[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013118824A1 - Scroll-type expander and fluid machine provided with same - Google Patents

Scroll-type expander and fluid machine provided with same Download PDF

Info

Publication number
WO2013118824A1
WO2013118824A1 PCT/JP2013/052872 JP2013052872W WO2013118824A1 WO 2013118824 A1 WO2013118824 A1 WO 2013118824A1 JP 2013052872 W JP2013052872 W JP 2013052872W WO 2013118824 A1 WO2013118824 A1 WO 2013118824A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
movable
expander
working fluid
fixed
Prior art date
Application number
PCT/JP2013/052872
Other languages
French (fr)
Japanese (ja)
Inventor
中村 慎二
和田 博文
雄太 田中
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN201380008476.3A priority Critical patent/CN104093935A/en
Priority to US14/377,789 priority patent/US20150023824A1/en
Priority to DE112013000892.0T priority patent/DE112013000892T5/en
Publication of WO2013118824A1 publication Critical patent/WO2013118824A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0246Details concerning the involute wraps or their base, e.g. geometry
    • F01C1/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof

Definitions

  • the present invention relates to a scroll type expander and a fluid machine including the same.
  • Patent Document 1 a high-temperature and high-pressure gas-phase working medium (refrigerant) evaporated by an evaporation generator is introduced into an expansion chamber through a through-hole formed in a central portion of a base plate (base) of a fixed scroll.
  • a scroll type expander configured as described above is described. In such a scroll type expander, since the working fluid supplied from the outside is directly guided to the expansion chamber, the heat loss and pressure loss of the working fluid in the scroll type expander are suppressed.
  • the working fluid supplied from the outside is introduced into the expansion chamber via a suction chamber or the like that can store the liquid-phase working fluid. It is also conceivable to configure a scroll type expander as described above. However, if it does so, components (casing etc.) for forming the said suction chamber etc. will be needed newly, a structure will be complicated, and it will cause a cost increase and the enlargement of an apparatus. Further, since the suction chamber or the like has a certain volume, the pressure loss or heat loss of the working fluid may occur in the suction chamber or the like, which may increase energy loss.
  • the present invention has been made paying attention to such a situation, and has a scroll type expander having a relatively simple structure, low energy loss, high durability and reliability, and the same.
  • An object is to provide a fluid machine.
  • a scroll type expander includes a fixed scroll and a movable scroll having a scroll portion standing on a base portion, and is formed between the scroll portion of the fixed scroll and the scroll portion of the movable scroll.
  • a scroll type expander that generates power by expanding a working fluid in an expansion chamber that is formed at a base portion of the fixed scroll and extends from an intake port that opens to the outside to an introduction port that opens to the expansion chamber. Thrust force acting between the working fluid passage for guiding the working fluid flowing into the suction port into the expansion chamber and the fixed portion of the scroll expander and the base of the movable scroll.
  • the scroll type expander may be used alone, but is driven by the power generated by the scroll type expander and the scroll type expander to suck and discharge the working fluid.
  • a fluid machine is configured by integrating a pump unit that performs the above, or a fluid machine is configured by integrating the scroll expander and a power generation unit that is driven by the power generated by the scroll expander to generate power You may do it.
  • a ball coupling type rotation prevention mechanism using a ball as a rolling member has high durability even in a state of insufficient lubrication.
  • the scroll type expander is configured to receive a thrust force acting on the movable scroll by such a rotation prevention mechanism and to prevent the rotation of the movable scroll, so that a liquid-phase working fluid is supplied from the outside. Even when lubrication is insufficient, no problems occur and high durability and reliability can be secured.
  • the working fluid passage is formed in the base of the fixed scroll and the working fluid supplied from the outside is directly guided to the expansion chamber, the structure is relatively simple, and the pressure loss and heat loss of the working fluid are relatively small. Can also be suppressed.
  • FIG. 3 is an enlarged view around a rotation prevention mechanism of FIG. 2. It is a figure which shows the modification of the said pump integrated expander. It is a figure which shows the rotation prevention mechanism in a modification. It is a figure which shows the other rotation prevention mechanism in a modification. It is a figure which shows the structure of the generator integrated expander provided with the said scroll type expander.
  • FIG. 1 shows a configuration of a waste heat utilization apparatus 1 to which a scroll type expander according to an embodiment of the present invention is applied.
  • the waste heat utilization device 1 is a device that is mounted on a vehicle and collects and uses waste heat (including exhaust heat) of the engine 10.
  • the Rankine cycle device 2 and the output of the Rankine cycle device 2 are supplied to the engine 10.
  • a transmission mechanism 3 capable of transmission and a control unit 4 are included.
  • the engine 10 is a water-cooled internal combustion engine and is cooled by cooling water flowing through the cooling water circulation path 11.
  • An evaporator 22 of the Rankine cycle device 2 is disposed in the cooling water circulation path 11.
  • Rankine cycle device 2 recovers waste heat of engine 10 from cooling water of engine 10, converts it into power, and outputs it.
  • the Rankine cycle device 2 has a circulation path 21 for working fluid (refrigerant), and an evaporator 22, an expander 23, a condenser 24, and a pump 25 are arranged in this order in the circulation path 21. .
  • the evaporator 22 is a heat exchanger that heats and evaporates (vaporizes) the working fluid by performing heat exchange between the cooling water that has absorbed heat from the engine 10 and the working fluid.
  • the expander 23 is a scroll expander that generates power by expanding the working fluid that has been heated by the evaporator 22 into superheated steam and converting it into rotational energy.
  • the condenser 24 is a heat exchanger that cools and condenses (liquefies) the working fluid by performing heat exchange between the working fluid that passes through the expander 23 and the outside air.
  • the pump 25 is a mechanical pump that sends the working fluid liquefied by the condenser 24 to the evaporator 22. The working fluid circulates in the circulation path 21 by driving the pump 25 to suck and discharge the working fluid.
  • the expander 23 and the pump 25 are configured as a “pump-integrated expander 27” in which the rotary shaft 26 is connected. That is, the rotating shaft 26 of the pump-integrated expander 27 has a function as an output shaft of the expander 23 and a function as a drive shaft of the pump 25.
  • the Rankine cycle device 2 is activated by first driving the pump 25 (pump portion in the pump-integrated expander 27) by the engine 10, and then the expander 23 (expansion device in the pump-integrated expander 27). When the portion) generates sufficient power, the pump 25 is driven by the power generated by the expander 23.
  • the transmission mechanism 3 includes a pulley 31 attached to the rotary shaft 26 of the pump-integrated expander 27, a crank pulley 32 attached to the crankshaft 10a of the engine 10, and a belt wound around the pulley 31 and the crank pulley 32. 33, and an electromagnetic clutch 34 provided between the rotary shaft 26 of the pump-integrated expander 27 and the pulley 31. Then, the electromagnetic clutch 34 is turned on (engaged) / off (released) so that power can be transmitted / interrupted between the engine 10 and the Rankine cycle device 2 (specifically, the pump-integrated expander 27). It has become.
  • the control unit 4 has a function of controlling the operation of the electromagnetic clutch 34, and controls the operation / stop of the Rankine cycle device 2 by controlling the electromagnetic clutch 34 to be turned on / off. That is, the control unit 4 activates the Rankine cycle device 2 by turning on (fastening) the electromagnetic clutch 34 and operating the pump 25 (pump portion in the pump-integrated expander 27) by the engine 10. Thereafter, when the expander 23 (the expander portion in the pump-integrated expander 27) is operated to generate power, a part of the power generated by the expander 23 drives the pump 25, and the remaining power. Is transmitted to the engine 10 via the transmission mechanism 3 to assist the output (driving force) of the engine 10.
  • an expander bypass path and a bypass valve for opening and closing the expander bypass path are provided, and if necessary (for example, when overheating of the working fluid in the evaporator 22 is insufficient) )
  • the working fluid may be circulated by opening the bypass valve to bypass the expander 23.
  • the evaporator 22 may be configured to exchange heat between the working fluid of the Rankine cycle device 2 and the exhaust of the engine 10.
  • FIG. 2 shows the configuration of the pump-integrated expander 27.
  • a rotary shaft 26 includes a pump 25 that circulates the working fluid of the Rankine cycle device 2 and an expander 23 that generates power by expanding the working fluid heated and vaporized by the evaporator 22. It is the fluid machine comprised integrally via.
  • the pump-integrated expander 27 includes an expansion unit 50 constituting the expander 23 and a pump unit 60 constituting the pump 25.
  • the expansion unit 50 (scroll type expander) includes a fixed scroll 51, an expander housing 52, and a movable scroll 53.
  • the fixed scroll 51 has a disk-shaped base 51a and a spiral scroll 51b standing on one surface (the left surface in the figure) of the base 51a.
  • the expander housing 52 is formed in a cylindrical shape having a large inner diameter portion 52 a and a small inner diameter portion 52 b, and a part of the inner peripheral surface of the large inner diameter portion 52 a is a part of the outer peripheral surface of the base portion 51 a of the fixed scroll 51. The part is fitted.
  • the movable scroll 53 is accommodated in the large inner diameter portion 52 a of the expander housing 52.
  • the movable scroll 53 has a disk-like base 53a and a spiral scroll 53b erected on one surface (right side in the drawing) of the base 53a.
  • a cylindrical portion 53c that protrudes toward the pump unit 60 is formed on the other surface (the left surface in the drawing) of the base portion 53a.
  • the fixed scroll 51 and the movable scroll 53 are arranged so that the scroll portions 51 b and 53 b are engaged with each other, and an expansion chamber 54 that expands the working fluid between the scroll portion 51 b of the fixed scroll 51 and the scroll portion 53 b of the movable scroll 53. Is formed. Near the center of the base 51a of the fixed scroll 51, a working fluid passage 51e extending from the suction port 51c that opens to the outside to the introduction port 51d that opens to the expansion chamber 54 is formed.
  • the working fluid passage 51e has a cross-sectional area that is less than or equal to the opening area of the suction port 51c. Then, the working fluid sent to the expander 23 (expansion unit 50) via the evaporator 22 flows from the suction port 51c and is guided to the expansion chamber 54 via the working fluid passage 51e and the introduction port 51d. It is burned.
  • An eccentric bush 83 is provided inside the cylindrical portion 53 c formed on the base portion 53 a of the movable scroll 53 via a needle bearing 55.
  • the eccentric bush 83 constitutes a driven crank mechanism 80 described later.
  • the working fluid guided to the expansion chamber 54 expands in the expansion chamber 54, and the movable scroll 53 performs a turning motion with respect to the fixed scroll 51 as the working fluid expands in the expansion chamber 54.
  • the turning motion of the movable scroll 53 is converted into the rotational motion of the rotary shaft 26 by the driven crank mechanism 80.
  • the base 53a of the movable scroll 53 and the end face (fixed portion) of the expander housing 52 facing the base 53a are arranged.
  • FIG. 3 is an enlarged view around the rotation prevention mechanism 56.
  • the rotation prevention mechanism 56 is a ball coupling type rotation prevention mechanism using a ball as a rolling member, and is a ring attached to a step surface 52c that connects the large inner diameter portion 52a and the small inner diameter portion 52b of the expander housing 52.
  • the ring-like movable side plate 562 attached to the surface of the base 53 a of the movable scroll 53 opposite to the scroll portion 53 b, and the fixed side plate 561 and the movable side plate 562.
  • a plurality of balls 563 that are movably held.
  • annular race grooves 564 having a circular arc cross section are formed at equal intervals in the circumferential direction.
  • the annular race groove 564 is formed so as to correspond to the turning motion of the movable scroll 53.
  • hemispherical or mortar-shaped recesses 565 that accommodate the balls 563 in a freely rollable manner are formed at equal intervals in the circumferential direction.
  • the number of the recesses 565 is the same as the number of the annular race grooves 564 of the fixed side plate 561.
  • the movable plate 562 has an inner edge fixed to the base 53 a of the movable scroll 53 by a pin 566, and a predetermined gap is provided between the outer edge including the portion where the recess 565 is formed and the base 53 a of the movable scroll 53.
  • a gap c is provided. The gap c allows elastic deformation of the movable side plate 562 toward the movable scroll 53 on the outer edge side.
  • Each ball 563 is disposed between the annular race groove 564 of the fixed side plate 561 and the concave portion 565 of the movable side plate 562 so as to roll freely.
