[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013114976A1 - 高分子化合物および組成物、並びにこれらを用いた発光素子 - Google Patents

高分子化合物および組成物、並びにこれらを用いた発光素子 Download PDF

Info

Publication number
WO2013114976A1
WO2013114976A1 PCT/JP2013/050942 JP2013050942W WO2013114976A1 WO 2013114976 A1 WO2013114976 A1 WO 2013114976A1 JP 2013050942 W JP2013050942 W JP 2013050942W WO 2013114976 A1 WO2013114976 A1 WO 2013114976A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
polymer compound
formula
represented
Prior art date
Application number
PCT/JP2013/050942
Other languages
English (en)
French (fr)
Inventor
吉田 大泰
陽一 稲田
大介 福島
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US14/374,546 priority Critical patent/US9267003B2/en
Priority to JP2013556308A priority patent/JP6033795B2/ja
Publication of WO2013114976A1 publication Critical patent/WO2013114976A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a polymer compound and a composition, and a light emitting device using the same.
  • the light-emitting element manufactured using the polymer compound according to the above patent document may have insufficient hole transportability.
  • the present invention provides the following polymer compound, a composition containing the polymer compound, an organic thin film, an insolubilized organic thin film, a light-emitting element, a planar light source, and a display device.
  • the present invention also provides the following raw material compound and production method of the polymer compound.
  • a structural unit represented by the following formula (1) is contained in an amount of 51 mol% or more based on the total of all structural units, and a structural unit represented by the following formula (2) and a structure represented by the following formula (3): A polymer compound comprising at least one of units.
  • a represents an integer of 1 to 3
  • b represents 0 or 1.
  • Ar 1 and Ar 3 each independently represent an arylene group which may have a substituent, or a divalent heterocyclic group which may have a substituent
  • Ar 2 and Ar 4 are Each independently has an arylene group which may have a substituent, a divalent heterocyclic group which may have a substituent, or an arylene group and a substituent which may have a substituent.
  • Ar 2 When a plurality of Ar 2 are present, they may be the same or different.
  • R A , R B and R C each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • a monovalent heterocyclic group is shown. If R B there are a plurality, they may be the same or different.
  • na represents an integer of 0 to 3
  • nb represents an integer of 0 to 12
  • nA represents 0 or 1
  • n represents an integer of 0 to 4.
  • Ar 5 represents a (2 + n) -valent aromatic hydrocarbon group which may have a substituent or a (2 + n) -valent heterocyclic group which may have a substituent.
  • L a and L b each independently represent an alkylene group which may have a substituent or a phenylene group which may have a substituent. When a plurality of La are present, they may be the same or different. If L b there are a plurality, they may be the same or different.
  • L A represents an oxygen atom or a sulfur atom.
  • X represents a monovalent crosslinkable group. When two or more X exists, they may be the same or different.
  • c represents 0 or 1;
  • Ar 6 and Ar 8 each independently represent an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and Ar 7 has a substituent.
  • R 1 represents a monovalent crosslinkable group
  • R 2 has a monovalent crosslinkable group, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the monovalent heterocyclic group which may be carried out is shown.
  • nc represents an integer of 0 to 3
  • nd represents an integer of 0 to 12
  • nB represents 0 or 1
  • m represents an integer of 0 to 2.
  • L c and L d each independently represent an alkylene group which may have a substituent or a phenylene group which may have a substituent.
  • L c represents an oxygen atom or a sulfur atom. If L B there are a plurality, they may be the same or different.
  • X represents a monovalent crosslinkable group. When two or more X exists, they may be the same or different.
  • R 3 has a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • L X1 represents an oxygen atom, a sulfur atom, a carbonyl group or a group represented by —O—CO—.
  • R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent.
  • An alkylthio group which may have, an aryl group which may have a substituent, an aryloxy group which may have a substituent, an arylthio group which may have a substituent, and a substituent.
  • a monovalent heterocyclic group which may have, an amino group which may have a substituent, a silyl group which may have a substituent, an acyl group which may have a substituent, a substituent An acyloxy group, a halogen atom, a cyano group or a nitro group which may have ]
  • a plurality of X contain at least one monovalent crosslinkable group represented by the following formula (X-1) which may have a substituent, and The polymer compound according to [1] or [2], which contains at least one monovalent crosslinkable group represented by X-2).
  • ne and nf each independently represent 0 or 1.
  • L X1 represents an oxygen atom, a sulfur atom, a carbonyl group or a group represented by —O—CO—.
  • R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent.
  • An alkylthio group which may have, an aryl group which may have a substituent, an aryloxy group which may have a substituent, an arylthio group which may have a substituent, and a substituent.
  • a monovalent heterocyclic group which may have, an amino group which may have a substituent, a silyl group which may have a substituent, an acyl group which may have a substituent, a substituent An acyloxy group, a halogen atom, a cyano group or a nitro group which may have ] [6]
  • the Ar 2 may have a substituent, a 2,7-fluorenediyl group, an optionally substituted naphthalenediyl group, and an optionally substituted phenanthrene diyl Group, dihydrophenanthrene diyl group which may have a substituent, anthracene diyl group which may have a substituent, pyrenediyl group which may have a substituent or a substituent
  • the polymer compound according to any one of [1] to [5], which is a perylenediyl group.
  • [7] A polymerization reaction of a monomer composition including a first monomer represented by the following formula (5) and a second monomer represented by the following formula (6) is performed, and [1] to [ [6] A method for producing a polymer compound, wherein the polymer compound according to any one of [6] is obtained.
  • Ar 9 and Ar 11 each independently represent an arylene group which may have a substituent, or a divalent heterocyclic group which may have a substituent
  • Ar 10 and Ar 12 each independently An arylene group which may have a substituent, a divalent heterocyclic group which may have a substituent, or an arylene group and a substituent which may have a substituent.
  • 2 represents a divalent group in which two or more groups that may be the same or different and selected from the group consisting of divalent heterocyclic groups may be connected, and Ar 9 , Ar 10 , Ar 11, and Ar 12 are each , These groups may be linked to a group other than the group bonded to the nitrogen atom to which these groups are bonded to form a ring structure.
  • R D , R E, and R F each independently have a hydrogen atom, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • a monovalent heterocyclic group is shown. If R E there are a plurality, they may be the same or different.
  • Z 1 and Z 2 each independently represent a group selected from the following substituent group A.
  • ⁇ Substituent group A> A group represented by —B (OR 101 ) 2 (R 101 represents a hydrogen atom or an alkyl group which may have a substituent, and is linked to each other to form a ring structure with an oxygen atom bonded to R 101 ; A plurality of R 101 may be the same or different).
  • a group represented by -BF 4 Q 1 Q 1 represents a monovalent cation selected from the group consisting of Li + , Na + , K + , Rb + and Cs + );
  • a group represented by -MgY 1 Y 1 represents a chlorine atom, a bromine atom or an iodine atom
  • a group represented by —ZnY 2 Y 2 represents a chlorine atom, a bromine atom or an iodine atom
  • a group represented by —Sn (R 102 ) 3 R 102 represents a hydrogen atom or an alkyl group, and may be linked to each other to form a ring structure together with a tin atom bonded to R 102 .
  • R 102 may be the same or different.
  • f represents an integer of 0 to 3
  • g represents 0 or 1.
  • Ar 13 and Ar 15 each independently represents an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent, and Ar 14 and Ar 16 each represents a substituent.
  • An arylene group optionally having a substituent, a divalent heterocyclic group optionally having a substituent, or an arylene group optionally having a substituent and a group consisting of a divalent heterocyclic group 2 represents a divalent group in which two or more selected groups which may be the same or different are connected, and Ar 13 , Ar 14 , Ar 15 and Ar 16 are each bonded to the nitrogen atom to which these groups are bonded.
  • a ring structure may be formed by linking each other with a group other than the group in question. When a plurality of Ar 14 are present, they may be the same or different.
  • R G , R H and R I each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • a monovalent heterocyclic group is shown.
  • RH When a plurality of RH are present, they may be the same or different.
  • Z 3 and Z 4 each independently represent a group selected from the following substituent group B. ⁇ Substituent group B> A chlorine atom, a bromine atom, an iodine atom, a group represented by —O—S ( ⁇ O) 2 R 103 (R 103 may have an alkyl group which may have a substituent or a substituent. Represents an aryl group).
  • a polymer compound useful for producing a light emitting device having excellent hole transportability Further, according to a preferred embodiment of the present invention, a polymer compound useful for producing a light emitting device having excellent durability (for example, luminance life) can be provided. Moreover, according to this invention, the composition containing the said high molecular compound, an organic thin film, an insolubilized organic thin film, a light emitting element, a planar light source, and a display apparatus can be provided. Furthermore, according to this invention, the raw material compound and manufacturing method of the said high molecular compound can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a light emitting device according to the second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the planar light source of the present invention.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group
  • t-Bu and “tBu” represent a tert-butyl group.
  • “Structural unit” means a unit structure present in a polymer compound.
  • the “structural unit” is preferably contained in the polymer compound as a “repeating unit (unit structure present in two or more units in the polymer compound)”.
  • C xy (x and y are positive integers satisfying x ⁇ y) means that the number of carbon atoms in the partial structure corresponding to the functional group name described immediately after this term is x Means in the range of y. That is, when the organic group described immediately after “C xy ” is an organic group named by combining a plurality of functional group names (for example, a C xy alkoxyphenyl group), a plurality of functional groups This means that the number of carbon atoms of the partial structure corresponding to the functional group name (for example, alkoxy) described immediately after “C xy ” in the name is in the range of x to y.
  • a plurality of functional group names for example, a C xy alkoxyphenyl group
  • C 1-12 alkyl group means an alkyl group having 1 to 12 carbon atoms
  • C 1-12 alkoxyphenyl group means “an alkoxy group having 1 to 12 carbon atoms”. Meaning a phenyl group.
  • the term “may have a substituent” means that the functional group described immediately after this term may or may not have a substituent.
  • the term “optionally substituted alkyl group” means “an unsubstituted alkyl group or an alkyl group having a substituent”.
  • substituteduents include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, alkenyl groups, alkynyl groups, amino groups, silyl groups, halogen atoms, acyl groups, acyloxy groups, oxy
  • Examples include a carbonyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxy group, a hydroxy group, a nitro group, and a cyano group. These groups may further have a “substituent” selected from the above examples.
  • the “alkyl group” may have a substituent, and may be any of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group (cycloalkyl group).
  • the number of carbon atoms in the linear alkyl group and the branched alkyl group is preferably 1 to 20, more preferably 1 to 15, and even more preferably, not including the number of carbon atoms of the substituent. Is 1-12.
  • the number of carbon atoms of the branched alkyl group is particularly preferably 3 to 12 without including the number of carbon atoms of the substituent unless otherwise specified.
  • the number of carbon atoms of the cyclic alkyl group is preferably 3 to 20, more preferably 3 to 15, and even more preferably 3 to 12, not including the number of carbon atoms of the substituent.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, hexyl group, cyclohexyl group, heptyl group, Examples include octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, and dodecyl group.
  • the “alkoxy group” may have a substituent, and may be any of a linear alkoxy group, a branched alkoxy group, and a cyclic alkoxy group (cycloalkoxy group).
  • the number of carbon atoms of the straight-chain alkoxy group and the branched alkoxy group is preferably 1 to 20, more preferably 1 to 15, and even more preferably, not including the number of carbon atoms of the substituent. Is 1-12.
  • the number of carbon atoms of the cyclic alkoxy group is preferably 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is particularly preferably 3 to 12, not including the number of carbon atoms of the substituent, unless otherwise specified.
  • alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyl
  • alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyl
  • alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyl
  • examples thereof include an oxy group, an octyloxy group, a 2-ethylhexyl
  • alkylthio group may have a substituent, and may be any of a linear alkylthio group, a branched alkylthio group, and a cyclic alkylthio group (cycloalkylthio group).
  • the number of carbon atoms of the linear alkylthio group and the branched alkylthio group is preferably 1 to 20, more preferably 1 to 15, excluding the number of carbon atoms of the substituent. Preferably it is 1-12.
  • the number of carbon atoms of the cyclic alkylthio group is preferably 3 to 20, more preferably 3 to 15, and even more preferably 3 to 12, not including the carbon atoms of the substituent. .
  • the number of carbon atoms of the branched alkylthio group is particularly preferably 3 to 12 without including the number of carbon atoms of the substituent unless otherwise specified.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, Examples include octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, and dodecylthio group.
  • the “aryl group” is an atomic group remaining after removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the aryl group may have a substituent, and examples of the aryl group include those having a benzene ring and groups having a condensed ring.
  • the number of carbon atoms of the aryl group is preferably 6 to 60, more preferably 6 to 48, and even more preferably 6 to 30 without including the number of carbon atoms of the substituent.
  • the aromatic hydrocarbon include benzene, naphthalene, anthracene, phenanthrene, naphthacene, fluorene, pyrene, and perylene.
  • aryl group examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, and a 2-fluorenyl group.
  • the “aryloxy group” is a group represented by —O—Ar 21 .
  • Ar 21 represents the aryl group.
  • the aryl group represented by Ar 21 may have a substituent. Unless otherwise specified, the number of carbon atoms of the aryloxy group is preferably 6 to 60, more preferably 6 to 48, and even more preferably 6 to 30 without including the number of carbon atoms of the substituent.
  • aryloxy group examples include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 2-anthracenyloxy group, a 9-anthracenyloxy group, and 2-fullyloxy group.
  • An oleenyloxy group is mentioned.
  • the “arylthio group” is a group represented by —S—Ar 22 .
  • Ar 22 represents the aryl group.
  • the aryl group represented by Ar 22 may have a substituent. Unless otherwise specified, the number of carbon atoms of the arylthio group is preferably 6 to 60, more preferably 6 to 48, and even more preferably 6 to 30 without including the number of carbon atoms of the substituent.
  • arylthio group examples include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, a 1-anthracenylthio group, a 2-anthracenylthio group, a 9-anthracenylthio group, and a 2-fluorenylthio group.
  • the “alkenyl group” may have a substituent, and may be any of a linear alkenyl group, a branched alkenyl group, and a cyclic alkenyl group.
  • the number of carbon atoms of the straight-chain alkenyl group and the branched alkenyl group is preferably 2 to 20, more preferably 2 to 15, and even more preferably, not including the number of carbon atoms of the substituent. Is 2-10.
  • the number of carbon atoms of the cyclic alkenyl group is preferably 3 to 20, more preferably 3 to 15, and further preferably 3 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is particularly preferably 3 to 10 without including the number of carbon atoms of the substituent unless otherwise specified.
  • alkenyl group examples include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, A 1-octenyl group may be mentioned.
  • alkynyl group may have a substituent, and may be any of a linear alkynyl group, a branched alkynyl group and a cyclic alkynyl group.
  • the straight chain alkynyl group and the branched alkynyl group preferably have 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, and more preferably 2 to 15 carbon atoms. Is 2-10.
  • the number of carbon atoms of the cyclic alkynyl group is preferably 3 to 20, more preferably 3 to 15, and further preferably 3 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkynyl group is particularly preferably 3 to 10, not including the number of carbon atoms of the substituent, unless otherwise specified.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group, 2-hexynyl group, A 1-octynyl group may be mentioned.
  • the “amino group” may have a substituent and is preferably an unsubstituted amino group and one selected from an alkyl group, an aryl group, an alkyl group substituted with an aryl group, and a monovalent heterocyclic group Or it is an amino group substituted by two substituents.
  • an amino group substituted with one or two substituents is referred to as a “substituted amino group”.
  • the substituent may further have a substituent.
  • the substituent that the organic group further has may be referred to as “secondary substituent”.
  • the number of carbon atoms of the substituted amino group is preferably 1 to 60, more preferably 2 to 48, and still more preferably 2 to 40, not including the number of carbon atoms of the secondary substituent.
  • substituted amino groups include methylamino, dimethylamino, ethylamino, diethylamino, propylamino, dipropylamino, isopropylamino, diisopropylamino, butylamino, isobutylamino, sec-butylamino Group, tert-butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, dodecylamino group, cyclopentyl amino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C
  • the “silyl group” may have a substituent, preferably an unsubstituted silyl group, and one selected from an alkyl group, an aryl group, an alkyl group substituted with an aryl group, and a monovalent heterocyclic group A silyl group substituted with 3 substituents (hereinafter referred to as “substituted silyl group”).
  • the substituent may have a secondary substituent.
  • the number of carbon atoms of the substituted silyl group does not include the number of carbon atoms of the secondary substituent, and is preferably 1 to 60, more preferably 3 to 48, and further preferably 3 to 40.
  • substituted silyl groups include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-isopropylsilyl, dimethyl-isopropylsilyl, diethyl-isopropylsilyl, tert-butyldimethylsilyl, pentyldimethylsilyl, Hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyl-dimethylsilyl group, dodecyldimethylsilyl group, phenyl -C 1-12 alkyl silyl group, C 1-12 alkoxyphenyl -C 1-12 alkylsilyl group, C 1-12 alkylphenyl
  • acyl group examples include a group represented by —C ( ⁇ O) —R 111 .
  • R 111 represents the alkyl group, the aryl group, or a monovalent heterocyclic group described later.
  • the alkyl group, aryl group and monovalent heterocyclic group in R 111 may have a substituent.
  • the number of carbon atoms of the acyl group is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16, not including the number of carbon atoms of the substituent.
  • acyl group examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, and a benzoyl group.
  • acyl group having a substituent examples include an acyl group having a halogen atom as a substituent (for example, a trifluoroacetyl group or a pentafluorobenzoyl group).
  • acyloxy group examples include a group represented by —O—C ( ⁇ O) —R 112 .
  • R 112 represents the alkyl group, the aryl group, or a monovalent heterocyclic group described later.
  • the alkyl group, aryl group and monovalent heterocyclic group in R 112 may have a substituent.
  • the number of carbon atoms of the acyloxy group is preferably 2 to 20, more preferably 2 to 18, even more preferably 2 to 16, not including the number of carbon atoms of the substituent.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, and a benzoyloxy group.
  • acyloxy group having a substituent examples include acyloxy groups having a halogen atom as a substituent (for example, a trifluoroacetyloxy group and a pentafluorobenzoyloxy group).
  • Examples of the “oxycarbonyl group” include a group represented by —C ( ⁇ O) —O—R 113 .
  • R 113 represents the alkyl group, the aryl group, or a monovalent heterocyclic group described later.
  • the alkyl group, aryl group and monovalent heterocyclic group in R 113 may have a substituent.
  • the number of carbon atoms of the oxycarbonyl group is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16, excluding the number of carbon atoms of the substituent.
  • the “monovalent heterocyclic group” is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting a heterocyclic ring or an aromatic ring from a heterocyclic compound.
  • the monovalent heterocyclic group may have a substituent, and the monovalent heterocyclic group includes a monocyclic group and a group having a condensed ring.
  • the number of carbon atoms of the monovalent heterocyclic group is preferably 2 to 60, more preferably 4 to 30 and even more preferably 4 to 20 without including the number of carbon atoms of the substituent. It is.
  • the heterocyclic compound is an organic compound having a cyclic structure, not only a carbon atom as an atom constituting the ring, but also, for example, an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom, A compound containing a heteroatom such as a selenium atom, tellurium atom or arsenic atom.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the monovalent aromatic heterocyclic group is the remaining atomic group obtained by removing one hydrogen atom bonded to the aromatic heterocyclic ring or the carbon atom constituting the aromatic ring from the aromatic heterocyclic compound.
  • aromatic heterocyclic compound examples include compounds in which a heterocycle containing a hetero atom itself exhibits aromaticity, that is, oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine , Triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, dibenzofuran, dibenzothiophene, and the like, and heterocycles containing heteroatoms themselves do not exhibit aromaticity, but the heterocycle is condensed with an aromatic ring And compounds such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran.
  • Examples of the monovalent aromatic heterocyclic group include thienyl group, C 1-12 alkylthienyl group, pyrrolyl group, furyl group, pyridyl group, C 1-12 alkylpyridyl group, piperidyl group, quinolyl group, isoquinolyl group and the like. Is mentioned.
  • the “heterocyclic oxy group” is a group represented by —O—Ar 101 .
  • Ar 101 represents the monovalent heterocyclic group.
  • the monovalent heterocyclic group represented by Ar 101 may have a substituent. Unless otherwise specified, the number of carbon atoms of the heterocyclic oxy group is preferably 2 to 60, more preferably 4 to 30, and still more preferably 4 to 20, not including the number of carbon atoms of the substituent. .
  • heterocyclic oxy group examples include a pyridyloxy group, a pyridazinyloxy group, a pyrimidinyloxy group, a pyrazinyloxy group, and a triazinyloxy group.
  • the “heterocyclic thio group” is a group represented by —S—Ar 102 .
  • Ar 102 represents the monovalent heterocyclic group.
  • the monovalent heterocyclic group represented by Ar 102 may have a substituent.
  • the number of carbon atoms of the heterocyclic thio group is preferably 2 to 60, more preferably 4 to 30, and still more preferably 4 to 20, not including the number of carbon atoms of the substituent. .
  • heterocyclic thio group examples include a pyridylthio group, a pyridazinylthio group, a pyrimidinylthio group, a pyrazinylthio group, and a triazinylthio group.
  • An “imine residue” is a hydrogen atom in the formula from an imine compound having a structure represented by the formula: H—N ⁇ C (R 114 ) 2 or a formula: H—C (R 115 ) ⁇ N—R 116 It means the residue except one.
  • R 114 , R 115, and R 116 each independently represent the alkyl group, the aryl group, the alkenyl group, the alkynyl group, or the monovalent heterocyclic group.
  • the alkyl group, aryl group, alkenyl group, alkynyl group and monovalent heterocyclic group in R 114 , R 115 and R 116 may have a substituent.
  • a plurality of R 114 may be the same as or different from each other, and these may be linked to each other to form a ring structure together with the carbon atoms to which they are bonded.
  • Examples of the imine residue include groups represented by the following structural formulas.
  • the “amide compound residue” is an amide compound having a structure represented by the formula: HN (R 117 ) —C ( ⁇ O) R 118 or the formula: HC ( ⁇ O) —N (R 119 ) 2 Means a residue from which one hydrogen atom in the formula is removed.
  • R 117 , R 118 and R 119 each independently represent the alkyl group, the aryl group, the alkenyl group, the alkynyl group or the monovalent heterocyclic group.
  • the alkyl group, aryl group, alkenyl group, alkynyl group and monovalent heterocyclic group in R 117 , R 118 and R 119 may have a substituent.
  • Two R 119 s may be the same as or different from each other, and may be connected to each other to form a ring structure together with the nitrogen atom to which they are bonded.
  • amide compound residues include formamide residues, acetamide residues, propioamide residues, butyroamide residues, benzamide residues, trifluoroacetamide residues, pentafluorobenzamide residues, diformamide residues, diacetamide residues. , Dipropioamide residue, dibutyroamide residue, dibenzamide residue, ditrifluoroacetamide residue, dipentafluorobenzamide residue.
  • Acid imide residue means a residue obtained by removing one hydrogen atom bonded to the nitrogen atom from an acid imide compound.
  • the acid imide compound may have a substituent.
  • the number of carbon atoms of the acid imide residue is preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 16, not including the carbon atoms of the substituent. .
  • Examples of the acid imide residue include groups represented by the following structural formulas.
  • alkyl group optionally having a substituent examples include an unsubstituted alkyl group and an alkyl group having the above substituent.
  • the substituent that the alkyl group has is preferably a substituent selected from the group consisting of an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group, and a halogen atom.
  • the “optionally substituted alkoxy group” examples include an unsubstituted alkoxy group and an alkoxy group having the above substituent.
  • the substituent that the alkoxy group has is preferably a substituent selected from the group consisting of an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group, and a halogen atom.
  • aryl group optionally having a substituent examples include an unsubstituted aryl group and an aryl group having the above substituent.
  • the substituent which the aryl group has is preferably a substituent selected from the group consisting of an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group and a halogen atom.
  • aryloxy group which may have a substituent examples include an unsubstituted aryloxy group and an aryloxy group having the above-described substituent.
  • the substituent that the aryloxy group has is a substituent selected from the group consisting of an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group, and a halogen atom. preferable.
  • Examples of “monovalent heterocyclic group which may have a substituent” include an unsubstituted heterocyclic group and a monovalent heterocyclic group having the above substituent.
  • the monovalent heterocyclic group has a substituent selected from the group consisting of an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group, and a halogen atom. Preferably there is.
  • arylene group optionally having a substituent examples include an unsubstituted arylene group and an arylene group having the above substituent.
  • the substituent that the arylene group has is preferably a substituent selected from the group consisting of an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group, and a halogen atom.
  • the “arylene group” is an atomic group remaining after removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the arylene group includes a group having a benzene ring and a group having a condensed ring.
  • the number of carbon atoms of the arylene group which may have a substituent is preferably 6 to 60, more preferably 6 to 48, not including the number of carbon atoms of the substituent, unless otherwise specified. Preferably, it is 6-30.
  • the aromatic hydrocarbon include benzene, naphthalene, anthracene, phenanthrene, naphthacene, fluorene, pyrene, and perylene.
  • arylene groups include phenylene groups, ie 1,4-phenylene groups, 1,3-phenylene groups, 1,2-phenylene groups, etc .; naphthalenediyl groups, ie 1,4-naphthalenediyl groups, 1,5- Naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc .; anthracenediyl group, that is, 1,4-anthracenediyl group, 1,5-anthracenediyl group, 2,6-anthracenediyl group, 9 Phenanthrene diyl group, ie, 2,7-phenanthrene diyl group; naphthacene diyl group, ie, 1,7-naphthacene diyl group, 2,8-naphthacene diyl group, 5,12-naphthacene diyl group, etc .; full orangeyl Groups, ie 2,7-fluor
  • divalent heterocyclic group optionally having a substituent examples include a divalent heterocyclic group having no substituent and a divalent heterocyclic group having the above substituent.
  • the substituent that the divalent heterocyclic group has is a substituent selected from the group consisting of an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a heterocyclic oxy group, and a halogen atom. It is preferable that
  • the “divalent heterocyclic group” is a remaining atomic group obtained by removing two hydrogen atoms bonded to a carbon atom constituting a heterocyclic ring or an aromatic ring from a heterocyclic compound.
  • the divalent heterocyclic group includes a monocyclic group and a condensed ring group.
  • the number of carbon atoms of the divalent heterocyclic group which may have a substituent is preferably 2 to 60, more preferably 4 to 30, excluding the number of carbon atoms of the substituent. More preferably, it is 4-20.
  • the divalent heterocyclic group is preferably a divalent aromatic heterocyclic group.
  • the divalent aromatic heterocyclic group is the remaining atomic group obtained by removing two hydrogen atoms bonded to the aromatic heterocyclic ring or the carbon atoms constituting the aromatic ring from the aromatic heterocyclic compound.
  • divalent heterocyclic group examples include a pyridinediyl group, ie, 2,5-pyridinediyl group, 2,6-pyridinediyl group, etc .; a quinoline diyl group, ie, 2,6-quinolinediyl group, etc .; an isoquinolinediyl group, ie, 1,4-isoquinolinediyl group, 1,5-isoquinolinediyl group, etc .; quinoxalinediyl group, ie, 5,8-quinoxalinediyl group, etc .; 2,1,3-benzothiadiazole group, ie, 2,1,3-benzothiadiazole Benzothiazole diyl group, ie 4,7-benzothiazole diyl group, etc .; dibenzosilol diyl group, ie 2,7-dibenzosilol diyl group, etc .; dibenzofuranyl group, ie dibenzo
  • the “crosslinkable group” is a group that exhibits crosslinkability by an external stimulus such as a crosslinking treatment, for example, a heat treatment or a light irradiation treatment.
  • a crosslinking treatment for example, a heat treatment or a light irradiation treatment.
  • a polymer compound of the present invention a raw material compound of the polymer compound, a composition containing the polymer compound, an organic thin film, an insolubilized thin film, a light emitting element, a planar light source and a display device, and a method for producing these are suitable.
  • the embodiment will be described in detail.
  • the polymer compound of the present embodiment contains 51 mol% or more of the first structural unit represented by the above formula (1) with respect to the total of all structural units, and the structural unit represented by the above formula (2) and the above It includes at least one of the structural units represented by the formula (3).
  • the polymer compound of the present embodiment is preferably a conjugated polymer compound.
  • the “conjugated polymer compound” is a polymer compound in which a conjugated system spreads in the main chain.
  • polyarylene having an arylene group such as polyfluorene or polyphenylene as a structural unit
  • polythiophene polydibenzofuran And polyheteroarylenes having a divalent heterocyclic group as a structural unit
  • polyarylene vinylenes such as polyphenylene vinylene
  • conjugated polymer compound refers to a triarylamine as a structural unit as long as the conjugated system extends substantially in the main chain even if it contains a hetero atom or the like in the structural unit constituting the main chain.
  • derived from may be included.
  • the first structural unit is a structural unit represented by the above formula (1).
  • the structural unit represented by the formula (1) usually does not have a crosslinkable group.
  • a is easy to synthesize a monomer as a raw material, and the light-emitting element manufactured using the polymer compound of the present embodiment has more excellent hole transportability and durability. Therefore, 1 is more preferable.
  • b is easy to synthesize the monomer as a raw material, and the light-emitting element manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability. Therefore, 0 is more preferable.
  • examples of the substituent include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an aryl Alkyl groups, arylalkoxy groups, arylalkenyl groups, arylalkynyl groups, amino groups, substituted amino groups, halogen atoms, acyl groups, acyloxy groups, monovalent heterocyclic groups, carboxy groups, nitro groups, and cyano groups.
  • an alkyl group an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, a substituted amino group, an acyl group, and a cyano group, and more preferred are an alkyl group, an alkoxy group, and an aryl group.
  • the groups represented by Ar 2 and Ar 4 have a substituent because the light-emitting element produced using the polymer compound of the present embodiment is more excellent in hole transportability and durability.
  • An arylene group which may be substituted is preferable, an arylene group which may have a substituent having 10 to 60 carbon atoms is more preferable, and an optionally substituted 2,7- A fluorenediyl group, an optionally substituted naphthalenediyl group, an optionally substituted phenanthrenediyl group, an optionally substituted dihydrophenanthrenediyl group, and a substituted group It is more preferably an anthracenediyl group which may be substituted, a pyrenediyl group which may have a substituent, or a perylenediyl group which may have a substituent.
  • Diyl group a naphthalene-diyl group, phenanthrenediyl group, dihydro phenanthrenediyl group, anthracene-diyl group, and particularly preferably a pyrenediyl group or perylenediyl group.
  • the carbon atom number of a substituent is not included in the said carbon atom number.
  • the divalent group in which two or more groups, which may be the same or different from each other, selected from the group consisting of an arylene group and a divalent heterocyclic group in Ar 2 and Ar 4 are connected For example, a group represented by the following formula (1a-1), (1a-2), (1a-3), (1a-4), (1a-5), (1a-6) or (1a-7) It is preferably a group represented by the following formula (1a-1). In addition, these groups may have the said substituent.
  • the groups represented by Ar 1 and Ar 3 have a substituent because the light-emitting device produced using the polymer compound of the present embodiment is more excellent in hole transportability and durability.
  • An arylene group which may be present is preferable.
  • examples of the arylene group in Ar 1 and Ar 3 include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, a 1,4-naphthalenediyl group, 2, 6-naphthalenediyl group, 2,7-naphthalenediyl group, 2,6-anthracenediyl group, 9,10-anthracenediyl group, 2,7-phenanthenediyl group, 5,12-naphthacenediyl group, 2,7-full
  • An orangeyl group, a 3,6-fluorenediyl group, a 1,6-pyrenediyl group, a 2,7-pyrenediyl group, or a 3,8-perylenediyl group is preferable, and a 1,4-phenylene group, 2,7- Full orangeyl group, 2,6-anthracenediyl group, 9,10-anthracenediyl group, 2,7-phenanthrene diyl
  • a divalent aromatic heterocyclic group is preferable, and it should be a 2,5-pyrrolediyl group, a dibenzofurandiyl group, a dibenzothiophenediyl group, or a 2,1,3-benzothiadiazole-4,7-diyl group. Is more preferable. In addition, these groups may have the said substituent.
  • R A , R B and R C are more excellent in hole transportability and durability of a light-emitting device produced using the polymer compound of the present embodiment, and thus have an alkyl group having a substituent.
  • An aryl group which may have a substituent or a monovalent heterocyclic group which may have a substituent is preferable, and an aryl group which may have a substituent is more preferable.
  • An aryl group having a substituent is more preferable, and an aryl group having an alkyl group as a substituent is particularly preferable.
  • the alkyl group that is R A , R B, and R C is the same as the “alkyl group” described as the substituent.
  • This alkyl group is preferably a C 1-20 alkyl group.
  • the said group may have the said substituent.
  • the aryl group that is R A , R B and R C is the same as the “aryl group” described as the substituent.
  • the aryl group is preferably a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group or 2-fluorenyl group, more preferably a phenyl group. preferable.
  • these groups may have the said substituent.
  • the monovalent heterocyclic group which is R A , R B and R C is the same as the “monovalent heterocyclic group” described as the substituent.
  • the monovalent heterocyclic group is preferably a pyridyl group, a pyrimidyl group, a triazyl group or a quinolyl group. In addition, these groups may have the said substituent.
  • the substituent is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Alkoxy group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group, carboxy group, nitro group, cyano group, more preferably alkyl group , An alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, a substituted amino group, an acyl group, and a cyano group, and more preferably an alkyl group, an alkoxy group, and an aryl group.
  • Ar 1 and R A connected to each other, may form a ring structure
  • Ar 1 and Ar 2 are linked to each other, may form a ring structure
  • Ar 2 R A may be linked to each other to form a ring structure
  • Ar 2 and R B may be linked to each other to form a ring structure
  • Ar 2 and Ar 3 are it may have to form a ring system with one another, may be to form a ring system with one another and Ar 3 and R B.
  • Ar 1 and R A are each represented by a single bond or a group represented by —O—, —S—.
  • R 120 represents an alkyl group which may have a substituent or an aryl group which may have a substituent, and when a plurality of R 120 are present, these may be different from each other.
  • R 120 When these groups form a ring structure, a 5-membered ring, a 6-membered ring or a 7-membered ring is usually formed.
  • the content of the first structural unit is more excellent in the hole transportability and durability of the light-emitting device produced using the polymer compound of the present embodiment, so that the content of the first structural unit is 60 mol% to 99 mol with respect to the total of all the structural units. 0.5 mol% is preferable, 70 mol% to 99 mol% is more preferable, and 80 mol% to 97 mol% is still more preferable.
  • Examples of the first structural unit include structural units represented by the following formulas (1-01) to (1-27), and the formulas (1-01), (1-02), (1-04) to It is preferably a structural unit represented by (1-18), (1-20), (1-22), (1-24) to (1-27), and represented by formulas (1-01), (1- 02), (1-05) to (1-09), (1-11), (1-13) to (1-16), (1-20), (1-22), (1-25) Is more preferably a structural unit represented by formulas (1-27), and formulas (1-05), (1-07) to (1-09), (1-11), (1-13) to ( The structural unit represented by 1-16) is more preferable.
  • the second structural unit is a structural unit represented by the above formula (2).
  • na is preferably an integer of 0 to 2, more preferably 0 or 1, and further preferably 0, in order to facilitate the synthesis of the raw material monomer. preferable.
  • nb is preferably an integer of 0 to 10, more preferably 0 to 8, because synthesis of a monomer as a raw material becomes easy.
  • nA is preferably 0 because the light-emitting element produced using the polymer compound of the present embodiment is more excellent in hole transportability and durability.
  • n is preferably an integer of 1 to 4, more preferably an integer of 1 to 3. More preferably.
  • the number of carbon atoms of the (2 + n) -valent aromatic hydrocarbon group which may be substituted and which is Ar 5 is usually 6 to 60, preferably 6 to 48. Yes, more preferably 6-20, and even more preferably 6-14.
  • the (2 + n) -valent aromatic hydrocarbon group is preferably a divalent, trivalent, tetravalent or pentavalent aromatic hydrocarbon group, and is preferably a trivalent or tetravalent aromatic hydrocarbon group. Is more preferable.
  • the “(2 + n) valent aromatic hydrocarbon group” means that (2 + n) hydrogen atoms bonded to carbon atoms constituting a ring (preferably an aromatic ring) are removed from an aromatic hydrocarbon compound.
  • the remaining atomic group means a group having a benzene ring and a group having a condensed ring.
  • the number of carbon atoms does not include the number of carbon atoms of the substituent.
  • aromatic hydrocarbon compounds examples include benzene, naphthalene, anthracene, 1-tetracene, pyrene, perylene, fluorene, benzofluorene, phenanthrene, dihydrophenanthrene, chrysene, coronene, etc., and the polymer compound of this embodiment Benzene, naphthalene, anthracene, pyrene, fluorene, benzofluorene, phenanthrene, and dihydrophenanthrene are preferable because the stability of the light emitting device and the hole transport property of the light-emitting device manufactured using the polymer compound are more excellent. , Benzene, naphthalene and fluorene are more preferred.
  • the number of carbon atoms of the (2 + n) -valent heterocyclic group which may be substituted and which is Ar 5 is usually 3 to 60, preferably 3 to 20.
  • the (2 + n) -valent heterocyclic group is preferably a divalent, trivalent, tetravalent or pentavalent heterocyclic group, and more preferably a divalent, trivalent or tetravalent heterocyclic group.
  • the “(n + 2) -valent heterocyclic group” means a remaining atomic group obtained by removing (2 + n) hydrogen atoms bonded to a carbon atom constituting a heterocyclic ring or an aromatic ring from a heterocyclic compound. It means a monocyclic group or a group having a condensed ring. The number of carbon atoms does not include the number of carbon atoms of the substituent.
  • heterocyclic compound examples include pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinoxaline, dibenzofuran, dibenzothiophene, carbazole, phenoxazine, phenothiazine, benzothiadiazole, dibenzosilole and the like.
  • the substituent is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group.
  • Arylalkynyl group amino group, substituted amino group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group, carboxy group, nitro group, cyano group, more preferably alkyl group, alkoxy group, aryl group , An aryloxy group, an arylalkyl group, an arylalkoxy group, a substituted amino group, an acyl group and a cyano group, more preferably an alkyl group, an alkoxy group and an aryl group.
  • Ar 5 is an aromatic carbon atom which may have a substituent since the hole transport property and durability of the light emitting device produced using the polymer compound of the present embodiment are excellent.
  • a hydrogen group is preferred.
  • the alkylene group represented by L a and L b may be linear, branched or cyclic, and may have a substituent. Since it is easy to synthesize a monomer as a raw material, a linear alkylene group is preferable.
  • the number of carbon atoms in the linear alkylene group and the branched alkylene group is usually 1 to 20, preferably 1 to 10, and more preferably 1 to 6.
  • the number of carbon atoms in the cyclic alkylene group is usually 3 to 20, preferably 3 to 10, and more preferably 3 to 6.
  • the number of carbon atoms of the branched alkylene group is particularly preferably 3 to 6 without including the number of carbon atoms of the substituent unless otherwise specified.
  • alkylene groups are methylene, 1,2-ethylene, 1,3-propylene, 1,3-butylene, 1,3-pentylene, 1,4-pentylene, 1,5-pentylene.
  • the phenylene group represented by L a and L b may have a substituent.
  • the phenylene group includes a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group.
  • Examples of the substituent that the phenylene group may have include an alkyl group, an alkoxy group, a halogen atom, and a cyano group.
  • L a since the synthesis of a monomer as a raw material is facilitated, it is preferable that a phenylene group.
  • L b since the synthesis of a monomer as a raw material is facilitated, is preferably an alkylene group.
  • L A represents an oxygen atom or a sulfur atom, for the synthesis of a monomer as a raw material is facilitated, is preferably an oxygen atom.
  • X represents a monovalent crosslinkable group.
  • Examples of X include an aziridinyl group which may have a substituent, an azetidinyl group which may have a substituent, an azide group, an epoxy group which may have a substituent, and a substituent.
  • An alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a cyclobutene structure in the group, an aryl group which may have a substituent, a substituent which has a cyclobutene structure in the group Have A preferable monovalent heterocyclic group, an alkenyl group that may have a substituent, a cyclobutene structure in the group, an aryl group that may have a substituent, a cyclobutene structure in the group, A monovalent heterocyclic group which may have a substituent is more preferable, an alkenyl group which may have a substituent, an aryl group which has a cyclobutene structure in the group and may have a substituent Is more preferable.
  • X for example, a group represented by the above formula (X-1), a group represented by (X-2), and the following formulas (X-01) to (X-19) And the synthesis of monomers as raw materials is facilitated, so that the formulas (X-1), (X-2), (X-01), (X-03), (X-04-) ), And groups represented by (X-06) to (X-18) are preferable, and groups represented by formulas (X-1), (X-2), (X-09) to (X-18) are more preferable.
  • the groups represented by formulas (X-1) and (X-2) are more preferable.
  • Examples of the substituent in the formula (X-1) include an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and an alkylthio group which may have a substituent.
  • R X has a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent.
  • An alkylthio group which may have a substituent, an aryl group which may have a substituent, an aryloxy group which may have a substituent, an arylthio group which may have a substituent, and a substituent. May have an amino group, an optionally substituted silyl group, a halogen atom, an acyl group, an acyloxy group, an imine residue, a carbamoyl group, an acid imide group, and a monovalent complex that may have a substituent.
  • a cyclic group, a carboxy group, a cyano group or a nitro group which may have a substituent is represented.
  • a plurality of R X may be the same or different.
  • RN has a hydrogen atom, an alkyl group which may have a substituent, an acyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. Represents a monovalent heterocyclic group.
  • R X has a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent because synthesis of a monomer as a raw material becomes easy.
  • An aryloxy group which may have a substituent, an aryloxy group which may have a substituent, and a monovalent heterocyclic group which may have a substituent are preferable, and a hydrogen atom or a substituent may be present.
  • a preferable alkyl group, an alkoxy group which may have a substituent, and an aryl group which may have a substituent are more preferable.
  • Examples of the formula (X-1) include the following formula (X-1-1) and formula (X-1-2), which facilitates the synthesis of the monomer as a raw material. -1-1) is preferred.
  • R Y is a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, a substituent
  • An alkylthio group which may have a group, an aryl group which may have a substituent, an aryloxy group which may have a substituent, an arylthio group which may have a substituent, a substituent
  • a monovalent heterocyclic group, a carboxy group optionally having a substituent, a cyano group or a nitro group is represented.
  • a plurality of R Y may be the same or different.
  • RY has a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent because synthesis of the monomer as a raw material becomes easy.
  • “*” represents a bond.
  • ne represents 0 or 1, and is preferably 0 because the light-emitting device manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability. .
  • nf represents 0 or 1, and is preferably 0 because it facilitates the synthesis of the raw material monomer.
  • L X1 represents an oxygen atom, a sulfur atom, a carbonyl group or a group represented by —O—CO—, which facilitates the synthesis of the starting monomer, A group represented by —O—CO— is preferable.
  • R 4 , R 5 , R 6 , R 7 , and R 8 are more excellent in hole transportability and durability of the light-emitting device manufactured using the polymer compound of this embodiment. Therefore, a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom or a cyano group is preferable, and a hydrogen atom, an alkyl group or a fluorine atom is more preferable. And more preferably a hydrogen atom.
  • the structural unit represented by the formula (2) since the hole transport property and durability of the light emitting device produced using the polymer compound of the present embodiment are more excellent, the structural unit represented by the above formula (4) Is preferred.
  • nc is preferably an integer of 0 to 2, more preferably 0 or 1, and is preferably 0 because synthesis of a monomer as a raw material is facilitated. Further preferred.
  • nd is preferably an integer of 0 to 10, more preferably an integer of 0 to 8, because synthesis of a monomer as a raw material becomes easy.
  • nB is more preferably 0 because the light-emitting element produced using the polymer compound of the present embodiment is more excellent in hole transportability and durability.
  • m is a hole-transport property and durability of a light-emitting device manufactured using the polymer compound of the present embodiment, and an organic thin film containing the polymer compound is insolubilized. From the viewpoint of conversion to 1, it is preferably 1 or 2, and more preferably 2.
  • the alkylene group represented by L c and L d may be linear, branched or cyclic, and may have a substituent. Since it is easy to synthesize a monomer as a raw material, a linear alkylene group is preferable.
  • the number of carbon atoms in the linear alkylene group and the branched alkylene group is usually 1 to 20, preferably 1 to 10, and more preferably 1 to 6.
  • the number of carbon atoms in the cyclic alkylene group is usually 3 to 20, preferably 3 to 10, and more preferably 3 to 6.
  • the number of carbon atoms of the branched alkylene group is particularly preferably 3 to 6 without including the number of carbon atoms of the substituent unless otherwise specified.
  • alkylene groups are methylene, 1,2-ethylene, 1,3-propylene, 1,3-butylene, 1,3-pentylene, 1,4-pentylene, 1,5-pentylene.
  • the phenylene group represented by L c and L d may have a substituent.
  • the phenylene group may be any of 1,2-phenylene group, 1,3-phenylene group, and 1,4-phenylene group.
  • Examples of the substituent that the phenylene group may have include an alkyl group, an alkoxy group, a halogen atom, and a cyano group.
  • L c is preferably a phenylene group because it facilitates the synthesis of the raw material monomer.
  • L d is preferably an alkylene group because it facilitates the synthesis of the monomer as a raw material.
  • L B because the synthesis of a monomer as a raw material is facilitated, is preferably an oxygen atom.
  • X represents the same meaning as X in Formula (2) above, and is the same as the examples and preferred ranges in Formula (2).
  • R 3 represents an alkyl group or a substituent which may have a substituent since the hole transport property and durability of the light emitting device using the polymer compound of the present embodiment are more excellent. It is preferably an aryl group which may have, more preferably an aryl group which may have a substituent, and further preferably an aryl group substituted with an alkyl group.
  • the fluorene ring may have a substituent, and the substituent is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group.
  • Arylalkynyl group amino group, substituted amino group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group, carboxy group, nitro group or cyano group, more preferably alkyl group, alkoxy group, aryl group , An aryloxy group, an arylalkyl group, an arylalkoxy group, a substituted amino group, an acyl group and a cyano group, more preferably an alkyl group, an alkoxy group and an aryl group.
  • Formulas (2-01) to (2-04), (2-06), (2-07) , (2-09), (2-10), (2-14), (2-17), (2-18), (2-21) to (2-25), (2-27), ( 2-29) to (2-40) are more preferred, and the structural units represented by formulas (2-02), (2-03), (2-06), (2-09), (2-10), (2-23) to (2-25) (2-27), (2-29) - particularly preferably a structural unit represented by (2-40).
  • n ⁇ 1 structural units represented by the following formulas (2-101) to (2-139) are preferable, and the formulas (2-101), (2-107) ), (2-109) to (2-112), (2-118), and (2-125) to (2-136) are more preferred. 107), (2-110), (2-112), (2-125), (2-127), (2-129), (2-130), (2-133) to (2-136)
  • the structural unit represented by formula (2-101), (2-110), (2-112), (2-125), (2-127), (2-129), (2-133) is more preferred.
  • (2-135) are particularly preferred.
  • the wavy line means that the arrangement of the bonding group may be either E type or Z type.
  • the light-emitting element manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability.
  • the content is preferably 0.5 mol% to 40 mol%, more preferably 1 mol% to 30 mol%, still more preferably 5 mol% to 20 mol%, based on the total of the structural units.
  • the content of the second structural unit is more excellent in the hole transportability and durability of the light emitting device produced using the polymer compound of the present embodiment when n ⁇ 1 in the formula (2), and Since it is excellent in crosslinkability, it is preferably from 0.5 mol% to 40 mol%, more preferably from 3 mol% to 30 mol%, more preferably from 3 mol% to 20 mol%, based on the total of all structural units. More preferably.
  • the polymer compound of the present embodiment may have only one type of the above-described structural unit as the second structural unit, or may have two or more different structural units among the above-described structural units. Also good. From the viewpoint of converting an organic thin film into an insolubilized organic thin film, it contains at least one monovalent crosslinkable group represented by the above formula (X-1), and monovalent crosslinks represented by the above formula (X-2). It is preferable that at least one kind of functional group is contained, and at least one kind of monovalent crosslinkable group represented by the above formula (X-1) and the above formula (X-2) is contained. It is more preferable that at least one monovalent crosslinkable group represented by -1) and the above formula (X-2) is included.
  • the third structural unit is a structural unit represented by the above formula (3).
  • c is easy to synthesize a monomer as a raw material, and has a more excellent hole transport property and durability of a light emitting device produced using the polymer compound of the present embodiment. Therefore, 0 is preferable.
  • the group represented by Ar 6 , Ar 7 and Ar 8 is an arylene group which may have a substituent, and light emission produced using the polymer compound of this embodiment This is preferable because the hole transport property and durability of the device are more excellent.
  • examples of the arylene group in Ar 6 , Ar 7 and Ar 8 include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, and a 1,4-naphthalenediyl group.
  • 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, 2,6-anthracenediyl group, 9,10-anthracenediyl group, 2,7-phenanthenediyl group, 5,12-naphthacenediyl group, 2, 7-full orangeyl group, 3,6-fluorenediyl group, 1,6-pyrene diyl group, 2,7-pyrene diyl group and 3,8-perylene diyl group can be selected, 1,4-phenylene group, 2,7-fluorenediyl group, 2,6-anthracenediyl group, 9,10-anthracenediyl group, 2,7-phenanthrenediyl group and 1,6 A -pyrene diyl group is preferred, and a 1,4-phenylene group is more preferred. These may have the above substituents.
  • examples of the divalent heterocyclic group in Ar 6 , Ar 7 , and Ar 8 include a 2,5-pyrroldiyl group, a dibenzofurandiyl group, a dibenzothiophenediyl group, and a 2,1,3-benzoic group.
  • Thiadiazole-4,7-diyl groups can be selected and these may have the above substituents.
  • examples of the divalent group in which two or more groups which may be the same or different and selected from the group consisting of an arylene group and a divalent heterocyclic group in Ar 7 are linked include, for example, the above formulas A group represented by (1a-1), (1a-2), (1a-3), (1a-4), (1a-5), (1a-6) or (1a-7) is preferred. And more preferably a group represented by the above formula (1a-1). In addition, these groups may have the said substituent.
  • examples of the substituent include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, and an arylalkoxy group.
  • examples of the monovalent crosslinkable group represented by R 1 and R 2 include the above formulas (X-1), (X-2), (X-01) to (X-18)
  • the light-emitting device produced using the polymer compound of the present embodiment is more excellent in hole transportability and durability, and therefore has the formula (X-1), (X-2), ( X-01), (X-03), (X-04), and groups represented by (X-06) to (X-18) are preferred, and are represented by the formulas (X-1), (X-2), (X -07) to (X-18) are more preferable, and a group represented by the formula (X-1) is more preferable.
  • the alkyl group which may have a substituent represented by R 2 is the same as the “alkyl group” described as the substituent, and is preferably a C 1-20 alkyl group. .
  • the aryl group which may have a substituent represented by R 2 is the same as the “aryl group” described as the substituent, and is preferably a phenyl group, a 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group or 2-fluorenyl group.
  • the monovalent heterocyclic group which may have a substituent represented by R 2 is the same as the “monovalent heterocyclic group” described as the substituent, and preferably, Pyridyl group, pyrimidyl group, triazyl group or quinolyl group.
  • R 2 is preferably the same monovalent crosslinkable group as R 1 because synthesis of a monomer as a raw material becomes easy.
  • the substituent is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group.
  • Arylalkynyl group amino group, substituted amino group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group, carboxy group, nitro group, cyano group, more preferably alkyl group, alkoxy group, aryl group , An aryloxy group, an arylalkyl group, an arylalkoxy group, a substituted amino group, an acyl group and a cyano group, more preferably an alkyl group, an alkoxy group and an aryl group.
  • Examples of the third structural unit include structural units represented by the formulas (3-01) to (3-05), and include the formulas (3-01), (3-02), (3-04) or ( The structural unit represented by 3-05) is preferred, the structural unit represented by formula (3-01) or (3-02) is more preferred, and the structural unit represented by formula (3-01) is more preferred.
  • the content of the third structural unit is more excellent in hole transportability and durability of the light-emitting element produced using the polymer compound of the present embodiment, and is excellent in crosslinkability. On the other hand, it is preferably from 0.5 mol% to 40 mol%, more preferably from 3 mol% to 30 mol%, still more preferably from 3 mol% to 20 mol%.
  • the polymer compound of the present embodiment may have only one type of the above-described structural unit as the third structural unit, or may have two or more different types of structural units among the above-described structural units. Good.
  • the polymer compound of the present embodiment may contain a second structural unit and a third structural unit.
  • the total content is more excellent in hole transportability and durability of the light-emitting element produced using the polymer compound of the present embodiment, and Since the crosslinkability is excellent, the content is preferably 0.5 mol% to 40 mol%, more preferably 3 mol% to 30 mol%, based on the total of all the structural units.
  • the polymer compound of this embodiment contains 51 mol% or more of the first structural unit represented by the above formula (1) with respect to the total of all the structural units, and the second structural unit represented by the above formula (2). And a polymer compound containing at least one of the third structural units represented by the formula (3). Since the polymer compound of the present embodiment is more excellent in crosslinkability, it is composed of the first structural unit and the second structural unit, or is composed of the first structural unit, the second structural unit, and the third structural unit. It is preferable that the first structural unit and the second structural unit are used.
  • the polymer compound of the present embodiment includes, for example, a monomer (1) for introducing a structural unit represented by the above formula (1), and a monomer (A) for introducing a structural unit different from the structural unit. It is synthesized by condensation polymerization.
  • Examples of the monomer (1) include a compound represented by the following formula (5) and a compound represented by the formula (6).
  • Examples of the monomer (A) include a compound represented by the following formula (2M) and a compound represented by the formula (3M).
  • the terminal group is preferably a stable group (for example, an aryl group, a monovalent heterocyclic group (particularly a monovalent aromatic heterocyclic group)).
  • the polymer compound of the present embodiment is a copolymer
  • it may be any copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer. There may be.
  • the polymer compound of the present embodiment is useful as a hole transporting material or the like, and may be used in combination with other compounds as a composition described later.
  • the number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present embodiment is usually 1 ⁇ 10 3 to 1 ⁇ 10 8 , preferably 1 ⁇ 10 4 to 5 ⁇ 10 6 .
  • the polystyrene equivalent weight average molecular weight (Mw) of the polymer compound of the present embodiment is usually 1 ⁇ 10 3 to 1 ⁇ 10 8 , the film formability is improved, and the polymer compound is used. Since the luminance life of the light emitting device manufactured in this way is more excellent, it is preferably 5 ⁇ 10 3 to 1 ⁇ 10 7 .
  • the glass transition temperature of the polymer compound of this embodiment is preferably 70 ° C. or higher. .
  • the polymer compound of this embodiment can also be used as a light-emitting thin film material that emits fluorescence or phosphorescence.
  • the light emitting device using the polymer compound of the present embodiment is a high performance light emitting device excellent in hole transportability and durability. Therefore, the light-emitting element is useful for a backlight of a liquid crystal display device, a curved or planar light source for illumination, a segment display device, a dot matrix display device, and the like.
  • the polymer compound of the present embodiment can be used not only for light emitting devices but also for electronic devices such as organic solar cells and organic transistors. Laser pigment materials, organic solar cell materials, organic semiconductor materials for organic transistors It can also be used as a conductive thin film material, an organic semiconductor thin film material, and the like.
  • Ar 5 , X, L a , L b , L A , na, nb, nA and n are as defined in formula (2) above, and Z 5 and Z 6 are each independently Are groups selected from the above-mentioned substituent group A or substituent group B.
  • the compound having a group selected from Substituent Group A and the compound having a group selected from Substituent Group B are condensed by a known coupling reaction and bonded to a group selected from Substituent Group A. It is known that a carbon atom and a carbon atom bonded to a group selected from the substituent group B are bonded. Therefore, if the compound A having two groups selected from the substituent group A and the compound B having two groups selected from the substituent group B are subjected to a known coupling reaction, a condensation polymerization reaction is performed. A condensation polymer of Compound A and Compound B can be obtained.
  • the first structural unit is introduced by the compound 5 and the compound 6, the second structural unit is introduced by the compound 2M, and the third structural unit is introduced by the compound 3M.
  • condensation polymerization method examples include a polymerization method by Suzuki coupling reaction (Chem. Rev, 95, 2457-2483 (1995)), and a polymerization method by Grignard reaction (Bull. Chem. Soc. Jpn. 51, 2091 (1978)), polymerization method using Ni (0) catalyst (Progress in Polymer Science, 17, 173-1205, 1992), method using Stille coupling reaction (European Polymer Journal, Vol. 41, pages 2923-2933 (2005)).
  • the method of polymerizing by Suzuki coupling reaction and the method of polymerizing by Ni (0) catalyst are preferable, and the structure control of the polymer compound is easy.
  • a method of polymerizing by an aryl-aryl cross-coupling reaction such as a Suzuki coupling reaction, a Grignard reaction, or a Stille coupling reaction is more preferable, and a reaction by polymerization by a Suzuki coupling reaction is particularly preferable.
  • condensation polymerization method examples include a method in which each of the above compounds is reacted with an appropriate catalyst or base as necessary.
  • the total number of moles of groups selected from the substituent group A possessed by each compound, and the substituent group B The ratio with the total number of moles of the group selected from the above may be adjusted.
  • the ratio of the latter mole number to the former mole number is preferably 0.95 to 1.05, more preferably 0.98 to 1.02, and 0.99 to 1.01. More preferably.
  • the amount of compound 5 used in the condensation polymerization reaction is preferably 1 mol% to 50 mol%, preferably 5 mol% to 50 mol%, based on the total molar amount of compound 5, compound 6 and other monomers. More preferred is 10 mol% to 50 mol%.
  • the amount of compound 6 used is preferably 1 mol% to 50 mol%, preferably 10 mol% to 50 mol%, based on the total molar amount of compound 5, compound 6 and other monomers. More preferably, it is 30 mol% to 50 mol%.
  • -40 mol% preferably 1 mol% to 30 mol%, more preferably 5 mol% to 30 mol%, particularly preferably 5 mol% to 20 mol%. preferable.
  • the amount used is preferably 0.5 mol% to 40 mol% with respect to the total molar amount of compound 3M and other monomers, and preferably 3 mol % To 30 mol% is more preferable, 3 mol% to 20 mol% is more preferable, and 5 mol% to 20 mol% is particularly preferable. According to such a condensation polymerization reaction, the polymer compound of the present embodiment can be produced.
  • the monomer may be synthesized and isolated in advance, or synthesized in a reaction system and used as it is.
  • the purity may affect the performance of the electronic device. Therefore, these monomers are preferably purified by a method such as distillation, chromatography, sublimation purification, recrystallization or a combination thereof.
  • a catalyst when polymerizing by a Suzuki coupling reaction, transition metals such as palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, dichlorobistriphenylphosphine palladium, etc.
  • transition metals such as palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, dichlorobistriphenylphosphine palladium, etc.
  • complexes, and complexes in which ligands such as triphenylphosphine, tri-tert-butylphosphine, and tricyclohexylphosphine are coordinated to these transition metal complexes.
  • the Ni (0) catalyst may be nickel [tetrakis (triphenylphosphine)], [1,3-bis (diphenylphosphino) propane] dichloronickel, [bis (1,4 -Cyclooctadiene)] transition metal complexes such as nickel complexes such as nickel, and these transition metal complexes have triphenylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, diphenylphosphinopropane, substituents And a complex in which a ligand such as bipyridyl which may be substituted or phenanthroline which may have a substituent is coordinated.
  • a ligand such as bipyridyl which may be substituted or phenanthroline which may have a substituent is coordinated.
  • the above-mentioned catalyst may be synthesized in advance or used in a reaction system and used as it is. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the catalyst used may be an effective amount as a catalyst.
  • it is usually 0.0001 mol% to 300 mol in terms of the number of moles of transition metal with respect to 100 mol% of all monomers in the polymerization reaction.
  • % Preferably 0.001 mol% to 50 mol%, more preferably 0.01 mol% to 20 mol%.
  • bases include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, water
  • organic bases such as tetraethylammonium oxide and tetrabutylammonium hydroxide.
  • the amount of the base used is usually 50 mol% to 2000 mol%, preferably 100 mol% to 1000 mol%, based on 100 mol% of the total monomers in the polymerization reaction.
  • the polymerization reaction may be performed in the absence of a solvent or in the presence of a solvent.
  • the polymerization reaction is usually performed in the presence of an organic solvent.
  • the organic solvent include toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • An organic solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the organic solvent used is preferably such that the total concentration of all monomers in the polymerization reaction is 0.1% to 90% by weight, and preferably 1% to 50% by weight. Is more preferable, and the amount is more preferably 2 to 30% by weight.
  • the reaction temperature of the polymerization reaction is preferably ⁇ 100 ° C. to 200 ° C., more preferably ⁇ 80 ° C. to 150 ° C., and further preferably 0 ° C. to 120 ° C.
  • the reaction time is usually 1 hour or longer, preferably 2 to 500 hours.
  • a compound represented by the following formula (1T) is used as a polymerization terminator in order to avoid leaving a polymerizable group (for example, Z 1 , Z 2 ) at the terminal of the polymer compound of the present embodiment. It may be used.
  • a polymer compound whose terminal is an aryl group or a monovalent heterocyclic group (particularly a monovalent aromatic heterocyclic group) can be obtained.
  • Ar T represents an optionally substituted aryl group or an optionally substituted monovalent heterocyclic group (particularly a monovalent aromatic heterocyclic group).
  • Z T represents a group selected from the group consisting of the substituent group A and the substituent group B.
  • the aryl group and monovalent heterocyclic group (particularly monovalent aromatic heterocyclic group) in Ar T are the same as the “aryl group” and “monovalent heterocyclic group” described above as the substituent, Since the durability of the light emitting device produced using the polymer compound of the present embodiment is more excellent, an aryl group is preferable, and a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group are preferable. 9-anthracenyl group or 2-fluorenyl group is more preferable, and phenyl group is more preferable. In addition, these groups may have the said substituent.
  • the post-treatment of the polymerization reaction can be performed by a known method, for example, a method of removing water-soluble impurities by liquid separation, or a precipitate precipitated by adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol.
  • the method of filtering and drying can be carried out alone or in combination.
  • the polymer compound of this embodiment may be purified by ordinary methods such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, etc.
  • the purity of the light-emitting element may affect the performance of the light-emitting element, such as the light-emitting characteristics. Therefore, it is preferable to perform purification treatment such as reprecipitation purification and fractionation by chromatography after condensation polymerization.
  • the compound of the present embodiment is a compound represented by the above formula (5) useful for the production of the above polymer compound.
  • d is easy to synthesize the monomer as a raw material, and the light-emitting device manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability. Therefore, 1 is more preferable.
  • e is easy to synthesize the monomer as a raw material, and the light-emitting device manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability. Therefore, 0 is preferable.
  • the substituent when the group represented by Ar 9 , Ar 10 , Ar 11 and Ar 12 has a substituent, the substituent includes Ar 1 , Ar 2 , Ar 3 and Ar 4 in the above (1). It is the same as the substituent that the group represented by
  • examples and preferred ranges of the groups represented by R D, R E and R F is, for R D are the same as R A in formula (1), identical to R B for R E And R F is the same as R C.
  • a compound represented by the following formula (5-1-2) which is a compound defined by the formula (5) can be produced, for example, by the method of the following scheme 1.
  • the compound of the present embodiment is a compound represented by the above formula (6), which is useful for the production of the polymer compound of the present embodiment.
  • f is easy to synthesize the monomer as a raw material, and the light-emitting element manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability. Therefore, 0 or 1 is preferable, and 1 is more preferable.
  • g is easy to synthesize a monomer as a raw material, and the light-emitting device manufactured using the polymer compound of the present embodiment is more excellent in hole transportability and durability. Therefore, 0 is preferable.
  • examples and preferred ranges of Ar 14 and Ar 16 are the same as Ar 2 and Ar 4 in Formula (1).
  • examples and preferred ranges of the groups represented by R G , R H and R I are the same as R A in the formula (1) for R G and the same as R B for R H And R I is the same as R C.
  • the polymer compound of this embodiment When the polymer compound of this embodiment has a monovalent crosslinkable group, it can be a polymer compound in which a carbon cluster and a monovalent crosslinkable group are bonded. Such a polymer compound can be synthesized, for example, by reacting them in a solvent by Diels-Alder reaction or the like and performing a purification treatment.
  • the light emitting device manufactured using the polymer compound of the present embodiment thus obtained has excellent hole transportability and excellent luminance life.
  • the “carbon cluster” means a molecule whose minimum structure is composed of several to several thousand carbon atoms.
  • fullerene having a spherical shell structure, a cylindrical carbon nanotube, a carbon nanohorn, and the like can be given.
  • the carbon cluster preferably has a structure containing fullerene. Further, as the fullerene, C 60 fullerene, C 70 fullerene and C 84 fullerene are preferable, and C 60 fullerene is more preferable.
  • the polymer compound bonded to the carbon cluster of the present embodiment is preferably a polymer compound having a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2).
  • a polymer compound having the structural unit shown and the structural unit represented by the above formula (4) is more preferable.
  • n is preferably 1 to 4, more preferably an integer of 1 to 3, and further preferably 2.
  • m is 1 or 2, and it is more preferable that it is 2.
  • the monovalent crosslinkable group that reacts with the carbon cluster is not particularly limited as long as it is a crosslinkable group that reacts with the carbon cluster.
  • a group represented by the above formula (X-1) and the above formula (X-2) can be used as long as the polymer compound and the carbon cluster are bonded by a Diels-Alder reaction. ) Is preferred.
  • Examples of the structural unit in which a carbon cluster and a monovalent crosslinkable group are capable of constituting a polymer compound bonded to a carbon cluster include the following formulas (6A-1), (6A-2), (6A-3) ), (6A-4), (6A-5), (6A-6), (6A-7), (6A-8), (6A-9), (6A-10) and (6A-11) The structural unit shown is mentioned.
  • composition contains the polymer compound and at least one material selected from the group consisting of a hole transporting material, an electron transporting material, and a light emitting material.
  • Examples of hole transporting materials include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, polyanilines and Examples thereof include polythiophene and derivatives thereof, polypyrrole and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, and the like.
  • Other examples of the hole transporting material include JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-135361. Examples thereof include hole transporting materials described in JP-A-2-209988, JP-A-3-37992, and JP-A-3-152184.
  • the content of the hole transporting material is preferably 1 part by weight to 500 parts by weight, and more preferably 5 parts by weight to 200 parts by weight with respect to 100 parts by weight of the polymer compound in the composition.
  • electron transport materials include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, Diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, anthracene and its derivatives, co-weight of anthracene and fluorene Examples include coalescence.
  • electron transporting material examples include JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, and JP-A-2. Examples thereof include electron transporting materials described in JP-A Nos. 209988, 3-37992, and 3-152184.
  • the content of the electron transporting material is preferably 1 part by weight to 500 parts by weight, and more preferably 5 parts by weight to 200 parts by weight with respect to 100 parts by weight of the polymer compound in the composition.
  • Examples of the light emitting material include a low molecular fluorescent light emitting material and a phosphorescent light emitting material.
  • Examples of luminescent materials include naphthalene derivatives, anthracene and derivatives thereof, copolymers of anthracene and fluorene, perylene and derivatives thereof, polymethine dyes, xanthene dyes, coumarin dyes, cyanine dyes and other dyes, and 8-hydroxyquinoline.
  • triplet light-emitting complexes examples include Ir (ppy) 3 , Btp 2 Ir (acac), FIrpic, COM-1, COM-2, COM-3, COM-4, COM-5, which have iridium as a central metal, COM-6, COM-7, COM-8, iridium complexes such as ADS066GE commercially available from American Dye Source, platinum complexes such as PtOEP with platinum as the central metal, Eu (TTA) with europium as the central metal 3 Examples include europium complexes such as phen. These triplet light emitting complexes are represented by the following chemical formulas.
  • the content of the luminescent material is preferably 1 part by weight to 500 parts by weight, and more preferably 5 parts by weight to 200 parts by weight with respect to 100 parts by weight of the polymer compound in the composition.
  • the polymer compound of the present embodiment may be a composition (hereinafter sometimes referred to as a liquid composition) dissolved or dispersed in a solvent, preferably an organic solvent. Such a liquid composition is also called ink or varnish.
  • a liquid composition is also called ink or varnish.
  • the liquid composition is preferably a solution in which the polymer compound of the present embodiment is dissolved in a solvent.
  • the liquid composition may contain at least one material selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material (that is, the above-described material).
  • a hole transport material an electron transport material
  • a light emitting material that is, the above-described material.
  • other substances may be added to the liquid composition as long as the effects of the present invention are not hindered. Examples of other substances include an antioxidant, a viscosity modifier, a surfactant, and a crosslinking initiator.
  • the organic solvent used in the liquid composition is not particularly limited as long as the polymer compound of the present embodiment is dissolved or dispersed.
  • Examples of the organic solvent include the following organic solvents (hereinafter sometimes referred to as “organic solvent group”).
  • Aromatic hydrocarbon solvent toluene, xylene (isomers or mixtures thereof), 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, mesitylene (1,3,5-trimethylbenzene), ethylbenzene , Propylbenzene, isopropylbenzene, butylbenzene, isobutylbenzene, 2-phenylbutane, tert-butylbenzene, pentylbenzene, neopentylbenzene, isopentylbenzene, hexylbenzene, cyclohexylbenzene, heptylbenzene, octylbenzene, 3-propyltoluene 4-propyltoluene, 1-methyl-4-propylbenzene, 1,4-diethylbenzene, 1,4-dipropylbenzene, 1,4-di-tert-butylbenzen
  • Aliphatic hydrocarbon solvent pentane, hexane, cyclohexane, methylcyclohexane, heptane, octane, nonane, decane, decalin, etc.
  • Aromatic ether solvents anisole, ethoxybenzene, propoxybenzene, butyroxybenzene, pentyloxybenzene, cyclopentyloxybenzene, hexyloxybenzene, cyclohexyloxybenzene, heptyloxybenzene, octyloxybenzene, 2-methylanisole, 3-methylanisole 4-methylanisole, 4-ethylanisole, 4-propylanisole, 4-butylanisole, 4-pentylanisole, 4-hexylanisole, diphenylether, 4-methylphenoxybenzene, 4-ethylphenoxybenzene, 4-propylphenoxybenzene 4-butylphenoxybenzene, 4-pentylphenoxybenzene, 4-hexylphenoxybenzene, 4-phenoxytoluene, 3-phenyl Nokishitoruen, 1,3-dimethoxybenzene, 2,6-dimethyl anisole, 2,
  • Aliphatic ether solvents tetrahydrofuran, dioxane, dioxolane and the like.
  • Ketone solvent acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, etc.
  • Ester solvent ethyl acetate, butyl acetate, methyl benzoate, ethyl cellosolve acetate, etc.
  • Chloride solvent methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene and the like.
  • Alcohol solvent methanol, ethanol, propanol, isopropanol, cyclohexanol, phenol, etc.
  • Polyhydric alcohol and its derivatives ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, glycerin, 1,2-hexane Diol etc.
  • Aprotic polar solvents dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • organic solvents may be used alone or as a mixed organic solvent in which two or more are mixed. When used as a mixed organic solvent, it is preferable to combine two or more organic solvents in the above organic solvent group.
  • a mixed organic solvent a plurality of types of organic solvents may be combined from the same group of organic solvents exemplified above, or one or more types may be combined from different groups of organic solvents.
  • the composition ratio can be determined in consideration of the physical properties of each organic solvent and the solubility of a polymer compound or the like.
  • Preferred examples of selecting and combining a plurality of types from the same organic solvent group include a combination of selecting a plurality of types from an aromatic hydrocarbon solvent and a combination of selecting a plurality of types from an aromatic ether solvent.
  • Preferable examples in the case of selecting and combining one or more kinds from different organic solvent groups include the following combinations.
  • water can be further added to a single organic solvent or a mixed organic solvent using the organic solvent exemplified above alone.
  • a single organic solvent or a mixed organic solvent including one or more organic solvents having a structure containing a benzene ring, a melting point of 0 ° C. or lower, and a boiling point of 100 ° C. or higher is obtained from the viscosity and Since the film formability is good, it is preferable, and among them, a single solvent or a mixed solvent containing one or more aromatic hydrocarbon solvents and aromatic ether solvents is particularly preferable.
  • organic solvent a single organic solvent or a mixed organic solvent may be used.
  • organic solvent it is preferable to use a mixed organic solvent because the film formability can be controlled.
  • the organic solvent may be used after purification by treatment such as washing, distillation, contact with an adsorbent, etc., if necessary.
  • the organic thin film containing the high molecular compound of this embodiment can be manufactured easily.
  • the liquid composition is applied to a substrate on which any appropriate predetermined component may be provided, and the organic solvent is distilled off by a process such as heating, air blowing, or decompression, thereby implementing this embodiment.
  • An organic thin film containing the polymer compound in the form is obtained.
  • the conditions for distilling off the organic solvent can be changed depending on the organic solvent to be used. For example, the atmospheric temperature of 50 ° C. to 150 ° C. (heat treatment conditions) or a reduced pressure atmosphere of about 10 ⁇ 3 Pa is required. As mentioned.
  • spin coating method for the coating process, spin coating method, casting method, micro gravure method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating method, screen Coating methods such as a printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • the suitable viscosity of the liquid composition varies depending on the coating method selected, and is preferably 0.5 mPa ⁇ s to 1000 mPa ⁇ s, more preferably 0.5 mPa ⁇ s to 500 mPa ⁇ s at 25 ° C. . Further, when the liquid composition is discharged via a discharge device as in the ink jet printing method, the viscosity at 25 ° C. is preferably 0.5 mPa ⁇ in order to prevent clogging and flight bending at the time of discharge. s to 50 mPa ⁇ s, more preferably 0.5 mPa ⁇ s to 20 mPa ⁇ s.
  • the concentration of the polymer compound of the present embodiment in the liquid composition is not limited and is preferably 0.01% by weight to 10% by weight, more preferably 0.1% by weight to 5% by weight. .
  • the organic thin film of this embodiment contains the polymer compound.
  • the organic thin film of this embodiment can be easily produced from the liquid composition.
  • the second organic thin film of the present invention is an insolubilized organic thin film insolubilized by crosslinking the polymer compound of the present embodiment, and is usually crosslinked by external stimulation by treatment such as heating or light irradiation. It can be obtained by curing. Since the insolubilized organic thin film is hardly soluble in a solvent such as an organic solvent, it is advantageous for stacking light emitting elements.
  • Examples of the type of organic thin film according to this embodiment include a light-emitting thin film, a conductive thin film, and an organic semiconductor thin film.
  • Examples of the conductive thin film include an electron transporting thin film and a hole transporting thin film. Since the organic thin film of this embodiment contains the polymer compound of this embodiment, when used as a conductive thin film of a light emitting device, particularly as a hole transporting thin film (hole transporting layer), the organic thin film of the light emitting device is positive. The hole transportability is excellent.
  • the heating temperature for crosslinking the polymer compound of the present embodiment is not limited and is generally in the range of room temperature to 300 ° C., and the upper limit is 250 ° C. from the viewpoint of ease of thin film formation. Preferably, it is 190 degreeC, It is especially preferable that it is 170 degreeC.
  • the lower limit is preferably 50 ° C., more preferably 70 ° C., and particularly preferably 100 ° C. from the viewpoint of the stability of the thin film at room temperature.
  • the wavelength of light applied to light irradiation for crosslinking the polymer compound of the present embodiment is not limited.
  • light used for light irradiation generally, ultraviolet light, near ultraviolet light, and visible light are used, and ultraviolet light and near ultraviolet light are preferable.
  • the luminescent thin film may have good luminance and emission starting voltage of the light-emitting element, so that the emission quantum yield is preferably 30% or more, more preferably 50% or more, and 60% or more. Is more preferable, and 70% or more is particularly preferable.
  • the conductive thin film preferably has a surface resistance of 1 K ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or less, and even more preferably 10 ⁇ / ⁇ or less.
  • the electrical conductivity can be increased by doping the conductive thin film with a Lewis acid, an ionic compound or the like.
  • the organic semiconductor thin film preferably has a higher electron mobility or hole mobility, that is, higher charge mobility.
  • the charge mobility is preferably 10 ⁇ 5 cm 2 / V / s or more, more preferably 10 ⁇ 3 cm 2 / V / s or more, and further preferably 10 ⁇ 1 cm 2 / V / s or more. is there.
  • an organic transistor can be manufactured using an organic semiconductor thin film. Specifically, an organic transistor can be formed by forming an organic semiconductor film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and forming a source electrode and a drain electrode with Au or the like. .
  • the organic transistor of this embodiment is an organic transistor containing the polymer compound of this embodiment.
  • a field effect transistor which is one embodiment of an organic transistor will be described.
  • the polymer compound of the present embodiment has high charge transportability (particularly hole transportability), it is preferably used as a material for a polymer field effect transistor, particularly as a material for an organic semiconductor layer (active layer). it can.
  • a source electrode and a drain electrode are usually provided in contact with an organic semiconductor layer (active layer) made of a polymer compound, and further in contact with the organic semiconductor layer (active layer).
  • a gate electrode may be provided with the insulating layer interposed therebetween.
  • Polymer field effect transistors are usually formed on a support substrate.
  • a support substrate a glass substrate, a flexible film substrate, or a plastic substrate can also be used.
  • the polymer field effect transistor can be produced by a known method, for example, a method described in JP-A-5-110069.
  • the organic semiconductor layer forming step using a liquid composition includes a spin coating method, a casting method, a micro gravure method, a gravure coating method, and a bar coating method.
  • a spin coating method includes a spin coating method, a casting method, a micro gravure method, a gravure coating method, and a bar coating method.
  • Roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, nozzle coating method, etc. can be used.
  • the polymer field effect transistor After producing the polymer field effect transistor, it is preferable to shield the polymer field effect transistor from the external environment by sealing the polymer field effect transistor with a sealing member. Thereby, the polymer field effect transistor is shielded from the atmosphere, and deterioration of the characteristics of the polymer field effect transistor can be suppressed.
  • Examples of the sealing method include a method of covering with an ultraviolet (UV) curable resin, a thermosetting resin or an inorganic SiONx film, a method of bonding a glass plate or film with a UV curable resin, a thermosetting resin, or the like. Can be mentioned.
  • UV ultraviolet
  • thermosetting resin or an inorganic SiONx film
  • a method of bonding a glass plate or film with a UV curable resin, a thermosetting resin, or the like can be mentioned.
  • it is preferable to carry out the process from the preparation of the polymer field effect transistor to the sealing without exposing it to the atmosphere for example, in a dry nitrogen gas atmosphere or in a vacuum).
  • the organic photoelectric conversion element (for example, solar cell etc.) of this embodiment is an organic photoelectric conversion element containing the polymer compound of this embodiment.
  • the polymer compound of the present embodiment is used as a material for an organic photoelectric conversion element, particularly as a material for an organic semiconductor layer of a Schottky barrier type element utilizing an interface between an organic semiconductor and a metal, and an organic semiconductor and an inorganic semiconductor or organic It can be suitably used as a material for the organic semiconductor layer of a pn heterojunction element that utilizes an interface between semiconductors.
  • organic photoelectric conversion using a composite system of a polymer compound and a low-molecular compound it can be suitably used as an element, for example, an electron-donating conjugated polymer (dispersed support) of a bulk heterojunction organic photoelectric conversion element in which a fullerene derivative is dispersed as an electron acceptor.
  • an ohmic junction electrode is preferably used.
  • a p-type semiconductor layer is formed on ITO, and an n-type semiconductor layer is further formed. It is only necessary that the electrodes are stacked and an ohmic junction type electrode is provided thereon.
  • the organic photoelectric conversion element is usually formed on a support substrate.
  • a support substrate a glass substrate or a flexible film substrate can be used, and a plastic substrate can also be used.
  • Organic photoelectric conversion elements can be obtained by a known method such as Synth. Met. , 102, 982 (1999), and the method described in Science, 270, 1789 (1995).
  • the light emitting device of this embodiment is a light emitting device having the organic thin film of this embodiment.
  • the light emitting device of the present embodiment has, for example, an anode, a cathode, and an organic layer present between the anode and the cathode, and the organic layer contains the polymer compound or composition of the present embodiment.
  • the organic layer that is, the organic thin film of the present embodiment contains the polymer compound or composition of the present embodiment as it is (organic thin film), and the polymer of the present embodiment in the organic thin film (composition).
  • Examples of the organic layer include a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer.
  • the light emitting layer means a layer having a function of emitting light.
  • the hole transport layer means a layer having a function of transporting holes.
  • the electron transport layer means a layer having a function of transporting electrons.
  • the electron transport layer and the hole transport layer are collectively referred to as a charge transport layer, and the electron injection layer and the hole injection layer are collectively referred to as a charge injection layer.
  • the organic layer may consist of only one layer of the light emitting layer, that is, the function of each of these layers may be included in a single layer, and the light emitting layer, hole transport layer, hole injection layer A multilayer structure composed of a layer selected from a layer, an electron transport layer, and an electron injection layer may be used.
  • the organic layer containing the polymer compound of the present embodiment is preferably at least one layer selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer and an electron injection layer. More preferably, the organic layer is a light emitting layer or a hole transport layer.
  • the organic layer containing the polymer compound of the present embodiment is a light emitting layer
  • the light emitting layer is in addition to the light emitting material, and further has a hole transporting material, an electron transporting material, durability of the light emitting element and hole transporting.
  • An additive for improving the balance of the sex may be included.
  • the light emitting material means a material that emits fluorescence or phosphorescence.
  • the organic layer containing the polymer compound of the present embodiment contains the polymer compound of the present embodiment and a hole transporting material
  • the organic layer is added to 100 parts by weight of the polymer compound of the present embodiment.
  • the content of the hole transporting material is usually 1 part by weight to 500 parts by weight, preferably 5 parts by weight to 200 parts by weight.
  • the electron transport is performed with respect to 100 parts by weight of the polymer compound of this embodiment.
  • the content of the functional material is usually 1 to 500 parts by weight, preferably 5 to 200 parts by weight.
  • the organic layer containing the polymer compound of the present embodiment contains the polymer compound of the present embodiment and the light emitting material
  • the light emitting material is contained with respect to 100 parts by weight of the polymer compound of the present embodiment.
  • the amount is usually 1 to 500 parts by weight, preferably 5 to 200 parts by weight.
  • the hole transport material As the hole transport material, the electron transport material, and the light emitting material, known low molecular weight compounds, triplet light emitting complexes, and high molecular weight compounds can be used.
  • High molecular weight compounds include WO 99/13692, WO 99/48160, UK Patent 2340304, WO 00/53656, WO 01/19834, WO 00 No./55927, British Patent No. 2348316, International Publication No. 00/46321, International Publication No. 00/06665, International Publication No. 99/54943, International Publication No. 99/54385, US Patent No. 5777770, International Publication. No. 98/06773, International Publication No. 97/05184, International Publication No. 00/35987, International Publication No. 00/53655, International Publication No. 01/34722, International Publication No. 99/24526, International Publication No.
  • (co) polymers having a fluorenediyl group as a structural unit described in No. 8 publication
  • (co) polymers having an arylene group as a structural unit examples include (co) polymers having an arylene vinylene group as a structural unit, and (co) polymers having a divalent aromatic amine residue as a structural unit.
  • low molecular weight compounds examples include naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, dyes such as polymethine dyes, xanthene dyes, coumarin dyes, cyanine dyes, metal complexes of 8-hydroxyquinoline and derivatives thereof, aromatics Group amines, tetraphenylcyclopentadiene and derivatives thereof, and tetraphenylbutadiene and derivatives thereof.
  • Specific examples include compounds described in JP-A-57-51781 and JP-A-59-194393. Can be mentioned.
  • the above triplet luminescent complex can be used.
  • the thickness of the light-emitting layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate values.
  • the thickness of the light emitting layer is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 50 nm to 150 nm.
  • the method for forming the light emitting layer includes a method using a solution.
  • a forming method using a solution spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a capillary coating method, and a nozzle coating method can be used.
  • printing methods such as a screen printing method, a flexographic printing method, an offset printing method, and an ink jet printing method are preferable because pattern formation and multicolor coating are easy.
  • the light emitting device of this embodiment includes a light emitting device in which an electron transport layer is provided between the cathode and the light emitting layer, a light emitting device in which a hole transport layer is provided between the anode and the light emitting layer, and a cathode and a light emitting layer.
  • a light-emitting element in which an electron transport layer is provided between them and a hole transport layer is provided between the anode and the light-emitting layer can be given.
  • the polymer compound of this embodiment is preferably contained in the hole transport layer.
  • Examples of the structure of the light emitting device include the following structures a) to d). Note that “/” indicates that the layers described before and after are adjacent to each other. For example, “anode / light-emitting layer” indicates that the anode and the light-emitting layer are adjacent to each other. same as below. a) Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode
  • a hole transport layer adjacent to the light emitting layer may be provided between the light emitting layer and the anode.
  • Examples of the structure of such a light emitting device include the following structures a ′) to d ′). a ′) anode / hole transport layer / light emitting layer / cathode b ′) anode / hole transport layer / hole transport layer / light emitting layer / cathode c ′) anode / hole transport layer / light emitting layer / electron transport layer / Cathode d ') Anode / hole transport layer / hole transport layer / light emitting layer / electron transport layer / cathode
  • the hole transport layer usually contains the polymer compound of this embodiment.
  • Other hole transport materials include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, and pyrazoline.
  • high molecular weight compounds include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (P-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof are preferable, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amine residues in the side chain or main chain Polysiloxane derivatives are more preferred.
  • low molecular weight compounds are preferred as the low molecular weight compounds.
  • These low molecular weight compounds are preferably used by being dispersed in a polymer binder.
  • polymer binder a compound that does not extremely inhibit charge transport and does not strongly absorb visible light is preferable.
  • Polyvinylcarbazole and its derivatives can be obtained, for example, by cationic polymerization or radical polymerization of a vinyl monomer.
  • polysilane and derivatives thereof examples include compounds described in Chem. Rev., 89, 1359 (1989), and British Patent Publication No. 2300196.
  • the methods described in these can be used, and the Kipping method is particularly preferably used.
  • polysiloxane and its derivatives have almost no hole transporting property in the siloxane skeleton structure
  • a compound having the structure of the above low molecular weight hole transporting material in the side chain or main chain is preferred, and the hole transporting aromatic compound is preferable.
  • a compound having an amine residue in the side chain or main chain is more preferred.
  • a method for forming the hole transport layer when a low molecular weight compound is used, a method using a mixed solution with a polymer binder is exemplified, and a high molecular weight compound including the polymer compound of this embodiment is used. In some cases, a forming method using a solution is exemplified.
  • a solvent capable of dissolving or uniformly dispersing the hole transport material is preferable.
  • the solvent include those described in the above item “Liquid Composition”.
  • the formation method using a solution includes spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method.
  • Coating methods such as a printing method, an offset printing method, an ink jet printing method, a capillary coating method, and a nozzle coating method can be used.
  • the thickness of the hole transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 200 nm.
  • the electron transport layer usually contains the electron transport material (high molecular weight compound, low molecular weight compound).
  • a known material can be used as the electron transporting material.
  • electron transport materials include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, Diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, etc., JP-A 63-70257, Japanese Unexamined Patent Publication Nos.
  • oxadiazole derivatives benzoquinone and its derivatives, anthraquinone and its derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, Polyfluorene and its derivatives are preferred, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, polyquinoline Is more preferable.
  • Examples of the method for forming the electron transport layer include a vacuum deposition method using a powder material and a formation method using a solution or a molten material when a low molecular weight compound is used, and a high molecular weight compound is used. In some cases, a forming method using a solution or a material in a molten state can be mentioned. In the formation method using a solution or a molten material, the above polymer binder may be used in combination.
  • the solvent used for film formation from a solution is preferably a solvent that can dissolve or uniformly disperse the electron transport material and / or polymer binder.
  • the solvent include the solvents described in the above item “Liquid composition”.
  • Examples of the formation method using a solution or a molten material include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, Coating methods such as a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a capillary coating method, and a nozzle coating method can be used.
  • the thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate values. Usually, the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, the thickness is 5 nm to 200 nm.
  • the hole injection layer and the electron injection layer have a function of improving the charge injection efficiency from the electrode among the charge transport layers provided so as to be adjacent to the electrode, and have an effect of lowering the driving voltage of the light emitting element.
  • a charge injection layer or an insulating layer adjacent to the electrode usually 0.5 nm to 4.0 nm in average thickness, hereinafter the same Or a thin buffer layer may be inserted between the charge transport layer and the light-emitting layer for the purpose of improving the adhesion between adjacent layers and preventing the mixing of the layer materials. Good.
  • the order and number of layers to be laminated and the thickness of each layer may be adjusted in consideration of the light emission efficiency and the element lifetime.
  • examples of the light emitting device provided with the charge injection layer include the light emitting device provided with the charge injection layer adjacent to the cathode and the charge adjacent to the anode.
  • a light emitting element provided with an injection layer can be given. Examples of the laminated structure of such a light emitting element include the following structures e) to p).
  • the charge injection layer is a layer containing a conductive polymer, provided between the anode and the hole transport layer, and has an ionization potential of an intermediate value between the anode material and the hole transport material contained in the hole transport layer.
  • Examples thereof include a layer including a material having a material, a layer including a material provided between the cathode and the electron transport layer, and having a material having an intermediate electron affinity between the cathode material and the electron transport material included in the electron transport layer.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm, and the leakage current of the light emitting element is reduced. to reduce is more preferably 1 ⁇ 10 -5 S / cm ⁇ 1 ⁇ 10 2 S / cm, 1 ⁇ 10 -5 S / cm ⁇ 1 ⁇ 10 1 S / cm is more preferable.
  • the conductive polymer is doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer.
  • anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, and the like.
  • cations include lithium ions, sodium ions, potassium ions, and tetrabutylammonium ions.
  • the material used for the charge injection layer may be selected in relation to the electrode and the material of the adjacent layer.
  • materials used for the charge injection layer include polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof , Conductive polymers such as polymers containing an aromatic amine residue in the main chain or side chain, metal phthalocyanines (such as copper phthalocyanine), and carbon.
  • Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • Examples of the light-emitting element provided with an insulating layer include a light-emitting element provided with an insulating layer so as to be adjacent to the cathode and a light-emitting element provided with an insulating layer so as to be adjacent to the anode.
  • Examples of the laminated structure of such a light emitting device include the following structures q) to ab). q) anode / insulating layer / light emitting layer / cathode r) anode / light emitting layer / insulating layer / cathode s) anode / insulating layer / light emitting layer / insulating layer / cathode t) anode / insulating layer / hole transport layer / light emitting layer / Cathode u) anode / hole transport layer / light emitting layer / insulating layer / cathode v) anode / insulating layer / hole transport layer / light emitting layer / insulating layer / cathode w) anode / insulating layer / light emitting layer / electron transport layer / Cathode x) anode / light emitting layer / electron transport layer / cathode y
  • the substrate on which the light emitting element of this embodiment is formed may be a substrate that does not change chemically when forming an electrode and forming an organic layer, and is made of a material such as glass, plastic, polymer film, silicon, or the like. Is exemplified. In the case of an opaque substrate, the electrode provided on the opposite side of the substrate is usually transparent or translucent.
  • At least one of the anode and the cathode included in the light emitting device of this embodiment is usually transparent or translucent, but the anode side is preferably transparent or translucent.
  • anode materials include conductive metal oxide films, translucent metal thin films, and the like, specifically, indium oxide, zinc oxide, tin oxide, and indium tin that is a composite thereof. Films made of conductive compounds made of oxide (ITO), indium zinc oxide (IZO), etc., films made of NESA, gold, platinum, silver, copper, etc. are used, ITO, IZO, tin oxide The film made in is preferred. Examples of the production method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. As the anode, a transparent conductive film made of an organic material such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used. The anode may have a laminated structure of two or more layers.
  • the thickness of the anode can be selected in consideration of light transmission and electrical conductivity.
  • the thickness of the anode is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, more preferably 30 to 500 nm.
  • a layer made of a phthalocyanine derivative, a conductive polymer, carbon or the like; an insulating layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided adjacent to the anode to facilitate charge injection. Good.
  • a material having a small work function is preferable, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, Europium, terbium, ytterbium and other metals, or two or more of them, or one or more of them, and one of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin Alloys with more than one kind, graphite and graphite intercalation compounds, etc. are used.
  • the cathode may have a laminated structure of two or more layers.
  • the thickness of the cathode may be adjusted in consideration of electric conductivity and durability, and is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
  • a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like is used.
  • a layer made of a conductive polymer, or a metal oxide, metal fluoride, organic insulating material, etc. A layer having an average thickness of 2 nm or less may be provided, and a protective layer for protecting the light-emitting element may be provided after the cathode is manufactured.
  • a protective layer and / or a protective cover in order to protect the light emitting element from the external environment.
  • the material for the protective layer high molecular weight compounds, metal oxides, metal fluorides, metal borides and the like can be used.
  • a metal plate, a glass plate, a plastic plate with a low water permeability treatment on the surface, or the like can be used.
  • the protective cover is a substrate provided with a light emitting element with a thermosetting resin or a photocurable resin. A method in which the light-emitting elements are sealed together is suitably used. If a space is maintained between the light emitting element and the protective cover using a spacer, it is easy to prevent damage to the element.
  • an inert gas such as nitrogen gas or argon gas
  • oxidation of the cathode can be prevented, and further, moisture adsorbed in the manufacturing process can be obtained by installing a desiccant such as barium oxide in the space.
  • a desiccant such as barium oxide
  • FIG. 1 is a schematic cross-sectional view showing a light emitting device (light emitting device having the configuration of (p) above) according to the first embodiment of the present invention.
  • 1 includes a substrate 10 and an anode 11, a hole injection layer 12, a hole transport layer 13, a light emitting layer 14, an electron transport layer 15, and an electron injection layer 16 formed on the substrate 10.
  • the anode 11 is provided on the substrate 10 so as to be in contact with the substrate 10.
  • a hole injection layer 12, a hole transport layer 13, a light emitting layer 14, and an electron transport layer are provided on the opposite side of the anode 11 from the substrate 10.
  • the hole transport layer 13 includes the polymer compound according to the embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a light-emitting element (light-emitting element having the configuration (h) above) according to the second embodiment of the present invention.
  • a light emitting element 110 shown in FIG. 2 includes a substrate 10, and an anode 11, a hole injection layer 12, a hole transport layer 13, a light emitting layer 14, and a cathode 17 formed on the substrate 10.
  • the anode 11 is provided on the substrate 10 so as to be in contact with the substrate.
  • a hole injection layer 12, a hole transport layer 13, a light emitting layer 14 and a cathode 17 are provided on the opposite side of the anode 11 from the substrate 10. They are stacked in order.
  • the hole transport layer 13 includes the polymer compound according to the embodiment of the present invention.
  • the light emitting element containing the polymer compound of the embodiment of the present invention includes a planar light source such as a curved light source or a planar light source (for example, illumination); a segment display device, a dot matrix display device (for example, a dot matrix type flat). Display), liquid crystal display devices (for example, backlights of liquid crystal display devices), and the like.
  • the polymer compound of the present embodiment is suitable as a material used for these productions, and also includes a dye material for laser, an organic solar cell material, an organic semiconductor material for an organic transistor, and a conductive thin film material. It is also useful as a conductive thin film material such as an organic semiconductor thin film, a light emitting thin film material that emits fluorescence, and a material for a polymer field effect transistor.
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method in which a mask having a predetermined pattern window is provided on the surface of the planar light emitting element, either the anode or the cathode, or both electrodes Is formed in a predetermined pattern can be obtained by forming a pattern by any of these methods and arranging several electrodes so that they can be turned ON / OFF independently.
  • both the anode and the cathode may be formed in stripes and arranged so as to be orthogonal to each other. Partial color display and multi-color display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or may be driven actively in combination with TFTs or the like. These display devices can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the planar light source of the present invention.
  • a planar light source 200 shown in FIG. 3 includes a substrate 20, an anode 21, a hole injection layer 22, a light emitting layer 23, a cathode 24, and a protective layer 25.
  • the anode 21 is provided on the substrate 20 so as to be in contact with the substrate 20, and a hole injection layer 22, a light emitting layer 23, and a cathode 24 are laminated in this order on the opposite side of the anode 21 from the substrate 20.
  • the protective layer 25 is formed so as to cover all of the anode 21, the hole injection layer 22, the light emitting layer 23, and the cathode 24 formed on the substrate 20 and in contact with the substrate 20 at the end.
  • the light emitting layer 23 contains the polymer compound according to the embodiment of the present invention.
  • the planar light source 200 shown in FIG. 3 has a configuration in which a plurality of types of light emitting layers different from the light emitting layer 23 other than the light emitting layer 23 are further provided on the same substrate 20, and a red light emitting material is provided in each light emitting layer.
  • a color display device can be obtained by using a blue light emitting material and a green light emitting material and independently controlling the driving of each light emitting layer.
  • polystyrene-equivalent number average molecular weight and weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp).
  • GPC gel permeation chromatography
  • ⁇ Measurement conditions The polymer compound to be measured was dissolved in tetrahydrofuran to a concentration of about 0.05% by weight, and 10 ⁇ L was injected into GPC. Tetrahydrofuran was used as the mobile phase of GPC and was allowed to flow at a flow rate of 2.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a differential refractive index detector (manufactured by Shimadzu Corporation, trade name: RID-10A) was used as the detector.
  • NMR measurement was performed using NMR (Varian, Inc., trade name: INOVA300) after dissolving 5 to 20 mg of a measurement sample in about 0.5 mL of an organic solvent.
  • LC-MS measurement was performed by the following method.
  • the measurement sample is dissolved in an appropriate organic solvent (chloroform, tetrahydrofuran, ethyl acetate, toluene, etc.) to a concentration of 1 mg / mL to 10 mg / mL, and LC-MS (manufactured by Agilent Technologies, trade name: 1100LCMSD) Measured and analyzed.
  • LC-MS manufactured by Agilent Technologies, trade name: 1100LCMSD
  • ion-exchanged water, acetonitrile, tetrahydrofuran or a mixture thereof was used, and acetic acid was added as necessary.
  • the column used was L-column 2 ODS (3 ⁇ m) (manufactured by Chemicals Evaluation and Research Institute, inner diameter: 4.6 mm, length: 250 mm, particle diameter: 3 ⁇ m).
  • the evaluation of the hole transportability is performed by changing the cathode material in the above light emitting element to a material having a high work function (for example, gold, silver, platinum, etc.) ("hole only device (HOD)").
  • HOD hole only device
  • Examples of the structure of the element for evaluating hole transportability include the following HOD1 to HOD4.
  • HOD4 is used, and gold is used as a cathode material, and hole transportability is evaluated. Went.
  • HOD1 Anode / hole transport layer / cathode HOD2
  • Anode / hole transport layer / light emitting layer / cathode HOD4 Anode / hole injection layer / hole transport layer / light emitting layer / cathode
  • Example 1 Synthesis of polymer compound A> A polymer having a structural unit represented by the following formula (K-1) and a structural unit represented by the following formula (K-2) at a molar ratio of 92.5: 7.5 (theoretical value depending on the charged raw materials) ( Polymer compound A) was synthesized as follows.
  • compound 2 (2.010 g, 2.00 mmol) synthesized in Synthesis Example 1, compound 1 (1.549 g, 1.70 mmol), and a compound represented by the following formula (M-2-BR) (0.158 g, 0.30 mmol) and toluene (40 mL) were mixed and heated to 105 ° C.
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.2 g of polymer compound A.
  • the number average molecular weight of polystyrene conversion of the high molecular compound A was 0.31 * 10 ⁇ 5 >, and the weight average molecular weight of polystyrene conversion was 2.48 * 10 ⁇ 5 >.
  • the C content was 88.2% by weight, the H content was 8.23% by weight and the N content was 3.58% by weight.
  • Example 2 Synthesis of polymer compound B> A polymer having a structural unit represented by the above formula (K-1) and a structural unit represented by the following formula (K-3) at a molar ratio of 92.5: 7.5 (theoretical value depending on the charged raw materials) ( Polymer compound B) was synthesized as follows.
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.2 g of polymer compound B.
  • the number average molecular weight of polystyrene conversion of the high molecular compound B was 0.11 * 10 ⁇ 5 >, and the weight average molecular weight of polystyrene conversion was 1.59 * 10 ⁇ 5 >.
  • compound 2 (2.010 g, 2.00 mmol) synthesized in Synthesis Example 1, compound 1 (1.457 g, 1.60 mmol), and compound represented by the above formula (M-2-BR) (0.106 g, 0.20 mmol), a compound represented by the following formula (M-4-BR) (0.092 g, 0.20 mmol), and toluene (40 mL) were mixed and heated to 105 ° C. .
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.0 g of polymer compound C.
  • the polymer compound C had a polystyrene-equivalent number average molecular weight of 0.33 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 3.40 ⁇ 10 5 .
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.0 g of polymer compound D.
  • the number average molecular weight of polystyrene conversion of the high molecular compound D was 0.15 * 10 ⁇ 5 >, and the weight average molecular weight of polystyrene conversion was 1.38 * 10 ⁇ 5 >.
  • Example 5 Production and evaluation of hole-only device 1 using polymer compound A> A hole-only device 1 which is an element capable of flowing only holes is manufactured, and the amount of hole current of an electronic element using the compound of the present invention, a composition containing the compound, and an organic thin film containing the compound is evaluated. did.
  • the substrate provided with this organic thin film was heated at 170 ° C. for 15 minutes to dry the organic thin film, and then naturally cooled to room temperature to obtain a first organic layer.
  • the second organic layer forming composition was applied on the first organic layer obtained in (1-1) above by a spin coating method to obtain an organic thin film having a thickness of 80 nm.
  • the substrate provided with the organic thin film was heated at 180 ° C. for 60 minutes in a nitrogen gas atmosphere to insolubilize the organic thin film in an organic solvent, and then naturally cooled to room temperature to obtain a second organic layer.
  • a cathode which is a gold layer having a thickness of 50 nm was formed by vacuum deposition. .
  • the gold deposition process was started after the degree of vacuum reached 1 ⁇ 10 ⁇ 4 (Pa) or less.
  • the substrate having the laminated structure including the substrate, the anode, the first organic layer, the second organic layer, and the cathode obtained in the steps up to (1-3) above is taken out from the vacuum deposition apparatus and sealed in a nitrogen gas atmosphere. Sealing was performed with glass and a two-component mixed epoxy resin (PX681C manufactured by Robner Resins) to obtain a hole-only device 1.
  • a two-component mixed epoxy resin PX681C manufactured by Robner Resins
  • the first organic layer has a function of receiving holes from the anode and transporting holes to the second organic layer when a voltage is applied to the hole-only device 1, and the second organic layer has holes. Under the application of a voltage to the only device 1, it has a function of receiving holes from the first organic layer and transporting the holes to the cathode.
  • Example 6 Production and evaluation of hole-only device 2 using polymer compound B> A hole-only device 2 was prepared and evaluated in the same manner as in Example 5 except that the polymer compound B was used as the compound constituting the second organic layer. As a result, the current density flowing through the hole-only device 2 when the electric field strength was 500 kV / cm was 103.2 mA / cm 2 . The results are shown in Table 1. In this evaluation, when an electric field strength of 500 kV / cm is applied to the hole-only device 2, light emission due to current excitation is not observed, and the electron current flowing through the hole-only device 2 It was confirmed that the amount was very small.
  • Example 7 Production and evaluation of hole-only device 3 using polymer compound C> A hole-only device 3 was prepared and evaluated in the same manner as in Example 5 except that the polymer compound C was used as the compound constituting the second organic layer. As a result, the current density flowing through the hole-only device 3 when the electric field strength was 500 kV / cm was 165.5 mA / cm 2 . The results are shown in Table 1. In this evaluation, when an electric field strength of 500 kV / cm is applied to the hole-only device 3, no light emission due to current excitation is observed, and the electron current flowing through the hole-only device 3 It was confirmed that the amount was very small.
  • Example 8 Production and evaluation of hole-only device 4 using polymer compound D> A hole-only device 4 was prepared and evaluated in the same manner as in Example 5 except that the polymer compound D was used as the compound constituting the second organic layer. As a result, the density of current flowing through the hole-only device 4 when the electric field strength was 500 kV / cm was 114.4 mA / cm 2 . The results are shown in Table 1. In this evaluation, when an electric field strength of 500 kV / cm is applied to the hole-only device 4, no light emission due to current excitation is observed, and the electron current flowing through the hole-only device 4 It was confirmed that the amount was very small.
  • compound 2 (2.044 g, 2.03 mmol) synthesized in Synthesis Example 1, a compound represented by the following formula (M-8-BR) (1.766 g, 1.60 mmol), and the above formula
  • the compound represented by (M-2-BR) (0.106 g, 0.20 mmol)
  • the compound represented by the above formula (M-4-BR) 0.092 g, 0.20 mmol
  • toluene 36 mL
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.2 g of polymer compound E.
  • the number average molecular weight of polystyrene conversion of the high molecular compound E was 0.30 * 10 ⁇ 5 >, and the weight average molecular weight of polystyrene conversion was 1.99 * 10 ⁇ 5 >.
  • Example 10 Synthesis of polymer compound F> A structural unit represented by the above formula (K-1), a structural unit represented by the following formula (K-9), a structural unit represented by the above formula (K-2), and the above formula (K-4) Synthesis of a polymer (polymer compound F) having the structural units shown at a molar ratio of 50: 40: 5: 5 (theoretical value based on the charged raw materials) was performed as follows.
  • compound 2 (2.060 g, 2.05 mmol) synthesized in Synthesis Example 1, a compound represented by the following formula (M-9-BR) (1.304 g, 1.60 mmol), and the above formula
  • the compound represented by (M-2-BR) (0.106 g, 0.20 mmol)
  • the compound represented by the above formula (M-4-BR) 0.092 g, 0.20 mmol
  • toluene 43 mL
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.3 g of polymer compound F.
  • the number average molecular weight of polystyrene conversion of the high molecular compound F was 0.26 * 10 ⁇ 5 >, and the weight average molecular weight of polystyrene conversion was 2.16 * 10 ⁇ 5 >.
  • Example 11 Production and evaluation of hole-only device 5 using polymer compound F> A hole-only device 5 was prepared and evaluated in the same manner as in Example 5 except that the polymer compound F was used as the compound constituting the second organic layer. As a result, the current density flowing through the hole-only device 5 when the electric field strength was 500 kV / cm was 73.8 mA / cm 2 . The results are shown in Table 1. In this evaluation, when an electric field strength of 500 kV / cm is applied to the hole-only device 5, no light emission due to current excitation is observed, and the electron current flowing through the hole-only device 5 It was confirmed that the amount was very small.
  • compound 1 (1.549 g, 1.70 mmol), the compound represented by the above formula (M-2-BR) (0.158 g, 0.30 mmol), and the following formula (M-6-E) ) (1.814 g, 2.00 mmol) and toluene (40 mL) were mixed and heated to 105 ° C. Thereafter, a 20 wt% tetraethylammonium hydroxide aqueous solution (6.9 g) was added dropwise, dichlorobis (tris (o-methoxyphenyl)) phosphine palladium (1.76 mg) was added, and the mixture was refluxed for 3 hours.
  • polymer compound AA This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.2 g of polymer compound AA.
  • the polymer compound AA had a polystyrene-equivalent number average molecular weight of 0.54 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 3.11 ⁇ 10 5 .
  • compound 1 (1.093 g, 1.20 mmol), the compound represented by the above formula (M-2-BR) (0.158 g, 0.30 mmol), and the following formula (M-6-E) ) (1.814 g, 2.00 mmol), a compound represented by the following formula (M-7-BR) (0.274 g, 0.50 mmol), and toluene (40 mL) are mixed.
  • the temperature was raised to ° C.
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • polymer compound BB This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.1 g of polymer compound BB.
  • the polymer compound BB had a polystyrene-equivalent number average molecular weight of 0.55 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 2.63 ⁇ 10 5 .
  • compound 1 (3.255 g, 3.57 mmol), the compound represented by the above formula (M-6-E) (3.813 g, 4.21 mmol), and the above formula (M-3-BR) ) (0.271 g, 0.63 mmol) and toluene (55 mL) were mixed and heated to 105 ° C. Thereafter, a 20 wt% tetraethylammonium hydroxide aqueous solution (13.8 g) was added dropwise, and palladium acetate (1.40 mg, 6.31 ⁇ mol) and tris (o-methoxyphenyl) phosphine (8.80 mg, 25.2 ⁇ mol) were added. And refluxed for 6 hours.
  • phenylboronic acid (51.3 mg) was added thereto, and the mixture was further refluxed for 12 hours.
  • an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours.
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • polymer compound CC This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 4.8 g of polymer compound CC.
  • the polymer compound CC had a polystyrene-equivalent number average molecular weight of 2.82 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 0.60 ⁇ 10 5 .
  • compound 1 (4.099 g, 4.50 mmol), the compound represented by the above formula (M-6-E) (3.224 g, 3.56 mmol), and the following formula (M-2-E) ) (0.280 g, 0.45 mmol), a compound represented by the following formula (M-4-E) (0.250 g, 0.45 mmol), and toluene (120 mL) were mixed.
  • the temperature was raised to ° C.
  • the resulting mixture was cooled, charged with toluene, and washed twice with water, twice with a 3 wt% aqueous acetic acid solution, and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • the polymer compound DD had a polystyrene-equivalent number average molecular weight of 0.40 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 1.45 ⁇ 10 5 .
  • Tris (dibenzylideneacetone) dipalladium complex (0.073 g, 0.08 mmol), tri-tert-butylphosphine tetrafluoroborate (0.093 g, 0.32 mmol), and tert-butoxy sodium (1.54 g, 16.0 mmol), the compound represented by the above formula (M-7-BR) (1.14 g, 2.00 mmol), and the compound represented by the above formula (M-2-BR) (1.06 g, 2. 00 mmol) was charged, and the system was sufficiently replaced with nitrogen gas.
  • aniline (0.38 g, 4.00 mmol) and toluene (45 mL) were mixed, heated to 105 ° C., and stirred for 8 hours.
  • the reaction solution was allowed to cool, and the reaction solution was dropped into an aqueous ethanol solution (ethanol 250 mL + water 40 mL), collected by filtration, and dried to obtain a precipitate.
  • the obtained precipitate was dissolved in toluene, reprecipitated in acetone, and the precipitated polymer was separated by filtration.
  • the obtained polymer was dissolved in toluene, washed with dilute hydrochloric acid, reprecipitated with ammonia-containing ethanol, and the polymer was filtered off.
  • the polymer separated by filtration was dissolved in toluene and purified twice by silica gel column chromatography, and then the solution was dropped into an aqueous ethanol solution, filtered and dried to obtain 0.85 g of a polymer compound EE.
  • the polymer compound EE had a polystyrene-equivalent number average molecular weight of 0.16 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 0.39 ⁇ 10 5 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 正孔輸送性に優れる有用な高分子化合物、当該高分子化合物を含む組成物、有機薄膜、不溶化有機薄膜、発光素子、面状光源および表示装置を提供することを目的とする。下記式(1)で示される構成単位を全構成単位の合計に対して51モル%以上含み、かつ、下記式(2)で示される構成単位および下記式(3)で示される構成単位のうちの少なくとも一方を含む、高分子化合物。 [式(1)中、a、b、Ar、Ar、Ar、Ar、R、RおよびRは、明細書にて定義の通りである。] [式(2)中、na、nA、nb、n、Ar、L、L、LおよびXは、明細書にて定義の通りである。] [式(3)中、c、Ar、Ar、Ar、RおよびRは、明細書にて定義の通りである。]

Description

高分子化合物および組成物、並びにこれらを用いた発光素子
 本発明は、高分子化合物および組成物、並びにこれらを用いた発光素子に関する。
 有機エレクトロルミネッセンス素子(以下、「発光素子」ということがある。)の製造に用いられる材料が、近年種々検討されている。これらの中でも、積層型の発光素子の製造に用いられる材料として、芳香族アミン残基を構成単位に含む高分子化合物が知られている(特許文献1および2)。
国際公開第2005/053056号 特開2011-052229号公報
 しかしながら、上記の特許文献にかかる高分子化合物を用いて製造された発光素子は、その正孔輸送性が不十分な場合がある。
 そこで、本発明は、正孔輸送性に優れる発光素子の製造に有用な高分子化合物を提供することを目的とする。本発明はまた、当該高分子化合物を含む組成物、有機薄膜、不溶化有機薄膜、発光素子、面状光源および表示装置を提供することを目的とする。本発明はさらに、当該高分子化合物の原料化合物およびその製造方法を提供することを目的とする。
 すなわち本発明は、以下の高分子化合物、該高分子化合物を含む組成物、有機薄膜、不溶化有機薄膜、発光素子、面状光源および表示装置を提供する。本発明はまた、以下の当該高分子化合物の原料化合物および製造方法を提供する。
[1] 下記式(1)で示される構成単位を全構成単位の合計に対して51モル%以上含み、かつ、下記式(2)で示される構成単位および下記式(3)で示される構成単位のうちの少なくとも一方を含む、高分子化合物。
Figure JPOXMLDOC01-appb-C000011
[式(1)中、
 aは1~3の整数を示し、bは0または1を示す。
 ArおよびArは、それぞれ独立に、置換基を有していてもよいアリーレン基、または、置換基を有していてもよい2価の複素環基を示し、ArおよびArは、それぞれ独立に、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および置換基を有していてもよい2価の複素環基からなる群より選ばれる、互いに同一でも異なっていてもよい2個以上の基が連結した2価の基を示し、Ar、Ar、ArおよびArはそれぞれ、これらの基が結合している窒素原子に結合している当該基以外の基と互いに連結して環構造を形成していてもよい。Arが複数個存在する場合、それらは同一でも異なっていてもよい。
 R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。Rが複数個存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000012
[式(2)中、
 naは0~3の整数を示し、nbは0~12の整数を示し、nAは0または1を示し、nは0~4の整数を示す。
 Arは置換基を有していてもよい(2+n)価の芳香族炭化水素基または置換基を有していてもよい(2+n)価の複素環基を示す。
 LおよびLは、それぞれ独立に、置換基を有していてもよいアルキレン基または置換基を有していてもよいフェニレン基を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
 Lは酸素原子または硫黄原子を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
 Xは1価の架橋性基を示す。Xが複数個存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000013
[式(3)中、
 cは0または1を示す。
 ArおよびArは、それぞれ独立に、置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示し、Arは、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および置換基を有していてもよい2価の複素環基からなる群より選ばれる同一であっても異なっていてもよい2個以上の基が連結した2価の基を示す。
 Rは1価の架橋性基を示し、Rは1価の架橋性基、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。]
[2] 前記式(2)で示される構成単位が、下記式(4)で示される構成単位である、[1]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000014
[式(4)中、
 ncは0~3の整数を示し、ndは0~12の整数を示し、nBは0または1を示し、mは0~2の整数を示す。
 LおよびLは、それぞれ独立に、置換基を有していてもよいアルキレン基または置換基を有していてもよいフェニレン基を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
 Lは酸素原子または硫黄原子を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
 Xは1価の架橋性基を示す。Xが複数個存在する場合、それらは同一でも異なっていてもよい。
 Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよい1価の複素環基または置換基を有していてもよい1価の複素環オキシ基を示す。Rが複数個存在する場合、それらは同一でも異なっていてもよい。]
[3] 前記Xが、置換基を有していてもよい下記式(X-1)で示される1価の架橋性基である、[1]または[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000015
[4] 前記Xが、下記式(X-2)で示される1価の架橋性基である、[1]または[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000016
[式(X-2)中、
 neおよびnfは、それぞれ独立に、0または1を示す。
 LX1は酸素原子、硫黄原子、カルボニル基または-O-CO-で示される基を示す。
 R、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、置換基を有していてもよいアシル基、置換基を有していてもよいアシルオキシ基、ハロゲン原子、シアノ基またはニトロ基を示す。]
[5] 前記Xが複数個存在する場合、それらは置換基を有していてもよい下記式(X-1)で示される1価の架橋性基を少なくとも1種類含み、かつ、下記式(X-2)で示される1価の架橋性基を少なくとも1種類含む、[1]または[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
[式(X-2)中、
 neおよびnfは、それぞれ独立に、0または1を示す。
 LX1は酸素原子、硫黄原子、カルボニル基または-O-CO-で示される基を示す。
 R、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、置換基を有していてもよいアシル基、置換基を有していてもよいアシルオキシ基、ハロゲン原子、シアノ基またはニトロ基を示す。]
[6] 前記Arが、置換基を有していてもよい2,7-フルオレンジイル基、置換基を有していてもよいナフタレンジイル基、置換基を有していてもよいフェナントレンジイル基、置換基を有していてもよいジヒドロフェナントレンジイル基、置換基を有していてもよいアントラセンジイル基、置換基を有していてもよいピレンジイル基または置換基を有していてもよいペリレンジイル基である、[1]~[5]のいずれか1つに記載の高分子化合物。
[7] 下記式(5)で示される第1単量体と下記式(6)で示される第2単量体とを含む単量体組成物の重合反応を行って、[1]~[6]のいずれか1つに記載の高分子化合物を得る、高分子化合物の製造方法。
Figure JPOXMLDOC01-appb-C000019
[式(5)中、
 dは1~3の整数を示し、eは0または1を示す。
 ArおよびAr11は、それぞれ独立に、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基を示し、Ar10およびAr12は、それぞれ独立に、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および置換基を有していてもよい2価の複素環基からなる群より選ばれる同一でも異なっていてもよい2個以上の基が連結した2価の基を示し、Ar、Ar10、Ar11およびAr12はそれぞれ、これらの基が結合している窒素原子に結合している当該基以外の基と互いに連結して環構造を形成していてもよい。Ar10が複数個存在する場合、それらは同一でも異なっていてもよい。
 R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。Rが複数個存在する場合、それらは同一でも異なっていてもよい。
 ZおよびZは、それぞれ独立に、下記置換基A群から選ばれる基を示す。
<置換基A群>
 -B(OR101で示される基(R101は水素原子または置換基を有していてもよいアルキル基を示し、互いに連結して、R101に結合する酸素原子とともに環構造を形成していてもよい。複数個存在するR101は同一でも異なっていてもよい。)、
 -BFで示される基(Qは、Li、Na、K、RbおよびCsからなる群より選ばれる1価の陽イオンを示す。)、
 -MgYで示される基(Yは、塩素原子、臭素原子またはヨウ素原子を示す。)、
 -ZnYで示される基(Yは、塩素原子、臭素原子またはヨウ素原子を示す。)、および、
 -Sn(R102で示される基(R102は水素原子またはアルキル基を示し、互いに連結して、R102に結合するスズ原子とともに環構造を形成していてもよい。複数個存在するR102は同一でも異なっていてもよい。)。]
Figure JPOXMLDOC01-appb-C000020
[式(6)中、
 fは0~3の整数を示し、gは0または1を示す。
 Ar13およびAr15は、それぞれ独立に、置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示し、Ar14およびAr16は、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および2価の複素環基からなる群より選ばれる同一でも異なっていてもよい2個以上の基が連結した2価の基を示し、Ar13、Ar14、Ar15およびAr16はそれぞれ、これらの基が結合している窒素原子に結合している当該基以外の基と互いに連結して環構造を形成していてもよい。Ar14が複数個存在する場合、それらは同一でも異なっていてもよい。
 R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。Rが複数個存在する場合、それらは同一でも異なっていてもよい。
 ZおよびZは、それぞれ独立に、下記置換基B群から選ばれる基を示す。
<置換基B群>
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)103で示される基(R103は、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を示す。)。]
[8] [1]~[6]のいずれか1つに記載の高分子化合物と、
 正孔輸送性材料、電子輸送性材料および発光材料からなる群より選ばれる少なくとも1種類の材料を含有する組成物。
[9] [1]~[6]のいずれか1つに記載の高分子化合物と、溶媒とを含有する組成物。
[10] 溶媒をさらに含有する、[8]に記載の組成物。
[11] [1]~[6]のいずれか1つに記載の高分子化合物を含有する有機薄膜。
[12] [8]に記載の組成物を含有する有機薄膜。
[13] [11]に記載の有機薄膜を有機溶媒に対して不溶化させた、不溶化有機薄膜。
[14] [12]に記載の有機薄膜を有機溶媒に対して不溶化させた、不溶化有機薄膜。
[15] [11]または[12]に記載の有機薄膜を有する発光素子。
[16] [13]または[14]に記載の不溶化有機薄膜を有する発光素子。
[17] [15]または[16]に記載の発光素子を有する面状光源。
[18] [15]または[16]に記載の発光素子を有する表示装置。
 本発明によれば、正孔輸送性に優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明の好ましい実施形態によれば、耐久性(例えば、輝度寿命)にも優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明によれば、当該高分子化合物を含む組成物、有機薄膜、不溶化有機薄膜、発光素子、面状光源および表示装置を提供することができる。さらに、本発明によれば、当該高分子化合物の原料化合物および製造方法を提供することができる。
図1は、本発明の第1の実施形態の発光素子を示す模式的な断面図である。 図2は、本発明の第2の実施形態の発光素子を示す模式的な断面図である。 図3は、本発明の面状光源の実施形態を示す模式的な断面図である。
 以下、本明細書において用いられる用語について、必要に応じて例を挙げて説明する。
 本明細書中、「Me」はメチル基を示し、「Et」はエチル基を示し、「Ph」はフェニル基を示し、「t-Bu」および「tBu」はtert-ブチル基を示す。
 「構成単位」とは、高分子化合物中に1個以上存在する単位構造を意味する。「構成単位」は、「繰り返し単位(高分子化合物中に2個以上存在する単位構造)」として高分子化合物中に含まれることが好ましい。
 「Cx-y」(x、yはx<yを満たす正の整数である。)という用語は、この用語の直後に記載された官能基名に該当する部分構造の炭素原子数が、x~yの範囲にあることを意味する。すなわち、「Cx-y」の直後に記載された有機基が、複数の官能基名を組み合わせて命名された有機基(例えば、Cx-yアルコキシフェニル基)である場合、複数の官能基名のうち「Cx-y」の直後に記載された官能基名(例えば、アルコキシ)に該当する部分構造の炭素原子数が、x~yの範囲にあることを意味する。例えば、「C1-12アルキル基」は炭素原子数が1~12であるアルキル基を意味し、「C1-12アルコキシフェニル基」は「炭素原子数が1~12であるアルコキシ基」を有するフェニル基を意味する。
 本明細書中、「置換基を有していてもよい」という用語は、この用語の直後に記載された官能基が置換基を有していてもよいし、有していなくてもよいことを意味する。例えば、「置換基を有していてもよいアルキル基」という用語は、「非置換のアルキル基若しくは置換基を有するアルキル基」を意味する。
 「置換基」の例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、オキシカルボニル基、1価の複素環基、複素環オキシ基、複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシ基、ヒドロキシ基、ニトロ基、シアノ基等が挙げられる。これらの基は、上記の例から選ばれる「置換基」をさらに有していてもよい。
 「アルキル基」は、置換基を有していてもよく、直鎖状アルキル基、分岐状アルキル基および環状アルキル基(シクロアルキル基)のいずれであってもよい。直鎖状アルキル基および分岐状アルキル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは1~20であり、より好ましくは1~15であり、さらに好ましくは1~12である。分岐状アルキル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~12である。
 環状アルキル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは3~20、より好ましくは3~15、さらに好ましくは3~12である。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基が挙げられる。
 「アルコキシ基」は、置換基を有していてもよく、直鎖状アルコキシ基、分岐状アルコキシ基および環状アルコキシ基(シクロアルコキシ基)のいずれであってもよい。直鎖状アルコキシ基および分岐状アルコキシ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは1~20であり、より好ましくは1~15であり、さらに好ましくは1~12である。環状アルコキシ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは3~20であり、より好ましくは3~15であり、さらに好ましくは3~12である。分岐状アルコキシ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~12である。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ドデシルオキシ基が挙げられる。
 「アルキルチオ基」は、置換基を有していてもよく、直鎖状アルキルチオ基、分岐鎖状アルキルチオ基および環状アルキルチオ基(シクロアルキルチオ基)のいずれであってもよい。直鎖状アルキルチオ基および分岐鎖状アルキルチオ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは1~20であり、より好ましくは1~15であり、さらに好ましくは1~12である。環状状アルキルチオ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは3~20であり、より好ましくは3~15であり、さらに好ましくは3~12である。分岐状アルキルチオ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~12である。
 アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ドデシルチオ基が挙げられる。
 「アリール基」は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団である。アリール基は、置換基を有していてもよく、アリール基としては、ベンゼン環を有するもの、縮合環を有する基が含まれる。アリール基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは6~60であり、より好ましくは6~48であり、さらに好ましくは6~30である。上記芳香族炭化水素の例としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ナフタセン、フルオレン、ピレン、ペリレン等が挙げられる。
 アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-フルオレニル基が挙げられる。
 「アリールオキシ基」は、-O-Ar21で示される基である。ここでAr21は、上記アリール基を示す。Ar21で示されるアリール基は置換基を有していてもよい。アリールオキシ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは6~60であり、より好ましくは6~48であり、さらに好ましくは6~30である。
 アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、2-アントラセニルオキシ基、9-アントラセニルオキシ基、2-フルオレニルオキシ基が挙げられる。
 「アリールチオ基」は、-S-Ar22で示される基である。ここでAr22は、上記アリール基を示す。Ar22で示されるアリール基は置換基を有していてもよい。アリールチオ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは6~60であり、より好ましくは6~48であり、さらに好ましくは6~30である。
 アリールチオ基としては、例えば、フェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、1-アントラセニルチオ基、2-アントラセニルチオ基、9-アントラセニルチオ基、2-フルオレニルチオ基が挙げられる。
 「アルケニル基」は、置換基を有していてもよく、直鎖状アルケニル基、分岐状アルケニル基および環状アルケニル基のいずれであってもよい。直鎖状アルケニル基および分岐状アルケニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~20であり、より好ましくは2~15であり、さらに好ましくは2~10である。環状アルケニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは3~20であり、より好ましくは3~15であり、さらに好ましくは3~10である。分岐状アルケニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~10である。
 アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基が挙げられる。
 「アルキニル基」は、置換基を有していてもよく、直鎖状アルキニル基、分岐状アルキニル基および環状アルキニル基のいずれであってもよい。直鎖状アルキニル基および分岐状アルキニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~20であり、より好ましくは2~15であり、さらに好ましくは2~10である。環状アルキニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは3~20であり、より好ましくは3~15であり、さらに好ましくは3~10である。分岐状アルキニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~10である。
 アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、1-オクチニル基が挙げられる。
 「アミノ基」は、置換基を有していてもよく、好ましくは非置換のアミノ基並びにアルキル基、アリール基、アリール基で置換されたアルキル基および1価の複素環基から選ばれる1個または2個の置換基で置換されたアミノ基である。以下、1個または2個の置換基で置換されたアミノ基を「置換アミノ基」という。当該置換基はさらに置換基を有していてもよい。以下、有機基の有する置換基が、さらに有する置換基を、「二次置換基」という場合がある。置換アミノ基の炭素原子数は、二次置換基の炭素原子数を含めずに、好ましくは1~60であり、より好ましくは2~48であり、さらに好ましくは2~40である。
 置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ドデシルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1-12アルコキシフェニルアミノ基、ビス(C1-12アルコキシフェニル)アミノ基、C1-12アルキルフェニルアミノ基、ビス(C1-12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジニルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、フェニル-C1-12アルキルアミノ基、C1-12アルコキシフェニル-C1-12アルキルアミノ基、ジ(C1-12アルコキシフェニル-C1-12アルキル)アミノ基、C1-12アルキルフェニル-C1-12アルキルアミノ基、ジ(C1-12アルキルフェニル-C1-12アルキル)アミノ基、1-ナフチル-C1-12アルキルアミノ基、2-ナフチル-C1-12アルキルアミノ基等が挙げられる。
 「シリル基」は、置換基を有していてもよく、好ましくは非置換のシリル基並びにアルキル基、アリール基、アリール基で置換されたアルキル基および1価の複素環基から選ばれる1個~3個の置換基で置換されたシリル基(以下、「置換シリル基」という。)である。当該置換基は二次置換基を有していてもよい。置換シリル基の炭素原子数は、二次置換基の炭素原子数を含めないで、好ましくは1~60であり、より好ましくは3~48であり、さらに好ましくは3~40である。
 置換シリル基の例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-イソプロピルシリル基、ジメチル-イソプロピルシリル基、ジエチル-イソプロピルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシル-ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチル-ジメチルシリル基、ドデシルジメチルシリル基、フェニル-C1-12アルキルシリル基、C1-12アルコキシフェニル-C1-12アルキルシリル基、C1-12アルキルフェニル-C1-12アルキルシリル基、1-ナフチル-C1-12アルキルシリル基、2-ナフチル-C1-12アルキルシリル基、フェニル-C1-12アルキルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。
 「アシル基」としては、例えば、-C(=O)-R111で示される基が挙げられる。ここでR111は、上記アルキル基、上記アリール基または後述する1価の複素環基を示す。R111におけるアルキル基、アリール基および1価の複素環基は置換基を有していてもよい。アシル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~20であり、より好ましくは2~18であり、さらに好ましくは2~16である。
 アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基が挙げられる。また、置換基を有するアシル基としては、置換基としてハロゲン原子を有するアシル基(例えば、トリフルオロアセチル基、ペンタフルオロベンゾイル基)等が挙げられる。
 「アシルオキシ基」としては、例えば、-O-C(=O)-R112で示される基が挙げられる。ここでR112は、上記アルキル基、上記アリール基または後述する1価の複素環基を示す。R112におけるアルキル基、アリール基および1価の複素環基は置換基を有していてもよい。アシルオキシ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~20であり、より好ましくは2~18であり、さらに好ましくは2~16である。
 アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基が挙げられる。また、置換基を有するアシルオキシ基としては、置換基としてハロゲン原子を有するアシルオキシ基(例えば、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基)等が挙げられる。
 「オキシカルボニル基」としては、-C(=O)-O-R113で示される基が挙げられる。ここでR113は、上記アルキル基、上記アリール基または後述する1価の複素環基を示す。R113におけるアルキル基、アリール基および1価の複素環基は置換基を有していてもよい。オキシカルボニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~20であり、より好ましくは2~18であり、さらに好ましくは2~16である。
 「1価の複素環基」は、複素環式化合物から複素環または芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団である。1価の複素環基は置換基を有していてもよく、1価の複素環基としては、単環の基、縮合環を有する基が含まれる。1価の複素環基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~60であり、より好ましくは4~30であり、さらに好ましくは4~20である。
 複素環式化合物とは、環式構造を有する有機化合物のうち、環を構成する原子として、炭素原子だけでなく、例えば、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む化合物をいう。
 1価の複素環基としては、1価の芳香族複素環基が好ましい。1価の芳香族複素環基は、芳香族複素環式化合物から芳香族複素環または芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団である。芳香族複素環式化合物としては、例えば、ヘテロ原子を含む複素環自体が芳香族性を示す化合物、すなわちオキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール、ジベンゾフラン、ジベンゾチオフェン等、および、ヘテロ原子を含む複素環それ自体は芳香族性を示さなくとも、該複素環に芳香環が縮合されている化合物、すなわちフェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等が挙げられる。
 1価の芳香族複素環基としては、例えば、チエニル基、C1-12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1-12アルキルピリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられる。
 「複素環オキシ基」は、-O-Ar101で示される基である。ここでAr101は上記1価の複素環基を示す。Ar101で示される1価の複素環基は置換基を有していてもよい。複素環オキシ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~60であり、より好ましくは4~30であり、さらに好ましくは4~20である。
 複素環オキシ基としては、例えば、ピリジルオキシ基、ピリダジニルオキシ基、ピリミジニルオキシ基、ピラジニルオキシ基、トリアジニルオキシ基等が挙げられる。
 「複素環チオ基」は、-S-Ar102で示される基である。ここでAr102は上記1価の複素環基を示す。Ar102で示される1価の複素環基は置換基を有していてもよい。複素環チオ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~60であり、より好ましくは4~30であり、さらに好ましくは4~20である。
 複素環チオ基としては、例えば、ピリジルチオ基、ピリダジニルチオ基、ピリミジニルチオ基、ピラジニルチオ基、トリアジニルチオ基が挙げられる。
 「イミン残基」は、式:H-N=C(R114または式:H-C(R115)=N-R116で示される構造を有するイミン化合物から、該式中の水素原子1個を除いた残基を意味する。式中、R114、R115およびR116は、それぞれ独立に、上記アルキル基、上記アリール基、上記アルケニル基、上記アルキニル基または上記1価の複素環基を示す。R114、R115およびR116におけるアルキル基、アリール基、アルケニル基、アルキニル基および1価の複素環基は、置換基を有していてもよい。複数個存在するR114は互いに同一でも異なっていてもよく、これらが互いに連結して、それぞれが結合する炭素原子とともに環構造を形成していてもよい。
 イミン残基としては、例えば、以下の構造式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 「アミド化合物残基」は、式:H-N(R117)-C(=O)R118または式:H-C(=O)-N(R119で示される構造を有するアミド化合物から、該式中の水素原子1個を除いた残基を意味する。式中、R117、R118およびR119は、それぞれ独立に、上記アルキル基、上記アリール基、上記アルケニル基、上記アルキニル基または上記1価の複素環基を示す。R117、R118およびR119におけるアルキル基、アリール基、アルケニル基、アルキニル基および1価の複素環基は、置換基を有していてもよい。2個存在するR119は互いに同一でも異なっていてもよく、互いに連結して、それぞれが結合する窒素原子とともに環構造を形成していてもよい。
 アミド化合物残基としては、例えば、ホルムアミド残基、アセトアミド残基、プロピオアミド残基、ブチロアミド残基、ベンズアミド残基、トリフルオロアセトアミド残基、ペンタフルオロベンズアミド残基、ジホルムアミド残基、ジアセトアミド残基、ジプロピオアミド残基、ジブチロアミド残基、ジベンズアミド残基、ジトリフルオロアセトアミド残基、ジペンタフルオロベンズアミド残基が挙げられる。
 「酸イミド残基」は、酸イミド化合物から、その窒素原子に結合した水素原子1個を除いた残基を意味する。当該酸イミド化合物は置換基を有していてもよい。酸イミド残基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは4~20であり、より好ましくは4~18であり、さらに好ましくは4~16である。
 酸イミド残基としては、例えば以下の構造式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 「置換基を有していてもよいアルキル基」の例としては、非置換のアルキル基および上記置換基を有するアルキル基が挙げられる。ここでアルキル基が有する置換基は、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「置換基を有していてもよいアルコキシ基」の例としては、非置換のアルコキシ基および上記置換基を有するアルコキシ基が挙げられる。ここでアルコキシ基が有する置換基は、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「置換基を有していてもよいアリール基」の例としては、非置換のアリール基および上記置換基を有するアリール基が挙げられる。ここでアリール基が有する置換基は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「置換基を有していてもよいアリールオキシ基」の例としては、非置換のアリールオキシ基および上記置換基を有するアリールオキシ基が挙げられる。ここでアリールオキシ基が有する置換基は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「置換基を有していてもよい1価の複素環基」の例としては、非置換の複素環基および上記置換基を有する1価の複素環基が挙げられる。ここで1価の複素環基が有する置換基は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「置換基を有していてもよいアリーレン基」の例としては、非置換のアリーレン基および上記置換基を有するアリーレン基が挙げられる。ここでアリーレン基が有する置換基は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「アリーレン基」は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団である。アリーレン基には、ベンゼン環を有する基、縮合環を有する基が含まれる。
 置換基を有していてもよいアリーレン基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは6~60であり、より好ましくは6~48であり、さらに好ましくは6~30である。上記芳香族炭化水素としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、ナフタセン、フルオレン、ピレン、ペリレンが挙げられる。
 アリーレン基の例としては、フェニレン基、すなわち1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基等;ナフタレンジイル基、すなわち1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル等;アントラセンジイル基、すなわち1,4-アントラセンジイル基、1,5-アントラセンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基等;フェナントレンジイル基、すなわち2,7-フェナントレンジイル基;ナフタセンジイル基、すなわち1,7-ナフタセンジイル基、2,8-ナフタセンジイル基、5,12-ナフタセンジイル基等;フルオレンジイル基、すなわち2,7-フルオレンジイル基、3,6-フルオレンジイル基等;ピレンジイル基、すなわち1,6-ピレンジイル基、1,8-ピレンジイル基、2,7-ピレンジイル基、4,9-ピレンジイル基等;ペリレンジイル基、すなわち3,8-ペリレンジイル基、3,9-ペリレンジイル基、3,10-ペリレンジイル基等が挙げられる。
 「置換基を有していてもよい2価の複素環基」の例としては、置換基を有しない2価の複素環基および上記置換基を有する2価の複素環基が挙げられる。ここで、2価の複素環基が有する置換基は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、複素環オキシ基およびハロゲン原子からなる群より選ばれる置換基であることが好ましい。
 「2価の複素環基」は、複素環式化合物から複素環または芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団である。2価の複素環基には、単環の基、縮合環の基が含まれる。
 置換基を有していてもよい2価の複素環基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、好ましくは2~60であり、より好ましくは4~30であり、さらに好ましくは4~20である。
 2価の複素環基としては、2価の芳香族複素環基が好ましい。2価の芳香族複素環基は、芳香族複素環式化合物から芳香族複素環または芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団である。
 2価の複素環基としては、例えば、ピリジンジイル基、すなわち2,5-ピリジンジイル基、2,6-ピリジンジイル基等;キノリンジイル基、すなわち2,6-キノリンジイル基等;イソキノリンジイル基、すなわち1,4-イソキノリンジイル基、1,5-イソキノリンジイル基等;キノキサリンジイル基、すなわち5,8-キノキサリンジイル基等;2,1,3-ベンゾチアジアゾール基、すなわち2,1,3-ベンゾチアジアゾール-4,7-ジイル基等;ベンゾチアゾールジイル基、すなわち4,7-ベンゾチアゾールジイル基等;ジベンゾシロールジイル基、すなわち2,7-ジベンゾシロールジイル基等;ジベンゾフランジイル基、すなわちジベンゾフラン-4,7-ジイル基、ジベンゾフラン-3,8-ジイル基等;ジベンゾチオフェンジイル基、すなわちジベンゾチオフェン-4,7-ジイル基、ジベンゾチオフェン-3,8-ジイル基等、3,6-カルバゾールジイル基、2,7-カルバゾールジイル基、3,7-フェノキサジンジイル基、2,8-フェノキサジンジイル基が挙げられる。
 「架橋性基」とは、架橋処理、例えば、加熱処理や光照射処理などの外部刺激により、架橋性を示す基である。架橋性基を有する高分子化合物、該高分子化合物を含む組成物を含む有機薄膜に架橋処理を行うことにより、「有機薄膜」は、有機溶媒に難溶である、有機溶媒に対して不溶化させた「不溶化有機薄膜」へ変換され得る。
 以下、本発明の高分子化合物、該高分子化合物の原料化合物、該高分子化合物を含む組成物、有機薄膜、不溶化薄膜、発光素子、面状光源および表示装置、並びにこれらの製造方法の好適な実施形態について詳細に説明する。
(高分子化合物)
 本実施形態の高分子化合物は、上記式(1)で示される第1構成単位を全構成単位の合計に対して51モル%以上含み、かつ、上記式(2)で示される構成単位および上記式(3)で示される構成単位のうちの少なくとも一方を含む。
 本実施形態の高分子化合物は、共役系高分子化合物であることが好ましい。ここで、「共役系高分子化合物」は、その主鎖に共役系が広がった高分子化合物であって、例えば、ポリフルオレン、ポリフェニレン等のアリーレン基を構成単位とするポリアリーレン;ポリチオフェン、ポリジベンゾフラン等の2価の複素環基を構成単位とするポリへテロアリーレン;ポリフェニレンビニレン等のポリアリーレンビニレン、これらの構成単位が組み合わされた共重合体等が挙げられる。また、「共役系高分子化合物」とは、ヘテロ原子等を主鎖を構成する構成単位中に含んでいても実質的に主鎖に共役系が広がっていればよく、構成単位としてトリアリールアミンから誘導される構成単位等を含んでいてもよい。
(第1構成単位)
 第1構成単位は、上記式(1)で示される構成単位である。式(1)で示される構成単位は、通常、架橋性基を有しない。
 式(1)において、aは、原料となる単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、1であることがより好ましい。
 式(1)において、bは、原料となる単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0であることがより好ましい。
 式(1)において、Ar、Ar、ArおよびArで示される基が置換基を有する場合、該置換基の例としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシ基、ニトロ基、シアノ基が挙げられ、好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、より好ましくは、アルキル基、アルコキシ基、アリール基である。
 式(1)において、ArおよびArで示される基は、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、置換基を有していてもよいアリーレン基であることが好ましく、炭素原子数10~60の置換基を有していてもよいアリーレン基であることがより好ましく、置換基を有していてもよい2,7-フルオレンジイル基、置換基を有していてもよいナフタレンジイル基、置換基を有していてもよいフェナントレンジイル基、置換基を有していてもよいジヒドロフェナントレンジイル基、置換基を有していてもよいアントラセンジイル基、置換基を有していてもよいピレンジイル基、または、置換基を有していてもよいペリレンジイル基であることがさらに好ましく、2,7-フルオレンジイル基、ナフタレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基、ピレンジイル基またはペリレンジイル基であることが特に好ましい。なお、これらの基が上記置換基を有する場合、上記炭素原子数には置換基の炭素原子数は含まれない。
 式(1)において、ArおよびArにおけるアリーレン基および2価の複素環基からなる群より選ばれる、それぞれ同一でも異なっていてもよい2以上の基が連結した2価の基としては、例えば、下記式(1a-1)、(1a-2)、(1a-3)、(1a-4)、(1a-5)、(1a-6)または(1a-7)で示される基であることが好ましく、下記式(1a-1)で示される基であることがより好ましい。なお、これらの基は上記置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000023
 式(1)において、ArおよびArで示される基は、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、置換基を有していてもよいアリーレン基であることが好ましい。
 式(1)において、ArおよびArにおけるアリーレン基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基、2,7-フェナントレンジイル基、5,12-ナフタセンジイル基、2,7-フルオレンジイル基、3,6-フルオレンジイル基、1,6-ピレンジイル基、2,7-ピレンジイル基または3,8-ペリレンジイル基であることが好ましく、1,4-フェニレン基、2,7-フルオレンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基、2,7-フェナントレンジイル基または1,6-ピレンジイル基であることがより好ましい。なお、これらの基は上記置換基を有していてもよい。
 式(1)において、Ar、Ar、ArおよびArにおける2価の複素環基としては、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、2価の芳香族複素環基が好ましく、2,5-ピロールジイル基、ジベンゾフランジイル基、ジベンゾチオフェンジイル基、2,1,3-ベンゾチアジアゾール-4,7-ジイル基であることがより好ましい。なお、これらの基は上記置換基を有していてもよい。
 式(1)において、R、RおよびRは、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、置換基を有するアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基であることが好ましく、置換基を有していてもよいアリール基であることがより好ましく、置換基を有するアリール基であることがさらに好ましく、アルキル基を置換基として有するアリール基であることが特に好ましい。
 式(1)において、R、RおよびRであるアルキル基は、上記置換基として説明した「アルキル基」と同じである。このアルキル基としてはC1-20アルキル基であることが好ましい。
 なお、当該基は上記置換基を有していてもよい。
 式(1)において、R、RおよびRであるアリール基は、上記置換基として説明した「アリール基」と同じである。このアリール基としてはフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基または2-フルオレニル基であることが好ましく、フェニル基であることがより好ましい。なお、これらの基は上記置換基を有していてもよい。
 式(1)において、R、RおよびRである1価の複素環基は、上記置換基として説明した「1価の複素環基」と同じである。この1価の複素環基としてはピリジル基、ピリミジル基、トリアジル基またはキノリル基であることが好ましい。なお、これらの基は上記置換基を有していてもよい。
 式(1)において、R、RおよびRで示される基が置換基を有する場合、該置換基は、好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシ基、ニトロ基、シアノ基であり、より好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、さらに好ましくはアルキル基、アルコキシ基、アリール基である。
 また、ArとRとは、互いに連結して、環構造を形成していてもよく、ArとArは、互いに連結して、環構造を形成していてもよく、ArとRとは、互いに連結して、環構造を形成していてもよく、ArとRとは、互いに連結して、環構造を形成していてもよく、ArとArとは互いに連結して環構造を形成していてもよく、ArとRとは互いに連結して環構造を形成していてもよい。
 ここで、「互いに連結して環構造を形成していてもよく」とは、例えば、ArとRとが、単結合、または、-O-で示される基、-S-で示される基、-C(=O)-で示される基、-C(=O)-O-で示される基、-N(R120)-で示される基、-C(=O)-N(R120)-で示される基若しくは-C(R120-で示される基を介して結合し、環構造を形成していてもよいことを意味する。ここでR120は、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を示し、R120が複数個存在する場合、これらは互いに異なっていてもよい。これらの基が環構造を形成することにより、通常、5員環、6員環または7員環が形成される。
 第1構成単位の含有量は、本実施形態の高分子化合物を用いて製造された発光素子の正孔輸送性および耐久性がより優れるので、全構成単位の合計に対して60モル%~99.5モル%であることが好ましく、70モル%~99モル%であることがより好ましく、80モル%~97モル%であることがさらに好ましい。
 第1構成単位の例としては、下記式(1-01)~(1-27)で示される構成単位が挙げられ、式(1-01)、(1-02)、(1-04)~(1-18)、(1-20)、(1-22)、(1-24)~(1-27)で示される構成単位であることが好ましく、式(1-01)、(1-02)、(1-05)~(1-09)、(1-11)、(1-13)~(1-16)、(1-20)、(1-22)、(1-25)~(1-27)で示される構成単位であることがより好ましく、式(1-05)、(1-07)~(1-09)、(1-11)、(1-13)~(1-16)で示される構成単位であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(第2構成単位)
 第2構成単位は、上記式(2)で示される構成単位である。
 式(2)において、naは、原料となる単量体の合成が容易となるため、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることがさらに好ましい。
 式(2)において、nbは、原料となる単量体の合成が容易となるため、0~10の整数であることが好ましく、0~8であることがより好ましい。
 式(2)において、nAは、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0であることが好ましい。
 式(2)において、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるので、0~3の整数であることが好ましい。なお、本実施形態の高分子化合物を含む有機薄膜を不溶化有機薄膜に変換する観点からは、nは1~4の整数であることが好ましく、1~3の整数であることがより好ましく、2であることがさらに好ましい。
 式(2)において、Arである、置換基を有していてもよい(2+n)価の芳香族炭化水素基の炭素原子数は、通常、6~60であり、好ましくは6~48であり、より好ましくは6~20であり、さらに好ましくは6~14である。(2+n)価の芳香族炭化水素基としては、2価、3価、4価または5価の芳香族炭化水素基であることが好ましく、3価または4価の芳香族炭化水素基であることがより好ましい。ここで、「(2+n)価の芳香族炭化水素基」とは、芳香族炭化水素化合物から、環(好ましくは芳香環)を構成する炭素原子に結合した(2+n)個の水素原子を除いた残りの原子団を意味し、ベンゼン環を有する基、縮合環を有する基が含まれる。なお、上記炭素原子数には、置換基の炭素原子数は含めない。
 上記芳香族炭化水素化合物の例としては、ベンゼン、ナフタレン、アントラセン、1-テトラセン、ピレン、ペリレン、フルオレン、ベンゾフルオレン、フェナントレン、ジヒドロフェナントレン、クリセン、コロネン等が挙げられ、本実施形態の高分子化合物の安定性がより優れ、かつ、当該高分子化合物を用いて製造される発光素子の正孔輸送性がより優れるので、ベンゼン、ナフタレン、アントラセン、ピレン、フルオレン、ベンゾフルオレン、フェナントレン、ジヒドロフェナントレンが好ましく、ベンゼン、ナフタレン、フルオレンがより好ましい。
 式(2)において、Arである、置換基を有していてもよい(2+n)価の複素環基の炭素原子数は、通常、3~60であり、好ましくは3~20である。(2+n)価の複素環基としては、2価、3価、4価または5価の複素環基であることが好ましく、2価、3価または4価の複素環基であることがより好ましい。ここで、「(n+2)価の複素環基」とは、複素環式化合物から、複素環または芳香環を構成する炭素原子に結合した(2+n)個の水素原子を除いた残りの原子団を意味し、単環の基、縮合環を有する基を含む。なお、上記炭素原子数には、置換基の炭素原子数は含めない。
 上記複素環式化合物としては、例えば、ピリジン、ピリミジン、トリアジン、キノリン、イソキノリン、キノキサリン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェノキサジン、フェノチアジン、ベンゾチアジアゾール、ジベンゾシロールなどが挙げられる。
 式(2)において、Arで示される基が置換基を有する場合、該置換基は、好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシ基、ニトロ基、シアノ基であり、より好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、さらに好ましくはアルキル基、アルコキシ基、アリール基である。
 式(2)において、Arとしては、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性が優れるので、置換基を有していてもよい芳香族炭化水素基が好ましい。
 式(2)において、LおよびLで示されるアルキレン基は、直鎖状、分岐状または環状のいずれでもよく、置換基を有していてもよい。原料となる単量体の合成が容易になるため、直鎖状のアルキレン基であることが好ましい。直鎖状アルキレン基および分岐状のアルキレン基の炭素原子数は、通常1~20であり、好ましくは1~10であり、より好ましくは1~6である。環状アルキレン基の炭素原子数は、通常3~20であり、好ましくは3~10であり、より好ましくは3~6である。分岐状アルキレン基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~6である。
 アルキレン基の例としては、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,3-ブチレン基、1,3-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、1,4-ヘキシレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,6-オクチレン基、1,8-オクチレン基等が挙げられる。
 式(2)において、LおよびLで示されるフェニレン基は、置換基を有していてもよい。該フェニレン基には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基が含まれる。フェニレン基が有していてもよい置換基の例としては、アルキル基、アルコキシ基、ハロゲン原子およびシアノ基が挙げられる。
 式(2)において、Lは、原料となる単量体の合成が容易となるため、フェニレン基であることが好ましい。
 式(2)において、Lは、原料となる単量体の合成が容易となるため、アルキレン基であることが好ましい。
 式(2)において、Lは酸素原子または硫黄原子を示し、原料となる単量体の合成が容易となるため、酸素原子であることが好ましい。
 式(2)において、Xは1価の架橋性基を示す。Xとしては、例えば、置換基を有していてもよいアジリジニル基、置換基を有していてもよいアゼチジニル基、アジド基、置換基を有していてもよいエポキシ基、置換基を有していてもよいオキセタニル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、基中にシクロブテン構造を有する基が挙げられ、原料となる単量体の合成が容易となるため、置換基を有していてもよいアジリジニル基、アジド基、置換基を有していてもよいエポキシ基、置換基を有していてもよいオキセタニル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、基中にシクロブテン構造を有する、置換基を有していてもよいアリール基、基中にシクロブテン構造を有する、置換基を有していてもよい1価の複素環基が好ましく、置換基を有していてもよいアルケニル基、基中にシクロブテン構造を有する、置換基を有していてもよいアリール基、基中にシクロブテン構造を有する、置換基を有していてもよい1価の複素環基がより好ましく、置換基を有していてもよいアルケニル基、基中にシクロブテン構造を有する、置換基を有していてもよいアリール基がさらに好ましい。
 式(2)において、Xとしては、例えば、上記式(X-1)で示される基、(X-2)で示される基、および、下記式(X-01)~(X-19)で示される基が挙げられ、原料となる単量体の合成が容易となるため、式(X-1)、(X-2)、(X-01)、(X-03)、(X-04)、(X-06)~(X-18)で示される基が好ましく、式(X-1)、(X-2)、(X-09)~(X-18)で示される基がより好ましく、式(X-1)、(X-2)で示される基がさらに好ましい。
 上記式(X-1)における置換基の例としては、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいカルボキシ基、シアノ基およびニトロ基が挙げられる。
 なお、式(X-2)において、RおよびRの間に示される波線は、RおよびRの配置がE型、Z型のいずれでもよいことを意味する。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 式(X-01)~(X-19)中、Rは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいカルボキシ基、シアノ基またはニトロ基を表す。複数個存在するRは、同一でも異なっていてもよい。
 Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアシル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を表す。
 Rとしては、原料となる単量体の合成が容易となるため、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよい1価の複素環基が好ましく、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基がより好ましい。
 Rとしては、原料となる単量体の合成が容易になるため、アリール基で置換されたアルキル基、置換基を有していてもよいアシル基、置換基を有していてもよい1価の複素環基が好ましい。
 なお、式(X-01)~(X-19)中、「*」は結合手を示す。
 式(X-1)の例としては、下記式(X-1-1)および式(X-1-2)が挙げられ、原料となる単量体の合成が容易となるため、式(X-1-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 
 式(X-1-1)および(X-1-2)中、Rは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいのアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいカルボキシ基、シアノ基またはニトロ基を表す。複数個存在するRは、同一でも異なっていてもよい。
 Rとしては、原料となる単量体の合成が容易となるため、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基または置換基を有していてもよい1価の複素環基であることが好ましく、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基または置換基を有していてもよいアリール基であることより好ましく、水素原子または置換基を有していてもよいアルキル基であることがさらに好ましい。なお、式(X-1-1)および(X-1-2)中、「*」は結合手を示す。
 式(X-2)において、neは0または1を示し、本実施形態の高分子化合物を用いて製造された発光素子の正孔輸送性および耐久性がより優れるので、0であることが好ましい。
 式(X-2)において、nfは0または1を示し、原料となる単量体の合成が容易となるため、0であることが好ましい。
 上記式(X-2)において、LX1は酸素原子、硫黄原子、カルボニル基または-O-CO-で示される基を示し、原料となる単量体の合成が容易となるため、カルボニル基または-O-CO-で示される基であることが好ましい。
 式(X-2)において、R、R、R、R、Rは、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるので、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子またはシアノ基であることが好ましく、水素原子、アルキル基またはフッ素原子であることがより好ましく、水素原子であることがさらに好ましい。
 式(2)で示される構成単位としては、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるので、上記式(4)で示される構成単位が好ましい。
 式(4)において、ncは、原料となる単量体の合成が容易となるため、0~2の整数であることが好ましく、0または1であることががより好ましく、0であることがさらに好ましい。
 式(4)において、ndは、原料となる単量体の合成が容易となるため、0~10の整数であることが好ましく、0~8の整数であることがより好ましい。
 式(4)において、nBは、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0であることがより好ましい。
 式(4)において、mは、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れ、かつ、当該高分子化合物を含む有機薄膜を不溶化有機薄膜に変換する観点からは、1または2であることが好ましく、2であることがより好ましい。
 式(4)において、LおよびLで示されるアルキレン基は、直鎖状、分岐状または環状のいずれでもよく、置換基を有していてもよい。原料となる単量体の合成が容易となるため、直鎖状アルキレン基であることが好ましい。直鎖状アルキレン基および分岐状アルキレン基の炭素原子数は、通常1~20であり、好ましくは1~10であり、より好ましくは1~6である。環状アルキレン基の炭素原子数は、通常3~20であり、好ましくは3~10であり、より好ましくは3~6である。分岐状アルキレン基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに、特に好ましくは3~6である。
 アルキレン基の例としては、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,3-ブチレン基、1,3-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、1,4-ヘキシレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,6-オクチレン基、1,8-オクチレン基等が挙げられる。
 式(4)において、LおよびLで示されるフェニレン基は、置換基を有していてもよい。フェニレン基は、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基のいずれであってもよい。フェニレン基が有してもよい置換基の例としては、アルキル基、アルコキシ基、ハロゲン原子およびシアノ基が挙げられる。
 式(4)中、Lは、原料となる単量体の合成が容易となるため、フェニレン基であることが好ましい。
 式(4)中、Lは、原料となる単量体の合成が容易となるため、アルキレン基であることが好ましい。
 式(4)中、Lは、原料となる単量体の合成が容易となるため、酸素原子であることが好ましい。
 式(4)において、Xは、上記の式(2)におけるXと同じ意味を表し、式(2)における例示や好ましい範囲と同一である。
 式(4)において、Rは、本実施形態の高分子化合物を用いた発光素子の正孔輸送性および耐久性がより優れるので、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基であることが好ましく、置換基を有していてもよいアリール基であることがより好ましく、アルキル基で置換されたアリール基であることがさらに好ましい。
 式(4)において、フルオレン環は置換基を有していてもよく、該置換基は、好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシ基、ニトロ基またはシアノ基であり、より好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、さらに好ましくはアルキル基、アルコキシ基、アリール基である。
 式(2)において、n=0である構成単位としては、例えば、下記式(2-01)~(2-45)で示される構成単位が好ましく、式(2-01)~(2-04)、(2-06)、(2-07)、(2-09)、(2-10)、(2-13)、(2-14)、(2-16)~(2-27)、(2-29)~(2-40)、(2-44)で示される構成単位がより好ましく、式(2-01)~(2-04)、(2-06)、(2-07)、(2-09)、(2-10)、(2-14)、(2-17)、(2-18)、(2-21)~(2-25)、(2-27)、(2-29)~(2-40)で示される構成単位がさらに好ましく、式(2-02)、(2-03)、(2-06)、(2-09)、(2-10)、(2-23)~(2-25)、(2-27)、(2-29)~(2-40)で示される構成単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 式(2)において、n≧1である構成単位としては、例えば、下記式(2-101)~(2-139)で示される構成単位が好ましく、式(2-101)、(2-107)、(2-109)~(2-112)、(2-118)、(2-125)~(2-136)で示される構成単位がより好ましく、式(2-101)、(2-107)、(2-110)、(2-112)、(2-125)、(2-127)、(2-129)、(2-130)、(2-133)~(2-136)で示される構成単位がさらに好ましく、式(2-101)、(2-110)、(2-112)、(2-125)、(2-127)、(2-129)、(2-133)、(2-135)で示される構成単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 式(2-103)、(2-114)および(2-136)中、波線は、結合する基の配置がE型、Z型のいずれでもよいことを意味する。
 第2構成単位の含有量は、式(2)において、n=0の場合、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるので、全構成単位の合計に対して0.5モル%~40モル%であることが好ましく、1モル%~30モル%であることがより好ましく、5モル%~20モル%であることがさらに好ましい。
 第2構成単位の含有量は、式(2)において、n≧1の場合、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れ、かつ、架橋性に優れるので、全構成単位の合計に対して0.5モル%~40モル%であることが好ましく、3モル%~30モル%であることがより好ましく、3モル%~20モル%であることがさらに好ましい。
 本実施形態の高分子化合物は、第2構成単位として、上述した構成単位を1種類のみ有していてもよいし、上述した構成単位のうちの異なる2種類以上の構成単位を有していてもよい。有機薄膜を不溶化有機薄膜に変換する観点からは、上記式(X-1)で示される1価の架橋性基を少なくとも1種類含むこと、上記式(X-2)で示される1価の架橋性基を少なくとも1種類含むこと、上記式(X-1)および上記式(X-2)で示される1価の架橋性基を少なくともぞれぞれ1種類含むことが好ましく、上記式(X-1)および上記式(X-2)で示される1価の架橋性基を少なくともそれぞれ1種類含むことがより好ましい。
(第3構成単位)
 第3構成単位は、上記式(3)で示される構成単位である。
 式(3)において、cは、原料となる単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0であることが好ましい。
 式(3)において、Ar、ArおよびArで示される基は、置換基を有していてもよいアリーレン基であることが、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるので好ましい。
 式(3)において、Ar、ArおよびArにおけるアリーレン基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基、2,7-フェナントレンジイル基、5,12-ナフタセンジイル基、2,7-フルオレンジイル基、3,6-フルオレンジイル基、1,6-ピレンジイル基、2,7-ピレンジイル基および3,8-ペリレンジイル基を選択することができ、1,4-フェニレン基、2,7-フルオレンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基、2,7-フェナントレンジイル基および1,6-ピレンジイル基が好ましく、1,4-フェニレン基がさらに好ましい。これらは上記置換基を有していてもよい。
 式(3)において、Ar、Ar、およびArにおける2価の複素環基としては、例えば、2,5-ピロールジイル基、ジベンゾフランジイル基、ジベンゾチオフェンジイル基および2,1,3-ベンゾチアジアゾール-4,7-ジイル基を選択することができ、これらは上記置換基を有していてもよい。
 式(3)において、Arにおけるアリーレン基および2価の複素環基からなる群より選ばれる同一でも異なっていてもよい2個以上の基が連結した2価の基としては、例えば、上記式(1a-1)、(1a-2)、(1a-3)、(1a-4)、(1a-5)、(1a-6)または(1a-7)で示される基であることが好ましく、上記式(1a-1)で示される基であることがより好ましい。なお、これらの基は上記置換基を有していてもよい。
 式(3)において、Ar、ArおよびArで示される基が置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシ基、ニトロ基、シアノ基が挙げられ、好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、より好ましくは、アルキル基、アルコキシ基、アリール基である。
 式(3)において、RおよびRで示される1価の架橋性基としては、例えば、上記式(X-1)、(X-2)、(X-01)~(X-18)で示される基が挙げられ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、式(X-1)、(X-2)、(X-01)、(X-03)、(X-04)、(X-06)~(X-18)で示される基が好ましく、式(X-1)、(X-2)、(X-07)~(X-18)で示される基がより好ましく、式(X-1)で示される基がさらに好ましい。
 式(3)において、Rで示される置換基を有していてもよいアルキル基は、上記置換基として説明した「アルキル基」と同じであり、好ましくは、C1-20アルキル基である。
 式(3)において、Rで示される置換基を有していてもよいアリール基は、上記置換基として説明した「アリール基」と同じであり、好ましくは、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基または2-フルオレニル基である。
 式(3)において、Rで示される置換基を有していてもよい1価の複素環基は、上記置換基として説明した「1価の複素環基」と同じであり、好ましくは、ピリジル基、ピリミジル基、トリアジル基またはキノリル基である。
 式(3)において、Rは、原料となる単量体の合成が容易になるため、Rと同じ1価の架橋性基であることが好ましい。
 式(3)において、Rで示される基が置換基を有する場合、該置換基は、好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシ基、ニトロ基、シアノ基であり、より好ましくはアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、さらに好ましくはアルキル基、アルコキシ基、アリール基である。
 第3構成単位としては、例えば、式(3-01)~(3-05)で示される構成単位が挙げられ、式(3-01)、(3-02)、(3-04)または(3-05)で示される構成単位が好ましく、式(3-01)または(3-02)で示される構成単位がより好ましく、式(3-01)で示される構成単位がさらに好ましい。
Figure JPOXMLDOC01-appb-C000047
 
 第3構成単位の含有量は、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れ、かつ、架橋性に優れるので、全構成単位の合計に対して0.5モル%~40モル%であることが好ましく、3モル%~30モル%であることがより好ましく、3モル%~20モル%であることがさらに好ましい。
 本実施形態の高分子化合物は、第3構成単位として、上述した構成単位を1種類のみ有していてもよいし、上述した構成単位のうち異なる2種類以上の構成単位を有していてもよい。
 本実施形態の高分子化合物は、第2構成単位と第3構成単位とを含有していてもよい。第2構成単位と第3構成単位とを含有する場合、その合計含有量は、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れ、かつ、架橋性に優れるので、全構成単位の合計に対して0.5モル%~40モル%であることが好ましく、3モル%~30モル%であることがより好ましい。
 本実施形態の高分子化合物は、上記式(1)で示される第1構成単位を全構成単位の合計に対して51モル%以上含み、かつ、上記式(2)で示される第2構成単位および上記式(3)で示される第3構成単位のうちの少なくとも一方を含む高分子化合物である。本実施形態の高分子化合物は、架橋性がより優れるため、第1構成単位および第2構成単位で構成されるか、または、第1構成単位、第2構成単位および第3構成単位で構成されることが好ましく、第1構成単位および第2構成単位で構成されることがより好ましい。
 本実施形態の高分子化合物における、構成単位の組み合わせの例(P1~P30)を、以下に示す。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 本実施形態の高分子化合物は、例えば、上記式(1)で示される構成単位を導入する単量体(1)と、該構成単位とは異なる構成単位を導入する単量体(A)との縮合重合で合成される。
 単量体(1)としては、例えば、後述する式(5)で示される化合物および式(6)で示される化合物が挙げられる。単量体(A)としては、例えば、後述する式(2M)で示される化合物および式(3M)で示される化合物が挙げられる。
 本実施形態の高分子化合物は、末端基として重合性基がそのまま残っていると、該高分子化合物を用いて作製した発光素子の発光特性や寿命が低下する可能性がある。そのため、末端基は安定な基(例えば、アリール基、1価の複素環基(特に1価の芳香族複素環基))であることが好ましい。
 本実施形態の高分子化合物は、共重合体である場合、如何なる共重合体であってもよく、例えば、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよい。
 本実施形態の高分子化合物は、正孔輸送性材料等として有用であり、その他の化合物と併用し、後述の組成物として用いてもよい。
 本実施形態の高分子化合物のゲルパーミエーションクロマトグラフィー(以下、「GPC」という)によるポリスチレン換算の数平均分子量(Mn)は、通常、1×10~1×10であり、好ましくは1×10~5×10である。また、本実施形態の高分子化合物のポリスチレン換算の重量平均分子量(Mw)は、通常、1×10~1×10であり、成膜性が良好になり、かつ、高分子化合物を用いて製造される発光素子の輝度寿命がより優れるので、好ましくは5×10~1×10である。
 発光素子を作製するための様々なプロセスに対する耐久性が優れ、かつ、発光素子の耐熱性が良好となるので、本実施形態の高分子化合物のガラス転移温度は、70℃以上であることが好ましい。
 本実施形態の高分子化合物は、蛍光や燐光を発する発光性薄膜材料としても用いることができる。
 本実施形態の高分子化合物を用いた発光素子は、正孔輸送性および耐久性に優れた高性能の発光素子である。したがって、該発光素子は、液晶ディスプレイ装置のバックライト、照明用としての曲面状や平面状の光源、セグメント表示装置、ドットマトリックス表示装置等に有用である。さらに、本実施形態の高分子化合物は、発光素子のみならず有機太陽電池、有機トランジスタなどの電子素子に用いることができ、レーザー用色素材料、有機太陽電池用材料、有機トランジスタ用の有機半導体材料、導電性薄膜用材料、有機半導体薄膜材料等としても用いることができる。
(高分子化合物の製造方法)
 本実施形態の高分子化合物が共重合体である場合、例えば、上記式(5)で示される化合物(以下、「化合物5」ということがある。)および上記式(6)で示される化合物(以下、「化合物6」ということがある。)と、下記式(2M)で示される化合物(以下、「化合物2M」ということがある。)および/または下記式(3M)で示される化合物(以下、「化合物3M」ということがある。)と、を縮合重合させることにより製造することができる。
 本明細書において、化合物5、化合物6、化合物2Mおよび化合物3Mを総称して、「単量体」ということがある。
Figure JPOXMLDOC01-appb-C000057
 式(2M)中、Ar、X、L、L、L、na、nb、nAおよびnは上記式(2)で定義されたとおりであり、ZおよびZは、それぞれ独立に、上記置換基A群または置換基B群から選ばれる基を示す。
Figure JPOXMLDOC01-appb-C000058
 式(3M)中、c、Ar、Ar、Ar、RおよびRは上記式(3)で定義されたとおりであり、ZおよびZは、それぞれ独立に、上記置換基A群または置換基B群から選ばれる基を示す。
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基と結合している炭素原子と置換基B群から選ばれる基と結合している炭素原子とが結合することが知られている。そのため、置換基A群から選ばれる基を2個有する化合物Aと、置換基B群から選ばれる基を2個有する化合物Bと、を公知のカップリング反応に供すれば、縮合重合反応により、化合物Aおよび化合物Bの縮合重合体を得ることができる。
 また、置換基B群から選ばれる基を2個有する化合物同士であっても、例えば、Ni(0)触媒により重合する方法(Yamamoto重合)(Progress in Polymer Science,第17巻,1153~1205頁,1992年)により、縮合重合体を得ることができる。
 このような縮合重合反応では、化合物5および化合物6により第1構成単位が導入され、化合物2Mにより第2構成単位が導入され、化合物3Mにより第3構成単位が導入される。
 縮合重合の方法としては、例えば、Suzukiカップリング反応により重合する方法(Chem.Rev,第95巻,2457-2483頁(1995年))、Grignard反応により重合する方法(Bull.Chem.Soc.Jpn.,第51巻,2091頁(1978年))、Ni(0)触媒により重合する方法(Progress in Polymer Science),第17巻,1153~1205頁,1992年)、Stilleカップリング反応を用いる方法(European Polymer Journal,第41巻,2923-2933頁(2005年))が挙げられる。これらのうち、原料の合成がし易く、重合反応操作が簡便であるので、Suzukiカップリング反応により重合する方法、Ni(0)触媒により重合する方法が好ましく、高分子化合物の構造制御のし易さも考慮すると、Suzukiカップリング反応、Grignard反応、Stilleカップリング反応等のアリール-アリールクロスカップリング反応により重合する方法がより好ましく、Suzukiカップリング反応により重合する反応が特に好ましい。
 縮合重合の方法としては、上記の各化合物を、必要に応じて適切な触媒や塩基とともに反応させる方法が挙げられる。Suzukiカップリング反応により重合する方法を選択する場合、所望の分子量を有する高分子化合物を得るためには、各化合物が有する置換基A群から選ばれた基の合計モル数と、置換基B群から選ばれた基の合計モル数との比率を調整すればよい。通常、前者のモル数に対する後者のモル数の比率を、0.95~1.05とすることが好ましく、0.98~1.02とすることがより好ましく、0.99~1.01とすることがさらに好ましい。
 縮合重合反応における化合物5の使用量は、化合物5、化合物6および他の単量体の総モル量に対して、1モル%~50モル%であることが好ましく、5モル%~50モル%であることがより好ましく、10モル%~50モル%であることがさらに好ましい。化合物6の使用量は、化合物5、化合物6および他の単量体の総モル量に対して、1モル%~50モル%であることが好ましく、10モル%~50モル%であることがより好ましく、30モル%~50モル%であることがさらに好ましい。
 縮合重合反応において、化合物2Mを使用する場合、その使用量は、式(2M)において、n=0の場合、化合物2Mおよび他の単量体の総モル量に対して、0.5モル%~40モル%であることが好ましく、1モル%~30モル%であることがより好ましく、5モル%~30モル%であることがさらに好ましく、5モル%~20モル%であることが特に好ましい。式(2M)において、n=1の場合、0.5モル%~40モル%であることが好ましく、3モル%~30モル%であることがより好ましく、3モル%~20モル%であることがさらに好ましく、5モル%~20モル%であることが特に好ましい。
 縮合重合反応において、化合物3Mを使用する場合、その使用量は、化合物3Mおよび他の単量体の総モル量に対して、0.5モル%~40モル%であることが好ましく、3モル%~30モル%であることがより好ましく、3モル%~20モル%であることがさらに好ましく、5モル%~20モル%であることが特に好ましい。
 このような縮合重合反応によれば、本実施形態の高分子化合物を製造することができる。
 単量体は、予め合成し単離して用いてもよく、反応系中で合成してそのまま用いてもよい。得られる高分子化合物を電子素子に用いる場合、その純度が電子素子の性能に影響を与える場合がある。そのため、これらの単量体は蒸留、クロマトグラフィー、昇華精製、再結晶等の方法またはその組み合わせで精製されていることが好ましい。
 本実施形態の高分子化合物の製造方法においては、触媒の存在下、単量体を重合することが好ましい。触媒としては、Suzukiカップリング反応により重合する場合、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ジクロロビストリフェニルホスフィンパラジウム等のパラジウム錯体等の遷移金属錯体、並びにこれらの遷移金属錯体にトリフェニルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン等の配位子が配位した錯体等が挙げられる。
 Ni(0)触媒により重合する場合、Ni(0)触媒としては、ニッケル[テトラキス(トリフェニルホスフィン)]、[1,3-ビス(ジフェニルホスフィノ)プロパン]ジクロロニッケル、[ビス(1,4-シクロオクタジエン)]ニッケル等のニッケル錯体等の遷移金属錯体、並びにこれらの遷移金属錯体にトリフェニルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、ジフェニルホスフィノプロパン、置換基を有していてもよいビピリジル、置換基を有していてもよいフェナントロリン等の配位子が配位した錯体等が挙げられる。
 上述の触媒は、予め合成して用いてもよいし、反応系中で調製してそのまま用いてもよい。また、これらの触媒は、1種類単独で用いても2種類以上を併用してもよい。
 触媒の使用量は、触媒としての有効量であればよく、例えば、重合反応における全単量体の合計100モル%に対して、遷移金属のモル数換算で通常0.0001モル%~300モル%であり、好ましくは0.001モル%~50モル%であり、より好ましくは0.01モル%~20モル%である。
 Suzukiカップリング反応により重合する方法においては、塩基を用いることが好ましい。塩基の例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基が挙げられる。
 塩基の使用量は、重合反応における全単量体の合計100モル%に対して、通常50モル%~2000モル%であり、好ましくは100モル%~1000モル%である。
 重合反応は、溶媒の非存在下で行っても、溶媒の存在下で行ってもよい。重合反応は、通常、有機溶媒の存在下で行う。ここで有機溶媒の例としては、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が挙げられる。一般的に、副反応を抑制するために、脱酸素処理を行った溶媒を用いることが望ましい。有機溶媒は1種類単独で用いても2種類以上を併用してもよい。
 有機溶媒の使用量は、重合反応における全単量体の合計濃度が、0.1重量%~90重量%になる量であることが好ましく、1重量%~50重量%になる量であることがより好ましく、2重量%~30重量%となる量であることがさらに好ましい。
 重合反応の反応温度は、好ましくは-100℃~200℃であり、より好ましくは-80℃~150℃であり、さらに好ましくは0℃~120℃である。また、反応時間は、通常、1時間以上であり、好ましくは2時間~500時間である。
 重合反応において、本実施形態の高分子化合物の末端に重合性基(例えば、Z、Z)が残存するのを避けるために、重合停止剤として、下記式(1T)で示される化合物を用いてもよい。これにより、末端がアリール基または1価の複素環基(特に1価の芳香族複素環基)である高分子化合物を得ることができる。
  Z-Ar (1T)
 式(1T)中、Arは、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基(特に1価の芳香族複素環基)を示し、Zは上記置換基A群および上記置換基B群からなる群より選ばれる基を示す。Arにおけるアリール基、1価の複素環基(特に1価の芳香族複素環基)としては、上記置換基として説明した「アリール基」、「1価の複素環基」と同じであり、本実施形態の高分子化合物を用いて製造される発光素子の耐久性がより優れるので、アリール基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基または2-フルオレニル基であることがより好ましく、フェニル基であることがさらに好ましい。なお、これらの基は上記置換基を有していてもよい。
 重合反応の後処理は、公知の方法で行うことができ、例えば、分液により水溶性不純物を除去する方法や、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過、乾燥させる方法などを単独で、または組み合わせて行うことができる。
 本実施形態の高分子化合物の純度が低い場合には、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製すればよく、本実施形態の高分子化合物を発光素子に用いる場合、その純度が発光特性等の発光素子の性能に影響を与える場合があるため、縮合重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
(化合物)
 本実施形態の化合物は、上記の高分子化合物の製造に有用な上記式(5)で示される化合物である。
 式(5)において、dは、原料である単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、1であることがより好ましい。
 式(5)において、eは、原料である単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0であることが好ましい。
 式(5)において、Ar、Ar10、Ar11およびAr12で示される基が置換基を有する場合、該置換基としては、前記(1)におけるAr、Ar、ArおよびArで示される基が有する置換基と同一である。
 式(5)において、Ar10およびAr12の例および好ましい範囲は、前記式(1)におけるArおよびArと同一である。
 式(5)において、ArおよびAr11で示される基の例および好ましい範囲は、前記式(1)におけるArおよびArと同一である。
 式(5)において、R、RおよびRで示される基の例および好ましい範囲は、Rについては前記式(1)におけるRと同一であり、RについてはRと同一であり、RについてはRと同一である。
 以下、本実施形態の式(5)で示される化合物の製造方法について説明する。式(5)で定義される化合物である下記式(5-1-2)で示される化合物は、例えば下記スキーム1の方法で製造することができる。
Figure JPOXMLDOC01-appb-C000059
 スキーム1中、d、e、Ar、Ar10、Ar11、Ar12、R、RおよびRは上記式(5)で定義されたとおりであり、ZS1-1およびZS1-2は、それぞれ独立に、上記置換基B群から選ばれる基を示す。ZS1-3およびZS1-4は、それぞれ独立に、上記置換基A群から選ばれる基を示す。
 スキーム1において、式(5-1-1)で示される化合物(以下、「化合物(5-1-1)」ということがある。)を、公知の反応に供することにより式(5-1-2)で示される化合物(以下、「化合物(5-1-2)」ということがある。)を得ることができる。
 例えば、化合物(5-1-2)において、ZS1-3およびZS1-4がB(OR101で示される化合物の場合(R101は、前記と同じ意味を示す。)は、J.Organomet.Chem.2000,611,392.に記載の方法、Tetrahedron Lett.1997,38,3447.に記載の方法、J.Org.Chem.1995,60,7508.に記載の方法、Tetrahedron 2001,57,9813.に記載の方法等により、化合物(5-1-1)から製造することができる。なお、化合物(5-1-1)は、特開2004-143419号公報、国際公開第2005/049546号等に記載の方法で製造することができる。
 本実施形態の化合物は、本実施形態の上記高分子化合物の製造に有用な、上記式(6)で示される化合物である。
 式(6)において、fは、原料となる単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0または1であることが好ましく、1であることがより好ましい。
 式(6)において、gは、原料となる単量体の合成が容易であり、かつ、本実施形態の高分子化合物を用いて製造される発光素子の正孔輸送性および耐久性がより優れるため、0であることが好ましい。
 式(6)において、Ar13、Ar14、Ar15およびAr16で示される基が置換基を有する場合、該置換基は、前記式(1)におけるAr、Ar、ArおよびArで示される基が有する置換基と同一である。
 式(6)において、Ar14およびAr16の例および好ましい範囲は、前記式(1)におけるArおよびArと同一である。
 式(6)において、Ar13およびAr15で示される基の例および好ましい範囲は、前記式(1)におけるArおよびArと同一である。
 式(6)において、R、RおよびRで示される基の例および好ましい範囲は、Rについては前記式(1)におけるRと同一であり、RについてはRと同一であり、およびRについてはRと同一である。
(炭素クラスターを有する高分子化合物)
 本実施形態の高分子化合物は、1価の架橋性基を有する場合に、炭素クラスターと1価の架橋性基とを結合させた高分子化合物とすることが可能である。このような高分子化合物は、例えば、溶媒中でディールスアルダー反応などによりこれらを反応させ、精製処理を行うことで合成することができる。このようにして得られた本実施形態の高分子化合物を用いて製造された発光素子は、正孔輸送性が優れ、かつ、輝度寿命が優れる。
 ここで、「炭素クラスター」とは、最小の構造が数個から数千個程度の炭素原子で構成される分子を意味する。例えば、球殻構造のフラーレン、円筒状のカーボンナノチューブ、カーボンナノホーン等が挙げられる。炭素クラスターは、フラーレンを含む構造であることが好ましい。また、フラーレンとしては、C60フラーレン、C70フラーレンおよびC84フラーレンが好ましく、C60フラーレンがより好ましい。
 本実施形態の炭素クラスターと結合した高分子化合物としては、上記式(1)で示される構成単位および上記式(2)で示される構成単位を有する高分子化合物が好ましく、上記式(1)で示される構成単位および上記式(4)で示される構成単位を有する高分子化合物がより好ましい。
 上記式(2)で示される構成単位を有する場合、nは1~4であることが好ましく、1~3の整数であることがより好ましく、2であることがさらに好ましい。上記式(4)で示される構成単位を有する場合、mは1または2であることが好ましく、2であることがより好ましい。
 炭素クラスターと反応する1価の架橋性基は、炭素クラスターと反応する架橋性基であれば特に限定されない。炭素クラスターと反応する1価の架橋性基としては、ディールスアルダー反応により高分子化合物と炭素クラスターとを結合させるのであれば、上記式(X-1)で示される基および上記式(X-2)で示される基が好ましい。
 炭素クラスターと結合した高分子化合物を構成し得る、炭素クラスターと1価の架橋性基が結合した構成単位の例としては、下記式(6A-1)、(6A-2)、(6A-3)、(6A-4)、(6A-5)、(6A-6)、(6A-7)、(6A-8)、(6A-9)、(6A-10)および(6A-11)で示される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
(組成物)
 本実施形態の組成物は、上記高分子化合物と、正孔輸送性材料、電子輸送性材料および発光材料からなる群より選ばれる少なくとも1種類の材料とを含有する。
 正孔輸送性材料の例としては、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリ(p-フェニレンビニレン)およびその誘導体、ポリ(2,5-チエニレンビニレン)およびその誘導体等が挙げられる。正孔輸送性材料の例としては、その他にも、特開昭63-70257号公報、特開昭63-175860号公報、特開平2-135359号公報、特開平2-135361号公報、特開平2-209988号公報、特開平3-37992号公報、特開平3-152184号公報に記載された正孔輸送性材料が挙げられる。
 正孔輸送性材料の含有量は、組成物中の高分子化合物100重量部に対して、好ましくは1重量部~500重量部であり、より好ましくは5重量部~200重量部である。
 電子輸送性材料の例としては、オキサジアゾール誘導体、アントラキノジメタンおよびその誘導体、ベンゾキノンおよびその誘導体、ナフトキノンおよびその誘導体、アントラキノンおよびその誘導体、テトラシアノアントラキノジメタンおよびその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンおよびその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリンおよびその誘導体の金属錯体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、ポリフルオレンおよびその誘導体、アントラセンおよびその誘導体、アントラセンとフルオレンとの共重合体等が挙げられる。電子輸送性材料の例としては、その他にも、特開昭63-70257号公報、特開昭63-175860号公報、特開平2-135359号公報、特開平2-135361号公報、特開平2-209988号公報、特開平3-37992号公報、特開平3-152184号公報に記載された電子輸送性材料が挙げられる。
 電子輸送性材料の含有量は、組成物中の高分子化合物100重量部に対して、好ましくは1重量部~500重量部であり、より好ましくは5重量部~200重量部である。
 発光材料としては、低分子蛍光発光材料、燐光発光材料等が挙げられる。発光材料の例としては、ナフタレン誘導体、アントラセンおよびその誘導体、アントラセンとフルオレンとの共重合体、ペリレンおよびその誘導体、ポリメチン色素、キサンテン色素、クマリン色素、シアニン色素等の色素類、8-ヒドロキシキノリンを配位子として有する金属錯体、8-ヒドロキシキノリン誘導体を配位子として有する金属錯体、その他の蛍光性金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンおよびその誘導体、テトラフェニルブタジエンおよびその誘導体、スチルベン系化合物、含ケイ素芳香族系化合物、オキサゾール系化合物、フロキサン系化合物、チアゾール系化合物、テトラアリールメタン系化合物、チアジアゾール系化合物、ピラゾール系化合物、メタシクロファン系化合物、アセチレン系化合物等の低分子化合物の蛍光性材料、イリジウム錯体、白金錯体等の金属錯体、三重項発光錯体等が挙げられる。発光材料の例としては、その他にも、特開昭57-51781号公報、特開昭59-194393号公報等に記載された発光材料が挙げられる。
 三重項発光錯体としては、例えば、イリジウムを中心金属とするIr(ppy)、BtpIr(acac)、FIrpic、COM-1、COM-2、COM-3、COM-4、COM-5、COM-6、COM-7、COM-8、アメリカンダイソース社から市販されているADS066GE等のイリジウム錯体、白金を中心金属とするPtOEP等の白金錯体、ユーロピウムを中心金属とするEu(TTA)phen等のユーロピウム錯体が挙げられる。これらの三重項発光錯体は、以下の化学式で示される。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 発光材料の含有量は、組成物中の高分子化合物100重量部に対して、好ましくは1重量部~500重量部であり、より好ましくは5重量部~200重量部である。
(液状組成物)
 本実施形態の高分子化合物は、溶媒、好ましくは有機溶媒に溶解または分散させた組成物(以下、液状組成物ということがある。)としてもよい。
 このような液状組成物は、インク、ワニスとも呼ばれる。発光素子に使用する有機薄膜を形成するために、該液状組成物を用いる場合、液状組成物は本実施形態の高分子化合物が溶媒に溶解した溶液であることが好ましい。
 液状組成物は、本実施形態の高分子化合物に加えて、正孔輸送材料、電子輸送材料および発光材料からなる群より選ばれる少なくとも1種類の材料を含有していてもよい(すなわち、上述の組成物の一実施形態である。)。また、液状組成物には、本発明の効果を妨げない限りにおいて、その他の物質が添加されていてもよい。その他の物質の例としては、酸化防止剤、粘度調整剤、界面活性剤、架橋開始剤等が挙げられる。
 液状組成物に用いられる有機溶媒としては、本実施形態の高分子化合物が溶解または分散する限り、特に限定されない。有機溶媒の例としては、以下の有機溶媒(以下、「有機溶媒群」ということがある。)が挙げられる。
 芳香族炭化水素溶媒:トルエン、キシレン(各異性体またはそれらの混合物)、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン(1,3,5-トリメチルベンゼン)、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン、ブチルベンゼン、イソブチルベンゼン、2-フェニルブタン、tert-ブチルベンゼン、ペンチルベンゼン、ネオペンチルベンゼン、イソペンチルベンゼン、ヘキシルベンゼン、シクロヘキシルベンゼン、ヘプチルベンゼン、オクチルベンゼン、3-プロピルトルエン、4-プロピルトルエン、1-メチル-4-プロピルベンゼン、1,4-ジエチルベンゼン、1,4-ジプロピルベンゼン、1,4-ジ-tert-ブチルベンゼン、インダン、テトラリン(1,2,3,4-テトラヒドロナフタレン)等。
 脂肪族炭化水素溶媒:ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、へプタン、オクタン、ノナン、デカン、デカリン等。
 芳香族エーテル溶媒:アニソール、エトキシベンゼン、プロポキシベンゼン、ブチロキシベンゼン、ペンチルオキシベンゼン、シクロペンチルオキシベンゼン、ヘキシルオキシベンゼン、シクロヘキシルオキシベンゼン、ヘプチルオキシベンゼン、オクチルオキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、4-エチルアニソール、4-プロピルアニソール、4-ブチルアニソール、4-ペンチルアニソール、4-ヘキシルアニソール、ジフェニルエーテル、4-メチルフェノキシベンゼン、4-エチルフェノキシベンゼン、4-プロピルフェノキシベンゼン、4-ブチルフェノキシベンゼン、4-ペンチルフェノキシベンゼン、4-ヘキシルフェノキシベンゼン、4-フェノキシトルエン、3-フェノキシトルエン、1,3-ジメトキシベンゼン、2,6-ジメチルアニソール、2,5-ジメチルアニソール、2,3-ジメチルアニソール、3,5-ジメチルアニソール等。
 脂肪族エーテル溶媒:テトラヒドロフラン、ジオキサン、ジオキソラン等。
 ケトン溶媒:アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等。
 エステル溶媒:酢酸エチル、酢酸ブチル、安息香酸メチル、エチルセルソルブアセテート等。
 塩化物溶媒:塩化メチレン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等。
 アルコール溶媒:メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール、フェノール等。
 多価アルコールおよびその誘導体:エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等。
 非プロトン性極性溶媒:ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等。
 これらの有機溶媒は、1種類を単独で用いても2種類以上を混合した混合有機溶媒として使用してもよい。
混合有機溶媒として用いる場合、上記の有機溶媒群における有機溶媒の2種類または3種類以上を組み合わせることが好ましい。混合有機溶媒としては、上記例示の同じ系の有機溶媒群から複数種類の有機溶媒を組み合わせても、異なる系の有機溶媒群から1種類以上ずつを組み合わせてもよい。その組成比は、各有機溶媒の物性、および、高分子化合物等の溶解性を考慮して決めることができる。
 同じ系の有機溶媒群から複数種類を選んで組み合わせる場合の好ましい例としては、芳香族炭化水素溶媒から複数種類を選ぶ組み合わせ、芳香族エーテル溶媒から複数種類を選ぶ組み合わせが挙げられる。
 異なる系の有機溶媒群から1種類以上ずつを選んで組み合わせる場合の好ましい例としては、以下の組み合わせが挙げられる。
 芳香族炭化水素溶媒および脂肪族炭化水素溶媒;芳香族炭化水素溶媒および芳香族エーテル溶媒;芳香族炭化水素溶媒および脂肪族エーテル溶媒;芳香族炭化水素溶媒および非プロトン性極性溶媒;芳香族エーテル溶媒および非プロトン性極性溶媒等。
 また、上記例示の有機溶媒を単独で用いる単独有機溶媒または混合有機溶媒には、水をさらに添加することもできる。
 これらの有機溶媒のうち、ベンゼン環を含む構造を有し、融点が0℃以下であり、かつ沸点が100℃以上である有機溶媒を1種類以上含む単独有機溶媒または混合有機溶媒は、粘度および成膜性が良好であるので好ましく、なかでも芳香族炭化水素溶媒、芳香族エーテル溶媒を1種類以上含む単独溶媒または混合溶媒が特に好ましい。
 有機溶媒としては、単独有機溶媒を用いても混合有機溶媒を用いてもよい。有機溶媒としては、成膜性を制御することができるので、混合有機溶媒を用いることが好ましい。有機溶媒は、必要に応じ、洗浄、蒸留、吸着剤への接触等の処理により精製を行ってから使用してもよい。
 上記液状組成物によれば、本実施形態の高分子化合物を含有する有機薄膜を容易に製造することができる。具体的には、上記液状組成物を任意好適な所定の構成要素が設けられていてもよい基板に塗布して、加熱、送風、減圧等の処理により有機溶媒を留去することにより、本実施形態の高分子化合物を含有する有機薄膜が得られる。有機溶媒の留去は、使用される有機溶媒に応じて条件を変更することができ、例えば、50℃~150℃の雰囲気温度(加熱処理条件)または10-3Pa程度の減圧雰囲気等が条件として挙げられる。
 塗布工程には、スピンコート法、キャスティング法、マイクログラビア法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ノズルコート法等の塗布法を用いることができる。
 上記液状組成物の好適な粘度は選択される塗布法によっても異なり、25℃において、好ましくは0.5mPa・s~1000mPa・sであり、より好ましくは0.5mPa・s~500mPa・sである。また、インクジェット印刷法のように上記液状組成物が吐出装置を経由して吐出される場合に吐出時の目詰まりや飛行曲がりを防止するために、25℃における粘度は、好ましくは0.5mPa・s~50mPa・sであり、より好ましくは0.5mPa・s~20mPa・sである。液状組成物中の本実施形態の高分子化合物の濃度は、限定されず、0.01重量%~10重量%であることが好ましく、0.1重量%~5重量%であることがより好ましい。
(有機薄膜)
 本実施形態の有機薄膜は、上記高分子化合物を含有する。本実施形態の有機薄膜は、上記液状組成物から容易に製造することができる。また、本発明の第2の有機薄膜は、本実施形態の高分子化合物を架橋させることにより不溶化させた、不溶化有機薄膜であり、通常、加熱または光照射等の処理による外部刺激によって架橋させて硬化することにより得ることができる。不溶化有機薄膜は、有機溶媒等の溶媒に難溶のため、発光素子の積層化等に有利である。
 本実施形態の有機薄膜の種類の例としては、発光性薄膜、導電性薄膜、有機半導体薄膜などが挙げられる。導電性薄膜の例としては、電子輸送性薄膜および正孔輸送性薄膜が挙げられる。本実施形態の有機薄膜は、本実施形態の高分子化合物を含有するため、発光素子の導電性薄膜、特に正孔輸送性薄膜(正孔輸送層)として使用した場合に、当該発光素子の正孔輸送性が優れたものとなる。
 本実施形態の高分子化合物を架橋させるための加熱温度は、限定されず、一般的には室温~300℃の範囲であり、その上限は薄膜形成の容易さの観点から250℃であることが好ましく、190℃であることがさらに好ましく、170℃であることが特に好ましい。また、その下限は室温での薄膜の安定性の観点から、50℃が好ましく、70℃がさらに好ましく、100℃が特に好ましい。
 本実施形態の高分子化合物を架橋させるための光照射に適用される光の波長は、限定されない。光照射に用いられる光としては、一般的には紫外光、近紫外光、可視光が使用され、紫外光、近紫外光が好ましい。
 発光性薄膜は、発光素子の輝度および発光開始電圧が良好になり得るので、発光量子収率が30%以上であることが好ましく、50%以上であることがより好ましく、60%以上であることがさらに好ましく、70%以上であることが特に好ましい。
 導電性薄膜は、表面抵抗が1KΩ/□以下であることが好ましく、100Ω/□以下であることがより好ましく、10Ω/□以下であることがさらに好ましい。導電性薄膜に、ルイス酸、イオン性化合物等をドープすることにより、電気伝導度を高めることができる。
 有機半導体薄膜は、電子移動度または正孔移動度のいずれか、すなわち電荷移動度が大きい方が好ましい。電荷移動度は、好ましくは10-5cm/V/s以上であり、より好ましくは10-3cm/V/s以上であり、さらに好ましくは10-1cm/V/s以上である。
 また、有機半導体薄膜を用いて、有機トランジスタを作製することができる。具体的には、SiO等の絶縁膜とゲート電極とを形成したSi基板上に有機半導体膜を形成し、Au等でソース電極とドレイン電極を形成することにより、有機トランジスタとすることができる。
(有機トランジスタ)
 本実施形態の有機トランジスタは、本実施形態の高分子化合物を含む有機トランジスタである。以下、有機トランジスタの一態様である電界効果型トランジスタについて説明する。
 本実施形態の高分子化合物は、高い電荷輸送性(特に正孔輸送性)を持つため、高分子電界効果型トランジスタの材料として、中でも有機半導体層(活性層)の材料として好適に用いることができる。高分子電界効果型トランジスタの構造としては、通常は、ソース電極およびドレイン電極が高分子化合物からなる有機半導体層(活性層)に接して設けられており、さらに有機半導体層(活性層)に接した絶縁層を挟んでゲート電極が設けられていればよい。
 高分子電界効果型トランジスタは、通常、支持基板上に形成される。支持基板としては、ガラス基板、フレキシブルなフィルム基板、プラスチック基板も用いることができる。
 高分子電界効果型トランジスタは、公知の方法、例えば、特開平5-110069号公報に記載の方法により製造することができる。
 有機半導体層(活性層)を形成する際に、上記の液状組成物を用いることが製造上有利であり好ましい。液状組成物(特に、本実施形態の高分子化合物を溶媒に溶解させた溶液)を用いる有機半導体層の形成工程には、スピンコート法、キャスティング法、マイクログラビア法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ノズルコート法等の塗布法を用いることができる。
 高分子電界効果型トランジスタを作製後、高分子電界効果型トランジスタを封止部材により封止して外部環境から遮蔽することが好ましい。これにより、高分子電界効果型トランジスタが、大気から遮断され、高分子電界効果型トランジスタの特性の低下を抑えることができる。
 封止方法としては、紫外線(UV)硬化性樹脂、熱硬化性樹脂や無機のSiONx膜等でカバーする方法、ガラス板やフィルムをUV硬化性樹脂、熱硬化性樹脂等で貼り合わせる方法等が挙げられる。大気からの遮断を効果的に行うため高分子電界効果型トランジスタを作製後、封止するまでの工程を大気に曝すことなく(例えば、乾燥した窒素ガス雰囲気中、真空中等で)行うことが好ましい。
(有機光電変換素子)
 本実施形態の有機光電変換素子(例えば、太陽電池等)は、本実施形態の高分子化合物を含む有機光電変換素子である。
 本実施形態の高分子化合物は、有機光電変換素子の材料として、中でも有機半導体と金属との界面を利用するショットキー障壁型素子の有機半導体層の材料として、また、有機半導体と無機半導体あるいは有機半導体同士の界面を利用するpnヘテロ接合型素子の有機半導体層の材料として、好適に用いることができる。
 さらに、ドナー・アクセプターの接触面積を増大させたバルクへテロ接合型素子における電子供与性高分子、電子受容性高分子として、また、高分子化合物と低分子化合物との複合系を用いる有機光電変換素子、例えば、電子受容体としてフラーレン誘導体を分散したバルクへテロ接合型有機光電変換素子の電子供与性共役系高分子(分散支持体)として、好適に用いることができる。
 有機光電変換素子の構造としては、例えば、pnヘテロ接合型素子では、オーミック接合型の電極を用いるのがよく、例えば、ITO上に、p型半導体層を形成し、さらに、n型半導体層を積層し、その上にオーミック接合型の電極が設けられていればよい。
 有機光電変換素子は、通常は支持基板上に形成される。支持基板としては、ガラス基板、フレキシブルなフィルム基板を用いることができ、プラスチック基板も用いることができる。
 有機光電変換素子は、公知の方法、例えば、Synth.Met.,102,982(1999)に記載の方法、Science,270,1789(1995)に記載の方法により製造することができる。
(発光素子)
 次に、本実施形態の発光素子について説明する。
 本実施形態の発光素子は、本実施形態の有機薄膜を有する発光素子である。本実施形態の発光素子は、例えば、陽極と、陰極と、該陽極および該陰極の間に存在する有機層と、を有し、上記有機層に本実施形態の高分子化合物または組成物を含有する。さらに、有機層、すなわち本実施形態の有機薄膜には、本実施形態の高分子化合物または組成物をそのまま含有する態様(有機薄膜)と、有機薄膜(組成物)中において本実施形態の高分子化合物が分子内または分子間で架橋することにより有機溶媒に対して不溶化させた態様(不溶化有機薄膜)とがある。
 上記有機層としては、発光層、正孔輸送層、正孔注入層、電子輸送層および電子注入層等が挙げられる。発光層は、発光する機能を有する層を意味する。正孔輸送層は、正孔を輸送する機能を有する層を意味する。電子輸送層は、電子を輸送する機能を有する層を意味する。なお、電子輸送層と正孔輸送層とを総称して電荷輸送層といい、電子注入層と正孔注入層とを総称して電荷注入層という。上記有機層は、発光層の1層のみからなっていてもよく、すなわち単一の層中にこれらの各層の機能が含まれていてもよく、発光層、並びに正孔輸送層、正孔注入層、電子輸送層および電子注入層から選ばれる層からなる多層構造であってもよい。
 本実施形態の高分子化合物を含有する有機層は、発光層、正孔輸送層、正孔注入層、電子輸送層および電子注入層からなる群より選ばれる1種類以上の層であることが好ましく、有機層が発光層、正孔輸送層であることがより好ましい。
 本実施形態の高分子化合物を含有する有機層が発光層である場合には、発光層が発光材料に加え、さらに正孔輸送性材料、電子輸送性材料、発光素子の耐久性や正孔輸送性のバランスを改善するための添加剤等を含んでいてもよい。ここで、発光材料とは、蛍光または燐光を発する材料を意味する。
 本実施形態の高分子化合物を含有する有機層が、本実施形態の高分子化合物と正孔輸送性材料とを含有する場合には、本実施形態の高分子化合物100重量部に対して、正孔輸送性材料の含有量は、通常1重量部~500重量部であり、好ましくは5重量部~200重量部である。
 本実施形態の高分子化合物を含有する有機層が、本実施形態の高分子化合物と電子輸送性材料とを含有する場合には、本実施形態の高分子化合物100重量部に対して、電子輸送性材料の含有量は、通常1重量部~500重量部であり、好ましくは5重量部~200重量部である。
 本実施形態の高分子化合物を含有する有機層が、本実施形態の高分子化合物と発光材料とを含有する場合には、本実施形態の高分子化合物100重量部に対して、発光材料の含有量は、通常、1重量部~500重量部であり、好ましくは5重量部~200重量部である。
 正孔輸送材料、電子輸送材料および発光材料は、公知の低分子量の化合物、三重項発光錯体、高分子量の化合物が使用できる。
 高分子量の化合物としては、国際公開第99/13692号、国際公開第99/48160号、英国特許公開第2340304号、国際公開第00/53656号、国際公開第01/19834号、国際公開第00/55927号、英国特許第2348316号、国際公開第00/46321号、国際公開第00/06665号、国際公開第99/54943号、国際公開第99/54385号、米国特許第5777070号、国際公開第98/06773号、国際公開第97/05184号、国際公開第00/35987号、国際公開第00/53655号、国際公開第01/34722号、国際公開第99/24526号、国際公開第00/22027号、国際公開第00/22026号、国際公開第98/27136号、米国特許第573636号、国際公開第98/21262号、米国特許第5741921号、国際公開第97/09394号、国際公開第96/29356号、国際公開第96/10617号、欧州特許第0707020号、国際公開第95/07955号、特開2001-181618号公報、特開2001-123156号公報、特開2001-3045号公報、特開2000-351967号公報、特開2000-303066号公報、特開2000-299189号公報、特開2000-252065号公報、特開2000-136379号公報、特開2000-104057号公報、特開2000-80167号公報、特開平10-324870号公報、特開平10-114891号公報、特開平9-111233号公報、特開平9-45478号公報に記載されているフルオレンジイル基を構成単位とする重合体および共重合体(以下、「(共)重合体」という。)、アリーレン基を構成単位とする(共)重合体、アリーレンビニレン基を構成単位とする(共)重合体、2価の芳香族アミン残基を構成単位とする(共)重合体等が挙げられる。
 低分子量の化合物の例としては、ナフタレン誘導体、アントラセンおよびその誘導体、ペリレンおよびその誘導体、ポリメチン色素、キサンテン色素、クマリン色素、シアニン色素等の色素類、8-ヒドロキシキノリンおよびその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンおよびその誘導体、テトラフェニルブタジエンおよびその誘導体が挙げられ、具体的には、特開昭57-51781号公報、特開昭59-194393号公報に記載されている化合物が挙げられる。
 三重項発光錯体としては、上記三重項発光錯体が使用できる。
 発光層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率とが適度な値となるように選択すればよい。発光層の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、より好ましくは5nm~200nmであり、さらに好ましくは50nm~150nmである。
 発光層の形成方法としては、溶液を用いる方法が挙げられる。溶液を用いる形成方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等の塗布法を用いることができる。パターン形成や多色の塗分けが容易であるので、これらの中でもスクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の印刷法が好ましい。
 本実施形態の発光素子としては、陰極と発光層との間に電子輸送層を設けた発光素子、陽極と発光層との間に正孔輸送層を設けた発光素子、陰極と発光層との間に電子輸送層を設け、かつ、陽極と発光層との間に正孔輸送層を設けた発光素子が挙げられる。本実施形態の発光素子において、本実施形態の高分子化合物は、正孔輸送層に含まれることが好ましい。
 発光素子の構造としては、以下のa)~d)の構造が例示される。なお、「/」は、その前後に表記される層が隣接していることを示す。例えば、「陽極/発光層」とは、陽極と発光層とが隣接していることを示す。以下同じ。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
 また、これら構造の各々について、発光層と陽極との間に、発光層に隣接する正孔輸送層を設けてもよい。このような発光素子の構造としては、以下のa’)~d’)の構造が例示される。
a’)陽極/正孔輸送層/発光層/陰極
b’)陽極/正孔輸送層/正孔輸送層/発光層/陰極
c’)陽極/正孔輸送層/発光層/電子輸送層/陰極
d’)陽極/正孔輸送層/正孔輸送層/発光層/電子輸送層/陰極
 本実施形態の発光素子が正孔輸送層を有する場合、正孔輸送層には、通常、本実施形態の高分子化合物が含まれる。その他の正孔輸送性材料(高分子量の化合物、低分子量の化合物)としては、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリ(p-フェニレンビニレン)およびその誘導体、ポリ(2,5-チエニレンビニレン)およびその誘導体等、特開昭63-70257号公報、特開昭63-175860号公報、特開平2-135359号公報、特開平2-135361号公報、特開平2-209988号公報、特開平3-37992号公報、特開平3-152184号公報に記載されているものが例示される。
 これらの中でも、高分子量の化合物としては、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリ(p-フェニレンビニレン)およびその誘導体、ポリ(2,5-チエニレンビニレン)およびその誘導体が好ましく、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミン残基を有するポリシロキサン誘導体がより好ましい。
 これらの中でも、低分子量の化合物としては、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体が好ましい。これらの低分子量の化合物は、高分子バインダーに分散させて用いることが好ましい。
 上記高分子バインダーとしては、電荷輸送を極度に阻害せず、可視光に対する吸収が強くない化合物が好ましく、ポリ(N-ビニルカルバゾール)、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリ(p-フェニレンビニレン)およびその誘導体、ポリ(2,5-チエニレンビニレン)およびその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンが例示される。
 ポリビニルカルバゾールおよびその誘導体は、例えば、ビニル単量体をカチオン重合またはラジカル重合させることによって得られる。
 ポリシランおよびその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許公開第2300196号に記載の化合物が例示される。合成方法もこれらに記載の方法を用いることができ、特にキッピング法が好適に用いられる。
 ポリシロキサンおよびその誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子量の正孔輸送材料の構造を有する化合物が好ましく、正孔輸送性の芳香族アミン残基を側鎖または主鎖に有する化合物がより好ましい。
 正孔輸送層の形成方法としては、低分子量の化合物を用いる場合には、高分子バインダーとの混合溶液を用いる方法が例示され、本実施形態の高分子化合物を含む、高分子量の化合物を用いる場合には、溶液を用いる形成方法が例示される。
 溶液を用いる形成方法に用いられる溶媒としては、正孔輸送材料を溶解または均一に分散できる溶媒が好ましい。溶媒としては、上記、「液状組成物」の項目で説明したものが挙げられる。
 溶液を用いる形成方法には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等の塗布法を用いることができる。
 正孔輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率とが適切な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、より好ましくは5nm~200nmである。
 本実施形態の発光素子が電子輸送層を有する場合、電子輸送層には、通常、上記電子輸送性材料(高分子量の化合物、低分子量の化合物)が含まれる。電子輸送性材料としては、公知の材料が使用できる。電子輸送性材料の例としては、オキサジアゾール誘導体、アントラキノジメタンおよびその誘導体、ベンゾキノンおよびその誘導体、ナフトキノンおよびその誘導体、アントラキノンおよびその誘導体、テトラシアノアントラキノジメタンおよびその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンおよびその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリンおよびその誘導体の金属錯体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、ポリフルオレンおよびその誘導体等や、特開昭63-70257号公報、特開昭63-175860号公報、特開平2-135359号公報、特開平2-135361号公報、特開平2-209988号公報、特開平3-37992号公報、特開平3-152184号公報に記載されている化合物が挙げられ、オキサジアゾール誘導体、ベンゾキノンおよびその誘導体、アントラキノンおよびその誘導体、8-ヒドロキシキノリンおよびその誘導体の金属錯体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、ポリフルオレンおよびその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
 電子輸送層の形成方法の例としては、低分子量の化合物を用いる場合には、粉末の材料を用いる真空蒸着法、溶液または溶融状態の材料を用いる形成方法が挙げられ、高分子量の化合物を用いる場合には、溶液または溶融状態の材料を用いる形成方法が挙げられる。溶液または溶融状態の材料を用いる形成方法では、上記高分子バインダーを併用してもよい。
 溶液からの成膜に用いる溶媒は、電子輸送材料および/または高分子バインダーを、溶解させるか、または均一に分散できる溶媒が好ましい。該溶媒の例としては、上記、「液状組成物」の項目で説明した溶媒が挙げられる。
 溶液または溶融状態の材料を用いる形成方法には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等の塗布法を用いることができる。
 電子輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率とが適切な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、より好ましくは5nm~200nmである。
 正孔注入層、電子注入層は、電極に隣接するように設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、発光素子の駆動電圧を下げる効果を有する。
 電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して電荷注入層または絶縁層(通常、平均の厚さで0.5nm~4.0nmであり、以下、同じである。)を設けてもよく、また、隣接する層同士の密着性向上や層の材料の混合の防止等のために電荷輸送層と発光層との間に薄いバッファー層を挿入してもよい。
 積層される層の順番や数および各層の厚さは、発光効率や素子寿命を勘案して調整すればよい。
 本実施形態において、電荷注入層(電子注入層、正孔注入層)を設けた発光素子の例としては、陰極に隣接するように電荷注入層を設けた発光素子、陽極に隣接するように電荷注入層を設けた発光素子が挙げられる。このような発光素子の積層構造の例としては、以下のe)~p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電子輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
 これらの構造の各々について、発光層と陽極との間に、発光層に隣接する正孔輸送層を設ける構造も例示される。
 電荷注入層としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層等が挙げられる。
 電荷注入層が導電性高分子を含む場合、導電性高分子の電気伝導度は、1×10-5S/cm~1×10S/cmであることが好ましく、発光素子のリーク電流を小さくするためには、1×10-5S/cm~1×10S/cmがより好ましく、1×10-5S/cm~1×10S/cmがさらに好ましい。通常、導電性高分子の電気伝導度をこのような範囲とするために、導電性高分子に適量のイオンをドープする。
 ドープされるイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオン等が挙げられ、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 電荷注入層に用いる材料は、電極や隣接する層の材料との関係で選択すればよい。電荷注入層に用いる材料の例としては、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、芳香族アミン残基を主鎖または側鎖に含む重合体等の導電性高分子、金属フタロシアニン(銅フタロシアニン等)、カーボンが挙げられる。
 絶縁層の材料の例としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。絶縁層を設けた発光素子の例としては、陰極に隣接するように絶縁層を設けた発光素子、陽極に隣接するように絶縁層を設けた発光素子が挙げられる。
 このような発光素子の積層構造としては、以下のq)~ab)の構造が挙げられる。
q)陽極/絶縁層/発光層/陰極
r)陽極/発光層/絶縁層/陰極
s)陽極/絶縁層/発光層/絶縁層/陰極
t)陽極/絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/絶縁層/陰極
v)陽極/絶縁層/正孔輸送層/発光層/絶縁層/陰極
w)陽極/絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/絶縁層/陰極
y)陽極/絶縁層/発光層/電子輸送層/絶縁層/陰極
z)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
ab)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
 これらの構造の各々について、発光層と陽極との間に、発光層に隣接する正孔輸送層を設ける構造も例示される。
 本実施形態の発光素子を形成する基板は、電極を形成し、有機層を形成する際に化学的に変化しない基板であればよく、ガラス、プラスチック、高分子フィルム、シリコン等の材料からなる基板が例示される。不透明な基板の場合には、通常、その基板とは反対側に設けられる電極が透明または半透明とされる。
 本実施形態の発光素子が有する陽極および陰極のうちの少なくとも一方は、通常、透明または半透明であるが、陽極側が透明または半透明であることが好ましい。
 陽極の材料の例としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられ、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、および、それらの複合体であるインジウムスズオキサイド(ITO)、インジウム亜鉛オキサイド(IZO)等からなる導電性化合物を用いて作製された膜、NESA、金、白金、銀、銅等で作製された膜が用いられ、ITO、IZO、酸化スズで作製された膜が好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。陽極として、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等の有機材料で作製された透明導電膜を用いてもよい。陽極を2層以上の積層構造としてもよい。
 陽極の厚さは、光の透過性と電気伝導度とを考慮して選択することができる。陽極の厚さは、例えば、10nm~10μmであり、好ましくは20nm~1μmであり、より好ましくは30~500nmである。
 陽極に隣接するように、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボン等からなる層;金属酸化物、金属フッ化物、有機絶縁材料等からなる絶縁層を設けてもよい。
 陰極の材料としては、仕事関数の小さい材料が好ましく、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、またはそれらのうち2種類以上の合金、またはそれらのうち1種類以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、スズのうち1種類以上との合金、並びにグラファイトおよびグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。陰極を2層以上の積層構造としてもよい。
 陰極の厚さは、電気伝導度や耐久性を考慮して調整すればよく、通常、10nm~10μmであり、好ましくは20nm~1μmであり、より好ましくは50nm~500nmである。
 陰極の作製方法としては、真空蒸着法、スパッタリング法、または金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機層(即ち、本実施形態の高分子化合物を含むいずれかの層)との間に、導電性高分子からなる層、または金属酸化物、金属フッ化物、有機絶縁材料等からなる平均の厚さが2nm以下の層を設けてもよく、陰極作製後、発光素子を保護する保護層を設けてもよい。発光素子を長期安定的に用いるためには、発光素子を外部環境から保護するために、保護層および/または保護カバーを設けることが好ましい。
 保護層の材料としては、高分子量の化合物、金属酸化物、金属フッ化物、金属ホウ化物等を用いることができる。保護カバーとしては、金属板、ガラス板、表面に低透水率処理を施したプラスチック板等を用いることができ、保護カバーを熱硬化性樹脂や光硬化性樹脂で発光素子が設けられた基板と貼り合わせて発光素子を封止する方法が好適に用いられる。スペーサーを用いて発光素子と保護カバーとの間に空間を維持すれば、素子の損傷を防ぐことが容易である。空間に窒素ガスやアルゴンガスのような不活性ガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を空間内に設置することにより、製造工程で吸着した水分または硬化樹脂を通り抜けて浸入する微量の水分が発光素子に与える損傷を抑制することが容易となる。これらのうち、1以上の方策を採ることが好ましい。
 図1は、本発明の第1の実施形態の発光素子(上記(p)の構成を有する発光素子)を示す模式的な断面図である。
 図1に示される発光素子100は、基板10と、該基板10上に形成された陽極11、正孔注入層12、正孔輸送層13、発光層14、電子輸送層15、電子注入層16および陰極17とを有している。陽極11は、基板10と接するように基板10上に設けられており、陽極11の基板10とは反対側には、正孔注入層12、正孔輸送層13、発光層14、電子輸送層15、電子注入層16および陰極17が、この順で積層されている。正孔輸送層13には、本発明の実施形態の上記高分子化合物が含まれる。
 図2は、本発明の第2の実施形態の発光素子(上記(h)の構成を有する発光素子)を示す模式的な断面図である。図2に示される発光素子110は、基板10と、該基板10上に形成された陽極11、正孔注入層12、正孔輸送層13、発光層14および陰極17とを有している。陽極11は、基板と接するように基板10上に設けられており、陽極11の基板10と反対側には、正孔注入層12、正孔輸送層13、発光層14および陰極17が、この順で積層されている。正孔輸送層13には、本発明の実施形態の上記高分子化合物が含まれる。
 本発明の実施形態の高分子化合物を含有する発光素子は、曲面状光源、平面状光源等の面状光源(例えば、照明);セグメント表示装置、ドットマトリックス表示装置(例えば、ドットマトリックス型のフラットディスプレイ)、液晶表示装置(例えば、液晶表示装置のバックライト)等の表示装置等に好適に適用できる。また、本実施形態の高分子化合物は、これらの作製に用いられる材料として好適である以外にも、レーザー用色素材料、有機太陽電池用材料、有機トランジスタ用の有機半導体材料、導電性薄膜用材料、有機半導体薄膜等の伝導性薄膜用材料、蛍光を発する発光性薄膜材料、高分子電界効果型トランジスタの材料等としても有用である。
 本実施形態の発光素子を用いて面状の発光を得るためには、面状の陽極と陰極とが重なり合うように配置すればよい。また、所定のパターン状の発光を得るためには、上記面状の発光素子の表面に所定のパターン状の窓を設けたマスクを設置する方法、陽極若しくは陰極のいずれか一方、または両方の電極を所定のパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメント表示装置が得られる。
 さらに、ドットマトリックス表示装置とするためには、陽極と陰極とをともにストライプ状に形成してこれらが互いに直交するように配置すればよい。発光色の異なる複数種類の高分子化合物を塗り分ける方法や、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動させることも可能であるし、TFT等と組み合わせてアクティブ駆動させてもよい。これらの表示装置は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。
 図3は、本発明の面状光源の実施形態を示す模式的な断面図である。図3に示す面状光源200は、基板20と、陽極21と、正孔注入層22と、発光層23と、陰極24と、保護層25とから構成されている。陽極21は、基板20と接するように基板20上に設けられており、陽極21の基板20と反対側には、正孔注入層22、発光層23および陰極24がこの順で積層されている。保護層25は、基板20上に形成された陽極21、正孔注入層22、発光層23および陰極24を全て覆うように、かつ、端部で基板20と接するように、形成されている。発光層23には、本発明の実施形態の上記高分子化合物が含まれる。
 図3に示される面状光源200は、発光層23以外の発光層23とは発光色の異なる複数種類の発光層を同一の基板20上にさらに設ける構成とし、それぞれの発光層に赤色発光材料、青色発光材料および緑色発光材料を用い、それぞれの発光層の駆動を独立に制御することで、カラー表示装置とすることができる。
 以下、実施例により本発明をより具体的に説明する。本発明は下記の実施例に限定されない。
 下記の実施例において、高分子化合物のポリスチレン換算の数平均分子量および重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(島津製作所製、商品名:LC-10Avp)を用いて求めた。
 以下に本実施例で用いられた分析方法にかかる測定条件を説明する。
<測定条件>
 測定する高分子化合物を約0.05重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに10μL注入した。GPCの移動相としてテトラヒドロフランを用い、2.0mL/分の流速で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器には示差屈折率検出器(島津製作所製、商品名:RID-10A)を用いた。
 NMRの測定は、測定試料5mg~20mgを約0.5mLの有機溶媒に溶解させて、NMR(Varian,Inc.製、商品名:INOVA300)を用いて行った。
 C、H、N元素分析は、測定試料3mg~5mgを採取し、ミクロ天秤で秤量した後、スミグラフNHC-22F型(住化分析センター製)を用いて行った。
 LC-MSの測定は、以下の方法で行った。測定試料を1mg/mL~10mg/mLの濃度になるように適切な有機溶媒(クロロホルム、テトラヒドロフラン、酢酸エチル、トルエン等)に溶解させて、LC-MS(アジレント・テクノロジー製、商品名:1100LCMSD)にて測定し、解析した。LC-MSの移動相には、イオン交換水、アセトニトリル、テトラヒドロフランまたはそれらの混合液を用い、必要に応じて酢酸を添加した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:4.6mm、長さ:250mm、粒子径:3μm)を用いた。
 正孔輸送性の評価について説明する。正孔輸送性の評価は、上記の発光素子における陰極材料を、仕事関数の大きい材料(例えば、金、銀、白金等)に変更した正孔輸送性の評価素子(「ホールオンリーデバイス(HOD)」と呼ばれることがある。)を作製し、その電圧電流特性を測定することで行うことができる。正孔輸送性の評価素子では、陰極からの電子注入が抑制されるため、正孔に起因した電流(以下、正孔電流ということがある。)を測定することができるためである。
 上記の正孔輸送性の評価素子の構造としては、以下のHOD1~HOD4が挙げられるが、本実施例においては、HOD4を用いて、陰極材料としては金を用いて、正孔輸送性の評価を行った。
HOD1)陽極/正孔輸送層/陰極
HOD2)陽極/発光層/陰極
HOD3)陽極/正孔輸送層/発光層/陰極
HOD4)陽極/正孔注入層/正孔輸送層/発光層/陰極
<合成例1:化合物2の合成>
 化合物1を用いて、下記のとおり化合物2を合成した。
Figure JPOXMLDOC01-appb-C000064
 容量500mLの4つ口フラスコに、化合物1(46.84g)(例えば国際公開第2004/049546号に記載の方法で合成できる。)、ビスピナコレートジボロン(30.03g)および酢酸カリウム(30.28g)を入れた後、フラスコ内の気体を窒素ガスで置換した。そこに、1,4-ジオキサン(167mL)および塩化パラジウム(ジフェニルホスフィノフェロセン)ジクロロメタン付加体(PdCl(dppf)(CHCl)(2.52g))を加え、105℃で3時間攪拌した。得られた溶液を、室温まで冷却した後、ヘキサン(330mL)を加え、セライトをプレコートした漏斗で濾過した。濾液を減圧濃縮して得られた濃縮物をヘキサンに溶解させた後、活性炭を加えて40℃で1時間加熱しながら攪拌した。得られた混合物を室温まで冷却した後、セライトをプレコートした漏斗で濾過した。濾液を減圧濃縮して得られた固体を、トルエンとアセトニトリルとの混合溶媒で再結晶することで白色固体として化合物2を39.7g得た。
 LC-MS(APCI、positive):[M+H] 1006.
<実施例1:高分子化合物Aの合成>
 下記式(K-1)で示される構成単位と、下記式(K-2)で示される構成単位を、92.5:7.5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物A)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
 アルゴンガス雰囲気下、合成例1で合成した化合物2(2.010g、2.00mmol)と、化合物1(1.549g、1.70mmol)と、下記式(M-2-BR)で示される化合物(0.158g、0.30mmol)と、トルエン(40mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000067
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(1.76mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.4mg)およびトルエン(8mL)を加え、さらに3時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物Aを2.2g得た。高分子化合物Aのポリスチレン換算の数平均分子量は0.31×10であり、ポリスチレン換算の重量平均分子量は2.48×10であった。高分子化合物AのC、H、N元素分析の結果、C含量は88.2重量%、H含量は8.23重量%、N含量は3.58重量%であった。
<実施例2:高分子化合物Bの合成>
 上記式(K-1)で示される構成単位と、下記式(K-3)で示される構成単位を、92.5:7.5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物B)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000068
 アルゴンガス雰囲気下、合成例1で合成した化合物2(2.010g、2.00mmol)と、化合物1(1.549g、1.70mmol)と、下記式(M-3-BR)で示される化合物(0.129g、0.30mmol)と、トルエン(40mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000069
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(1.76mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.4mg)およびトルエン(8mL)を加え、さらに3時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物Bを2.2g得た。高分子化合物Bのポリスチレン換算の数平均分子量は0.11×10であり、ポリスチレン換算の重量平均分子量は1.59×10であった。
<実施例3:高分子化合物Cの合成>
 上記式(K-1)で示される構成単位と、上記式(K-2)で示される構成単位と、下記式(K-4)で示される構成単位を、90:5:5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物C)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000070
 アルゴンガス雰囲気下、合成例1で合成した化合物2(2.010g、2.00mmol)と、化合物1(1.457g、1.60mmol)と、上記式(M-2-BR)で示される化合物(0.106g、0.20mmol)と、下記式(M-4-BR)で示される化合物(0.092g、0.20mmol)と、トルエン(40mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000071
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(1.76mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.4mg)およびトルエン(8mL)を加え、さらに3時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下、ろ取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物Cを2.0g得た。高分子化合物Cのポリスチレン換算の数平均分子量は0.33×10であり、ポリスチレン換算の重量平均分子量は3.40×10であった。
<実施例4:高分子化合物Dの合成>
 上記式(K-1)で示される構成単位と、下記式(K-5)で示される構成単位と、上記式(K-3)で示される構成単位を、50:42.5:7.5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物D)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000072
 アルゴンガス雰囲気下、合成例1で合成した化合物2(2.010g、2.00mmol)と、下記式(M-5-BR)で示される化合物(1.256g、1.70mmol)と、上記式(M-3-BR)で示される化合物(0.129g、0.30mmol)と、トルエン(40mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000073
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(1.76mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.4mg)およびトルエン(8mL)を加え、さらに3時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物Dを2.0g得た。高分子化合物Dのポリスチレン換算の数平均分子量は0.15×10であり、ポリスチレン換算の重量平均分子量は1.38×10であった。
<実施例5:高分子化合物Aを用いたホールオンリーデバイス1の作製と評価>
 正孔のみを流すことができる素子であるホールオンリーデバイス1を作製し、本発明の化合物、かかる化合物を含有する組成物、これらを含有する有機薄膜を用いた電子素子の正孔電流量を評価した。
(1-1:第1有機層の形成)
 陽極としてITOの薄膜が形成されたガラス基板にUVオゾン洗浄を施した後、該基板上に、第1有機層形成用組成物をスピンコート法によって塗布し、厚さ35nmの有機薄膜を得た。ここで第1有機層形成用組成物にはPlextronics社製の有機導電体材料であるPlexcore(AQ-1200)を用いた。
 この有機薄膜を設けた基板を170℃で15分間加熱し、有機薄膜を乾燥させた後、室温まで自然冷却させることにより、第1有機層を得た。
(1-2:第2有機層の形成)
 本発明の高分子化合物である高分子化合物Aとキシレンとを、該高分子化合物Aが1.8重量%の割合となるように混合し、第2有機層形成用組成物を得た。
 上記(1-1)で得た第1有機層の上に、第2有機層形成用組成物をスピンコート法により塗布し、厚さ80nmの有機薄膜を得た。この有機薄膜を設けた基板を窒素ガス雰囲気にて180℃で60分間加熱して、有機薄膜を有機溶媒に対して不溶化させた後、室温まで自然冷却させ、第2有機層を得た。
(1-3:陰極の形成)
 上記(1-2)で得た、陽極、第1有機層及び第2有機層を有する基板の第2有機層の上に、真空蒸着法によって、厚さ50nmの金層である陰極を形成した。なお、この金の蒸着工程は、真空度が1×10-4(Pa)以下に到達した後に開始した。
(1-4:封止)
 上記(1-3)までの工程で得た、基板、陽極、第1有機層、第2有機層および陰極を備える積層構造を有する基板を真空蒸着装置より取り出し、窒素ガス雰囲気下で、封止ガラスおよび2液混合エポキシ樹脂(Robnor Resins社製のPX681C)にて封止し、ホールオンリーデバイス1を得た。
 なお、上記第1有機層は、ホールオンリーデバイス1への電圧印加下で、陽極より正孔を受け取って正孔を第2有機層へ輸送する機能を有し、上記第2有機層は、ホールオンリーデバイス1への電圧印加下で、第1有機層より正孔を受け取って正孔を陰極へ輸送する機能を有する。
(2:評価)
 上記のホールオンリーデバイス1に、直流電圧電流発生器を用いて、-1Vから+20Vまで電圧を印加し、電界強度が500kV/cmの時にホールオンリーデバイス1に流れる電流密度[mA/cm]を測定した。その結果、電流密度は95.4mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス1に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス1を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<実施例6:高分子化合物Bを用いたホールオンリーデバイス2の作製と評価>
 第2有機層を構成する化合物として高分子化合物Bを用いた他は、実施例5と同様にして、ホールオンリーデバイス2を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス2に流れる電流密度は103.2mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス2に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス2を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<実施例7:高分子化合物Cを用いたホールオンリーデバイス3の作製と評価>
 第2有機層を構成する化合物として高分子化合物Cを用いた他は、実施例5と同様にして、ホールオンリーデバイス3を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス3に流れる電流密度は165.5mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス3に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス3を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<実施例8:高分子化合物Dを用いたホールオンリーデバイス4の作製と評価>
 第2有機層を構成する化合物として高分子化合物Dを用いた他は、実施例5と同様にして、ホールオンリーデバイス4を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス4に流れる電流密度は114.4mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス4に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス4を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<実施例9:高分子化合物Eの合成>
 上記式(K-1)で示される構成単位と、下記式(K-8)で示される構成単位と、上記式(K-2)で示される構成単位と、上記式(K-4)で示される構成単位を、50:40:5:5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物E)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000074
 アルゴンガス雰囲気下、合成例1で合成した化合物2(2.044g、2.03mmol)と、下記式(M-8-BR)で示される化合物(1.766g、1.60mmol)と、上記式(M-2-BR)で示される化合物(0.106g、0.20mmol)と、上記式(M-4-BR)で示される化合物(0.092g、0.20mmol)と、トルエン(36mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000075
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(3.84mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.5mg)およびトルエン(8mL)を加え、さらに12時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。
 この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物Eを2.2g得た。高分子化合物Eのポリスチレン換算の数平均分子量は0.30×10であり、ポリスチレン換算の重量平均分子量は1.99×10であった。
<実施例10:高分子化合物Fの合成>
 上記式(K-1)で示される構成単位と、下記式(K-9)で示される構成単位と、上記式(K-2)で示される構成単位と、上記式(K-4)で示される構成単位を、50:40:5:5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物F)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000076
 アルゴンガス雰囲気下、合成例1で合成した化合物2(2.060g、2.05mmol)と、下記式(M-9-BR)で示される化合物(1.304g、1.60mmol)と、上記式(M-2-BR)で示される化合物(0.106g、0.20mmol)と、上記式(M-4-BR)で示される化合物(0.092g、0.20mmol)と、トルエン(43mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000077
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(8.78mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.5mg)およびトルエン(7mL)を加え、さらに12時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。
 この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物Fを2.3g得た。高分子化合物Fのポリスチレン換算の数平均分子量は0.26×10であり、ポリスチレン換算の重量平均分子量は2.16×10であった。
<実施例11:高分子化合物Fを用いたホールオンリーデバイス5の作製と評価>
 第2有機層を構成する化合物として高分子化合物Fを用いた他は、実施例5と同様にして、ホールオンリーデバイス5を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス5に流れる電流密度は73.8mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス5に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス5を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<比較例1:高分子化合物AAの合成>
 上記式(K-1)で示される構成単位と、上記式(K-2)で示される構成単位と、下記式(K-6)で示される構成単位を、42.5:7.5:50のモル比(仕込み原料による理論値)で有する重合体(高分子化合物AA)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000078
 アルゴンガス雰囲気下、化合物1(1.549g、1.70mmol)と、上記式(M-2-BR)で示される化合物(0.158g、0.30mmol)と、下記式(M-6-E)で示される化合物(1.814g、2.00mmol)と、トルエン(40mL)とを混合し、105℃に昇温した。その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(1.76mg)を加え、3時間還流させた。
Figure JPOXMLDOC01-appb-C000079
 反応後、そこに、フェニルボロン酸(24.4mg)およびトルエン(8mL)を加え、さらに3時間還流させた。次いで、そこに、ジエチルジチオカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。
 この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物AAを2.2g得た。高分子化合物AAのポリスチレン換算の数平均分子量は0.54×10であり、ポリスチレン換算の重量平均分子量は3.11×10であった。
<比較例2:高分子化合物AAを用いたホールオンリーデバイス101の作製と評価>
 第2有機層を構成する化合物として高分子化合物AAを用いた他は、実施例5と同様にして、ホールオンリーデバイス101を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス101に流れる電流密度は9.4mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス101に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス101を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<比較例3:高分子化合物BBの合成>
 上記式(K-1)で示される構成単位と、上記式(K-2)で示される構成単位と、上記式(K-6)で示される構成単位と、下記式(K-7)で示される構成単位を、30:7.5:50:12.5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物BB)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000080
 アルゴンガス雰囲気下、化合物1(1.093g、1.20mmol)と、上記式(M-2-BR)で示される化合物(0.158g、0.30mmol)と、下記式(M-6-E)で示される化合物(1.814g、2.00mmol)と、下記式(M-7-BR)で示される化合物(0.274g、0.50mmol)と、トルエン(40mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000081
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(1.76mg)を加え、3時間還流させた。反応後、そこに、フェニルボロン酸(24.4mg)およびトルエン(8mL)を加え、さらに3時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。
 この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物BBを2.1g得た。高分子化合物BBのポリスチレン換算の数平均分子量は0.55×10であり、ポリスチレン換算の重量平均分子量は2.63×10であった。
<比較例4:高分子化合物BBを用いたホールオンリーデバイス102の作製と評価>
 第2有機層を構成する化合物として高分子化合物BBを用いた他は、実施例5と同様にして、ホールオンリーデバイス102を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス102に流れる電流密度は5.7mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス102に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス102を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<比較例5:高分子化合物CCの合成>
 上記式(K-1)で示される構成単位と、上記式(K-6)で示される構成単位と、上記式(K-3)で示される構成単位を、42.5:50:7.5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物CC)の合成を、下記のとおり行った。
 アルゴンガス雰囲気下、化合物1(3.255g、3.57mmol)と、上記式(M-6-E)で示される化合物(3.813g、4.21mmol)と、上記式(M-3-BR)で示される化合物(0.271g、0.63mmol)と、トルエン(55mL)とを混合し、105℃に昇温した。その後、20重量%水酸化テトラエチルアンモニウム水溶液(13.8g)を滴下し、酢酸パラジウム(1.40mg、6.31μmol)およびトリス(o-メトキシフェニル)ホスフィン(8.80mg、25.2μmol)を加え、6時間還流させた。反応後、そこに、フェニルボロン酸(51.3mg)を加え、さらに12時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。
 この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物CCを4.8g得た。高分子化合物CCのポリスチレン換算の数平均分子量は2.82×10であり、ポリスチレン換算の重量平均分子量は0.60×10であった。
<比較例6:高分子化合物DDの合成>
 上記式(K-1)で示される構成単位と、上記式(K-6)で示される構成単位と、上記式(K-2)で示される構成単位と、上記式(K-4)で示される構成単位を、50:40:5:5のモル比(仕込み原料による理論値)で有する重合体(高分子化合物DD)の合成を、下記のとおり行った。
 アルゴンガス雰囲気下、化合物1(4.099g、4.50mmol)と、上記式(M-6-E)で示される化合物(3.224g、3.56mmol)と、下記式(M-2-E)で示される化合物(0.280g、0.45mmol)と、下記式(M-4-E)で示される化合物(0.250g、0.45mmol)と、トルエン(120mL)とを混合し、105℃に昇温した。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 その後、20重量%水酸化テトラエチルアンモニウム水溶液(15g)を滴下し、ジクロロビス(トリス(o-メトキシフェニル))ホスフィンパラジウム(4.0mg)を加え、4時間還流させた。反応後、そこに、フェニルボロン酸(55.0mg)を加え、さらに12時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、トルエンを仕込み、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下して、ろ取することで沈殿物を得た。
 この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムにこの順で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物DDを4.9g得た。高分子化合物DDのポリスチレン換算の数平均分子量は0.40×10であり、ポリスチレン換算の重量平均分子量は1.45×10であった。
<比較例7:高分子化合物EEの合成>
 下記式(K-10)で示される構成単位と、上記式(K-7)で示される構成単位と、上記式(K-2)で示される構成単位を、50:25:25のモル比(仕込み原料による理論値)で有する重合体(高分子化合物EE)の合成を、下記のとおり行った。
Figure JPOXMLDOC01-appb-C000084
 トリス(ジベンジリデンアセトン)ジパラジウム錯体(0.073g、0.08mmol)と、トリ-tert-ブチルホスフィンテトラフルオロホウ酸(0.093g、0.32mmol)と、tert-ブトキシナトリウム(1.54g、16.0mmol)と、上記式(M-7-BR)で示される化合物(1.14g、2.00mmol)と、上記式(M-2-BR)で示される化合物(1.06g、2.00mmol)を仕込み、系内を十分に窒素ガスで置換した後、アニリン(0.38g、4.00mmol)と、トルエン(45mL)とを混合し、105℃に昇温し、8時間撹拌した。反応液を放冷して、反応液をエタノール水溶液(エタノール250mL+水40mL)中に滴下して、ろ取し、乾燥させることで沈殿物を得た。
 得られた沈殿物とトリス(ジベンジリデンアセトン)ジパラジウム錯体(0.038g、0.04mmol)と、トリ-tert-ブチルホスフィンテトラフルオロホウ酸(0.047g、0.16mmol)と、tert-ブトキシナトリウム(0.61g、6.40mmol)を仕込み、系内を十分に窒素ガスで置換した。ここに、N,N-ジフェニルアミン(0.68g、4.00mmol)のトルエン溶液(11mL)と、ブロモベンゼン(0.13g、0.80mmol)のトルエン溶液(33mL)を添加し、105℃に昇温して6時間撹拌した。反応液を放冷し、エタノール水溶液(エタノール240mL+水40mL)中に滴下し、ろ取し、乾燥させることで沈殿物を得た。
 得られた沈殿物をトルエンに溶解させ、アセトンに再沈殿させ、沈殿したポリマーをろ別した。得られたポリマーをトルエンに溶解させ、希塩酸にて洗浄し、アンモニア含有エタノールにて再沈殿させてポリマーをろ別した。ろ別したポリマーをトルエンに溶解させ、シリカゲルカラムクロマトグラフィーにより2回精製したのち、エタノール水溶液中に溶液を滴下し、ろ取し、乾燥させることにより高分子化合物EEを0.85g得た。高分子化合物EEのポリスチレン換算の数平均分子量は0.16×10であり、ポリスチレン換算の重量平均分子量は0.39×10であった。
<比較例8:高分子化合物CCを用いたホールオンリーデバイス103の作製と評価>
 第2有機層を構成する化合物として高分子化合物CCを用いた他は、実施例5と同様にして、ホールオンリーデバイス103を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス103に流れる電流密度は2.0mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス103に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス103を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<比較例9:高分子化合物DDを用いたホールオンリーデバイス104の作製と評価>
 第2有機層を構成する化合物として高分子化合物DDを用いた他は、実施例5と同様にして、ホールオンリーデバイス104を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス104に流れる電流密度は38.1mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス104に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス104を流れる電子電流は、正孔電流に対して極微量であることが確認された。
<比較例10:高分子化合物EEを用いたホールオンリーデバイス105の作製と評価>
 第2有機層を構成する化合物として高分子化合物EEを用いた他は、実施例5と同様にして、ホールオンリーデバイス105を作製して評価した。その結果、電界強度が500kV/cmの時にホールオンリーデバイス105に流れる電流密度は5.0mA/cmであった。結果を表1に示す。なお、本評価において、500kV/cmの電界強度がホールオンリーデバイス105に印加された際に、電流励起による発光は観測されず、ホールオンリーデバイス105を流れる電子電流は、正孔電流に対して極微量であることが確認された。
Figure JPOXMLDOC01-appb-T000085
 10 基板
 11 陽極
 12 正孔注入層
 13 正孔輸送層
 14 発光層
 15 電子輸送層
 16 電子注入層
 17 陰極
 20 基板
 21 陽極
 22 正孔注入層
 23 発光層
 24 陰極
 25 保護層
 100、110 発光素子
 200 面状光源

Claims (18)

  1.  下記式(1)で示される構成単位を全構成単位の合計に対して51モル%以上含み、かつ、下記式(2)で示される構成単位および下記式(3)で示される構成単位のうちの少なくとも一方を含む、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     aは1~3の整数を示し、bは0または1を示す。
     ArおよびArは、それぞれ独立に、置換基を有していてもよいアリーレン基、または、置換基を有していてもよい2価の複素環基を示し、ArおよびArは、それぞれ独立に、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および置換基を有していてもよい2価の複素環基からなる群より選ばれる、互いに同一でも異なっていてもよい2個以上の基が連結した2価の基を示し、Ar、Ar、ArおよびArはそれぞれ、これらの基が結合している窒素原子に結合している当該基以外の基と互いに連結して環構造を形成していてもよい。Arが複数個存在する場合、それらは同一でも異なっていてもよい。
     R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。Rが複数個存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、
     naは0~3の整数を示し、nbは0~12の整数を示し、nAは0または1を示し、nは0~4の整数を示す。
     Arは置換基を有していてもよい(2+n)価の芳香族炭化水素基または置換基を有していてもよい(2+n)価の複素環基を示す。
     LおよびLは、それぞれ独立に、置換基を有していてもよいアルキレン基または置換基を有していてもよいフェニレン基を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
     Lは酸素原子または硫黄原子を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
     Xは1価の架橋性基を示す。Xが複数個存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、
     cは0または1を示す。
     ArおよびArは、それぞれ独立に、置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示し、Arは、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および置換基を有していてもよい2価の複素環基からなる群より選ばれる同一であっても異なっていてもよい2個以上の基が連結した2価の基を示す。
     Rは1価の架橋性基を示し、Rは1価の架橋性基、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。]
  2.  前記式(2)で示される構成単位が、下記式(4)で示される構成単位である、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、
     ncは0~3の整数を示し、ndは0~12の整数を示し、nBは0または1を示し、mは0~2の整数を示す。
     LおよびLは、それぞれ独立に、置換基を有していてもよいアルキレン基または置換基を有していてもよいフェニレン基を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
     Lは酸素原子または硫黄原子を示す。Lが複数個存在する場合、それらは同一でも異なっていてもよい。
     Xは1価の架橋性基を示す。Xが複数個存在する場合、それらは同一でも異なっていてもよい。
     Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよい1価の複素環基または置換基を有していてもよい1価の複素環オキシ基を示す。Rが複数個存在する場合、それらは同一でも異なっていてもよい。]
  3.  前記Xが、置換基を有していてもよい下記式(X-1)で示される1価の架橋性基である、請求項1または2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
  4.  前記Xが、下記式(X-2)で示される1価の架橋性基である、請求項1または2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(X-2)中、
     neおよびnfは、それぞれ独立に、0または1を示す。
     LX1は酸素原子、硫黄原子、カルボニル基または-O-CO-で示される基を示す。
     R、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、置換基を有していてもよいアシル基、置換基を有していてもよいアシルオキシ基、ハロゲン原子、シアノ基またはニトロ基を示す。]
  5.  前記Xが複数個存在する場合、それらは置換基を有していてもよい下記式(X-1)で示される1価の架橋性基を少なくとも1種類含み、かつ、下記式(X-2)で示される1価の架橋性基を少なくとも1種類含む、請求項1または2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    [式(X-2)中、
     neおよびnfは、それぞれ独立に、0または1を示す。
     LX1は酸素原子、硫黄原子、カルボニル基または-O-CO-で示される基を示す。
     R、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、置換基を有していてもよいアシル基、置換基を有していてもよいアシルオキシ基、ハロゲン原子、シアノ基またはニトロ基を示す。]
  6.  前記Arが、置換基を有していてもよい2,7-フルオレンジイル基、置換基を有していてもよいナフタレンジイル基、置換基を有していてもよいフェナントレンジイル基、置換基を有していてもよいジヒドロフェナントレンジイル基、置換基を有していてもよいアントラセンジイル基、置換基を有していてもよいピレンジイル基または置換基を有していてもよいペリレンジイル基である、請求項1~5のいずれか1項に記載の高分子化合物。
  7.  下記式(5)で示される第1単量体と下記式(6)で示される第2単量体とを含む単量体組成物の重合反応を行って、請求項1~6のいずれか1項に記載の高分子化合物を得る、高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    [式(5)中、
     dは1~3の整数を示し、eは0または1を示す。
     ArおよびAr11は、それぞれ独立に、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基を示し、Ar10およびAr12は、それぞれ独立に、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および置換基を有していてもよい2価の複素環基からなる群より選ばれる同一でも異なっていてもよい2個以上の基が連結した2価の基を示し、Ar、Ar10、Ar11およびAr12はそれぞれ、これらの基が結合している窒素原子に結合している当該基以外の基と互いに連結して環構造を形成していてもよい。Ar10が複数個存在する場合、それらは同一でも異なっていてもよい。
     R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。
    が複数個存在する場合、それらは同一でも異なっていてもよい。
     ZおよびZは、それぞれ独立に、下記置換基A群から選ばれる基を示す。
    <置換基A群>
     -B(OR101で示される基(R101は水素原子または置換基を有していてもよいアルキル基を示し、互いに連結して、R101に結合する酸素原子とともに環構造を形成していてもよい。複数個存在するR101は同一でも異なっていてもよい。)、
     -BFで示される基(Qは、Li、Na、K、RbおよびCsからなる群より選ばれる1価の陽イオンを示す。)、
     -MgYで示される基(Yは、塩素原子、臭素原子またはヨウ素原子を示す。)、
     -ZnYで示される基(Yは、塩素原子、臭素原子またはヨウ素原子を示す。)、および、
     -Sn(R102で示される基(R102は水素原子またはアルキル基を示し、互いに連結して、R102に結合するスズ原子とともに環構造を形成していてもよい。複数個存在するR102は同一でも異なっていてもよい。)。]
    Figure JPOXMLDOC01-appb-C000010
    [式(6)中、
     fは0~3の整数を示し、gは0または1を示す。
     Ar13およびAr15は、それぞれ独立に、置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示し、Ar14およびAr16は、置換基を有していてもよいアリーレン基、置換基を有していてもよい2価の複素環基、または、置換基を有していてもよいアリーレン基および2価の複素環基からなる群より選ばれる同一でも異なっていてもよい2個以上の基が連結した2価の基を示し、Ar13、Ar14、Ar15およびAr16はそれぞれ、これらの基が結合している窒素原子に結合している当該基以外の基と互いに連結して環構造を形成していてもよい。Ar14が複数個存在する場合、それらは同一でも異なっていてもよい。
     R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい1価の複素環基を示す。
    が複数個存在する場合、それらは同一でも異なっていてもよい。
     ZおよびZは、それぞれ独立に、下記置換基B群から選ばれる基を示す。
    <置換基B群>
     塩素原子、臭素原子、ヨウ素原子、-O-S(=O)103で示される基(R103は、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を示す。)。]
  8.  請求項1~6のいずれか1項に記載の高分子化合物と、
     正孔輸送性材料、電子輸送性材料および発光材料からなる群より選ばれる少なくとも1種類の材料を含有する組成物。
  9.  請求項1~6のいずれか1項に記載の高分子化合物と、溶媒とを含有する組成物。
  10.  溶媒をさらに含有する、請求項8に記載の組成物。
  11.  請求項1~6のいずれか1項に記載の高分子化合物を含有する有機薄膜。
  12.  請求項8に記載の組成物を含有する有機薄膜。
  13.  請求項11に記載の有機薄膜を有機溶媒に対して不溶化させた、不溶化有機薄膜。
  14.  請求項12に記載の有機薄膜を有機溶媒に対して不溶化させた、不溶化有機薄膜。
  15.  請求項11または12に記載の有機薄膜を有する発光素子。
  16.  請求項13または14に記載の不溶化有機薄膜を有する発光素子。
  17.  請求項15または16に記載の発光素子を有する面状光源。
  18.  請求項15または16に記載の発光素子を有する表示装置。
PCT/JP2013/050942 2012-01-30 2013-01-18 高分子化合物および組成物、並びにこれらを用いた発光素子 WO2013114976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/374,546 US9267003B2 (en) 2012-01-30 2013-01-18 Polymer compound, composition, and light-emitting device using the same
JP2013556308A JP6033795B2 (ja) 2012-01-30 2013-01-18 高分子化合物および組成物、並びにこれらを用いた発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-016241 2012-01-30
JP2012016241 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013114976A1 true WO2013114976A1 (ja) 2013-08-08

Family

ID=48905018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050942 WO2013114976A1 (ja) 2012-01-30 2013-01-18 高分子化合物および組成物、並びにこれらを用いた発光素子

Country Status (4)

Country Link
US (1) US9267003B2 (ja)
JP (1) JP6033795B2 (ja)
TW (1) TWI564320B (ja)
WO (1) WO2013114976A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097236A (ja) * 2013-11-15 2015-05-21 住友化学株式会社 高分子発光素子
KR20160123298A (ko) * 2014-02-14 2016-10-25 히타치가세이가부시끼가이샤 폴리머 또는 올리고머, 정공 수송 재료 조성물 및 이들을 이용한 유기 일렉트로닉스 소자
KR20170046715A (ko) 2014-08-28 2017-05-02 스미또모 가가꾸 가부시키가이샤 고분자 화합물 및 그것을 사용한 발광 소자
KR20170125824A (ko) 2015-02-25 2017-11-15 미쯔비시 케미컬 주식회사 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
WO2018131320A1 (ja) 2017-01-10 2018-07-19 住友化学株式会社 有機デバイスの製造方法
WO2020162156A1 (ja) 2019-02-08 2020-08-13 住友化学株式会社 化合物およびそれを用いた発光素子
JP2020526036A (ja) * 2017-07-03 2020-08-27 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 有機エレクトロルミネッセンス素子
WO2021075183A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 組成物及びそれを含有する発光素子
US11453628B2 (en) 2018-12-05 2022-09-27 Samsung Display Co., Ltd. Condensed cyclic compound, composition including the same, and organic light-emitting device including thin film formed from the composition

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201108865D0 (en) * 2011-05-26 2011-07-06 Ct For Process Innovation The Ltd Semiconductor compounds
GB201108864D0 (en) 2011-05-26 2011-07-06 Ct For Process Innovation The Ltd Transistors and methods of making them
GB201200619D0 (en) * 2012-01-16 2012-02-29 Cambridge Display Tech Ltd Polymer
US9502657B2 (en) * 2012-09-07 2016-11-22 Pioneer Corporation Organic electroluminescence device and manufacturing method thereof
KR101712128B1 (ko) * 2014-12-05 2017-03-06 오페주식회사 콤바인용 예취장치
JP6275883B2 (ja) * 2015-02-12 2018-02-07 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子及びその製造方法
WO2016158698A1 (ja) * 2015-03-30 2016-10-06 住友化学株式会社 光電変換素子
WO2017008883A1 (en) * 2015-07-15 2017-01-19 Merck Patent Gmbh Composition comprising organic semiconducting compounds
JP6665536B2 (ja) * 2016-01-12 2020-03-13 株式会社リコー 酸化物半導体
CN110391334B (zh) * 2018-04-16 2023-05-09 清华大学 聚合物太阳能电池
KR102550692B1 (ko) 2018-04-24 2023-07-04 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
JP7169126B2 (ja) * 2018-08-30 2022-11-10 エルジー ディスプレイ カンパニー リミテッド 塗布型有機電界発光素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098615A (ja) * 2006-08-24 2008-04-24 E I Du Pont De Nemours & Co 有機電子デバイス
JP2008169367A (ja) * 2006-08-24 2008-07-24 E I Du Pont De Nemours & Co 正孔輸送ポリマー
JP2009043896A (ja) * 2007-08-08 2009-02-26 Canon Inc 有機発光素子及びディスプレイ
JP2009074074A (ja) * 2007-08-28 2009-04-09 Mitsubishi Chemicals Corp 有機化合物、高分子化合物、架橋型高分子化合物、有機電界発光素子用組成物および有機電界発光素子
WO2009067419A1 (en) * 2007-11-19 2009-05-28 E. I. Du Pont De Nemours And Company Electroactive materials
WO2010018851A1 (ja) * 2008-08-13 2010-02-18 三菱化学株式会社 有機電界発光素子、有機el表示装置及び有機el照明
WO2010065700A2 (en) * 2008-12-04 2010-06-10 E. I. Du Pont De Nemours And Company Electroactive materials
JP2010239125A (ja) * 2009-03-10 2010-10-21 Mitsubishi Chemicals Corp 有機電界発光素子、有機elディスプレイおよび有機el照明
WO2011078387A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 組成物及び該組成物を用いてなる発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0325324D0 (en) 2003-10-30 2003-12-03 Avecia Ltd Process for producing semiconducting layers and devices containing the same
TW201219350A (en) * 2003-11-17 2012-05-16 Sumitomo Chemical Co Crosslinkable arylamine compounds
JP2009239125A (ja) * 2008-03-27 2009-10-15 Hitachi High-Tech Instruments Co Ltd 部品供給装置
WO2009123269A1 (ja) 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098615A (ja) * 2006-08-24 2008-04-24 E I Du Pont De Nemours & Co 有機電子デバイス
JP2008169367A (ja) * 2006-08-24 2008-07-24 E I Du Pont De Nemours & Co 正孔輸送ポリマー
JP2009043896A (ja) * 2007-08-08 2009-02-26 Canon Inc 有機発光素子及びディスプレイ
JP2009074074A (ja) * 2007-08-28 2009-04-09 Mitsubishi Chemicals Corp 有機化合物、高分子化合物、架橋型高分子化合物、有機電界発光素子用組成物および有機電界発光素子
WO2009067419A1 (en) * 2007-11-19 2009-05-28 E. I. Du Pont De Nemours And Company Electroactive materials
WO2010018851A1 (ja) * 2008-08-13 2010-02-18 三菱化学株式会社 有機電界発光素子、有機el表示装置及び有機el照明
WO2010065700A2 (en) * 2008-12-04 2010-06-10 E. I. Du Pont De Nemours And Company Electroactive materials
JP2010239125A (ja) * 2009-03-10 2010-10-21 Mitsubishi Chemicals Corp 有機電界発光素子、有機elディスプレイおよび有機el照明
WO2011078387A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 組成物及び該組成物を用いてなる発光素子

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097236A (ja) * 2013-11-15 2015-05-21 住友化学株式会社 高分子発光素子
KR20160123298A (ko) * 2014-02-14 2016-10-25 히타치가세이가부시끼가이샤 폴리머 또는 올리고머, 정공 수송 재료 조성물 및 이들을 이용한 유기 일렉트로닉스 소자
KR102324619B1 (ko) 2014-02-14 2021-11-11 쇼와덴코머티리얼즈가부시끼가이샤 폴리머 또는 올리고머, 정공 수송 재료 조성물 및 이들을 이용한 유기 일렉트로닉스 소자
CN106795277B (zh) * 2014-08-28 2020-04-10 住友化学株式会社 高分子化合物和使用该高分子化合物的发光元件
KR20170046715A (ko) 2014-08-28 2017-05-02 스미또모 가가꾸 가부시키가이샤 고분자 화합물 및 그것을 사용한 발광 소자
JPWO2016031639A1 (ja) * 2014-08-28 2017-06-15 住友化学株式会社 高分子化合物およびそれを用いた発光素子
EP3674343A1 (en) 2014-08-28 2020-07-01 Sumitomo Chemical Company, Limited Polymer compound and light-emitting element using same
US10301539B2 (en) 2014-08-28 2019-05-28 Sumitomo Chemical Company, Limited Polymer compound and light-emitting device using the same
CN106795277A (zh) * 2014-08-28 2017-05-31 住友化学株式会社 高分子化合物和使用该高分子化合物的发光元件
KR20170125824A (ko) 2015-02-25 2017-11-15 미쯔비시 케미컬 주식회사 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
WO2018131320A1 (ja) 2017-01-10 2018-07-19 住友化学株式会社 有機デバイスの製造方法
JP2020526036A (ja) * 2017-07-03 2020-08-27 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 有機エレクトロルミネッセンス素子
US11456420B2 (en) 2017-07-03 2022-09-27 Merck Patent Gmbh Organic electroluminescent device
JP2023022194A (ja) * 2017-07-03 2023-02-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機エレクトロルミネッセンス素子
JP7462015B2 (ja) 2017-07-03 2024-04-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機エレクトロルミネッセンス素子
US11453628B2 (en) 2018-12-05 2022-09-27 Samsung Display Co., Ltd. Condensed cyclic compound, composition including the same, and organic light-emitting device including thin film formed from the composition
WO2020162156A1 (ja) 2019-02-08 2020-08-13 住友化学株式会社 化合物およびそれを用いた発光素子
WO2021075183A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 組成物及びそれを含有する発光素子
CN114599719A (zh) * 2019-10-15 2022-06-07 住友化学株式会社 组合物和含有该组合物的发光元件

Also Published As

Publication number Publication date
US20140367617A1 (en) 2014-12-18
JPWO2013114976A1 (ja) 2015-05-11
TW201348292A (zh) 2013-12-01
US9267003B2 (en) 2016-02-23
TWI564320B (zh) 2017-01-01
JP6033795B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6033795B2 (ja) 高分子化合物および組成物、並びにこれらを用いた発光素子
JP5955946B2 (ja) 高分子化合物およびそれを用いた発光素子
JP5955660B2 (ja) 組成物、高分子化合物およびそれらを用いた発光素子
EP2110400B1 (en) Block copolymer and polymer light-emitting device
JP5691177B2 (ja) 高分子化合物及びそれを用いる発光素子
JP5281801B2 (ja) ブロック共重合体および高分子発光素子
KR20110041463A (ko) 공중합체 및 그것을 이용한 고분자 발광 소자
KR101759367B1 (ko) 발광 재료, 잉크 조성물, 박막, 발광 소자 및 발광 소자의 제조 방법
KR20090122914A (ko) 고분자 발광 소자, 고분자 화합물, 조성물, 액상 조성물 및 도전성 박막
JP5829510B2 (ja) 高分子化合物及びそれを用いた発光素子
KR20100077192A (ko) 고분자 화합물 및 그것을 이용한 고분자 발광 소자
KR20090114384A (ko) 블록 공중합체 및 그것을 이용한 조성물, 액상 조성물, 발광성 박막 및 고분자 발광 소자
JP5970952B2 (ja) 高分子化合物およびそれを用いた発光素子
US20130270545A1 (en) Polymer compound having carbon cluster structure and organic device using same
JP5875853B2 (ja) 高分子化合物及びそれを用いた発光素子
JP6046389B2 (ja) 有機エレクトロルミネッセンス素子
JP5927903B2 (ja) 高分子化合物およびそれを用いた有機el素子
JP6064433B2 (ja) 高分子化合物およびそれを用いた発光素子
KR20100135930A (ko) 질소 함유 복소환식 화합물을 포함하는 조성물
CN112020530B (zh) 嵌段共聚物和使用了该嵌段共聚物的发光元件
JP2013237790A (ja) 高分子化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556308

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14374546

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744237

Country of ref document: EP

Kind code of ref document: A1