WO2013129615A1 - 有機電界発光素子の製造方法 - Google Patents
有機電界発光素子の製造方法 Download PDFInfo
- Publication number
- WO2013129615A1 WO2013129615A1 PCT/JP2013/055533 JP2013055533W WO2013129615A1 WO 2013129615 A1 WO2013129615 A1 WO 2013129615A1 JP 2013055533 W JP2013055533 W JP 2013055533W WO 2013129615 A1 WO2013129615 A1 WO 2013129615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic electroluminescent
- electroluminescent element
- temperature
- layer
- light emitting
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 238000009826 distribution Methods 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 19
- 238000005401 electroluminescence Methods 0.000 claims description 12
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 239000003989 dielectric material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 189
- 239000000463 material Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 25
- 229920002120 photoresistant polymer Polymers 0.000 description 16
- 239000011521 glass Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 238000001931 thermography Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910000573 alkali metal alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- -1 or the like Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 241001136782 Alca Species 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/70—Testing, e.g. accelerated lifetime tests
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/87—Arrangements for heating or cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/361—Temperature
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/141—Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
Definitions
- the present invention relates to a method for manufacturing an organic electroluminescent element.
- Patent Document 1 includes a dielectric layer inserted between a hole electrode injection layer and an electron injection electrode layer, and extends through at least one of the dielectric layer and the electrode layer.
- Cavity light emitting electroluminescent devices have been proposed in which an electroluminescent coating material is applied to an internal cavity surface comprising a region, an electron injection electrode region and a dielectric region.
- An object of the present invention is to provide a method for manufacturing an organic electroluminescent device capable of reducing temperature unevenness on a light emitting surface and obtaining uniform light emission.
- the first electrode layer, the dielectric layer, and the second electrode layer are sequentially stacked on the substrate, and the light emitting unit is in contact with the inner surface of the recess formed through the dielectric layer.
- the difference (T H ⁇ ) between the maximum temperature (T H ) and the minimum temperature (T L ) obtained by measuring the temperature distribution of the organic electroluminescent element that has emitted light It is preferable to obtain (T L ) as temperature unevenness.
- the concave portion penetrating at least one of the first electrode layer and the second electrode layer it is preferable to form the concave portion penetrating the first electrode layer, the dielectric layer, and the second electrode layer.
- thermoluminescent device temperature unevenness on the light emitting surface of the organic electroluminescent device is reduced, and it is easy to obtain a long-life organic electroluminescent device.
- FIG. 4 is a diagram showing measurement results of temperature distributions of three organic electroluminescent elements produced in Example 1.
- FIG. 1 is a diagram for explaining a first example of an organic electroluminescent element which is an object of the present embodiment.
- the organic electroluminescent device 10 shown in FIG. 1 has an anode layer 12 as a first electrode layer, an insulating dielectric layer 14 and a cathode layer 15 as a second electrode layer in order on a substrate 11.
- the light emitting unit 17 has a recess 16 formed through the anode layer 12, the dielectric layer 14, and the cathode layer 15, and is formed in contact with the inner surface of the recess 16 and emits light by applying a voltage.
- a light emitting material is applied to the inner surface of the recessed portion 16 without filling the entire recessed portion 16, thereby forming a second recessed portion 18.
- Each configuration will be described below.
- the substrate 11 serves as a support for forming the anode layer 12, the dielectric layer 14, the cathode layer 15, and the light emitting portion 17.
- a material that satisfies the mechanical strength required for the organic electroluminescent element 10 is used for the substrate 11.
- glass such as soda glass, alkali-free glass, and quartz glass; high refractive index glass; transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin; oxidation of silicon oxide, aluminum oxide, and the like
- transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin
- a nitride such as silicon nitride, boron nitride and aluminum nitride
- a fluoride such as magnesium fluoride and sodium fluoride
- other inorganic transparent materials such as soda glass, alkali-free glass, and quartz glass
- transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin
- fluoride such as magnesium fluoride and sodium fluoride
- the material of the substrate 11 is not limited to a material that is transparent with respect to the wavelength of light emitted from the light emitting unit 17, and may be opaque. Can be used. Specifically, in addition to the above materials, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) ), Alloys thereof, materials made of stainless steel, or the like, semiconductor materials such as opaque glass, opaque plastic, silicon, gallium arsenide, and composite materials such as fiber reinforced plastic (FRP) can also be used.
- the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
- the anode layer 12 as the first electrode layer applies voltage between the cathode layer 15 and injects holes into the light emitting portion 17.
- the material used for the anode layer 12 is not particularly limited as long as it has electrical conductivity, but a material having low surface resistance is preferable.
- Metal oxides, metals, and alloys can be used as materials that satisfy such conditions.
- examples of the metal oxide include ITO (indium tin oxide) and IZO (indium-zinc oxide).
- the metal include stainless steel, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like. .
- An alloy containing these metals can also be used.
- the thickness of the anode layer 12 is preferably 2 nm to 300 nm because high light transmittance is required when light is to be extracted from the substrate 11 side of the organic electroluminescent element 10. Further, when it is not necessary to extract light from the substrate 11 side of the organic electroluminescent element 10, it can be formed with a thickness of 2 nm to 2 mm, for example.
- the dielectric layer 14 is provided between the anode layer 12 and the cathode layer 15, separates and insulates the anode layer 12 and the cathode layer 15 at a predetermined interval, and applies a voltage to the light emitting unit 17. It is. Therefore, the dielectric layer 14 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 ⁇ cm or more, preferably 10 12 ⁇ cm or more.
- the material include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide and aluminum oxide, but other polymer compounds such as polyimide, polyvinylidene fluoride, and parylene. Can also be used.
- the thickness of the dielectric layer 14 preferably does not exceed 1 ⁇ m in order to suppress the total thickness of the organic electroluminescent element 10.
- the dielectric strength is preferably such that the current density of the current flowing between the anode layer 12 and the cathode layer 15 is 0.1 mA / cm 2 or less when the light emitting portion 17 is not formed, and 0.01 mA. / Cm 2 or less is more preferable.
- the anode layer 12 and the anode layer 12 are not formed in a state where the light emitting portion 17 is not formed. It is necessary to satisfy the above current density when a voltage of about 7 V is applied between the cathode layers 15.
- the thickness of the dielectric layer 14 satisfying this is preferably 10 nm to 500 nm, more preferably 50 nm to 200 nm.
- the cathode layer 15 as the second electrode layer applies a voltage between the anode layer 12 and injects electrons into the light emitting portion 17.
- the material used for the cathode layer 15 is not particularly limited as long as it has electrical conductivity like the anode layer 12, but a material having a low work function and being chemically stable is preferable. .
- the work function is preferably ⁇ 2.9 eV or less in view of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified.
- the thickness of the cathode layer 15 is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
- a cathode buffer layer (not shown) may be provided adjacent to the cathode layer 15 for the purpose of lowering the electron injection barrier from the cathode layer 15 to the light emitting portion 17 and increasing the electron injection efficiency.
- the cathode buffer layer needs to have a work function lower than that of the cathode layer 15, and a metal material is preferably used.
- alkali metals Na, K, Rb, Cs
- alkaline earth metals Sr, Ba, Ca, Mg
- rare earth metals Pr, Sm, Eu, Yb
- fluorides or chlorides of these metals A simple substance selected from oxides or a mixture of two or more can be used.
- the thickness of the cathode buffer layer is preferably 0.05 nm to 50 nm, more preferably 0.1 nm to 20 nm, and even more preferably 0.5 nm to 10 nm.
- the material of the third conductive layer may be a material having a large absolute value of work function such as Au, Cu, Al, stainless steel, and transparent conductive oxide.
- the concave portion (cavity) 16 is for applying the light emitting portion 17 on the inner surface and taking out light from the light emitting portion 17, and is the anode layer 12 as the first electrode layer and the second electrode layer. It is formed so as to penetrate the cathode layer 15 and the dielectric layer 14.
- the light emitted from the light emitting portion 17 by providing the concave portion 16 in this manner propagates through the concave portion 16 and can be extracted in both directions on the substrate 11 side and the cathode layer 15 side.
- the recess 16 is formed through the anode layer 12, the dielectric layer 14, and the cathode layer 15, the anode layer 12 that is the first electrode layer and the cathode layer 15 that is the second electrode layer. It is possible to extract light even when is made of an opaque material.
- the shape of the recess 16 is not particularly limited. In the present embodiment, for example, a substantially cylindrical shape can be used, but the present invention is not limited to this.
- the diameter is preferably 0.1 ⁇ m to 20 ⁇ m, and more preferably 0.1 ⁇ m to 10 ⁇ m.
- the light emitting portion 17 is a light emitting material that emits light when a voltage is applied. As described above, the light emitting portion 17 is applied to the inner surface of the recess 16 so as to form the second recess 18 by providing the light emitting material in contact with the recess 16. The In the light emitting unit 17, the holes injected from the anode layer 12 and the electrons injected from the cathode layer 15 are recombined to emit light.
- the material of the light emitting portion 17 either a low molecular compound or a high molecular compound can be used.
- the luminescent low molecular weight compound and the luminescent high molecular weight compound described in Hiroshi Omori: Applied Physics, Vol. 70, No. 12, pp. 1419-1425 (2001) can be exemplified.
- a material excellent in applicability is preferable. That is, in the structure of the organic electroluminescent element 10, in order for the light emitting portion 17 to emit light stably in the recess 16, the light emitting portion 17 is in uniform contact with the inner surface of the recess 16 and the film thickness is uniformly formed. That is, it is preferable that the coverage is improved.
- the coating method it is easy to embed ink containing a light-emitting material in the concave portion 16, and thus it is possible to form a film with improved coverage even on a surface having irregularities.
- examples of the material having excellent coatability include, for example, an arylamine compound having a predetermined structure and a molecular weight of 1500 to 6000 described in JP-A-2007-86639, and JP-A 2000-034476. And the predetermined polymeric fluorescent substance.
- the light emitting portion 17 of the organic electroluminescent element 10 in the present embodiment may contain a hole transporting compound or an electron transporting compound for the purpose of supplementing the carrier transportability of the light emitting portion 17.
- FIG. 2 is a diagram for explaining a second example of an organic electroluminescent element which is a target of the present embodiment.
- the recess 16 penetrates the anode layer 12 and the dielectric layer 14, but does not penetrate the cathode layer 15.
- the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed.
- the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14. By forming the cathode layer 15 in this way, the recess 16 is covered.
- the light emitting part 17 Even if the light emitting part 17 is not applied to the inner surface of the recessed part 16 so as to form the second recessed part 18, the light emitted by the light emitting part 17 propagates inside the light emitting part 17, and the above-described organic electroluminescent element 10 and Similarly, it can be taken out from both the substrate 11 side and the cathode layer 15 side.
- the cathode layer 15 since the cathode layer 15 is a solid film and covers the light emitting portion 17, the cathode layer 15 must be transparent to the wavelength of light emitted by the light emitting portion 17. Light cannot be extracted from the 15 side.
- FIG. 3 is a diagram for explaining a third example of an organic electroluminescent element which is a target of the present embodiment.
- the recess 16 penetrates the dielectric layer 14 and the cathode layer 15, but does not penetrate the anode layer 12.
- the light emitting unit 17 forms a second recess 18. Even when the anode layer 12 is formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side. However, when it is desired to extract light from the anode layer 12 side, the anode layer 12 cannot extract light from the substrate 11 side unless the anode layer 12 is transparent to the wavelength of light emitted from the light emitting unit 17.
- FIG. 4 is a diagram for explaining a fourth example of an organic electroluminescent element which is a target of the present embodiment.
- the recess 16 penetrates the dielectric layer 14, but the anode layer 12 and the cathode layer 15 do not penetrate.
- the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed.
- the anode layer 12 is formed in a so-called solid film shape so as to be laminated on the substrate 11.
- the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14, and has a structure covering the recess 16.
- the anode layer 12 and the cathode layer 15 are formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side.
- the anode layer 12 needs to be transparent to the wavelength of the light emitted from the light emitting unit 17.
- the cathode layer 15 needs to be transparent to the wavelength of the light emitted from the light emitting portion 17.
- FIG. 5 is a diagram for explaining a fifth example of an organic electroluminescent element which is a target of the present embodiment.
- the organic electroluminescent element 50 shown in FIG. 5 the anode layer 12 and the dielectric layer 14 are formed in this order on the substrate 11.
- the light emitting material that forms the light emitting portion 17 is also developed from the recess 16 to the upper surface of the dielectric layer 14. That is, the light emitting material forming the light emitting portion 17 is continuously extended from the concave portion 16 between the dielectric layer 14 and the cathode layer 15. Further, the cathode layer 15 is formed so as to be further laminated on the light emitting material, and is formed into a so-called solid film.
- the anode layer 12 is formed on the lower side when the substrate 11 side is the lower side, and the dielectric layer 14 is sandwiched therebetween to face each other.
- the case where the cathode layer 15 is formed on the upper side is described as an example.
- the present invention is not limited to this, and the anode layer 12 and the cathode layer 15 may be replaced. That is, when the substrate 11 side is the lower side, the cathode layer 15 may be formed on the lower side, and the anode layer 12 may be formed on the upper side with the dielectric layer 14 interposed therebetween.
- FIG. 6 is a diagram for explaining an example of a method for manufacturing the organic electroluminescent element 10 to which the exemplary embodiment is applied.
- the anode layer 12, the dielectric layer 14, and the cathode layer 15 are formed in this order on the substrate 11 (FIG. 6A).
- resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, or the like can be used.
- a coating film forming method that is, a method in which a target material is dissolved in a solvent and then dried
- a spin coating method a dip coating method, an ink jet method, a printing method
- a method such as a spray method or a dispenser method.
- the cathode buffer layer can also be formed by the same method.
- the concave portion 16 is formed so as to penetrate the anode layer 12, the dielectric layer 14, and the cathode layer 15.
- a method using photolithography can be used. In order to do this, first, a photoresist solution is applied on the cathode layer 15, and the excess photoresist solution is removed by spin coating or the like to form a photoresist layer 61 (FIG. 6B).
- a mask (not shown) on which a predetermined pattern for forming the recess 16 is drawn is covered, and the photoresist layer 61 is exposed with ultraviolet (UV), electron beam (EB), or the like.
- UV ultraviolet
- EB electron beam
- a pattern of the recess 16 that is the same size as the mask pattern is formed.
- reduced exposure for example, in the case of exposure using a stepper
- a pattern 62 of the recessed portion 16 reduced with respect to the mask pattern is formed (FIG. 6C).
- the exposed portion of the cathode layer 15 is removed by etching to form a recess 16 penetrating the anode layer 12, the dielectric layer 14, and the cathode layer 15 (FIG. 6E).
- etching either dry etching or wet etching can be used.
- the shape of the recess 16 can be controlled by combining isotropic etching and anisotropic etching.
- dry etching reactive ion etching (RIE: Reactive Ion) Etching
- inductively coupled plasma etching can be used.
- wet etching a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used.
- the remaining photoresist layer 61 is removed with a photoresist removing solution or the like, and the light emitting portion 17 is formed, whereby the organic electroluminescent element 10 is manufactured (FIG. 6F).
- the above-described coating method is used for forming the light emitting portion 17.
- an ink in which a light emitting material constituting the light emitting unit 17 is dispersed in a predetermined solvent such as an organic solvent or water is applied.
- various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used.
- the ink is dried by heating or evacuating, and the light emitting material adheres to the inner surface of the recess 16 to form the light emitting portion 17.
- the organic electroluminescent element 10 manufactured in the first manufacturing process is caused to emit light, and the temperature distribution is measured.
- the organic electroluminescence device 10 is driven by applying a voltage from a DC power source so that the average current density becomes 1 mA / cm 2 , for example, is lit at a predetermined average luminance, and an infrared thermography is used.
- an infrared thermography is used.
- the more the number of samples of the organic electroluminescent element 10 for measuring the temperature distribution the more accurate the temperature distribution can be measured. In the present embodiment, 10 or more are preferable, and it is better to measure the total number.
- the light emitting surface of the element sample to be measured is divided into, for example, a lattice shape or a honeycomb shape, and the temperature (partial temperature) of each portion is measured.
- handling is easy when divided into a square lattice.
- the number of divisions of the light emitting surface is not particularly limited. However, when the number of element samples to be measured is 10 or more, it is preferable to divide so that one region has a size of about 0.1 mm 2 to 10 cm 2 . Further, when the total number is measured, it is preferable to divide so that one region has a size of about 1 mm 2 to 1 cm 2 .
- the partial temperature, maximum temperature (T H ), and minimum temperature (T L ) of the emitted organic electroluminescent element 10 are obtained as temperature unevenness information.
- the threshold value is preferably 3 ° C. or lower, and more preferably 1.5 ° C. or lower.
- the second manufacturing process As in the first manufacturing process described above, the anode layer 12, the dielectric layer 14, and the cathode layer 15 are sequentially stacked on the substrate 11, and then the anode layer 12, A plurality of recesses 16 penetrating the dielectric layer 14 and the cathode layer 15 are formed.
- the density of the recesses 16 is adjusted based on the temperature unevenness information of the organic electroluminescent element 10 manufactured in the first manufacturing process.
- the partial temperature of the emitted organic electroluminescent element 10 is more susceptible to the density than the size and shape of the recess 16, and it is preferable to control the density of the plurality of recesses 16 in order to control the temperature distribution.
- FIG. 7 is a diagram for explaining the relationship between the density of the recesses 16 and the temperature of the organic electroluminescent element 10 that has emitted light.
- a region A indicates a region where the partial temperature of the organic electroluminescent element 10 increases as the density of the recesses 16 increases.
- a region B indicates a region where the partial temperature of the organic electroluminescent element 10 decreases as the density of the recesses 16 increases.
- Such conditions for the region A or the region B can be obtained by measuring the relationship between the density and the temperature of the recesses 16 in advance by a preliminary experiment.
- the measured value of the temperature measured as temperature unevenness information of the organic electroluminescent element 10 manufactured in the first manufacturing process is performed.
- the recesses 16 are formed based on the temperature measurement value measured as temperature unevenness information, the density of the recesses 16 in the high temperature part is increased, and the recesses 16 in the low temperature part are increased. Do the operation to reduce the density.
- the subsequent manufacturing in the subsequent manufacturing (second manufacturing process), adjustment for increasing or decreasing the density of the recesses 16 in a specific portion of the organic electroluminescent element 10 is performed.
- the range in which the density of the recesses 16 is increased or decreased is not limited as long as the temperature unevenness obtained by the calculation formula (1) converges without diverging, and it is usually preferable to increase or decrease in the range of 1% to 10%.
- the density of the recesses 16 is averaged.
- the applied photoresist layer is exposed, for example, by a stepper exposure apparatus while changing the mask scale for each predetermined portion and adjusting the density of the recesses 16.
- FIG. 8 is a flowchart for explaining the flow of the manufacturing method of the organic electroluminescent element 10 to which the present exemplary embodiment is applied.
- the method for manufacturing the organic electroluminescent element 10 as a first manufacturing process, the anode layer 12, the dielectric layer 14, and the cathode layer 15 are sequentially stacked on the substrate 11, and the recess 16 penetrates these layers.
- the organic electroluminescent device 10 having the light emitting portion 17 formed in contact with the inner surface of the substrate is manufactured (step 100).
- the organic electroluminescence device 10 manufactured in the first manufacturing process is caused to emit light, and the temperature distribution of the organic electroluminescence device 10 is measured to obtain temperature unevenness information (step 110).
- the temperature unevenness information includes respective partial temperatures measured by dividing the light emitting surface of the organic electroluminescent element 10 into a predetermined size, the maximum temperature (T H ), and the minimum temperature (T L ). Based on the obtained temperature unevenness information, the temperature unevenness of the emitted organic electroluminescent element 10 is calculated by the calculation formula (1) described above.
- step 120 it is determined whether or not the temperature unevenness calculated in the temperature distribution measurement process exceeds a predetermined threshold value (in the present embodiment, it is assumed that it is set to 3 ° C.) (step 120).
- a predetermined threshold value in the present embodiment, it is assumed that it is set to 3 ° C.
- the organic electroluminescent element 10 is manufactured while adjusting the density of the recesses 16 based on the temperature unevenness information of the organic electroluminescent element 10 (second manufacturing process). .
- the temperature distribution of the organic electroluminescent element 10 manufactured in the second manufacturing step is measured, and it is determined whether or not the obtained temperature unevenness exceeds a threshold value (3 ° C.), When exceeding a threshold value, the process of adjusting the density of the recessed part 16 is repeated until temperature unevenness becomes below a threshold value (3 degreeC) based on the temperature unevenness information of the organic electroluminescent element 10 manufactured at the 2nd manufacturing process.
- a threshold value 3 ° C.
- the organic electroluminescent element 10 can be manufactured by the above process. In addition, when using the organic electroluminescent element 10 stably for a long term, it is preferable to mount
- the protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
- the protective cover a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used.
- Example 1 In accordance with the operation described below, first, a first organic electroluminescent device (organic electroluminescent device 1) having a plurality of concave portions (cavities) 16 formed in a uniform pattern is manufactured, and this is turned on to produce a temperature distribution. Was measured (measured value 1). Next, based on this measurement value 1, while adjusting the density of the concave portion 16 in the high temperature portion in the light emitting surface to be low and the density of the concave portion 16 in the low temperature portion to be high, the second organic electroluminescent element (organic An electroluminescent element 2) was manufactured and lit to measure the temperature distribution (measured value 2).
- the third organic electroluminescent element (organic electric field) is adjusted.
- a light emitting element 3) was manufactured, and this was turned on to measure the temperature distribution (measured value 3).
- the organic electroluminescent element 1 having the layer structure of the organic electroluminescent element 50 of FIG. 5 was prepared.
- a glass substrate 110 mm square, 1 mm thick
- ITO film patterned corresponding to a 100 mm square light emitting region was ultrasonically cleaned in the order of surfactant, pure water and isopropanol.
- the glass substrate with ITO after cleaning was mounted in a plasma generation apparatus, the pressure in the apparatus was 1 Pa, the input power was 50 W, and oxygen plasma was irradiated for 5 seconds.
- the glass substrate is the substrate 11
- ITO is the first electrode layer (anode layer) 12
- the SiO 2 layer is the dielectric layer 14.
- a photoresist (AZ1500 manufactured by AZ Electronic Materials Co., Ltd.) layer having a thickness of about 1 ⁇ m was formed on the entire surface of the glass substrate on which the ITO and SiO 2 layers were formed by spin coating.
- a mask A corresponding to a pattern in which circles are arranged in a hexagonal lattice using quartz (plate thickness: 3 mm) as a base material is manufactured, and a 10 mm square region at the corner of the light emitting region is formed using a stepper exposure apparatus. Exposure was performed at 1/5 scale (exposure scale 1).
- Exposure scale 1 Exposure scale
- TMAH tetramethylammonium hydroxide
- the solution A is applied to the electrode substrate on which the plurality of recesses (cavities) 16 are formed by spin coating (rotation speed: 3000 rpm), and left to stand at 140 ° C. for 1 hour in a nitrogen atmosphere and dried.
- the light emitting part 17 was formed.
- a sodium fluoride layer (4 nm) as a cathode buffer layer and an aluminum layer (130 nm) as a cathode layer 15 were formed in this order on the light emitting portion 17 by vapor deposition to produce the organic electroluminescent device 1.
- the obtained organic electroluminescent element 1 was an element having the characteristics included in the region A.
- FIG. 9 is a diagram for explaining a light emitting region of the organic electroluminescent element 1. As shown in FIG. 9, when the organic electroluminescent element 1 is viewed in plan from the cathode layer 15 side, the portion where the ITO as the anode layer and the aluminum layer as the cathode layer overlap is the light emitting region. An anode terminal portion is formed at the end portion of the ITO.
- Exposure scale 2 exposure scale 1+ (T1-T2) / 200 (2)
- T1 is the temperature (° C.) of the portion corresponding to each 10 mm square exposure region measured in the organic electroluminescence device 1 described above
- T2 is in the organic electroluminescence device 1.
- the measured minimum temperature (T L ) (° C.). The exposure was performed on a 10 mm square area corresponding to each T1.
- the photoresist layer is patterned, a plurality of recesses (cavities) 16 are formed by dry etching, and the light-emitting portion 17, the cathode buffer layer, and the cathode layer 15 are formed by the same operation as the fabrication of the organic electroluminescent element 1.
- An organic electroluminescent element 2 was produced.
- Measurement of the temperature distribution in the light emitting region plane was performed using an infrared thermography apparatus. As a result of measuring the temperature distribution, the temperature of the highest temperature part was 34.6 ° C. (maximum temperature: T H ), and the temperature of the lowest temperature part was 30.1 ° C. (minimum temperature: T L ).
- T H maximum temperature
- T L minimum temperature
- Exposure scale 3 Exposure scale 2+ (T3-T4) / 200 (3)
- T3 is the temperature (° C.) of the portion corresponding to each 10 mm square exposure region measured in the organic electroluminescence device 2 described above
- T4 is in the organic electroluminescence device 2.
- T L The measured minimum temperature (T L ) (° C.). The exposure was performed on a 10 mm square area corresponding to each T3.
- Measurement of the temperature distribution in the light emitting region plane was performed using an infrared thermography apparatus. As a result of measuring the temperature distribution, the temperature of the highest temperature part was 32.2 ° C. (maximum temperature: T H ), and the temperature of the lowest temperature part was 30.8 ° C. (minimum temperature: T L ).
- T H maximum temperature
- T L minimum temperature
- FIG. 10 is a diagram showing the measurement results of the temperature distribution of the three organic electroluminescent elements produced in Example 1.
- FIG. 10A shows the measurement result of the temperature distribution of the organic electroluminescent element 1
- FIG. 10B shows the measurement result of the temperature distribution of the organic electroluminescent element 2
- FIG. 10C shows the organic electroluminescent element.
- 3 is a measurement result of the temperature distribution of 3.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明の目的は、発光面における温度ムラを低減し、均一な発光が得られる有機電界発光素子の製造方法を提供することにある。
ここで、前記温度分布測定工程において、前記温度ムラ情報として、発光させた前記有機電界発光素子の発光面を所定の大きさに分割して測定したそれぞれの部分温度と、最高温度(TH)および最低温度(TL)とを測定することが好ましい。
前記温度分布測定工程において、前記温度ムラ情報に基づき、発光させた前記有機電界発光素子の温度分布測定により得られた最高温度(TH)と最低温度(TL)との差(TH-TL)を温度ムラとして得ることが好ましい。
前記温度分布測定工程において、閾値を3℃以下に設定し、前記温度ムラが前記閾値を超える場合、前記温度ムラ情報に基づき前記凹部の密度を調整することが好ましい。
前記第1の製造工程および前記第2の製造工程において、少なくとも前記第1の電極層と前記第2の電極層のいずれか一方を貫通する前記凹部を形成することが好ましい。
前記第1の製造工程および前記第2の製造工程において、前記第1の電極層、前記誘電体層および前記第2の電極層を貫通する前記凹部を形成することが好ましい。
図1に示した有機電界発光素子10は、基板11上に第1の電極層である陽極層12と、絶縁性の誘電体層14と、第2の電極層である陰極層15とが順に積層した構造を採る。また、陽極層12、誘電体層14、陰極層15を貫通して形成される凹部16を有し、そして凹部16の内面と接触して形成され電圧を印加することで発光する発光部17を有する。この発光部17は、凹部16の全体を埋めずに凹部16の内面に発光材料が塗布され、第2凹部18を形成する。
以下、各構成について説明する。
基板11は、陽極層12、誘電体層14、陰極層15、発光部17を形成する支持体となるものである。基板11には、有機電界発光素子10に要求される機械的強度を満たす材料が用いられる。
基板11の材料としては、有機電界発光素子10の基板11側から光を取り出したい場合は、発光部17で発光する光の波長に対して透明であることが必要である。具体的には、ソーダガラス、無アルカリガラス、石英ガラス等のガラス;高屈折率ガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂等の透明プラスチック;酸化珪素、酸化アルミニウム等の酸化物;窒化ケイ素、窒化ホウ素、窒化アルミニウム等の窒化物;フッ化マグネシウム、フッ化ナトリウム等のフッ化物;その他無機透明材料等である。
基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
第1の電極層としての陽極層12は、陰極層15との間で電圧を印加し、発光部17に正孔を注入する。陽極層12に使用される材料としては、電気伝導性を有するものであれば、特に限定されるものではないが、面抵抗が低い材料が好ましい。このような条件を満たす材料として、金属酸化物、金属、合金が使用できる。ここで、金属酸化物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)が挙げられる。また金属としては、ステンレス、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)等が挙げられる。そしてこれらの金属を含む合金も使用できる。
誘電体層14は、陽極層12と陰極層15の間に設けられ、陽極層12と陰極層15とを所定の間隔にて分離し絶縁すると共に、発光部17に電圧を印加するためのものである。このため誘電体層14は高抵抗率材料であることが必要であり、電気抵抗率としては、108Ωcm以上、好ましくは1012Ωcm以上有することが要求される。
第2の電極層としての陰極層15は、陽極層12との間で電圧を印加し、発光部17に電子を注入する。陰極層15に使用される材料としては、陽極層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。仕事関数は、化学的安定性を考慮すると-2.9eV以下であることが好ましい。具体的には、Al、MgAg合金、AlLiやAlCa等のAlとアルカリ金属の合金等の材料を例示することができる。陰極層15の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。
凹部(キャビティ)16は、発光部17をその内面に塗布し、かつ発光部17からの光を取り出すためのものであり、第1の電極層である陽極層12、第2の電極層である陰極層15、および誘電体層14を貫通するように形成する。このように凹部16を設けることにより発光部17から発せられた光は、凹部16の内部を伝搬し、基板11側および陰極層15の側の両方向において取り出すことができる。ここで、凹部16は、陽極層12、誘電体層14、陰極層15を貫通して形成されているため、第1の電極層である陽極層12および第2の電極層である陰極層15が不透明材料により形成されるときでも光を取り出すことが可能である。
発光部17は、電圧を印加することで発光する発光材料であり、上述の通り凹部16に接触して発光材料が設けられることにより第2凹部18を形成するように凹部16の内面に塗布される。発光部17において、陽極層12から注入された正孔と陰極層15から注入された電子とが再結合し、発光が生じる。
図2に示した有機電界発光素子20は、凹部16が陽極層12、誘電体層14を貫通するが、陰極層15を貫通していない。そして、凹部16が発光部17により埋められ、第2凹部18は形成されていない。また、陰極層15は、誘電体層14の上に積層する形でいわゆるベタ膜状に形成されている。このように陰極層15を形成することで、凹部16を覆う構造としている。第2凹部18を形成するように発光部17を凹部16の内面に塗布しなくても、発光部17により発せられた光は、発光部17内部を伝搬し、上述の有機電界発光素子10と同様に、基板11の側および陰極層15の側の両方から取り出しが可能である。但し、この有機電界発光素子20の場合は、陰極層15がベタ膜として、発光部17を覆っているため、陰極層15が発光部17で発光する光の波長に対し透明でないと、陰極層15の側から光を取り出すことはできない。
図3に示した有機電界発光素子30は、凹部16が誘電体層14、陰極層15を貫通するが、陽極層12を貫通していない。そして発光部17は第2凹部18を形成する。このように陽極層12を形成する場合でも、発光部17から発せられた光は、基板11の側および陰極層15の側の両方から取り出し可能である。但し、陽極層12の側から光を取り出したい場合は、陽極層12は、発光部17で発光する光の波長に対し透明でないと、基板11の側から光を取り出すことはできない。
図4に示した有機電界発光素子40は、凹部16が誘電体層14を貫通するが、陽極層12および陰極層15は貫通していない。そして、凹部16が発光部17により埋められ、第2凹部18は形成されていない。また、陽極層12は、基板11の上に積層する形でいわゆるベタ膜状に形成されている。更に陰極層15は、誘電体層14の上に積層する形でいわゆるベタ膜状に形成されており、凹部16を覆う構造としている。このように陽極層12、陰極層15を形成する場合でも、発光部17から発せられた光は、基板11の側および陰極層15の側の両方から取り出し可能である。但し、基板11の側から光を取り出したい場合は、陽極層12は、発光部17で発光する光の波長に対し透明である必要がある。同様に陰極層15の側から光を取り出したい場合は、陰極層15は、発光部17で発光する光の波長に対し透明である必要がある。
図5に示した有機電界発光素子50は、基板11上に陽極層12、誘電体層14が順に形成されている。そして、発光部17を形成する発光材料は、凹部16から誘電体層14の上面にも展開して形成されている。即ち、発光部17を形成する発光材料が、凹部16から誘電体層14と陰極層15の間に更に延伸して連続形成されている。また、陰極層15は、この発光材料上に更に積層する形で形成されており、いわゆるベタ膜状に成膜されている。
次に、有機電界発光素子の製造方法について、図1で説明した有機電界発光素子10の場合を例に挙げて説明する。
図6は、本実施の形態が適用される有機電界発光素子10の製造方法の一例を説明する図である。
先ず、基板11上に陽極層12、誘電体層14、陰極層15を順に積層する形で形成する(図6(a))。これらの層を形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法等を用いることができる。また、塗布成膜方法(即ち、目的とする材料を溶剤に溶解させた状態で基板に塗布し乾燥する方法。)が可能な場合は、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法等の方法を用いて成膜することも可能である。なお陰極バッファ層を設けたい場合も同様の方法で形成することができる。
Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法等が利用できる。
続いて、第1の製造工程で製造した有機電界発光素子10を発光させ、温度分布を測定する。具体的には、有機電界発光素子10に直流電源により、例えば、平均の電流密度が1mA/cm2になるように電圧を印加して駆動し、所定の平均輝度で点灯させ、赤外線サーモグラフィを用いて温度分布を測定する。温度分布を測定する有機電界発光素子10のサンプル個数は多いほど正確な温度分布が測定できる。本実施の形態では、10個以上が好ましく、より好ましくは全数を測定した方がよい。
次に、温度分布測定により得られた温度ムラ情報に基づき、下記の計算式(1)により、発光した有機電界発光素子10の温度ムラを計算する。なお、温度の単位はすべて℃である。
温度ムラ=(TH-TL) (1)
第2の製造工程では、前述した第1の製造工程と同様に、基板11上に陽極層12、誘電体層14、陰極層15を順に積層し、続いて、フォトリソグラフィにより、陽極層12、誘電体層14、陰極層15を貫通する複数の凹部16を形成する。
第2の製造工程では、第1の製造工程で製造した有機電界発光素子10の温度ムラ情報に基づき、凹部16の密度を調整する。
発光した有機電界発光素子10の部分的な温度は、凹部16の大きさや形状等よりも密度に影響されやすく、温度分布を制御するには、複数の凹部16の密度を制御することが好ましい。
同様に、領域Bにおいては、温度ムラ情報として測定された温度の測定値に基づき、凹部16を形成する際に、高温の部分の凹部16の密度を増大させ、また、低温の部分の凹部16の密度を減少させる操作を行う。
有機電界発光素子10の製造方法においては、第1の製造工程として、基板11上に陽極層12、誘電体層14及び陰極層15とが順に積層した構造を有し、これらを貫通した凹部16の内面と接触して形成された発光部17を有する有機電界発光素子10を製造する(ステップ100)。
そして、再び、温度分布測定工程において、第2の製造工程で製造した有機電界発光素子10の温度分布を測定し、得られた温度ムラが閾値(3℃)を超えるか否かを判定し、閾値を超える場合は、第2の製造工程で製造した有機電界発光素子10の温度ムラ情報に基づき、温度ムラが閾値(3℃)以下になるまで、凹部16の密度を調整する工程を繰り返す。
以下に説明する操作に従い、先ず、均一なパターンに形成された複数の凹部(キャビティ)16を有する第1の有機電界発光素子(有機電界発光素子1)を製造し、これを点灯させて温度分布を測定(測定値1)した。次に、この測定値1に基づき、発光面内における高温部分の凹部16の密度を低くするとともに、低温部分の凹部16の密度を高くするように調整しつつ第2の有機電界発光素子(有機電界発光素子2)を製造し、これを点灯させて温度分布を測定(測定値2)した。さらに、この測定値2に基づき、発光面内における高温部分の凹部16の密度を低くするとともに、低温部分の凹部16の密度を高くするように調整しつつ第3の有機電界発光素子(有機電界発光素子3)を製造し、これを点灯させて温度分布を測定(測定値3)した。
国際公開WO2010-16512号パンフレットの第24頁、段落[0077]~第25頁、段落[0078]に記載された方法に従い、下記の燐光発光性を有する発光性高分子化合物(A)を合成した。発光性高分子化合物(A)の重量平均分子量は52,000、各繰り返し単位のモル比はk:m:n=6:42:52である。
この発光性高分子化合物(A)3重量部をトルエン97重量部に溶解し、発光材料溶液(以下、「溶液A」ともいう。)を調製した。
以下の操作に従い、図5の有機電界発光素子50の層構造を有する有機電界発光素子1を調製した。
100mm角の発光領域に対応してパターニングされた厚さ150nmのITO膜が表面に形成されたガラス基板(110mm角、厚さ1mm)を、界面活性剤、純水およびイソプロパノールの順に超音波洗浄した。洗浄後のITO付きガラス基板をプラズマ生成装置内に装着し、装置内の圧力を1Pa、投入電力を50Wとし、酸素プラズマを5秒間照射した。次に、ITO付きガラス基板をスパッタ装置内に載置し、発光領域の全面に、スパッタ法により膜厚50nmのSiO2層を形成した。
ここで、ガラス基板は基板11であり、ITOは第1の電極層(陽極層)12であり、SiO2層は誘電体層14である。
次に、上記の発光部17上に、蒸着法により、陰極バッファ層としてフッ化ナトリウム層(4nm)、陰極層15としてアルミニウム層(130nm)を順に成膜し、有機電界発光素子1を作製した。
なお、得られた有機電界発光素子1は、前記領域Aに含まれる特性を有する素子であった。
温度分布の測定の結果、発光領域の中心から見て陽極端子部に近い領域の温度が最も高く、36.8℃(最高温度:TH)であった。発光領域内の陽極端子部から遠い領域の温度は最も低く、28.9℃(最低温度:TL)であった。これらの温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(TH-TL))により得られた温度ムラは、7.9℃であった。
次に、有機電界発光素子1の作製と同様の操作により、ITO付きガラス基板の上にSiO2層を成膜した後、その上にフォトレジスト層を形成した。有機電界発光素子1の場合と同じマスクAを用い、ステッパー露光装置により、露光縮尺を、次式(2)で算出される縮尺(露光縮尺2)に変更し、それ以外は有機電界発光素子1の作製と同様の操作により10mm四方の領域の露光を繰り返し、発光領域全面の露光を行った。
露光縮尺2=露光縮尺1+(T1-T2)/200 (2)
ここで、式(2)において、T1は、前述した有機電界発光素子1において測定された各10mm四方の露光領域に相当する部分の温度(℃)であり、T2は、有機電界発光素子1において測定された最低温度(TL)(℃)である。露光は、各T1に対応する10mm四方の領域について行った。
温度分布の測定の結果、最も高温部の温度は34.6℃(最高温度:TH)であり、最も低温部の温度は30.1℃(最低温度:TL)であった。
これらの温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(TH-TL))により得られた発光領域面内の温度ムラは、有機電界発光素子1と比較して、4.5℃までに低減した。
続いて、有機電界発光素子1の場合と同じマスクAを用い、フォトレジスト層の露光は、ステッパー露光装置により、露光縮尺を、次式(3)で算出される縮尺(露光縮尺3)に変更し、その他は有機電界発光素子1の作製と同様な操作により有機電界発光素子3を作製した。
ここで、式(3)において、T3は、前述した有機電界発光素子2において測定された各10mm四方の露光領域に相当する部分の温度(℃)であり、T4は、有機電界発光素子2において測定された最低温度(TL)(℃)である。露光は、各T3に対応する10mm四方の領域について行った。
温度分布の測定の結果、最も高温部の温度は32.2℃(最高温度:TH)であり、最も低温部の温度は30.8℃(最低温度:TL)であった。
これらの温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(TH-TL))により得られた発光領域面内の温度ムラを計算すると、有機電界発光素子1と比較して、さらに、1.4℃までに低減し、均一な温度分布が得られた。
Claims (6)
- 基板上に少なくとも第1の電極層、誘電体層および第2の電極層が順に積層され、且つ当該誘電体層を貫通して形成された凹部の内面に接触する発光部を有する有機電界発光素子を製造する1回目の有機電界発光素子の製造(第1の製造工程)と、
前記第1の製造工程で製造された前記有機電界発光素子の前記第1の電極層および前記第2の電極層に電圧を印加し前記発光部を発光させるとともに当該有機電界発光素子の温度分布を測定して当該有機電界発光素子の温度ムラ情報を得る温度分布測定工程と、
前記温度ムラ情報に基づき前記凹部の密度を調整して前記有機電界発光素子の温度ムラを低減する2回目の有機電界発光素子の製造(第2の製造工程)と、を行なう
有機電界発光素子の製造方法。 - 前記温度分布測定工程において、前記温度ムラ情報として、発光させた前記有機電界発光素子の発光面を所定の大きさに分割して測定したそれぞれの部分温度と、最高温度(TH)および最低温度(TL)とを測定する請求項1に記載の有機電界発光素子の製造方法。
- 前記温度分布測定工程において、前記温度ムラ情報に基づき、発光させた前記有機電界発光素子の温度分布測定により得られた最高温度(TH)と最低温度(TL)との差(TH-TL)を温度ムラとして得る請求項1又は2に記載の有機電界発光素子の製造方法。
- 前記温度分布測定工程において、閾値を3℃以下に設定し、前記温度ムラが前記閾値を超える場合、前記温度ムラ情報に基づき前記凹部の密度を調整する請求項3に記載の有機電界発光素子の製造方法。
- 前記第1の製造工程および前記第2の製造工程において、少なくとも前記第1の電極層と前記第2の電極層のいずれか一方を貫通する前記凹部を形成する請求項1乃至4のいずれか1項に記載の有機電界発光素子の製造方法。
- 前記第1の製造工程および前記第2の製造工程において、前記第1の電極層、前記誘電体層および前記第2の電極層を貫通する前記凹部を形成する請求項1乃至5のいずれか1項に記載の有機電界発光素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/381,144 US20150024519A1 (en) | 2012-02-29 | 2013-02-28 | Method for producing organic electroluminescent element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012044768 | 2012-02-29 | ||
JP2012-044768 | 2012-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013129615A1 true WO2013129615A1 (ja) | 2013-09-06 |
Family
ID=49082806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055533 WO2013129615A1 (ja) | 2012-02-29 | 2013-02-28 | 有機電界発光素子の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150024519A1 (ja) |
JP (1) | JPWO2013129615A1 (ja) |
WO (1) | WO2013129615A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015054881A1 (zh) * | 2013-10-18 | 2015-04-23 | 华为技术有限公司 | 一种通信方法、基站及终端 |
KR101848343B1 (ko) * | 2015-04-30 | 2018-04-12 | 삼성에스디아이 주식회사 | 중합체, 유기막 조성물, 유기막, 및 패턴형성방법 |