  • each ball 563 rolls along the corresponding annular race groove 574 of the corresponding fixed side plate 561, thereby preventing the movable scroll 53 from rotating.
  • the pump unit 60 is configured as a gear pump.
  • the drive gear 61 is fixed to the rotary shaft 26,
  • the driven gear 63 is fixed to the driven shaft 62 and meshes with the drive gear 61, and the drive gear 61.
  • a pump housing 65 that forms a pump chamber 64 that houses the driven gear 63.
  • the pump housing 65 includes a first housing 66 having a recessed portion in which the drive gear 61 and the driven gear 63 are disposed on the surface on the expansion unit 50 side, and the recessed portion disposed on the expansion unit 50 side of the first housing 66.
  • the recessed portion of the first housing 66 closed by the second housing 67 serves as a pump chamber 64.
  • the second housing 67 is formed with a cylindrical portion 67 a protruding toward the expansion unit 50, and the outer peripheral surface of the cylindrical portion 67 a is fitted to the inner peripheral surface of the small inner diameter portion 52 b of the expander housing 52. Match.
  • the rotary shaft 26 extends through the pump housing 65 (the first housing 66 and the second housing 67), and has a large-diameter portion 26a at the end on the expansion unit 50 side.
  • the rotary shaft 26 is rotatably supported by a ball bearing 68 provided on the first housing 66 side and a ball bearing 69 provided on the inner side of the cylindrical portion 67 a of the second housing 67.
  • the driven shaft 62 is rotatably supported by bearings 70 and 71 disposed in the first housing 66 and the second housing 67, respectively.
  • the pulley 31 and the electromagnetic clutch 34 which comprise the transmission mechanism 3 are arrange
  • the driven crank mechanism 80 includes a flange portion 81 fixed to the end surface of the large-diameter portion 26a of the rotary shaft 26, a crank pin 82 provided on the end surface of the flange portion 81 so as to be shifted from the axis of the rotary shaft 26, and a movable crank mechanism 80.
  • An eccentric bush 83 provided inside the cylindrical portion 53 c of the scroll 53 via a needle bearing 55 is configured.
  • the crankpin 82 is inserted through an insertion hole formed in the eccentric bush 83 at a position shifted from the center of the bush, and the eccentric bush 83 is configured to be swingable around the crankpin 82.
  • the crank pin 82 also performs a turning motion by the turning motion of the eccentric bush 83.
  • the driven crank mechanism 80 converts the turning motion of the movable scroll 53 into the rotational motion of the rotary shaft 26, and the pump unit 60 is driven by the rotation of the rotary shaft 26.
  • a counterweight (balance weight) 84 is fixed to the eccentric bush 83 in order to balance the eccentric bush 83 and the movable scroll 52 and suppress the occurrence of vibration in the expansion unit 50. Further, the swing range of the eccentric bush 83 around the crankpin 82 is restricted by the engagement between the restriction hole 81 a provided in the flange portion 81 and the restriction protrusion 83 b provided in the eccentric bush 83.
  • the expansion unit 50 configured as a scroll expander generates power when the working fluid expands in the expansion chamber 54. More specifically, the movable scroll 53 orbits as the working fluid expands in the expansion chamber 54, and the orbiting movement of the movable scroll 54 is caused to rotate by the driven crank mechanism 80. The pump unit 60 is driven by this rotational motion (driving force).
  • the working fluid supplied from the outside to the expansion unit 50 is introduced into the expansion chamber 54 only through the working fluid passage 51e formed in the base 51a of the fixed scroll 51, and in the middle of the working fluid passage 51e.
  • parts for forming a space (buffer space) such as the suction chamber are unnecessary, an increase in the number of parts can be suppressed, and a simple structure can be realized.
  • the working fluid is introduced into the expander 54 only through the working fluid passage 51e, the pressure loss and heat loss of the working fluid in the expansion unit 50 can be suppressed, and the energy loss can be reduced.
  • the ball is used as a rolling member as a structure that rotates to prevent the rotation of the movable scroll 53 and slides under the thrust force acting on the movable scroll 53.
  • the ball coupling type rotation prevention mechanism 56 is used. It has been confirmed through experiments that such a rotation prevention mechanism 56 has high durability without causing problems such as seizure even in a state of insufficient lubrication. For this reason, according to the expansion unit (scroll type expander) in the present embodiment, it is possible to achieve both the above-described simple structure and reduction of energy loss, and ensuring high durability and reliability. .
  • a predetermined gap c is provided between the outer edge side including the portion where the concave portion 565 of the movable side plate 562 is formed and the base portion 53a of the movable scroll 53, so that the movable side plate 562 is movable. Elastic deformation of the side plate 562 is allowed. For this reason, even when a large thrust force is applied to the rotation prevention mechanism 56, the ball 563 is prevented from being deformed and the like, and the deterioration of the function of the rotation prevention mechanism 56 and the generation of noise can be prevented.
  • the working fluid passage 51e formed in the base 51a of the fixed scroll 51 extends in the substantially horizontal direction.
  • the working fluid passage may be formed in a substantially L shape.
  • the working fluid passage includes, for example, a vertical passage 51f extending in a substantially vertical direction from a suction port 51c opened on the upper surface of the base 51a of the fixed scroll 51, and a horizontal passage 51g extending in a substantially horizontal direction from the vertical passage 51f. You may have.
  • “extends in a substantially vertical direction” and “extends in a substantially horizontal direction” are only required to be substantially vertical or horizontal, and includes a case where it is inclined to some extent.
  • the portion of the working fluid circulation path 21 extending from the evaporator 22 to the expansion unit 50 (expander 23) can be disposed above the expansion unit 50, so that, for example, there is a margin in the space on the side of the expansion unit 50. This is convenient when there is no space, or when the space is used for other purposes, increasing the degree of freedom in layout and making effective use of the space possible.
  • the horizontal passage 51g extends in the horizontal direction from the middle of the vertical passage 51f. In other words, the lower end of the vertical passage 51f is below the horizontal passage 51g.
  • the working fluid passage is configured to be located in If it does in this way, the part of the vertical channel
  • the rotation prevention mechanism 57 includes a ring-shaped fixed side plate 571 attached to the step surface 52 c of the expander housing 52, a ring-shaped movable side plate 572 attached to the base 53 a of the movable scroll 53, and And a plurality of balls 573 that are rotatably held between the fixed plate 571 and the movable plate 572.
  • annular race grooves 574 each having a circular arc cross section are formed at equal intervals in the circumferential direction.
  • the annular race groove 574 is formed so as to correspond to the turning motion of the movable scroll 53.
  • Each ball 573 is disposed between the annular race groove 574 of the fixed side plate 571 and the annular race groove 574 of the movable side plate 572 so as to roll freely. When the movable scroll 53 turns, each ball 573 rolls along the corresponding annular race groove 574, thereby preventing the movable scroll 53 from rotating.
  • the rotation prevention mechanism 58 includes a fixed race 581 and a fixed ring 582 attached to the step surface 52 c of the expander housing 52, a movable race 583 and a movable ring 584 attached to the base 53 a of the movable scroll 53, and Have
  • the fixed race 581 and the movable race 583 have ring shapes that are flat on both sides, and circular ball receiving portions (through holes) 585 are formed at equal intervals in the circumferential direction on the fixed ring 582 and the movable ring 584, respectively. Has been.
  • the ball 586 is held by the fixed race 581 and the movable race 582 while being disposed between the ball receiving portions 585 of the fixed ring 582 and the movable ring 584.
  • each ball 586 rolls along the inner periphery of the through hole 585, thereby preventing the movable scroll 53 from rotating.
  • the fixed race 581 corresponds to a fixed side plate
  • the movable race 583 corresponds to a movable side plate.
  • rotation prevention mechanisms 57 and 58 are also ball coupling type rotation prevention mechanisms using balls as rolling members. Like the rotation prevention mechanism 56 in the above-described embodiment, seizure or the like may occur even in a state of insufficient lubrication. It has been confirmed by experiments that no defects occur and it has high durability. As a result, similar to the above-described embodiment, in the scroll expander, it is possible to achieve both the above-described simple structure and reduction of energy loss, and ensuring high durability and reliability.
  • the rotation prevention mechanism may be a ball coupling type rotation prevention mechanism using a ball as a rolling member, and is not limited to the one described above.
  • the movable scroll has a ring-shaped intermediate plate between the fixed side plate and the movable side plate, between each groove formed on the fixed side plate and each groove formed on one surface of the intermediate plate, and It is good also as a rotation prevention mechanism which has the structure by which the ball
  • the end surface of the movable scroll may be formed so as to function as a movable side plate.
  • the pump 25 and the expander 23 of the Rankine cycle device 2 are integrally configured as the pump-integrated expander (fluid machine) 26, but may be used as a single expander.
  • the expander 23 and the generator of the Rankine cycle device 2 may be configured integrally to form a generator-integrated expander (fluid machine).
  • the generator is driven by the power generated by the expander 23, and the power generated by the generator is supplied to, for example, an in-vehicle battery or an in-vehicle motor (both not shown).
  • the configuration of the generator-integrated expander will be described. Elements common to the above-described pump-integrated expander 26 (FIG. 2) are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 7 shows the structure of the generator-integrated expander.
  • the generator-integrated expander 90 includes an expansion unit 50 that forms the expander 23, and a power generation unit 100 that forms the generator.
  • the rotating shaft 26 of the generator-integrated expander 90 has a function as an output shaft of the expansion unit 50 (expander 23) and a function as an input shaft of the power generation unit 100 (generator).
  • the power generation unit 100 includes a generator housing 110 and a generator 120 disposed in the generator housing 110.
  • the generator housing 110 includes a first housing 112 that forms an accommodation space 111 of the generator 120 that opens to the expansion unit 50 side, and a first housing 112 that is disposed on the expansion unit 50 side of the first housing 112 and closes the accommodation space 111.
  • the second housing 113 is formed with a cylindrical portion 113 a that protrudes toward the expansion unit 50, and the outer peripheral surface of the cylindrical portion 113 a is fitted to the inner peripheral surface of the small inner diameter portion 52 b of the expander housing 52. .
  • the generator 120 includes a rotor (rotor) 121 made of, for example, a permanent magnet fixed to the rotating shaft 26, and a stator (stator) fixed to the inner peripheral surface of the first housing 112 so as to surround the rotor 121. 122.
  • the stator 122 includes a yoke 122a and, for example, three sets of coils 122b wound around the yoke 122a, and generates a three-phase alternating current as the rotor 102 rotates.
  • the rotary shaft 26 extends through the generator housing 110 (the first housing 112 and the second housing 113), and has a large-diameter portion 26a at the end on the expansion unit 50 side.
  • the rotating shaft 26 is rotatably supported by a ball bearing 68 provided on the first housing 112 side and a ball bearing 69 provided on the inner side of the cylindrical portion 113a of the second housing 113. Further, the other end side (right side in the drawing) of the rotating shaft 26 is connected to the movable scroll 52 via a driven crank mechanism 80.
  • the turning motion of the movable scroll 53 is converted into the rotational motion of the rotary shaft 26 by the driven crank mechanism 80, and thereby the generator 120 is driven to generate power.
  • the above-described modification of the pump-integrated expander 26 can also be applied to the generator-integrated expander 90.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a scroll-type expander having a relatively simple structure, low energy loss and high durability and reliability. A pump-integrated expander (27) is provided with an expansion unit (50) configured as a scroll-type expander. In the expansion unit (50), an operation fluid path (51e) is formed in a base portion (51a) of a fixed scroll (51), said operation fluid path (51e) extending: from an intake port (51c) that opens to the outside; to a supply opening (51d) that opens to an expansion chamber (54). Operation fluid supplied from the outside is guided to the expansion chamber (54) by means of the operation fluid path (51e). To prevent rotation of a movable scroll (53) as well as to receive a thrust force acting on the movable scroll (53), a ball coupling-type rotation prevention mechanism (56) that uses a ball as a rolling member is provided between a stepped surface (52c) of an expander housing (52) and a base portion (53a) of the movable scroll (53).

Description

スクロール型膨張機及びこれを備えた流体機械Scroll type expander and fluid machine having the same
 本発明は、スクロール型膨張機及びこれを備えた流体機械に関する。 The present invention relates to a scroll type expander and a fluid machine including the same.
 特許文献1には、蒸発発生器で蒸発した高温高圧の気相の作動媒体(冷媒)が固定スクロールの台板(基部)の中心部に形成された貫通孔を介して膨張室に導入されるように構成されたスクロール型膨張機が記載されている。このようなスクロール型膨張機では、外部から供給された作動流体が直接的に膨張室へと導かれるので、スクロール型膨張機における作動流体の熱損失や圧力損失等が抑制される。 In Patent Document 1, a high-temperature and high-pressure gas-phase working medium (refrigerant) evaporated by an evaporation generator is introduced into an expansion chamber through a through-hole formed in a central portion of a base plate (base) of a fixed scroll. A scroll type expander configured as described above is described. In such a scroll type expander, since the working fluid supplied from the outside is directly guided to the expansion chamber, the heat loss and pressure loss of the working fluid in the scroll type expander are suppressed.
特許第4537948号明細書Japanese Patent No. 4537948
 しかし、上記特許文献1に記載されたスクロール型膨張機においては、蒸発発生器で十分に気化されていない作動流体が供給された場合、すなわち、膨張室に液相の作動流体が導入された場合が考慮されていない。膨張室に液相の作動流体が導入されると、内部の摺動部分や回転部分にも液相の作動流体が侵入して潤滑油を流してしまうため、例えばスラスト軸受部に焼付きなどが発生するおそれがある。このため、上記特許文献1に記載されたスクロール型膨張機は、耐久性・信頼性の面で課題を有していた。 However, in the scroll type expander described in Patent Document 1, when a working fluid that is not sufficiently vaporized by the evaporation generator is supplied, that is, when a liquid-phase working fluid is introduced into the expansion chamber Is not taken into account. When a liquid-phase working fluid is introduced into the expansion chamber, the liquid-phase working fluid enters the sliding and rotating parts inside and flows lubricating oil.For example, seizure occurs on the thrust bearing. May occur. For this reason, the scroll type expander described in Patent Document 1 has problems in terms of durability and reliability.
 ここで、液相の作動流体が膨張室に導入されることを防止するため、外部から供給された作動流体が液相の作動流体を溜めることのできる吸入室等を経由して膨張室に導入するようにスクロール型膨張機を構成することも考えられる。
 しかし、そのようにすると、上記吸入室等を形成するための部品(ケーシング等)が新たに必要となり、構造が複雑化すると共にコストアップや装置の大型化を招く。また、上記吸入室等はある程度の容積を有するため、当該吸入室等で作動流体の圧力損失や熱損失が生じてエネルギー損失が増加するおそれもある。
Here, in order to prevent the liquid-phase working fluid from being introduced into the expansion chamber, the working fluid supplied from the outside is introduced into the expansion chamber via a suction chamber or the like that can store the liquid-phase working fluid. It is also conceivable to configure a scroll type expander as described above.
However, if it does so, components (casing etc.) for forming the said suction chamber etc. will be needed newly, a structure will be complicated, and it will cause a cost increase and the enlargement of an apparatus. Further, since the suction chamber or the like has a certain volume, the pressure loss or heat loss of the working fluid may occur in the suction chamber or the like, which may increase energy loss.
 本発明は、このような実情に着目してなされたものであり、構造が比較的簡単であり、エネルギー損失が少なく、かつ、高い耐久性・信頼性を有するスクロール型膨張機及びこれを備えた流体機械を提供することを目的とする。 The present invention has been made paying attention to such a situation, and has a scroll type expander having a relatively simple structure, low energy loss, high durability and reliability, and the same. An object is to provide a fluid machine.
 そのため、本発明の一側面によるスクロール型膨張機は、基部にスクロール部が立設された固定スクロール及び可動スクロールを有し、前記固定スクロールのスクロール部と前記可動スクロールのスクロール部との間に形成される膨張室で作動流体が膨張することによって動力を発生するスクロール型膨張機であって、前記固定スクロールの基部に形成され、外部に開口する吸入ポートから前記膨張室に開口する導入口まで延びて前記吸入ポートに流入した作動流体を前記膨張室内へと導く作動流体通路と、当該スクロール型膨張機の固定部分と前記可動スクロールの基部との間に配置され、前記可動スクロールに作用するスラスト力を受けると共に前記可動スクロールの自転を阻止する自転阻止機構と、を備え、前記自転阻止機構は、ボールを転動部材として用いたボールカップリング式の自転阻止機構である。
 ここで、前記スクロール型膨張機は、単体で使用されるものであってもよいが、前記スクロール型膨張機と、前記スクロール型膨張機で発生した動力によって駆動されて前記作動流体の吸引・吐出を行うポンプユニットとを一体化して流体機械を構成したり、前記スクロール型膨張機と、前記スクロール型膨張機で発生した動力によって駆動されて発電を行う発電ユニットとを一体化して流体機械を構成したりしてもよい。
Therefore, a scroll type expander according to an aspect of the present invention includes a fixed scroll and a movable scroll having a scroll portion standing on a base portion, and is formed between the scroll portion of the fixed scroll and the scroll portion of the movable scroll. A scroll type expander that generates power by expanding a working fluid in an expansion chamber that is formed at a base portion of the fixed scroll and extends from an intake port that opens to the outside to an introduction port that opens to the expansion chamber. Thrust force acting between the working fluid passage for guiding the working fluid flowing into the suction port into the expansion chamber and the fixed portion of the scroll expander and the base of the movable scroll. And a rotation prevention mechanism for preventing rotation of the movable scroll, and the rotation prevention mechanism Which is a ball coupling type rotation-preventing mechanism using a rolling member.
Here, the scroll type expander may be used alone, but is driven by the power generated by the scroll type expander and the scroll type expander to suck and discharge the working fluid. A fluid machine is configured by integrating a pump unit that performs the above, or a fluid machine is configured by integrating the scroll expander and a power generation unit that is driven by the power generated by the scroll expander to generate power You may do it.
 実験によって、ボールを転動部材として用いたボールカップリング式の自転阻止機構は、潤滑不十分の状態であっても高い耐久性を有することが確認されている。
 前記スクロール型膨張機は、このような自転阻止機構によって可動スクロールに作用するスラスト力を受けると共に可動スクロールの自転を阻止するように構成されているので、外部から液相の作動流体が供給されて潤滑不足となった場合であっても不具合が発生せず、高い耐久性・信頼性を確保できる。また、作動流体通路が固定スクロールの基部に形成されており、外部から供給された作動流体が直接的に膨張室へ導かれるので、構造が比較的簡単であり、作動流体の圧力損失や熱損失も抑制できる。
Experiments have confirmed that a ball coupling type rotation prevention mechanism using a ball as a rolling member has high durability even in a state of insufficient lubrication.
The scroll type expander is configured to receive a thrust force acting on the movable scroll by such a rotation prevention mechanism and to prevent the rotation of the movable scroll, so that a liquid-phase working fluid is supplied from the outside. Even when lubrication is insufficient, no problems occur and high durability and reliability can be secured. In addition, since the working fluid passage is formed in the base of the fixed scroll and the working fluid supplied from the outside is directly guided to the expansion chamber, the structure is relatively simple, and the pressure loss and heat loss of the working fluid are relatively small. Can also be suppressed.
本発明の実施形態によるスクロール型膨張機が適用された廃熱利用装置の構成を示す図である。It is a figure which shows the structure of the waste-heat utilization apparatus to which the scroll type expander by embodiment of this invention was applied. 上記スクロール型膨張機を備えたポンプ一体型膨張機の構成を示す図である。It is a figure which shows the structure of the pump integrated expander provided with the said scroll expander. 図2の自転阻止機構周辺の拡大図である。FIG. 3 is an enlarged view around a rotation prevention mechanism of FIG. 2. 上記ポンプ一体型膨張機の変形例を示す図である。It is a figure which shows the modification of the said pump integrated expander. 変形例における自転阻止機構を示す図である。It is a figure which shows the rotation prevention mechanism in a modification. 変形例における他の自転阻止機構を示す図である。It is a figure which shows the other rotation prevention mechanism in a modification. 上記スクロール型膨張機を備えた発電機一体型膨張機の構成を示す図である。It is a figure which shows the structure of the generator integrated expander provided with the said scroll type expander.
 以下、添付図面を参照しつつ本発明の実施形態について説明する。
 図1は、本発明の実施形態によるスクロール型膨張機が適用された廃熱利用装置1の構成を示している。この廃熱利用装置1は、車両に搭載されてエンジン10の廃熱(排熱を含む)を回収して利用する装置であり、ランキンサイクル装置2と、ランキンサイクル装置2の出力をエンジン10に伝達可能な伝達機構3と、制御ユニット4と、を含んで構成される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a configuration of a waste heat utilization apparatus 1 to which a scroll type expander according to an embodiment of the present invention is applied. The waste heat utilization device 1 is a device that is mounted on a vehicle and collects and uses waste heat (including exhaust heat) of the engine 10. The Rankine cycle device 2 and the output of the Rankine cycle device 2 are supplied to the engine 10. A transmission mechanism 3 capable of transmission and a control unit 4 are included.
 エンジン10は、水冷式の内燃機関であり、冷却水循環路11を流れる冷却水によって冷却される。冷却水循環路11には、ランキンサイクル装置2の蒸発器22が配置されている。 The engine 10 is a water-cooled internal combustion engine and is cooled by cooling water flowing through the cooling water circulation path 11. An evaporator 22 of the Rankine cycle device 2 is disposed in the cooling water circulation path 11.
 ランキンサイクル装置2は、エンジン10の冷却水からエンジン10の廃熱を回収して動力に変換して出力する。ランキンサイクル装置2は、作動流体(冷媒)の循環路21を有しており、この循環路21には、蒸発器22、膨張機23、凝縮器24及びポンプ25がこの順序で配置されている。 Rankine cycle device 2 recovers waste heat of engine 10 from cooling water of engine 10, converts it into power, and outputs it. The Rankine cycle device 2 has a circulation path 21 for working fluid (refrigerant), and an evaporator 22, an expander 23, a condenser 24, and a pump 25 are arranged in this order in the circulation path 21. .
 蒸発器22は、エンジン10から熱を吸収した冷却水と作動流体との間で熱交換を行わせることによって作動流体を加熱して蒸発(気化)させる熱交換器である。
 膨張機23は、蒸発器22で加熱されて過熱蒸気となった作動流体を膨張させて回転エネルギーに変換することによって動力を発生するスクロール型膨張機である。
 凝縮器24は、膨張機23を経由した作動流体と外気との間で熱交換を行わせることによって作動流体を冷却して凝縮(液化)させる熱交換器である。
 ポンプ25は、凝縮器24で液化された作動流体を蒸発器22へと送出する機械式ポンプである。このポンプ25が駆動されて作動流体の吸引・吐出を行うことで作動流体が循環路21を循環する。
The evaporator 22 is a heat exchanger that heats and evaporates (vaporizes) the working fluid by performing heat exchange between the cooling water that has absorbed heat from the engine 10 and the working fluid.
The expander 23 is a scroll expander that generates power by expanding the working fluid that has been heated by the evaporator 22 into superheated steam and converting it into rotational energy.
The condenser 24 is a heat exchanger that cools and condenses (liquefies) the working fluid by performing heat exchange between the working fluid that passes through the expander 23 and the outside air.
The pump 25 is a mechanical pump that sends the working fluid liquefied by the condenser 24 to the evaporator 22. The working fluid circulates in the circulation path 21 by driving the pump 25 to suck and discharge the working fluid.
 ここで、本実施形態においては、膨張機23とポンプ25が回転軸26を介して連結された「ポンプ一体型膨張機27」として構成されている。すなわち、ポンプ一体型膨張機27の回転軸26は、膨張機23の出力軸としての機能及びポンプ25の駆動軸としての機能を有している。
 そして、ランキンサイクル装置2は、まずエンジン10によってポンプ25(ポンプ一体型膨張機27におけるポンプ部分)が駆動されることによって起動し、その後、膨張機23(ポンプ一体型膨張機27における膨張機の部分)が十分な動力を発生すると、この膨張機23で発生した動力によってポンプ25が駆動されるようになっている。
Here, in the present embodiment, the expander 23 and the pump 25 are configured as a “pump-integrated expander 27” in which the rotary shaft 26 is connected. That is, the rotating shaft 26 of the pump-integrated expander 27 has a function as an output shaft of the expander 23 and a function as a drive shaft of the pump 25.
The Rankine cycle device 2 is activated by first driving the pump 25 (pump portion in the pump-integrated expander 27) by the engine 10, and then the expander 23 (expansion device in the pump-integrated expander 27). When the portion) generates sufficient power, the pump 25 is driven by the power generated by the expander 23.
 伝達機構3は、ポンプ一体型膨張機27の回転軸26に取り付けられたプーリ31と、エンジン10のクランクシャフト10aに取り付けられたクランクプーリ32と、プーリ31及びクランクプーリ32に巻回されたベルト33と、ポンプ一体型膨張機27の回転軸26とプーリ31との間に設けられた電磁クラッチ34と、を有する。
 そして、電磁クラッチ34をオン(締結)/オフ(解放)することにより、エンジン10とランキンサイクル装置2(具体的にはポンプ一体型膨張機27)との間で動力を伝達/遮断できるようになっている。
The transmission mechanism 3 includes a pulley 31 attached to the rotary shaft 26 of the pump-integrated expander 27, a crank pulley 32 attached to the crankshaft 10a of the engine 10, and a belt wound around the pulley 31 and the crank pulley 32. 33, and an electromagnetic clutch 34 provided between the rotary shaft 26 of the pump-integrated expander 27 and the pulley 31.
Then, the electromagnetic clutch 34 is turned on (engaged) / off (released) so that power can be transmitted / interrupted between the engine 10 and the Rankine cycle device 2 (specifically, the pump-integrated expander 27). It has become.
 制御ユニット4は、電磁クラッチ34の作動を制御する機能を有しており、電磁クラッチ34をオン/オフ制御することでランキンサイクル装置2の作動/停止を制御する。
 すなわち、制御ユニット4は、電磁クラッチ34をオン(締結)し、エンジン10によってポンプ25(ポンプ一体型膨張機27におけるポンプ部分)を作動させることによりランキンサイクル装置2を起動する。その後、膨張機23(ポンプ一体型膨張機27における膨張機部分)が作動して動力を発生するようになると、膨張機23で発生した動力の一部がポンプ25を駆動し、その余の動力が伝達機構3を介してエンジン10に伝達されて、エンジン10の出力(駆動力)をアシストする。
The control unit 4 has a function of controlling the operation of the electromagnetic clutch 34, and controls the operation / stop of the Rankine cycle device 2 by controlling the electromagnetic clutch 34 to be turned on / off.
That is, the control unit 4 activates the Rankine cycle device 2 by turning on (fastening) the electromagnetic clutch 34 and operating the pump 25 (pump portion in the pump-integrated expander 27) by the engine 10. Thereafter, when the expander 23 (the expander portion in the pump-integrated expander 27) is operated to generate power, a part of the power generated by the expander 23 drives the pump 25, and the remaining power. Is transmitted to the engine 10 via the transmission mechanism 3 to assist the output (driving force) of the engine 10.
 ここで、図では省略しているが、膨張機バイパス路及びこの膨張機バイパス路を開閉するバイパス弁を設け、必要に応じて(例えば蒸発器22における作動流体の過熱が不十分である場合に)前記バイパス弁を開弁することによって膨張機23をバイパスさせて作動流体を流通させるように構成してもよい。また、蒸発器22が、ランキンサイクル装置2の作動流体とエンジン10の排気との間で熱交換を行うように構成してもよい。 Here, although omitted in the figure, an expander bypass path and a bypass valve for opening and closing the expander bypass path are provided, and if necessary (for example, when overheating of the working fluid in the evaporator 22 is insufficient) ) The working fluid may be circulated by opening the bypass valve to bypass the expander 23. Further, the evaporator 22 may be configured to exchange heat between the working fluid of the Rankine cycle device 2 and the exhaust of the engine 10.
 図2は、ポンプ一体型膨張機27の構成を示している。
 ポンプ一体型膨張機27は、ランキンサイクル装置2の作動流体を循環させるポンプ25と、蒸発器22で加熱されて気化した作動流体が膨張することによって動力を発生する膨張機23とが回転軸26を介して一体に構成された流体機械である。
 ポンプ一体型膨張機27は、膨張機23を構成する膨張ユニット50と、ポンプ25を構成するポンプユニット60と、を備える。
FIG. 2 shows the configuration of the pump-integrated expander 27.
In the pump-integrated expander 27, a rotary shaft 26 includes a pump 25 that circulates the working fluid of the Rankine cycle device 2 and an expander 23 that generates power by expanding the working fluid heated and vaporized by the evaporator 22. It is the fluid machine comprised integrally via.
The pump-integrated expander 27 includes an expansion unit 50 constituting the expander 23 and a pump unit 60 constituting the pump 25.
 膨張ユニット50(スクロール型膨張機)は、固定スクロール51と、膨張機ハウジング52と、可動スクロール53と、を含んで構成される。
 固定スクロール51は、円盤状の基部51aと、この基部51aの一方の面(図では左側の面)に立設された渦巻状のスクロール部51bと、を有する。
 膨張機ハウジング52は、大内径部52aと小内径部52bとを有する筒状に形成されており、大内径部52aの内周面の一部が、固定スクロール51の基部51aの外周面の一部に嵌合している。
 可動スクロール53は、膨張機ハウジング52の大内径部52aに収容されている。可動スクロール53は、固定スクロール51と同様に、円盤状の基部53aと、この基部53aの一方の面(図では右側の面)に立設された渦巻状のスクロール部53bと、を有する。また、基部53aの他方の面(図では左側の面)には、ポンプユニット60側に突出する筒状部53cが形成されている。
The expansion unit 50 (scroll type expander) includes a fixed scroll 51, an expander housing 52, and a movable scroll 53.
The fixed scroll 51 has a disk-shaped base 51a and a spiral scroll 51b standing on one surface (the left surface in the figure) of the base 51a.
The expander housing 52 is formed in a cylindrical shape having a large inner diameter portion 52 a and a small inner diameter portion 52 b, and a part of the inner peripheral surface of the large inner diameter portion 52 a is a part of the outer peripheral surface of the base portion 51 a of the fixed scroll 51. The part is fitted.
The movable scroll 53 is accommodated in the large inner diameter portion 52 a of the expander housing 52. Similar to the fixed scroll 51, the movable scroll 53 has a disk-like base 53a and a spiral scroll 53b erected on one surface (right side in the drawing) of the base 53a. In addition, a cylindrical portion 53c that protrudes toward the pump unit 60 is formed on the other surface (the left surface in the drawing) of the base portion 53a.
 固定スクロール51と可動スクロール53は、互いのスクロール部51b、53bが噛み合うように配置され、固定スクロール51のスクロール部51bと可動スクロール53のスクロール部53bとの間に作動流体を膨張させる膨張室54が形成される。
 固定スクロール51の基部51aのほぼ中央には、外部に開口する吸入ポート51cから膨張室54に開口する導入口51dまで延びる作動流体通路51eが形成されている。この作動流体通路51eは、その断面積が吸入ポート51cの開口面積以下に形成されている。そして、蒸発器22を経由して膨張機23(膨張ユニット50)へと送られた作動流体は、吸入ポート51cから流入し、作動流体通路51e及び導入口51dを介して膨張室54へと導かれる。
The fixed scroll 51 and the movable scroll 53 are arranged so that the scroll portions 51 b and 53 b are engaged with each other, and an expansion chamber 54 that expands the working fluid between the scroll portion 51 b of the fixed scroll 51 and the scroll portion 53 b of the movable scroll 53. Is formed.
Near the center of the base 51a of the fixed scroll 51, a working fluid passage 51e extending from the suction port 51c that opens to the outside to the introduction port 51d that opens to the expansion chamber 54 is formed. The working fluid passage 51e has a cross-sectional area that is less than or equal to the opening area of the suction port 51c. Then, the working fluid sent to the expander 23 (expansion unit 50) via the evaporator 22 flows from the suction port 51c and is guided to the expansion chamber 54 via the working fluid passage 51e and the introduction port 51d. It is burned.
 可動スクロール53の基部53aに形成された筒状部53cの内側には、ニードルベアリング55を介して偏心ブッシュ83が設けられている。この偏心ブッシュ83は、後述する従動クランク機構80を構成する。
 膨張室54へと導かれた作動流体は膨張室54内で膨張し、この膨張室54内での作動流体の膨張に伴って可動スクロール53は固定スクロール51に対して旋回運動を行う。そして、この可動スクロール53の旋回運動は、従動クランク機構80によって回転軸26の回転運動に変換される。
An eccentric bush 83 is provided inside the cylindrical portion 53 c formed on the base portion 53 a of the movable scroll 53 via a needle bearing 55. The eccentric bush 83 constitutes a driven crank mechanism 80 described later.
The working fluid guided to the expansion chamber 54 expands in the expansion chamber 54, and the movable scroll 53 performs a turning motion with respect to the fixed scroll 51 as the working fluid expands in the expansion chamber 54. The turning motion of the movable scroll 53 is converted into the rotational motion of the rotary shaft 26 by the driven crank mechanism 80.
 ここで、旋回運動中の可動スクロール53の自転を阻止すると共に可動スクロール53に作用するスラスト力を受けるため、可動スクロール53の基部53aとこれに対向する膨張機ハウジング52の端面(固定部分)との間には、自転阻止機構56が配置されている。 Here, in order to prevent the rotation of the movable scroll 53 during the turning motion and to receive a thrust force acting on the movable scroll 53, the base 53a of the movable scroll 53 and the end face (fixed portion) of the expander housing 52 facing the base 53a. Between them, a rotation prevention mechanism 56 is arranged.
 図3は、自転阻止機構56周辺の拡大図である。
 自転阻止機構56は、ボールを転動部材として用いたボールカップリング式の自転阻止機構であり、膨張機ハウジング52の大内径部52aと小内径部52bとを繋ぐ段差面52cに取り付けられたリング状の固定側プレート561と、可動スクロール53の基部53aのスクロール部53bとは反対側の面に取り付けられたリング状の可動側プレート562と、固定側プレート561と可動側プレート562の間に転動自在に保持された複数のボール563と、を備える。
FIG. 3 is an enlarged view around the rotation prevention mechanism 56.
The rotation prevention mechanism 56 is a ball coupling type rotation prevention mechanism using a ball as a rolling member, and is a ring attached to a step surface 52c that connects the large inner diameter portion 52a and the small inner diameter portion 52b of the expander housing 52. Between the fixed side plate 561, the ring-like movable side plate 562 attached to the surface of the base 53 a of the movable scroll 53 opposite to the scroll portion 53 b, and the fixed side plate 561 and the movable side plate 562. A plurality of balls 563 that are movably held.
 固定側プレート561には、溝断面が円弧状の環状レース溝564が周方向に等間隔で形成されている。この環状レース溝564は、可動スクロール53の旋回運動に対応するように形成されている。 In the fixed side plate 561, annular race grooves 564 having a circular arc cross section are formed at equal intervals in the circumferential direction. The annular race groove 564 is formed so as to correspond to the turning motion of the movable scroll 53.
 可動側プレート562には、ボール563を転動自在に収容する半球状又はすり鉢状の凹部565が周方向に等間隔で形成されている。この凹部565の個数は、固定側プレート561の環状レース溝564の個数と同じである。可動側プレート562は、その内縁側がピン566によって可動スクロール53の基部53aに固定されており、凹部565の形成された部分を含む外縁側と可動スクロール53の基部53aとの間には所定の隙間cが設けられている。この隙間cによって、可動側プレート562の前記外縁側の可動スクロール53側への弾性変形が許容されている。 In the movable side plate 562, hemispherical or mortar-shaped recesses 565 that accommodate the balls 563 in a freely rollable manner are formed at equal intervals in the circumferential direction. The number of the recesses 565 is the same as the number of the annular race grooves 564 of the fixed side plate 561. The movable plate 562 has an inner edge fixed to the base 53 a of the movable scroll 53 by a pin 566, and a predetermined gap is provided between the outer edge including the portion where the recess 565 is formed and the base 53 a of the movable scroll 53. A gap c is provided. The gap c allows elastic deformation of the movable side plate 562 toward the movable scroll 53 on the outer edge side.
 各ボール563は、固定側プレート561の環状レース溝564と可動側プレート562の凹部565との間に転動自在に配置されている。
 そして、可動スクロール53が旋回すると、各ボール563が対応する固定側プレート561の環状レース溝574に沿って転動し、これにより、可動スクロール53の自転が阻止される。
Each ball 563 is disposed between the annular race groove 564 of the fixed side plate 561 and the concave portion 565 of the movable side plate 562 so as to roll freely.
When the movable scroll 53 turns, each ball 563 rolls along the corresponding annular race groove 574 of the corresponding fixed side plate 561, thereby preventing the movable scroll 53 from rotating.
 図2に戻って、ポンプユニット60は、ギヤポンプとして構成されており、回転軸26に固定された駆動ギヤ61と、従動軸62に固定されて駆動ギヤ61と噛み合う従動ギヤ63と、駆動ギヤ61及び従動ギヤ63を収容するポンプ室64を形成するポンプハウジング65と、を含む。 Returning to FIG. 2, the pump unit 60 is configured as a gear pump. The drive gear 61 is fixed to the rotary shaft 26, the driven gear 63 is fixed to the driven shaft 62 and meshes with the drive gear 61, and the drive gear 61. And a pump housing 65 that forms a pump chamber 64 that houses the driven gear 63.
 ポンプハウジング65は、駆動ギヤ61及び従動ギヤ63が配置される凹陥部を膨張ユニット50側の面に有する第1ハウジング66と、この第1ハウジング66の膨張ユニット50側に配置されて前記凹陥部を閉塞する第2ハウジング67とからなり、第2ハウジング67によって閉塞された第1ハウジング66の前記凹陥部がポンプ室64となる。
 また、第2ハウジング67には、膨張ユニット50側に突出する筒状部67aが形成されており、この筒状部67aの外周面が膨張機ハウジング52の小内径部52bの内周面に嵌合している。
The pump housing 65 includes a first housing 66 having a recessed portion in which the drive gear 61 and the driven gear 63 are disposed on the surface on the expansion unit 50 side, and the recessed portion disposed on the expansion unit 50 side of the first housing 66. The recessed portion of the first housing 66 closed by the second housing 67 serves as a pump chamber 64.
Further, the second housing 67 is formed with a cylindrical portion 67 a protruding toward the expansion unit 50, and the outer peripheral surface of the cylindrical portion 67 a is fitted to the inner peripheral surface of the small inner diameter portion 52 b of the expander housing 52. Match.
 回転軸26は、ポンプハウジング65(第1ハウジング66及び第2ハウジング67)を貫通して延びており、膨張ユニット50側の端部に大径部26aを有している。回転軸26は、第1ハウジング66側に設けられたボールベアリング68及び第2ハウジング67の筒状部67aの内側に設けられたボールベアリング69によって回転可能に支持されている。また、従動軸62は、第1ハウジング66及び第2ハウジング67にそれぞれ配置された軸受70,71によって回転可能に支持されている。 The rotary shaft 26 extends through the pump housing 65 (the first housing 66 and the second housing 67), and has a large-diameter portion 26a at the end on the expansion unit 50 side. The rotary shaft 26 is rotatably supported by a ball bearing 68 provided on the first housing 66 side and a ball bearing 69 provided on the inner side of the cylindrical portion 67 a of the second housing 67. The driven shaft 62 is rotatably supported by bearings 70 and 71 disposed in the first housing 66 and the second housing 67, respectively.
 回転軸26の一端側(図では左側)には、伝達機構3を構成するプーリ31及び電磁クラッチ34が配置されている。また、回転軸26の他端側(図では右側)は、従動クランク機構80を介して可動スクロール52に連結されている。 The pulley 31 and the electromagnetic clutch 34 which comprise the transmission mechanism 3 are arrange | positioned at the one end side (left side in a figure) of the rotating shaft 26. As shown in FIG. Further, the other end side (right side in the drawing) of the rotating shaft 26 is connected to the movable scroll 52 via a driven crank mechanism 80.
 従動クランク機構80は、回転軸26の大径部26aの端面に固定されたフランジ部81と、このフランジ部81の端面に回転軸26の軸心からずらして設けられたクランクピン82と、可動スクロール53の筒状部53cの内側にニードルベアリング55を介して設けられた偏心ブッシュ83と、を含んで構成される。また、クランクピン82は、偏心ブッシュ83にブッシュ中心からずらした位置に形成された挿通孔に挿通しており、偏心ブッシュ83はクランクピン82回りに揺動可能に構成されている。これにより、偏心ブッシュ83の旋回運動によってクランクピン82も旋回運動を行う。
 かかる従動クランク機構80によって、可動スクロール53の旋回運動が回転軸26の回転運動に変換され、この回転軸26の回転によってポンプユニット60が駆動される。
The driven crank mechanism 80 includes a flange portion 81 fixed to the end surface of the large-diameter portion 26a of the rotary shaft 26, a crank pin 82 provided on the end surface of the flange portion 81 so as to be shifted from the axis of the rotary shaft 26, and a movable crank mechanism 80. An eccentric bush 83 provided inside the cylindrical portion 53 c of the scroll 53 via a needle bearing 55 is configured. The crankpin 82 is inserted through an insertion hole formed in the eccentric bush 83 at a position shifted from the center of the bush, and the eccentric bush 83 is configured to be swingable around the crankpin 82. As a result, the crank pin 82 also performs a turning motion by the turning motion of the eccentric bush 83.
The driven crank mechanism 80 converts the turning motion of the movable scroll 53 into the rotational motion of the rotary shaft 26, and the pump unit 60 is driven by the rotation of the rotary shaft 26.
 なお、偏心ブッシュ83及び可動スクロール52のバランスを取り、膨張ユニット50における振動の発生を抑制するため、偏心ブッシュ83にはカウンタウェイト(バランスウェイト)84が固定されている。また、フランジ部81に設けられた規制穴81aと、偏心ブッシュ83に設けられた規制突起83bとの係合によって、クランクピン82回りの偏心ブッシュ83の揺動範囲が規制されている。 A counterweight (balance weight) 84 is fixed to the eccentric bush 83 in order to balance the eccentric bush 83 and the movable scroll 52 and suppress the occurrence of vibration in the expansion unit 50. Further, the swing range of the eccentric bush 83 around the crankpin 82 is restricted by the engagement between the restriction hole 81 a provided in the flange portion 81 and the restriction protrusion 83 b provided in the eccentric bush 83.
 以上説明したポンプ一体型膨張機27において、スクロール型膨張機として構成される膨張ユニット50は、膨張室54内で作動流体が膨張することによって動力を発生する。より具体的には、膨張室54内での作動流体の膨張に伴って可動スクロール53が旋回運動し、この可動スクロール54の旋回運動が従動クランク機構80によって回転軸26の回転運動(駆動力)に変換され、この回転運動(駆動力)によってポンプユニット60が駆動される。 In the pump-integrated expander 27 described above, the expansion unit 50 configured as a scroll expander generates power when the working fluid expands in the expansion chamber 54. More specifically, the movable scroll 53 orbits as the working fluid expands in the expansion chamber 54, and the orbiting movement of the movable scroll 54 is caused to rotate by the driven crank mechanism 80. The pump unit 60 is driven by this rotational motion (driving force).
 ここで、外部から膨張ユニット50に供給された作動流体は、固定スクロール51の基部51aに形成された作動流体通路51eのみを経て膨張室54へと導入され、その途中に作動流体通路51eよりも大きい断面積を有する吸入室等の空間(バッファ空間)が存在しない。このため、前記吸入室等の空間(バッファ空間)を形成するための部品が不要であり、部品点数の増加を抑制し、かつ、シンプルな構造を実現できる。また、作動流体は作動流体通路51eのみを経て膨張機54へと導入されるので、膨張ユニット50内での作動流体の圧力損失や熱損失を抑制することができ、エネルギー損失を少なくできる。 Here, the working fluid supplied from the outside to the expansion unit 50 is introduced into the expansion chamber 54 only through the working fluid passage 51e formed in the base 51a of the fixed scroll 51, and in the middle of the working fluid passage 51e. There is no space (buffer space) such as a suction chamber having a large cross-sectional area. For this reason, parts for forming a space (buffer space) such as the suction chamber are unnecessary, an increase in the number of parts can be suppressed, and a simple structure can be realized. Moreover, since the working fluid is introduced into the expander 54 only through the working fluid passage 51e, the pressure loss and heat loss of the working fluid in the expansion unit 50 can be suppressed, and the energy loss can be reduced.
 ところで、このように、外部から供給された作動流体が作動流体通路51eのみを経て膨張室54へと導入される構成においては、液相の作動流体が膨張室54に導入されてしまい、その結果、内部の潤滑油が流されて摺動部分や回転部分が潤滑不足に陥ることが懸念される。 By the way, in such a configuration in which the working fluid supplied from the outside is introduced into the expansion chamber 54 only through the working fluid passage 51e, the liquid-phase working fluid is introduced into the expansion chamber 54, and as a result. There is a concern that the lubricating oil inside will be poured and the sliding part and the rotating part will be insufficiently lubricated.
 この点、本実施形態による膨張ユニット50においては、可動スクロール53の自転を阻止するために回転すると共に可動スクロール53に作用するスラスト力を受けて摺動する構成として、ボールを転動部材として用いたボールカップリング式の自転阻止機構56を用いている。このような自転阻止機構56は、潤滑不足の状態においても焼付き等の不具合が発生せず、高い耐久性を有することが実験によって確認されている。
 このため、本実施形態におる膨張ユニット(スクロール型膨張機)によると、上述したようなシンプルな構造及びエネルギー損失の低減の実現と、高い耐久性・信頼性の確保とを両立させることができる。
In this regard, in the expansion unit 50 according to the present embodiment, the ball is used as a rolling member as a structure that rotates to prevent the rotation of the movable scroll 53 and slides under the thrust force acting on the movable scroll 53. The ball coupling type rotation prevention mechanism 56 is used. It has been confirmed through experiments that such a rotation prevention mechanism 56 has high durability without causing problems such as seizure even in a state of insufficient lubrication.
For this reason, according to the expansion unit (scroll type expander) in the present embodiment, it is possible to achieve both the above-described simple structure and reduction of energy loss, and ensuring high durability and reliability. .
 また、本実施形態における自転阻止機構56においては、可動側プレート562の凹部565が形成された部分を含む外縁側と、可動スクロール53の基部53aとの間に所定の隙間cが設けられ、可動側プレート562の弾性変形が許容されている。このため、自転阻止機構56に大きなスラスト力が作用した場合であっても、ボール563が変形等することが抑制され、自転阻止機構56の機能低下や騒音の発生を防止できる。 Further, in the rotation prevention mechanism 56 in the present embodiment, a predetermined gap c is provided between the outer edge side including the portion where the concave portion 565 of the movable side plate 562 is formed and the base portion 53a of the movable scroll 53, so that the movable side plate 562 is movable. Elastic deformation of the side plate 562 is allowed. For this reason, even when a large thrust force is applied to the rotation prevention mechanism 56, the ball 563 is prevented from being deformed and the like, and the deterioration of the function of the rotation prevention mechanism 56 and the generation of noise can be prevented.
 なお、本発明は、上記実施形態に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能であることはもちろんである。以下、いくつかの変形例について説明する。
 上記実施形態では、固定スクロール51の基部51aに形成された作動流体通路51eがほぼ水平方向に延びているが、図4に示すように、作動流体通路を略L字状に形成してもよい。具体的には、作動流体通路が、例えば、固定スクロール51の基部51aの上面に開口する吸入ポート51cからほぼ鉛直方向に延びる鉛直通路51fと、この鉛直通路51fからほぼ水平方向に延びる水平通路51gとを有してもよい。ここで、「ほぼ鉛直方向に延びる」及び「ほぼ水平方向に延びる」は、概ね鉛直又は水平となっていればよく、ある程度の傾斜している場合も含む。
 このようにすると、作動流体の循環路21の蒸発器22から膨張ユニット50(膨張機23)へと至る部分を膨張ユニット50の上方に配置できるので、例えば膨張ユニット50の側方のスペースに余裕がない場合や当該スペースを他の目的で利用した場合に便宜であり、レイアウト自由度が高くなり、スペースの有効利用を図ることができる。
In addition, this invention is not restrict | limited to the said embodiment, Of course, a various deformation | transformation and change are possible based on the technical idea of this invention. Hereinafter, some modified examples will be described.
In the above embodiment, the working fluid passage 51e formed in the base 51a of the fixed scroll 51 extends in the substantially horizontal direction. However, as shown in FIG. 4, the working fluid passage may be formed in a substantially L shape. . Specifically, the working fluid passage includes, for example, a vertical passage 51f extending in a substantially vertical direction from a suction port 51c opened on the upper surface of the base 51a of the fixed scroll 51, and a horizontal passage 51g extending in a substantially horizontal direction from the vertical passage 51f. You may have. Here, “extends in a substantially vertical direction” and “extends in a substantially horizontal direction” are only required to be substantially vertical or horizontal, and includes a case where it is inclined to some extent.
In this way, the portion of the working fluid circulation path 21 extending from the evaporator 22 to the expansion unit 50 (expander 23) can be disposed above the expansion unit 50, so that, for example, there is a margin in the space on the side of the expansion unit 50. This is convenient when there is no space, or when the space is used for other purposes, increasing the degree of freedom in layout and making effective use of the space possible.
 なお、この場合において、より好ましくは、図4に示すように、水平通路51gが鉛直通路51fの途中から水平方向に延びる、換言すれば、鉛直通路51fの下端部が水平通路51gよりも下側に位置するように作動流体通路を構成する。このようにすると、水平通路51gよりも下側に位置する鉛直通路51fの部分が液溜り部51hとなって液相の作動流体を溜める機能を有することになり、膨張室54内に導入される液相の作動流体の量を低減できる。 In this case, more preferably, as shown in FIG. 4, the horizontal passage 51g extends in the horizontal direction from the middle of the vertical passage 51f. In other words, the lower end of the vertical passage 51f is below the horizontal passage 51g. The working fluid passage is configured to be located in If it does in this way, the part of the vertical channel | path 51f located below the horizontal channel | path 51g will become the liquid reservoir part 51h, and has the function to accumulate | store a liquid-phase working fluid, and is introduce | transduced in the expansion chamber 54. The amount of working fluid in the liquid phase can be reduced.
 また、上記実施形態における自転阻止機構56に代えて、図5に示すような自転阻止機構57を用いてもよい。
 図5において、自転阻止機構57は、膨張機ハウジング52の段差面52cに取り付けられたリング状の固定側プレート571と、可動スクロール53の基部53aに取り付けられたリング状の可動側プレート572と、固定側プレート571と可動側プレート572の間に転動自在に保持された複数のボール573と、を備える。
Further, instead of the rotation prevention mechanism 56 in the above embodiment, a rotation prevention mechanism 57 as shown in FIG. 5 may be used.
In FIG. 5, the rotation prevention mechanism 57 includes a ring-shaped fixed side plate 571 attached to the step surface 52 c of the expander housing 52, a ring-shaped movable side plate 572 attached to the base 53 a of the movable scroll 53, and And a plurality of balls 573 that are rotatably held between the fixed plate 571 and the movable plate 572.
 固定側プレート571及び可動側プレート572には、それぞれ溝断面が円弧状の環状レース溝574が周方向に等間隔で形成されている。この環状レース溝574は、可動スクロール53の旋回運動に対応するように形成されている。
 各ボール573は、固定側プレート571の環状レース溝574と可動側プレート572の環状レース溝574との間に転動自在に配置されている。
 そして、可動スクロール53が旋回すると、各ボール573が対応する環状レース溝574に沿って転動し、これにより、可動スクロール53の自転が阻止される。
In the fixed side plate 571 and the movable side plate 572, annular race grooves 574 each having a circular arc cross section are formed at equal intervals in the circumferential direction. The annular race groove 574 is formed so as to correspond to the turning motion of the movable scroll 53.
Each ball 573 is disposed between the annular race groove 574 of the fixed side plate 571 and the annular race groove 574 of the movable side plate 572 so as to roll freely.
When the movable scroll 53 turns, each ball 573 rolls along the corresponding annular race groove 574, thereby preventing the movable scroll 53 from rotating.
 さらに、上記自転阻止機構56に代えて、図6に示すような自転阻止機構58を用いてもよい。
 図6において、自転阻止機構58は、膨張機ハウジング52の段差面52cに取り付けられた固定レース581及び固定リング582と、可動スクロール53の基部53aに取り付けられた可動レース583及び可動リング584と、を有する。
 固定レース581及び可動レース583は、両面が平坦なリング形状を有しており、固定リング582及び可動リング584には、それぞれ円形のボール収容部(貫通孔)585が周方向に等間隔で形成されている。
Further, instead of the rotation prevention mechanism 56, a rotation prevention mechanism 58 as shown in FIG. 6 may be used.
In FIG. 6, the rotation prevention mechanism 58 includes a fixed race 581 and a fixed ring 582 attached to the step surface 52 c of the expander housing 52, a movable race 583 and a movable ring 584 attached to the base 53 a of the movable scroll 53, and Have
The fixed race 581 and the movable race 583 have ring shapes that are flat on both sides, and circular ball receiving portions (through holes) 585 are formed at equal intervals in the circumferential direction on the fixed ring 582 and the movable ring 584, respectively. Has been.
 ボール586は、固定リング582及び可動リング584の各ボール収容部585の間に配置された状態で固定レース581及び可動レース582によって保持されている。
 そして、可動スクロール53が旋回すると、各ボール586が貫通孔585の内周に沿って転動し、これにより、可動スクロール53の自転が阻止される。なお、この自転阻止機構58においては、固定レース581が固定側プレートに相当し、可動レース583が可動側プレートに相当する。
The ball 586 is held by the fixed race 581 and the movable race 582 while being disposed between the ball receiving portions 585 of the fixed ring 582 and the movable ring 584.
When the movable scroll 53 turns, each ball 586 rolls along the inner periphery of the through hole 585, thereby preventing the movable scroll 53 from rotating. In this rotation prevention mechanism 58, the fixed race 581 corresponds to a fixed side plate, and the movable race 583 corresponds to a movable side plate.
 これらの自転阻止機構57、58も、ボールを転動部材として用いたボールカップリング式の自転阻止機構であり、上記実施形態における自転阻止機構56と同様、潤滑不足の状態においても焼付き等の不具合が発生せず、高い耐久性を有することが実験によって確認されている。この結果、上記実施形態と同様、スクロール型膨張機おいて、上述したようなシンプルな構造及びエネルギー損失の低減の実現と、高い耐久性・信頼性の確保とを両立させることができる。
 なお、自転阻止機構は、ボールを転動部材として用いたボールカップリング式の自転阻止機構であればよく、上述したものに限るものではない。例えば、固定側プレートと可動側プレートとの間にリング状の中間プレートを有し、固定側プレートに形成された各溝と中間プレートの一方の面に形成された各溝との間、及び、中間プレートの他方の面に形成された各溝と可動側プレートに形成された各溝との間に、それぞれボールが転動自在に配置された構成を有する自転阻止機構としてもよい。また、可動スクロールの端面が可動側プレートとして機能するよう形成されていてもよい。
These rotation prevention mechanisms 57 and 58 are also ball coupling type rotation prevention mechanisms using balls as rolling members. Like the rotation prevention mechanism 56 in the above-described embodiment, seizure or the like may occur even in a state of insufficient lubrication. It has been confirmed by experiments that no defects occur and it has high durability. As a result, similar to the above-described embodiment, in the scroll expander, it is possible to achieve both the above-described simple structure and reduction of energy loss, and ensuring high durability and reliability.
The rotation prevention mechanism may be a ball coupling type rotation prevention mechanism using a ball as a rolling member, and is not limited to the one described above. For example, it has a ring-shaped intermediate plate between the fixed side plate and the movable side plate, between each groove formed on the fixed side plate and each groove formed on one surface of the intermediate plate, and It is good also as a rotation prevention mechanism which has the structure by which the ball | bowl was arrange | positioned so that rolling was possible between each groove | channel formed in the other surface of the intermediate | middle plate, and each groove | channel formed in the movable side plate. Moreover, the end surface of the movable scroll may be formed so as to function as a movable side plate.
 また、上記実施形態では、ランキンサイクル装置2のポンプ25と膨張機23を一体に構成してポンプ一体型膨張機(流体機械)26としているが、膨張機単体として利用してもよい。また、ランキンサイクル装置2の膨張機23と発電機を一体に構成して発電機一体型膨張機(流体機械)としてもよい。この場合には、膨張機23で発生した動力で発電機を駆動し、発電機で発電した電力を例えば車載バッテリや車載電動機(いずれも図示省略)に供給するように構成する。
 以下、発電機一体型膨張機の構成について説明するが、上述したポンプ一体型膨張機26(図2)と共通する要素については同一の符号を付してその説明を省略する。
In the above-described embodiment, the pump 25 and the expander 23 of the Rankine cycle device 2 are integrally configured as the pump-integrated expander (fluid machine) 26, but may be used as a single expander. Alternatively, the expander 23 and the generator of the Rankine cycle device 2 may be configured integrally to form a generator-integrated expander (fluid machine). In this case, the generator is driven by the power generated by the expander 23, and the power generated by the generator is supplied to, for example, an in-vehicle battery or an in-vehicle motor (both not shown).
Hereinafter, the configuration of the generator-integrated expander will be described. Elements common to the above-described pump-integrated expander 26 (FIG. 2) are denoted by the same reference numerals and description thereof is omitted.
 図7は、発電機一体型膨張機の構造を示している。
 図7に示すように、発電機一体型膨張機90は、膨張機23を構成する膨張ユニット50と、発電機を構成する発電ユニット100と、を備える。なお、発電機一体型膨張機90の回転軸26は、膨張ユニット50(膨張機23)の出力軸としての機能及び発電ユニット100(発電機)の入力軸として機能を有する。
FIG. 7 shows the structure of the generator-integrated expander.
As shown in FIG. 7, the generator-integrated expander 90 includes an expansion unit 50 that forms the expander 23, and a power generation unit 100 that forms the generator. The rotating shaft 26 of the generator-integrated expander 90 has a function as an output shaft of the expansion unit 50 (expander 23) and a function as an input shaft of the power generation unit 100 (generator).
 発電ユニット100は、発電機ハウジング110と、発電機ハウジング110内に配置された発電機120と、を含む。
 発電機ハウジング110は、膨張ユニット50側に開口する発電機120の収容空間111を形成する第1ハウジング112と、この第1ハウジング112の膨張ユニット50側に配置されて収容空間111を閉塞する第2ハウジング113とからなる。第2ハウジング113には、膨張ユニット50側に突出する筒状部113aが形成され、この筒状部113aの外周面が膨張機ハウジング52の小内径部52bの内周面に嵌合している。
The power generation unit 100 includes a generator housing 110 and a generator 120 disposed in the generator housing 110.
The generator housing 110 includes a first housing 112 that forms an accommodation space 111 of the generator 120 that opens to the expansion unit 50 side, and a first housing 112 that is disposed on the expansion unit 50 side of the first housing 112 and closes the accommodation space 111. 2 housing 113. The second housing 113 is formed with a cylindrical portion 113 a that protrudes toward the expansion unit 50, and the outer peripheral surface of the cylindrical portion 113 a is fitted to the inner peripheral surface of the small inner diameter portion 52 b of the expander housing 52. .
 発電機120は、回転軸26に固定された例えば永久磁石からなる回転子(ロータ)121と、この回転子121を囲むように第1ハウジング112の内周面に固定された固定子(ステータ)122と、を備える。固定子122は、ヨーク122aと、ヨーク122aに巻回された例えば3組のコイル122bとを有しており、回転子102の回転に伴って三相交流を発生する。 The generator 120 includes a rotor (rotor) 121 made of, for example, a permanent magnet fixed to the rotating shaft 26, and a stator (stator) fixed to the inner peripheral surface of the first housing 112 so as to surround the rotor 121. 122. The stator 122 includes a yoke 122a and, for example, three sets of coils 122b wound around the yoke 122a, and generates a three-phase alternating current as the rotor 102 rotates.
 回転軸26は、発電機ハウジング110(第1ハウジング112及び第2ハウジング113)を貫通して延びており、膨張ユニット50側の端部に大径部26aを有している。回転軸26は、第1ハウジング112側に設けられたボールベアリング68及び第2ハウジング113の筒状部113aの内側に設けられたボールベアリング69によって回転可能に支持されている。また、回転軸26の他端側(図において右側)は、従動クランク機構80を介して可動スクロール52に連結されている。 The rotary shaft 26 extends through the generator housing 110 (the first housing 112 and the second housing 113), and has a large-diameter portion 26a at the end on the expansion unit 50 side. The rotating shaft 26 is rotatably supported by a ball bearing 68 provided on the first housing 112 side and a ball bearing 69 provided on the inner side of the cylindrical portion 113a of the second housing 113. Further, the other end side (right side in the drawing) of the rotating shaft 26 is connected to the movable scroll 52 via a driven crank mechanism 80.
 そして、上記実施形態と同様、従動クランク機構80によって可動スクロール53の旋回運動が回転軸26の回転運動に変換され、これにより、発電機120が駆動されて発電する。なお、上述したポンプ一体側膨張機26についての変形例は、上記発電機一体型膨張機90についても適用可能であることはもちろんである。 And like the above-mentioned embodiment, the turning motion of the movable scroll 53 is converted into the rotational motion of the rotary shaft 26 by the driven crank mechanism 80, and thereby the generator 120 is driven to generate power. Of course, the above-described modification of the pump-integrated expander 26 can also be applied to the generator-integrated expander 90.
 1…廃熱利用装置、2…ランキンサイクル装置、22…蒸発器、23…膨張機、24…凝縮器、25…ポンプ、26…回転軸、27…ポンプ一体型膨張機(流体機械)、50…膨張ユニット(スクロール型膨張機)、51…固定スクロール、51a…基部、51b…スクロール部、51c…吸入ポート、51d…導入口、51e…作動流体通路、51f…鉛直通路、51g…水平通路、51h…液溜り部、52…膨張機ハウジング、52c…段差面(端面)、53…可動スクロール、53a…基部、53b…スクロール部、54…膨張室、56~58…自転阻止機構、60…ポンプユニット、90…発電機一体型膨張機(流体機械)、100…発電ユニット、561,571…固定側プレート、562,572…可動側プレート、563,573…ボール、564,574…環状レース溝 DESCRIPTION OF SYMBOLS 1 ... Waste heat utilization apparatus, 2 ... Rankine cycle apparatus, 22 ... Evaporator, 23 ... Expander, 24 ... Condenser, 25 ... Pump, 26 ... Rotating shaft, 27 ... Pump integrated expander (fluid machine), 50 ... Expansion unit (scroll type expander) 51 ... Fixed scroll 51a ... Base part 51b ... Scroll part 51c ... Suction port 51d ... Inlet port 51e ... Working fluid passage 51f ... Vertical passage 51g ... Horizontal passage 51h ... Liquid reservoir, 52 ... Expander housing, 52c ... Step surface (end face), 53 ... Movable scroll, 53a ... Base, 53b ... Scroll part, 54 ... Expansion chamber, 56-58 ... Rotation prevention mechanism, 60 ... Pump Unit: 90 ... generator-integrated expander (fluid machine), 100 ... power generation unit, 561, 571 ... fixed plate, 562, 572 ... movable plate, 563 73 ... ball, 564 and 574 ... annular race groove

Claims (7)

  1.  基部にスクロール部が立設された固定スクロール及び可動スクロールを有し、前記固定スクロールのスクロール部と前記可動スクロールのスクロール部との間に形成される膨張室で作動流体が膨張することによって動力を発生するスクロール型膨張機であって、
     前記固定スクロールの基部に形成され、外部に開口する吸入ポートから前記膨張室内に開口する導入口まで延びて前記吸入ポートに流入した作動流体を前記膨張室へと導く作動流体通路と、
     当該スクロール型膨張機の固定部分と前記可動スクロールの基部との間に配置され、前記可動スクロールに作用するスラスト力を受けると共に前記可動スクロールの自転を阻止する自転阻止機構と、
     を備え、
     前記自転阻止機構は、ボールを転動部材として用いたボールカップリング式の自転阻止機構である、スクロール型膨張機。
    It has a fixed scroll and a movable scroll with a scroll portion standing on the base, and the working fluid expands in an expansion chamber formed between the scroll portion of the fixed scroll and the scroll portion of the movable scroll. A scroll type expander,
    A working fluid passage formed at a base portion of the fixed scroll and extending from a suction port opening to the outside to an introduction port opening into the expansion chamber and guiding the working fluid flowing into the suction port to the expansion chamber;
    A rotation preventing mechanism that is disposed between a fixed portion of the scroll expander and a base of the movable scroll, receives a thrust force acting on the movable scroll, and prevents rotation of the movable scroll;
    With
    The rotation prevention mechanism is a scroll-type expander that is a ball coupling type rotation prevention mechanism using a ball as a rolling member.
  2.  前記自転阻止機構は、
     前記固定部分に取り付けられた固定側プレートと、
     前記可動スクロールの基部に取り付けられた可動側プレートと、
     前記固定側プレートと前記可動側プレートとの間に転動自在に保持されたボールと、
     を含み、
     前記固定側プレート及び前記可動側プレートのうちの少なくとも前記固定側プレートに円弧状の溝断面を有する環状レース溝が形成され、前記ボールが前記環状レース溝に沿って転動する、請求項1に記載のスクロール型膨張機。
    The rotation prevention mechanism is
    A fixed side plate attached to the fixed part;
    A movable side plate attached to the base of the movable scroll;
    A ball rotatably held between the fixed plate and the movable plate;
    Including
    The annular race groove having an arc-shaped groove cross section is formed in at least the fixed side plate of the fixed side plate and the movable side plate, and the ball rolls along the annular race groove. The scroll expander described.
  3.  前記可動スクロールの基部と前記可動側プレートとの間に、前記可動側プレートの弾性変形を許容する隙間が設けられている、請求項2に記載のスクロール型膨張機。 The scroll type expander according to claim 2, wherein a gap allowing elastic deformation of the movable side plate is provided between the base of the movable scroll and the movable side plate.
  4.  前記作動流体通路は、前記吸入ポートからほぼ水平方向に延びて前記導入口に接続している、請求項1に記載のスクロール型膨張機。 The scroll type expander according to claim 1, wherein the working fluid passage extends substantially horizontally from the suction port and is connected to the introduction port.
  5.  前記作動流体通路は、前記吸入ポートからほぼ鉛直方向に延びる鉛直通路と、当該鉛直通路からほぼ水平方向に延びて前記導入口に接続する水平通路と、を有する、請求項1に記載のスクロール型膨張機。 2. The scroll type according to claim 1, wherein the working fluid passage has a vertical passage extending substantially vertically from the suction port, and a horizontal passage extending substantially horizontally from the vertical passage and connected to the introduction port. Expansion machine.
  6.  スクロール型膨張機と、このスクロール型膨張機で発生した動力によって駆動されて前記作動流体の吸引・吐出を行うポンプユニットとが一体に構成された流体機械であって、
     前記スクロール型膨張機は、基部にスクロール部が立設された固定スクロール及び可動スクロールを有し、前記固定スクロールのスクロール部と前記可動スクロールのスクロール部との間に形成される膨張室で作動流体が膨張することによって動力を発生し、
     前記スクロール型膨張機は、
     前記固定スクロールの基部に形成され、外部に開口する吸入ポートから前記膨張室内に開口する導入口まで延びて前記吸入ポートに流入した作動流体を前記膨張室へと導く作動流体通路と、
     当該スクロール型膨張機の固定部分と前記可動スクロールの基部との間に配置され、前記可動スクロールに作用するスラスト力を受けると共に前記可動スクロールの自転を阻止する自転阻止機構であって、ボールを転動部材として用いたボールカップリング式の自転阻止機構と、を備えている、
     流体機械。
    A fluid machine in which a scroll type expander and a pump unit that is driven by the power generated by the scroll type expander and sucks and discharges the working fluid are configured integrally,
    The scroll-type expander has a fixed scroll and a movable scroll having a scroll portion standing at a base portion, and a working fluid in an expansion chamber formed between the scroll portion of the fixed scroll and the scroll portion of the movable scroll. Generates power by expanding
    The scroll type expander is
    A working fluid passage formed at a base portion of the fixed scroll and extending from a suction port opening to the outside to an introduction port opening into the expansion chamber and guiding the working fluid flowing into the suction port to the expansion chamber;
    A rotation preventing mechanism that is disposed between a fixed portion of the scroll type expander and a base of the movable scroll, receives a thrust force acting on the movable scroll, and prevents the movable scroll from rotating. A ball coupling type rotation prevention mechanism used as a moving member, and
    Fluid machinery.
  7.  スクロール型膨張機と、このスクロール型膨張機が発生した動力によって駆動されて発電を行う発電ユニットとが一体に構成された流体機械であって、
     前記スクロール型膨張機は、基部にスクロール部が立設された固定スクロール及び可動スクロールを有し、前記固定スクロールのスクロール部と前記可動スクロールのスクロール部との間に形成される膨張室で作動流体が膨張することによって動力を発生し、
     前記スクロール型膨張機は、
     前記固定スクロールの基部に形成され、外部に開口する吸入ポートから前記膨張室内に開口する導入口まで延びて前記吸入ポートに流入した作動流体を前記膨張室へと導く作動流体通路と、
     当該スクロール型膨張機の固定部分と前記可動スクロールの基部との間に配置され、前記可動スクロールに作用するスラスト力を受けると共に前記可動スクロールの自転を阻止する自転阻止機構であって、ボールを転動部材として用いたボールカップリング式の自転阻止機構と、を備えている、
     流体機械。
    A fluid machine in which a scroll type expander and a power generation unit that is driven by the power generated by the scroll type expander to generate electric power are integrally configured,
    The scroll-type expander has a fixed scroll and a movable scroll having a scroll portion standing at a base portion, and a working fluid in an expansion chamber formed between the scroll portion of the fixed scroll and the scroll portion of the movable scroll. Generates power by expanding
    The scroll type expander is
    A working fluid passage formed at a base portion of the fixed scroll and extending from a suction port opening to the outside to an introduction port opening into the expansion chamber and guiding the working fluid flowing into the suction port to the expansion chamber;
    A rotation preventing mechanism that is disposed between a fixed portion of the scroll type expander and a base of the movable scroll, receives a thrust force acting on the movable scroll, and prevents the movable scroll from rotating. A ball coupling type rotation prevention mechanism used as a moving member, and
    Fluid machinery.
PCT/JP2013/052872 2012-02-08 2013-02-07 Scroll-type expander and fluid machine provided with same WO2013118824A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380008476.3A CN104093935A (en) 2012-02-08 2013-02-07 Scroll-type expander and fluid machine provided with same
US14/377,789 US20150023824A1 (en) 2012-02-08 2013-02-07 Scroll-Type Expander And Fluid Machine Provided With Same
DE112013000892.0T DE112013000892T5 (en) 2012-02-08 2013-02-07 Screw expander and fluid machine provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024635A JP6026750B2 (en) 2012-02-08 2012-02-08 Scroll type expander and fluid machine having the same
JP2012-024635 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118824A1 true WO2013118824A1 (en) 2013-08-15

Family

ID=48947581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052872 WO2013118824A1 (en) 2012-02-08 2013-02-07 Scroll-type expander and fluid machine provided with same

Country Status (5)

Country Link
US (1) US20150023824A1 (en)
JP (1) JP6026750B2 (en)
CN (1) CN104093935A (en)
DE (1) DE112013000892T5 (en)
WO (1) WO2013118824A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804879B2 (en) * 2011-09-30 2015-11-04 日産自動車株式会社 Waste heat utilization equipment
JP2018071471A (en) 2016-10-31 2018-05-10 サンデン・オートモーティブコンポーネント株式会社 Compressor
CN111485952A (en) * 2019-01-25 2020-08-04 艾默生环境优化技术(苏州)有限公司 Expansion machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241690A (en) * 1998-02-26 1999-09-07 Sanden Corp Scroll type fluid machinery
JP2003139059A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Fluid machine
JP2003328974A (en) * 2002-05-07 2003-11-19 Sanden Corp Scroll compressor
JP2004257303A (en) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp Scroll expansion machine and refrigerating air conditioner
JP2006097635A (en) * 2004-09-30 2006-04-13 Daikin Ind Ltd Displacement type expander
JP2006118438A (en) * 2004-10-21 2006-05-11 Daikin Ind Ltd Rotary expansion machine
JP2007154805A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Refrigerating cycle apparatus
JP2007303414A (en) * 2006-05-12 2007-11-22 Sanden Corp Scroll fluid machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227080A (en) * 1999-02-05 2000-08-15 Nippon Soken Inc Scroll type expansion machine
JP4689498B2 (en) * 2006-03-01 2011-05-25 株式会社デンソー Expander and its control device
JP5084342B2 (en) * 2007-04-27 2012-11-28 サンデン株式会社 Fluid machine, Rankine circuit using the fluid machine, and vehicle waste heat utilization system
JP2009127582A (en) * 2007-11-27 2009-06-11 Denso Corp Scroll fluid machine
JP4965423B2 (en) * 2007-12-28 2012-07-04 株式会社日立産機システム Compression device
JP5060352B2 (en) * 2008-03-14 2012-10-31 パナソニック株式会社 Scroll expander
WO2010013351A1 (en) * 2008-07-28 2010-02-04 株式会社リッチストーン Scroll fluid machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241690A (en) * 1998-02-26 1999-09-07 Sanden Corp Scroll type fluid machinery
JP2003139059A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Fluid machine
JP2003328974A (en) * 2002-05-07 2003-11-19 Sanden Corp Scroll compressor
JP2004257303A (en) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp Scroll expansion machine and refrigerating air conditioner
JP2006097635A (en) * 2004-09-30 2006-04-13 Daikin Ind Ltd Displacement type expander
JP2006118438A (en) * 2004-10-21 2006-05-11 Daikin Ind Ltd Rotary expansion machine
JP2007154805A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Refrigerating cycle apparatus
JP2007303414A (en) * 2006-05-12 2007-11-22 Sanden Corp Scroll fluid machine

Also Published As

Publication number Publication date
US20150023824A1 (en) 2015-01-22
JP6026750B2 (en) 2016-11-16
JP2013160187A (en) 2013-08-19
CN104093935A (en) 2014-10-08
DE112013000892T5 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US20130017114A1 (en) Fluid Machine
JP5969227B2 (en) Fluid machinery
JP5969226B2 (en) Fluid machinery
JP6026750B2 (en) Scroll type expander and fluid machine having the same
JP5592838B2 (en) Fluid machinery
JP2014058877A (en) Auxiliary power generating device, and method of operating the same
JP5969800B2 (en) Fluid machinery and Rankine cycle
JP5984492B2 (en) Fluid machinery
JP2012246872A (en) Waste heat recovery mechanism, and waste heat recovery apparatus
JP2008157152A (en) Rankine cycle
JP2000337256A (en) Fluid machinery
WO2022113558A1 (en) Scroll fluid machine
JP2008180148A (en) Fluid machine
JP4792142B2 (en) Fluid machinery
CN103781994B (en) Fluid device
JP2013194596A (en) Scroll expander
JP2006291861A (en) Displacement compressor
EP2551449A1 (en) Fluid machine
JP2020516826A (en) A turbo pump assembly for a closed loop, in particular a Rankine cycle type closed loop, in combination with an internal combustion engine, in particular for a motor vehicle
JP2017172555A (en) Scroll type compressor
JP2015007372A (en) Rankine cycle device
JP2010025027A (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14377789

Country of ref document: US

Ref document number: 112013000892

Country of ref document: DE

Ref document number: 1120130008920

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746536

Country of ref document: EP

Kind code of ref document: A1