[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013128856A1 - ズーム光学系 - Google Patents

ズーム光学系 Download PDF

Info

Publication number
WO2013128856A1
WO2013128856A1 PCT/JP2013/000984 JP2013000984W WO2013128856A1 WO 2013128856 A1 WO2013128856 A1 WO 2013128856A1 JP 2013000984 W JP2013000984 W JP 2013000984W WO 2013128856 A1 WO2013128856 A1 WO 2013128856A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
diffractive optical
optical element
Prior art date
Application number
PCT/JP2013/000984
Other languages
English (en)
French (fr)
Inventor
義一 平山
実保 松本
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2014502014A priority Critical patent/JP5854124B2/ja
Priority to CN201380005147.3A priority patent/CN104040405B/zh
Priority to IN3496DEN2014 priority patent/IN2014DN03496A/en
Publication of WO2013128856A1 publication Critical patent/WO2013128856A1/ja
Priority to US14/291,155 priority patent/US9535240B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145519Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -+--+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145527Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -+-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/15Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective compensation by means of only one movement or by means of only linearly related movements, e.g. optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations

Definitions

  • the present invention relates to a zoom optical system using a diffractive optical element.
  • an optical system such as a digital camera or a video camera has a short total lens length (total optical length, that is, the length from the lens surface (first surface) closest to the object side to the image plane), and the entire optical system is small. Is desired.
  • total optical length that is, the length from the lens surface (first surface) closest to the object side to the image plane
  • various aberrations including chromatic aberration increase, and the optical performance tends to deteriorate.
  • Even if a diffractive optical element is simply provided in such an optical system it is difficult to satisfactorily correct chromatic aberration over the entire zoom range unless the arrangement position and refractive power are set appropriately. If the diffractive optical element is used inappropriately, chromatic aberration correction is insufficient. Further, when the refractive power of the diffractive optical element increases, the grating pitch of the diffractive optical element becomes finer, making it difficult to manufacture and the productivity deteriorates.
  • the present invention has been made in view of such a problem.By effectively using a diffractive optical element, the present invention is small and corrects various aberrations including chromatic aberration over the entire zoom range.
  • An object of the present invention is to provide a zoom optical system having high optical performance.
  • the first lens group having negative refractive power and other lens groups arranged in order from the object side, and other lens groups there is provided a zoom optical system in which a mutual distance between lens groups is changed.
  • the first lens group is disposed closest to the object side, and is disposed closer to the image side than the first negative lens and a first negative lens having a diffractive optical element on the image side lens surface.
  • the glass material used for the positive lens satisfies the following conditional expression.
  • ⁇ 1p Abbe number based on the d-line of the glass material used for the positive lens of the first lens group
  • the Abbe number ⁇ d and the partial dispersion ratio ( ⁇ g, F) of the glass type A and the glass type B are the following values.
  • a zoom optical system that is small in size, excellently corrects various aberrations including chromatic aberration over the entire zoom range, and has high optical performance is provided. can do.
  • FIG. 3 is a cross-sectional view of the zoom optical system according to the first example in the wide-angle end state and a zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite in the wide-angle end state of the zoom optical system according to Example 1;
  • FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite in the telephoto end state of the zoom optical system according to Example 1;
  • FIG. 6 is a structural cross-sectional view of a zoom optical system according to Example 2 in the wide-angle end state and a zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • FIG. 3 is a cross-sectional view of the zoom optical system according to the first example in the wide-angle end state and a zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite in the wide-angle
  • FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite in the wide-angle end state of the zoom optical system according to Example 2;
  • FIG. 12 is a longitudinal aberration diagram at an imaging distance infinite in the telephoto end state of the zoom optical system according to Example 2;
  • FIG. 10 is a structural cross-sectional view of a zoom optical system according to Example 3 in the wide-angle end state and a zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • FIG. 10 is a longitudinal aberration diagram at an imaging distance infinite in the wide-angle end state of the zoom optical system according to Example 3;
  • FIG. 12 is a longitudinal aberration diagram at an imaging distance infinite in the telephoto end state of the zoom optical system according to Example 3; It is a graph for explaining the definition of anomalous dispersion glass, with the Abbe number ⁇ d based on the d-line on the horizontal axis and the partial dispersion ratio ( ⁇ g, F) on the vertical axis.
  • 1 is a schematic cross-sectional view illustrating a configuration of a digital single-lens reflex camera (imaging device) using a zoom optical system according to an embodiment.
  • the diffractive optical element PF used in the zoom optical system according to the present embodiment is a first diffractive element in which two diffractive element elements made of different optical materials, specifically, a plurality of grating grooves are formed.
  • a first diffractive optical element PF1 having an optical surface; and a second diffractive optical element PF2 having a second diffractive optical surface on which a plurality of grating grooves are formed.
  • the second diffractive optical element PF2 is disposed so that the first diffractive optical surface and the second diffractive optical surface face each other, and the first diffractive optical surface and the second diffractive optical surface are diffractive optical surface C.
  • contact multilayer diffractive optical elements PF which are in close contact with each other.
  • the zoom optical system ZL includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power, which are arranged in order from the object side.
  • the distance between the lens groups changes upon zooming, and the first lens group G1 has at least one contact multilayer diffractive optical element PF.
  • the zoom optical system ZL can be miniaturized by changing the mutual distance between the lens groups G1 to G5. Further, the chromatic aberration is effectively corrected by disposing the contact multilayer diffractive optical element PF in the first lens group G1 in which the longitudinal chromatic aberration is largely generated.
  • the chromatic aberration is corrected well over the entire zoom range by disposing the multi-contact diffractive optical element PF in the first lens group G1.
  • the first lens group G1 includes a first negative lens L11, a second negative lens L12, and a positive lens L13 arranged in order from the object side.
  • the first negative lens L11 has a convex surface on the object side.
  • the second negative lens L12 has a biconcave lens shape, and the positive lens L13 has a meniscus shape with a convex surface facing the object side.
  • the multi-contact diffractive optical element PF is disposed on the image side lens surface (second surface) of the first negative lens L11, and it is desirable that this surface be an aspherical surface. According to this configuration, good aberration correction can be performed over the entire zoom range.
  • ⁇ 1p Abbe number based on the d-line of the glass material used for the positive lens L13 of the first lens group G1
  • a straight line connecting Ohara Glass Type Name NSL7
  • Glass Type B Ohara Glass Type Name PBM2
  • ⁇ d is an Abbe number with respect to the d-line
  • ng, nF, and nC are refractive indexes of the Fraunhofer line with respect to the g-line, F-line, and C-line, respectively.
  • ⁇ 1dave Among the lenses constituting the first lens group G1, a diffractive optical element PF, a lens made of a glass material having an absolute value of refractive power of 1/5000 or less, and a lens made of an anomalous dispersion glass having an Abbe number greater than 70 The average value of the Abbe number based on the d-line of the glass material of all lenses, excluding.
  • Conditional expression (3) excludes the diffractive optical element PF, the lens made of a glass material having an absolute value of refractive power of 1/5000 or less, and the lens made of an anomalous dispersion glass having an Abbe number greater than 70 in the first lens group G1. It also defines the average value of the Abbe number of the glass material used for the refractive lens.
  • the diffractive optical element PF includes a diffractive optical surface C (see FIG. 1) in which several to hundreds of fine groove or slit-like grating structures are formed concentrically per 1 mm, and is incident on the diffractive optical surface C. Diffracted light in a direction determined by the grating pitch (grating groove interval) and the wavelength of incident light.
  • a diffractive optical element PF is used, for example, in a lens that collects a specific order of diffracted light at one point.
  • the change in refractive power characteristic increases as the wavelength becomes shorter.
  • the diffractive optical element PF the refractive power characteristic depending on the wavelength changes linearly.
  • the refractive index characteristic of the refractive lens varies depending on the glass material, but the refractive index characteristic of the diffractive optical element PF does not vary depending on the glass material. Therefore, by combining a plurality of refractive lenses to change the refractive power change with wavelength linearly and the diffractive optical element PF, a large achromatic effect can be obtained and chromatic aberration can be corrected well. .
  • Conditional expression (3) defines an average value of the Abbe number as a method of selecting a glass material for a plurality of refractive lenses whose refractive power varies linearly with wavelength.
  • the refractive power characteristic of the refractive lens increases as the wavelength becomes shorter.
  • the diffractive optical element PF the residual amount of aberration increases. .
  • the refractive power of the diffractive optical element PF to be combined becomes large and the pitch becomes fine, the manufacturing becomes difficult and the mass productivity deteriorates.
  • conditional expression (3) is 43.0. In order to further secure the effect of the present embodiment, it is desirable to set the upper limit of conditional expression (3) to 51.0.
  • the zoom optical system ZL among the first lens group G1 to the fifth lens group G5, only the third lens group G3 is made of high refractive index glass having a refractive index with respect to d-line greater than 1.8. It is preferable to include a lens (a lens having a high specific gravity). According to this configuration, the other lens groups excluding the third lens group G3, that is, the first lens group G1, the second lens group G2, the fourth lens group G4, and the fifth lens group G5 are configured by lenses having a low specific gravity. Therefore, the entire optical system can be reduced in weight without deteriorating axial chromatic aberration and lateral chromatic aberration.
  • the installation surface of the diffractive optical element PF (that is, the image side lens surface of the first negative lens L11 constituting the first lens group G1) is an aspherical surface. It is preferable that the following conditional expression (4) is satisfied.
  • Conditional expression (4) defines the refractive power of the diffractive optical element PF.
  • ⁇ i refractive power of the entire first lens group G1 including the diffractive optical element PF
  • ⁇ doei refractive power of the diffractive optical element PF.
  • Conditional expression (5) defines a ratio between the refractive power of the diffractive optical element PF and the refractive power of the lens group including the diffractive optical element PF, that is, the first lens group G1. If the lower limit of conditional expression (5) is not reached, the refractive power of the diffractive optical element PF becomes small, and chromatic aberration correction is insufficient. On the contrary, if the upper limit value of the conditional expression (5) is exceeded, the refractive power of the diffractive optical element PF becomes strong, the grating pitch of the diffractive optical element PF becomes fine, the manufacture becomes difficult, and the mass productivity deteriorates.
  • conditional expression (5) it is desirable to set the lower limit value of conditional expression (5) to 0.004. In order to further secure the effect of the present embodiment, it is desirable to set the upper limit of conditional expression (5) to 0.006.
  • TK The minimum value of the distance from the exit pupil of the optical system to the image plane, which changes due to zooming
  • fw focal length of the entire system in the wide-angle end state.
  • Conditional expression (6) defines the ratio between the minimum value of the distance from the exit pupil of the optical system to the image plane and the focal length of the entire system in the wide-angle end state, which changes due to zooming. If the lower limit of conditional expression (6) is not reached, it will be difficult to secure a mirror working space when used as an interchangeable lens for a single-lens reflex camera, or shading will occur due to tilting of light incident on the image sensor around the angle of view. To do. On the other hand, if the upper limit value of conditional expression (6) is exceeded, downsizing becomes insufficient.
  • the fifth lens group G5 can be composed of at least one positive lens, but it is more preferable that at least one negative lens is added thereto. If the configuration has at least one positive lens and one negative lens in this way, the occurrence of longitudinal chromatic aberration can be suppressed while suppressing spherical aberration, coma aberration, astigmatism, field curvature, and the like.
  • Pmin Minimum pitch (mm) of the diffractive optical element PF.
  • Conditional expression (7) defines the minimum pitch of the grating of the diffractive optical element PF. If the lower limit value of conditional expression (7) is not reached, the lattice pitch becomes fine, the manufacture becomes difficult, and the mass productivity deteriorates. On the contrary, if the upper limit value of conditional expression (7) is exceeded, the refractive power of the diffractive optical element PF becomes small, and chromatic aberration correction is insufficient.
  • the first lens group G1 has at least one positive lens, and normal dispersion glass is used as the glass material.
  • the combination of such a positive lens and the diffractive optical element PF can suppress the occurrence of longitudinal chromatic aberration and lateral chromatic aberration.
  • a straight line obtained by connecting NSL7 and PBM2 (both OHARA Glass Co., Ltd.), which is a standard for normal dispersion glass, is a standard line, and the deviation of the partial dispersion ratio from this standard line is ⁇ ( When expressed as ⁇ g, F), a glass satisfying the following conditional expression (8) or (9) is defined as an anomalous dispersion glass.
  • the glass type A defined in the claims corresponds to NSL7
  • the glass type B corresponds to PBM2.
  • nF 486.133 nm
  • C-line C-line.
  • NSL7 which is the standard for normal dispersion glass, has a partial dispersion ratio of 0.5436 and an Abbe number of 60.49
  • PBM2 has a partial dispersion ratio of 0.5828 and an Abbe number of 36.26.
  • the second lens group G2 has at least one aspherical surface. According to this configuration, spherical aberration and coma can be favorably corrected.
  • the fourth lens group G4 has at least one aspherical surface. According to this configuration, spherical aberration and coma can be favorably corrected.
  • the diffractive optical element PF includes the first diffractive optical element PF1 having the first diffractive optical surface and the second diffractive optical element PF2 made of different optical materials.
  • the diffractive optical element PF used in the zoom optical system ZL according to the present embodiment is configured such that the first diffractive optical surface and the second diffractive optical surface that are arranged to face each other are in contact with each other. May be. That is, the grating grooves formed in each of the two diffractive element elements may be brought into close contact with each other to constitute a contact multilayer diffractive optical element.
  • Such a close-contact multilayer diffractive optical element is manufactured compared to a so-called separated multilayer diffractive optical element in which two diffractive element elements formed with grating grooves are arranged close to each other so that the grating grooves face each other.
  • the process can be simplified, it has the advantages of high mass production efficiency and good diffraction efficiency with respect to the incident angle of light (90% or more in a wide wavelength region including g-line to C-line). Accordingly, the zoom optical system ZL according to the present embodiment using such a multi-layered diffractive optical element is easy to manufacture and improves the diffraction efficiency.
  • At least one of the first diffractive optical element PF1 and the second diffractive optical element PF constituting the diffractive optical element PF may be configured to be made of an ultraviolet curable resin. Good. With this configuration, the mass productivity and productivity of the diffractive optical element PF can be improved. Therefore, the mass productivity and productivity of the zoom optical system ZL according to the present embodiment using such a diffractive optical element PF can be improved.
  • a diffractive optical element PF is formed by using a general glass or a thermoplastic resin or thermosetting resin capable of injection molding on one side and an ultraviolet curable resin on the other side.
  • a diffractive optical surface C is formed by cutting and polishing. Thereafter, a manufacturing method in which an ultraviolet curable resin is dropped onto the diffractive optical surface C and is cured by irradiation with ultraviolet rays can be employed.
  • the diffractive optical surface C is formed by performing injection molding or the like using a mold having a grating groove.
  • a manufacturing method in which an ultraviolet curable resin is dropped onto the diffractive optical surface C and is cured by irradiation with ultraviolet rays can be employed.
  • Such a manufacturing method can be adopted, and the work of separately producing the diffractive optical surfaces C for the two diffractive element elements and further aligning them is not necessary, so the productivity of the diffractive optical element PF, Mass productivity can be increased.
  • the first diffractive optical element PF1 and the second diffractive optical element PF2 constituting the diffractive optical element PF are configured to be made of an ultraviolet curable resin having different optical characteristics. May be. With this configuration, the mass productivity and productivity of the diffractive optical element PF can be improved. Therefore, the mass productivity and productivity of the zoom optical system ZL according to this embodiment using the diffractive optical element PF can be improved.
  • a mold having a grating groove formed on one ultraviolet curable resin dropped on the substrate is pressed, and ultraviolet rays are irradiated from the opposite direction of the mold to form the diffractive optical surface C.
  • One diffractive element element is formed.
  • the mold is removed, and the other ultraviolet curable resin is dropped onto the diffractive optical surface C cured by the ultraviolet irradiation.
  • the other ultraviolet curable resin is also cured to form the other diffractive element.
  • the d-line (wavelength 587.562 nm) of the material of the diffractive element element having the lower refractive index and higher dispersion F
  • the refractive index for the line (wavelength 486.133 nm) and the C line (wavelength 656.273 nm) is nd1, nF1 and nC1
  • the refraction of the material of the diffractive element having a higher refractive index and lower dispersion is reduced for the d line, F line and C line.
  • Conditional expressions (10) to (13) are the optical materials used for the two different diffractive element elements constituting the diffractive optical element PF of the zoom optical system ZL, that is, the refractive indices of the two different resins with respect to the d line, the F line and Refractive index difference (nF-nC) with respect to C line is defined respectively. More specifically, the conditional expressions (10) to (13) represent two different types of resins used for the diffractive optical element PF, specifically, resins having relatively low refractive index and high dispersion optical characteristics, and high refractive index. The resin having low dispersion optical characteristics defines the optical characteristics of the resin that should be satisfied after being cured to produce the diffractive optical element PF.
  • conditional expressions (10) to (13) it is possible to form the diffractive optical surface C by closely bonding two different diffractive element elements with better performance. As a result, a diffraction efficiency of 90% or more can be realized over a wide wavelength range from the g-line to the C-line.
  • the upper limit value of conditional expressions (10) to (13) is exceeded or below the lower limit value, it becomes difficult to obtain a diffraction efficiency of 90% or more in a wide wavelength region, and the contact multilayer diffractive optical element PF It becomes difficult to maintain the benefits.
  • the diffraction efficiency here is the ratio of the intensity of the incident light and the intensity of the first-order diffracted light as described above.
  • the diffraction order is m
  • the diffraction efficiency of m-th order diffracted light is ⁇
  • the diffraction grating height of one diffractive element forming the diffractive optical surface C is d1
  • the other diffractive element forming the diffractive optical surface C is formed.
  • the height of the diffraction grating is d2
  • the refractive index of the material of one diffractive element forming the diffractive optical surface C is n1
  • the refractive index of the material of the other diffractive element forming the diffractive optical surface C is n2.
  • FIG. 12 shows a schematic cross-sectional view of a digital single-lens reflex camera CAM (imaging device) provided with the above-described zoom optical system ZL as the photographing lens 1.
  • a digital single-lens reflex camera CAM imaging device
  • zoom optical system ZL zoom optical system
  • the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 1 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can photograph an object (subject) with the camera CAM.
  • the camera CAM may hold the photographic lens 1 in a detachable manner, or may be formed integrally with the photographic lens 1.
  • the camera CAM may be a so-called single-lens reflex camera or a compact camera that does not have a quick return mirror or the like.
  • the zoom optical system ZL according to the present embodiment mounted on the camera CAM as the photographing lens 1 is small in size and starts to exhibit chromatic aberration over the entire zoom range, as can be seen from each example described later.
  • the above-mentioned various aberrations are corrected satisfactorily and high optical performance is achieved. Therefore, the camera CAM is small, can correct various aberrations including chromatic aberration over the entire zoom range, and can realize an imaging apparatus having high optical performance.
  • f is the focal length (mm) of the zoom optical system ZL at the d-line at the wide-angle end state and the telephoto end state
  • FNo is the F-number at the wide-angle end state and the telephoto end state
  • Y represents the image height
  • ⁇ d represents the distance on the optical axis from the most object side lens surface (first surface) of the zoom optical system ZL to the most image side lens surface.
  • the surface number indicates the order of the lens surfaces from the object side along the direction in which the light beam travels
  • R indicates the radius of curvature of each lens surface
  • d indicates the next optical surface from each optical surface.
  • the distance between the surfaces which is the distance on the optical axis to (or the image plane)
  • nd is the refractive index with respect to the d-line (wavelength 587.562 nm) of the glass material used for the lens
  • ⁇ d is the d-line of the glass material used for the lens.
  • Di (variable) is the variable surface spacing of the i-th surface
  • * a is an aspherical surface
  • * d is a diffractive optical surface
  • * s is an aperture
  • “ ⁇ ” in the column of curvature radius R is Shows a plane.
  • the description of the refractive index of air (d-line) “1.000000” is omitted.
  • ⁇ (h) (2 ⁇ / ⁇ ) ⁇ (C2h 2 + C4h 4 + C6h 6 + C8h 8 + C10h 10 ) (b)
  • G represents a group number
  • the first group surface represents the surface number closest to the object side of each lens group
  • the group focal length represents the focal length of each lens group.
  • the units of focal length f, radius of curvature R, surface interval d, and other lengths in the table are “mm”. However, since the optical system can obtain the same optical performance even if it is proportionally enlarged or reduced, the unit is not limited to “mm”, and other appropriate units can be used.
  • FIG. 2 is a structural sectional view of the zoom optical system ZL (ZL1) according to the first embodiment and a zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • ZL1 and PF2 of the diffractive optical element elements constituting the diffractive optical element PF in order to avoid the complexity of the illustration, reference numerals PF1 and PF2 of the diffractive optical element elements constituting the diffractive optical element PF, description of reference numeral C of the diffractive optical surface, and description of the shape of the grating grooves Is omitted, and only the sign of the diffractive optical element PF is described.
  • the zoom optical system ZL1 has a first lens group G1 having negative refractive power, which is arranged in order from the object side along the optical axis, and has positive refractive power.
  • the lens unit includes a second lens group G2, a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the distance between the first lens group G1 and the second lens group G2 changes from the wide-angle end state to the telephoto end state, and the distance between the second lens group G2 and the third lens group G3 increases.
  • the first lens group G1 is convex toward the object side so that the distance between the third lens group G3 and the fourth lens group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the second lens group moves to the object side
  • the third lens group G3 moves to the object side
  • the fourth lens group G4 moves to the object side.
  • the fifth lens group G5 is fixed and does not move during zooming.
  • the first lens group G1 is arranged in order from the object side along the optical axis, a meniscus first negative lens L11 having a convex surface facing the object side, a second negative lens L12 having a biconcave lens shape, an object And a meniscus positive lens L13 having a convex surface on the side.
  • a contact multilayer diffractive optical element PF is provided on the image side lens surface of the first negative lens L11, and this surface is aspherical.
  • the diffractive optical element PF is configured by closely joining diffractive optical element elements PF1 and PF2 made of two different ultraviolet curable resins, and the joint surface thereof is a diffractive optical surface C on which a diffraction grating groove is formed. (See FIG. 1).
  • a resin having a refractive index shown in [Resin refractive index] in the following table was used as a constituent material of the diffractive optical element elements PF1 and PF2.
  • the resin refractive index indicates the refractive index after resin curing.
  • the second lens group G2 includes a positive lens L21, a cemented lens of a negative lens L22 and a positive lens L23, and a positive lens L24, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 includes a cemented lens of a positive lens L31 and a negative lens L32, and a negative lens L33, which are arranged in order from the object side along the optical axis.
  • the fourth lens group G4 includes a cemented lens of a negative lens L41 and a positive lens L42, and a negative lens L43, which are arranged in order from the object side along the optical axis.
  • the object side lens surface of the negative lens L41 is aspheric.
  • the fifth lens group G5 is composed of a cemented lens of a positive lens L51 and a negative lens L52 arranged in order from the object side along the optical axis.
  • the stop SP is disposed on the object side of the third lens group G3.
  • the aperture stop SP moves together with the third lens group G3 from the wide-angle end state to the telephoto end state during zooming.
  • Table 1 below shows each specification value of the zoom optical system ZL1 according to the first example.
  • the surface numbers 1 to 30 in Table 1 correspond to the optical surfaces having the curvature radii R1 to R30 shown in FIG.
  • Table 1 shows that the zoom optical system ZL1 according to the first example satisfies the conditional expressions (1) to (7).
  • FIG. 3 and 4 are graphs showing various aberrations of the zoom lens system ZL according to Example 1.
  • FIG. 3 is a longitudinal aberration diagram at an imaging distance of infinity in the wide-angle end state
  • FIG. 4 is a longitudinal aberration diagram at an imaging distance of infinity in the telephoto end state.
  • spherical aberration astigmatism
  • astigmatism astigmatism
  • distortion are described from the left side in each figure.
  • Each aberration diagram is a ray trace of the zoom optical system ZL1 according to the first example from the object side.
  • d indicates the aberration at the d-line (wavelength 587.562 nm)
  • C indicates the C-line (wavelength 656.273 nm)
  • F indicates the F-line (wavelength 486.133 nm)
  • g indicates the aberration at the g-line (wavelength 435.835 nm).
  • the vertical axis indicates the value normalized by setting the maximum value of the entrance pupil radius to 1, and the horizontal axis indicates the aberration value (mm) in each line.
  • the astigmatism diagram shows aberration at the d-line
  • the solid line S shows the sagittal image plane
  • the broken line T shows the meridional image plane.
  • the vertical axis represents the image height (mm) and the horizontal axis represents the aberration value (mm).
  • the distortion diagram shows the aberration at the d-line.
  • the vertical axis represents the image height (mm)
  • the horizontal axis represents the aberration ratio (percentage (% value)).
  • the zoom optical system ZL1 according to the first example includes various aberrations including spherical aberration, astigmatism, distortion aberration, etc. in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that the aberration is corrected well.
  • FIG. 5 shows a sectional view of the zoom optical system ZL (ZL2) according to the second embodiment and the zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • ZL2 zoom optical system
  • W wide-angle end state
  • T telephoto end state
  • reference numerals PF1 and PF2 of the diffractive optical element elements constituting the diffractive optical element PF description of reference numeral C of the diffractive optical surface, and description of the shape of the grating grooves Is omitted, and only the sign of the diffractive optical element PF is described.
  • the zoom optical system ZL2 has a first lens group G1 having negative refractive power arranged in order from the object side along the optical axis, and has positive refractive power.
  • the lens unit includes a second lens group G2, a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the distance between the first lens group G1 and the second lens group G2 changes from the wide-angle end state to the telephoto end state, and the distance between the second lens group G2 and the third lens group G3 increases.
  • the first lens group G1 is convex toward the object side so that the distance between the third lens group G3 and the fourth lens group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the second lens group moves to the object side
  • the third lens group G3 moves to the object side
  • the fourth lens group G4 moves to the object side.
  • the fifth lens group G5 is fixed and does not move during zooming.
  • the first lens group G1 is arranged in order from the object side along the optical axis, a meniscus first negative lens L11 having a convex surface facing the object side, a second negative lens L12 having a biconcave lens shape, an object And a meniscus positive lens L13 having a convex surface on the side.
  • a contact multilayer diffractive optical element PF is provided on the image side lens surface of the first negative lens L11, and this surface is aspherical.
  • the diffractive optical element PF is configured by closely joining diffractive optical element elements PF1 and PF2 made of two different ultraviolet curable resins, and the joint surface thereof is a diffractive optical surface C on which a diffraction grating groove is formed. (See FIG. 1).
  • a resin having a refractive index shown in [Resin refractive index] in the following table was used as a constituent material of the diffractive optical element elements PF1 and PF2.
  • the resin refractive index indicates the refractive index after resin curing.
  • the second lens group G2 includes a positive lens L21, a cemented lens of a negative lens L22 and a positive lens L23, and a positive lens L24, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 includes a cemented lens of a positive lens L31 and a negative lens L32, and a negative lens L33, which are arranged in order from the object side along the optical axis.
  • the fourth lens group G4 includes a cemented lens of a negative lens L41 and a positive lens L42, and a negative lens L43, which are arranged in order from the object side along the optical axis.
  • the object side lens surface of the negative lens L41 is aspheric.
  • the fifth lens group G5 includes a positive lens L51.
  • the stop SP is disposed on the object side of the third lens group G3.
  • the aperture stop SP moves together with the third lens group G3 from the wide-angle end state to the telephoto end state during zooming.
  • Table 2 below shows each specification value of the zoom optical system ZL2 according to the second example.
  • Surface numbers 1 to 29 in Table 2 correspond to the optical surfaces having the curvature radii R1 to R29 shown in FIG.
  • Table 2 shows that the zoom optical system ZL2 according to the second example satisfies the conditional expressions (1) to (7).
  • FIG. 6 and 7 are graphs showing various aberrations of the zoom lens system ZL according to Example 2.
  • FIG. 6 is a longitudinal aberration diagram at an imaging distance of infinity in the wide-angle end state
  • FIG. 7 is a longitudinal aberration diagram at an imaging distance of infinity in the telephoto end state.
  • spherical aberration astigmatism
  • astigmatism astigmatism
  • distortion are described from the left side in each figure.
  • Each aberration diagram is obtained by tracing light rays from the object side in the zoom optical system ZL2 according to the second example.
  • the zoom optical system ZL2 according to the second example includes various aberrations including spherical aberration, astigmatism, distortion aberration, etc. in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that the aberration is corrected well.
  • FIG. 8 shows a sectional view of the zoom optical system ZL (ZL3) according to the third example and the zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • ZL3 zoom optical system ZL
  • W wide-angle end state
  • T telephoto end state
  • reference numerals PF1 and PF2 of the diffractive optical element elements constituting the diffractive optical element PF description of reference numeral C of the diffractive optical surface, and description of the shape of the grating grooves Is omitted, and only the sign of the diffractive optical element PF is described.
  • the zoom optical system ZL3 has a first lens group G1 having a negative refractive power arranged in order from the object side along the optical axis, and a positive refractive power.
  • the lens unit includes a second lens group G2, a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the distance between the first lens group G1 and the second lens group G2 changes from the wide-angle end state to the telephoto end state, and the distance between the second lens group G2 and the third lens group G3 increases.
  • the first lens group G1 is convex toward the object side so that the distance between the third lens group G3 and the fourth lens group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the second lens group moves to the object side
  • the third lens group G3 moves to the object side
  • the fourth lens group G4 moves to the object side.
  • the fifth lens group G5 is fixed and does not move during zooming.
  • the first lens group G1 is arranged in order from the object side along the optical axis, a meniscus first negative lens L11 having a convex surface facing the object side, a second negative lens L12 having a biconcave lens shape, an object And a meniscus positive lens L13 having a convex surface on the side.
  • a contact multilayer diffractive optical element PF is provided on the image side lens surface of the first negative lens L11, and this surface is aspherical.
  • the diffractive optical element PF is configured by closely joining diffractive optical element elements PF1 and PF2 made of two different ultraviolet curable resins, and the joint surface thereof is a diffractive optical surface C on which a diffraction grating groove is formed. (See FIG. 1).
  • a resin having a refractive index shown in [Resin refractive index] in the following table was used as a constituent material of the diffractive optical element elements PF1 and PF2.
  • the resin refractive index indicates the refractive index after resin curing.
  • the second lens group G2 includes a positive lens L21, a cemented lens of a negative lens L22 and a positive lens L23, and a positive lens L24, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 includes a cemented lens of a positive lens L31 and a negative lens L32, and a negative lens L33, which are arranged in order from the object side along the optical axis.
  • the fourth lens group G4 includes a cemented lens of a negative lens L41 and a positive lens L42, and a negative lens L43, which are arranged in order from the object side along the optical axis.
  • the object side lens surface of the negative lens L41 is aspheric.
  • the fifth lens group G5 includes a positive lens L51.
  • an aperture stop SP is disposed on the object side of the third lens group G3.
  • the aperture stop SP moves together with the third lens group G3 from the wide-angle end state to the telephoto end state during zooming.
  • Table 3 below shows specifications of the zoom optical system ZL3 according to the third example.
  • Surface numbers 1 to 29 in Table 3 correspond to the optical surfaces having the curvature radii R1 to R29 shown in FIG.
  • FIG. 9 and 10 are graphs showing various aberrations of the zoom lens system ZL according to Example 3.
  • FIG. 9 is a longitudinal aberration diagram at an imaging distance of infinity in the wide-angle end state
  • FIG. 10 is a longitudinal aberration diagram at an imaging distance of infinity in the telephoto end state.
  • spherical aberration astigmatism
  • astigmatism astigmatism
  • distortion are described from the left side in each figure.
  • Each aberration diagram is a ray trace of the zoom optical system ZL3 according to the third example from the object side.
  • the zoom optical system ZL3 according to the third example includes various aberrations including spherical aberration, astigmatism, distortion aberration, etc. in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that the aberration is corrected well.
  • the present invention by effectively using a diffractive optical element, it is small in size, and it corrects various aberrations including chromatic aberration over the entire zoom range and has high optical performance.
  • the zoom optical system can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 物体側より順に並んだ、負の屈折力を持つ第1レンズ群と、他のレンズ群とからなり、変倍に際して各レンズ群の相互間隔が変化するズーム光学系であって、第1レンズ群は、最も物体側に配置され、像側レンズ面に回折光学素子を有する第1の負レンズと、第1の負レンズよりも像側に配置される正レンズと、を有し、さらに、正レンズに用いる硝材は、以下の条件式を満足する。 ν1p ≦ 35 Δ(θg,F) ≧ 0.007 但し、 ν1p:第1レンズ群の正レンズに用いる硝材のd線を基準とするアッベ数、 Δ(θg,F):d線を基準とするアッベ数νdを横軸、部分分散比(θg,F)=(ng-nF)/(nF-nC)を縦軸としたグラフにおいて、硝種Aと硝種Bを結ぶ直線を標準線としたとき、この標準線からの前記正レンズに用いる硝材の部分分散比の偏差。なお、硝種Aと硝種Bの前記アッベ数νdと部分分散比(θg,F)は、以下の値である。 硝種A:νd=60.49,(θg,F)=0.5436 硝種B:νd=36.26,(θg,F)=0.5828

Description

ズーム光学系
 本発明は、回折光学素子を用いたズーム光学系に関する。
 ズーム光学系において、回折光学素子を用いると、色収差の補正が容易になり、高い光学性能を得ることが可能となる(例えば、特許文献1を参照)。
特開2004-117826号公報
 一般に、デジタルカメラやビデオカメラ等の光学系は、レンズ全長(光学全長、すなわち最も物体側のレンズ面(第1面)から像面までの長さ)が短く、光学系全体が小型であることが望まれる。しかしながら、レンズ全長を短縮するほど、色収差を始めとした諸収差が増大し、光学性能が低下する傾向がある。そのような光学系中に単に回折光学素子を設けても、配設位置や屈折力を適切に設定しなければ、ズーム全域で色収差を良好に補正することは難しい。回折光学素子を不適切に使用すると、色収差補正が不足する。また、回折光学素子の屈折力が大きくなると、回折光学素子の格子ピッチが細かくなり、製造が困難になり、生産性が悪化する。
 本発明は、このような問題に鑑みてなされたものであり、回折光学素子を効果的に使用することにより、小型で、全ズーム範囲に亘り色収差を始めとした諸収差を良好に補正し、高い光学性能を有したズーム光学系を提供することを目的とする。
 このような目的を達成するため、本発明を例示する態様によれば、物体側より順に並んだ、負の屈折力を持つ第1レンズ群と、他のレンズ群とからなり、変倍に際して各レンズ群の相互間隔が変化するズーム光学系が提供される。このズーム光学系において、前記第1レンズ群は、最も物体側に配置され、像側レンズ面に回折光学素子を有する第1の負レンズと、前記第1の負レンズよりも像側に配置される正レンズと、を有し、前記正レンズに用いる硝材は、以下の条件式を満足する。
   ν1p ≦ 35
   Δ(θg,F) ≧ 0.007
 但し、
 ν1p:前記第1レンズ群の前記正レンズに用いる硝材のd線を基準とするアッベ数、
 Δ(θg,F):d線を基準とするアッベ数νdを横軸、部分分散比(θg,F)=(ng-nF)/(nF-nC)を縦軸としたグラフにおいて、硝種Aと硝種Bを結ぶ直線を標準線としたとき、この標準線からの前記正レンズに用いる硝材の部分分散比の偏差。なお、前記硝種Aと前記硝種Bの前記アッベ数νdと部分分散比(θg,F)は、以下の値である。
 硝種A:νd=60.49,(θg,F)=0.5436
 硝種B:νd=36.26,(θg,F)=0.5828
 
 本発明によれば、回折光学素子を効果的に使用することにより、小型で、全ズーム範囲に亘り色収差を始めとした諸収差を良好に補正し、高い光学性能を有したズーム光学系を提供することができる。
本実施形態に係る回折光学素子を表す模式図である。 第1実施例に係るズーム光学系の広角端状態における構成断面図及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す図である。 第1実施例に係るズーム光学系の広角端状態における撮影距離無限遠での縦収差図である。 第1実施例に係るズーム光学系の望遠端状態における撮影距離無限遠での縦収差図である。 第2実施例に係るズーム光学系の広角端状態における構成断面図及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す図である。 第2実施例に係るズーム光学系の広角端状態における撮影距離無限遠での縦収差図である。 第2実施例に係るズーム光学系の望遠端状態における撮影距離無限遠での縦収差図である。 第3実施例に係るズーム光学系の広角端状態における構成断面図及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す図である。 第3実施例に係るズーム光学系の広角端状態における撮影距離無限遠での縦収差図である。 第3実施例に係るズーム光学系の望遠端状態における撮影距離無限遠での縦収差図である。 異常分散ガラスの定義を説明するためのグラフであり、横軸にd線を基準とするアッベ数νdを、縦軸に部分分散比(θg,F)をとっている。 本実施形態に係るズーム光学系を用いたデジタル一眼レフカメラ(撮像装置)の構成を示す略断面図である。
 以下、実施形態について、図面を参照しながら説明する。本実施形態に係るズーム光学系に用いる回折光学素子PFは、図1に示すように、異なる光学材料からなる2つの回折素子要素、具体的には複数の格子溝が形成された第1の回折光学面を有する第1の回折光学素子PF1と、複数の格子溝が形成された第2の回折光学面を有する第2の回折光学素子PF2とを有し、第1の回折光学素子PF1と第2の回折光学素子PF2とは第1の回折光学面と第2の回折光学面とが互いに対向するように配置され、これら第1の回折光学面と第2の回折光学面が回折光学面Cにて互いに密着して接した、いわゆる密着複層型回折光学素子PFを使用している。
 本実施形態に係るズーム光学系ZLは、図2に示すように、物体側より順に並んだ、負の屈折力を持つ第1レンズ群G1と、正の屈折力を持つ第2レンズ群G2と、負の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とからなり、広角端状態から望遠端状態への変倍に際して各レンズ群の相互間隔が変化し、第1レンズ群G1は、少なくとも一枚の密着複層型回折光学素子PFを有する構成となっている。
 このように広角端状態から望遠端状態への変倍に際して、各レンズ群G1~G5の相互間隔を変化させることにより、ズーム光学系ZLの小型化を達成している。また、軸上色収差が大きく発生する第1レンズ群G1に、密着複層型回折光学素子PFを配置することにより、効果的に色収差の補正を行っている。
 後述の第1実施例では、第1レンズ群G1に密着複層型回折光学素子PFを配置することにより、全ズーム域に亘り色収差を良好に補正している。第2実施例・第3実施例も同様である。
 第1レンズ群G1は、物体側から順に並んだ、第1の負レンズL11と、第2の負レンズL12と、正レンズL13とを有し、第1の負レンズL11は物体側に凸面を向けたメニスカス形状であり、第2の負レンズL12は両凹レンズ形状であり、正レンズL13は物体側に凸面を向けたメニスカス形状である。また、密着複層型回折光学素子PFは、第1の負レンズL11の像側レンズ面(第2面)に設置され、この面は非球面であることが望ましい。この構成によれば、全ズーム域に亘り、良好な収差補正ができる。
 本実施形態に係るズーム光学系ZLにおいて、次の条件式(1),(2)を満足することが好ましい。
   ν1p ≦ 35 …(1)
   Δ(θg,F) ≧ 0.007 …(2)
 但し、
 ν1p:第1レンズ群G1の正レンズL13に用いる硝材のd線を基準とするアッベ数、
 Δ(θg,F):d線を基準とするアッベ数νdを横軸、部分分散比(θg,F)=(ng-nF)/(nF-nC)を縦軸としたグラフにおいて、硝種A(株式会社オハラ硝種名NSL7)と硝種B(株式会社オハラ硝種名PBM2)を結ぶ直線を標準線としたとき、この標準線からの第1レンズ群G1の正レンズL13に用いる硝材の部分分散比の偏差(図11参照)。なお、νdはd線を基準とするアッベ数であり、ng、nF、nCはそれぞれフラウンホーファ線のg線、F線、C線に対する屈折率である。
 このような条件式(1),(2)を満足する硝材を、第1レンズ群G1を構成する正レンズL3に用いることで、軸上色収差及び倍率色収差を良好に補正することができる。
 本実施形態に係るズーム光学系ZLにおいて、次の条件式(3)を満足することが好ましい。
   40.0 ≦ ν1dave ≦ 55.0 …(3)
 但し、
 ν1dave:第1レンズ群G1を構成するレンズのうち、回折光学素子PF、屈折力の絶対値が1/5000以下の硝材からなるレンズ、及び、アッベ数が70より大きい異常分散ガラスからなるレンズを除いた、全てのレンズの硝材のd線を基準とするアッベ数の平均値。
 条件式(3)は、第1レンズ群G1において、回折光学素子PF、屈折力の絶対値が1/5000以下の硝材からなるレンズ、及びアッベ数が70より大きい異常分散ガラスからなるレンズを除いた、屈折型レンズに用いた硝材のアッベ数の平均値を規定するものである。
 回折光学素子PFは、1mmあたり数本から数百本の細かい溝状又はスリット状の格子構造が同心円状に形成された回折光学面C(図1参照)を備え、この回折光学面Cに入射した光を格子ピッチ(格子溝の間隔)と入射光の波長によって定まる方向へ回折する性質を有している。このような回折光学素子PFは、例えば、特定次数の回折光を一点に集光するレンズなどに用いられている。
 通常の光学ガラスで作成した屈折型レンズでは、波長が短くなるほど屈折力特性の変化が大きくなるが、逆に、回折光学素子PFでは、波長による屈折力特性は線形的に変化する。また、屈折型レンズの屈折率特性は、硝材によって変化するが、回折光学素子PFの屈折率特性は、硝材によって変化しない。そこで、屈折型レンズを複数組み合わせて波長による屈折力変化を線形にしたものと、回折光学素子PFとを組み合わせることで、大きな色消し効果が得られ、色収差を良好に補正することが可能となる。
 条件式(3)は、波長によって屈折力が線形的に変化するような複数の屈折型レンズの硝材の選び方として、アッベ数の平均値を規定するものである。条件式(3)の下限値を下回ると、前記屈折型レンズは波長が短くなるほど屈折力特性の変化が大きくなり、このようなレンズに回折光学素子PFを組み合わせると、収差の残存量が大きくなる。また、組み合わせる回折光学素子PFの屈折力が大きくなり、ピッチが細かくなるため、製造が困難になり、量産性が悪化する。
 逆に、条件式(3)の上限値を上回ると、前記屈折型レンズに異常分散性の高い硝材を使用することになるため、比重が大きい硝材が必要となり重量が増加する。また、これらの硝材は一般的に屈折率が低い硝材であるので、球面収差等の補正が難しくなる。但し、球面収差の補正については非球面を用いることで解消することが可能になるが、非球面での補正量が大きくなると、サグ量(非球面の球面からのズレ量)が大きくなり、製造が困難になって量産性が悪化する。
 本実施形態の効果をより確実にするためには、条件式(3)の下限値を43.0とすることが望ましい。また、本実施形態の効果をより確実にするためには、条件式(3)の上限値を51.0とすることが望ましい。
 本実施形態に係るズーム光学系ZLにおいて、第1レンズ群G1~第5レンズ群G5のうち、第3レンズ群G3のみが、d線に対する屈折率が1.8より大きい高屈折率ガラス製のレンズ(比重の重いレンズ)を含んで構成されることが好ましい。この構成によれば、第3レンズ群G3を除く他のレンズ群、すなわち第1レンズ群G1、第2レンズ群G2、第4レンズ群G4及び第5レンズ群G5が比重の軽いレンズで構成されることになるため、軸上色収差及び倍率色収差を悪化させることなく、光学系全体を軽量化することができる。
 本実施形態に係るズーム光学系ZLにおいて、回折光学素子PFの設置面(すなわち、第1レンズ群G1を構成する第1の負レンズL11の像側レンズ面)が非球面であることを前提に、次の条件式(4)を満足することが好ましい。
   fDOE > -7000 …(4)
 但し、
 fDOE: 回折光学素子PFの焦点距離(mm)。
 条件式(4)は、回折光学素子PFの屈折力を規定したものである。非球面と、条件式(4)を満足する回折光学素子PFとを組み合わせることで、該素子の屈折力を緩くすることができるため、適切な格子ピッチを確保でき、ひいてはフレアを防止することができる。条件式(4)の下限値を下回ると、回折光学素子PFの屈折力が強くなり、該素子の格子ピッチが細かくなるため、製造が困難になり、量産性が悪化する。
 本実施形態に係るズーム光学系ZLにおいて、次の条件式(5)を満足することが好ましい。
   0.001 ≦ |φdoei/φi| ≦ 0.010 …(5)
 但し、
 φi:回折光学素子PFを含む第1レンズ群G1全体の屈折力、
 φdoei:回折光学素子PFの屈折力。
 条件式(5)は、回折光学素子PFの屈折力と、この回折光学素子PFを含むレンズ群、すなわち第1レンズ群G1の屈折力との比を規定したものである。条件式(5)の下限値を下回ると、回折光学素子PFの屈折力が小さくなり、色収差補正が不足する。逆に、条件式(5)の上限値を上回ると、回折光学素子PFの屈折力が強くなり、回折光学素子PFの格子ピッチが細かくなり、製造が困難になり量産性が悪化する。
 本実施形態の効果をより確実にするためには、条件式(5)の下限値を0.004とすることが望ましい。また、本実施形態の効果をより確実にするためには、条件式(5)の上限値を0.006とすることが望ましい。
 本実施形態に係るズーム光学系ZLにおいて、次の条件式(6)を満たすことが好ましい。
   3.0 ≦ |TK/fw| ≦ 4.0 …(6)
 但し、
 TK:ズーミングによって変化する、光学系の射出瞳から像面までの距離の最小値、
 fw :広角端状態における全系の焦点距離。
 条件式(6)はズーミングによって変化する、光学系の射出瞳から像面までの距離の最小値と、広角端状態における全系の焦点距離の比を規定したものである。条件式(6)の下限値を下回ると、一眼レフカメラの交換レンズとして使用する際のミラー作動空間の確保が難しくなったり、画角周辺で撮像素子に入射する光線が傾くことによるシェーディングが発生したりする。逆に、条件式(6)の上限値を上回ると、小型化が不十分になる。
 本実施形態の効果をより確実にするためには、条件式(6)の下限値を3.5することが望ましい。本実施形態の効果をさらに確実にするためには、条件式(6)の下限値を3.6とすることが望ましい。
 本実施形態に係るズーム光学系ZLにおいて、第5レンズ群G5は、少なくとも一枚の正レンズで構成することも可能であるが、これに少なくとも一枚の負レンズを加えればなお好ましい。このように正レンズと負レンズを少なくとも1枚ずつ有する構成にすれば、球面収差、コマ収差、非点収差、像面湾曲等を抑えながら、軸上色収差の発生を抑えることができる。
 本実施形態に係るズーム光学系ZLにおいて、次の条件式(7)を満たすことが好ましい。
   0.040 ≦ Pmin ≦ 0.500 …(7)
 但し、
 Pmin:回折光学素子PFの最小ピッチ(mm)。
 条件式(7)は、回折光学素子PFの格子の最小ピッチを規定したものである。条件式(7)の下限値を下回ると、格子ピッチが細かくなり、製造が困難になり、量産性が悪化する。逆に、条件式(7)の上限値を上回ると、回折光学素子PFの屈折力が小さくなり、色収差補正が不足する。
 本実施形態の効果をより確実にするためには、条件式(7)の下限値を0.05とすることが望ましい。
 本実施形態に係るズーム光学系ZLにおいて、第1レンズ群G1は、少なくとも一枚の正レンズを有し、その硝材として正常分散ガラスを用いることが好ましい。このような正レンズと回折光学素子PFとの組み合わせにより、軸上色収差及び倍率色収差の発生を抑えることができる。
 一般的に、光学ガラスの多くは、縦軸に部分分散比として(θg,F)を、横軸にd線を基準とするアッベ数としてνdをとると、図11に示すように、部分分散比とアッベ数との間にほぼ直線関係が成り立ち、このような硝種を正常分散ガラスと呼ぶ。他方で、この直線関係から離れた位置にある硝種を異常分散ガラスと呼ぶ。より具体的には、正常分散ガラスの基準となるNSL7とPBM2(共に、株式会社オハラ硝種名)とを結んで得られる直線を標準線とし、この標準線からの部分分散比の偏差をΔ(θg,F)と表す場合、以下の条件式(8)又は(9)を満たすものを異常分散ガラスと定義する。なお、請求の範囲に規定する硝種AがNSL7に対応し、硝種BがPBM2に対応する。
  Δ(θg,F) < -0.012 …(8)
  Δ(θg,F) >  0.012 …(9)
 なお、部分分散比(θg,F)は、レンズの材質のg線(波長λ=435.835nm)に対する屈折率をngとし、F線(波長λ=486.133nm)に対する屈折率をnFとし、C線(波長λ=656.273nm)に対する屈折率をnCとしたとき、(θg,F)=(ng-nF)/(nF-nC)で定義される。また、正常分散ガラスの基準となる、NSL7は部分分散比が0.5436、アッベ数が60.49であり、PBM2は部分分散比が0.5828、アッベ数が36.26である。
 本実施形態に係るズーム光学系ZLにおいて、第2レンズ群G2は、少なくとも一枚の非球面を有することが好ましい。この構成によれば、球面収差、コマ収差を良好に補正することができる。
 本実施形態に係るズーム光学系ZLにおいて、第4レンズ群G4は、少なくとも一枚の非球面を有することが好ましい。この構成によれば、球面収差、コマ収差を良好に補正することができる。
 本実施形態に係る回折光学素子PFは、上述したように、異なる光学材料からなる、第1の回折光学面を有する第1の回折光学素子PF1と、第2の回折光学素子PF2とを有し、これら第1の回折光学素子PF1と第2の回折光学素子PF2が第1の回折光学面と第2の回折光学面とを互いに対向するように配置された、いわゆる複層型(又は積層型)の回折光学素子に属するものであるため、g線(波長λ=435.835nm)からC線(波長λ=635.273nm)を含む広波長域において回折効率を高くすることができる。したがって、このような回折光学素子PFを用いた本実施形態に係るズーム光学系ZLは、広波長域において利用することが可能となる。
 本実施形態において、回折効率は、透過型の回折光学素子PFにおいて1次回折光を利用する場合、入射強度I0と一次回折光の強度I1との割合η(=I1/I0×100[%])を示すこととする。
 本実施形態に係るズーム光学系ZLに用いる回折光学素子PFにあっては、上述したように、対向配置された第1の回折光学面と第2の回折光学面とが互いに接するように構成してもよい。つまり、2つの回折素子要素のそれぞれに形成された格子溝を互いに密着させて密着複層型回折光学素子として構成してもよい。このような密着複層型回折光学素子は、格子溝が形成された2つの回折素子要素をこの格子溝同士が対向するように近接配置してなるいわゆる分離複層型回折光学素子に比べ、製造工程を簡素化することができるため、量産効率がよく、また光線の入射角に対する回折効率が良い(g線からC線を含む広波長域において90%以上)という長所を備えている。したがって、このような密着複層型回折光学素子を利用した本実施形態に係るズーム光学系ZLでは、製造が容易となり、また回折効率も良くなる。
 本実施形態に係るズーム光学系ZLにおいて、回折光学素子PFを構成する第1の回折光学素子PF1及び第2の回折光学素子PF2の少なくとも一方は、紫外線硬化型樹脂からなるように構成してもよい。この構成により、回折光学素子PFの量産性、生産性を高めることができる。したがって、このような回折光学素子PFを利用した本実施形態に係るズーム光学系ZLの量産性、生産性を高めることができる。
 詳細に述べると、2つの回折素子要素の材料として、一方に一般のガラスもしくは射出成形などが可能な熱可塑性樹脂又は熱硬化性樹脂を、他方に紫外線硬化型樹脂を用いて、回折光学素子PFを製造することができる。例えば、一方の材料としてガラスを用いる場合は、切削研磨によって回折光学面Cを成形する。その後で、この回折光学面Cに紫外線硬化型樹脂を滴下し、紫外線を照射して硬化させる製造方法を採用できる。また、一方の材料として熱可塑性樹脂又は熱硬化性樹脂を用いる場合は、格子溝が形成された金型を用いて射出成形などを行うことにより、回折光学面Cを成形する。その後で、この回折光学面Cに紫外線硬化型樹脂を滴下し、紫外線を照射して硬化させる製造方法を採用できる。このような製造方法が採用でき、2つの回折素子要素に対して回折光学面Cを別々に作製し、さらにこれらの位置合わせを行うという作業が不要になるため、回折光学素子PFの生産性、量産性を高めることができる。
 本実施形態に係るズーム光学系ZLにおいて、回折光学素子PFを構成する第1の回折光学素子PF1及び第2の回折光学素子PF2は、互いに異なる光学特性を有する紫外線硬化型樹脂からなるように構成してもよい。この構成により、回折光学素子PFの量産性、生産性を高めることができる。したがって、この回折光学素子PFを利用した本実施形態に係るズーム光学系ZLの量産性、生産性を高めることができる。
 この場合には、まず、基板上に滴下した一方の紫外線硬化型樹脂に対して格子溝が形成された金型を型押し、その金型の反対方向から紫外線を照射して回折光学面Cを有する一方の回折素子要素を成形する。次に、金型を取り除き、この紫外線照射により硬化した回折光学面Cに他方の紫外線硬化型樹脂を滴下する。続いて、この滴下した他方の紫外線硬化型樹脂に紫外線を照射することにより、他方の紫外線硬化型樹脂も硬化させ、他方の回折素子要素を形成する。このような製造方法を採用することにより、格子溝の成形が1つの金型のみで可能になるとともに、2つの回折素子要素に対して回折光学面Cを別々に形成し、これらの位置合わせを行うという作業が不要であり、紫外線硬化型樹脂を滴下して硬化させるという作業を2回実施するのみで製造することができる。したがって、回折光学素子PFの量産性、生産性をより高めることができる。
 本実施形態に係るズーム光学系ZLにおいて、回折光学素子PFを構成する2つの回折素子要素のうち、より低屈折率高分散な方の回折素子要素の材質のd線(波長587.562nm)、F線(波長486.133nm)及びC線(波長656.273nm)に対する屈折率をnd1、nF1及びnC1とし、より高屈折率低分散な方の回折素子要素の材質のd線、F線及びC線に対する屈折率をnd2、nF2及びnC2としたとき、次の条件式(10)~(13)を満足することが好ましい。
      nd1 ≦ 1.54    …(10)
   0.0145 ≦ nF1-nC1 …(11)
     1.55 ≦ nd2     …(12)
  nF2-nC2 ≦ 0.013   …(13)
 条件式(10)~(13)は、ズーム光学系ZLの回折光学素子PFを構成する異なる2つの回折素子要素に用いる光学材料、すなわち2つの異なる樹脂のd線に対する屈折率と、F線及びC線に対する屈折率差(nF-nC)をそれぞれ規定している。もう少し説明すると、条件式(10)~(13)は、回折光学素子PFに用いる異なる2種類の樹脂、具体的には相対的に低屈折率高分散な光学特性を持つ樹脂と、高屈折率低分散な光学特性を持つ樹脂とにおいて、回折光学素子PFを製造するために硬化させた後に満足すべき樹脂の光学特性を規定するものである。
 このような条件式(10)~(13)を満足することで、より良い性能で、異なる2つの回折素子要素を密着接合させて回折光学面Cを形成することができる。その結果、g線~C線までの広波長域に亘って90%以上の回折効率を実現することができる。しかしながら、条件式(10)~(13)の上限値を上回るか又は下限値を下回ると、広波長域において90%以上の回折効率を得ることが困難になり、密着複層型回折光学素子PFの利点を維持することが困難になる。なお、ここでいう回折効率とは、前述のように入射光の強度と一次回折光との強度の割合である。
 念のため、回折効率を求める式について記載する。回折次数をmとし、m次回折光の回折効率をηをとし、回折光学面Cを形成する一方の回折素子要素の回折格子高さをd1とし、回折光学面Cを形成する他方の回折素子要素の回折格子高さをd2とし、回折光学面Cを形成する一方の回折素子要素の材料の屈折率をn1とし、回折光学面Cを形成する他方の回折素子要素の材料の屈折率をn2とし、波長をλとしたとき、回折効率は、以下の式(14),(15)で表される。
   ηm = {sin(a-m)π/(a-m)π}^2 …(14)
   a = {(n1-1)d1-(n2-1)d2}/λ …(15)
 なお、上記条件を満足する樹脂、及びこれらの樹脂を用いた密着複層型回折光学素子PFの製造方法については、例えば、欧州特許公開第1830204号公報、及び欧州特許公開第1830205号公報に記載されている。
 本実施形態では、後述の各実施例において、2つの異なる紫外線硬化樹脂からなる密着複層型回折光学素子PFを用いており、回折格子高さは20.05μm、一次の回折効率はg線(波長λ=435.835nm)で98%、F線(波長λ=486.133nm)で98%、d線(波長λ=587.562nm)で100%、C線(波長λ=656.273nm)で98%である。
 続いて、図12に、上述のズーム光学系ZLを撮影レンズ1として備えた、デジタル一眼レフカメラCAM(撮像装置)の略断面図を示す。カメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズ1で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ1で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者はカメラCAMによる物体(被写体)の撮影を行うことができる。
 カメラCAMは、撮影レンズ1を着脱可能に保持するものでもよく、撮影レンズ1と一体に成形されるものでもよい。また、カメラCAMは、いわゆる一眼レフカメラでもよく、クイックリターンミラー等を有さないコンパクトカメラでもよい。
 カメラCAMに撮影レンズ1として搭載した本実施形態に係るズーム光学系ZLは、後述の各実施例からも分かるように、その特徴的なレンズ構成によって、小型で、全ズーム範囲に亘り色収差を始めとした諸収差を良好に補正し、高い光学性能を有している。したがって、カメラCAMは、小型で、全ズーム範囲に亘り色収差を始めとした諸収差を良好に補正し、高い光学性能を有した撮像装置を実現することができる。
 以下、本実施形態に係るズーム光学系の各実施例について、図面に基づいて説明する。以下に表1~表3を示すが、これらは第1実施例~第3実施例における各レンズの諸元の表である。
 表中の[全体諸元]において、fはズーム光学系ZLのd線における広角端状態及び望遠端状態での焦点距離(mm)を、FNoは広角端状態及び望遠端状態でのFナンバーを、Yは像高を、Σdはズーム光学系ZLの最も物体側のレンズ面(第1面)から最も像側のレンズ面までの光軸上の距離を示す。
 表中の[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、Rは各レンズ面の曲率半径を、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔を、ndはレンズに用いる硝材のd線(波長587.562nm)に対する屈折率を、νdはレンズに用いる硝材のd線を基準とするアッベ数を、Di(可変)は第i面の可変の面間隔を、*aは非球面を、*dは回折光学面を、*sは絞りを、曲率半径Rの欄の「∞」は平面を示す。表中、空気の屈折率(d線)「1.000000」の記載は省略する。
 表中の[非球面データ]には、[レンズデータ]において*aを付した非球面について、その形状を次式(a)で示す。ここで、hは光軸に垂直な方向の高さを、Z(h)は高さhにおける光軸方向の変位量(サグ量)を、cは基準球面の曲率半径(近軸曲率半径)を、κはコーニック係数を、Aiは第i次の非球面係数を示す。また、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。
 Z(h) = ch2/[1+{1-(1+κ)c22)}1/2
   +A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 …(a)
 表中の[回折光学面データ]には、[レンズデータ]に示した回折光学面について、その形状を次式(b)で示す。ここで、hは光軸に垂直な方向の高さを、Φ(h)は回折光学素子の位相関数を、λは入射光の波長を、Ciは第i次の位相差係数を示す。
 Φ(h) =(2π/λ)・(C2h2+C4h4+C6h6+C8h8+C10h10) …(b)
 表中の[各群間隔データ]において、広角端状態及び望遠端状態における、第i面の可変間隔Di(但し、iは整数)を示す。
 表中の[ズーム光学系群データ]において、Gは群番号、群初面は各レンズ群の最も物体側の面番号を、群焦点距離は各レンズ群の焦点距離を示す。
 表中の[条件式]には、上記条件式(1)~(7)に対応する値を示す。
 表中の焦点距離f、曲率半径R、面間隔d、その他の長さの単位は「mm」である。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
(第1実施例)
 第1実施例について、図2~図4及び表1を用いて説明する。図2は、第1実施例に係るズーム光学系ZL(ZL1)の構成断面図及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す。図2の構成断面図では、図示の煩雑さを回避すべく、回折光学素子PFを構成する回折光学素子要素の符号PF1、PF2と、回折光学面の符号Cの記載及び格子溝の形状の記載は省略し、単に回折光学素子PFの符号のみを記載する。
 第1実施例に係るズーム光学系ZL1は、図2に示すように、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レンズ群G1と、正の屈折力を持つ第2レンズ群G2と、負の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 変倍時には、広角端状態から望遠端状態にかけて、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増加し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増加するように、第1レンズ群G1が物体側へ凸状の軌跡で移動し、第2レンズ群が物体側へ移動し、第3レンズ群G3が物体側へ移動し、第4レンズ群G4が物体側へ移動する。第5レンズ群G5は固定されており、ズーミングに際して移動しない。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凹レンズ形状の第2の負レンズL12と、物体側に凸面を向けたメニスカス形状の正レンズL13とから構成される。第1の負レンズL11の像側レンズ面には密着複層型回折光学素子PFが設けられ、またこの面は非球面である。
 回折光学素子PFは、異なる2つの紫外線硬化型樹脂からなる回折光学素子要素PF1とPF2がそれぞれ密着接合して構成されたものであり、その接合面は回折格子溝が形成された回折光学面Cとなっている(図1参照)。本実施例では、回折光学素子要素PF1とPF2の構成材料として、以下の表中の[樹脂屈折率]に示す屈折率を有する樹脂を用いた。なお、樹脂屈折率は、樹脂硬化後の屈折率を示す。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、正レンズL21と、負レンズL22と正レンズL23との接合レンズと、正レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、正レンズL31と負レンズL32との接合レンズと、負レンズL33とから構成される。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、負レンズL41と正レンズL42との接合レンズと、負レンズL43とから構成される。負レンズL41の物体側レンズ面は非球面である。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、正レンズL51と負レンズL52との接合レンズから構成されている。
 本実施例では、第3レンズ群G3の物体側に、絞りSPを配置する。絞りSPは、変倍時には広角端状態から望遠端状態において第3レンズ群G3と共に移動する。
 以下の表1に、第1実施例に係るズーム光学系ZL1の各諸元値を示す。表1における面番号1~30は、図2に示す曲率半径R1~R30の各光学面に対応している。
(表1)
[全体諸元]
     広角端   望遠端
f  =  24.8 ~  67.8
FNo=  2.9 ~  2.9
Y  =  21.6 ~  21.6
Σd = 156.3 ~ 141.5
 
[レンズデータ]
面番号     r     d    nd    νd
1       449.276   2.88   1.65844   50.84
2  *a    26.646   0.01   1.52780   33.41
3  *a*d   26.646   0.01   1.55710   49.74
4  *a    26.646   14.06
5      -407.787   2.10   1.60311   60.69
6       70.826   0.15
7       53.361   5.27   1.75520   27.57
8       150.738   D8(可変)
9       49.742   3.58   1.66672   48.33
10 *a    220.067   9.68
11      131.177   1.80   1.71736   29.57
12      32.690   7.36   1.49782   82.57
13     -179.945   8.00
14 *a    47.836   5.93   1.58913   61.22
15     -186.821   D15(可変)
16 *s     ∞    1.30
17      878.033   3.50   1.86074   23.08
18      -46.301   1.15   1.74400   44.81
19      75.737   2.06
20      -69.602   1.20   1.74400   44.81
21      614.114   D21(可変)
22 *a   53560.956   1.30   1.74077   27.74
23      56.392   4.60   1.49782   82.57
24      -37.848   0.20
25      39.729   1.40   1.76200   40.11
26      35.201   0.08   1.55389   39.22
27 *a    43.244   D27(可変)
28      35.707   6.00   1.58267   46.48
29     -435.607   1.40   1.75520   27.57
30      68.740   41.70
 
[非球面データ]
第2,3,4面
 κ=-1.2845
 A4=0.322160E-05,A6=0.139792E-08,A8=-0.270408E-11,A10=0.291265E-14
 A12=-0.105112E-17
第10面
 κ=73.5073
 A4=0.252669E-06,A6=-0.106583E-08,A8=0.272800E-11,A10=-0.693172E-14
第14面
 κ=-0.3667
 A4=-0.598146E-06,A6=-0.228182E-09,A8=0.519056E-13,A10=-0.809169E-15
第22面
 κ=-8.0661e+019
 A4=0.104993E-04,A6=-0.463141E-07,A8=0.163623E-09,A10=-0.311875E-12
第27面
 κ=4.1806
 A4=0.984974E-05,A6=-0.381469E-07,A8=0.609092E-11,A10=0.292963E-1
 A12=-0.120149E-14
 
[回折光学面データ]
第3面
 C2=6.8348E-05,C4=1.2529E-07,C6=-8.5928E-11
 
[回折光学素子 光学データ]
          nC      nd      nF      ng
 低屈折率   1.523300   1.527800   1.539100   1.549100
 高屈折率   1.553800   1.557100   1.565000   1.571300
 
[各群間隔データ]
    広角端   望遠端
D8    53.42    1.08
D15    0.15   24.41
D21   17.19    1.00
D27    0.50   25.94
 
[ズーム光学系 群データ]
群番号  群初面  群焦点距離
 G1     1    -40.58
 G2     9     44.42
 G3    17    -54.63
 G4    22    100.66
 G5    28    173.02
 
[条件式]
条件式(1)ν1p =27.57(正レンズL13)
条件式(2)Δ(θg,F) =0.0112(正レンズL13)
条件式(3)ν1dave =46.4
条件式(4) fDOE =-7315.48
条件式(5)|φdoei/φi| =0.0056
条件式(6)|TK/fw| =3.63
条件式(7)Pmin =0.094
 表1から、第1実施例に係るズーム光学系ZL1は、条件式(1)~(7)を満たすことが分かる。
 図3、図4は、第1実施例に係るズームレンズ系ZLの諸収差図である。図3は広角端状態における撮影距離無限遠での縦収差図であり、図4は望遠端状態における撮影距離無限遠での縦収差図である。縦収差図には、各図における左側から、(縦方向の)球面収差、非点収差、及び歪曲収差が記載されている。各収差図は、いずれも第1実施例に係るズーム光学系ZL1を物体側から光線追跡したものである。
 球面収差図において、dはd線(波長587.562nm)、CはC線(波長656.273nm)、FはF線(波長486.133nm)、gはg線(波長435.835nm)における収差を示す。また球面収差図において、縦軸は入射瞳半径の最大値を1として規格化して示した値を、横軸は各線における収差の値(mm)を示す。非点収差図は、d線における収差を示し、実線Sはサジタル像面を、破線Tはメリディオナル像面を示す。また非点収差図において、縦軸は像高(mm)を、横軸は収差の値(mm)を示す。歪曲収差図は、d線における収差を示す。また歪曲収差図において、縦軸は像高(mm)を、横軸は収差の割合(百分率(%値))を示す。
 以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。
 各収差図から明らかなように、第1実施例に係るズーム光学系ZL1は、広角端状態から望遠端状態までの各焦点距離状態において、球面収差、非点収差、歪曲収差等を含め、諸収差が良好に補正されていることが分かる。
(第2実施例)
 第2実施例について、図5~図7及び表2を用いて説明する。図5は、第2実施例に係るズーム光学系ZL(ZL2)の構成断面図及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す。図5の構成断面図では、図示の煩雑さを回避すべく、回折光学素子PFを構成する回折光学素子要素の符号PF1、PF2と、回折光学面の符号Cの記載及び格子溝の形状の記載は省略し、単に回折光学素子PFの符号のみを記載する。
 第2実施例に係るズーム光学系ZL2は、図5に示すように、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レンズ群G1と、正の屈折力を持つ第2レンズ群G2と、負の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 変倍時には、広角端状態から望遠端状態にかけて、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増加し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増加するように、第1レンズ群G1が物体側へ凸状の軌跡で移動し、第2レンズ群が物体側へ移動し、第3レンズ群G3が物体側へ移動し、第4レンズ群G4が物体側へ移動する。第5レンズ群G5は固定されており、ズーミングに際して移動しない。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凹レンズ形状の第2の負レンズL12と、物体側に凸面を向けたメニスカス形状の正レンズL13とから構成される。第1の負レンズL11の像側レンズ面には密着複層型回折光学素子PFが設けられ、またこの面は非球面である。
 回折光学素子PFは、異なる2つの紫外線硬化型樹脂からなる回折光学素子要素PF1とPF2がそれぞれ密着接合して構成されたものであり、その接合面は回折格子溝が形成された回折光学面Cとなっている(図1参照)。本実施例では、回折光学素子要素PF1とPF2の構成材料として、以下の表中の[樹脂屈折率]に示す屈折率を有する樹脂を用いた。なお、樹脂屈折率は、樹脂硬化後の屈折率を示す。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、正レンズL21と、負レンズL22と正レンズL23との接合レンズと、正レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、正レンズL31と負レンズL32との接合レンズと、負レンズL33とから構成される。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、負レンズL41と正レンズL42との接合レンズと、負レンズL43とから構成される。負レンズL41の物体側レンズ面は非球面である。
 第5レンズ群G5は、正レンズL51から構成されている。
 本実施例では、第3レンズ群G3の物体側に、絞りSPを配置する。絞りSPは、変倍時には広角端状態から望遠端状態において第3レンズ群G3と共に移動する。
 以下の表2に、第2実施例に係るズーム光学系ZL2の各諸元値を示す。表2における面番号1~29は、図5に示す曲率半径R1~R29の各光学面に対応している。
(表2)
[全体諸元]
     広角端   望遠端
f  =  24.8 ~  67.8
FNo=  2.9 ~  2.9
Y  =  21.6 ~  21.6
Σd = 154.6 ~ 156.2
 
[レンズデータ]
面番号     r     d    nd    νd
1      1373.856   2.88   1.65844   50.84
2  *a    26.403   0.01   1.52780   33.41
3  *a*d   26.403   0.01   1.55710   49.74
4  *a    26.403   14.04
5      -339.817   2.10   1.51742   52.20
6       75.213   0.15
7       58.908   7.00   1.75520   27.57
8       181.498   D8(可変)
9       45.700   4.46   1.67000   57.35
10 *a    149.654   10.23
11      120.621   1.80   1.72342   38.03
12      31.386   7.76   1.49782   82.57
13     -156.090   8.07
14      65.708   5.13   1.62041   60.25
15     -147.316   D15(可変)
16 *s     ∞    1.30
17      498.394   3.50   1.86074   23.08
18      -41.091   1.15   1.64769   33.73
19      68.531   2.82
20      -41.212   1.20   1.58267   46.48
21      277.500   D21(可変)
22 *a    39.968   1.40   1.72825   28.38
23      33.184   5.49   1.49782   82.57
24      -37.638   0.20
25     -156.917   2.13   1.67270   32.19
26      41.520   0.08   1.55389   39.22
27 *a    59.020   D27(可変)
28      47.383   7.00   1.48749   70.31
29     -2567.589   41.80
 
[非球面データ]
第2,3,4面
 κ=-1.1680
 A4=0.182938E-05,A6=-0.243771E-08,A8=0.736133E-11,A10=-0.765274E-14
 A12=0.237652E-17
第10面
 κ=-10.9723
 A4=0.226737E-05,A6=-0.481488E-09,A8=0.133671E-11,A10=-0.194355E-14
第22面
 κ=0.5896
 A4=0.305972E-05,A6=-0.407149E-08,A8=-0.641264E-10,A10=0.108717E-12
第27面
 κ=3.1944
 A4=0.139947E-04,A6=0.385271E-07,A8=-0.411716E-09,A10=0.198530E-11
 A12=-0.440321E-14
 
[回折光学面データ]
第3面
 C2=4.9111E-05,C4=5.4082E-08,C6=8.3034E-10
 C8=-2.2413E-12,C10=1.6777E-15
 
[回折光学素子 光学データ]
          nC      nd      nF      ng
 低屈折率   1.523300   1.527800   1.539100   1.549100
 高屈折率   1.553800   1.557100   1.565000   1.571300
 
[各群間隔データ]
    広角端   望遠端
D8    49.96    2.39
D15    0.15   31.29
D21   14.07    1.00
D27    0.50   31.62
 
[ズーム光学系 群データ]
群番号  群初面  群焦点距離
 G1     1    -41.01
 G2     9     47.18
 G3    17    -53.40
 G4    22    115.53
 G5    28     95.52
 
[条件式]
条件式(1)ν1p =27.57(正レンズL13)
条件式(2)Δ(θg,F) =0.0112(正レンズL13)
条件式(3)ν1dave =43.5
条件式(4)fDOE =-10181.00
条件式(5)|φdoei/φi| =0.0040
条件式(6)|TK/fw| =3.60
条件式(7)Pmin =0.055
 表2から、第2実施例に係るズーム光学系ZL2は、条件式(1)~(7)を満たすことが分かる。
 図6、図7は、第2実施例に係るズームレンズ系ZLの諸収差図である。図6は広角端状態における撮影距離無限遠での縦収差図であり、図7は望遠端状態における撮影距離無限遠での縦収差図である。縦収差図には、各図における左側から、(縦方向の)球面収差、非点収差、及び歪曲収差が記載されている。各収差図は、いずれも第2実施例に係るズーム光学系ZL2を物体側から光線追跡したものである。
 各収差図から明らかなように、第2実施例に係るズーム光学系ZL2は、広角端状態から望遠端状態までの各焦点距離状態において、球面収差、非点収差、歪曲収差等を含め、諸収差が良好に補正されていることが分かる。
(第3実施例)
 第3実施例について、図8~図10及び表3を用いて説明する。図8は、第3実施例に係るズーム光学系ZL(ZL3)の構成断面図及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す。図8の構成断面図では、図示の煩雑さを回避すべく、回折光学素子PFを構成する回折光学素子要素の符号PF1、PF2と、回折光学面の符号Cの記載及び格子溝の形状の記載は省略し、単に回折光学素子PFの符号のみを記載する。
 第3実施例に係るズーム光学系ZL3は、図8に示すように、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レンズ群G1と、正の屈折力を持つ第2レンズ群G2と、負の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 変倍時には、広角端状態から望遠端状態にかけて、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増加し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増加するように、第1レンズ群G1が物体側へ凸状の軌跡で移動し、第2レンズ群が物体側へ移動し、第3レンズ群G3が物体側へ移動し、第4レンズ群G4が物体側へ移動する。第5レンズ群G5は固定されており、ズーミングに際して移動しない。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凹レンズ形状の第2の負レンズL12と、物体側に凸面を向けたメニスカス形状の正レンズL13とから構成される。第1の負レンズL11の像側レンズ面には密着複層型回折光学素子PFが設けられ、またこの面は非球面である。
 回折光学素子PFは、異なる2つの紫外線硬化型樹脂からなる回折光学素子要素PF1とPF2がそれぞれ密着接合して構成されたものであり、その接合面は回折格子溝が形成された回折光学面Cとなっている(図1参照)。本実施例では、回折光学素子要素PF1とPF2の構成材料として、以下の表中の[樹脂屈折率]に示す屈折率を有する樹脂を用いた。なお、樹脂屈折率は、樹脂硬化後の屈折率を示す。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、正レンズL21と、負レンズL22と正レンズL23との接合レンズと、正レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、正レンズL31と負レンズL32との接合レンズと、負レンズL33とから構成される。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、負レンズL41と正レンズL42との接合レンズと、負レンズL43とから構成される。負レンズL41の物体側レンズ面は非球面である。
 第5レンズ群G5は、正レンズL51から構成されている。
 本実施例では、第3レンズ群G3の物体側に、開口絞りSPを配置する。開口絞りSPは、変倍時には広角端状態から望遠端状態において第3レンズ群G3と共に移動する。
 以下の表3に、第3実施例に係るズーム光学系ZL3の各諸元値を示す。表3における面番号1~29は、図8に示す曲率半径R1~R29の各光学面に対応している。
(表3)
[全体諸元]
     広角端   望遠端
f  =  24.8 ~  67.6
FNo=  2.9 ~  2.9
Y  =  21.6 ~  21.6
Σd = 146.4 ~ 157.1
 
[レンズデータ]
面番号     r     d    nd    νd
1       541.278   2.88   1.62041   60.25
2  *a    24.918   0.01   1.52780   33.41
3  *a*d   24.918   0.01   1.55710   49.74
4  *a    24.918   13.66
5      -1884.105   2.10   1.56384   60.71
6       82.335   0.15
7       52.740   4.44   1.68893   31.16
8       111.258   D8(可変)
9       42.908   5.90   1.74000   44.81
10 *a    78.686   8.56
11      78.465   1.80   1.74950   35.25
12      29.201   8.42   1.49782   82.57
13     -145.003   7.87
14      56.224   5.44   1.65100   56.24
15     -185.363   D15(可変)
16 *s     ∞    1.30
17     -833.557   3.50   1.86074   23.08
18      -37.536   1.15   1.64769   33.73
19      60.171   3.77
20      -30.999   1.20   1.54814   45.51
21     -247.421   D21(可変)
22 *a    52.989   1.30   1.54814   45.51
23      31.203   6.33   1.49782   82.57
24      -33.095   0.20
25     -870.002   3.38   1.71736   29.57
26      46.113   0.08   1.55389   39.22
27 *a    57.706   D27(可変)
28      57.488   5.72   1.62041   60.25
29     -2567.589   41.80
 
[非球面データ]
第2,3,4面
 κ=-1.0548
 A4=0.196198E-05,A6=-0.337901E-09,A8=0.506747E-11,A10=-0.672772E-14
 A12=0.318737E-17
第10面
 κ=-6.4009
 A4=0.316676E-05,A6=-0.809020E-09,A8=0.101113E-11,A10=-0.159292E-148
第22面
 κ = 0.4590
 A4=0.134892E-06,A6=-0.142020E-07,A8=-0.182191E-10,A10=0.617701E-13
第27面
 κ = 1.4571
 A4=0.981089E-05,A6=0.110465E-07,A8=-0.220627E-09,A10=0.120511E-11
 A12=-0.275363E-14
 
[回折光学面データ]
第3面
 C2=5.6215E-05,C4=1.6670E-07,C6=1.6313E-10
 C8=-9.4388E-13,C10=8.2737E-16
 
[回折光学素子 光学データ]
          nC      nd      nF      ng
 低屈折率   1.523300   1.527800   1.539100   1.549100
 高屈折率   1.553800   1.557100   1.565000   1.571300
 
[各群間隔データ]
    広角端   望遠端
D8    45.72    2.51
D15    0.15   23.61
D21   10.65    0.10
D27    0.67   41.64
 
[ズーム光学系 群データ]
群番号  群初面  群焦点距離
 G1     1    -40.98
 G2     9     44.40
 G3    17    -45.75
 G4    22    95.94
 G5    28    90.71
 
[条件式]
条件式(1)ν1p =31.16(正レンズL13)
条件式(2)Δ(θg,F) =0.0072(正レンズL13)
条件式(3)ν1dave =50.7
条件式(4)fDOE =-8894.42
条件式(5)|φdoei/φi| =0.0046
条件式(6)|TK/fw| =3.55
条件式(7)Pmin =0.076
 表3から、第3実施例に係るズーム光学系ZL3は、条件式(1)~(7)を満たすことが分かる。
 図9、図10は、第3実施例に係るズームレンズ系ZLの諸収差図である。図9は広角端状態における撮影距離無限遠での縦収差図であり、図10は望遠端状態における撮影距離無限遠での縦収差図である。縦収差図には、各図における左側から、(縦方向の)球面収差、非点収差、及び歪曲収差が記載されている。各収差図は、いずれも第3実施例に係るズーム光学系ZL3を物体側から光線追跡したものである。
 各収差図から明らかなように、第3実施例に係るズーム光学系ZL3は、広角端状態から望遠端状態までの各焦点距離状態において、球面収差、非点収差、歪曲収差等を含め、諸収差が良好に補正されていることが分かる。
 以上説明したように、本発明によれば、回折光学素子を効果的に使用することにより、小型で、全ズーム範囲に亘り色収差を始めとした諸収差を良好に補正し、高い光学性能を有したズーム光学系を提供することができる。
 なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。
 ZL(ZL1~ZL3) ズーム光学系
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 G5 第5レンズ群
 PF 回折光学素子
 SP 絞り
 CAM デジタル一眼レフカメラ(撮像装置)
 1 撮影レンズ(ズーム光学系)

Claims (13)

  1.  物体側より順に並んだ、負の屈折力を持つ第1レンズ群と、他のレンズ群とからなり、変倍に際して各レンズ群の相互間隔が変化するズーム光学系であって、
     前記第1レンズ群は、
      最も物体側に配置され、像側レンズ面に回折光学素子を有する第1の負レンズと、
      前記第1の負レンズよりも像側に配置される正レンズと、を有し、
     前記正レンズに用いる硝材は、以下の条件式を満足することを特徴とするズーム光学系。
       ν1p ≦ 35
       Δ(θg,F) ≧ 0.007
     但し、
     ν1p:前記第1レンズ群の前記正レンズに用いる硝材のd線を基準とするアッベ数、
     Δ(θg,F):d線を基準とするアッベ数νdを横軸、部分分散比(θg,F)=(ng-nF)/(nF-nC)を縦軸としたグラフにおいて、硝種Aと硝種Bを結ぶ直線を標準線としたとき、この標準線からの前記正レンズに用いる硝材の部分分散比の偏差。なお、前記硝種Aと前記硝種Bの前記アッベ数νdと部分分散比(θg,F)は、以下の値である。
     硝種A:νd=60.49,(θg,F)=0.5436
     硝種B:νd=36.26,(θg,F)=0.5828
  2.  前記他のレンズ群は、前記物体側より順に並んだ、正の屈折力を持つ第2レンズ群と、負の屈折力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、
     変倍に際して前記第1レンズ群を含む各レンズ群の相互間隔が変化し、
     前記第1レンズ群は、物体側から順に並んだ、前記第1の負レンズと、第2の負レンズと、前記正レンズとを有し、
     前記第1の負レンズは、物体側に凸面を向けたメニスカス形状であり、
     前記第2の負レンズは、両凹レンズ形状であり、
     前記正レンズは、物体側に凸面を向けたメニスカス形状であることを特徴とする請求項1に記載のズーム光学系。
  3.  以下の条件式を満足することを特徴とする請求項2に記載のズーム光学系。
       40.0 ≦ ν1dave≦ 55.0
     但し、
     ν1dave:前記第1レンズ群を構成するレンズのうち、前記回折光学素子、屈折力の
    絶対値が1/5000以下の硝材からなるレンズ及びアッベ数が70より大きい異常分散ガラスからなるレンズを除いた、全てのレンズの硝材のd線を基準とするアッベ数の平均値。
  4.  前記第1レンズ群~前記第5レンズ群のうち、前記第3レンズ群のみがd線に対する屈折率が1.8より大きい高屈折率ガラス製のレンズを含んで構成されることを特徴とする請求項2または3に記載のズーム光学系。
  5.  前記第1レンズ群を構成する前記第1の負レンズは、前記回折光学素子を設ける前記像側レンズ面が非球面であることを特徴とする請求項1~4のいずれか一項に記載のズーム光学系。
  6.  以下の条件式を満足することを特徴とする請求項5に記載のズーム光学系。
       fDOE > -7000
     但し、
     fDOE: 前記回折光学素子の焦点距離(mm)。
  7.  以下の条件式を満足することを特徴とする請求項1~6のいずれか一項に記載のズーム光学系。
       0.001 ≦ |φdoei/φi| ≦ 0.010
     但し、
     φi:前記回折光学素子を含む前記第1レンズ群全体の屈折力、
     φdoei:前記回折光学素子の屈折力。
  8.  以下の条件式を満足することを特徴とする請求項1~7のいずれか一項に記載のズーム光学系。
       3.0 ≦ |TK/fw| ≦ 4.0
     但し、
     TK:ズーミングによって変化する、光学系の射出瞳から像面までの距離の最小値、
     fw :広角端状態における全系の焦点距離。
  9.  前記第5レンズ群は、少なくとも正レンズと負レンズを一枚ずつ有することを特徴とする請求項1~8のいずれか一項に記載のズーム光学系。
  10.  以下の条件式を満足することを特徴とする請求項1~9のいずれか一項に記載のズーム光学系。
       0.040 ≦ Pmin ≦ 0.500
     但し、
     Pmin:前記回折光学素子の最小ピッチ(mm)。
  11.  前記第1レンズ群は、少なくとも一枚の正レンズを有し、その硝材として正常分散ガラスを用いることを特徴とする請求項1~10のいずれか一項に記載のズーム光学系。
  12.  前記第2レンズ群は、少なくとも一枚の非球面を有することを特徴とする請求項1~11のいずれか一項に記載のズーム光学系。
  13.  前記第4レンズ群は、少なくとも一枚の非球面を有することを特徴とする請求項1~12のいずれか一項に記載のズーム光学系。
PCT/JP2013/000984 2012-02-29 2013-02-21 ズーム光学系 WO2013128856A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014502014A JP5854124B2 (ja) 2012-02-29 2013-02-21 ズーム光学系及び撮像装置
CN201380005147.3A CN104040405B (zh) 2012-02-29 2013-02-21 变焦光学系统
IN3496DEN2014 IN2014DN03496A (ja) 2012-02-29 2013-02-21
US14/291,155 US9535240B2 (en) 2012-02-29 2014-05-30 Zoom optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-043926 2012-02-29
JP2012043926 2012-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/291,155 Continuation US9535240B2 (en) 2012-02-29 2014-05-30 Zoom optical system

Publications (1)

Publication Number Publication Date
WO2013128856A1 true WO2013128856A1 (ja) 2013-09-06

Family

ID=49082071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000984 WO2013128856A1 (ja) 2012-02-29 2013-02-21 ズーム光学系

Country Status (5)

Country Link
US (1) US9535240B2 (ja)
JP (1) JP5854124B2 (ja)
CN (1) CN104040405B (ja)
IN (1) IN2014DN03496A (ja)
WO (1) WO2013128856A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094884A (ja) * 2013-11-13 2015-05-18 富士フイルム株式会社 ズームレンズおよび撮像装置
WO2016121926A1 (ja) * 2015-01-30 2016-08-04 株式会社ニコン ズームレンズ、光学機器、およびズームレンズの製造方法
WO2016121944A1 (ja) * 2015-01-30 2016-08-04 株式会社ニコン ズームレンズ、光学機器、およびズームレンズの製造方法
CN106124063A (zh) * 2016-08-30 2016-11-16 福建福光天瞳光学有限公司 超大视场长波红外光学无热化测温镜头及其制造方法
US10281693B2 (en) 2014-05-09 2019-05-07 Nikon Corporation Inverted equal-magnification relay lens and camera system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458856A (zh) * 2015-01-30 2020-07-28 株式会社尼康 变焦镜头以及光学设备
JP6649287B2 (ja) * 2017-01-05 2020-02-19 富士フイルム株式会社 ズームレンズおよび撮像装置
CN108572433B (zh) * 2017-03-10 2020-12-29 湖北华中光电科技有限公司 一种二元面高倍变焦镜头
WO2019116567A1 (ja) * 2017-12-15 2019-06-20 株式会社ニコン 光学系、光学機器、および光学系の製造方法
JPWO2019229817A1 (ja) * 2018-05-28 2021-05-13 株式会社ニコン 光学系、光学機器、および光学系の製造方法
CN111308654B (zh) * 2020-02-28 2022-05-20 江苏大学 一种用于微弱光信号收集的变焦光学系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152237A (ja) * 1997-08-01 1999-02-26 Canon Inc ズームレンズ
JPH1152235A (ja) * 1997-07-31 1999-02-26 Canon Inc ズームレンズ
JP2000009999A (ja) * 1998-06-19 2000-01-14 Minolta Co Ltd ズームレンズ
JP2000066092A (ja) * 1998-08-17 2000-03-03 Nikon Corp 結像光学系
JP2000147380A (ja) * 1998-11-10 2000-05-26 Canon Inc ズームレンズ及びカメラ
JP2002196236A (ja) * 2000-12-22 2002-07-12 Canon Inc ズームレンズ及びそれを用いた光学機器
JP2003021783A (ja) * 2001-07-06 2003-01-24 Canon Inc ズームレンズ及びそれを用いた光学機器
JP2006084971A (ja) * 2004-09-17 2006-03-30 Canon Inc ズームレンズ及びそれを有する画像投射装置
JP2009251117A (ja) * 2008-04-02 2009-10-29 Panasonic Corp ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2010217535A (ja) * 2009-03-17 2010-09-30 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、及び、撮影レンズの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081389A (en) 1997-07-31 2000-06-27 Canon Kabushiki Kaisha Zoom lens of retrofocus type
JP2004117826A (ja) 2002-09-26 2004-04-15 Minolta Co Ltd 撮像装置
US20080094712A1 (en) 2004-12-20 2008-04-24 Nikon Corporation Close-Bonded Diffractive Optical Element, Optical Material Used Therefore, Resin Precursor And Resin Precursor Composition
WO2006068138A1 (ja) 2004-12-20 2006-06-29 Nikon Corporation 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
JP4898410B2 (ja) * 2006-12-14 2012-03-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5355697B2 (ja) * 2009-08-25 2013-11-27 キヤノン株式会社 光学系及びそれを有する光学機器
JP2012150432A (ja) * 2010-12-28 2012-08-09 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP5885518B2 (ja) * 2012-01-30 2016-03-15 キヤノン株式会社 撮影光学系及びそれを有する撮像装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152235A (ja) * 1997-07-31 1999-02-26 Canon Inc ズームレンズ
JPH1152237A (ja) * 1997-08-01 1999-02-26 Canon Inc ズームレンズ
JP2000009999A (ja) * 1998-06-19 2000-01-14 Minolta Co Ltd ズームレンズ
JP2000066092A (ja) * 1998-08-17 2000-03-03 Nikon Corp 結像光学系
JP2000147380A (ja) * 1998-11-10 2000-05-26 Canon Inc ズームレンズ及びカメラ
JP2002196236A (ja) * 2000-12-22 2002-07-12 Canon Inc ズームレンズ及びそれを用いた光学機器
JP2003021783A (ja) * 2001-07-06 2003-01-24 Canon Inc ズームレンズ及びそれを用いた光学機器
JP2006084971A (ja) * 2004-09-17 2006-03-30 Canon Inc ズームレンズ及びそれを有する画像投射装置
JP2009251117A (ja) * 2008-04-02 2009-10-29 Panasonic Corp ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2010217535A (ja) * 2009-03-17 2010-09-30 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、及び、撮影レンズの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094884A (ja) * 2013-11-13 2015-05-18 富士フイルム株式会社 ズームレンズおよび撮像装置
US10281693B2 (en) 2014-05-09 2019-05-07 Nikon Corporation Inverted equal-magnification relay lens and camera system
WO2016121926A1 (ja) * 2015-01-30 2016-08-04 株式会社ニコン ズームレンズ、光学機器、およびズームレンズの製造方法
WO2016121944A1 (ja) * 2015-01-30 2016-08-04 株式会社ニコン ズームレンズ、光学機器、およびズームレンズの製造方法
JPWO2016121944A1 (ja) * 2015-01-30 2017-11-02 株式会社ニコン ズームレンズ、光学機器、およびズームレンズの製造方法
JPWO2016121926A1 (ja) * 2015-01-30 2017-11-02 株式会社ニコン ズームレンズ、光学機器、およびズームレンズの製造方法
JP2019070827A (ja) * 2015-01-30 2019-05-09 株式会社ニコン ズームレンズ
JP2019164375A (ja) * 2015-01-30 2019-09-26 株式会社ニコン ズームレンズ、および光学機器
CN106124063A (zh) * 2016-08-30 2016-11-16 福建福光天瞳光学有限公司 超大视场长波红外光学无热化测温镜头及其制造方法
CN106124063B (zh) * 2016-08-30 2022-11-15 福建福光天瞳光学有限公司 超大视场长波红外光学无热化测温镜头及其制造方法

Also Published As

Publication number Publication date
JPWO2013128856A1 (ja) 2015-07-30
IN2014DN03496A (ja) 2015-06-05
US9535240B2 (en) 2017-01-03
JP5854124B2 (ja) 2016-02-09
CN104040405B (zh) 2017-05-03
US20140268363A1 (en) 2014-09-18
CN104040405A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5854124B2 (ja) ズーム光学系及び撮像装置
JP4630645B2 (ja) 光学系
JP4898410B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5074790B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5366673B2 (ja) 光学系及びそれを有する光学機器
US7545577B2 (en) Zoom lens and image pickup apparatus including the same
JP2002244044A (ja) ズームレンズ及びそれを用いた光学機器
US7133221B2 (en) Lens system and optical device having the same
US20160231545A1 (en) Variable power optical system, optical device and method for manufacturing variable power optical system
JP5202014B2 (ja) 光学系及びそれを用いた光学機器
JP5641461B2 (ja) ズーム光学系及びこれを有する撮像装置
CN103154799A (zh) 变焦透镜和图像拾取设备
JP5202025B2 (ja) 撮像光学系及びそれを有する撮像装置
JP2012078397A (ja) 回折格子を含む光学系および光学機器
JP5510784B2 (ja) ズームレンズ、光学機器
JP6938841B2 (ja) ズームレンズ及び光学機器
JP4860500B2 (ja) 色消しレンズ系、光学装置
JP5845887B2 (ja) ズームレンズおよび撮像装置
US20020131184A1 (en) Zoom lens system, image projecting and image pick-up devices using the same
JP6635250B2 (ja) 撮像光学系及びそれを有する撮像装置
JP5317553B2 (ja) 光学系及びそれを用いた光学機器、撮像装置並びに投影装置
JP5935879B2 (ja) ズームレンズ及び光学機器
JP5845886B2 (ja) ズームレンズおよび撮像装置
JP6784952B2 (ja) 光学系及び光学機器
US20220091400A1 (en) Variable magnification optical system, optical equipment, and method for producing variable magnification optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754493

Country of ref document: EP

Kind code of ref document: A1