US9873815B2 (en) * | 2015-04-30 | 2018-01-23 | Samsung Sdi Co., Ltd. | Polymer, organic layer composition, and method of forming patterns |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034476A (ja) | 1998-05-12 | 2000-02-02 | Sumitomo Chem Co Ltd | 有機蛍光材料および有機エレクトロルミネッセンス素子 |
JP2003522371A (ja) | 1999-07-20 | 2003-07-22 | エスアールアイ インターナショナル | キャビティー発光エレクトロルミネセンスデバイスおよびこのデバイスを形成するための方法 |
JP2006018169A (ja) * | 2004-07-05 | 2006-01-19 | Sony Corp | 画像表示装置及びその温度補正方法 |
JP2006018170A (ja) * | 2004-07-05 | 2006-01-19 | Sony Corp | 画像表示装置及びその駆動方法 |
JP2006030336A (ja) * | 2004-07-13 | 2006-02-02 | Sony Corp | 画像表示装置及びその駆動方法と走査線駆動回路 |
JP2007086639A (ja) | 2005-09-26 | 2007-04-05 | Fuji Xerox Co Ltd | 定着装置及び画像形成装置 |
WO2010016512A1 (ja) | 2008-08-06 | 2010-02-11 | 昭和電工株式会社 | 有機電界発光素子、表示装置および照明装置 |
JP2011203314A (ja) * | 2010-03-24 | 2011-10-13 | Sony Corp | 画像表示部温度分布推定方法、画像表示部温度分布推定装置、画像表示装置、プログラム及び記録媒体 |
JP4882037B1 (ja) * | 2011-06-24 | 2012-02-22 | 昭和電工株式会社 | 有機発光素子および有機発光素子の製造方法 |
-
2013
- 2013-02-28 WO PCT/JP2013/055533 patent/WO2013129615A1/ja active Application Filing
- 2013-02-28 JP JP2014502387A patent/JPWO2013129615A1/ja active Pending
- 2013-02-28 US US14/381,144 patent/US20150024519A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034476A (ja) | 1998-05-12 | 2000-02-02 | Sumitomo Chem Co Ltd | 有機蛍光材料および有機エレクトロルミネッセンス素子 |
JP2003522371A (ja) | 1999-07-20 | 2003-07-22 | エスアールアイ インターナショナル | キャビティー発光エレクトロルミネセンスデバイスおよびこのデバイスを形成するための方法 |
JP2006018169A (ja) * | 2004-07-05 | 2006-01-19 | Sony Corp | 画像表示装置及びその温度補正方法 |
JP2006018170A (ja) * | 2004-07-05 | 2006-01-19 | Sony Corp | 画像表示装置及びその駆動方法 |
JP2006030336A (ja) * | 2004-07-13 | 2006-02-02 | Sony Corp | 画像表示装置及びその駆動方法と走査線駆動回路 |
JP2007086639A (ja) | 2005-09-26 | 2007-04-05 | Fuji Xerox Co Ltd | 定着装置及び画像形成装置 |
WO2010016512A1 (ja) | 2008-08-06 | 2010-02-11 | 昭和電工株式会社 | 有機電界発光素子、表示装置および照明装置 |
JP2011203314A (ja) * | 2010-03-24 | 2011-10-13 | Sony Corp | 画像表示部温度分布推定方法、画像表示部温度分布推定装置、画像表示装置、プログラム及び記録媒体 |
JP4882037B1 (ja) * | 2011-06-24 | 2012-02-22 | 昭和電工株式会社 | 有機発光素子および有機発光素子の製造方法 |
Non-Patent Citations (1)
Title |
---|
YUTAKA OHMORI, OYO BUTSURI, vol. 70, no. 12, 2001, pages 1419 - 1425 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013129615A1 (ja) | 2015-07-30 |
US20150024519A1 (en) | 2015-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013128601A1 (ja) | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 | |
JP4882037B1 (ja) | 有機発光素子および有機発光素子の製造方法 | |
JP4913927B1 (ja) | エレクトロルミネッセント素子、表示装置および照明装置 | |
US9099598B2 (en) | Light-emitting device and method for manufacturing light-emitting device | |
WO2013129615A1 (ja) | 有機電界発光素子の製造方法 | |
WO2013129613A1 (ja) | 有機電界発光素子の製造方法 | |
WO2010067861A1 (ja) | 有機電界発光素子、表示装置および照明装置 | |
WO2010061898A1 (ja) | 有機電界発光素子、表示装置および照明装置 | |
WO2013129611A1 (ja) | エレクトロルミネッセント素子の製造方法 | |
WO2013129612A1 (ja) | エレクトロルミネッセント素子の製造方法 | |
WO2012147390A1 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
WO2013073670A1 (ja) | 有機発光素子および有機発光素子の製造方法 | |
WO2012029156A1 (ja) | El素子、el素子の製造方法、表示装置および照明装置 | |
WO2011148478A1 (ja) | 発光素子、画像表示装置および照明装置 | |
US20110227107A1 (en) | Light-emitting element, image display device and illuminating device | |
JP5145483B2 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
KR20140015558A (ko) | 유기발광 소자, 유기발광 소자의 제조 방법, 표시 장치 및 조명 장치 | |
JPWO2013128601A1 (ja) | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 | |
JP2015011893A (ja) | 有機発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13754766 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014502387 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14381144 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013754766 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |