WO2013125386A1 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- WO2013125386A1 WO2013125386A1 PCT/JP2013/053203 JP2013053203W WO2013125386A1 WO 2013125386 A1 WO2013125386 A1 WO 2013125386A1 JP 2013053203 W JP2013053203 W JP 2013053203W WO 2013125386 A1 WO2013125386 A1 WO 2013125386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- wavelength light
- measurement
- reaction vessel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/51—Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/82—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/493—Physical analysis of biological material of liquid biological material urine
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00613—Quality control
- G01N35/00623—Quality control of instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0325—Cells for testing reactions, e.g. containing reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0389—Windows
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N2021/3129—Determining multicomponents by multiwavelength light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/51—Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
- G01N2021/513—Cuvettes for scattering measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/82—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
- G01N2021/825—Agglutination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N2035/00891—Displaying information to the operator
- G01N2035/009—Displaying information to the operator alarms, e.g. audible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/04—Batch operation; multisample devices
- G01N2201/0415—Carrusel, sequential
Definitions
- the present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of samples such as blood and urine.
- the automatic analyzer performs qualitative and quantitative analysis of samples such as blood and urine (hereinafter referred to as specimens) by various methods. For example, the amount of transmitted light or the amount of light scattered in the mixed reaction liquid of the specimen and reagent. It is known to perform qualitative and quantitative analysis of specimens by measuring
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-20059 discloses a reaction container blank that increases with an increase in the absorbance of a light beam that passes through a reaction container for reaction analysis of a sample and a reagent.
- a technique is disclosed in which a value is compared with a plurality of determination criteria in which different blank reference values are set for each analysis item, and whether or not the reaction container can be used for measurement is determined.
- the present invention has been made in view of the above, and an object thereof is to provide an automatic analyzer that can suppress a decrease in analysis accuracy.
- the present invention provides a multi-wavelength light source that irradiates a multi-wavelength light to a reaction vessel that contains a mixture of a sample to be measured and a reagent, and a transmitted light amount that passes through the reaction vessel and the contents.
- FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to an embodiment.
- FIG. It is a functional block diagram which shows the detail of a computer. It is an enlarged view which shows a transmitted light amount measurement part schematically. It is an enlarged view which shows a light-scattering light quantity measurement part schematically. It is a flowchart which shows a deterioration determination process. It is a figure which shows a deterioration determination result. It is a processing flow which shows the maintenance support process corresponding to a cell check alarm. It is a figure which shows a deterioration determination result. It is a figure which shows a deterioration determination result. It is a processing flow which shows the maintenance support process corresponding to a lamp check alarm. It is a figure which shows a deterioration determination result. It is a processing flow which shows the maintenance support process corresponding to a LED check alarm. It is a figure which shows a deterioration determination result.
- FIG. 1 is a diagram schematically showing the overall configuration of the automatic analyzer according to the present embodiment
- FIG. 2 is a functional block diagram showing details of the computer.
- 3 and 4 are enlarged views schematically showing the transmitted light amount measuring unit and the light scattered light amount measuring unit, respectively.
- the automatic analyzer includes a sample disk 5, first and second reagent disks 13A and 13B, reaction disk 1, sample dispensing mechanism 7, reagent dispensing mechanisms 12A and 12B, and other components including a computer 18. It is composed roughly of functional parts.
- sample disk 5 a plurality of sample containers 6 in which samples to be analyzed (hereinafter referred to as samples) such as blood and urine are accommodated are arranged side by side in the circumferential direction.
- samples samples to be analyzed
- the sample disk 5 is rotationally driven in the circumferential direction by a rotation drive mechanism (not shown), thereby moving the sample container 6 to a predetermined position.
- the first and second reagent disks 13A and 13B are respectively provided with reagent coolers 9A and 9B, and a plurality of reagent bottles 10A and 10B containing reagents used for each processing item of analysis processing in the automatic analyzer are provided. They are arranged side by side in the circumferential direction.
- the first and second reagent disks 13A and 13B are rotationally driven in a circumferential direction by a rotation driving mechanism (not shown), thereby moving the reagent bottles 10A and 10B to predetermined positions.
- the first and second reagent disks 13A and 13B are provided with reading devices 34A and 34B for reading the reagent identification information provided in the reagent bottles 10A and 10B.
- the position information on the second reagent disks 13A and 13B is sent to the computer 18 via the interface 19, and stored in the memory 11 in association with the measurement date and time.
- the reagent identification information is represented by, for example, a barcode, and the readers 34A and 34B are barcode readers.
- the reaction disk 1 includes a constant temperature bath (reaction tank) 3 controlled to a predetermined temperature by a constant temperature maintaining device 4, and a plurality of reaction containers (reaction cells) 2 that contain a mixed reaction solution of a specimen and a reagent are provided. They are arranged side by side in the circumferential direction. The reaction disk 1 is rotated in the circumferential direction by a rotation drive mechanism (not shown), thereby moving the reaction container 2 to a predetermined position.
- a rotation drive mechanism not shown
- the sample dispensing mechanism 7 dispenses the sample accommodated in the sample container 6 into the reaction container 2, and the reagent dispensing mechanisms 12A and 12B include the reagent accommodated in the reagent bottles 10A and 10B in the reaction container 2.
- the mixed reaction liquid of the specimen and the reagent dispensed into the reaction container 2 is stirred by the stirring mechanisms 33A and 33B provided at the respective dispensing positions in the reagent dispensing mechanisms 12A and 12B.
- the operations of the sample disc 1 and the specimen dispensing mechanism 7 are controlled by the sample dispensing control unit 20.
- the operations of the first and second reagent disks 13A and 13B, the reagent dispensing mechanisms 12A and 12B, and the stirring mechanisms 33A and 33B are controlled by the reagent dispensing control unit 21.
- the sample dispensing control unit 20 and the reagent dispensing control unit 21 are controlled by a computer 19 connected via an interface 19.
- the reaction disk 1 includes a transmitted light amount measurement unit 41 that performs a transmitted light amount detection process (detailed later) on the mixed reaction liquid of the specimen and the reagent accommodated in the reaction vessel 2, and a light scattered light amount on the mixed reaction liquid.
- a light-scattering light quantity measurement unit 40 that performs detection processing (described in detail later) is provided.
- the transmitted light amount measurement unit 41 is a multi-wavelength light source 44 (for example, a halogen light source) that irradiates multi-wavelength light onto a reaction container 2 that contains a mixed reaction solution of a sample to be measured (sample) and a reagent. And a transmitted light amount detector 45 that detects the transmitted light amount of the transmitted light that passes through the reaction vessel 2 and the mixed reaction liquid that is a container.
- the transmitted light amount measurement unit 41 includes a base member 41a, a light source base 44a that is fixed to the base member 41a and serves as a base on which the multi-wavelength light source 44 is disposed, and a transmitted light amount detector 45 that is secured to the base member 41a. And a detector base 45a serving as a base to be used.
- the thermostat 3 is disposed between the multi-wavelength light source 44 and the transmitted light amount detector 45 so as to extend in the circumferential direction of the reaction disk 1.
- a light projection window 344 that transmits multi-wavelength light from the multi-wavelength light source 44 to the reaction vessel 2 and transmitted from the reaction vessel 2.
- a light receiving window 345 that transmits light transmitted to the light amount detector 45 is provided, and the reaction vessel 2 driven in the circumferential direction of the reaction disk 1 in the thermostatic chamber 3 includes the multi-wavelength light source 44 and the transmitted light amount detector 45.
- the amount of transmitted light is detected when passing between the two.
- the transmitted light amount (detection result) detected by the transmitted light amount detector 45 is digitally converted by the A / D converter 16 and sent to the computer 18 via the interface 19.
- the light-scattering light quantity measurement unit 40 is a single-wavelength light source 14 (for example, an LED light source) that irradiates a reaction container 2 that contains a mixed reaction solution of a sample to be measured (sample) and a reagent.
- a single-wavelength light source 14 for example, an LED light source
- a reaction container 2 that contains a mixed reaction solution of a sample to be measured (sample) and a reagent.
- Light ⁇ Emitting Diode light source Light ⁇ Emitting Diode light source
- a light-scattering light detector 15 for detecting the light-scattering light quantity of the light-scattering light generated from the reaction vessel 2 and the mixed reaction liquid that is contained in the single-wavelength light.
- the light scattered light amount measurement unit 40 includes a base member 401a, a light source base 14a that is fixed to the base member 40a and serves as a base on which the single wavelength light source 14 is disposed, and a transmitted light amount detector 15 that is fixed to the base member 40a. It has the detector base 15a used as the base to arrange
- the intensity of the light scattered by the sample to be measured is measured by two or more light scattering detectors 15 arranged on the circumference centered on the optical axis. In the embodiment, in addition to the light scattering detector 15 arranged on the optical axis, four light scattering detectors 15 arranged on the circumference centered on the optical axis are arranged. In FIG. 4, only two of the four light scattering detectors are shown.
- the four light scattering detectors are arranged at the same tilt angle with respect to the optical axis.
- the inclination angle is arranged in the range of 0 to 30 degrees.
- the light scattering detector 15 and the light source 14 are arranged with a measurement target sample therebetween.
- the light scattering detector 15 disposed on the optical axis is used, but the present invention is not necessarily limited to this, and the light scattering detector disposed on the circumference around the optical axis is used.
- the deterioration process determination may be performed. This is because when the inclination angle is close to 0 degrees, the deterioration process determination can be performed in the same manner.
- the thermostat 3 is disposed between the single wavelength light source 14 and the light scattering light quantity detector 15 so as to extend in the circumferential direction of the reaction disk 1.
- a light projection window 314 that transmits single wavelength light from the single wavelength light source 14 to the reaction vessel 2, and the reaction vessel 2
- a light receiving window 315 that transmits light scattered light to the light scattering light amount detector 15 is provided, and the reaction vessel 2 driven in the circumferential direction of the reaction disk 1 in the thermostatic chamber 3 includes the single wavelength light source 14 and light scattering.
- the light scattering light amount (detection result) detected by the light scattering light amount detector 15 is digitally converted by the A / D converter 16 and sent to the computer 18 via the interface 19.
- the reaction container 2 containing the sample (mixed reaction solution) for which the measurement has been completed is cleaned by the cleaning mechanism 17 at the cleaning position.
- the automatic analyzer includes a keyboard 24 as an input device, a CRT display 25 as a display device, a printer 22 as a print output device, a recording medium drive 23 for recording on an external output medium such as an FD, a storage device (storage unit)
- the memory 11 is connected to each functional unit including the computer 18 via the interface 19.
- the memory 11 is a storage device such as a hard disk, and stores information such as passwords set for each operator, screen display level, analysis parameters, analysis request item contents, calibration results, in addition to analysis results. .
- the memory 11 stores, as a result of cell blank measurement, which will be described later, measurement results at the past reference time, measurement results at the time of execution of the deterioration determination process, and the like in association with the measurement date and time. Values such as various threshold values used in the determination process are also stored.
- the computer 18 has a function as a control means for controlling the operation of the entire automatic analyzer, and further includes a transmitted light amount detection process, a light scattered light amount detection process, and a cell blank measurement related to each detection process.
- a measurement control unit 18a that performs measurement control, and a calculation unit 18b that calculates the difference between the measurement result of the cell blank measurement at the past reference time stored in the memory 11 and the measurement result of the cell blank measurement when the deterioration determination process is executed.
- a determination unit 18c that performs a deterioration determination process for determining the deterioration state of the single wavelength light source 14, the multi-wavelength light source 44, the reaction vessel 2, and the like based on the measurement result of the cell blank measurement and the calculation result in the calculation unit 18b. have.
- the measurement control unit 18a performs qualitative / quantitative analysis of the sample by performing transmitted light amount detection processing and light scattered light amount detection processing on the sample to be measured based on a command input from the keyboard 24 or the like by the operator.
- the cell blank measurement described later is performed, and the state of the automatic analyzer is determined by the deterioration determination process based on the result of the cell blank measurement.
- An operator performs maintenance of the automatic analyzer based on the result of the deterioration determination process, thereby suppressing a decrease in analysis conditions and improving the reliability of the analysis result.
- the transmitted light amount detection process is performed at the moment when the reaction vessel 2 passes through a position (measurement position) on a straight line connecting the multi-wavelength light source 44 and the transmitted light amount detector 45 in the transmitted light amount measurement unit 41. This is processing for detecting the amount of transmitted light that passes through the reaction vessel 2 from the multi-wavelength light source 44 and reaches the transmitted light amount detector 45.
- the transmitted light amount (detection result) detected by the transmitted light amount detector 45 is digitally converted by the A / D converter 16 and sent to the computer 18 via the interface 19, and is associated with the measurement date and time etc. in the memory (storage unit). 11 is stored.
- the amount of the target component can be calculated based on the Lambert-Beer law from the amount of transmitted light at one or a plurality of wavelengths obtained by transmitting light having a specific wavelength in the reaction solution. it can. In other words, when light is transmitted through the mixed reaction solution, the amount of transmitted light attenuates as the concentration of the component to be quantified in the reaction solution increases. By applying the measured transmitted light amount, the target biochemical component in the sample is quantified.
- the reaction used for such quantification is different depending on the type of biochemical component to be quantified.
- the target to be quantified is a substrate in the sample
- a color reaction is caused by using a reagent containing an enzyme that specifically reacts with the substrate, and the degree of coloration increases according to the amount of the target to be quantified.
- the biochemical component (substrate) to be quantified is quantified using the decrease in the amount of transmitted light.
- the target to be quantified is an antigen in the specimen
- an agglutination reaction is caused using a reagent containing an antibody that specifically reacts with the antigen, and the degree of aggregation increases according to the amount of the target to be measured.
- the biochemical component (antigen) to be quantified is quantified using the decrease in the amount of light.
- the quantification target is an antibody in the specimen
- the quantification is performed by causing an agglutination reaction using a reagent containing an antigen that specifically reacts with the antibody.
- the target to be quantified is an antigen
- using a reagent in which the antibody is sensitized (bound) to the surface of the latex particles causes the latex to aggregate according to the reaction between the antigen and the antibody. Aggregates larger than the agglomerates are generated, so that the change in the amount of transmitted light is amplified, and a more accurate detection result can be obtained.
- the measurement control unit 18a of the computer 18 calculates the absorbance of the mixed reaction solution stored in the reaction vessel 2 using the transmitted light amount stored in the memory (storage unit) 11, and uses this absorbance to determine the biochemistry to be quantified. Quantify ingredients.
- the transmitted light quantity measurement part 41 and the measurement control part 18a comprise the function as a transmitted photometer (absorbance photometer).
- the reaction container 2 passes through a position (measurement position) on a straight line connecting the single wavelength light source 14 and the light scattered light quantity detector 15 in the light scattered light quantity measurement unit 40.
- the light scattering light amount detector 15 detects the light scattering light amount generated from the reaction vessel 2 and the mixed reaction liquid by the irradiation light from the single wavelength light source 14.
- the light scattering light amount (detection result) detected by the light scattering light amount detector 15 is digitally converted by the A / D converter 16 and sent to the computer 18 via the interface 19 and is associated with the measurement date and time in the memory (memory). Part) 11.
- a reagent that specifically reacts with the biochemical component to be quantified in the sample contained in the sample container 2 is mixed and reacted, and the reaction solution contains The amount of light scattering of the light scattered by the light hitting the agglomerates generated in step 1 is measured, and the target component amount is calculated from the amount of light scattered.
- the measurement control unit 18a of the computer 18 calculates the light scattering luminous intensity of the mixed reaction liquid stored in the reaction vessel 2 using the light scattering light quantity stored in the memory (storage unit) 11, and quantitatively uses the light scattering luminous intensity. Quantify target biochemical components.
- the light-scattering light quantity measurement part 40 and the measurement control part 18a comprise the function as a light-scattering photometer.
- Cell blank measurement is performed for detection of transmitted light amount (transmitted light amount detection process) and detection of light scattered light amount (light scattering) for a reaction vessel 2 containing a predetermined reference solution (for example, pure water). Light amount detection processing).
- the measurement result (transmitted light amount) of the cell blank measurement of the transmitted light amount detection process and the measurement result (light scattered light amount) of the light scattered light amount detection process are sent to the computer 18 and associated with the measurement date and time etc. in the memory (storage unit) 11. Is remembered.
- the cell blank measurement is performed by a light scattering detector disposed on the optical axis of a single wavelength light source.
- FIG. 5 is a flowchart showing the deterioration determination process in the present embodiment.
- FIG. 6 is a diagram showing the deterioration determination result.
- the measurement control unit 18a performs cell blank measurement (step S100). Subsequently, the difference between the measurement result CBa1 of the cell blank measurement in the transmitted light amount detection process and the measurement result CBa0 at the reference time is calculated, and it is determined whether the calculation result is larger than a predetermined threshold THca (step S110). . Further, the difference between the measurement result CBs1 of the cell blank measurement in the light scattered light amount detection process and the measurement result CBs0 at the reference time is calculated, and it is determined whether the calculation result is larger than a predetermined threshold THcs (step S110). .
- step S110 determines whether abnormality is abnormal. If the determination result in step S110 is YES, a cell check alarm, lamp check alarm, or LED check alarm is issued according to the deterioration determination result in FIG. 6 (step S111), and the process ends. On the other hand, if the determination result in step S110 is NO, information indicating no abnormality is issued (step S120), and the process ends.
- CBa1 When the light projecting window or the light receiving window of the transmitted light amount measuring unit or both windows are dirty, the transmitted light amount is decreased, so CBa1 is decreased. CBa1 also decreases when the reaction vessel is dirty, when the reaction vessel is dirty, or when the multiwavelength light source is defective. Therefore, the condition of CBa0-CBa1> THca is satisfied. Similarly, when the light projecting window or the light receiving window of the scattered light amount measurement unit or both windows are dirty, the scattered light amount is decreased, and thus CBs1 is decreased. CBs1 also decreases when the reaction vessel is dirty, when the reaction vessel is dirty, or when the single wavelength light source is defective. Therefore, the condition of CBs0-CBs1> THcs is satisfied. When both the condition of CBa0-CBa1> THca and the condition of CBs0-CBs1> THcs are satisfied, a cell check alarm is issued.
- the cell check alarm is an alarm mainly when contamination or deterioration of the reaction vessel (reaction cell) 2 is suspected, and the following cases are assumed. 1. 1. Dirt on the light projection windows 314 and 344 or the light reception windows 315 and 345 of the light scattering light quantity measurement unit 40 and the transmitted light quantity measurement unit 41 2. Dirt on the thermostatic chamber (reaction vessel) 3 3. Dirty reaction vessel (reaction cell) 2 Defective single wavelength light source 14 and multi-wavelength light source 44
- the transmitted light amount (or absorbance) and the light scattered light amount are reduced. .
- the same phenomenon occurs when the reactor water is contaminated.
- both the single-wavelength light source 14 and the multi-wavelength light source 45 deteriorate and the light amount decreases, the transmitted light amount (or absorbance) and the light scattering light amount decrease.
- the lifetime is 10 times longer than when a halogen light source is used as the multi-wavelength light source 44.
- the single-wavelength light source 14 and the multi-wavelength light source 44 can deteriorate at the same time.
- the nature is considered low. Therefore, if the light scattering windows 314 and 344 and the light receiving windows 315 and 345 of the light scattered light measuring unit 40 and the transmitted light measuring unit 41 are not caused by dirt or reaction tank water, the LED is used as the single wavelength light source 14. In view of the long life when used, the contamination of the reaction vessel 2 is highly likely to cause a cell check alarm.
- the lamp check alarm is an alarm in the case where dirt or a defect related to the transmitted light amount measurement unit 41 is suspected, and the following cases are assumed. 1. 1. Dirt on the light projection window 344 and the light reception window 345 of the transmitted light amount measurement unit 41 Defective multi-wavelength light source 44
- the LED check alarm is an alarm when a dirt or a defect related to the light scattering light quantity measurement unit 40 is suspected, and the following cases are assumed. 1. 1. Dirt on the light projection window 314 and the light receiving window 315 of the light scattering light quantity measurement unit 40 Defect of single wavelength light source 14
- FIG. 7 is a processing flow showing maintenance support processing corresponding to the cell check alarm.
- FIG. 8 is a diagram showing a result of deterioration determination.
- the measurement control unit 18a displays the light scattering windows 314 and 344 and the light receiving windows 315 and 345 of the light scattering light amount measuring unit 40 and the transmitted light amount measuring unit 41 on the CRT display (display device) 25. , And a display prompting the operator to perform cleaning of the constant temperature bath (reaction bath) 3 (step S200). Subsequently, the operator confirms whether or not the cleaning is completed (step S210). If the determination result is NO, that is, if the operator inputs that the cleaning is not performed using the keyboard 24 or the like, the process ends.
- step S200 determines whether the calculation result is larger than a predetermined threshold value THca (step S230).
- the difference between the measurement result CBs2 of the cell blank measurement in the light scattering light amount detection process and the measurement result CBs0 at the reference time is calculated, and it is determined whether the calculation result is larger than a predetermined threshold THcs (step S230).
- step S230 If the determination result in step S230 is NO, the light projection windows 314 and 344 and the light reception windows 315 and 345 of the light scattered light amount measurement unit 40 and the transmitted light amount measurement unit 41, or the contamination of the thermostatic chamber (reaction tank) 3 Is displayed on the CRT display (display device) 25 (step S241), and the process is terminated.
- step S230 If the determination result in step S230 is YES, the cause of deterioration is specified according to the result of deterioration determination in FIG. 8 (S231), the cause of deterioration is displayed on the CRT display (display device) 25, and the process ends. .
- a display for prompting replacement of the reaction vessel 2 is performed on the CRT display (display device) 25 (step S232). Subsequently, it is confirmed to the operator whether or not the replacement of the reaction vessel 2 has been completed (step S250), and when the determination result is NO, that is, when the operator inputs with the keyboard 24 or the like that the reaction vessel is not exchanged. Ends the process.
- step S260 cell blank measurement is performed. Subsequently, a difference between the measurement result CBa3 of the cell blank measurement in the transmitted light amount detection process and the measurement result CBa0 at the reference time is calculated, and it is determined whether the measurement result is larger than a predetermined threshold value THca. The difference between the measurement result CBs3 of the cell blank measurement in the scattered light amount detection process and the measurement result CBs0 at the reference time is calculated, and it is determined whether the calculation result is larger than a predetermined threshold value THcs (step S270).
- step S270 If the determination result in step S270 is NO, the fact that the contamination of the reaction vessel 2 was the cause of the cell check alarm is displayed on the CRT display (display device) 25 (step S281), and the process is terminated.
- step S270 If the determination result in step S270 is YES, the cause of deterioration is specified according to the result of deterioration determination in FIG. 9 (S271), the cause of deterioration is displayed on the CRT display (display device) 25, and the process ends. .
- the possibility of both the multi-wavelength light source and the single-wavelength light source is extremely high. Therefore, in step S270, if one of the cell blank measurement of the transmitted light amount detection process and the cell blank measurement of the light scattered light amount detection process is executed, it is possible to determine whether the reaction container 2 is dirty or defective on the light source side. Therefore, either measurement may be used instead of both measurements.
- FIG. 10 is a process flow showing a maintenance support process corresponding to the lamp check alarm.
- FIG. 11 is a figure which shows a deterioration determination result.
- the measurement control unit 18a displays on the CRT display (display device) 25 a message prompting the operator to clean the light projection window 344 and the light reception window 345 of the transmitted light amount measurement unit 41. (Step S300). Subsequently, the operator confirms whether or not the cleaning is completed (step S310). If the determination result is NO, that is, if the operator inputs that the cleaning is not performed using the keyboard 24 or the like, the process is ended.
- step S310 determines whether the determination result in step S310 is YES, that is, if the operator performs cleaning and inputs that effect using the keyboard 24 or the like.
- step S320 cell blank measurement is performed.
- step S320 the difference between the measurement result CBa4 of the cell blank measurement in the transmitted light amount detection process and the measurement result CBa0 at the reference time is calculated, and it is determined whether the calculation result is larger than a predetermined threshold THca (step S330). . If the determination result in step S330 is NO, the CRT display (display device) 25 displays that dirt on the light projection window 344 and the light receiving window 345 of the transmitted light amount measurement unit 41 is the cause of the lamp check alarm. (Step S332), the process ends.
- step S330 If the determination result in step S330 is YES, it is determined that there is a high possibility that the defect of the multi-wavelength light source 44 is the cause of the lamp check alarm, and the CRT display (display device) 25 is displayed (step S331). End the process.
- FIG. 12 is a processing flow showing maintenance support processing corresponding to the LED check alarm.
- FIG. 13 is a diagram showing the deterioration determination result.
- the measurement control unit 18a displays a display on the CRT display (display device) 25 that prompts the operator to perform the cleaning of the light projection window 314 and the light receiving window 315 of the light scattered light amount measurement unit 40. This is performed (step S400). Subsequently, the operator confirms whether or not the cleaning is completed (step S410). If the determination result is NO, that is, if the operator inputs that the cleaning is not performed using the keyboard 24 or the like, the process is terminated.
- step S410 determines whether the determination result in step S410 is YES, that is, if the operator performs cleaning and inputs that effect using the keyboard 24 or the like.
- step S420 cell blank measurement is performed.
- step S420 a difference between the measurement result CBs5 of the cell blank measurement in the light scattering light amount detection process and the measurement result CBs0 at the reference time is calculated, and it is determined whether the calculation result is larger than a predetermined threshold THcs (step S430).
- the CRT display (display device) 25 displays that dirt on the light projection window 314 and the light receiving window 315 of the light scattered light amount measurement unit 40 is the cause of the LED check alarm. (Step S432), and the process ends.
- step S430 If the determination result in step S430 is YES, it is determined that there is a high possibility that the defect of the single wavelength light source 14 is the cause of the LED check alarm, and the CRT display (display device) 25 is displayed (step S431). End the process.
- the automatic analyzer performs qualitative and quantitative analysis of samples such as blood and urine (hereinafter referred to as specimens) by various methods. For example, the amount of transmitted light or the amount of light scattered in the mixed reaction liquid of the specimen and reagent. Qualitative / quantitative analysis of specimens is performed.
- a blank reference value that is different for each analysis item is set for the reaction vessel blank value that increases with the increase in the absorbance of the light beam that passes through the reaction vessel for reaction analysis of the sample and the reagent.
- the use of the reaction container for measurement was determined.
- the analysis accuracy of an automatic analyzer that performs qualitative / quantitative analysis of a sample is related to various factors other than the reaction vessel. It was difficult to maintain sufficient analysis accuracy.
- the single wavelength light source 14 the multi-wavelength light source 44, and the reaction vessel 2 are deteriorated. Since the state is determined, it is possible to estimate various factors other than the reaction vessel, and therefore, it is possible to suppress a decrease in analysis accuracy.
- reaction disk 1 reaction disk 2 reaction vessel (reaction cell) 3 Constant temperature bath (reaction bath) 5 Sample disc 5 7 Sample dispensing mechanism 9A, 9B Reagent cooler 10A, 10B Reagent bottle 11 Memory 12A, 12B Reagent dispensing mechanism 13A First reagent disk 13B Second reagent disk 14 Single wavelength light source 14a Light source base 15 Light scattering light quantity detector 15a Detection Instrument base 16 A / D converter 18 Computer 18a Measurement control unit 18b Calculation unit 18c Determination unit 19 Interface 20 Sample dispensing control unit 21 Reagent dispensing control unit 22 Printer 23 Recording medium drive 24 Keyboard 25 CRT display 33A, 33B Stirring mechanism 34A, 34B Reading device 40 Light scattering light amount measuring unit 40a Base member 41 Transmitted light amount measuring unit 41a Base member 44 Multi-wavelength light source 44a Light source base 45 Transmitted light amount detector 45a Detector bases 314, 315 Light projection window 344, 345 Light receiving window
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Quality & Reliability (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Ecology (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
測定対象試料と試薬との混合液を収容する反応容器2に多波長光を照射する多波長光源44と、反応容器2及び収容物を透過する透過光量を検出する透過光量検出器45と、反応容器2に単波長光を照射する単波長光源14と、単波長光の照射により反応容器2及び収容物から生じる光散乱光を検出する光散乱光量検出器15と、透過光量検出器45の透過光量検出結果および光散乱光量検出器15の光散乱光量検出結果を記憶するメモリ11とを備え、予め定めた基準溶液を収容した反応容器2に対して透過光量の検出および光散乱光量の検出を行うセルブランク測定の測定結果に基づいて、単波長光源14、多波長光源44、及び反応容器2の劣化状態を判定する。これにより、分析効率の低下を抑制することができる。
Description
本発明は、血液や尿などの試料の定性・定量分析を行う自動分析装置に関する。
自動分析装置では、様々な方法により血液や尿などの試料(以下、検体と称する)の定性・定量分析を行っており、例えば、検体と試薬の混合反応液における透過光量、或いは、光散乱光量を測定することにより、検体の定性・定量分析を行うものが知られている。
このような自動分析装置として、例えば、特許文献1(特開2009-20059号公報)には、試料と試薬を反応分析させる反応容器を透過する光束の吸光度の増加変動に伴い増大する反応容器ブランク値を、分析項目毎に異なるブランク基準値を定めた複数の判定基準と比べて、反応容器の測定への使用可否判定を行う技術が開示されている。
しかしながら、検体の定性・定量分析を行う自動分析装置の分析精度には、反応容器以外にも種々の要因が関係しており、上記従来技術のように反応容器の使用可否判定を行うのみでは、分析精度を十分に保つことが困難であった。
本発明は上記に鑑みてなされたものであり、分析精度の低下を抑制することができる自動分析装置を提供することを目的とする。
上記目的を達成するために、本発明は、測定対象試料と試薬との混合液を収容する反応容器に多波長光を照射する多波長光源と、前記反応容器及び収容物を透過する透過光量を検出する透過光量検出手段と、前記反応容器に単波長光を照射する単波長光源と、前記単波長光の照射により前記反応容器及び収容物から生じる光散乱光を検出する光散乱光量検出手段と、前記透過光量検出手段の透過光量検出結果および前記光散乱光量検出手段の光散乱光量検出結果を記憶する記憶部と、予め定めた基準溶液を収容した前記反応容器に対して透過光量の検出および光散乱光量の検出を行うセルブランク測定の測定結果に基づいて、前記単波長光源、前記多波長光源、及び前記反応容器の劣化状態を判定する劣化判定処理を行う判定部とを備えたものとする。
本発明によれば、分析精度の低下を抑制することができる。
本発明の一実施の形態を図面を参照しつつ説明する。
図1は、本実施の形態に係る自動分析装置の全体構成を概略的に示す図であり、図2は、コンピュータの詳細を示す機能ブロック図である。また、図3及び図4は、それぞれ、透過光量測定部および光散乱光量測定部を概略的に示す拡大図である。
図1は、本実施の形態に係る自動分析装置の全体構成を概略的に示す図であり、図2は、コンピュータの詳細を示す機能ブロック図である。また、図3及び図4は、それぞれ、透過光量測定部および光散乱光量測定部を概略的に示す拡大図である。
図1において、自動分析装置は、サンプルディスク5、第1及び第2試薬ディスク13A,13B、反応ディスク1、検体分注機構7、試薬分注機構12A,12B、及び、コンピュータ18を含むその他の機能部とから概略構成されている。
サンプルディスク5には、血液や尿などの分析対象試料(以下、検体と称する)が収容された複数の検体容器6が周方向に並べて配置されている。サンプルディスク5は、図示しない回転駆動機構によって周方向に回転駆動されることにより、検体容器6を所定の位置に移動させる。
第1及び第2試薬ディスク13A,13Bは、それぞれ、試薬保冷庫9A,9Bを備えており、自動分析装置における分析処理の各処理項目に用いる試薬が収容された複数の試薬ボトル10A,10Bが周方向に並べて配置されている。第1及び第2試薬ディスク13A,13Bは、図示しない回転駆動機構によって周方向に回転駆動されることにより、試薬ボトル10A,10Bを所定の位置に移動させる。また、第1及び第2試薬ディスク13A,13Bには、各試薬ボトル10A,10Bに設けられた試薬識別情報を読み取る読取装置34A,34Bが配置されており、読み取った試薬識別情報は、第1及び第2試薬ディスク13A,13B上のポジション情報とともにインタフェース19を介してコンピュータ18に送られ、測定日時などと関連付けられてメモリ11に記憶される。試薬識別情報は、例えば、バーコードで表されており、読取装置34A,34Bはバーコード読取装置である。
反応ディスク1は、恒温維持装置4によって所定の温度に制御された恒温槽(反応槽)3を備えており、検体と試薬の混合反応液が収容される複数の反応容器(反応セル)2が周方向に並べて配置されている。反応ディスク1は、図示しない回転駆動機構によって周方向に回転駆動されることにより、反応容器2を所定の位置に移動させる。
検体分注機構7は、検体容器6に収容された検体を反応容器2に分注するものであり、試薬分注機構12A,12Bは、試薬ボトル10A,10B収容された試薬を反応容器2に分注するものである。反応容器2に分注された検体と試薬の混合反応液は、試薬分注機構12A,12Bにおけるそれぞれの分注位置に設けられた攪拌機構33A,33Bにより攪拌される。
サンプルディスク1および検体分注機構7の動作は、サンプル分注制御部20によって制御される。第1及び第2試薬ディスク13A,13B、試薬分注機構12A,12B、攪拌機構33A,33Bの動作は、試薬分注制御部21により制御される。サンプル分注制御部20と試薬分注制御部21は、インタフェース19を介して接続されたコンピュータ19により制御される。
反応ディスク1には、反応容器2に収容された検体と試薬の混合反応液に対して透過光量検出処理(後に詳述)を行う透過光量測定部41と、混合反応液に対して光散乱光量検出処理(後に詳述)を行う光散乱光量測定部40とが設けられている。
図3に示すように、透過光量測定部41は、測定対象試料(検体)と試薬との混合反応液を収容する反応容器2に多波長光を照射する多波長光源44(例えば、ハロゲン光源)と、反応容器2及び収容物である混合反応液を透過する透過光の透過光量を検出する透過光量検出器45とを備えている。また、透過光量測定部41は、ベース部材41aと、ベース部材41aに固定されて多波長光源44を配置するベースとなる光源ベース44aと、ベース部材41aに固定されて透過光量検出器45を配置するベースとなる検出器ベース45aとを有している。
透過光量測定部41において、多波長光源44と透過光量検出器45の間には、反応ディスク1の周方向に延在するように恒温槽3が配置されている。恒温層3における多波長光源44と透過光量検出器45を結ぶ直線上の位置には、多波長光源44から反応容器2への多波長光を透過する投光窓344と、反応容器2から透過光量検出器45への透過光を透過する受光窓345とが設けられており、恒温槽3内を反応ディスク1の周方向に駆動される反応容器2が多波長光源44と透過光量検出器45の間を通るときに、透過光量が検出される。透過光量検出器45で検出された透過光量(検出結果)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られる。
図4に示すように、光散乱光量測定部40は、測定対象試料(検体)と試薬との混合反応液を収容する反応容器2に単波長光を照射する単波長光源14(例えば、LED光源:Light Emitting Diode 光源)と、単波長光の照射により反応容器2及び収容物である混合反応液から生じる光散乱光の光散乱光量を検出する光散乱光検出器15とを備えている。また、光散乱光量測定部40は、ベース部材401aと、ベース部材40aに固定されて単波長光源14を配置するベースとなる光源ベース14aと、ベース部材40aに固定されて透過光量検出器15を配置するベースとなる検出器ベース15aとを有している。測定対象試料にて散乱した光の強度は、光軸を中心とする円周上に配置した2個以上の光散乱検出器15にて測定する。実施例では、光軸上に配置した光散乱検出器15の他、光軸を中心とする円周上に配置された4つの光散乱検出器15が配置されている。なお、図4では、4つの光散乱検出器のうち、2つのみが示されている。4つの光散乱検出器は光軸に対して、同じ傾き角度で配置される。傾き角度は0~30度の範囲となるよう配置される。光散乱検出器15と光源14は測定対象試料を隔てて配置される。後述する劣化処理判定では、光軸上に配置した光散乱検出器15を用いるが、必ずしもこれに限定されるものではなく、光軸を中心とする円周上に配置された光散乱検出器により劣化処理判定を行ってもよい。傾き角度が0度に近い角度の場合には、同様に劣化処理判定が可能であるためである。
光散乱光量測定部40において、単波長光源14と光散乱光量検出器15の間には、反応ディスク1の周方向に延在するように恒温槽3が配置されている。恒温層3における単波長光源14と光散乱光量検出器15を結ぶ直線上の位置には、単波長光源14から反応容器2への単波長光を透過する投光窓314と、反応容器2から光散乱光量検出器15への光散乱光を透過する受光窓315とが設けられており、恒温槽3内を反応ディスク1の周方向に駆動される反応容器2が単波長光源14と光散乱光量検出器15の間を通るときに、光散乱光量が検出される。光散乱光量検出器15で検出された光散乱光量(検出結果)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られる。
測定の終了した試料(混合反応液)が収容された反応容器2は洗浄位置で洗浄機構17により洗浄処理される。
また、自動分析装置には、入力装置としてのキーボード24、表示装置としてのCRTディスプレイ25、印刷出力装置としてのプリンタ22、FDなどの外部出力メディアに記録する記録媒体ドライブ23、記憶装置(記憶部)としてのメモリ11がインタフェース19を介してコンピュータ18を含む各機能部と接続されている。メモリ11は、ハードディスクなどの記憶装置であり、分析結果のほか、オペレータ毎に設定されたパスワードや、画面の表示レベル、分析パラメータ、分析依頼項目内容、キャリブレーション結果などの情報が記憶されている。また、メモリ11には、後述するセルブランク測定の結果として、過去の基準時点での測定結果や劣化判定処理の実行時の測定結果等が測定日時などと関連付けられて記憶されているほか、劣化判定処理で用いる各種閾値などの値も記憶されている。
コンピュータ18は、自動分析装置全体の動作を制御する制御手段としての機能を有しており、さらに、透過光量検出処理や光散乱光量検出処理、及び、それぞれの検出処理に係るセルブランク測定などの測定制御を行う測定制御部18aと、メモリ11に記憶された過去の基準時点のセルブランク測定の測定結果と劣化判定処理実行時のセルブランク測定の測定結果との差の演算を行う演算部18bと、セルブランク測定の測定結果や、演算部18bでの演算結果に基づいて、単波長光源14や多波長光源44、反応容器2などの劣化状態を判定する劣化判定処理を行う判定部18cとを有している。
測定制御部18aは、オペレータによるキーボード24等からの指令入力に基づいて、測定対象の検体に対して透過光量検出処理や光散乱光量検出処理を行うことにより、その検体の定性・定量分析を行うとともに、後述するセルブランク測定を行い、さらにセルブランク測定の結果に基づいた劣化判定処理によって自動分析装置の状態を判定する。オペレータは、劣化判定処理の結果に基づいて自動分析装置のメンテナンスを行うことにより、分析条件の低下の抑制および分析結果の信頼性の向上を図っている。
ここで、本実施の形態の自動分析装置における測定制御部による透過光量検出処理、光散乱光量検出処理、セルブランク測定、劣化判定処理、及び、劣化判定処理の結果に基づいたメンテナンスをサポートするメンテナンスサポート処理について説明する。
(1)透過光量検出処理
透過光量検出処理は、透過光量測定部41において、多波長光源44と透過光量検出器45を結ぶ直線上の位置(測定位置)を反応容器2が通過する瞬間に、多波長光源44から反応容器2を透過して透過光量検出器45に到達する透過光量を検出する処理である。透過光量検出器45で検出された透過光量(検出結果)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られ、測定日時などと関連付けられてメモリ(記憶部)11に記憶される。
透過光量検出処理は、透過光量測定部41において、多波長光源44と透過光量検出器45を結ぶ直線上の位置(測定位置)を反応容器2が通過する瞬間に、多波長光源44から反応容器2を透過して透過光量検出器45に到達する透過光量を検出する処理である。透過光量検出器45で検出された透過光量(検出結果)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られ、測定日時などと関連付けられてメモリ(記憶部)11に記憶される。
検体容器2に収容された検体中の定量対象の生化学成分に特異的に反応する試薬を混合して反応させると、混合反応液中の対象成分量に応じた反応が生じる。したがって、この反応液にある特定の波長を持つ光を透過させて得られる単一又は複数の波長における透過光量から、ランバート・ベール(Lambert-Beer)の法則に基づいて対象成分量を割り出すことができる。つまり、混合反応液に光を透過させた場合に反応液中の定量対象成分の濃度が高いほど透過光量が減衰することを利用し、予め用意した透過光量と定量対象成分濃度の関係式に、測定した透過光量を当てはめることで検体中の対象の生化学成分を定量する。
このような定量に用いる反応は、定量対象となる生化学成分の種類によって異なるものが用いられる。
定量対象が検体中の基質である場合には、その基質に特異的に反応する酵素を含む試薬を用いて呈色反応を生じさせ、定量対象の量に応じて呈色の度合いが増加することで透過光量が減少することを利用して、定量対象となる生化学成分(基質)の定量を行う。
定量対象が検体中の抗原である場合には、その抗原に特異的に反応する抗体を含む試薬を用いて凝集反応を生じさせ、定量対象の量に応じて凝集の度合いが増加することで透過光量が減少することを利用して、定量対象となる生化学成分(抗原)の定量を行う。また、定量対象が検体中の抗体である場合には、その抗体に特異的に反応する抗原を含む試薬を用いて凝集反応を生じさせることで定量をおこなう。なお、例えば定量対象が抗原である場合に、抗体をラテックス粒子の表面に感作(結合)させた試薬を用いると、抗原と抗体の反応に応じてラテックスが凝集するため、抗原と抗体だけの凝集塊よりも大きな凝集塊が生じ、したがって透過光量の変化が増幅され、より正確な検出結果を得ることができる。
コンピュータ18の測定制御部18aは、メモリ(記憶部)11に記憶した透過光量を用いて反応容器2に収容された混合反応液の吸光度を演算し、この吸光度を用いて定量対象となる生化学成分の定量を行う。このように、本実施の形態において、透過光量測定部41と測定制御部18aとは、透過光度計(吸光光度計)としての機能を構成している。
(2)光散乱光量検出処理
光散乱光量検出処理は、光散乱光量測定部40において、単波長光源14と光散乱光量検出器15を結ぶ直線上の位置(測定位置)を反応容器2が通過する瞬間に、単波長光源14からの照射光により反応容器2及び混合反応液から生じる光散乱光量を光散乱光量検出器15で検出する処理である。光散乱光量検出器15で検出された光散乱光量(検出結果)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られ、測定日時などと関連付けられてメモリ(記憶部)11に記憶される。
光散乱光量検出処理は、光散乱光量測定部40において、単波長光源14と光散乱光量検出器15を結ぶ直線上の位置(測定位置)を反応容器2が通過する瞬間に、単波長光源14からの照射光により反応容器2及び混合反応液から生じる光散乱光量を光散乱光量検出器15で検出する処理である。光散乱光量検出器15で検出された光散乱光量(検出結果)はA/D変換器16によりディジタル変換され、インタフェース19を介してコンピュータ18に送られ、測定日時などと関連付けられてメモリ(記憶部)11に記憶される。
この光散乱光量検出処理では、透過光量検出処理と同様に、検体容器2に収容された検体中の定量対象の生化学成分に特異的に反応する試薬を混合して反応させ、その反応液中に生じた凝集塊に光が当たることで散乱される光の光散乱光量を測定し、その光散乱光量から対象成分量を算出する。
コンピュータ18の測定制御部18aは、メモリ(記憶部)11に記憶した光散乱光量を用いて反応容器2に収容された混合反応液の光散乱光度を演算し、この光散乱光度を用いて定量対象となる生化学成分の定量を行う。このように、本実施の形態において、光散乱光量測定部40と測定制御部18aとは、光散乱光度計としての機能を構成している。
(3)セルブランク測定
セルブランク測定は、予め定めた基準溶液(例えば、純水)を収容した反応容器2に対して透過光量の検出(透過光量検出処理)および光散乱光量の検出(光散乱光量検出処理)を行うものである。透過光量検出処理のセルブランク測定の測定結果(透過光量)および光散乱光量検出処理の測定結果(光散乱光量)は、コンピュータ18に送られ、測定日時などと関連付けられてメモリ(記憶部)11に記憶される。セルブランク測定は単波長光源の光軸上に配置された光散乱検出器により測定される。
セルブランク測定は、予め定めた基準溶液(例えば、純水)を収容した反応容器2に対して透過光量の検出(透過光量検出処理)および光散乱光量の検出(光散乱光量検出処理)を行うものである。透過光量検出処理のセルブランク測定の測定結果(透過光量)および光散乱光量検出処理の測定結果(光散乱光量)は、コンピュータ18に送られ、測定日時などと関連付けられてメモリ(記憶部)11に記憶される。セルブランク測定は単波長光源の光軸上に配置された光散乱検出器により測定される。
(4)劣化判定処理
劣化判定処理は、セルブランク測定の測定結果に基づいて、単波長光源14、多波長光源44、及び反応容器2の劣化状態を判定するものである。この劣化判定処理について図面を参照しつつ説明する。図5は、本実施の形態における劣化判定処理を示すフローチャートである。また、図6は、劣化判定結果を示す図である。
劣化判定処理は、セルブランク測定の測定結果に基づいて、単波長光源14、多波長光源44、及び反応容器2の劣化状態を判定するものである。この劣化判定処理について図面を参照しつつ説明する。図5は、本実施の形態における劣化判定処理を示すフローチャートである。また、図6は、劣化判定結果を示す図である。
劣化の要因としては以下の事項が想定され、図5のフローチャートにより、基準値と比較することで、想定される劣化要因を特定することができる。
1.光散乱光量測定部41および透過光量測定部40の投光窓(314、344)または受光窓(315、345)の汚れ、もしくは何れかの測定部の投光窓(314、344)または受光窓(315、345)の汚れ
2.反応槽の汚れ
3.反応容器の汚れ
4.単波長光源14と多波長光源44の不良、もしくは何れかの光源の不良
なお、上記1.について、本明細書においては、便宜上、投光窓と受光窓の汚れ、と表現する場合があるが、この表現には、投光窓と受光窓の両方の他、投光窓と受光窓のいずれか一方の汚れの場合も含まれる。
2.反応槽の汚れ
3.反応容器の汚れ
4.単波長光源14と多波長光源44の不良、もしくは何れかの光源の不良
なお、上記1.について、本明細書においては、便宜上、投光窓と受光窓の汚れ、と表現する場合があるが、この表現には、投光窓と受光窓の両方の他、投光窓と受光窓のいずれか一方の汚れの場合も含まれる。
オペレータによる劣化判定処理の開始指示の入力がなされ、又は、予め設定した劣化判定処理の開始時間になると、測定制御部18aは、セルブランク測定を行う(ステップS100)。続いて、透過光量検出処理のセルブランク測定の測定結果CBa1と基準時点での測定結果CBa0との差を演算し、演算結果が予め定めた閾値THcaよりも大きいかどうかを判定する(ステップS110)。さらに、光散乱光量検出処理のセルブランク測定の測定結果CBs1と基準時点での測定結果CBs0との差を演算し、演算結果が予め定めた閾値THcsよりも大きいかどうかを判定する(ステップS110)。ステップS110での判定結果がYESの場合は、図6の劣化判定結果に従い、セルチェックアラーム、ランプチェックアラーム、又はLEDチェックアラームを発報し(ステップS111)、処理を終了する。一方、ステップS110での判定結果がNOの場合は、異常なしの情報を発報し(ステップS120)、処理を終了する。
透過光量測定部の投光窓または受光窓、もしくは両方の窓が汚れている場合には、透過光量が減少するため、CBa1が減少する。また、反応槽が汚れている場合、反応容器が汚れている場合、または多波長光源の不良の場合にも、CBa1が減少する。このため、CBa0-CBa1>THcaの条件を満たすことになる。また、同じように、散乱光量測定部の投光窓または受光窓、もしくは両方の窓が汚れている場合には、散乱光量が減少するため、CBs1が減少する。また、反応槽が汚れている場合、反応容器が汚れている場合、または単波長光源の不良の場合にも、CBs1が減少する。このため、CBs0-CBs1>THcsの条件を満たすことになる。CBa0-CBa1>THcaの条件とCBs0-CBs1>THcsの条件の両方を満たす場合には、セルチェックアラームが発報される。
セルチェックアラームは、主に反応容器(反応セル)2に関する汚れや劣化が疑われる場合のアラームであり、以下のような場合が想定される。
1.光散乱光量測定部40および透過光量測定部41の投光窓314,344または受光窓315,345の汚れ
2.恒温槽(反応槽)3の汚れ
3.反応容器(反応セル)2の汚れ
4.単波長光源14と多波長光源44の不良
1.光散乱光量測定部40および透過光量測定部41の投光窓314,344または受光窓315,345の汚れ
2.恒温槽(反応槽)3の汚れ
3.反応容器(反応セル)2の汚れ
4.単波長光源14と多波長光源44の不良
光散乱光量測定部40および透過光量測定部41の投光窓314,344と受光窓315,345のどちらかもしくは両方が汚れている場合には透過光量(もしくは吸光度)および光散乱光量が減少する。また、反応槽水の汚れでも同様な現象が起こる。単波長光源14と多波長光源45の両方が劣化し光量低下が生じる場合にも透過光量(もしくは吸光度)および光散乱光量が減少する。しかしながら単波長光源14としてLEDを用いた場合は、多波長光源44としてハロゲン光源を用いた場合に較べて10倍以上長寿命であるため、単波長光源14と多波長光源44が同時に劣化する可能性は低いと考えられる。よって、光散乱光量測定部40および透過光量測定部41の投光窓314,344と受光窓315,345の汚れや反応槽水の汚れが原因では無い場合には、単波長光源14としてLEDを用いた場合は長寿命であるという点から考えると、反応容器2の汚れがセルチェックアラームの原因である可能性が高い。
一方、CBa0-CBa1>THcaの条件とCBs0-CBs1≦THcsの条件の両方を満たす場合には、ランプチェックアラームが発報される。この場合、前述の想定される異常のうち、光散乱光量測定に固有の光散乱光量測定部40の投光窓と受光窓の汚れ、や単波長光源の不良が、想定される異常原因から除かれ、さらに透過光量測定と共通の反応槽の汚れや反応容器の汚れも、想定される異常原因から除かれる。
ランプチェックアラームは、透過光量測定部41に関する汚れや不良が疑われる場合のアラームであり、以下のような場合が想定される。
1.透過光量測定部41の投光窓344と受光窓345の汚れ
2.多波長光源44の不良
1.透過光量測定部41の投光窓344と受光窓345の汚れ
2.多波長光源44の不良
また、CBa0-CBa1≦THcaの条件とCBs0-CBs1>THcsの条件の両方を満たす場合には、LEDチェックアラームが発報される。この場合、先の説明と同様に、透過光量測定に固有の異常原因と、光散乱光量測定と共通の異常原因が、想定される異常原因から除かれる。
LEDチェックアラームは、光散乱光量測定部40に関する汚れや不良が疑われる場合のアラームであり、以下のような場合が想定される。
1.光散乱光量測定部40の投光窓314と受光窓315の汚れ
2.単波長光源14の不良
1.光散乱光量測定部40の投光窓314と受光窓315の汚れ
2.単波長光源14の不良
(5)メンテナンスサポート処理
劣化判定処理において、何れかのチェックアラームが発報された場合の処理手順を図7~図13を参照しつつ説明する。
劣化判定処理において、何れかのチェックアラームが発報された場合の処理手順を図7~図13を参照しつつ説明する。
(5-1)セルチェックアラームに対応するメンテナンスサポート処理
図7は、セルチェックアラームに対応するメンテナンスサポート処理を示す処理フローである。また、図8は、劣化判定結果を示す図である。
図7は、セルチェックアラームに対応するメンテナンスサポート処理を示す処理フローである。また、図8は、劣化判定結果を示す図である。
測定制御部18aは、セルチェックアラームが発報されると、CRTディスプレイ(表示装置)25に、光散乱光量測定部40および透過光量測定部41の投光窓314,344と受光窓315,345、及び恒温槽(反応槽)3の洗浄の実施をオペレータに促す表示を行う(ステップS200)。続いて、洗浄が終了したかどうかをオペレータに確認し(ステップS210)、判定結果がNOの場合、すなわち、オペレータが洗浄を行わない旨をキーボード24等により入力した場合は、処理を終了する。
また、ステップS200の判定結果がYESの場合、すなわち、オペレータが洗浄を実施してその旨をキーボード24等により入力した場合は、セルブランク測定を行う(ステップS220)。続いて、透過光量検出処理のセルブランク測定の測定結果CBa2と基準時点での測定結果CBa0との差を演算し、演算結果が予め定めた閾値THcaよりも大きいかどうかを判定する(ステップS230)。さらに、光散乱光量検出処理のセルブランク測定の測定結果CBs2と基準時点での測定結果CBs0との差を演算し、演算結果が予め定めた閾値THcsよりも大きいかどうかを判定する(ステップS230)。ステップS230での判定結果がNOである場合は、光散乱光量測定部40および透過光量測定部41の投光窓314,344と受光窓315,345、若しくは、恒温槽(反応槽)3の汚れがセルチェックアラームの原因であったことをCRTディスプレイ(表示装置)25に表示し(ステップS241)、処理を終了する。
また、ステップS230での判定結果がYESの場合は、図8の劣化判定結果に従い、劣化原因を特定し(S231)、その劣化原因をCRTディスプレイ(表示装置)25に表示し、処理を終了する。
既に、光散乱光量測定部および透過光量測定部の投光窓と受光窓と、反応槽の洗浄が終了しているため、これらの汚れが異常原因から除かれた図8のいずれかの劣化原因を特定することができる。
さらに、CBa0-CBa2>THcaの条件とCBs0-CBs2>THcsの条件の両方を満たす場合には、想定される原因が、反応容器の汚れと、単波長光源と多波長光源の不良となり、いずれが原因か判別できない。そのため、この両方の条件を満たす場合には、反応容器の交換を促す表示を行い、オペレータに反応容器を交換させ、さらに再度セルブランクを測定することで、これらの原因を切り分けることができる。
CBa0-CBa2>THcaの条件とCBs0-CBs2>THcsの条件の両方を満たす場合には、CRTディスプレイ(表示装置)25に、反応容器2の交換を促す表示を行う(ステップS232)。続いて、反応容器2の交換が終了したかどうかをオペレータに確認し(ステップS250)、判定結果がNOの場合、すなわち、オペレータが反応容器の交換を行わない旨をキーボード24等により入力した場合は、処理を終了する。
また、ステップS250での判定結果がYESの場合、すなわち、オペレータが反応容器2の交換を実施してその旨をキーボード24等により入力した場合は、セルブランク測定を行う(ステップS260)。続いて、透過光量検出処理のセルブランク測定の測定結果CBa3と基準時点での測定結果CBa0との差を演算し、測定結果が予め定めた閾値THcaよりも大きいかどうかを判定し、さらに、光散乱光量検出処理のセルブランク測定の測定結果CBs3と基準時点での測定結果CBs0との差を演算し、演算結果が予め定めた閾値THcsよりも大きいかどうかを判定する(ステップS270)。
ステップS270での判定結果がNOの場合は、反応容器2の汚れがセルチェックアラームの原因であったことをCRTディスプレイ(表示装置)25に表示し(ステップS281)、処理を終了する。
また、ステップS270での判定結果がYESの場合は、図9の劣化判定結果に従い、劣化原因を特定し(S271)、その劣化原因をCRTディスプレイ(表示装置)25に表示し、処理を終了する。但し、既に図8において、多波長光源不良と単波長光源のいずれかの不良については、判別済みであるため、多波長光源と単波長光源の両方の不良の可能性が極めて高い。そのため、ステップS270については、透過光量検出処理のセルブランク測定と光散乱光量検出処理のセルブランク測定のいずれかの測定を実行すれば、反応容器2の汚れか光源側の不良かの判別は可能であるため、両方の測定に替え、いずれかの測定でも構わない。
(5-2)ランプチェックアラームに対応するメンテナンスサポート処理
図10は、ランプチェックアラームに対応するメンテナンスサポート処理を示す処理フローである。また、図11は、劣化判定結果を示す図である。
図10は、ランプチェックアラームに対応するメンテナンスサポート処理を示す処理フローである。また、図11は、劣化判定結果を示す図である。
測定制御部18aは、ランプチェックアラームが発報されると、CRTディスプレイ(表示装置)25に、透過光量測定部41の投光窓344と受光窓345の洗浄の実施をオペレータに促す表示を行う(ステップS300)。続いて、洗浄が終了したかどうかをオペレータに確認し(ステップS310)、判定結果がNOの場合、すなわち、オペレータが洗浄を行わない旨をキーボード24等により入力した場合は、処理を終了する。
また、ステップS310での判定結果がYESの場合、すなわち、オペレータが洗浄を実施してその旨をキーボード24等により入力した場合は、セルブランク測定を行う(ステップS320)。続いて、透過光量検出処理のセルブランク測定の測定結果CBa4と基準時点での測定結果CBa0との差を演算し、演算結果が予め定めた閾値THcaよりも大きいかどうかを判定する(ステップS330)。ステップS330での判定結果がNOである場合は、透過光量測定部41の投光窓344と受光窓345の汚れがランプチェックアラームの原因であったことをCRTディスプレイ(表示装置)25に表示し(ステップS332)、処理を終了する。
また、ステップS330での判定結果がYESの場合は、多波長光源44の不良がランプチェックアラームの原因である可能性が高いと判定してCRTディスプレイ(表示装置)25表示し(ステップS331)、処理を終了する。
(5-3)LEDチェックアラームに対応するメンテナンスサポート処理
図12は、LEDチェックアラームに対応するメンテナンスサポート処理を示す処理フローである。また、図13は、劣化判定結果を示す図である。
図12は、LEDチェックアラームに対応するメンテナンスサポート処理を示す処理フローである。また、図13は、劣化判定結果を示す図である。
測定制御部18aは、LEDチェックアラームが発報されると、CRTディスプレイ(表示装置)25に、光散乱光量測定部40の投光窓314と受光窓315の洗浄の実施をオペレータに促す表示を行う(ステップS400)。続いて、洗浄が終了したかどうかをオペレータに確認し(ステップS410)、判定結果がNOの場合、すなわち、オペレータが洗浄を行わない旨をキーボード24等により入力した場合は、処理を終了する。
また、ステップS410での判定結果がYESの場合、すなわち、オペレータが洗浄を実施してその旨をキーボード24等により入力した場合は、セルブランク測定を行う(ステップS420)。続いて、光散乱光量検出処理のセルブランク測定の測定結果CBs5と基準時点での測定結果CBs0との差を演算し、演算結果が予め定めた閾値THcsよりも大きいかどうかを判定する(ステップS430)。ステップS430での判定結果がNOである場合は、光散乱光量測定部40の投光窓314と受光窓315の汚れがLEDチェックアラームの原因であったことをCRTディスプレイ(表示装置)25に表示し(ステップS432)、処理を終了する。
また、ステップS430での判定結果がYESの場合は、単波長光源14の不良がLEDチェックアラームの原因である可能性が高いと判定してCRTディスプレイ(表示装置)25表示し(ステップS431)、処理を終了する。
以上のように構成した本実施の形態の効果を説明する。
自動分析装置では、様々な方法により血液や尿などの試料(以下、検体と称する)の定性・定量分析を行っており、例えば、検体と試薬の混合反応液における透過光量、或いは、光散乱光量を測定することにより、検体の定性・定量分析を行っている。このような従来技術における自動分析装置においては、試料と試薬を反応分析させる反応容器を透過する光束の吸光度の増加変動に伴い増大する反応容器ブランク値を、分析項目毎に異なるブランク基準値を定めた複数の判定基準と比べて、反応容器の測定への使用可否判定を行っていた。しかしながら、検体の定性・定量分析を行う自動分析装置の分析精度には、反応容器以外にも種々の要因が関係しており、上記従来技術のように反応容器の使用可否判定を行うのみでは、分析精度を十分に保つことが困難であった。
これに対し、本実施の形態においては、透過光量測定部41および光散乱光量測定部40におけるセルブランク測定の測定結果に基づいて、単波長光源14、多波長光源44、及び反応容器2の劣化状態を判定するように構成したので、反応容器以外にも種々の要因を推定することができ、よって、分析精度の低下を抑制することができる。
1 反応ディスク
2 反応容器(反応セル)
3 恒温槽(反応槽)
5 サンプルディスク5
7 検体分注機構
9A,9B 試薬保冷庫
10A,10B 試薬ボトル
11 メモリ
12A,12B 試薬分注機構
13A 第1試薬ディスク
13B 第2試薬ディスク
14 単波長光源
14a 光源ベース
15 光散乱光量検出器
15a 検出器ベース
16 A/D変換器
18 コンピュータ
18a 測定制御部
18b 演算部
18c 判定部
19 インタフェース
20 サンプル分注制御部
21 試薬分注制御部
22 プリンタ
23 記録媒体ドライブ
24 キーボード
25 CRTディスプレイ
33A,33B 攪拌機構
34A,34B 読取装置
40 光散乱光量測定部
40a ベース部材
41 透過光量測定部
41a ベース部材
44 多波長光源
44a 光源ベース
45 透過光量検出器
45a 検出器ベース
314,315 投光窓
344,345 受光窓
2 反応容器(反応セル)
3 恒温槽(反応槽)
5 サンプルディスク5
7 検体分注機構
9A,9B 試薬保冷庫
10A,10B 試薬ボトル
11 メモリ
12A,12B 試薬分注機構
13A 第1試薬ディスク
13B 第2試薬ディスク
14 単波長光源
14a 光源ベース
15 光散乱光量検出器
15a 検出器ベース
16 A/D変換器
18 コンピュータ
18a 測定制御部
18b 演算部
18c 判定部
19 インタフェース
20 サンプル分注制御部
21 試薬分注制御部
22 プリンタ
23 記録媒体ドライブ
24 キーボード
25 CRTディスプレイ
33A,33B 攪拌機構
34A,34B 読取装置
40 光散乱光量測定部
40a ベース部材
41 透過光量測定部
41a ベース部材
44 多波長光源
44a 光源ベース
45 透過光量検出器
45a 検出器ベース
314,315 投光窓
344,345 受光窓
Claims (5)
- 測定対象試料と試薬との混合液を収容する反応容器に多波長光を照射する多波長光源と、
前記反応容器及び収容物を透過する透過光量を検出する透過光量検出手段と、
前記反応容器に単波長光を照射する単波長光源と、
前記単波長光の照射により前記反応容器及び収容物から生じる光散乱光を検出する光散乱光量検出手段と、
前記透過光量検出手段の透過光量検出結果および前記光散乱光量検出手段の光散乱光量検出結果を記憶する記憶部と、
予め定めた基準溶液を収容した前記反応容器に対して透過光量の検出および光散乱光量の検出を行うセルブランク測定の測定結果に基づいて、前記単波長光源、前記多波長光源、及び前記反応容器の劣化状態を判定する劣化判定処理を行う判定部と
を備えたことを特徴とする自動分析装置。 - 請求項1記載の自動分析装置において、
劣化判定処理の対象となるセルブランク測定よりも前の予め定めた基準時に行ったセルブランク測定の結果であって前記記憶部に記憶した測定結果と、劣化判定処理の対象となるセルブランク測定での測定結果との差を演算する演算部を備え、
前記判定部は、前記演算部の演算結果に基づいて劣化判定処理を行うことを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
前記判定部は、前記劣化判定処理で前記反応容器の劣化を判定した場合、前記反応容器に関する異常の発生をオペレータに報知するセルチェックアラームを発信することを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
前記判定部は、前記劣化判定処理で前記単波長光源の劣化を判定した場合、前記単波長光源に関する異常の発生をオペレータに報知する単波長光源チェックアラームを発信することを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
前記判定部は、前記劣化判定処理で前記多波長光源の劣化を判定した場合、前記多波長光源に関する異常の発生をオペレータに報知する多波長光源チェックアラームを発信することを特徴とする自動分析装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/379,356 US9400247B2 (en) | 2012-02-24 | 2013-02-12 | Automatic analyzer |
EP13751468.3A EP2818848B1 (en) | 2012-02-24 | 2013-02-12 | Automatic analysis device |
CN201380007700.7A CN104094100B (zh) | 2012-02-24 | 2013-02-12 | 自动分析装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-039158 | 2012-02-24 | ||
JP2012039158A JP5939833B2 (ja) | 2012-02-24 | 2012-02-24 | 自動分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125386A1 true WO2013125386A1 (ja) | 2013-08-29 |
Family
ID=49005574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053203 WO2013125386A1 (ja) | 2012-02-24 | 2013-02-12 | 自動分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9400247B2 (ja) |
EP (1) | EP2818848B1 (ja) |
JP (1) | JP5939833B2 (ja) |
CN (1) | CN104094100B (ja) |
WO (1) | WO2013125386A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017032500A (ja) * | 2015-08-05 | 2017-02-09 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2017208249A1 (en) * | 2016-05-31 | 2017-12-07 | Indian Institute Of Technology, Guwahati | A transmittance based system/kit for point-of-care quantification of biomarkers sample and use thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6249729B2 (ja) * | 2013-11-15 | 2017-12-20 | キヤノン株式会社 | 光学的測定装置、記録装置、処理方法およびプログラム |
JP6845858B2 (ja) | 2015-12-31 | 2021-03-24 | ジェン−プローブ・インコーポレーテッド | サンプルを分析し、光信号検出器の性能を監視するシステム及び方法 |
JP6658091B2 (ja) * | 2016-02-29 | 2020-03-04 | 株式会社島津製作所 | 分析測定装置システム |
US10753870B2 (en) * | 2016-09-14 | 2020-08-25 | Hitachi High-Tech Corporation | Automatic analysis apparatus including a reaction container holding part having a surface that reflects light emitted from a light source |
CN110366683B (zh) * | 2017-03-07 | 2020-06-23 | 株式会社日立高新技术 | 自动分析装置 |
CN107389575A (zh) * | 2017-08-01 | 2017-11-24 | 华南农业大学 | 一种试剂变质自动检测方法及系统 |
EP4293361A3 (en) * | 2017-12-26 | 2024-07-03 | Hitachi High-Tech Corporation | Automated analyzer and automated analysis method |
US10255780B1 (en) * | 2018-05-29 | 2019-04-09 | David Wittenberg | System and method for detecting and mapping progression of a fire event |
US11965900B2 (en) | 2018-11-09 | 2024-04-23 | Wyatt Technology, Llc | Indicating a status of an analytical instrument on a screen of the analytical instrument |
IT201800010364A1 (it) * | 2018-11-15 | 2020-05-15 | Chemitec S R L | Metodo e sistema per l’analisi spettrofotometrica di un campione |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001091518A (ja) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | 自動分析装置 |
JP2001141654A (ja) * | 1999-10-08 | 2001-05-25 | Dade Behring Marburg Gmbh | 分光光度・比濁検出ユニット |
JP2002296284A (ja) * | 2001-04-02 | 2002-10-09 | Hitachi Ltd | 自動分析装置 |
JP2004251802A (ja) * | 2003-02-21 | 2004-09-09 | Toshiba Corp | 自動分析装置 |
JP2009020059A (ja) | 2007-07-13 | 2009-01-29 | Hitachi High-Technologies Corp | 自動分析装置、および自動分析装置の分析方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1582434A (en) | 1976-05-13 | 1981-01-07 | Secr Social Service Brit | Analytical apparatus and methods incorporating cuvette cleaning and cleanliness testing |
JPS57119240A (en) * | 1981-01-19 | 1982-07-24 | Toshiba Corp | Turbidity measuring device |
JP2009031202A (ja) * | 2007-07-30 | 2009-02-12 | Hitachi High-Technologies Corp | 自動分析装置 |
ATE545014T1 (de) * | 2009-04-30 | 2012-02-15 | Hoffmann La Roche | Verfahren zur detektion von verunreinigungen einer optischen messküvette |
JP5379044B2 (ja) * | 2010-02-25 | 2013-12-25 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2012099215A1 (ja) * | 2011-01-21 | 2012-07-26 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
-
2012
- 2012-02-24 JP JP2012039158A patent/JP5939833B2/ja active Active
-
2013
- 2013-02-12 WO PCT/JP2013/053203 patent/WO2013125386A1/ja active Application Filing
- 2013-02-12 EP EP13751468.3A patent/EP2818848B1/en active Active
- 2013-02-12 CN CN201380007700.7A patent/CN104094100B/zh active Active
- 2013-02-12 US US14/379,356 patent/US9400247B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001091518A (ja) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | 自動分析装置 |
JP2001141654A (ja) * | 1999-10-08 | 2001-05-25 | Dade Behring Marburg Gmbh | 分光光度・比濁検出ユニット |
JP2002296284A (ja) * | 2001-04-02 | 2002-10-09 | Hitachi Ltd | 自動分析装置 |
JP2004251802A (ja) * | 2003-02-21 | 2004-09-09 | Toshiba Corp | 自動分析装置 |
JP2009020059A (ja) | 2007-07-13 | 2009-01-29 | Hitachi High-Technologies Corp | 自動分析装置、および自動分析装置の分析方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2818848A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017032500A (ja) * | 2015-08-05 | 2017-02-09 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2017208249A1 (en) * | 2016-05-31 | 2017-12-07 | Indian Institute Of Technology, Guwahati | A transmittance based system/kit for point-of-care quantification of biomarkers sample and use thereof |
US10900909B2 (en) | 2016-05-31 | 2021-01-26 | Indian Institute Of Technology, Guwahati | Transmittance based system/kit for point-of-care quantification of biomarkers sample and use thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2818848B1 (en) | 2017-10-25 |
JP5939833B2 (ja) | 2016-06-22 |
CN104094100A (zh) | 2014-10-08 |
EP2818848A1 (en) | 2014-12-31 |
US9400247B2 (en) | 2016-07-26 |
US20150033831A1 (en) | 2015-02-05 |
JP2013174506A (ja) | 2013-09-05 |
CN104094100B (zh) | 2016-05-18 |
EP2818848A4 (en) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5939833B2 (ja) | 自動分析装置 | |
JP6013796B2 (ja) | 自動分析装置及び試料測定方法 | |
JP5897323B2 (ja) | 自動分析装置および測定値異常検出方法 | |
US11971425B2 (en) | Automatic analysis device and automatic analysis method | |
EP2667182B1 (en) | Automatic analysis device taking into account thermal drift | |
JP5984290B2 (ja) | 自動分析装置 | |
JP5661124B2 (ja) | 自動分析装置 | |
JP5216051B2 (ja) | 自動分析装置および自動分析方法 | |
JP5296015B2 (ja) | 自動分析装置 | |
JPWO2012008324A1 (ja) | 自動分析装置、分析方法及び情報処理装置 | |
JP5487176B2 (ja) | 自動分析装置 | |
WO2023037726A1 (ja) | 自動分析装置、データ処理装置、および自動分析装置の精度管理方法 | |
CN117295955A (zh) | 自动分析装置以及检体分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751468 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14379356 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013751468 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013751468 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |