색 형광체로서 사용될 수 있으며, 피크의 큰 반값폭으로 인하여 백색 발광 다이오드의 색연계성 향상에 기여할 수 있다.
도 11은 본 발명의 실시예에 따른 SSON 화합물의 온도 변화에 따른 적색 발광 강도의 변화를 나타내는 그래프이다.
도 11을 참조하면, 본 발명의 실시예에 따르면, 청색 가시광선 영역인 466 nm로 여기시, SSON 화합물은 초기 발광 강도와 비교시 온도가 증가됨에 따라 서서히 발광강도가 저하된다. 상기 SSON 화합물은 약 150℃에서 초기 발광강도 대비 약 90% 정도의 강도를 유지한다. 따라서, 본 발명의 실시예에 따르면, Sr2Si(O1-xNx)4:Eu2+ 분말이 고출력의 백색 발광 다이오드의 적색 형광체로서 적합함을 알 수 있다.
도 8 내지 도 11을 참조하여 개시된 실시예들은 SSON 화합물에 관한 것이지만, Sr 원자 일부를 Mg, Ca, Ba 및 이들의 조합으로 치환한 SMSON 화합물, SCSON 화합물 또는 SBSON 화합물에서도 유사한 특성이 나타날 것으로 예상된다. 이들 화합물들은 온도에 다른 휘도 특성에 있어서, Mg, Ca 또는 Ba에 의한 치환에 의해 영향을 거의 받지 않으며, SSON 화합물과 유사한 특성을 갖는다.
도 12는 본 발명의 일 실시예에 따른 광학 장치인 캡슐형 조명 소자(100)를 개략적으로 도시하는 단면도이다.
도 12를 참조하면, 조명 소자(100)는 광을 방출하는 광원(10)과 광원(10)의 광 경로 상에 배치되어 광으로부터 여기되어 광 방출을 하는 형광층(20)을 포함한다. 광원(10)은 반도체의 PN 접합에서 일어나는 재결합 과정에서 광 방출이 가능한 반도체 다이오드일 수 있다. 상기 반도체 다이오드는, 근자외선 영역의 광 방출이 가능한 UV 발광 다이오드, 또는 청색 가시광선 영역의 광방출이 가능한 청색 발광 다이오드일 수 있다. 형광층(20)은 전술한 본 발명의 실시예에 따른 적색 발광 형광체를 포함할 수 있다. 상기 적색 발광 형광체는 형광층(20) 내에 소정의 입도 분포를 갖도록 분급되어 적용될 수 있다.
조명 소자(100)는 광원(10)에 전력 공급을 위한 리드들(11, 12) 및 리드(12)와 광원(10)을 전기적으로 접속하는 와이어(13)를 더 포함할 수 있다. 광원(10), 리드들(11, 12) 및 와이어(13)는 투광성 수지, 고무 및 유리와 같은 적합한 밀봉재(30)에 의해 포탄형으로 밀봉될 수 있다.
도 12에 도시된 포탄형 조명 소자(100)는 예시적이며, 본 발명이 이에 제한되는 것은 아니다. 예를 들면, 조명 소자는 상면이 개방된 리세스부를 갖는 기판 상에 조명 소자를 형성한 공지의 칩형으로 제공될 수 있다. 또는, 광원과 형광층을 이격 배치하고, 상기 형광층으로부터 방출된 광을 반사판으로 전달하는 반사형 조명 장치도 가능하다. 또 다른 예로서, 밀봉재 상에 형광층을 배치하고 상기 형광층을 더 밀봉하는 것도 가능하다.
조명 소자(100)는, 예를 들면, 백색 다이오드 램프일 수 있다. 백색 광은 광원(10)으로부터의 방출된 광의 일부와 형광층(20) 내에 여기된 적색 발광 형광체에 의해 방출되는 파장 변환된 광이 혼색되어 백색을 구현할 수 있다. 선택적으로는, 형광층(20) 내에 상기 적색 발광 형광체와 함께 녹색 발광 형광체가 더 포함될 수도 있다. 백색 광을 구현하기 위하여, 광원(10)은 청색 발광 다이오드일 수 있다. 상기 청색 발광 다이오드는, 예를 들면, InGaN계 다이오드일 수 있다.
상기 백색 광을 구현하기 위한 다른 구성으로서, 근자외선 영역의 여기 광 배출이 가능한 UV 발광 다이오드가 적용될 수 있다. 이 경우, 가시 광 발광체로서 적색 형광체뿐만 아니라 다른 색상의 발광 형광체, 예를 들면, 녹색 형광체 및 청색 형광체가 소정의 비율로 혼합되어 사용될 수도 있다.
전술한 조명 소자(100)는 자체로 조명 소자 또는 디스플레이 소자로 사용될 수 있다. 또는, 조명 소자(100)는 액정 표시 소자와 같은 디스플레이 소자의 후면 광원(back light unit)에 응용될 수 있으며, 본 발명이 이에 제한되는 것은 아니다.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (23)

  1. 여기 광원에 의해 조사되어 광을 방출하는 하기 화학식 1로 표시되는 화합물을 포함하는 실리콘 산질화물 형광체:
    [화학식 1]
    Sr2-zSi(O1-xNx)4 :zEu2+ 이며,
    0 < x < 1이고, 0 < z ≤ 0.4임.
  2. 제 1 항에 있어서,
    상기 실리콘 산질화물 형광체는 적색 발광 형광체인 것을 특징으로 하는 실리콘 산질화물 형광체.
  3. 제 1 항에 있어서,
    상기 적색 발광 형광체의 발광 피크는 610 nm의 주발광 피크를 포함하는 것을 특징으로 하는 실리콘 산질화물 형광체.
  4. 제 3 항에 있어서,
    상기 적색 발광 형광체의 발광 피크는 477 nm의 발광 피크를 더 포함하는 것을 특징으로 하는 실리콘 산질화물 형광체.
  5. 제 1 항에 있어서,
    상기 여기 광원은 300 nm 내지 330 nm의 범위 내의 자외선, 370 nm 내지 410 nm의 근자외선 및 450 nm 내지 470 nm의 청색 가시광선을 포함하는 것을 특징으로 하는 실리콘 산질화물 형광체.
  6. 제 1 항에 있어서,
    상기 실리콘 산질화물 형광체는 β-Sr2SiO4의 결정 구조를 갖는 것을 특징으로 하는 실리콘 산질화물 형광체.
  7. 제 1 항에 있어서,
    상기 Z는 0.016 ≤ z ≤ 0.06을 만족하는 것을 특징으로 하는 실리콘 산질화물 형광체.
  8. 여기 광원에 의해 조사되어 광을 방출하는 하기 화학식 2로 표시되는 화합물을 포함하는 실리콘 산질화물 형광체.
    [화학식 2]
    Sr2-y-zMySi(O1-xNx)4:zEu2+
    상기 M은 Ca, Ba 및 Mg 중 어느 하나 또는 이들의 조합이며,
    0 < x < 1, 0 < y < 2, 0 < z ≤ 0.4 이고, 0 < y+z < 2임.
  9. 제 8 항에 있어서,
    상기 실리콘 산질화물 형광체는 적색 발광 형광체인 것을 특징으로 하는 실리콘 산질화물 형광체.
  10. 제 8 항에 있어서,
    상기 실리콘 산질화물 형광체는 청녹색 대역과 적색 대역의 발광 대역을 동시에 갖는 것을 특징으로 하는 실리콘 산질화물 형광체.
  11. 제 8 항에 있어서,
    상기 여기 광원은 300 nm 내지 330 nm의 범위 내의 자외선, 370 nm 내지 410 nm의 근자외선 및 450 nm 내지 470 nm의 청색 가시광선을 포함하는 것을 특징으로 하는 실리콘 산질화물 형광체.
  12. 제 8 항에 있어서,
    상기 실리콘 산질화물 형광체는 α'-Sr2SiO4의 결정 구조를 갖는 것을 특징으로 하는 실리콘 산질화물 형광체.
  13. 제 8 항에 있어서,
    상기 화학식에서 M은 Mg이며, 상기 실리콘 산질화물 형광체는 근자외선 LED로 여기하여 청색 영역에서 녹색 영역까지의 넓은 대역의 발광 스펙트럼을 갖는 것을 특징으로 하는 실리콘 산질화물 형광체.
  14. 제 8 항에 있어서,
    상기 M은 Ca 또는 Ba 이고, 상기 실리콘 산질화물 형광체는 근자외선 LED로 여기하여 녹색 영역에서 적색 영역까지의 넓은 대역의 발광 스펙트럼을 갖는 것을 특징으로 하는 실리콘 산질화물 형광체.
  15. 제 8 항에 있어서,
    상기 Z는 0.016 ≤ z ≤ 0.06을 만족하는 것을 특징으로 하는 실리콘 산질화물 형광체.
  16. SrCO3, Si3N4 및 Eu2O3의 화학식을 갖는 전구체 조성물들을 혼합하는 단계; 및
    상기 혼합된 결과물을 열처리하여 하기 화학식 1로 표시되는 화합물을 형성하는 단계를 포함하는 실리콘 질화물 형광체의 제조 방법:
    [화학식 1]
    Sr2-zSi(O1-xNx)4 :zEu2+ 이며,
    0 < x < 1이고, 0 < z ≤ 0.4임.
  17. 제 16 항에 있어서,
    상기 열처리는 질소 분위기에서 수행되는 것을 특징으로 하는 실리콘 질화물 형광체의 제조 방법.
  18. 제 16 항에 있어서,
    상기 열처리는 1,650 ℃ 내지 1,800 ℃에서 수행되는 것을 특징으로 하는 실리콘 질화물 형광체의 제조 방법.
  19. SrCO3, Si3N4 및 Eu2O3의 화학식을 갖는 전구체 조성물들 및 금속 M의 산화물, 질화물, 질산화물, 탄산화물, 수산화물 또는 염화물을 혼합하는 단계; 및
    상기 혼합된 결과물을 열처리하여 하기 화학식 2로 표시되는 화합물을 형성하는 단계를 포함하는 실리콘 질화물 형광체의 제조 방법:
    [화학식 2]
    Sr2-y-zMySi(O1-xNx)4:zEu2+
    상기 M은 Ca, Ba 및 Mg 중 어느 하나 또는 이들의 조합이며,
    0 < x < 1, 0 < y < 2, 0 < z ≤ 0.4 이고, 0 < y+z < 2임.
  20. 제 19 항에 있어서,
    상기 열처리는 질소 분위기에서 수행되는 것을 특징으로 하는 실리콘 질화물 형광체의 제조 방법.
  21. 제 19 항에 있어서,
    상기 열처리는 1,650 ℃ 내지 1,800 ℃에서 수행되는 것을 특징으로 하는 실리콘 질화물 형광체의 제조 방법.
  22. 근자외선 영역, 자외선 영역 및 청색 영역 중 적어도 어느 하나에 속하는 광을 방출하는 여기 광원과 상기 여기 광원의 광 경로 상에 배치되어 상기 광에 의해 조사되어 발광하는 제 1 항 내지 제 13 항 중 어느 하나의 항에 기재된 실리콘 산질화물 형광체를 포함하는 광소자.
  23. 제 22 항에 있어서,
    상기 광소자는 발광 장치, 조명 장치, 및 디스플레이 소자 중 어느 하나인 것을 특징으로 하는 광소자.
PCT/KR2013/001608 2012-02-27 2013-02-27 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자 WO2013129854A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/380,986 US9030092B2 (en) 2012-02-27 2013-02-27 Silicon oxynitride phosphore, production method for same, and optical element comprising same
CN201380011037.8A CN104245882B (zh) 2012-02-27 2013-02-27 硅氧氮化物荧光体及其制备方法以及包括该荧光体的光学器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120019646A KR101409489B1 (ko) 2012-02-27 2012-02-27 실리콘 산질화물 형광체 및 이를 포함하는 광소자
KR10-2012-0019646 2012-02-27
KR10-2013-0021608 2013-02-27
KR1020130021608A KR101449639B1 (ko) 2013-02-27 2013-02-27 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자

Publications (1)

Publication Number Publication Date
WO2013129854A1 true WO2013129854A1 (ko) 2013-09-06

Family

ID=49082981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001608 WO2013129854A1 (ko) 2012-02-27 2013-02-27 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자

Country Status (3)

Country Link
US (1) US9030092B2 (ko)
CN (1) CN104245882B (ko)
WO (1) WO2013129854A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001931A (zh) * 2014-12-12 2017-08-01 松下知识产权经营株式会社 发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156496A1 (en) * 2003-09-18 2005-07-21 Suguru Takashima Light emitting device
KR20070003377A (ko) * 2005-07-01 2007-01-05 웨이 젠 슈 백색발광다이오드
KR100684043B1 (ko) * 2005-09-02 2007-02-16 김진환 백색 발광다이오드 및 그의 제조 방법
KR20110084270A (ko) * 2008-11-28 2011-07-21 쇼와 덴코 가부시키가이샤 표시 장치용 조명 장치 및 표시 장치
US8057704B2 (en) * 2006-02-24 2011-11-15 National Institute For Materials Science Phosphor, method for producing same, and light-emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI344220B (en) 2003-09-24 2011-06-21 Osram Gmbh White emitting led with definite color-temperature
JP4128564B2 (ja) 2004-04-27 2008-07-30 松下電器産業株式会社 発光装置
JP2008045080A (ja) 2006-08-21 2008-02-28 National Institute For Materials Science 無機化合物の製造方法
KR20090019677A (ko) 2007-08-21 2009-02-25 삼성전기주식회사 옥시 나이트라이드 형광체, 이를 포함하는 백색 발광 소자및 형광체 제조 방법.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156496A1 (en) * 2003-09-18 2005-07-21 Suguru Takashima Light emitting device
KR20070003377A (ko) * 2005-07-01 2007-01-05 웨이 젠 슈 백색발광다이오드
KR100684043B1 (ko) * 2005-09-02 2007-02-16 김진환 백색 발광다이오드 및 그의 제조 방법
US8057704B2 (en) * 2006-02-24 2011-11-15 National Institute For Materials Science Phosphor, method for producing same, and light-emitting device
KR20110084270A (ko) * 2008-11-28 2011-07-21 쇼와 덴코 가부시키가이샤 표시 장치용 조명 장치 및 표시 장치

Also Published As

Publication number Publication date
US9030092B2 (en) 2015-05-12
CN104245882A (zh) 2014-12-24
US20150015136A1 (en) 2015-01-15
CN104245882B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP4981042B2 (ja) 黄緑色を放出するルミネッセント材料を含む照明系
JP5188687B2 (ja) 蛍光体及びその製造法並びに発光装置
US8329060B2 (en) Blue-green and green phosphors for lighting applications
KR100911001B1 (ko) 백색 발광 다이오드용 신규 형광체 및 그 제조방법
JP2006213910A (ja) 酸窒化物蛍光体及び発光装置
KR20140081833A (ko) 루미네선트 물질 및 연관된 일루미네이션 유닛을 포함하는 광원
KR101196845B1 (ko) (할로)금속실리콘산질화물 형광체 및 이의 제조방법
WO2011083885A1 (ko) 산황화물계 적색 형광체 및 이를 이용한 백색 led와 led패키지
WO2011004961A2 (en) Light emitting device employing luminescent substances with oxyorthosilicate luminophores
WO2013129854A1 (ko) 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자
WO2011078509A2 (en) Light emitting device having strontium oxyorthosilicate type phosphors
KR101409489B1 (ko) 실리콘 산질화물 형광체 및 이를 포함하는 광소자
JP5606552B2 (ja) 蛍光体及びこの種の蛍光体を有する光源
KR101449639B1 (ko) 실리콘 산질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자
WO2013191358A1 (ko) 형광체 및 이를 포함하는 발광장치
KR101673060B1 (ko) 실리콘 질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자
WO2016072553A1 (ko) 실리콘 질화물 형광체, 이의 제조 방법 및 이를 포함하는 광소자
Liu et al. Phosphor-Converting LED for Lighting
KR102086821B1 (ko) Led용 지르콘네이트 형광체, 이의 제조방법, 및 이의 발광 특성
KR102113044B1 (ko) 리튬계 가넷 형광체, 이의 제조방법, 및 이의 발광 특성
KR20120063585A (ko) 실리콘 질화물 형광체, 이의 제조 방법 및 이를 이용한 광 소자
KR100906923B1 (ko) 형광체, 코팅 형광체 조성물, 형광체 제조방법 및 발광소자
TWI585189B (zh) 波長轉換物質
KR20110085491A (ko) 실리케이트 형광체와 이를 이용한 발광장치
JP2003336062A (ja) 蛍光体及びそれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14380986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754017

Country of ref document: EP

Kind code of ref document: A1