[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013129615A1 - 有機電界発光素子の製造方法 - Google Patents

有機電界発光素子の製造方法 Download PDF

Info

Publication number
WO2013129615A1
WO2013129615A1 PCT/JP2013/055533 JP2013055533W WO2013129615A1 WO 2013129615 A1 WO2013129615 A1 WO 2013129615A1 JP 2013055533 W JP2013055533 W JP 2013055533W WO 2013129615 A1 WO2013129615 A1 WO 2013129615A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
electroluminescent element
temperature
layer
light emitting
Prior art date
Application number
PCT/JP2013/055533
Other languages
English (en)
French (fr)
Inventor
祐介 山▲崎▼
鈴木 雅博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/381,144 priority Critical patent/US20150024519A1/en
Publication of WO2013129615A1 publication Critical patent/WO2013129615A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE

Definitions

  • the present invention relates to a method for manufacturing an organic electroluminescent element.
  • Patent Document 1 includes a dielectric layer inserted between a hole electrode injection layer and an electron injection electrode layer, and extends through at least one of the dielectric layer and the electrode layer.
  • Cavity light emitting electroluminescent devices have been proposed in which an electroluminescent coating material is applied to an internal cavity surface comprising a region, an electron injection electrode region and a dielectric region.
  • An object of the present invention is to provide a method for manufacturing an organic electroluminescent device capable of reducing temperature unevenness on a light emitting surface and obtaining uniform light emission.
  • the first electrode layer, the dielectric layer, and the second electrode layer are sequentially stacked on the substrate, and the light emitting unit is in contact with the inner surface of the recess formed through the dielectric layer.
  • the difference (T H ⁇ ) between the maximum temperature (T H ) and the minimum temperature (T L ) obtained by measuring the temperature distribution of the organic electroluminescent element that has emitted light It is preferable to obtain (T L ) as temperature unevenness.
  • the concave portion penetrating at least one of the first electrode layer and the second electrode layer it is preferable to form the concave portion penetrating the first electrode layer, the dielectric layer, and the second electrode layer.
  • thermoluminescent device temperature unevenness on the light emitting surface of the organic electroluminescent device is reduced, and it is easy to obtain a long-life organic electroluminescent device.
  • FIG. 4 is a diagram showing measurement results of temperature distributions of three organic electroluminescent elements produced in Example 1.
  • FIG. 1 is a diagram for explaining a first example of an organic electroluminescent element which is an object of the present embodiment.
  • the organic electroluminescent device 10 shown in FIG. 1 has an anode layer 12 as a first electrode layer, an insulating dielectric layer 14 and a cathode layer 15 as a second electrode layer in order on a substrate 11.
  • the light emitting unit 17 has a recess 16 formed through the anode layer 12, the dielectric layer 14, and the cathode layer 15, and is formed in contact with the inner surface of the recess 16 and emits light by applying a voltage.
  • a light emitting material is applied to the inner surface of the recessed portion 16 without filling the entire recessed portion 16, thereby forming a second recessed portion 18.
  • Each configuration will be described below.
  • the substrate 11 serves as a support for forming the anode layer 12, the dielectric layer 14, the cathode layer 15, and the light emitting portion 17.
  • a material that satisfies the mechanical strength required for the organic electroluminescent element 10 is used for the substrate 11.
  • glass such as soda glass, alkali-free glass, and quartz glass; high refractive index glass; transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin; oxidation of silicon oxide, aluminum oxide, and the like
  • transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin
  • a nitride such as silicon nitride, boron nitride and aluminum nitride
  • a fluoride such as magnesium fluoride and sodium fluoride
  • other inorganic transparent materials such as soda glass, alkali-free glass, and quartz glass
  • transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin
  • fluoride such as magnesium fluoride and sodium fluoride
  • the material of the substrate 11 is not limited to a material that is transparent with respect to the wavelength of light emitted from the light emitting unit 17, and may be opaque. Can be used. Specifically, in addition to the above materials, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) ), Alloys thereof, materials made of stainless steel, or the like, semiconductor materials such as opaque glass, opaque plastic, silicon, gallium arsenide, and composite materials such as fiber reinforced plastic (FRP) can also be used.
  • the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
  • the anode layer 12 as the first electrode layer applies voltage between the cathode layer 15 and injects holes into the light emitting portion 17.
  • the material used for the anode layer 12 is not particularly limited as long as it has electrical conductivity, but a material having low surface resistance is preferable.
  • Metal oxides, metals, and alloys can be used as materials that satisfy such conditions.
  • examples of the metal oxide include ITO (indium tin oxide) and IZO (indium-zinc oxide).
  • the metal include stainless steel, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like. .
  • An alloy containing these metals can also be used.
  • the thickness of the anode layer 12 is preferably 2 nm to 300 nm because high light transmittance is required when light is to be extracted from the substrate 11 side of the organic electroluminescent element 10. Further, when it is not necessary to extract light from the substrate 11 side of the organic electroluminescent element 10, it can be formed with a thickness of 2 nm to 2 mm, for example.
  • the dielectric layer 14 is provided between the anode layer 12 and the cathode layer 15, separates and insulates the anode layer 12 and the cathode layer 15 at a predetermined interval, and applies a voltage to the light emitting unit 17. It is. Therefore, the dielectric layer 14 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 ⁇ cm or more, preferably 10 12 ⁇ cm or more.
  • the material include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide and aluminum oxide, but other polymer compounds such as polyimide, polyvinylidene fluoride, and parylene. Can also be used.
  • the thickness of the dielectric layer 14 preferably does not exceed 1 ⁇ m in order to suppress the total thickness of the organic electroluminescent element 10.
  • the dielectric strength is preferably such that the current density of the current flowing between the anode layer 12 and the cathode layer 15 is 0.1 mA / cm 2 or less when the light emitting portion 17 is not formed, and 0.01 mA. / Cm 2 or less is more preferable.
  • the anode layer 12 and the anode layer 12 are not formed in a state where the light emitting portion 17 is not formed. It is necessary to satisfy the above current density when a voltage of about 7 V is applied between the cathode layers 15.
  • the thickness of the dielectric layer 14 satisfying this is preferably 10 nm to 500 nm, more preferably 50 nm to 200 nm.
  • the cathode layer 15 as the second electrode layer applies a voltage between the anode layer 12 and injects electrons into the light emitting portion 17.
  • the material used for the cathode layer 15 is not particularly limited as long as it has electrical conductivity like the anode layer 12, but a material having a low work function and being chemically stable is preferable. .
  • the work function is preferably ⁇ 2.9 eV or less in view of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified.
  • the thickness of the cathode layer 15 is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
  • a cathode buffer layer (not shown) may be provided adjacent to the cathode layer 15 for the purpose of lowering the electron injection barrier from the cathode layer 15 to the light emitting portion 17 and increasing the electron injection efficiency.
  • the cathode buffer layer needs to have a work function lower than that of the cathode layer 15, and a metal material is preferably used.
  • alkali metals Na, K, Rb, Cs
  • alkaline earth metals Sr, Ba, Ca, Mg
  • rare earth metals Pr, Sm, Eu, Yb
  • fluorides or chlorides of these metals A simple substance selected from oxides or a mixture of two or more can be used.
  • the thickness of the cathode buffer layer is preferably 0.05 nm to 50 nm, more preferably 0.1 nm to 20 nm, and even more preferably 0.5 nm to 10 nm.
  • the material of the third conductive layer may be a material having a large absolute value of work function such as Au, Cu, Al, stainless steel, and transparent conductive oxide.
  • the concave portion (cavity) 16 is for applying the light emitting portion 17 on the inner surface and taking out light from the light emitting portion 17, and is the anode layer 12 as the first electrode layer and the second electrode layer. It is formed so as to penetrate the cathode layer 15 and the dielectric layer 14.
  • the light emitted from the light emitting portion 17 by providing the concave portion 16 in this manner propagates through the concave portion 16 and can be extracted in both directions on the substrate 11 side and the cathode layer 15 side.
  • the recess 16 is formed through the anode layer 12, the dielectric layer 14, and the cathode layer 15, the anode layer 12 that is the first electrode layer and the cathode layer 15 that is the second electrode layer. It is possible to extract light even when is made of an opaque material.
  • the shape of the recess 16 is not particularly limited. In the present embodiment, for example, a substantially cylindrical shape can be used, but the present invention is not limited to this.
  • the diameter is preferably 0.1 ⁇ m to 20 ⁇ m, and more preferably 0.1 ⁇ m to 10 ⁇ m.
  • the light emitting portion 17 is a light emitting material that emits light when a voltage is applied. As described above, the light emitting portion 17 is applied to the inner surface of the recess 16 so as to form the second recess 18 by providing the light emitting material in contact with the recess 16. The In the light emitting unit 17, the holes injected from the anode layer 12 and the electrons injected from the cathode layer 15 are recombined to emit light.
  • the material of the light emitting portion 17 either a low molecular compound or a high molecular compound can be used.
  • the luminescent low molecular weight compound and the luminescent high molecular weight compound described in Hiroshi Omori: Applied Physics, Vol. 70, No. 12, pp. 1419-1425 (2001) can be exemplified.
  • a material excellent in applicability is preferable. That is, in the structure of the organic electroluminescent element 10, in order for the light emitting portion 17 to emit light stably in the recess 16, the light emitting portion 17 is in uniform contact with the inner surface of the recess 16 and the film thickness is uniformly formed. That is, it is preferable that the coverage is improved.
  • the coating method it is easy to embed ink containing a light-emitting material in the concave portion 16, and thus it is possible to form a film with improved coverage even on a surface having irregularities.
  • examples of the material having excellent coatability include, for example, an arylamine compound having a predetermined structure and a molecular weight of 1500 to 6000 described in JP-A-2007-86639, and JP-A 2000-034476. And the predetermined polymeric fluorescent substance.
  • the light emitting portion 17 of the organic electroluminescent element 10 in the present embodiment may contain a hole transporting compound or an electron transporting compound for the purpose of supplementing the carrier transportability of the light emitting portion 17.
  • FIG. 2 is a diagram for explaining a second example of an organic electroluminescent element which is a target of the present embodiment.
  • the recess 16 penetrates the anode layer 12 and the dielectric layer 14, but does not penetrate the cathode layer 15.
  • the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed.
  • the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14. By forming the cathode layer 15 in this way, the recess 16 is covered.
  • the light emitting part 17 Even if the light emitting part 17 is not applied to the inner surface of the recessed part 16 so as to form the second recessed part 18, the light emitted by the light emitting part 17 propagates inside the light emitting part 17, and the above-described organic electroluminescent element 10 and Similarly, it can be taken out from both the substrate 11 side and the cathode layer 15 side.
  • the cathode layer 15 since the cathode layer 15 is a solid film and covers the light emitting portion 17, the cathode layer 15 must be transparent to the wavelength of light emitted by the light emitting portion 17. Light cannot be extracted from the 15 side.
  • FIG. 3 is a diagram for explaining a third example of an organic electroluminescent element which is a target of the present embodiment.
  • the recess 16 penetrates the dielectric layer 14 and the cathode layer 15, but does not penetrate the anode layer 12.
  • the light emitting unit 17 forms a second recess 18. Even when the anode layer 12 is formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side. However, when it is desired to extract light from the anode layer 12 side, the anode layer 12 cannot extract light from the substrate 11 side unless the anode layer 12 is transparent to the wavelength of light emitted from the light emitting unit 17.
  • FIG. 4 is a diagram for explaining a fourth example of an organic electroluminescent element which is a target of the present embodiment.
  • the recess 16 penetrates the dielectric layer 14, but the anode layer 12 and the cathode layer 15 do not penetrate.
  • the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed.
  • the anode layer 12 is formed in a so-called solid film shape so as to be laminated on the substrate 11.
  • the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14, and has a structure covering the recess 16.
  • the anode layer 12 and the cathode layer 15 are formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side.
  • the anode layer 12 needs to be transparent to the wavelength of the light emitted from the light emitting unit 17.
  • the cathode layer 15 needs to be transparent to the wavelength of the light emitted from the light emitting portion 17.
  • FIG. 5 is a diagram for explaining a fifth example of an organic electroluminescent element which is a target of the present embodiment.
  • the organic electroluminescent element 50 shown in FIG. 5 the anode layer 12 and the dielectric layer 14 are formed in this order on the substrate 11.
  • the light emitting material that forms the light emitting portion 17 is also developed from the recess 16 to the upper surface of the dielectric layer 14. That is, the light emitting material forming the light emitting portion 17 is continuously extended from the concave portion 16 between the dielectric layer 14 and the cathode layer 15. Further, the cathode layer 15 is formed so as to be further laminated on the light emitting material, and is formed into a so-called solid film.
  • the anode layer 12 is formed on the lower side when the substrate 11 side is the lower side, and the dielectric layer 14 is sandwiched therebetween to face each other.
  • the case where the cathode layer 15 is formed on the upper side is described as an example.
  • the present invention is not limited to this, and the anode layer 12 and the cathode layer 15 may be replaced. That is, when the substrate 11 side is the lower side, the cathode layer 15 may be formed on the lower side, and the anode layer 12 may be formed on the upper side with the dielectric layer 14 interposed therebetween.
  • FIG. 6 is a diagram for explaining an example of a method for manufacturing the organic electroluminescent element 10 to which the exemplary embodiment is applied.
  • the anode layer 12, the dielectric layer 14, and the cathode layer 15 are formed in this order on the substrate 11 (FIG. 6A).
  • resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, or the like can be used.
  • a coating film forming method that is, a method in which a target material is dissolved in a solvent and then dried
  • a spin coating method a dip coating method, an ink jet method, a printing method
  • a method such as a spray method or a dispenser method.
  • the cathode buffer layer can also be formed by the same method.
  • the concave portion 16 is formed so as to penetrate the anode layer 12, the dielectric layer 14, and the cathode layer 15.
  • a method using photolithography can be used. In order to do this, first, a photoresist solution is applied on the cathode layer 15, and the excess photoresist solution is removed by spin coating or the like to form a photoresist layer 61 (FIG. 6B).
  • a mask (not shown) on which a predetermined pattern for forming the recess 16 is drawn is covered, and the photoresist layer 61 is exposed with ultraviolet (UV), electron beam (EB), or the like.
  • UV ultraviolet
  • EB electron beam
  • a pattern of the recess 16 that is the same size as the mask pattern is formed.
  • reduced exposure for example, in the case of exposure using a stepper
  • a pattern 62 of the recessed portion 16 reduced with respect to the mask pattern is formed (FIG. 6C).
  • the exposed portion of the cathode layer 15 is removed by etching to form a recess 16 penetrating the anode layer 12, the dielectric layer 14, and the cathode layer 15 (FIG. 6E).
  • etching either dry etching or wet etching can be used.
  • the shape of the recess 16 can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE: Reactive Ion) Etching
  • inductively coupled plasma etching can be used.
  • wet etching a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used.
  • the remaining photoresist layer 61 is removed with a photoresist removing solution or the like, and the light emitting portion 17 is formed, whereby the organic electroluminescent element 10 is manufactured (FIG. 6F).
  • the above-described coating method is used for forming the light emitting portion 17.
  • an ink in which a light emitting material constituting the light emitting unit 17 is dispersed in a predetermined solvent such as an organic solvent or water is applied.
  • various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used.
  • the ink is dried by heating or evacuating, and the light emitting material adheres to the inner surface of the recess 16 to form the light emitting portion 17.
  • the organic electroluminescent element 10 manufactured in the first manufacturing process is caused to emit light, and the temperature distribution is measured.
  • the organic electroluminescence device 10 is driven by applying a voltage from a DC power source so that the average current density becomes 1 mA / cm 2 , for example, is lit at a predetermined average luminance, and an infrared thermography is used.
  • an infrared thermography is used.
  • the more the number of samples of the organic electroluminescent element 10 for measuring the temperature distribution the more accurate the temperature distribution can be measured. In the present embodiment, 10 or more are preferable, and it is better to measure the total number.
  • the light emitting surface of the element sample to be measured is divided into, for example, a lattice shape or a honeycomb shape, and the temperature (partial temperature) of each portion is measured.
  • handling is easy when divided into a square lattice.
  • the number of divisions of the light emitting surface is not particularly limited. However, when the number of element samples to be measured is 10 or more, it is preferable to divide so that one region has a size of about 0.1 mm 2 to 10 cm 2 . Further, when the total number is measured, it is preferable to divide so that one region has a size of about 1 mm 2 to 1 cm 2 .
  • the partial temperature, maximum temperature (T H ), and minimum temperature (T L ) of the emitted organic electroluminescent element 10 are obtained as temperature unevenness information.
  • the threshold value is preferably 3 ° C. or lower, and more preferably 1.5 ° C. or lower.
  • the second manufacturing process As in the first manufacturing process described above, the anode layer 12, the dielectric layer 14, and the cathode layer 15 are sequentially stacked on the substrate 11, and then the anode layer 12, A plurality of recesses 16 penetrating the dielectric layer 14 and the cathode layer 15 are formed.
  • the density of the recesses 16 is adjusted based on the temperature unevenness information of the organic electroluminescent element 10 manufactured in the first manufacturing process.
  • the partial temperature of the emitted organic electroluminescent element 10 is more susceptible to the density than the size and shape of the recess 16, and it is preferable to control the density of the plurality of recesses 16 in order to control the temperature distribution.
  • FIG. 7 is a diagram for explaining the relationship between the density of the recesses 16 and the temperature of the organic electroluminescent element 10 that has emitted light.
  • a region A indicates a region where the partial temperature of the organic electroluminescent element 10 increases as the density of the recesses 16 increases.
  • a region B indicates a region where the partial temperature of the organic electroluminescent element 10 decreases as the density of the recesses 16 increases.
  • Such conditions for the region A or the region B can be obtained by measuring the relationship between the density and the temperature of the recesses 16 in advance by a preliminary experiment.
  • the measured value of the temperature measured as temperature unevenness information of the organic electroluminescent element 10 manufactured in the first manufacturing process is performed.
  • the recesses 16 are formed based on the temperature measurement value measured as temperature unevenness information, the density of the recesses 16 in the high temperature part is increased, and the recesses 16 in the low temperature part are increased. Do the operation to reduce the density.
  • the subsequent manufacturing in the subsequent manufacturing (second manufacturing process), adjustment for increasing or decreasing the density of the recesses 16 in a specific portion of the organic electroluminescent element 10 is performed.
  • the range in which the density of the recesses 16 is increased or decreased is not limited as long as the temperature unevenness obtained by the calculation formula (1) converges without diverging, and it is usually preferable to increase or decrease in the range of 1% to 10%.
  • the density of the recesses 16 is averaged.
  • the applied photoresist layer is exposed, for example, by a stepper exposure apparatus while changing the mask scale for each predetermined portion and adjusting the density of the recesses 16.
  • FIG. 8 is a flowchart for explaining the flow of the manufacturing method of the organic electroluminescent element 10 to which the present exemplary embodiment is applied.
  • the method for manufacturing the organic electroluminescent element 10 as a first manufacturing process, the anode layer 12, the dielectric layer 14, and the cathode layer 15 are sequentially stacked on the substrate 11, and the recess 16 penetrates these layers.
  • the organic electroluminescent device 10 having the light emitting portion 17 formed in contact with the inner surface of the substrate is manufactured (step 100).
  • the organic electroluminescence device 10 manufactured in the first manufacturing process is caused to emit light, and the temperature distribution of the organic electroluminescence device 10 is measured to obtain temperature unevenness information (step 110).
  • the temperature unevenness information includes respective partial temperatures measured by dividing the light emitting surface of the organic electroluminescent element 10 into a predetermined size, the maximum temperature (T H ), and the minimum temperature (T L ). Based on the obtained temperature unevenness information, the temperature unevenness of the emitted organic electroluminescent element 10 is calculated by the calculation formula (1) described above.
  • step 120 it is determined whether or not the temperature unevenness calculated in the temperature distribution measurement process exceeds a predetermined threshold value (in the present embodiment, it is assumed that it is set to 3 ° C.) (step 120).
  • a predetermined threshold value in the present embodiment, it is assumed that it is set to 3 ° C.
  • the organic electroluminescent element 10 is manufactured while adjusting the density of the recesses 16 based on the temperature unevenness information of the organic electroluminescent element 10 (second manufacturing process). .
  • the temperature distribution of the organic electroluminescent element 10 manufactured in the second manufacturing step is measured, and it is determined whether or not the obtained temperature unevenness exceeds a threshold value (3 ° C.), When exceeding a threshold value, the process of adjusting the density of the recessed part 16 is repeated until temperature unevenness becomes below a threshold value (3 degreeC) based on the temperature unevenness information of the organic electroluminescent element 10 manufactured at the 2nd manufacturing process.
  • a threshold value 3 ° C.
  • the organic electroluminescent element 10 can be manufactured by the above process. In addition, when using the organic electroluminescent element 10 stably for a long term, it is preferable to mount
  • the protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
  • the protective cover a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used.
  • Example 1 In accordance with the operation described below, first, a first organic electroluminescent device (organic electroluminescent device 1) having a plurality of concave portions (cavities) 16 formed in a uniform pattern is manufactured, and this is turned on to produce a temperature distribution. Was measured (measured value 1). Next, based on this measurement value 1, while adjusting the density of the concave portion 16 in the high temperature portion in the light emitting surface to be low and the density of the concave portion 16 in the low temperature portion to be high, the second organic electroluminescent element (organic An electroluminescent element 2) was manufactured and lit to measure the temperature distribution (measured value 2).
  • the third organic electroluminescent element (organic electric field) is adjusted.
  • a light emitting element 3) was manufactured, and this was turned on to measure the temperature distribution (measured value 3).
  • the organic electroluminescent element 1 having the layer structure of the organic electroluminescent element 50 of FIG. 5 was prepared.
  • a glass substrate 110 mm square, 1 mm thick
  • ITO film patterned corresponding to a 100 mm square light emitting region was ultrasonically cleaned in the order of surfactant, pure water and isopropanol.
  • the glass substrate with ITO after cleaning was mounted in a plasma generation apparatus, the pressure in the apparatus was 1 Pa, the input power was 50 W, and oxygen plasma was irradiated for 5 seconds.
  • the glass substrate is the substrate 11
  • ITO is the first electrode layer (anode layer) 12
  • the SiO 2 layer is the dielectric layer 14.
  • a photoresist (AZ1500 manufactured by AZ Electronic Materials Co., Ltd.) layer having a thickness of about 1 ⁇ m was formed on the entire surface of the glass substrate on which the ITO and SiO 2 layers were formed by spin coating.
  • a mask A corresponding to a pattern in which circles are arranged in a hexagonal lattice using quartz (plate thickness: 3 mm) as a base material is manufactured, and a 10 mm square region at the corner of the light emitting region is formed using a stepper exposure apparatus. Exposure was performed at 1/5 scale (exposure scale 1).
  • Exposure scale 1 Exposure scale
  • TMAH tetramethylammonium hydroxide
  • the solution A is applied to the electrode substrate on which the plurality of recesses (cavities) 16 are formed by spin coating (rotation speed: 3000 rpm), and left to stand at 140 ° C. for 1 hour in a nitrogen atmosphere and dried.
  • the light emitting part 17 was formed.
  • a sodium fluoride layer (4 nm) as a cathode buffer layer and an aluminum layer (130 nm) as a cathode layer 15 were formed in this order on the light emitting portion 17 by vapor deposition to produce the organic electroluminescent device 1.
  • the obtained organic electroluminescent element 1 was an element having the characteristics included in the region A.
  • FIG. 9 is a diagram for explaining a light emitting region of the organic electroluminescent element 1. As shown in FIG. 9, when the organic electroluminescent element 1 is viewed in plan from the cathode layer 15 side, the portion where the ITO as the anode layer and the aluminum layer as the cathode layer overlap is the light emitting region. An anode terminal portion is formed at the end portion of the ITO.
  • Exposure scale 2 exposure scale 1+ (T1-T2) / 200 (2)
  • T1 is the temperature (° C.) of the portion corresponding to each 10 mm square exposure region measured in the organic electroluminescence device 1 described above
  • T2 is in the organic electroluminescence device 1.
  • the measured minimum temperature (T L ) (° C.). The exposure was performed on a 10 mm square area corresponding to each T1.
  • the photoresist layer is patterned, a plurality of recesses (cavities) 16 are formed by dry etching, and the light-emitting portion 17, the cathode buffer layer, and the cathode layer 15 are formed by the same operation as the fabrication of the organic electroluminescent element 1.
  • An organic electroluminescent element 2 was produced.
  • Measurement of the temperature distribution in the light emitting region plane was performed using an infrared thermography apparatus. As a result of measuring the temperature distribution, the temperature of the highest temperature part was 34.6 ° C. (maximum temperature: T H ), and the temperature of the lowest temperature part was 30.1 ° C. (minimum temperature: T L ).
  • T H maximum temperature
  • T L minimum temperature
  • Exposure scale 3 Exposure scale 2+ (T3-T4) / 200 (3)
  • T3 is the temperature (° C.) of the portion corresponding to each 10 mm square exposure region measured in the organic electroluminescence device 2 described above
  • T4 is in the organic electroluminescence device 2.
  • T L The measured minimum temperature (T L ) (° C.). The exposure was performed on a 10 mm square area corresponding to each T3.
  • Measurement of the temperature distribution in the light emitting region plane was performed using an infrared thermography apparatus. As a result of measuring the temperature distribution, the temperature of the highest temperature part was 32.2 ° C. (maximum temperature: T H ), and the temperature of the lowest temperature part was 30.8 ° C. (minimum temperature: T L ).
  • T H maximum temperature
  • T L minimum temperature
  • FIG. 10 is a diagram showing the measurement results of the temperature distribution of the three organic electroluminescent elements produced in Example 1.
  • FIG. 10A shows the measurement result of the temperature distribution of the organic electroluminescent element 1
  • FIG. 10B shows the measurement result of the temperature distribution of the organic electroluminescent element 2
  • FIG. 10C shows the organic electroluminescent element.
  • 3 is a measurement result of the temperature distribution of 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 基板上に少なくとも第1の電極層、誘電体層および第2の電極層が順に積層され、且つ誘電体層を貫通して形成された凹部の内面に接触する発光部を有する有機電界発光素子を製造する1回目の有機電界発光素子の製造(第1の製造工程)と、第1の製造工程で製造された有機電界発光素子の第1の電極層および第2の電極層に電圧を印加し発光部を発光させるとともに有機電界発光素子の温度分布を測定して有機電界発光素子の温度ムラ情報を得る温度分布測定工程と、温度ムラ情報に基づき凹部の密度を調整して有機電界発光素子の温度ムラを低減する2回目の有機電界発光素子の製造(第2の製造工程)と、を行なう製造方法により、発光面における温度ムラを低減し、均一な発光が得られる有機電界発光素子を製造する。

Description

有機電界発光素子の製造方法
 本発明は、有機電界発光素子の製造方法に関する。
 近年、エレクトロルミネセンスを用いたデバイスとして、有機物質からなる発光材料を層状に形成し、この発光層に陽極と陰極とからなる一対の電極を設けて電圧を印加することで発光させる有機電界発光素子が注目を集めている。例えば、特許文献1には、正孔電極注入層と電子注入電極層との間に挿入される誘電体層を備え、少なくとも誘電体層および電極層の一つを通って延び、正孔注入電極領域、電子注入電極領域および誘電体領域を備える内部キャビティ表面にエレクトロルミネセンスコーティング材料を塗布するキャビティ発光エレクトロルミネセンスデバイスが提案されている。
特表2003-522371号公報
 ところで、特許文献1に記載の有機電界発光素子では、少なくとも誘電体層および電極層の一つを貫通する複数のキャビティ内部に発光材料を塗布し、陽極と陰極に電圧を印加して発光材料を発光させている。そのため、形成された複数のキャビティの分布状態により、発光面に温度ムラが生じる場合がある。
 本発明の目的は、発光面における温度ムラを低減し、均一な発光が得られる有機電界発光素子の製造方法を提供することにある。
 本発明によれば、基板上に少なくとも第1の電極層、誘電体層および第2の電極層が順に積層され、且つ当該誘電体層を貫通して形成された凹部の内面に接触する発光部を有する有機電界発光素子を製造する1回目の有機電界発光素子の製造(第1の製造工程)と、前記第1の製造工程で製造された前記有機電界発光素子の前記第1の電極層および前記第2の電極層に電圧を印加し前記発光部を発光させるとともに当該有機電界発光素子の温度分布を測定して当該有機電界発光素子の温度ムラ情報を得る温度分布測定工程と、前記温度ムラ情報に基づき前記凹部の密度を調整して前記有機電界発光素子の温度ムラを低減する2回目の有機電界発光素子の製造(第2の製造工程)と、を行なう有機電界発光素子の製造方法が提供される。
 ここで、前記温度分布測定工程において、前記温度ムラ情報として、発光させた前記有機電界発光素子の発光面を所定の大きさに分割して測定したそれぞれの部分温度と、最高温度(T)および最低温度(T)とを測定することが好ましい。
 前記温度分布測定工程において、前記温度ムラ情報に基づき、発光させた前記有機電界発光素子の温度分布測定により得られた最高温度(T)と最低温度(T)との差(T-T)を温度ムラとして得ることが好ましい。
 前記温度分布測定工程において、閾値を3℃以下に設定し、前記温度ムラが前記閾値を超える場合、前記温度ムラ情報に基づき前記凹部の密度を調整することが好ましい。
 前記第1の製造工程および前記第2の製造工程において、少なくとも前記第1の電極層と前記第2の電極層のいずれか一方を貫通する前記凹部を形成することが好ましい。
 前記第1の製造工程および前記第2の製造工程において、前記第1の電極層、前記誘電体層および前記第2の電極層を貫通する前記凹部を形成することが好ましい。
 本発明によれば、有機電界発光素子の発光面における温度ムラが低減し、長寿命な有機電界発光素子を得やすい。
本実施の形態の対象となる有機電界発光素子の第1例を説明する図である。 本実施の形態の対象となる有機電界発光素子の第2例を説明する図である。 本実施の形態の対象となる有機電界発光素子の第3例を説明する図である。 本実施の形態の対象となる有機電界発光素子の第4例を説明する図である。 本実施の形態の対象となる有機電界発光素子の第5例を説明する図である。 本実施の形態が適用される有機電界発光素子の製造方法の一例を説明する図である。 凹部の密度と発光した有機電界発光素子の温度との関係を説明する図である。 本実施の形態が適用される有機電界発光素子の製造方法の流れを説明するフローチャートである。 実施例で作製した有機電界発光素子の発光領域を説明する図である。 実施例1で作製した3個の有機電界発光素子の温度分布の測定結果を示す図である。
 以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。すなわち、実施の形態の例に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に記載がない限り本発明の範囲を限定するものではなく、単なる説明例に過ぎない。また、使用する図面は、本実施の形態を説明するための一例であり、実際の大きさを表すものではない。各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。また、本明細書において、「層上」等の「上」は、必ずしも上面に接触して形成される場合に限定されず、離間して上方に形成される場合や、層と層の間に介在層が存在する場合も包含する意味で使用する。
 図1は、本実施の形態の対象となる有機電界発光素子の第1例を説明する図である。
 図1に示した有機電界発光素子10は、基板11上に第1の電極層である陽極層12と、絶縁性の誘電体層14と、第2の電極層である陰極層15とが順に積層した構造を採る。また、陽極層12、誘電体層14、陰極層15を貫通して形成される凹部16を有し、そして凹部16の内面と接触して形成され電圧を印加することで発光する発光部17を有する。この発光部17は、凹部16の全体を埋めずに凹部16の内面に発光材料が塗布され、第2凹部18を形成する。
 以下、各構成について説明する。
(基板11)
 基板11は、陽極層12、誘電体層14、陰極層15、発光部17を形成する支持体となるものである。基板11には、有機電界発光素子10に要求される機械的強度を満たす材料が用いられる。
 基板11の材料としては、有機電界発光素子10の基板11側から光を取り出したい場合は、発光部17で発光する光の波長に対して透明であることが必要である。具体的には、ソーダガラス、無アルカリガラス、石英ガラス等のガラス;高屈折率ガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂等の透明プラスチック;酸化珪素、酸化アルミニウム等の酸化物;窒化ケイ素、窒化ホウ素、窒化アルミニウム等の窒化物;フッ化マグネシウム、フッ化ナトリウム等のフッ化物;その他無機透明材料等である。
 有機電界発光素子10の基板11側から光を取り出す必要がない場合は、基板11の材料としては、発光部17で発光する光の波長に対して透明であるものに限られず、不透明なものも使用できる。具体的には、上記材料に加えて、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)の単体、またはこれらの合金、あるいはステンレス等からなる材料、あるいは不透明ガラス、不透明プラスチック、シリコン、ヒ化ガリウム等の半導体材料、繊維強化プラスチック(FRP)等の複合材料も使用することができる。
 基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
(陽極層12)
 第1の電極層としての陽極層12は、陰極層15との間で電圧を印加し、発光部17に正孔を注入する。陽極層12に使用される材料としては、電気伝導性を有するものであれば、特に限定されるものではないが、面抵抗が低い材料が好ましい。このような条件を満たす材料として、金属酸化物、金属、合金が使用できる。ここで、金属酸化物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)が挙げられる。また金属としては、ステンレス、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)等が挙げられる。そしてこれらの金属を含む合金も使用できる。
 陽極層12の厚さは、有機電界発光素子10の基板11側から光を取り出したい場合は、高い光透過率を要求されるため、2nm~300nmであることが好ましい。また有機電界発光素子10の基板11側から光を取り出す必要がない場合は、例えば、2nm~2mmで形成することができる。
(誘電体層14)
 誘電体層14は、陽極層12と陰極層15の間に設けられ、陽極層12と陰極層15とを所定の間隔にて分離し絶縁すると共に、発光部17に電圧を印加するためのものである。このため誘電体層14は高抵抗率材料であることが必要であり、電気抵抗率としては、10Ωcm以上、好ましくは1012Ωcm以上有することが要求される。
 具体的な材料としては、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の金属窒化物;酸化珪素、酸化アルミニウム等の金属酸化物が挙げられるが、他にポリイミド、ポリフッ化ビニリデン、パリレン等の高分子化合物も使用可能である。誘電体層14の厚さとしては、有機電界発光素子10全体の厚さを抑えるために1μmを越えないことが好ましい。また、陽極層12と陰極層15との間隔が狭い方が、発光のために必要な電圧が低くて済むので、この観点からも誘電体層14は薄い方がより好ましい。但し、薄すぎると有機電界発光素子10を駆動するための電圧に対し、絶縁耐力が十分でなくなるおそれがある。ここで絶縁耐力は、発光部17が形成されていない状態で、陽極層12と陰極層15の間に流れる電流の電流密度が、0.1mA/cm以下であることが好ましく、0.01mA/cm以下であることがより好ましい。
 また有機電界発光素子10の駆動電圧に対し、2Vを超えた電圧に耐えることが好ましいため、例えば、駆動電圧が5Vである場合は、発光部17が形成されていない状態で、陽極層12と陰極層15の間に約7Vの電圧を印加した場合に上記の電流密度を満たすことが必要である。これを満たす誘電体層14の厚さとしては、好ましくは、10nm~500nm、更に好ましくは50nm~200nmで作製するのがよい。
(陰極層15)
 第2の電極層としての陰極層15は、陽極層12との間で電圧を印加し、発光部17に電子を注入する。陰極層15に使用される材料としては、陽極層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。仕事関数は、化学的安定性を考慮すると-2.9eV以下であることが好ましい。具体的には、Al、MgAg合金、AlLiやAlCa等のAlとアルカリ金属の合金等の材料を例示することができる。陰極層15の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。
 また、陰極層15から発光部17への電子の注入障壁を下げて電子の注入効率を上げる目的で、図示しない陰極バッファ層を、陰極層15に隣接して設けてもよい。陰極バッファ層は、陰極層15より仕事関数の低いことが必要であり、金属材料が好適に用いられる。例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)、あるいはこれら金属のフッ化物、塩化物、酸化物から選ばれる単体あるいは2つ以上の混合物を使用することができる。陰極バッファ層の厚さは0.05nm~50nmが好ましく、0.1nm~20nmがより好ましく、0.5nm~10nmがより一層好ましい。このような陰極バッファ層を用いた場合、第3の導電層の材料としては、Au、Cu、Al、ステンレス、透明導電酸化物等の仕事関数の絶対値が大きい材料を用いることもできる。
(凹部(キャビティ)16)
 凹部(キャビティ)16は、発光部17をその内面に塗布し、かつ発光部17からの光を取り出すためのものであり、第1の電極層である陽極層12、第2の電極層である陰極層15、および誘電体層14を貫通するように形成する。このように凹部16を設けることにより発光部17から発せられた光は、凹部16の内部を伝搬し、基板11側および陰極層15の側の両方向において取り出すことができる。ここで、凹部16は、陽極層12、誘電体層14、陰極層15を貫通して形成されているため、第1の電極層である陽極層12および第2の電極層である陰極層15が不透明材料により形成されるときでも光を取り出すことが可能である。
 ここで、凹部16の形状は特に限定されない。本実施の形態では、例えば、略円柱形状とすることができるが、これに限られるものではない。凹部16を略円柱形状とした場合、その直径は0.1μm~20μmであることが好ましく、0.1μm~10μmであることがより好ましい。
(発光部17)
 発光部17は、電圧を印加することで発光する発光材料であり、上述の通り凹部16に接触して発光材料が設けられることにより第2凹部18を形成するように凹部16の内面に塗布される。発光部17において、陽極層12から注入された正孔と陰極層15から注入された電子とが再結合し、発光が生じる。
 発光部17の材料としては、低分子化合物及び高分子化合物のいずれをも使用することができる。例えば、大森裕:応用物理、第70巻、第12号、1419-1425頁(2001年)に記載されている発光性低分子化合物及び発光性高分子化合物等を例示することができる。但し、本実施の形態では、塗布性に優れた材料が好ましい。即ち、有機電界発光素子10の構造では、発光部17が凹部16内で安定に発光するためには発光部17が凹部16の内面に均一に接し、膜厚が均等に成膜されること、即ちカバレッジ性が向上することが好ましい。
 また、凹部16内に発光部17を均一に形成するためには、塗布法で行うことが好ましい。即ち、塗布法では、凹部16に発光材料を含むインクを埋め込むことが容易であるため凹凸を有する面においてもカバレッジ性を高めて成膜することが可能である。
 具体的に、塗布性に優れる材料としては、例えば、特開2007-86639号公報に挙げられた所定の構造を有する分子量1500以上6000以下のアリールアミン化合物や、特開2000-034476号公報に挙げられている所定の高分子蛍光体等が挙げられる。
 本実施の形態における有機電界発光素子10の発光部17は、発光部17のキャリア輸送性を補う目的で正孔輸送性化合物や電子輸送性化合物が含まれていてもよい。
 図2は、本実施の形態の対象となる有機電界発光素子の第2例を説明する図である。
 図2に示した有機電界発光素子20は、凹部16が陽極層12、誘電体層14を貫通するが、陰極層15を貫通していない。そして、凹部16が発光部17により埋められ、第2凹部18は形成されていない。また、陰極層15は、誘電体層14の上に積層する形でいわゆるベタ膜状に形成されている。このように陰極層15を形成することで、凹部16を覆う構造としている。第2凹部18を形成するように発光部17を凹部16の内面に塗布しなくても、発光部17により発せられた光は、発光部17内部を伝搬し、上述の有機電界発光素子10と同様に、基板11の側および陰極層15の側の両方から取り出しが可能である。但し、この有機電界発光素子20の場合は、陰極層15がベタ膜として、発光部17を覆っているため、陰極層15が発光部17で発光する光の波長に対し透明でないと、陰極層15の側から光を取り出すことはできない。
 図3は、本実施の形態の対象となる有機電界発光素子の第3例を説明する図である。
 図3に示した有機電界発光素子30は、凹部16が誘電体層14、陰極層15を貫通するが、陽極層12を貫通していない。そして発光部17は第2凹部18を形成する。このように陽極層12を形成する場合でも、発光部17から発せられた光は、基板11の側および陰極層15の側の両方から取り出し可能である。但し、陽極層12の側から光を取り出したい場合は、陽極層12は、発光部17で発光する光の波長に対し透明でないと、基板11の側から光を取り出すことはできない。
 図4は、本実施の形態の対象となる有機電界発光素子の第4例を説明する図である。
 図4に示した有機電界発光素子40は、凹部16が誘電体層14を貫通するが、陽極層12および陰極層15は貫通していない。そして、凹部16が発光部17により埋められ、第2凹部18は形成されていない。また、陽極層12は、基板11の上に積層する形でいわゆるベタ膜状に形成されている。更に陰極層15は、誘電体層14の上に積層する形でいわゆるベタ膜状に形成されており、凹部16を覆う構造としている。このように陽極層12、陰極層15を形成する場合でも、発光部17から発せられた光は、基板11の側および陰極層15の側の両方から取り出し可能である。但し、基板11の側から光を取り出したい場合は、陽極層12は、発光部17で発光する光の波長に対し透明である必要がある。同様に陰極層15の側から光を取り出したい場合は、陰極層15は、発光部17で発光する光の波長に対し透明である必要がある。
 図5は、本実施の形態の対象となる有機電界発光素子の第5例を説明する図である。
 図5に示した有機電界発光素子50は、基板11上に陽極層12、誘電体層14が順に形成されている。そして、発光部17を形成する発光材料は、凹部16から誘電体層14の上面にも展開して形成されている。即ち、発光部17を形成する発光材料が、凹部16から誘電体層14と陰極層15の間に更に延伸して連続形成されている。また、陰極層15は、この発光材料上に更に積層する形で形成されており、いわゆるベタ膜状に成膜されている。
 なお、以上詳述した有機電界発光素子10,20,30,40,50では、基板11側を下側とした場合に下側に陽極層12を形成し、誘電体層14を挟み込み対向する形で上側に陰極層15を形成する場合を例示して説明を行ったが、これに限られるものではなく、陽極層12と陰極層15を入れ替えた構造でもよい。即ち、基板11側を下側とした場合に下側に陰極層15を形成し、誘電体層14を挟み込み対向する形で上側に陽極層12を形成する形態でもよい。
<有機電界発光素子の製造方法>
 次に、有機電界発光素子の製造方法について、図1で説明した有機電界発光素子10の場合を例に挙げて説明する。
(1回目の有機電界発光素子の製造(「第1の製造工程」ともいう))
 図6は、本実施の形態が適用される有機電界発光素子10の製造方法の一例を説明する図である。
 先ず、基板11上に陽極層12、誘電体層14、陰極層15を順に積層する形で形成する(図6(a))。これらの層を形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法等を用いることができる。また、塗布成膜方法(即ち、目的とする材料を溶剤に溶解させた状態で基板に塗布し乾燥する方法。)が可能な場合は、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法等の方法を用いて成膜することも可能である。なお陰極バッファ層を設けたい場合も同様の方法で形成することができる。
 次に、陽極層12、誘電体層14、陰極層15を貫通する形で凹部16の形成を行うが、凹部16を形成するには、例えば、フォトリソグラフィを用いた方法が使用できる。これを行うには、まず陰極層15の上にフォトレジスト液を塗布し、スピンコート等により余分なフォトレジスト液を除去して、フォトレジスト層61を形成する(図6(b))。
 次に、凹部16を形成するための所定のパターンが描画されたマスク(図示せず)を被せ、紫外線(Ultra violet:UV)、電子線(Electron Beam:EB)等によりフォトレジスト層61を露光する。ここで、等倍露光(例えば、接触露光やプロキシミティ露光の場合)を行うと、マスクパターンと等倍の凹部16のパターンが形成される。また、縮小露光(例えば、ステッパーを使用した露光の場合)を行うと、マスクパターンに対して縮小された凹部16のパターン62が形成される(図6(c))。続いて、現像液を用いてフォトレジスト層61の未露光部分を除去すると、パターン62の部分のフォトレジスト層61が除去され、陰極層15の一部が露出する(図6(d))。
 次に、露出した陰極層15の部分をエッチング除去し、陽極層12、誘電体層14、陰極層15を貫通する凹部16を形成する(図6(e))。エッチングは、ドライエッチングとウェットエッチングの何れをも使用することができる。またこの際に等方性エッチングと異方性エッチングを組合せることで、凹部16の形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion
 Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法等が利用できる。
 次に、残ったフォトレジスト層61をフォトレジスト除去液等により除去し、発光部17を形成することにより有機電界発光素子10を製造する(図6(f))。発光部17の形成には、前述の塗布法が用いられる。まず、発光部17を構成する発光材料を、有機溶媒や水等の所定の溶媒に分散させたインクを塗布する。塗布を行う際にはスピンコーティング、スプレーコーティング、ディップコーティング法、インクジェット法、スリットコーティング法、ディスペンサー法、印刷等の種々の方法を使用することができる。塗布を行った後は、加熱あるいは真空引きを行うことでインクを乾燥させ、発光材料が凹部16の内面に固着し、発光部17が形成される。
(温度分布測定工程)
 続いて、第1の製造工程で製造した有機電界発光素子10を発光させ、温度分布を測定する。具体的には、有機電界発光素子10に直流電源により、例えば、平均の電流密度が1mA/cmになるように電圧を印加して駆動し、所定の平均輝度で点灯させ、赤外線サーモグラフィを用いて温度分布を測定する。温度分布を測定する有機電界発光素子10のサンプル個数は多いほど正確な温度分布が測定できる。本実施の形態では、10個以上が好ましく、より好ましくは全数を測定した方がよい。
 温度分布を測定する場合、測定する素子サンプルの発光面を、例えば、格子状又はハニカム状に分割し、それぞれの部分の温度(部分温度)を測定する。好ましくは、正方格子状に分割すると取扱が容易である。発光面の分割数は特に限定されない。但し、測定する素子サンプルの個数が10個以上の場合は、1個の領域が0.1mm~10cm程度の大きさになるように分割することが好ましい。また、全数を測定する場合は、1個の領域が1mm~1cm程度の大きさになるように分割することが好ましい。
 温度分布の測定により、温度ムラ情報として、発光させた有機電界発光素子10の部分温度、最高温度(T)および最低温度(T)が得られる。
 次に、温度分布測定により得られた温度ムラ情報に基づき、下記の計算式(1)により、発光した有機電界発光素子10の温度ムラを計算する。なお、温度の単位はすべて℃である。
   温度ムラ=(T-T)   (1)
 続いて、計算式(1)により計算した温度ムラが、所定の閾値(本実施の形態では、0.02に設定している。)より大きい場合、次工程の第2の製造工程において、第1の製造工程で製造した有機電界発光素子10の温度ムラ情報に基づき、凹部16の密度を調整しつつ、再び有機電界発光素子10を製造する。なお、有機電界発光素子10の寿命の低下を防ぐためには、前記閾値を3℃以下とすることが好ましく、1.5℃以下とすることがより好ましい。
(第2の製造工程)
 第2の製造工程では、前述した第1の製造工程と同様に、基板11上に陽極層12、誘電体層14、陰極層15を順に積層し、続いて、フォトリソグラフィにより、陽極層12、誘電体層14、陰極層15を貫通する複数の凹部16を形成する。
 第2の製造工程では、第1の製造工程で製造した有機電界発光素子10の温度ムラ情報に基づき、凹部16の密度を調整する。
 発光した有機電界発光素子10の部分的な温度は、凹部16の大きさや形状等よりも密度に影響されやすく、温度分布を制御するには、複数の凹部16の密度を制御することが好ましい。
 図7は、凹部16の密度と発光した有機電界発光素子10の温度との関係を説明する図である。図7において、領域Aは、凹部16の密度が増大すると、有機電界発光素子10の部分的な温度も上昇する領域を示している。また、領域Bは、凹部16の密度が増大すると、有機電界発光素子10の部分的な温度が下降する領域を示している。このような領域Aまたは領域Bとなる条件は、あらかじめ予備実験により、凹部16の密度と温度との関係を測定しておくことにより求めることができる。
 温度分布が均一となるように凹部16の密度を調整するには、例えば、領域Aにおいては、第1の製造工程において製造した有機電界発光素子10の温度ムラ情報として測定された温度の測定値に基づき、凹部16を形成する際に、高温の部分の凹部16の密度を減少させ、また、低温の部分の凹部16の密度を増大させる操作を行う。
 同様に、領域Bにおいては、温度ムラ情報として測定された温度の測定値に基づき、凹部16を形成する際に、高温の部分の凹部16の密度を増大させ、また、低温の部分の凹部16の密度を減少させる操作を行う。
 このように、温度分布測定により得られた温度ムラ情報に基づき、後続する製造(第2の製造工程)において、有機電界発光素子10の特定の部分の凹部16の密度を増大または減少させる調整を行う。凹部16の密度を増減させる範囲は、計算式(1)で得られる温度ムラが発散せずに収束する範囲であればよく、通常、1%~10%の範囲で増減することが好ましい。このような範囲で凹部16の密度を調整することにより、有機電界発光素子10の温度ムラが平均化される。具体的には、塗布形成したフォトレジスト層を、例えば、ステッパー露光装置により、所定の部分毎にマスクの縮尺を変えて、凹部16の密度を調整しながら露光を行う。
 図8は、本実施の形態が適用される有機電界発光素子10の製造方法の流れを説明するフローチャートである。
 有機電界発光素子10の製造方法においては、第1の製造工程として、基板11上に陽極層12、誘電体層14及び陰極層15とが順に積層した構造を有し、これらを貫通した凹部16の内面と接触して形成された発光部17を有する有機電界発光素子10を製造する(ステップ100)。
 続いて、温度分布測定工程として、第1の製造工程において製造した有機電界発光素子10を発光させ、有機電界発光素子10の温度分布を測定して温度ムラ情報を得る(ステップ110)。温度ムラ情報としては、有機電界発光素子10の発光面を所定の大きさに分割して測定したそれぞれの部分温度と、最高温度(T)および最低温度(T)である。そして、得られた温度ムラ情報に基づき、前述して計算式(1)により、発光した有機電界発光素子10の温度ムラを計算する。
 次に、温度分布測定工程において計算した温度ムラが所定の閾値(本実施の形態では、3℃に設定したとして説明をする。)を超えるか否かを判定する(ステップ120)。温度ムラが閾値(3℃)を超える場合(NO)、有機電界発光素子10の温度ムラ情報に基づき、凹部16の密度を調整しつつ有機電界発光素子10を製造する(第2の製造工程)。
 そして、再び、温度分布測定工程において、第2の製造工程で製造した有機電界発光素子10の温度分布を測定し、得られた温度ムラが閾値(3℃)を超えるか否かを判定し、閾値を超える場合は、第2の製造工程で製造した有機電界発光素子10の温度ムラ情報に基づき、温度ムラが閾値(3℃)以下になるまで、凹部16の密度を調整する工程を繰り返す。
 以上の工程により、有機電界発光素子10を製造することができる。尚、有機電界発光素子10を長期安定的に用いる場合、有機電界発光素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物等を用いることができる。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属等を用いることができる。
 以下、実施例に基づき本発明をさらに詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。
(実施例1)
 以下に説明する操作に従い、先ず、均一なパターンに形成された複数の凹部(キャビティ)16を有する第1の有機電界発光素子(有機電界発光素子1)を製造し、これを点灯させて温度分布を測定(測定値1)した。次に、この測定値1に基づき、発光面内における高温部分の凹部16の密度を低くするとともに、低温部分の凹部16の密度を高くするように調整しつつ第2の有機電界発光素子(有機電界発光素子2)を製造し、これを点灯させて温度分布を測定(測定値2)した。さらに、この測定値2に基づき、発光面内における高温部分の凹部16の密度を低くするとともに、低温部分の凹部16の密度を高くするように調整しつつ第3の有機電界発光素子(有機電界発光素子3)を製造し、これを点灯させて温度分布を測定(測定値3)した。
(発光材料溶液(インク)の調製-1)
 国際公開WO2010-16512号パンフレットの第24頁、段落[0077]~第25頁、段落[0078]に記載された方法に従い、下記の燐光発光性を有する発光性高分子化合物(A)を合成した。発光性高分子化合物(A)の重量平均分子量は52,000、各繰り返し単位のモル比はk:m:n=6:42:52である。
 この発光性高分子化合物(A)3重量部をトルエン97重量部に溶解し、発光材料溶液(以下、「溶液A」ともいう。)を調製した。
Figure JPOXMLDOC01-appb-C000001
(有機電界発光素子1の作製)
 以下の操作に従い、図5の有機電界発光素子50の層構造を有する有機電界発光素子1を調製した。
 100mm角の発光領域に対応してパターニングされた厚さ150nmのITO膜が表面に形成されたガラス基板(110mm角、厚さ1mm)を、界面活性剤、純水およびイソプロパノールの順に超音波洗浄した。洗浄後のITO付きガラス基板をプラズマ生成装置内に装着し、装置内の圧力を1Pa、投入電力を50Wとし、酸素プラズマを5秒間照射した。次に、ITO付きガラス基板をスパッタ装置内に載置し、発光領域の全面に、スパッタ法により膜厚50nmのSiO層を形成した。
 ここで、ガラス基板は基板11であり、ITOは第1の電極層(陽極層)12であり、SiO層は誘電体層14である。
 次に、スピンコート法により、フォトレジスト(AZエレクトロニックマテリアルズ株式会社製AZ1500)層を約1μmの膜厚で、ITOおよびSiO層が形成されたガラス基板の全面に成膜した。続いて、石英(板厚3mm)を基材とし、円を六方格子状に配置したパターンに対応するマスクAを作製し、ステッパー露光装置を用いて、発光領域の角部の10mm四方の領域を1/5縮尺(露光縮尺1)で露光した。次に、露光した領域に隣接する10mm四方の領域を同様に露光し、これを繰り返すことによって100mm四方の全ての領域を露光した。続いて、テトラメチルアンモニウムハイドロオキサイド(Tetramethyl ammonium hydroxide(TMAH):(CHNOH)1.2%溶液により現像し、フォトレジスト層をパターン化した後、130℃で10分間加熱した。
 次に、反応性イオンエッチング装置を用い、反応ガスとしてCHFを使用し、圧力0.3Pa、出力Bias/ICP=50/100(W)の条件で10分間反応させ、ドライエッチング処理を行った。そして、フォトレジスト除去液によりフォトレジスト残渣を除去し、SiO層およびITO層を貫通する複数の凹部(キャビティ)16が形成された電極基板を得た。この凹部(キャビティ)16は直径1μmの円柱状であり、SiO層の全面に2μmピッチで六方格子状に配列して形成された。
 続いて、上記の複数の凹部(キャビティ)16が形成された電極基板上に、スピンコート法(回転速度:3000rpm)により溶液Aを塗布し、窒素雰囲気下、140℃で1時間放置し乾燥し、発光部17を形成した。
 次に、上記の発光部17上に、蒸着法により、陰極バッファ層としてフッ化ナトリウム層(4nm)、陰極層15としてアルミニウム層(130nm)を順に成膜し、有機電界発光素子1を作製した。
 なお、得られた有機電界発光素子1は、前記領域Aに含まれる特性を有する素子であった。
 図9は、有機電界発光素子1の発光領域を説明する図である。図9に示すように、有機電界発光素子1を陰極層15側から平面視したとき、陽極層としてのITOと陰極層としてのアルミニウム層とが重なり合う部分が発光領域となる。尚、ITOの端部には陽極端子部が形成されている。
 このようにして作製した有機電界発光素子1に電圧を印加し、発光領域面内の平均の電流密度が1mA/cmとなるように駆動した。温度分布の測定は、赤外線サーモグラフィ装置を用いて行った。
 温度分布の測定の結果、発光領域の中心から見て陽極端子部に近い領域の温度が最も高く、36.8℃(最高温度:T)であった。発光領域内の陽極端子部から遠い領域の温度は最も低く、28.9℃(最低温度:T)であった。これらの温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(T-T))により得られた温度ムラは、7.9℃であった。
(有機電界発光素子2の作製)
 次に、有機電界発光素子1の作製と同様の操作により、ITO付きガラス基板の上にSiO層を成膜した後、その上にフォトレジスト層を形成した。有機電界発光素子1の場合と同じマスクAを用い、ステッパー露光装置により、露光縮尺を、次式(2)で算出される縮尺(露光縮尺2)に変更し、それ以外は有機電界発光素子1の作製と同様の操作により10mm四方の領域の露光を繰り返し、発光領域全面の露光を行った。
  露光縮尺2=露光縮尺1+(T1-T2)/200   (2)
 ここで、式(2)において、T1は、前述した有機電界発光素子1において測定された各10mm四方の露光領域に相当する部分の温度(℃)であり、T2は、有機電界発光素子1において測定された最低温度(T)(℃)である。露光は、各T1に対応する10mm四方の領域について行った。
 その後、有機電界発光素子1の作製と同様の操作により、フォトレジスト層のパターン化、ドライエッチングによる複数の凹部(キャビティ)16の形成、発光部17、陰極バッファ層および陰極層15を成膜し、有機電界発光素子2を作製した。
 このようにして作製した有機電界発光素子2に電圧を印加し、発光面内の平均の電流密度が1mA/cmとなるように駆動した。発光領域面内の温度分布の測定は、赤外線サーモグラフィ装置を用いて行った。
 温度分布の測定の結果、最も高温部の温度は34.6℃(最高温度:T)であり、最も低温部の温度は30.1℃(最低温度:T)であった。
 これらの温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(T-T))により得られた発光領域面内の温度ムラは、有機電界発光素子1と比較して、4.5℃までに低減した。
(有機電界発光素子3の作製)
 続いて、有機電界発光素子1の場合と同じマスクAを用い、フォトレジスト層の露光は、ステッパー露光装置により、露光縮尺を、次式(3)で算出される縮尺(露光縮尺3)に変更し、その他は有機電界発光素子1の作製と同様な操作により有機電界発光素子3を作製した。
  露光縮尺3=露光縮尺2+(T3-T4)/200   (3)
 ここで、式(3)において、T3は、前述した有機電界発光素子2において測定された各10mm四方の露光領域に相当する部分の温度(℃)であり、T4は、有機電界発光素子2において測定された最低温度(T)(℃)である。露光は、各T3に対応する10mm四方の領域について行った。
 このようにして作製した有機電界発光素子3に電圧を印加し、発光面内の平均の電流密度が1mA/cmとなるように駆動した。発光領域面内の温度分布の測定は、赤外線サーモグラフィ装置を用いて行った。
 温度分布の測定の結果、最も高温部の温度は32.2℃(最高温度:T)であり、最も低温部の温度は30.8℃(最低温度:T)であった。
 これらの温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(T-T))により得られた発光領域面内の温度ムラを計算すると、有機電界発光素子1と比較して、さらに、1.4℃までに低減し、均一な温度分布が得られた。
 図10は、実施例1で作製した3個の有機電界発光素子の温度分布の測定結果を示す図である。図10(a)は有機電界発光素子1の温度分布の測定結果であり、図10(b)は有機電界発光素子2の温度分布の測定結果であり、図10(c)は有機電界発光素子3の温度分布の測定結果である。
10,20,30,40,50…有機電界発光素子、11…基板、12…陽極層、14…誘電体層、15…陰極層、16…凹部、17…発光部、18…第2凹部

Claims (6)

  1.  基板上に少なくとも第1の電極層、誘電体層および第2の電極層が順に積層され、且つ当該誘電体層を貫通して形成された凹部の内面に接触する発光部を有する有機電界発光素子を製造する1回目の有機電界発光素子の製造(第1の製造工程)と、
     前記第1の製造工程で製造された前記有機電界発光素子の前記第1の電極層および前記第2の電極層に電圧を印加し前記発光部を発光させるとともに当該有機電界発光素子の温度分布を測定して当該有機電界発光素子の温度ムラ情報を得る温度分布測定工程と、
     前記温度ムラ情報に基づき前記凹部の密度を調整して前記有機電界発光素子の温度ムラを低減する2回目の有機電界発光素子の製造(第2の製造工程)と、を行なう
     有機電界発光素子の製造方法。
  2.  前記温度分布測定工程において、前記温度ムラ情報として、発光させた前記有機電界発光素子の発光面を所定の大きさに分割して測定したそれぞれの部分温度と、最高温度(T)および最低温度(T)とを測定する請求項1に記載の有機電界発光素子の製造方法。
  3.  前記温度分布測定工程において、前記温度ムラ情報に基づき、発光させた前記有機電界発光素子の温度分布測定により得られた最高温度(T)と最低温度(T)との差(T-T)を温度ムラとして得る請求項1又は2に記載の有機電界発光素子の製造方法。
  4.  前記温度分布測定工程において、閾値を3℃以下に設定し、前記温度ムラが前記閾値を超える場合、前記温度ムラ情報に基づき前記凹部の密度を調整する請求項3に記載の有機電界発光素子の製造方法。
  5.  前記第1の製造工程および前記第2の製造工程において、少なくとも前記第1の電極層と前記第2の電極層のいずれか一方を貫通する前記凹部を形成する請求項1乃至4のいずれか1項に記載の有機電界発光素子の製造方法。
  6.  前記第1の製造工程および前記第2の製造工程において、前記第1の電極層、前記誘電体層および前記第2の電極層を貫通する前記凹部を形成する請求項1乃至5のいずれか1項に記載の有機電界発光素子の製造方法。
PCT/JP2013/055533 2012-02-29 2013-02-28 有機電界発光素子の製造方法 WO2013129615A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/381,144 US20150024519A1 (en) 2012-02-29 2013-02-28 Method for producing organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012044768 2012-02-29
JP2012-044768 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129615A1 true WO2013129615A1 (ja) 2013-09-06

Family

ID=49082806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055533 WO2013129615A1 (ja) 2012-02-29 2013-02-28 有機電界発光素子の製造方法

Country Status (3)

Country Link
US (1) US20150024519A1 (ja)
JP (1) JPWO2013129615A1 (ja)
WO (1) WO2013129615A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015054881A1 (zh) * 2013-10-18 2015-04-23 华为技术有限公司 一种通信方法、基站及终端
KR101848343B1 (ko) * 2015-04-30 2018-04-12 삼성에스디아이 주식회사 중합체, 유기막 조성물, 유기막, 및 패턴형성방법
US9873815B2 (en) * 2015-04-30 2018-01-23 Samsung Sdi Co., Ltd. Polymer, organic layer composition, and method of forming patterns

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034476A (ja) 1998-05-12 2000-02-02 Sumitomo Chem Co Ltd 有機蛍光材料および有機エレクトロルミネッセンス素子
JP2003522371A (ja) 1999-07-20 2003-07-22 エスアールアイ インターナショナル キャビティー発光エレクトロルミネセンスデバイスおよびこのデバイスを形成するための方法
JP2006018169A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその温度補正方法
JP2006018170A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその駆動方法
JP2006030336A (ja) * 2004-07-13 2006-02-02 Sony Corp 画像表示装置及びその駆動方法と走査線駆動回路
JP2007086639A (ja) 2005-09-26 2007-04-05 Fuji Xerox Co Ltd 定着装置及び画像形成装置
WO2010016512A1 (ja) 2008-08-06 2010-02-11 昭和電工株式会社 有機電界発光素子、表示装置および照明装置
JP2011203314A (ja) * 2010-03-24 2011-10-13 Sony Corp 画像表示部温度分布推定方法、画像表示部温度分布推定装置、画像表示装置、プログラム及び記録媒体
JP4882037B1 (ja) * 2011-06-24 2012-02-22 昭和電工株式会社 有機発光素子および有機発光素子の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034476A (ja) 1998-05-12 2000-02-02 Sumitomo Chem Co Ltd 有機蛍光材料および有機エレクトロルミネッセンス素子
JP2003522371A (ja) 1999-07-20 2003-07-22 エスアールアイ インターナショナル キャビティー発光エレクトロルミネセンスデバイスおよびこのデバイスを形成するための方法
JP2006018169A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその温度補正方法
JP2006018170A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその駆動方法
JP2006030336A (ja) * 2004-07-13 2006-02-02 Sony Corp 画像表示装置及びその駆動方法と走査線駆動回路
JP2007086639A (ja) 2005-09-26 2007-04-05 Fuji Xerox Co Ltd 定着装置及び画像形成装置
WO2010016512A1 (ja) 2008-08-06 2010-02-11 昭和電工株式会社 有機電界発光素子、表示装置および照明装置
JP2011203314A (ja) * 2010-03-24 2011-10-13 Sony Corp 画像表示部温度分布推定方法、画像表示部温度分布推定装置、画像表示装置、プログラム及び記録媒体
JP4882037B1 (ja) * 2011-06-24 2012-02-22 昭和電工株式会社 有機発光素子および有機発光素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUTAKA OHMORI, OYO BUTSURI, vol. 70, no. 12, 2001, pages 1419 - 1425

Also Published As

Publication number Publication date
JPWO2013129615A1 (ja) 2015-07-30
US20150024519A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2013128601A1 (ja) エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置
JP4882037B1 (ja) 有機発光素子および有機発光素子の製造方法
JP4913927B1 (ja) エレクトロルミネッセント素子、表示装置および照明装置
US9099598B2 (en) Light-emitting device and method for manufacturing light-emitting device
WO2013129615A1 (ja) 有機電界発光素子の製造方法
WO2013129613A1 (ja) 有機電界発光素子の製造方法
WO2010067861A1 (ja) 有機電界発光素子、表示装置および照明装置
WO2010061898A1 (ja) 有機電界発光素子、表示装置および照明装置
WO2013129611A1 (ja) エレクトロルミネッセント素子の製造方法
WO2013129612A1 (ja) エレクトロルミネッセント素子の製造方法
WO2012147390A1 (ja) 有機発光素子、有機発光素子の製造方法、表示装置および照明装置
WO2013073670A1 (ja) 有機発光素子および有機発光素子の製造方法
WO2012029156A1 (ja) El素子、el素子の製造方法、表示装置および照明装置
WO2011148478A1 (ja) 発光素子、画像表示装置および照明装置
US20110227107A1 (en) Light-emitting element, image display device and illuminating device
JP5145483B2 (ja) 有機発光素子、有機発光素子の製造方法、表示装置および照明装置
KR20140015558A (ko) 유기발광 소자, 유기발광 소자의 제조 방법, 표시 장치 및 조명 장치
JPWO2013128601A1 (ja) エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置
JP2015011893A (ja) 有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502387

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013754766

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE