[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013105129A1 - ベーン型圧縮機 - Google Patents

ベーン型圧縮機 Download PDF

Info

Publication number
WO2013105129A1
WO2013105129A1 PCT/JP2012/000107 JP2012000107W WO2013105129A1 WO 2013105129 A1 WO2013105129 A1 WO 2013105129A1 JP 2012000107 W JP2012000107 W JP 2012000107W WO 2013105129 A1 WO2013105129 A1 WO 2013105129A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
oil supply
cylinder
inner peripheral
oil
Prior art date
Application number
PCT/JP2012/000107
Other languages
English (en)
French (fr)
Inventor
関屋 慎
雷人 河村
英明 前山
高橋 真一
辰也 佐々木
幹一朗 杉浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/000107 priority Critical patent/WO2013105129A1/ja
Priority to EP12865224.5A priority patent/EP2803862B1/en
Priority to CN201280066569.7A priority patent/CN104040179B/zh
Priority to JP2013553079A priority patent/JP5657142B2/ja
Priority to US14/350,959 priority patent/US9382907B2/en
Publication of WO2013105129A1 publication Critical patent/WO2013105129A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/321Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/352Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes being pivoted on the axis of the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a vane type compressor.
  • the inside of the rotor shaft is hollow and a vane fixed shaft is disposed therein, the vane is rotatably attached to the fixed shaft, and a pair of semicircular rods is formed near the outer periphery of the rotor portion.
  • a vane type compressor in which a vane is held so as to be rotatable (swingable) with respect to a rotor portion via a clamping member (see, for example, Patent Document 2).
  • JP 2000-352390 A (summary, FIG. 1)
  • the vane direction is regulated by a vane groove formed in the rotor portion of the rotor shaft. That is, the vane is held so as to always have the same inclination with respect to the rotor portion. For this reason, with the rotation of the rotor shaft, the angle formed by the vane and the cylinder inner peripheral surface changes. Therefore, in order for the vane tip to contact the entire circumference of the cylinder inner peripheral surface, it is necessary to configure the radius of the arc of the vane tip to be smaller than the radius of the cylinder inner peripheral surface.
  • the lubrication state between the two parts is not a fluid lubrication state in which an oil film is formed between the two parts and slides through the oil film, but a boundary lubrication state occurs.
  • the friction coefficient depending on the lubrication state is about 0.001 to 0.005 in the fluid lubrication, whereas it is very large in the boundary lubrication state, and is generally about 0.05 or more.
  • the conventional vane type compressor described in Patent Document 2 needs to have a hollow interior of the rotor shaft, it is difficult to apply a rotational force to the rotor portion and to support the rotation of the rotor portion. More specifically, the conventional vane type compressor described in Patent Document 2 is provided with end plates (rotation base 2a, rotation holding member 2b) on both end faces of the rotor portion.
  • the end plate (rotary base 2a) on one side has a disk shape because it needs to transmit power from the rotating shaft, and the rotating shaft is connected to the center of the end plate.
  • the other end plate (rotation holding member 2b) needs to be configured so as not to interfere with the rotation range of the vane fixed shaft (fixed shaft 1b) and the vane shaft support member (axial support member 1a). It is necessary to form a ring with a hole in the part. For this reason, the part which rotates and supports the end plate that rotates together with the rotor part needs to be configured to have a larger diameter than the rotating shaft (the rotating shaft 2c), and there is a problem that bearing sliding loss increases.
  • the present invention has been made to solve the above-described problems, and reduces the bearing sliding loss of the rotating shaft and reduces leakage loss by forming a narrow gap between the rotor portion and the inner peripheral surface of the cylinder.
  • a mechanism (mechanism in which the vane rotates around the center of the cylinder) necessary for the compression operation so that the arc at the tip of the vane and the normal line of the cylinder inner surface almost always coincide with each other is used.
  • An object of the present invention is to provide a vane compressor realized by integrally forming a rotor portion and a rotating shaft without using an end plate of the rotor portion that causes deterioration of the outer diameter of the portion and the rotational center accuracy.
  • a vane type compressor includes a hermetic container, an oil reservoir provided at the bottom of the hermetic container for storing refrigeration oil, and an electric element and a compression element provided in the hermetic container.
  • the compression element includes a cylinder having a cylindrical inner peripheral surface, and a cylindrical rotor portion that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder.
  • a rotor shaft that transmits a rotational force from the electric element to the rotor portion, and a lower end of the shaft portion is immersed in the oil sump, and one open end of the inner peripheral surface of the cylinder
  • a cylinder head that supports the shaft portion by a bearing portion, a cylinder head that closes the other open end of the inner peripheral surface of the cylinder and supports the shaft portion by a bearing portion
  • the vane type compressor provided with the at least one vane provided in the rotor portion and formed in an arc shape in which a distal end portion on the outer peripheral side protruding from the rotor portion is convex outward, The vane is held so that the compression operation is performed in a state in which the normal line of the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder are almost coincident, and the vane
  • the vane angle adjusting means is supported so as to be swingable and movable with respect to the rotor portion.
  • the vane angle adjusting means has a base portion formed in a ring shape or a partial ring shape, and is formed in the base portion.
  • One of the convex portions or concave portions formed is inserted into the other of the convex portions or concave portions formed at both ends of the vane and connected to the vane, or the base portion is integrally attached to both ends of the vane.
  • a bottomed cylindrical recess is formed concentrically with the central axis of the inner peripheral surface of the cylinder on the cylinder side end surfaces of the vane aligner, the frame and the cylinder head, and is provided on the outer peripheral surface of the recess.
  • a vane aligner bearing portion that slidably supports an outer peripheral surface of the base portion of the vane aligner inserted into the recess, and formed on the rotor shaft, the oil sump, the frame, and the frame
  • An oil supply passage that communicates with the concave portion of the cylinder head, and an oil supply means that supplies the refrigerating machine oil in the oil sump to the oil supply passage.
  • the vane compressor according to the present invention includes a sealed container, an oil reservoir provided at the bottom of the sealed container for storing refrigeration oil, and an electric element and a compression element provided in the sealed container.
  • the compression element has a cylindrical shape having a cylindrical inner peripheral surface, and a cylindrical shape that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder.
  • a frame that closes an open end and supports the shaft portion by a bearing portion, a cylinder head that closes the other open end of the inner peripheral surface of the cylinder and supports the shaft portion by a bearing portion, and the rotor portion
  • the rotor portion Provided in front
  • distal portion of the outer peripheral side with at least one vane is formed in an arc shape which is convex outward, the projecting from the rotor portion, The vane is held so that the compression operation is performed in a state in which the normal line of the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder are almost coincident, and the vane
  • the vane angle adjusting means is supported so as to be swingable and movable with
  • the vane angle adjusting means is formed in the rotor portion and has a substantially cylindrical bush holding portion penetrating in the rotation axis direction. And a bush that is formed in a pair of substantially semi-cylindrical shapes and is inserted into the bush holding portion with the vane interposed therebetween, and the rotor portion has a distal end portion on the inner peripheral side of the vane.
  • a substantially cylindrical vane relief formed in a position on the inner peripheral side of the bush holding portion of the rotor portion so as not to contact with the bush holding portion and penetrating in the rotation axis direction so as to communicate with the bush holding portion. Provided was part, but with the oil supply passage communicating with said sump and the vane relief part, and the oil supply means for supplying the refrigerating machine oil in said oil sump to the oil supply passage, a.
  • the vane compressor according to the present invention includes a sealed container, an oil reservoir provided at the bottom of the sealed container for storing refrigeration oil, and an electric element and a compression element provided in the sealed container.
  • the compression element has a cylindrical shape having a cylindrical inner peripheral surface, and a cylindrical shape that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder.
  • a frame that closes an open end and supports the shaft portion by a bearing portion, a cylinder head that closes the other open end of the inner peripheral surface of the cylinder and supports the shaft portion by a bearing portion, and the rotor portion
  • the rotor portion Provided in front
  • distal portion of the outer peripheral side with at least one vane is formed in an arc shape which is convex outward, the projecting from the rotor portion, The vane is held so that the compression operation is performed in a state in which the normal line of the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder are almost coincident, and the vane
  • the vane angle adjusting means is supported so as to be swingable and movable with
  • the vane angle adjusting means has a base portion formed in a ring shape or a partial ring shape, and is formed in the base portion.
  • One of the convex portions or concave portions formed is inserted into the other of the convex portions or concave portions formed at both ends of the vane and connected to the vane, or the base portion is integrally attached to both ends of the vane.
  • a bottomed cylindrical recess is formed concentrically with the central axis of the inner peripheral surface of the cylinder on the cylinder side end surfaces of the vane aligner, the frame and the cylinder head, and is provided on the outer peripheral surface of the recess.
  • a vane aligner bearing portion that slidably supports an outer peripheral surface of the base portion of the vane aligner inserted into the recess, and formed on the rotor shaft, the oil sump, the frame, and the frame
  • An oil supply passage that communicates with the recess of the cylinder head, an oil supply means that supplies refrigeration oil in the oil sump to the oil supply passage, and the recess of the frame and the cylinder head and the vane aligner bearing portion communicate with each other. And an oil supply passage.
  • the vane compressor according to the present invention includes a sealed container, an oil reservoir provided at the bottom of the sealed container for storing refrigeration oil, and an electric element and a compression element provided in the sealed container.
  • the compression element has a cylindrical shape having a cylindrical inner peripheral surface, and a cylindrical shape that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder.
  • a frame that closes an open end and supports the shaft portion by a bearing portion, a cylinder head that closes the other open end of the inner peripheral surface of the cylinder and supports the shaft portion by a bearing portion, and the rotor portion
  • the rotor portion Provided in front
  • distal portion of the outer peripheral side with at least one vane is formed in an arc shape which is convex outward, the projecting from the rotor portion, The vane is held so that the compression operation is performed in a state in which the normal line of the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder are almost coincident, and the vane
  • the vane angle adjusting means is supported so as to be swingable and movable with
  • the vane angle adjusting means is formed in the rotor portion and has a substantially cylindrical bush holding portion penetrating in the rotation axis direction. And a bush that is formed in a pair of substantially semi-cylindrical shapes and is inserted into the bush holding portion with the vane interposed therebetween, and the rotor portion has a distal end portion on the inner peripheral side of the vane.
  • a substantially cylindrical vane relief formed in a position on the inner peripheral side of the bush holding portion of the rotor portion so as not to contact with the bush holding portion and penetrating in the rotation axis direction so as to communicate with the bush holding portion.
  • An oil supply passage that communicates the oil sump with the vane escape portion, oil supply means for supplying refrigerating machine oil in the oil sump to the oil supply passage, and an inner periphery of the vane. And at least one oil supply passage penetrating from the side to the outer peripheral side.
  • the vane compressor according to the present invention includes a sealed container, an oil reservoir provided at the bottom of the sealed container for storing refrigeration oil, and an electric element and a compression element provided in the sealed container.
  • the compression element has a cylindrical shape having a cylindrical inner peripheral surface, and a cylindrical shape that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder.
  • a frame that closes an open end and supports the shaft portion by a bearing portion, a cylinder head that closes the other open end of the inner peripheral surface of the cylinder and supports the shaft portion by a bearing portion, and the rotor portion
  • the rotor portion Provided in front
  • distal portion of the outer peripheral side with at least one vane is formed in an arc shape which is convex outward, the projecting from the rotor portion, The vane is held so that the compression operation is performed in a state in which the normal line of the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder are almost coincident, and the vane
  • the vane angle adjusting means is supported so as to be swingable and movable with
  • the vane angle adjusting means is formed in the rotor portion and has a substantially cylindrical bush holding portion penetrating in the rotation axis direction. And a bush that is formed in a pair of substantially semi-cylindrical shapes and is inserted into the bush holding portion with the vane interposed therebetween, and the rotor portion has a distal end portion on the inner peripheral side of the vane.
  • a substantially cylindrical vane relief formed in a position on the inner peripheral side of the bush holding portion of the rotor portion so as not to contact with the bush holding portion and penetrating in the rotation axis direction so as to communicate with the bush holding portion.
  • An oil supply passage that communicates the oil sump with the vane escape portion, an oil supply means that supplies the refrigerating machine oil in the oil sump to the oil supply passage, and one end on the vane side.
  • an in-bush oil supply passage having an opening on a side surface and the other end opening on a side surface on the bush holding portion side.
  • the vane compressor according to the present invention includes a sealed container, an oil reservoir provided at the bottom of the sealed container for storing refrigeration oil, and an electric element and a compression element provided in the sealed container.
  • the compression element has a cylindrical shape having a cylindrical inner peripheral surface, and a cylindrical shape that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder.
  • a frame that closes an open end and supports the shaft portion by a bearing portion, a cylinder head that closes the other open end of the inner peripheral surface of the cylinder and supports the shaft portion by a bearing portion, and the rotor portion
  • the rotor portion Provided in front
  • distal portion of the outer peripheral side with at least one vane is formed in an arc shape which is convex outward, the projecting from the rotor portion, The vane is held so that the compression operation is performed in a state in which the normal line of the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder are almost coincident, and the vane
  • the vane angle adjusting means is supported so as to be swingable and movable with
  • the vane angle adjusting means is formed in the rotor portion and has a substantially cylindrical bush holding portion penetrating in the rotation axis direction. And a bush that is formed in a pair of substantially semi-cylindrical shapes and is inserted into the bush holding portion with the vane interposed therebetween, and the rotor portion has a distal end portion on the inner peripheral side of the vane.
  • a substantially cylindrical vane relief formed in a position on the inner peripheral side of the bush holding portion of the rotor portion so as not to contact with the bush holding portion and penetrating in the rotation axis direction so as to communicate with the bush holding portion.
  • An oil supply passage that communicates the oil reservoir and the vane escape portion, oil supply means for supplying the oil in the oil reservoir to the oil supply passage, and one end of the vane. And an oil supply passage that opens to the escape portion and the other end opens to the bush holding portion.
  • the vane type compressor according to the present invention includes an oil supply passage that communicates an oil sump and a vane angle adjusting means (a recess formed in the frame and the cylinder head, or a vane escape portion). For this reason, each sliding part of the vane angle adjusting means, the bearing part for supporting the shaft part of the rotor shaft, and the sliding part between the vane and the cylinder inner peripheral surface are surely secured by the refrigerating machine oil through the oil supply passage. Lubrication is possible, and the rotor shaft and the vanes can be stably supported.
  • the vane aligner bearing portion can be more reliably lubricated and the vane can be supported more stably.
  • the sliding portion between the vane and the inner peripheral surface of the cylinder can surely lubricate, and the vane can be supported more stably.
  • the sliding portion between the bush and the bush holding portion can be more reliably lubricated, and the vane It can be supported more stably.
  • the mechanism required to perform the compression operation so that the arc at the tip of the vane and the normal line of the cylinder inner surface always coincide with each other (the mechanism in which the vane rotates around the center of the cylinder) (Rotating shaft) can be realized as an integrated configuration.
  • the bearing shaft can be supported with a small diameter to reduce the bearing sliding loss, and the outer diameter of the rotor part and the accuracy of the rotation center are improved to form a narrow gap between the rotor part and the cylinder inner peripheral surface. Leakage loss can be reduced.
  • FIG. 2 is a cross-sectional view of the compression element according to Embodiment 1 of the present invention, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 3 is an explanatory diagram showing a compression operation of the compression element according to Embodiment 1 of the present invention, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 1 It is a longitudinal cross-sectional view which shows the vane type compressor which concerns on Embodiment 5 of this invention. It is a longitudinal cross-sectional view which shows the vane type compressor which concerns on Embodiment 6 of this invention. It is a longitudinal cross-sectional view which shows the vane type compressor which concerns on Embodiment 7 of this invention. It is a longitudinal cross-sectional view which shows another example of the vane type compressor which concerns on Embodiment 7 of this invention. It is a top view which shows the flame
  • FIG. 1 shows the vane type compressor which concerns on Embodiment 5 of this invention. It is a longitudinal cross-sectional view which shows the vane type compressor which concerns on Embodiment 6 of this invention. It is a longitudinal cross-sectional view which shows the vane type compressor which
  • FIG. 22 is a cross-sectional view of a compression element of a vane type compressor according to an eighth embodiment of the present invention, and is a cross-sectional view taken along the line II of FIG. It is a longitudinal cross-sectional view which shows the vane type compressor which concerns on Embodiment 9 of this invention. It is a principal part enlarged view (longitudinal section) which shows the vane aligner bearing part vicinity of the vane type compressor concerning Embodiment 9 of the present invention. It is a principal part enlarged view (longitudinal section) which shows the vane aligner bearing part vicinity of the vane type compressor which concerns on Embodiment 10 of this invention.
  • FIG. 33 is a cross-sectional view of the compression element of the vane type compressor according to the fifteenth embodiment of the present invention, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 1 is a longitudinal sectional view showing a vane type compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing a compression element of the vane compressor.
  • FIG. 3 is a plan view or a bottom view showing the vane aligner of the compression element.
  • the arrow shown in FIG. FIG. 3 shows a bottom view of the vane aligners 5 and 7 and a plan view of the vane aligners 6 and 8.
  • the vane compressor 200 according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • a compression element 101 and an electric element 102 that drives the compression element 101 are housed in a hermetic container 103.
  • the compression element 101 is disposed at the lower part of the sealed container 103.
  • the electric element 102 is disposed on the upper portion of the sealed container 103 (more specifically, above the compression element 101).
  • An oil sump 104 for storing the refrigerating machine oil 25 is provided at the bottom of the sealed container 103.
  • a suction pipe 26 is attached to the side surface of the sealed container 103, and a discharge pipe 24 is attached to the upper surface.
  • the electric element 102 that drives the compression element 101 is constituted by, for example, a brushless DC motor.
  • the electric element 102 includes a stator 21 fixed to the inner periphery of the hermetic container 103, and a rotor 22 disposed inside the stator 21.
  • a driving force is applied to the permanent magnet of the rotor 22 by the magnetic field generated in the stator 21, The rotor 22 rotates.
  • the compression element 101 sucks and compresses low-pressure gas refrigerant from the suction pipe 26 into the compression chamber, and discharges the compressed refrigerant into the sealed container 103.
  • the refrigerant discharged into the sealed container 103 passes through the electric element 102 and is discharged to the outside (the high pressure side of the refrigeration cycle) from the discharge pipe 24 fixed (welded) to the upper part of the sealed container 103.
  • This compression element 101 has the following elements.
  • the vane type compressor 200 according to the first embodiment shows that the number of vanes is two (first vane 9 and second vane 10).
  • Cylinder 1 The overall shape is substantially cylindrical, and both ends in the central axis direction are open.
  • a suction port 1a opens from the outer peripheral surface to the inner peripheral surface 1b formed in a substantially cylindrical shape.
  • the outer peripheral portion is provided with an oil return hole 1c penetrating in the axial direction (a direction along the central axis of the inner peripheral surface 1b).
  • Frame 2 A cylindrical member is provided on the upper part of a substantially disk-shaped member, and its longitudinal section is substantially T-shaped.
  • the substantially disk-shaped member closes one opening (upper side in FIG. 2) of the cylinder 1.
  • a bottomed cylindrical recess 2a concentric with the inner peripheral surface 1b of the cylinder 1 is formed on the cylinder 1 side end surface (the lower surface in FIG. 2) of the substantially disk-shaped member.
  • a vane aligner 5 and a vane aligner 7 which will be described later are inserted into the recess 2a and supported (rotatably supported) by a vane aligner bearing portion 2b which is an outer peripheral surface of the recess 2a.
  • the frame 2 has a through hole so as to penetrate the substantially cylindrical member from the end surface of the substantially disk-shaped member on the cylinder 1 side.
  • the through-hole is provided with a main bearing portion 2c.
  • the main bearing portion 2c supports a rotating shaft portion 4b of the rotor shaft 4 described later.
  • a discharge port 2d is formed in a substantially central portion of the frame 2.
  • the discharge port 2d may be formed in a cylinder head 3 to be described later.
  • Cylinder head 3 A cylindrical member is provided at a lower portion of a substantially disk-shaped member, and a longitudinal section thereof is substantially T-shaped (see FIG. 1). The substantially disk-shaped member closes the other opening (lower side in FIG. 2) of the cylinder 1. On the cylinder 1 side end surface (upper surface in FIG. 2) of this substantially disk-shaped member, a bottomed cylindrical recess 3a concentric with the inner peripheral surface 1b of the cylinder 1 is formed. A vane aligner 6 and a vane aligner 8, which will be described later, are inserted into the recess 3a and supported by a vane aligner bearing portion 3b that is an outer peripheral surface of the recess 3a.
  • the cylinder head 3 is formed with a through hole so as to penetrate the substantially cylindrical member from the cylinder 1 side end surface of the substantially disk-shaped member.
  • a main bearing 3c is provided in the through hole.
  • the main bearing portion 3c supports a rotating shaft portion 4c of the rotor shaft 4 described later.
  • Rotor shaft 4 A substantially cylindrical rotor portion 4a, a rotary shaft portion 4b provided on the upper portion of the rotor portion 4a so as to be concentric with the rotor portion 4a, and a rotor so as to be concentric with the rotor portion 4a.
  • the rotating shaft part 4c provided in the lower part of the part 4a is provided.
  • the rotor portion 4a performs a rotational motion around a rotational axis that is eccentric by a predetermined distance from the central axis of the cylinder 1.
  • the rotary shaft portion 4b and the rotary shaft portion 4c are supported by the main bearing portion 2c and the main bearing portion 3c.
  • the rotor portion 4a is formed with a plurality of substantially cylindrical through holes (bush holding portions 4d and 4e and vane relief portions 4f and 4g) penetrating in the axial direction.
  • the bush holding portion 4d and the vane relief portion 4f communicate with each other at the side surface
  • the bush holding portion 4e and the vane relief portion 4g communicate with each other at the side surface portion.
  • the bush holding portion 4d and the bush holding portion 4e are open on the outer peripheral portion side of the rotor portion 4a.
  • the axial ends of the vane escape portion 4 f and the vane escape portion 4 g communicate with the recess 2 a of the frame 2 and the recess 3 a of the cylinder head 3.
  • the bush holding portion 4d, the bush holding portion 4e, the vane relief portion 4f, and the vane relief portion 4g are disposed at substantially symmetrical positions with respect to the rotation axis of the rotor portion 4a (see also FIG. 4 described later). .
  • an oil pump 31 (shown only in FIG. 1) as described in, for example, Japanese Patent Application Laid-Open No. 2009-264175 is provided at the lower end of the rotor shaft 4.
  • the oil pump 31 sucks the refrigeration oil 25 in the oil sump 104 using the centrifugal force of the rotor shaft 4.
  • This oil pump 31 is provided in the axial center portion of the rotor shaft 4 and communicates with an oil supply passage 4h extending in the axial direction, and between the oil supply passage 4h and the recess 2a, between the oil supply passage 4i and between the oil supply passage 4h and the recess 3a. Is provided with an oil supply passage 4j.
  • an oil drain hole 4k (shown only in FIG. 1) is provided at a position above the main bearing portion 3c of the rotary shaft portion 4b.
  • Vane aligners 5 and 7 Partial ring-shaped base portions 5c and 7c, and vane holding portions 5a and 7a erected on one end face (lower side in FIG. 2) of the base portions 5c and 7c, It has.
  • the vane holding portions 5a and 7a are, for example, plate-like protrusions having a substantially square cross section.
  • the vane holding portions 5a and 7a are formed in the normal direction (radial direction) of the base portions 5c and 7c.
  • Vane aligners 6 and 8 Partial ring-shaped base portions 6c and 8c, and vane holding portions 6a and 8a erected on one end face (upper side in FIG. 2) of the base portions 6c and 8c, I have.
  • the vane holding portions 6a and 8a are, for example, plate-like protrusions having a substantially square cross section. In the first embodiment, the vane holding portions 6a and 8a are formed in the normal direction of the base portions 6c and 8c.
  • 1st vane 9 It is a plate-shaped member of a substantially square shape in a side view.
  • a front end portion 9a (a front end portion protruding from the rotor portion 4a) located on the inner peripheral surface 1b side of the cylinder 1 is formed in an arc shape that protrudes outward in plan view.
  • the arcuate radius of the tip 9a is substantially the same as the radius of the inner peripheral surface 1b of the cylinder 1.
  • a vane holding portion 5a of the vane aligner 5 is provided on an upper surface (a surface facing the frame 2) in the vicinity of an end portion (hereinafter referred to as an inner peripheral end portion) opposite to the tip end portion 9a of the first vane 9.
  • a slit-like back surface groove 9b is formed.
  • a slit-like back surface groove 9b into which the vane holding portion 6a of the vane aligner 6 is inserted is formed near the inner peripheral end of the first vane 9 on the lower surface (the surface facing the cylinder head 3).
  • the rear groove 9b is formed from the inner peripheral side end portion to the range where the vane holding portion 5a and the vane holding portion 6a are inserted along the longitudinal direction of the first vane 9.
  • these back surface grooves 9 b may be formed in the entire area of the upper surface and the lower surface of the first vane 9 along the longitudinal direction of the first vane 9.
  • Second vane 10 a plate-like member having a substantially square shape when viewed from the side.
  • a tip portion 10a (tip portion protruding from the rotor portion 4a) located on the inner peripheral surface 1b side of the cylinder 1 is formed in an arc shape that protrudes outward in plan view.
  • the arcuate radius of the tip portion 10a is configured to be substantially equal to the radius of the inner peripheral surface 1b of the cylinder 1.
  • a slit-like back surface groove 10b into which the vane holding portion 7a of the vane aligner 7 is inserted is formed on the upper surface (the surface facing the frame 2) in the vicinity of the inner peripheral side end portion of the second vane 10. Yes.
  • a slit-like back surface groove 10b into which the vane holding portion 8a of the vane aligner 8 is inserted is formed near the inner peripheral side end of the second vane 10 on the lower surface (the surface facing the cylinder head 3).
  • the rear groove 10b is formed from the inner peripheral side end portion to the range where the vane holding portion 7a and the vane holding portion 8a are inserted along the longitudinal direction of the second vane 10.
  • these back surface grooves 10 b may be formed in the entire area of the upper surface and the lower surface of the second vane 10 along the longitudinal direction of the second vane 10.
  • Bushings 11 and 12 A substantially semi-cylindrical member is configured as a pair.
  • the bush 11 is rotatably inserted into the bush holding portion 4d of the rotor portion 4a with the first vane 9 being sandwiched.
  • the bush 12 is rotatably inserted into the bush holding portion 4e of the rotor portion 4a in a state where the second vane 10 is sandwiched. That is, when the first vane 9 slides between the bushes 11, the first vane 9 is substantially in the centrifugal direction with respect to the rotor portion 4a (the centrifugal direction with respect to the center of the inner peripheral surface 1b of the cylinder 1). Can be moved to.
  • the 1st vane 9 can be rock
  • the second vane 10 slides between the bushes 12, the second vane 10 can move in the substantially centrifugal direction with respect to the rotor portion 4a.
  • the 2nd vane 10 can be rock
  • the vane holding portions 5a and 6a of the vane aligners 5 and 6 are inserted into the back groove 9b of the first vane 9, and the vane holding portions 7a and 8a of the vane aligners 7 and 8 are inserted into the back groove 10b of the second vane 10. Is inserted, the direction is regulated so that the normal lines of the arcs at the tips of the first vane 9 and the second vane 10 always coincide with the normal line of the cylinder inner peripheral surface 1b.
  • the vane aligners 5, 6, 7, and 8, the vane aligner bearing portions 2b and 3b of the recesses 2a and 3a, the bush holding portions 4d and 4e, and the bushes 11 and 12 correspond to the vane angle adjusting means in the present invention. .
  • the vane aligner 5 in which the vane holding portion 5a is slidably inserted into the back groove 9b of the first vane 9 also rotates in the recess 2a.
  • the vane aligner 6 in which the vane holding portion 6a is slidably inserted into the back surface groove 9b of the first vane 9 also rotates in the recess 3a.
  • the recess 2 a into which the vane aligner 5 is inserted and the recess 3 a into which the vane aligner 6 is inserted are formed concentrically with the inner peripheral surface 1 b of the cylinder 1.
  • the longitudinal direction of the first vane 9 is the inner peripheral surface of the cylinder 1.
  • the direction is regulated so as to be in the normal direction of 1b.
  • the vane aligner 7 in which the vane holding portion 7a is slidably inserted into the rear groove 10b of the second vane 10 also rotates in the recess 2a.
  • the vane aligner 8 in which the vane holding portion 8a is slidably inserted into the back surface groove 10b of the second vane 10 also rotates in the recess 3a.
  • the recess 2 a into which the vane aligner 7 is inserted and the recess 3 a into which the vane aligner 8 is inserted are formed concentrically with the inner peripheral surface 1 b of the cylinder 1.
  • the longitudinal direction of the second vane 10 is the inner peripheral surface of the cylinder 1.
  • the direction is regulated so as to be in the normal direction of 1b.
  • first vane 9 and the second vane 10 are pressed in the direction of the inner peripheral surface 1b of the cylinder 1 by a centrifugal force or the like, and the leading end 9a of the first vane 9 and the leading end of the second vane 10 are pressed. 10 a slides along the inner peripheral surface 1 b of the cylinder 1.
  • the radius of the arc of the tip portion 9a of the first vane 9 and the radius of the arc of the tip portion 10a of the second vane 10 are substantially the same as the radius of the inner peripheral surface 1b of the cylinder 1. Since the normals of these are also almost coincident with each other, a sufficient oil film is formed between the two, resulting in fluid lubrication.
  • coolant is introduce
  • the first vane 9 may be pushed by an elastic member such as a spring to move the first vane 9 toward the inner peripheral surface 1 b of the cylinder 1.
  • the configuration when moving the second vane 10 in the direction of the inner peripheral surface 1b of the cylinder 1 is also the same.
  • FIG. 4 is a cross-sectional view of the compression element according to Embodiment 1 of the present invention. This figure is a cross-sectional view taken along the line II of FIG. 1, and shows a state in which the rotation angle of the rotor portion 4a (rotor shaft 4) is 90 ° as will be described later with reference to FIG.
  • movement of the compression element 101 which concerns on this Embodiment 1 is demonstrated.
  • the rotor portion 4a of the rotor shaft 4 and the inner peripheral surface 1b of the cylinder 1 are in closest contact with each other (the closest point 32 shown in FIG. 4). Further, the first vane 9 and the inner peripheral surface 1b of the cylinder 1 and the second vane 10 and the inner peripheral surface 1b of the cylinder 1 slide at one place, respectively, so that three spaces ( A suction chamber 13, an intermediate chamber 14, and a compression chamber 15) are formed.
  • a suction chamber 13, an intermediate chamber 14, and a compression chamber 15 are formed in the suction chamber 13, a suction port 1 a communicating with the low pressure side of the refrigeration cycle is opened.
  • the compression chamber 15 communicates with a discharge port 2d formed in the frame 2.
  • the discharge port 2d is closed by a discharge valve (not shown) except during discharge.
  • the intermediate chamber 14 communicates with the suction port 1a up to a certain rotation angle range of the rotor portion 4a, but thereafter has a rotation angle range that does not communicate with either the suction port 1a or the discharge port 2d, and then discharge port 2d. Communicate with.
  • FIG. 5 is an explanatory view showing the compression operation of the compression element according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG.
  • the rotation angle of the rotor portion 4a (rotor shaft 4) is defined as follows. First, a state where the sliding portion (contact portion) between the first vane 9 and the inner peripheral surface 1b of the cylinder 1 coincides with the closest point 32 is defined as “angle 0 °”.
  • the arrow shown in the “angle 0 °” diagram of FIG. 5 is the rotation direction of the rotor shaft 4 (clockwise in FIG. 5). However, in other drawings, an arrow indicating the rotation direction of the rotor shaft 4 is omitted. Further, in FIG. 5, the state after “angle 180 °” is not shown because when “angle 180 °”, the first vane 9 and the second vane 10 are switched at “angle 0 °”. This is because the same compression operation is performed from “angle 0 °” to “angle 135 °” thereafter.
  • the suction port 1a has a closest point 32, a point A (see FIG. 4) at which the tip 9a of the first vane 9 and the inner peripheral surface 1b of the cylinder 1 slide in an “angle of 90 °” state, (For example, approximately 45 °). That is, the suction port 1a opens in the range from the closest point 32 to the point A.
  • the suction port 1 a is simply expressed as “suction”.
  • the discharge port 2d is provided in the vicinity of the closest contact 32 and on the upstream side in the rotational direction of the rotor portion 4a (left side in FIGS. 4 and 5) by a predetermined angle (distance) from the closest contact 32 (for example, The rotor portion 4a is upstream of the nearest contact 32 by approximately 30 °).
  • the discharge port 2 d is simply expressed as “discharge”.
  • the space on the right side partitioned by the closest point 32 and the second vane 10 communicates with the suction port 1a in the intermediate chamber 14, and sucks gas (refrigerant).
  • the space on the left side partitioned by the closest contact 32 and the second vane 10 becomes the compression chamber 15 communicating with the discharge port 2d.
  • the space partitioned by the first vane 9 and the closest contact point 32 becomes the suction chamber 13
  • the space partitioned by the first vane 9 and the second vane 10 is the intermediate chamber 14. It becomes.
  • the intermediate chamber 14 communicates with the suction port 1a. Since the volume of the intermediate chamber 14 becomes larger than that at the “angle 0 °”, the gas suction is continued.
  • the space partitioned by the second vane 10 and the closest contact point 32 is the compression chamber 15, and the volume of the compression chamber 15 is smaller than that at the “angle 0 °”, and the refrigerant is compressed and its pressure gradually increases. .
  • the tip end portion 9a of the first vane 9 overlaps with the point A on the inner peripheral surface 1b of the cylinder 1, so that the intermediate chamber 14 does not communicate with the suction port 1a. Thereby, the suction of the gas in the intermediate chamber 14 is completed.
  • the volume of the intermediate chamber 14 is substantially maximum.
  • the volume of the compression chamber 15 becomes even smaller than when the angle is 45 °, and the refrigerant pressure rises.
  • the volume of the suction chamber 13 becomes larger than that at the “angle 45 °”, and the suction is continued.
  • the volume of the intermediate chamber 14 is smaller than that at “angle 90 °”, and the refrigerant pressure increases. Further, the volume of the compression chamber 15 becomes smaller than that at the “angle 90 °”, and the pressure of the refrigerant rises. The volume of the suction chamber 13 becomes larger than that at the “angle 90 °”, and the suction is continued.
  • the second vane 10 approaches the discharge port 2d, but when the pressure in the compression chamber 15 exceeds the high pressure of the refrigeration cycle (including the pressure required to open a discharge valve not shown), the discharge valve opens and the compression chamber opens.
  • the 15 refrigerant is discharged into the sealed container 103.
  • the refrigerant discharged into the sealed container 103 passes through the electric element 102 and is discharged to the outside (the high pressure side of the refrigeration cycle) from the discharge pipe 24 fixed (welded) to the upper part of the sealed container 103. Therefore, the pressure in the sealed container 103 is a high discharge pressure.
  • the volume of the suction chamber 13 is gradually increased by the rotation of the rotor portion 4a (rotor shaft 4), and the gas suction is continued. Thereafter, the flow proceeds to the intermediate chamber 14, but the volume gradually increases to the middle, and further the gas suction is continued. On the way, the volume of the intermediate chamber 14 becomes the maximum and the communication with the suction port 1a is lost, so the gas suction is terminated here. Thereafter, the volume of the intermediate chamber 14 gradually decreases and compresses the gas. Thereafter, the intermediate chamber 14 moves to the compression chamber 15 and continues to compress the gas.
  • the gas compressed to a predetermined pressure is discharged from a discharge port (for example, a discharge port 2d) formed in a portion of the cylinder 1 or the frame 2 or the cylinder head 3 that opens to the compression chamber 15.
  • FIG. 6 is a bottom cross-sectional view for explaining the rotating operation of the vane aligner according to the first embodiment of the present invention.
  • FIG. 6 shows the rotation operation of the vane aligners 6 and 8.
  • the arrow shown in the “angle 0 °” diagram of FIG. 6 is the rotation direction of the vane aligners 6 and 8 (clockwise in FIG. 6).
  • the arrows indicating the rotation direction of the vane aligners 6 and 8 are omitted.
  • the vane aligners 6 and 8 also rotate around the center of the cylinder 1 while being supported by the vane aligner bearing portion 3b in the recess 3a as shown in FIG. This operation is the same for the vane aligners 5 and 7 that rotate while being supported by the vane aligner bearing portion 2b in the recess 2a.
  • the refrigeration oil 25 is sucked up from the oil sump 104 by the oil pump 31 and sent out to the oil supply path 4h, as shown by arrows in FIG.
  • the refrigerating machine oil 25 sent out to the oil supply passage 4h passes through the oil supply passage 4i and is sent out to the recess 3a of the cylinder head 3 through the recess 2a of the frame 2 and the oil supply passage 4j.
  • the refrigerating machine oil 25 fed to the recesses 2a and 3a lubricates the vane aligner bearing portions 2b and 3b, and a part thereof is supplied to the vane relief portions 4f and 4g communicating with the recesses 2a and 3a.
  • the pressure in the sealed container 103 is a high discharge pressure
  • the pressures in the recesses 2a and 3a and the vane relief portions 4f and 4g are also discharge pressures.
  • a part of the refrigerating machine oil 25 fed to the recesses 2 a and 3 a is supplied to the main bearing portion 2 c of the frame 2 and the main bearing portion 3 c of the cylinder head 3.
  • the refrigerating machine oil 25 sent out to the vane relief portions 4f and 4g flows as follows.
  • FIG. 7 is an enlarged view of a main part in the vicinity of the vane according to Embodiment 1 of the present invention. 7 is an enlarged view of the main part showing the vicinity of the vane 9 in FIG. 4.
  • an arrow indicated by a solid line indicates a flow of the refrigerating machine oil 25, and an arrow indicated by a broken line indicates a rotation direction.
  • the pressure of the vane escape portion 4f is the discharge pressure and is higher than the pressure of the suction chamber 13 and the intermediate chamber 14
  • the refrigerating machine oil 25 has a sliding portion between the side surface of the first vane 9 and the bush 11. While being lubricated, it is sent out to the suction chamber 13 and the intermediate chamber 14 by the pressure difference and centrifugal force.
  • the refrigerating machine oil 25 is sent out to the suction chamber 13 and the intermediate chamber 14 by a pressure difference and centrifugal force while lubricating the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4.
  • the first vane 9 is pressed against the inner peripheral surface 1b of the cylinder 1 by the pressure difference between the vane escape portion 4f, the suction chamber 13 and the intermediate chamber 14, and the centrifugal force, and the tip of the first vane 9 is pushed. 9 a slides along the inner peripheral surface 1 b of the cylinder 1.
  • a part of the refrigerating machine oil 25 sent to the intermediate chamber 14 flows into the suction chamber 13 while lubricating the tip end portion 9 a of the first vane 9.
  • the radius of the arc of the tip 9a of the first vane 9 is substantially the same as the radius of the inner peripheral surface 1b of the cylinder 1, and the normals of both are also substantially the same.
  • a sufficient oil film is formed to provide fluid lubrication.
  • FIG. 7 shows the case where the space partitioned by the first vane 9 is the suction chamber 13 and the intermediate chamber 14, the rotation proceeds and the space partitioned by the first vane 9 is separated from the intermediate chamber 14.
  • the above operation is shown for the first vane 9, the same operation is performed for the second vane 10.
  • the refrigerating machine oil 25 supplied to the main bearing portion 2c is discharged into the space above the frame 2 through the gap of the main bearing portion 2c, and then the oil return hole provided in the outer peripheral portion of the cylinder 1 From 1c, it is returned to the oil sump 104.
  • the refrigerating machine oil 25 supplied to the main bearing portion 3c is returned to the oil sump 104 through the gap between the main bearing portions 2c.
  • the refrigerating machine oil 25 sent to the suction chamber 13, the intermediate chamber 14 and the compression chamber 15 through the vane relief portions 4f and 4g is finally discharged together with the refrigerant from the discharge port 2d to the space above the frame 2.
  • the oil is returned to the oil sump 104 through the oil return hole 1 c provided in the outer peripheral portion of the cylinder 1.
  • the surplus refrigerating machine oil 25 is discharged from the oil drain hole 4 k above the rotor shaft 4 into the space above the frame 2, and then cylinder 1 is returned to the oil sump 104 through an oil return hole 1c provided in the outer peripheral portion of the oil.
  • the oil pump 31 is provided at the lower end portion of the rotor shaft 4 and the oil supply passages 4h, 4i, 4j are provided in the rotor shaft 4.
  • Refrigerating machine oil 25 can be reliably supplied and lubricated to 2c, 3c and vane aligner bearing portions 2b, 3b. Further, since the axial ends of the vane escape portion 4f and the vane escape portion 4g are communicated with the recess 2a of the frame 2 and the recess 3a of the cylinder head 3, the refrigerating machine oil 25 passes through the vane escape portion 4f and the vane escape portion 4g.
  • the suction chamber 13 and the intermediate chamber 14 or the middle by the pressure difference and centrifugal force. It is sent out to the chamber 14 and the compression chamber 15. Further, a part of the refrigerating machine oil 25 sent out to the intermediate chamber 14 or the compression chamber 15 causes the suction chamber 13 or the intermediate chamber to lubricate the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10. Therefore, the refrigerating machine oil 25 can be reliably supplied and lubricated to the sliding portions of the vane side surface and the bush, the bush and the bush holding portion, and the vane tip portion.
  • a mechanism necessary for performing the compression operation so that the arcs of the distal end portion 9a of the first vane 9 and the distal end portion 10a of the second vane 10 and the normal line of the inner peripheral surface 1b of the cylinder 1 are always substantially coincident (The mechanism in which the first vane 9 and the second vane 10 rotate around the center of the cylinder 1 is realized by integrally configuring the rotary shaft portions 4b and 4c and the rotor portion 4a (that is, conventional). This is realized without using the end plates provided at both ends of the rotor portion of the vane type compressor).
  • the vane compressor 200 according to the first embodiment can reduce the bearing sliding loss by being able to support the rotating shaft portions 4b and 4c with the small-diameter main bearing portions 2c and 3c, and the rotor portion 4a.
  • the accuracy of the outer diameter and the rotation center can be improved. Therefore, the vane compressor 200 according to the first embodiment can reduce leakage loss by forming a narrow gap between the rotor portion 4a and the cylinder inner peripheral surface 1b. The compressor 200 can be obtained.
  • the vane holding portions 5a, 6a, 7a, 8a of the vane aligners 5, 6, 7, 8 are used as the back groove 9b of the first vane 9 and the back groove of the second vane 10, respectively.
  • the method of fitting in 10b and regulating the direction of the first vane 9 and the second vane 10 was shown.
  • the vane holding portions 5 a, 6 a, 7 a, 8 a, the back surface groove 9 b of the first vane 9, and the back surface groove 10 b of the second vane 10 have thin portions.
  • vane holding portions 5a, 6a, 7a, and 8a are rectangular plate-like protrusions, they themselves are weak in strength.
  • FIG. 8 is a perspective view showing the vane according to Embodiment 1 of the present invention. As shown in FIG. 8, the first vane 9 and the second vane 10 include thin portions 9c and 10c on both sides of the back grooves 9b and 10b.
  • a refrigerant having a small force applied to the first vane 9 and the second vane 10 that is, a low operating pressure.
  • a refrigerant having a normal boiling point of ⁇ 45 ° C. or higher is preferable, and a refrigerant such as R600a (isobutane), R600 (butane), R290 (propane), R134a, R152a, R161, R407C, R1234yf, R1234ze, etc.
  • the holding portions 5a, 6a, 7a, 8a, the back surface groove 9b of the first vane 9, and the back surface groove 10b of the second vane 10 can be used without any problem in strength.
  • the method of regulating the direction of the vane 10 in the vane compressor 200 according to the first embodiment is not limited to the above-described method.
  • the direction of the vane 10 may be regulated as follows.
  • FIG. 9 is a perspective view showing another example of the vane and the vane aligner according to the first exemplary embodiment of the present invention.
  • FIG. 9 shows the vane 10 and the vane aligner 8.
  • the second vane 10 shown in FIG. 9 is provided with a protruding portion 10d instead of the back surface groove 10b.
  • the vane aligner 8 shown in FIG. 9 is provided with a slit-like vane holding groove 8b instead of the vane holding portion 8a which is a plate-like protrusion.
  • the vane aligner 7 is similarly provided with a slit-like vane holding groove 7b instead of the vane holding portion 7a.
  • the protrusion 10d provided on the end face of the second vane 10 is fitted into the vane holding grooves 7b and 8b, so that the arc of the tip of the second vane 10 and the normal line of the inner peripheral face 1b of the cylinder 1 are almost substantially coincident.
  • the direction is regulated so as to.
  • the second vane 10 is restricted from moving excessively in the direction opposite to the inner peripheral surface 1b side of the cylinder 1 by stopping the inner diameter side without passing through the vane holding grooves 7b, 8b of the vane aligners 7, 8. May be.
  • the first vane 9 and the vane aligners 5 and 6 may have the same configuration. The same effect can be obtained with the above configuration.
  • the direction of the vane 10 may be regulated as follows.
  • FIG. 10 is an enlarged view (planar sectional view) of a main part showing the vicinity of a vane of another example of the compression element according to Embodiment 1 of the present invention.
  • B indicates the mounting direction of the vane holding portion 6 a of the vane aligner 6 and the longitudinal direction of the first vane 9.
  • C indicates the normal line of the arc of the tip 9 a of the first vane 9. That is, the vane holding portion 6a of the vane aligner 6 is attached to the end surface on the vane side in the central axis direction of the ring-shaped member of the vane aligner 6 so as to be inclined in the direction B.
  • the first vane 9 is provided in the rotor portion 4a of the rotor shaft 4 so that the longitudinal direction thereof is inclined with respect to the normal line of the inner peripheral surface 1b of the cylinder 1. Further, the normal C of the arc of the tip portion 9 a of the first vane 9 is inclined with respect to the vane longitudinal direction B, and the vane holding portion 6 a of the vane aligner 6 is inserted into the back groove 9 b of the first vane 9.
  • the cylinder 1 is configured to be directed toward the center of the inner peripheral surface 1b.
  • the normal C of the arc of the tip 9 a of the first vane 9 substantially coincides with the normal of the inner peripheral surface 1 b of the cylinder 1.
  • the first vane 9 and the vane aligner 5 and the second vane 10 and the vane aligners 7 and 8 have the same configuration as described above.
  • the arc of the vane tip (the tip 9a of the first vane 9 and the tip 10a of the second vane 10) and the normal of the inner peripheral surface 1b of the cylinder 1 always coincide with each other during rotation.
  • the compression operation can be performed, and the flow of the refrigerating machine oil 25 is the same as described above, so that the same effect as described above can be obtained.
  • the arc length of the vane tip (the tip 9a of the first vane 9 and the tip 10a of the second vane 10) can be increased, and the seal length is increased to further increase the vane tip. It is also possible to reduce leakage loss at the portions (the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10).
  • Embodiment 2 FIG.
  • the following groove portions may be formed in the bottom portions of the bottomed cylindrical concave portions 2a and 3a shown in the first embodiment. Note that items not particularly described in the second embodiment are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 11 is an essential part enlarged view (longitudinal sectional view) showing the vicinity of the vane aligner bearing portion of the vane type compressor according to Embodiment 2 of the present invention.
  • FIG. 11 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the vicinity of the vane aligner bearing portion 3b (in other words, the concave portion 3a of the cylinder head 3) has the same shape.
  • the arrows shown in FIG. 11 indicate the flow of the refrigerating machine oil 25.
  • a step is provided on the outer peripheral side of the bottom of the recess 2 a of the frame 2 to form an annular groove 2 g concentric with the inner peripheral surface 1 b of the cylinder 1.
  • the vane aligners 5 and 7 (more specifically, the base portions 5c and 7c) are inserted into the groove 2g in the recess 2a. Since the vane aligners 5 and 7 are fitted into the grooves 2g in the recess 2a to restrict radial movement, the vane aligners 5 and 7 can be held more stably in the recess 2a than in the first embodiment. it can.
  • the step of the recess 2a of the frame 2 that is, the depth of the groove 2g is set to an appropriate level so as not to hinder oil supply.
  • the flow of the refrigerating machine oil 25 is the same as that in the first embodiment, and the same effect as in the first embodiment can be obtained.
  • the vane type compressor 200 according to the second embodiment holds the vane aligners 5 and 7 in the recess 2a of the frame 2 more stably than the vane type compressor 200 shown in the first embodiment. Therefore, the vane aligners 6 and 8 can be held in the recess 3a of the cylinder head 3 more stably.
  • Embodiment 3 FIG.
  • the first vane 9 and the vane aligners 5 and 6 are configured separately, and the second vane 10 and the vane aligners 7 and 8 are configured separately.
  • at least one of the vane aligners 5 and 6 may be formed integrally with the first vane 9.
  • at least one of the vane aligners 7 and 8 may be configured integrally with the second vane 10.
  • items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 12 is a perspective view showing a vane and a vane aligner of a vane compressor according to Embodiment 3 of the present invention.
  • FIG. 12 shows a case in which the second vane 20 and the vane aligner 8 are integrally formed as an example in which the vane and the vane aligner are integrally formed.
  • the rear groove 9b of the first vane 9 and the vane holding portions 5a and 6a of the vane aligners 5 and 6 have a relative positional relationship in the operation of the vane compressor 200 (sealed type). It does not change.
  • the relative positional relationship between the rear groove 10b of the second vane 10 and the vane holding portions 7a and 8a of the vane aligners 7 and 8 does not change in the operation of the vane compressor 200 (sealed type). Therefore, both (the first vane 9 and the vane aligners 5 and 6 and the second vane 10 and the vane aligners 7 and 8) can be integrated.
  • the second vane 10 and the vane aligner 8 are manufactured separately, and the vane holding portion 8a of the vane aligner 8 is inserted into the rear groove 10b of the second vane 10, and then both are fixed. Are integrated.
  • the second vane 10 and the vane aligner 8 are integrated.
  • the vane aligner 7 may or may not be integrated with the second vane 10 in the same manner. . That is, the second vane 10 and at least one of the vane aligners 7 and 8 are integrated. The same applies to the first vane 9, and the first vane 9 and at least one of the vane aligners 5 and 6 may be integrated.
  • the compression element 101 according to the third embodiment performs the same operation as the compression element 101 shown in the first embodiment, but differs from the compression element 101 shown in the first embodiment in the following points. That is, at least one of the vane aligners 5 and 6 and the first vane 9 are integrated, and at least one of the vane aligners 7 and 8 and the second vane 10 are integrated, so that the first vane 9 and the first vane 9 and the first vane 9 are integrated. In the second vane 10, the movement of the rotor portion 4a in the substantially centrifugal direction is fixed.
  • tip part 10a of the 2nd vane 10 do not slide with the internal peripheral surface 1b of the cylinder 1, but the front-end
  • the tip 10a of the vane 10 and the inner peripheral surface 1b of the cylinder 1 rotate in a non-contact state (that is, a state in which a minute gap is maintained).
  • the flow of the refrigerating machine oil 25 is substantially the same as that of the first embodiment (see FIGS. 1 and 7).
  • the tip end portion 9a of the first vane 9 and the tip end portion 10a of the second vane 10 and the inner peripheral surface 1b of the cylinder 1 are not in contact with each other, the tip end portion of the vane (the tip end portion 9a of the first vane 9).
  • tip part 10a of the 2nd vane 10 does not generate
  • the structure which integrates a vane and a vane aligner is not limited to the structure shown in FIG. 12, For example, you may integrate a vane and a vane aligner by the structure as shown in the following FIG.
  • FIG. 13 is an exploded perspective view showing another example of the compression element of the vane type compressor according to Embodiment 3 of the present invention.
  • the vane and the vane aligner are not formed as separate parts but are formed as an integral part.
  • reference numeral 41 denotes a first integral vane in which the first vane 9 and the vane aligners 5 and 6 are formed as an integral part.
  • Reference numeral 42 denotes a second integral vane in which the second vane 10 and the vane aligners 7 and 8 are formed as an integral part.
  • the operation is the same as that of the vane type compressor shown in FIG. 12, and the same effect can be obtained.
  • the tip of the vane (the tip 9a of the first vane 9 and the tip of the second vane 10 are similar to the configuration shown in FIG. 10 of the first embodiment.
  • the normal line of the circular arc of the portion 10a) is substantially coincident with the normal line of the inner peripheral surface 1b of the cylinder 1, and the vane longitudinal direction has a constant inclination with respect to the normal direction of the cylinder inner peripheral surface 1b. Good. This makes it possible to increase the arc length of the vane tip (the tip 9a of the first vane 9 and the tip 10a of the second vane 10), and further increases the seal length.
  • the recesses 2a and 3a of the vane type compressor 200 according to the third embodiment are provided with steps as in the second embodiment, and the vane aligners 5, 6, 7, and 8 are held in the grooves. Good.
  • Embodiment 4 By providing the following oil supply passages to the vane compressor 200 shown in the first to third embodiments, it is possible to obtain the vane compressor 200 with even less loss.
  • items that are not particularly described are the same as those in Embodiments 1 to 3, and the same functions and configurations are described using the same reference numerals.
  • FIG. 14 is a longitudinal sectional view showing a vane type compressor according to Embodiment 4 of the present invention.
  • FIG. 15 is a cross-sectional view of the compression element of the vane compressor, and is a cross-sectional view taken along the line II of FIG. Note that the arrows shown in FIGS. 14 and 15 indicate the flow of the refrigerating machine oil 25.
  • the vane type compressor 200 includes an oil supply passage that communicates the recessed portion 2a of the frame 2 and the closest point 32 of the cylinder 1.
  • This oil supply path is composed of an oil supply path 2e and an oil supply path 1d.
  • the oil supply passage 2e is formed in the frame 2, with one end opening to the recess 2a of the frame 2 and the other end opening to the cylinder 1 side end surface so as to communicate with the oil supply passage 1d. Yes.
  • the oil supply passage 1d is formed in the cylinder 1, and one end thereof opens to the frame 2 side end surface so as to communicate with the oil supply passage 2e, and the other end opens to the nearest contact 32. ing.
  • the fourth embodiment has the effect of reducing leakage loss in the gap between the rotor portion 4a of the rotor shaft 4 and the inner peripheral surface 1b of the cylinder 1 in addition to the effects shown in the first embodiment. There is an effect that it is possible to provide the vane compressor 200 with less loss than the first embodiment.
  • the steps as in the second embodiment may be provided to hold the vane aligners 5, 6, 7, and 8 in the groove portion.
  • the vane and the vane aligner may be integrated as in the third embodiment.
  • the oil supply passage that connects the recess 2a of the frame 2 and the closest contact 32 of the cylinder 1 is provided.
  • an oil supply passage corresponding to the oil supply passage 2e is formed in the cylinder head 3, and the cylinder head 3 may be provided with an oil supply passage that communicates the three recesses 3a with the closest point 32 of the cylinder 1.
  • an oil supply path that communicates both the recess 2a of the frame 2 and the recess 3a of the cylinder head 3 and the closest point 32 of the cylinder 1 may be provided.
  • the oil supply passage 1d is opened at only one location at the closest point 32, but may be opened at a plurality of locations.
  • Embodiment 5 By providing the following oil supply path to the vane type compressor 200 shown in the first to fourth embodiments, it is possible to obtain the vane type compressor 200 with even less loss.
  • items that are not particularly described are the same as those in Embodiments 1 to 4, and the same functions and configurations are described using the same reference numerals.
  • FIG. 16 is a longitudinal sectional view showing a vane type compressor according to Embodiment 5 of the present invention. Note that the arrows shown in FIG. 16 indicate the flow of the refrigerating machine oil 25.
  • the vane compressor 200 according to the fifth embodiment is provided with an oil supply passage that connects the oil sump 104 and the closest point 32 of the cylinder 1. ing.
  • This oil supply path is composed of an oil supply path 3d and an oil supply path 1e.
  • the oil supply passage 3d is formed in the cylinder head 3, and one end thereof opens to the end surface on the oil reservoir 104 side of the cylinder head 3 immersed in the oil reservoir 104, and the other end communicates with the oil supply passage 1e.
  • the cylinder head 3 is opened at the cylinder 1 side end surface.
  • the oil supply passage 1e is formed in the cylinder 1, and one end thereof opens to the cylinder head 3 side end surface so as to communicate with the oil supply passage 3d, and the other end opens to the nearest contact 32. is doing.
  • the pressure in the oil sump 104 is a high discharge pressure, a part of the refrigerating machine oil 25 in the oil sump 104 is supplied to the closest point 32 through the oil supply passage 3d and the oil supply passage 1e.
  • the gap between the rotor portion 4a of the rotor shaft 4 and the inner peripheral surface 1b of the cylinder 1 is sealed with the refrigerating machine oil 25, so that the high pressure side to the low pressure side (for example, the compression chamber 15 to the suction chamber 13 in FIG. 4). It is possible to reduce the leakage of refrigerant to
  • the oil supply passage shown in the fifth embodiment is formed in the vane compressor 200 shown in the second to fourth embodiments, so that the vane type shown in the second to fourth embodiments is formed.
  • the vane type compressor 200 with less loss than the compressor 200 can be provided.
  • Embodiment 6 By providing the following oil supply passages to the vane compressor 200 shown in the first to fifth embodiments, the vane compressor 200 with even less loss can be obtained.
  • items that are not particularly described are the same as those in the first to fifth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 17 is a longitudinal sectional view showing a vane type compressor according to Embodiment 6 of the present invention. Note that the arrows shown in FIG. 17 indicate the flow of the refrigerating machine oil 25.
  • the vane compressor 200 according to the sixth embodiment includes an oil supply passage 3e that communicates the oil sump 104 and the recess 3a of the cylinder head 3 with a cylinder. It is provided on the head 3.
  • the pressure in the vane relief portions 4f and 4g is a high discharge pressure.
  • the refrigerating machine oil 25 in the vane escape portions 4f and 4g is supplied to the suction chamber 13 and the intermediate chamber 14 by the pressure difference and the centrifugal force.
  • the vane type compressor 200 according to the sixth embodiment includes the oil supply passage 3e in addition to the oil supply passage shown in the first embodiment, the refrigerating machine oil 25 in the oil sump 104 is supplied with the oil supply passage. 3e is also supplied to the recess 3a of the cylinder head 3, and is supplied to the suction chamber 13 and the intermediate chamber 14 through the vane escape portions 4f and 4g.
  • the refrigerating machine oil 25 supplied to the concave portion 3a of the cylinder head 3 increases, so that there is less loss than in the first embodiment.
  • the vane type compressor 200 can be provided.
  • the oil supply passage 3e shown in the sixth embodiment is formed in the vane compressor 200 shown in the second to fifth embodiments, so that the vanes shown in the second to fifth embodiments are formed. It is possible to provide the vane compressor 200 with even less loss than the compressor 200.
  • Embodiment 7 By providing the following oil supply passages (through holes) in the vane compressor 200 shown in the first to sixth embodiments, it is possible to obtain the vane compressor 200 with even less loss. .
  • items that are not particularly described are the same as those in the first to sixth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 18 is a longitudinal sectional view showing a vane type compressor according to Embodiment 7 of the present invention. Note that the arrows shown in FIG. 18 indicate the flow of the refrigerating machine oil 25.
  • the vane compressor 200 according to the seventh embodiment has a through hole 2f that communicates the recess 2a of the frame 2 with the space above the frame 2. Is provided on the frame 2. According to this configuration, the refrigerating machine oil 25 discharged to the space above the frame 2 through the main bearing portion 2 c and the refrigerating machine oil discharged to the space above the frame 2 from the oil drain hole 4 k provided in the rotor shaft 4. A part of 25 is returned to the recess 2a of the frame 2 again through the through hole 2f.
  • the refrigerating machine oil 25 supplied to the recess 2a of the frame 2 is increased, so that the vane with less loss than the first embodiment.
  • the mold compressor 200 can be provided.
  • the vane shown in the second to sixth embodiments is formed. It is possible to provide the vane compressor 200 with even less loss than the compressor 200.
  • the through hole 2f in the vane type compressor 200 shown in the sixth embodiment it is possible to increase the amount of oil supply in both the recess 2a of the frame 2 and the recess 3a of the cylinder head 3. Loss reduction effect increases.
  • FIG. 19 is a longitudinal sectional view showing another example of the vane compressor according to Embodiment 7 of the present invention.
  • FIG. 20 is a plan view showing the frame of the vane compressor. Note that the arrows shown in FIG. 19 indicate the flow of the refrigerating machine oil 25.
  • a recessed oil retaining portion 33 that communicates with the upper end of the through hole 2 f and opens upward is provided in the frame 2. According to this configuration, the refrigerating machine oil 25 discharged to the space above the frame 2 through the main bearing portion 2 c and the refrigerating machine oil discharged to the space above the frame 2 from the oil drain hole 4 k provided in the rotor shaft 4.
  • the vane compressor 200 shown in FIGS. 19 and 20 has an effect that the loss can be further reduced as compared with the vane compressor 200 shown in FIG.
  • Embodiment 8 By providing the following oil supply passages to the vane compressor 200 shown in the first to seventh embodiments, it is possible to obtain the vane compressor 200 with even less loss.
  • items that are not particularly described are the same as those in the first to seventh embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 21 is a longitudinal sectional view showing a vane type compressor according to the eighth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the compression element of the vane compressor, and is a cross-sectional view taken along the line II of FIG.
  • the arrows shown in FIGS. 21 and 22 indicate the flow of the refrigerating machine oil 25.
  • the vane compressor 200 communicates the oil supply passage 4h in the rotor shaft 4 with the vane relief portions 4f and 4g.
  • Oil supply paths 4m and 4n are provided.
  • the oil supply passage 4m communicates the oil supply passage 4h in the rotor shaft 4 and the vane escape portion 4f
  • the oil supply passage 4n communicates the oil supply passage 4h in the rotor shaft 4 and the vane escape portion 4g. is there.
  • the amount of oil supplied to the vane relief portions 4f and 4g is greater than that in the first embodiment, so that the sliding portions of the vane side surface and the bush, the bush and the bush holding portion, and the vane tip portion are lubricated.
  • the refrigerating machine oil 25 in the oil sump 104 can be supplied to the vane escape portions 4f and 4g through the oil supply passages 4m and 4n. Even if both end faces of 4f and 4g are not communicated with the frame 2 and the recesses 2a and 3a of the cylinder head 3, it is possible to supply oil equivalent to that in the first to seventh embodiments.
  • Embodiment 9 FIG. An oil supply passage for communicating the recess 2a of the frame 2 with the vane aligner bearing portion 2b to the vane compressor 200 shown in the first to eighth embodiments, and the recess 3a of the cylinder head 3 and the vane aligner bearing portion.
  • An oil supply passage communicating with 3b may be formed as follows.
  • items that are not particularly described are the same as those in the first to eighth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 23 is a longitudinal sectional view showing a vane type compressor according to the ninth embodiment of the present invention.
  • FIG. 24 is an enlarged view (longitudinal sectional view) of a main part showing the vicinity of a vane aligner bearing portion of the vane compressor.
  • FIG. 24 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2). Note that the arrows shown in FIGS. 23 and 24 indicate the flow of the refrigerating machine oil 25.
  • the basic configuration of the vane type compressor 200 according to the ninth embodiment is the same as the configuration of the vane type compressor 200 shown in the first embodiment, but the bottom of the recess 2a of the frame 2 and the vane aligners 5, 7 Is different from the configuration of the vane type compressor 200 shown in the first embodiment. That is, the vane type compressor 200 according to the ninth embodiment has an oil supply passage that communicates the recess 2a of the frame 2 and the vane aligner bearing portion 2b in addition to the configuration of the vane type compressor 200 shown in the first embodiment. A gap 2h is provided.
  • a gap serving as an oil supply path for communicating the recess 3a of the cylinder head 3 and the vane aligner bearing portion 3b is also provided between the bottom of the recess 3a of the cylinder head 3 and the vane aligners 6 and 8. Is formed.
  • the vane type compressor 200 configured as described above, since the gap 2h is formed, the refrigerating machine oil 25 fed to the recess 2a of the frame 2 is separated from the gap 2h (the axial end surfaces of the vane aligners 5 and 7). And the bottom of the recess 2a) to the vane aligner bearing portion 2b. For this reason, it is possible to reliably supply oil by the vane aligner bearing portion 2b, and it is possible to more reliably lubricate the vane aligner bearing portion 2b. This operation is the same in the vane aligner bearing portion 3b.
  • the vane aligner bearing portions 2b and 3b can be reliably supplied with oil, and the vane aligner bearing portions 2b and 3b can be more reliably lubricated. For this reason, there is an effect that it is possible to provide the vane type compressor 200 with less loss than the first embodiment.
  • the vane-type compression shown in the second to eighth embodiments is formed by forming the gap shown in the ninth embodiment in the vane-type compressor 200 shown in the second to eighth embodiments.
  • the vane type compressor 200 with less loss than the machine 200 can be provided.
  • Embodiment 10 FIG.
  • the following groove portions may be formed in the bottom portions of the bottomed cylindrical concave portions 2a and 3a shown in the ninth embodiment.
  • items not particularly described in the tenth embodiment are the same as those in the ninth embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 25 is an essential part enlarged view (longitudinal sectional view) showing the vicinity of the vane aligner bearing portion of the vane type compressor according to the tenth embodiment of the present invention.
  • FIG. 25 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the vicinity of the vane aligner bearing portion 3b (in other words, the concave portion 3a of the cylinder head 3) has the same shape.
  • the arrows shown in FIG. 25 indicate the flow of the refrigerating machine oil 25.
  • a step is provided on the outer peripheral side of the bottom of the recess 2a of the frame 2 to form an annular groove 2g concentric with the inner peripheral surface 1b of the cylinder 1.
  • the vane aligners 5 and 7 (more specifically, the base portions 5c and 7c) are inserted into the groove 2g in the recess 2a. Further, in a state where the vane aligners 5 and 7 are inserted into the groove 2g in the recess 2a, a gap 2h is formed between the bottom of the recess 2a of the frame 2 and the vane aligners 5 and 7.
  • the vane aligners 5 and 7 are fitted into the grooves 2g in the recess 2a to restrict radial movement, the vane aligners 5 and 7 can be held more stably in the recess 2a than in the ninth embodiment. it can.
  • frame 2 is enlarged too much, the axial height of the space of the internal diameter side of the recessed part 2a of the flame
  • the step of the recess 2a of the frame 2 that is, the depth of the groove 2g is set to an appropriate level so as not to hinder the oil supply.
  • the refrigerating machine oil 25 fed to the concave portion 2a of the frame 2 has the gap 2h (vane aligner). (Between the axial end surfaces of 5 and 7 and the bottom of the recess 2a) and sent to the vane aligner bearing portion 2b. For this reason, it is possible to reliably supply oil by the vane aligner bearing portion 2b, and it is possible to more reliably lubricate the vane aligner bearing portion 2b. This operation is the same in the vane aligner bearing portion 3b.
  • the vane aligners 5 and 7 are more stably held in the recess 2a of the frame 2 than the vane compressor 200 shown in the ninth embodiment.
  • the vane aligners 6 and 8 can be held in the recess 3a of the cylinder head 3 more stably.
  • Embodiment 11 By providing the following oil supply passage (through hole) in the vane compressor 200 shown in the ninth embodiment or the tenth embodiment, it is possible to obtain the vane compressor 200 with even less loss. .
  • items not particularly described are the same as those in the ninth embodiment or the tenth embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 26 is an essential part enlarged view (longitudinal sectional view) showing the vicinity of the vane aligner bearing portion of the vane type compressor according to Embodiment 11 of the present invention.
  • FIG. 26 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the vicinity of the vane aligner bearing portion 3b (in other words, the concave portion 3a of the cylinder head 3) has the same shape.
  • the arrow shown in FIG. 26 shows the flow of the refrigerating machine oil 25.
  • the vane compressor 200 according to the eleventh embodiment includes an oil retaining groove 2i that communicates with the gap 2h in the vane aligner bearing portion 2b.
  • an oil retaining groove 2i is formed over the entire circumference at a location opposite to the cylinder 1 of the vane aligner bearing portion 2b.
  • the refrigerating machine oil 25 fed to the recess 2a of the frame 2 passes through the gap 2h (between the axial end surfaces of the vane aligners 5 and 7 and the bottom of the recess 2a).
  • the gap 2h between the axial end surfaces of the vane aligners 5 and 7 and the bottom of the recess 2a.
  • the vane aligner bearing portion 2b is more easily supplied with oil than in the ninth embodiment. For this reason, it becomes possible to lubricate the vane aligner bearing part 2b more reliably.
  • the oil retaining groove 2i shown in the eleventh embodiment is formed in the vane type compressor 200 shown in the tenth embodiment, that is, the oil retaining groove 2i is formed so as to communicate with the groove portion 2g.
  • the vane aligner bearing portion 2b can be more reliably lubricated than the vane type compressor 200 shown in the ninth embodiment.
  • Embodiment 12 FIG.
  • the oil supply passage that communicates the recess 2a of the frame 2 and the vane aligner bearing portion 2b and the oil supply passage that communicates the recess 3a of the cylinder head 3 and the vane aligner bearing portion 3b are limited to those shown in the ninth embodiment.
  • it may be formed as follows.
  • items that are not particularly described are the same as those in the first to eleventh embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 27 is an enlarged view of a main part showing the vicinity of a vane aligner bearing portion of a vane compressor according to a twelfth embodiment of the present invention
  • FIG. 27 (a) is a longitudinal sectional view of the vicinity of the vane aligner bearing portion
  • 27 (b) is a bottom sectional view taken along the line II of FIG. 27 (a).
  • FIG. 27 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the arrow shown in FIG. 27 shows the flow of the refrigerating machine oil 25.
  • the vane type compressor 200 replaces the recess 2a of the frame 2 with the vane aligner bearing instead of providing the air gap 2h shown in the ninth embodiment in the vane type compressor 200 shown in the first embodiment.
  • At least one oil supply passage 2j communicating with the portion 2b is provided.
  • the oil supply path 2j is formed in the frame 2, and one end opens to the vane aligner bearing portion 2b and the other end opens to the recess 2a.
  • the cylinder head 3 is also provided with an oil supply passage that communicates the recess 3a of the cylinder head 3 with the vane aligner bearing portion 3b with the same configuration as the oil supply passage 2j.
  • the vane type compressor 200 configured as described above, the oil supply passage 2j is formed, and therefore the refrigerating machine oil 25 fed to the recess 2a of the frame 2 passes through the oil supply passage 2j and the vane aligner bearing portion 2b. Sent to. For this reason, the vane type compressor 200 according to the twelfth embodiment can be reliably supplied with oil by the vane aligner bearing portion 2b, similarly to the vane type compressor 200 shown in the ninth embodiment. The portion 2b can be more reliably lubricated. This operation is the same in the vane aligner bearing portion 3b.
  • the oil retaining groove 2i may be provided in the vane aligner bearing portion 2b as in the eleventh embodiment. That is, the oil retaining groove 2i communicating with the oil supply passage 2j may be provided in the vane aligner bearing portion 2b.
  • FIG. 28 is a main part enlarged view showing the vicinity of a vane aligner bearing portion of another example of the vane type compressor according to Embodiment 12 of the present invention
  • FIG. 28 (a) is a vertical cross section near the vane aligner bearing portion
  • FIG. 28B is a bottom sectional view taken along the line II of FIG. 28A.
  • FIG. 28 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the arrow shown in FIG. 28 shows the flow of the refrigerating machine oil 25.
  • an oil retaining groove 2i is formed over the entire circumference at a location on the opposite side of the cylinder 1 of the vane aligner bearing portion 2b.
  • the oil retaining groove 2i communicates with the oil supply path 2j.
  • the refrigerating machine oil 25 sent out to the recess 2a of the frame 2 is sent to the oil holding groove 2i through the oil supply passage 2j. Since the oil retaining groove 2i is adjacent to the vane aligner bearing portion 2b, the vane aligner bearing portion 2b is more easily supplied with oil than the vane compressor 200 shown in FIG. For this reason, it becomes possible to lubricate the vane aligner bearing part 2b more reliably.
  • the oil retaining groove 2i is provided in the cylinder head 3, the same effect as described above can be obtained for the vane aligner bearing portion 3b.
  • the oil supply passage 2j shown in the twelfth embodiment may be provided in the vane type compressor 200 shown in the ninth to eleventh embodiments. If it does so, since the refrigeration oil 25 in the recessed part 2a will be sent to the vane aligner bearing part 2b from several oil supply path
  • the vane aligner bearing portions 2b and 3b are more easily supplied with oil. Further, it is possible to provide the vane type compressor 200 with less loss than the vane type compressor 200 shown in the second to eighth embodiments.
  • Embodiment 13 The oil supply passage that communicates the recess 2a of the frame 2 with the vane aligner bearing portion 2b and the oil supply passage that communicates the recess 3a of the cylinder head 3 and the vane aligner bearing portion 3b may be formed as follows, for example. .
  • items that are not particularly described are the same as those in the first to twelfth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 29 is an essential part enlarged view showing the vicinity of the vane aligner bearing part of the vane type compressor according to the thirteenth embodiment of the present invention
  • FIG. 29 (a) is a longitudinal sectional view of the vicinity of the vane aligner bearing part
  • 29 (b) is a bottom sectional view taken along line II of FIG. 29 (a).
  • FIG. 29 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the arrows shown in FIG. 29 indicate the flow of the refrigerating machine oil 25.
  • the vane compressor 200 includes a vane as an oil supply path that connects the recess 2a of the frame 2 and the vane aligner bearing portion 2b. At least one oil supply passage 5d that penetrates the aligner 5 in the radial direction (penetrates from the inner peripheral side to the outer peripheral side) and at least one that penetrates the vane aligner 7 in the radial direction (penetrates from the inner peripheral side to the outer peripheral side) And an oil supply passage 7d. Although not shown in the drawings, similar oil supply passages are also formed in the vane aligners 6 and 8 as oil supply passages for communicating the recess 3a of the cylinder head 3 with the vane aligner bearing portion 3b.
  • the vane type compressor 200 configured as described above, the refrigerating machine oil 25 fed to the recess 2a of the frame 2 is sent to the vane aligner bearing portion 2b through the oil supply passages 5d and 7d.
  • the vane type compressor 200 according to the thirteenth embodiment can also be reliably supplied with oil by the vane aligner bearing portion 2b, similarly to the vane type compressor 200 shown in the ninth embodiment.
  • the portion 2b can be more reliably lubricated. This operation is the same in the vane aligner bearing portion 3b.
  • the oil supply passages 5d and 7d shown in the thirteenth embodiment may be provided in the vane aligners 5 and 7 shown in the ninth to twelfth embodiments. If it does so, since the refrigeration oil 25 in the recessed part 2a will be sent to the vane aligner bearing part 2b from several oil supply path
  • the vane aligner bearing portions 2b and 3b are more easily supplied with oil. Further, it is possible to provide the vane type compressor 200 with less loss than the vane type compressor 200 shown in the second to eighth embodiments.
  • Embodiment 14 FIG.
  • the oil supply passage that communicates the recess 2a of the frame 2 with the vane aligner bearing portion 2b and the oil supply passage that communicates the recess 3a of the cylinder head 3 and the vane aligner bearing portion 3b may be formed as follows, for example. .
  • items not particularly described are the same as those in the first to thirteenth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 30 is an enlarged view of the main part showing the vicinity of the vane aligner bearing portion of the vane compressor according to the fourteenth embodiment of the present invention.
  • FIG. 30 (a) is a longitudinal sectional view of the vicinity of the vane aligner bearing portion.
  • 30 (b) is a bottom sectional view taken along the line II of FIG. 30 (a).
  • this FIG. 30 has shown the vane aligner bearing part 2b (in other words, the recessed part 2a of the flame
  • an arrow indicated by a solid line in FIG. 30 indicates the flow of the refrigerating machine oil 25, and an arrow indicated by a broken line indicates the rotation direction of the vane aligners 5 and 7.
  • the vane compressor 200 according to the fourteenth embodiment includes oil supply passages 5f and 7f and at least one oil supply passages 5e and 7e in addition to the configuration of the vane compressor 200 according to the first embodiment.
  • the oil supply passages 5f and 7f are circumferential oil supply passages, and are formed in the vane aligners 5 and 7 along the circumferential direction of the base portions 5c and 7c of the vane aligners 5 and 7. Further, the oil supply passages 5f and 7f have a shape in which both the end on the rotation direction side and the end opposite to the rotation direction (the non-rotation side end) are opened.
  • the oil supply passages 5 e and 7 e are radial oil supply passages, and communicate the oil supply passages 5 f and 7 f with the outer peripheral sides of the vane aligners 5 and 7. Although not shown in the drawings, similar oil supply passages are also formed in the vane aligners 6 and 8 as oil supply passages for communicating the recess 3a of the cylinder head 3 with the vane aligner bearing portion 3b.
  • the vane type compressor 200 configured as described above, the refrigerating machine oil 25 fed to the recess 2a of the frame 2 flows into the oil supply passages 5f and 7f from the rotation direction ends of the vane aligners 5 and 7, The oil is fed to the vane aligner bearing portion 2b through the oil supply passages 5e and 7e.
  • the vane type compressor 200 according to the fourteenth embodiment can also be reliably supplied with oil by the vane aligner bearing portion 2b, similarly to the vane type compressor 200 shown in the ninth embodiment.
  • the portion 2b can be more reliably lubricated. This operation is the same in the vane aligner bearing portion 3b.
  • oil supply passages 5f and 7f are not necessarily open at both ends.
  • the oil supply passages 5f and 7f may be configured as follows.
  • FIG. 31 is a main part enlarged view showing the vicinity of a vane aligner bearing part of another example of the vane type compressor according to the fourteenth embodiment of the present invention
  • FIG. 31 (a) is a longitudinal sectional view of the vicinity of the vane aligner bearing part
  • FIG. 31 (b) is a bottom cross-sectional view taken along the line II of FIG. 31 (a).
  • FIG. 31 shows the vicinity of the vane aligner bearing portion 2b (in other words, the concave portion 2a of the frame 2).
  • the arrow shown with the continuous line shown in FIG. 31 has shown the flow of the refrigerator oil 25, and the arrow shown with a broken line has shown the rotation direction of the vane aligners 5 and 7.
  • the oil supply passages 5f and 7f are opened only at the end portion on the rotation direction side, and the end portion on the opposite side to the rotation direction (the end portion on the counter-rotation side) is sealed. Has been.
  • the oil supply passages 5f and 7f and the oil supply passages 5e and 7e shown in the fourteenth embodiment may be provided in the vane aligners 5 and 7 shown in the ninth to twelfth embodiments. If it does so, since the refrigeration oil 25 in the recessed part 2a will be sent to the vane aligner bearing part 2b from several oil supply path
  • the vane aligner bearing portions 2b and 3b are more easily supplied with oil. Further, it is possible to provide the vane type compressor 200 with less loss than the vane type compressor 200 shown in the second to eighth embodiments.
  • Embodiment 15 By forming the following oil supply passages in the vane type compressor 200 shown in the first to fourteenth embodiments, the first vane 9 and the tip end portions 9a and 10a of the second vane can be more reliably provided. It becomes possible to lubricate.
  • items that are not particularly described are the same as those in the first to fourteenth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 32 is a longitudinal sectional view showing a vane type compressor according to the fifteenth embodiment of the present invention.
  • FIG. 33 is an exploded perspective view showing a compression element of the vane compressor.
  • FIG. 34 is a cross-sectional view of this compression element, and is a cross-sectional view taken along the line II of FIG. 32 indicates the flow of the refrigerating machine oil 25.
  • the vane compressor 200 adds the first vane 9 and the second vane 10 from the inner peripheral side to the outer peripheral side ( Oil supply passages 9e and 10e penetrating in the longitudinal direction in plan view are provided.
  • the oil supply passages 9e, 10e are provided in the vicinity of the central portion in the axial direction of the first vane 9 and the second vane 10.
  • the refrigerating machine oil 25 flows in the refrigerant compression operation as follows.
  • the flow of the refrigerating machine oil 25 other than the vicinity of the vanes 9 and 10 is the same as that of the vane type compressor 200 according to the first embodiment. For this reason, below, refrigeration oil 25 other than vane 9 and 10 vicinity is demonstrated.
  • FIG. 35 is an enlarged view of a main part near the vane according to the fifteenth embodiment of the present invention.
  • FIG. 35 is an enlarged view of a main part showing the vicinity of the vane 9 in FIG. 34.
  • an arrow indicated by a solid line indicates a flow of the refrigerating machine oil 25, and an arrow indicated by a broken line indicates a rotation direction.
  • the pressure of the vane escape portion 4f is the discharge pressure and is higher than the pressure of the suction chamber 13 and the intermediate chamber 14, the refrigerating machine oil 25 supplied to the vane escape portion 4f is separated from the side surface of the first vane 9.
  • the sliding portion between the bushes 11 While the sliding portion between the bushes 11 is lubricated, it is sent out to the suction chamber 13 and the intermediate chamber 14 by the pressure difference and centrifugal force.
  • the refrigerating machine oil 25 is sent out to the suction chamber 13 and the intermediate chamber 14 by a pressure difference and centrifugal force while lubricating the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4. Further, the refrigerating machine oil 25 is sent out to the tip end portion 9 a through the oil supply passage 9 e provided in the first vane 9.
  • the first vane 9 is pressed against the inner peripheral surface 1b of the cylinder 1 by the pressure difference between the vane escape portion 4f, the suction chamber 13, and the intermediate chamber 14, and the centrifugal force, and the tip of the first vane 9 is pressed.
  • the part 9 a slides along the inner peripheral surface 1 b of the cylinder 1.
  • the front end of the first vane 9 is also generated by the refrigerating machine oil 25 sent to the front end portion 9a of the first vane 9 through the oil supply passage 9e. Lubrication between the portion 9a and the inner peripheral surface 1b of the cylinder 1 can be performed.
  • a part of the refrigerating machine oil 25 that lubricates the tip end portion 9a of the first vane 9 flows into the suction chamber 13 having a low pressure.
  • the first vane 9 is provided with an oil supply passage 9e. Since the oil supply amount of the front end portion 9a of the first vane 9 can be increased, the lubrication of the front end portion 9a of the first vane 9 is more reliable and better.
  • the radius of the arc of the tip 9a of the first vane 9 is substantially the same as the radius of the inner peripheral surface 1b of the cylinder 1, and the normals of both are also substantially the same. A sufficient oil film is formed to provide fluid lubrication.
  • FIG. 35 shows the case where the space partitioned by the first vane 9 is the suction chamber 13 and the intermediate chamber 14, but the rotation proceeds and the space partitioned by the first vane 9 becomes the intermediate chamber 14.
  • the above operation is shown for the first vane 9, the same operation is performed for the second vane 10.
  • the oil supply passages 9e and 10e penetrating the vanes 9 and 10 from the inner peripheral side to the outer peripheral side (longitudinal direction in plan view) are provided.
  • the refrigerating machine oil 25 in the oil sump 104 can be more sufficiently supplied to the tip portions 9a, 10a of the first vane 9 and the second vane 10, and the first vane 9 and the second vane 10 can be supplied.
  • the oil supply passages 9e and 10e shown in the fifteenth embodiment are formed in the vane type compressor 200 shown in the second to fourteenth embodiments, thereby showing the second to fourteenth embodiments.
  • the vane type compressor 200 that more reliably lubricates the tip portions 9a and 10a of the first vane 9 and the second vane 10 than the vane type compressor 200 can be provided.
  • the vane type compressor 200 in which one oil supply passage 9e, 10e is provided in the vicinity of the central portion in the axial direction of the first vane 9 and the second vane 10 has been described.
  • the number of oil supply passages 9e and 10e is arbitrary, and for example, the vane compressor 200 may be configured as follows.
  • FIG. 36 is a longitudinal sectional view showing another example of the vane compressor according to the fifteenth embodiment of the present invention.
  • the arrows shown in FIG. 36 indicate the flow of the refrigerator oil 25.
  • a vane type compressor 200 shown in FIG. 36 is provided with three oil supply passages 9e along the axial direction in the first vane 9, and three oil supply passages 10e along the axial direction in the second vane 10. Provided.
  • FIG. 36 shows a case where three oil supply passages 9e and 10e are provided. However, two oil supply passages or four or more oil supply passages may be provided. As the number of oil supply passages increases, the first vane 9 and the second It becomes possible to lubricate the front-end
  • Embodiment 16 FIG.
  • the following oil supply passage may be formed in the vane type compressor 200 shown in the fifteenth embodiment.
  • items not particularly described are the same as those in the fifteenth embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 37 is an enlarged view of a main part near the vane of the vane type compressor according to the sixteenth embodiment of the present invention.
  • FIG. 37 is an enlarged view of the main part showing the vicinity of the vane 9 in a state where the rotation angle is 90 °.
  • the arrow indicated by the solid line indicates the flow of the refrigerating machine oil 25, and the arrow indicated by the broken line indicates the rotation direction. Yes.
  • the vane type compressor 200 according to the sixteenth embodiment includes oil supply paths 35a and 35b in addition to the configuration of the vane type compressor 200 according to the fifteenth embodiment.
  • the oil supply passage 35a communicates the oil supply passage 9e with the side surface side opposite to the rotation direction of the vane 9 (the sliding portion between the bush 11 on the opposite rotation side and the side surface of the first vane 9).
  • the oil supply passage 35b communicates the oil supply passage 9e with the side surface in the rotation direction of the vane 9 (the sliding portion between the bush 11 on the rotation side and the side surface of the first vane 9).
  • a similar oil supply passage is formed in the second vane 10.
  • the refrigerating machine oil 25 is supplied directly from the vane escape portion 4 f to the sliding portion between the bush 11 and the side surface of the first vane 9.
  • the refrigerating machine oil 25 and the bush 11 pass through the oil supply passage 9e and the oil supply passages 35a and 35b provided in the first vane 9 from the vane escape portion 4f. It is supplied to the sliding portion with the side surface of the first vane 9.
  • the vane type compressor 200 according to the sixteenth embodiment has a better sliding portion between the bush 11 and the side surface of the first vane 9 than the vane type compressor 200 shown in the fifteenth embodiment. Can be lubricated. Needless to say, the above operations and effects are the same in the second vane 10.
  • FIG. 38 is an essential part enlarged view showing the vicinity of a vane of another example of the vane type compressor according to the sixteenth embodiment of the present invention.
  • FIG. 38 is an enlarged view of the main part showing the vicinity of the vane 9 in a state where the rotation angle is 90 °.
  • an arrow indicated by a solid line indicates a flow of the refrigerating machine oil 25, and an arrow indicated by a broken line indicates a rotation direction.
  • the vane type compressor 200 shown in FIG. 38 is provided with only an oil supply passage 35a. The operation and effect of the vane compressor 200 shown in FIG. 38 will be described below.
  • FIG. 39 is a schematic diagram showing loads acting on vanes and bushes of the vane type compressor shown in FIG.
  • an arrow 36 indicated by a solid line is a load acting on the first vane 9 in a direction orthogonal to the length direction due to a pressure difference between the intermediate chamber 14 and the suction chamber 13.
  • An arrow 37 indicated by a solid line is a load in the direction orthogonal to the length direction of the first vane 9 acting on the bush 11.
  • the arrow shown with a broken line has shown the rotation direction.
  • the refrigerant is compressed in the rotational direction, so the load 36 acting on the first vane 9 is in the direction shown in the figure ( The counter-rotation direction) is the positive direction.
  • the load 37 in the direction orthogonal to the length direction of the first vane 9 acting on the bushing 11 also has a positive direction in the direction shown in the figure (the counter-rotating direction). Therefore, among the sliding portions of the side surface of the first vane 9 and the bush 11, the sliding portion on the counter-rotating side is more lubricated than the sliding portion on the rotating side.
  • Embodiment 17 By forming the following oil supply passages in the vane compressor 200 shown in the first to fourteenth embodiments, the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 can be more reliably provided. It becomes possible to lubricate.
  • items that are not particularly described are the same as those in the first to sixteenth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 40 is an enlarged view of a main part showing the vicinity of the vane of the vane type compressor according to the seventeenth embodiment of the present invention.
  • 40 is an enlarged view of the main part showing the vicinity of the vane 9 in a state where the rotation angle is 90 °.
  • the solid line arrow indicates the flow of the refrigerating machine oil 25, and the broken line arrow indicates the rotation direction.
  • the vane type compressor 200 according to the seventeenth embodiment is formed on the bush 11 in addition to the configuration of the vane type compressor 200 shown in the first embodiment, and one end opens on the side surface on the first vane 9 side. The other end is provided with oil supply passages 36a and 36b that open to the side surface between the bush holding portions 4d.
  • oil supply passages 36 a and 36 b communicate the sliding portion between the bush 11 and the bush holding portion 4 d of the rotor shaft 4 and the sliding portion between the bush 11 and the side surface of the first vane 9.
  • the oil supply passage 36a is formed on the counter-rotation side
  • the oil supply passage 36b is formed on the rotation side.
  • the vane type compressor 200 configured as described above, a part of the refrigerating machine oil 25 sent from the vane escape portion 4f to the sliding portion between the bush 11 and the side surface of the first vane 9 is supplied to the oil supply passage 36a, It is supplied to the sliding part between the bush 11 and the bush holding part 4d of the rotor shaft 4 through 36b.
  • the vane type compressor 200 according to the seventeenth embodiment has a sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 more than the vane type compressor 200 shown in the first embodiment. Good lubrication. Needless to say, the above operations and effects are the same in the second vane 10.
  • the vane type shown in the second to fourteenth embodiments is formed. Further, the sliding portion between the bushes 11 and 12 and the bush holding portions 4d and 4e can be lubricated better than the compressor 200.
  • oil supply passage shown in the seventeenth embodiment can be provided in the vane type compressor 200 shown in the sixteenth embodiment.
  • FIG. 41 is an enlarged view of a main part showing the vicinity of a vane of another example of the vane type compressor according to the seventeenth embodiment of the present invention.
  • FIG. 41 is an enlarged view of the main part showing the vicinity of the vane 9 in a state where the rotation angle is 90 °.
  • an arrow indicated by a solid line indicates a flow of the refrigerating machine oil 25 and an arrow indicated by a broken line indicates a rotation direction. Yes.
  • the vane compressor 200 shown in FIG. In the vane type compressor 200 configured as described above, the refrigerating machine oil 25 supplied to the vane escape portion 4f is supplied to the bush 11 and the first vane 9 as in the vane type compressor shown in the sixteenth embodiment. The oil is supplied to the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 through the oil supply paths 36a and 36b via the sliding portion with the side surface. Furthermore, in the vane type compressor 200 shown in FIG.
  • the vane type compressor 200 shown in FIG. 41 increases the amount of oil supplied to the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 as compared with the vane type compressor shown in the sixteenth embodiment. Therefore, it is more effective.
  • the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 is also harder to lubricate on the counter-rotating side. Therefore, although not shown, in the vane type compressor 200 shown in FIG. 40, only the oil supply passage 36a formed on the counter-rotating side may be provided. As a result, the useless refrigerating machine oil 25 passing through the oil supply passage 36b can be reduced, and the oil can be supplied to the sliding portion on the counter-rotation side where the lubrication is severe. Further, in the vane type compressor 200 shown in FIG. 41, only the oil supply passages 35a and 36a formed on the counter-rotating side may be provided. As a result, the useless refrigerating machine oil 25 passing through the oil supply passages 35b and 36b can be reduced, and the oil can be supplied to the sliding portion on the counter-rotation side where the lubrication is severe.
  • the above operations and effects are the same in the second vane 10.
  • the oil supply passage shown in the seventeenth embodiment may be formed in the vane compressor 200 shown in the fifteenth embodiment.
  • Embodiment 18 Even if the following oil supply passage is formed in the vane type compressor 200 shown in the first to sixteenth embodiments, the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 is more reliably provided. It becomes possible to lubricate.
  • items that are not particularly described are the same as those in the first to seventeenth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 42 is an essential part enlarged view showing the vicinity of a vane of a vane type compressor according to an eighteenth embodiment of the present invention.
  • FIG. 42 is an enlarged view of the main part showing the vicinity of the vane 9 in a state where the rotation angle is 90 °.
  • an arrow indicated by a solid line indicates a flow of the refrigerating machine oil 25, and an arrow indicated by a broken line indicates a rotation direction. Yes.
  • the vane compressor 200 according to the eighteenth embodiment is formed in the rotor portion 4a of the rotor shaft 4, and one end is opened to the vane relief portion 4f.
  • the other end is provided with oil supply passages 37a and 37b that open to the bush holding portion 4d.
  • the oil supply passage 37a is open to the bush holding portion 4d that is in a range facing a substantially semi-cylindrical portion disposed on the counter-rotating side of the vane 9 in the bush 11.
  • the oil supply passage 37b is open to a bush holding portion 4d that is in a range facing a substantially semi-cylindrical portion disposed on the rotation side of the vane 9 in the bush 11.
  • the refrigerating machine oil 25 is supplied from the vane escape portion 4f to the sliding portion between the bush 11 and the bush holding portion 4d of the rotor shaft 4 through the oil supply passages 37a and 37b.
  • the vane type compressor 200 according to the eighteenth embodiment is compared with the vane type compressor 200 shown in the first embodiment, and the sliding between the bush 11 and the bush holding portion 4d of the rotor shaft 4 is different.
  • the moving part can be better lubricated. Needless to say, the above operations and effects are the same in the second vane 10.
  • the vane type shown in the second to seventeenth embodiments is formed. Further, the sliding portion between the bushes 11 and 12 and the bush holding portions 4d and 4e can be lubricated better than the compressor 200.
  • the refrigerating machine oil 25 is supplied from a plurality of flow paths to hold the bushes 11 and 12 and the bush. Since the sliding part between the parts 4d and 4e can be lubricated, the sliding part between the bushes 11 and 12 and the bush holding parts 4d and 4e can be further lubricated.
  • the vane aligner may be composed of a ring instead of a partial ring.
  • the oil pump 31 using the centrifugal force of the rotor shaft 4 has been described.
  • any oil pump may be used.
  • the volume described in JP 2009-62820 A is disclosed.
  • a shape pump may be used as the oil pump 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressor (AREA)

Abstract

 【課題】回転軸の軸受摺動損失を低減し、且つロータ部とシリンダ内周面間を狭い隙間で形成して漏れ損失を低減するために、圧縮動作中、ベーン先端部の円弧とシリンダ内周面の法線を常にほぼ一致させる機構の提供。 【課題解決手段】ベーン型圧縮機200は、ロータ部4a及び回転軸部4b,4cが一体形成され、回転軸部4cの下端が油溜め104に浸漬するロータシャフト4と、ベーン9,10の両端部に配置され、ベーン9,10の径方向を規定するベーンアライナ5~8と、フレーム2及びシリンダヘッド3においてシリンダ1の内周面1bと同心に形成され、ベーンアライナ5~8の外周面を摺動自在に支持する凹部2a,3aとを備えている。ロータシャフト4は、油溜め104と凹部2a,3aとを連通する給油路4h,4i,4jと、該給油路に油溜め104内の冷凍機油25を供給する油ポンプ31とを備える。

Description

ベーン型圧縮機
 本発明は、ベーン型圧縮機に関する。
 従来、ロータシャフト(シリンダ内で回転運動する円柱形のロータ部と、ロータ部に回転力を伝達するシャフトと、が一体化されたもの)のロータ部内に一箇所又は複数箇所形成されたベーン溝内にベーンが嵌入され、そのベーンの先端がシリンダ内周面と当接しながら摺動する構成の一般的なベーン型圧縮機が提案されている(例えば、特許文献1参照)。
 また、ロータシャフトの内側を中空に構成しその中にベーンの固定軸を配し、ベーンはその固定軸に回転可能に取り付けられ、更に、ロータ部の外周部付近に半円棒形状の一対の挟持部材を介してベーンがロータ部に対して回転自在(揺動自在)に保持されているベーン型圧縮機も提案されている(例えば、特許文献2参照)。
特開平10-252675号公報(要約、図1) 特開2000-352390号公報(要約、図1)
 従来の一般的なベーン型圧縮機(例えば、上記特許文献1)は、ベーンの方向がロータシャフトのロータ部内に形成されたベーン溝により規制されている。つまり、ベーンはロータ部に対して常に同じ傾きとなるように保持される。このため、ロータシャフトの回転に伴い、ベーンとシリンダ内周面の成す角度が変化する。したがって、シリンダ内周面の全周に亘ってベーン先端が当接するためには、ベーン先端の円弧の半径をシリンダ内周面の半径に比べて小さく構成する必要があった。
 つまり、従来の一般的なベーン型圧縮機においてシリンダ内周面の全周に亘ってベーン先端を当接させる場合、半径の大きく異なるシリンダ内周面とベーン先端とが摺動することとなる。このため、二つの部品(シリンダ、ベーン)間の潤滑状態は、両者の間に油膜を形成しその油膜を介して摺動する流体潤滑の状態にはならず、境界潤滑状態となってしまう。一般に、潤滑状態による摩擦係数は、流体潤滑では0.001~0.005程度なのに対し、境界潤滑状態では非常に大きくなり、概ね0.05以上となる。
 したがって、従来の一般的なベーン型圧縮機の構成では、ベーンの先端とシリンダの内周面が境界潤滑状態で摺動することにより摺動抵抗が大きくなり、機械損失の増大による圧縮機効率の大幅な低下が発生してしまうという課題があった。また、従来の一般的なベーン型圧縮機の構成では、ベーンの先端及びシリンダ内周面が摩耗しやすく、長期の寿命を確保することが困難であるという課題があった。そこで、従来のベーン型圧縮機においては、ベーンのシリンダ内周面に対する押し付け力を極力低減するための工夫がなされていた。
 上記の課題を解決するために提案されたものの1つとして、特許文献2に記載の従来のベーン型圧縮機がある。特許文献2に記載の従来のベーン型圧縮機のような構成にすることにより、ベーンはシリンダ内周面の中心にて回転支持されることとなるため、ベーンの長手方向は常にシリンダ内周面の法線方向となる。このため、ベーン先端部がシリンダ内周面に沿うように、シリンダ内周面の半径とベーン先端円弧の半径をほぼ同等に構成することが可能となる。したがって、ベーン先端とシリンダ内周面とを非接触に構成することができる。又は、ベーン先端とシリンダ内周面とが接触する場合でも、両者の間の潤滑状態を十分な油膜による流体潤滑状態とすることができる。それにより、従来のベーン型圧縮機の課題であるベーン先端部の摺動状態を改善することが可能となる。
 しかしながら、特許文献2に記載の従来のベーン型圧縮機は、ロータシャフトの内部を中空に構成する必要があるため、ロータ部への回転力の付与やロータ部の回転支持が難しくなってしまう。より詳しくは、上記特許文献2に記載の従来のベーン型圧縮機は、ロータ部の両端面に端板(回転基盤2a、回転保持部材2b)を設けている。そして、片側の端板(回転基盤2a)は、回転軸からの動力を伝達する必要があるため円盤状であり、端板の中心に回転軸が接続される構成となっている。また、他側の端板(回転保持部材2b)は、ベーン固定軸(固定軸1b)やベーン軸支持材(軸支部材1a)の回転範囲と干渉しないように構成する必要があるため、中央部に穴の開いたリング状に構成する必要がある。このため、ロータ部と共に回転する端板を回転支持する部分は、回転軸(回転軸2c)に比べて大径に構成する必要があり、軸受摺動損失が大きくなるという課題があった。
 また、ロータ部とシリンダ内周面との間には圧縮したガス(ガス状冷媒)が漏れないように狭い隙間を形成するため、ロータ部の外径や回転中心には高い精度が必要とされる。しかしながら、上記特許文献2に記載の従来のベーン型圧縮機は、ロータ部と端板が別々の部品で構成されるため、ロータ部と端板との締結により発生する歪みやロータ部と端板の同軸ズレ等により、ロータ部の外径や回転中心の精度を悪化させてしまうという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、回転軸の軸受摺動損失を低減し、且つロータ部とシリンダ内周面間を狭い隙間で形成して漏れ損失を低減するために、ベーン先端部の円弧とシリンダ内周面の法線が常にほぼ一致するように圧縮動作を行なうために必要な機構(ベーンがシリンダの中心周りに回転運動する機構)を、ロータ部の外径や回転中心精度悪化をもたらすロータ部の端板を用いず、ロータ部と回転軸を一体に構成することで実現したベーン型圧縮機を提供することを目的とする。
 本発明に係るベーン型圧縮機は、密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、前記圧縮要素が、円筒状の内周面が形成されたシリンダと、前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
 前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、
 前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、該ベーン角度調整手段は、リング形状又は部分リング形状に形成されたベース部を有し、該ベース部に形成された凸部又は凹部の一方が前記ベーンの両端部に形成された凸部又は凹部の他方に挿入されて前記ベーンに接続され、あるいは、該ベース部が前記ベーンの両端部に一体に取り付けられたベーンアライナと、前記フレーム及び前記シリンダヘッドのシリンダ側端面において前記シリンダの前記内周面の中心軸と同心に有底円筒形状の凹部が形成され、該凹部の外周面に設けられて該凹部に挿入された前記ベーンアライナの前記ベース部の外周面を摺動自在に支持するベーンアライナ軸受部と、を少なくとも備え、前記ロータシャフトに形成され、前記油溜めと前記フレーム及び前記シリンダヘッドの前記凹部とを連通する給油路と、該給油路に前記油溜め内の冷凍機油を供給する給油手段と、を備えたものである。
 また、本発明に係るベーン型圧縮機は、密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、前記圧縮要素が、円筒状の内周面が形成されたシリンダと、前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、
 前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、該ベーン角度調整手段は、前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、を少なくとも備え、前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、前記油溜めと前記ベーン逃がし部とを連通する給油路と、該給油路に前記油溜め内の冷凍機油を供給する給油手段と、を備えたものである。
 また、本発明に係るベーン型圧縮機は、密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、前記圧縮要素が、円筒状の内周面が形成されたシリンダと、前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、
 前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、該ベーン角度調整手段は、リング形状又は部分リング形状に形成されたベース部を有し、該ベース部に形成された凸部又は凹部の一方が前記ベーンの両端部に形成された凸部又は凹部の他方に挿入されて前記ベーンに接続され、あるいは、該ベース部が前記ベーンの両端部に一体に取り付けられたベーンアライナと、前記フレーム及び前記シリンダヘッドのシリンダ側端面において前記シリンダの前記内周面の中心軸と同心に有底円筒形状の凹部が形成され、該凹部の外周面に設けられて該凹部に挿入された前記ベーンアライナの前記ベース部の外周面を摺動自在に支持するベーンアライナ軸受部と、を少なくとも備え、前記ロータシャフトに形成され、前記油溜めと前記フレーム及び前記シリンダヘッドの前記凹部とを連通する給油路と、該給油路に前記油溜め内の冷凍機油を供給する給油手段と、前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路と、を備えたものである。
 また、本発明に係るベーン型圧縮機は、密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、前記圧縮要素が、円筒状の内周面が形成されたシリンダと、前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、
 前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、該ベーン角度調整手段は、前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、を少なくとも備え、前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、前記油溜めと前記ベーン逃がし部とを連通する給油路と、該給油路に前記油溜め内の冷凍機油を供給する給油手段と、前記ベーンに形成され、該ベーンの内周側から外周側に貫通する少なくとも1つの給油路と、を備えたものである。
 また、本発明に係るベーン型圧縮機は、密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、前記圧縮要素が、円筒状の内周面が形成されたシリンダと、前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、
 前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、該ベーン角度調整手段は、前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、を少なくとも備え、前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、前記油溜めと前記ベーン逃がし部とを連通する給油路と、該給油路に前記油溜め内の冷凍機油を供給する給油手段と、前記ブッシュに形成され、一端がベーン側の側面に開口し、他端がブッシュ保持部側の側面に開口するブッシュ内給油路と、を備えたものである。
 また、本発明に係るベーン型圧縮機は、密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、前記圧縮要素が、円筒状の内周面が形成されたシリンダと、前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、
 前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、該ベーン角度調整手段は、前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、を少なくとも備え、前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、前記油溜めと前記ベーン逃がし部とを連通する給油路と、該給油路に前記油溜め内の冷凍機油を供給する給油手段と、前記ロータシャフトに形成され、一端が前記ベーン逃がし部に開口し、他端が前記ブッシュ保持部に開口する給油路と、を備えたものである。
 本発明に係るベーン型圧縮機は、油溜めとベーン角度調整手段(フレーム及びシリンダヘッドに形成された凹部、又はベーン逃がし部)とを連通する給油路を備えている。このため、当該給油路を介して、ベーン角度調整手段の各摺動部、ロータシャフトのシャフト部を支承する軸受部、及び、ベーンとシリンダ内周面との摺動部を冷凍機油によって確実に潤滑でき、ロータシャフト及びベーンを安定して支持することが可能となる。
 また、油溜めに連通する上記の給油路とベーンアライナ軸受部とを連通する給油路を設けた場合、ベーンアライナ軸受部をより確実に潤滑でき、ベーンをより安定して支持することができる。
 また、ベーンを貫通する給油路を設けた場合、ベーンとシリンダ内周面との摺動部により確実に潤滑でき、ベーンをより安定して支持することができる。
 また、油溜めに連通する上記の給油路とブッシュ保持部とを連通する給油路やブッシュ内供給路を設けた場合、ブッシュとブッシュ保持部との摺動部をより確実に潤滑でき、ベーンをより安定して支持することができる。
 したがって、ベーン先端の円弧とシリンダ内周面の法線が常にほぼ一致するように圧縮動作を行なうために必要な機構(ベーンがシリンダの中心周りに回転運動する機構)を、ロータ部とシャフト部(回転軸)を一体にした構成で実現できる。このため、回転軸を小径で支持できることで軸受摺動損失を低減し、且つロータ部の外径や回転中心の精度が向上することでロータ部とシリンダ内周面間を狭い隙間で形成して漏れ損失を低減することが可能となる。
本発明の実施の形態1に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態1に係るベーン型圧縮機の圧縮要素を示す分解斜視図である。 本発明の実施の形態1に係る圧縮要素のベーンアライナを示す平面図又は底面図である。 本発明の実施の形態1に係る圧縮要素の断面図であり、図1のI-I線に沿った断面図である。 本発明の実施の形態1に係る圧縮要素の圧縮動作を示す説明図であり、図1のI-I線に沿った断面図である。 本発明の実施の形態1に係るベーンアライナの回転動作を説明するための底面断面図である。 本発明の実施の形態1に係るベーン近傍の要部拡大図である。 本発明の実施の形態1に係るベーンを示す斜視図である。 本発明の実施の形態1にかかるベーン及びベーンアライナの別の一例を示す斜視図である。 本発明の実施の形態1に係る圧縮要素の別の一例のベーン近傍を示す要部拡大図(平面断面図)である。 本発明の実施の形態2に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。 本発明の実施の形態3に係るベーン型圧縮機のベーン及びベーンアライナを示す斜視図である。 本発明の実施の形態3に係るベーン型圧縮機の別の一例の圧縮要素を示す分解斜視図である。 本発明の実施の形態4に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態4に係るベーン型圧縮機の圧縮要素の断面図であり、図14のI-I線に沿った断面図である。 本発明の実施の形態5に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態6に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態7に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態7に係るベーン型圧縮機の別の一例を示す縦断面図である。 本発明の実施の形態7に係るベーン型圧縮機の別の一例のフレームを示す平面図である。 本発明の実施の形態8に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態8に係るベーン型圧縮機の圧縮要素の断面図であり、図21のI-I線に沿った断面図である。 本発明の実施の形態9に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態9に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。 本発明の実施の形態10に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。 本発明の実施の形態11に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。 本発明の実施の形態12に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図である。 本発明の実施の形態12に係るベーン型圧縮機の別の一例のベーンアライナ軸受部近傍を示す要部拡大図である。 本発明の実施の形態13に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図である。 本発明の実施の形態14に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図である。 本発明の実施の形態14に係るベーン型圧縮機の別の一例のベーンアライナ軸受部近傍を示す要部拡大図である。 本発明の実施の形態15に係るベーン型圧縮機を示す縦断面図である。 本発明の実施の形態15に係るベーン型圧縮機の圧縮要素を示す分解斜視図である。 本発明の実施の形態15に係るベーン型圧縮機の圧縮要素の断面図であり、図32のI-I線に沿った断面図である。 本発明の実施の形態15に係るベーン近傍の要部拡大図である。 本発明の実施の形態15に係るベーン型圧縮機の別の一例を示す縦断面図である。 本発明の実施の形態16に係るベーン型圧縮機のベーン近傍の要部拡大図である。 本発明の実施の形態16に係るベーン型圧縮機の別の一例のベーン近傍を示す要部拡大図である。 図38に示すベーン型圧縮機のベーン及びブッシュに作用する荷重を示す模式図である。 本発明の実施の形態17に係るベーン型圧縮機のベーン近傍を示す要部拡大図である。 本発明の実施の形態17に係るベーン型圧縮機の別の一例のベーン近傍を示す要部拡大図である。 本発明の実施の形態18に係るベーン型圧縮機のベーン近傍を示す要部拡大図である。
 以下、下記の各実施の形態において、本発明に係るベーン型圧縮機の一例について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係るベーン型圧縮機を示す縦断面図である。また、図2は、このベーン型圧縮機の圧縮要素を示す分解斜視図である。また、図3は、この圧縮要素のベーンアライナを示す平面図又は底面図である。なお、図1に示す矢印は冷凍機油25の流れを示している。また、図3は、ベーンアライナ5,7の底面図及びベーンアライナ6,8の平面図を示している。以下、これら図1~図3を参照しながら、本実施の形態1に係るベーン型圧縮機200について説明する。
 ベーン型圧縮機200は、密閉容器103内に、圧縮要素101と、この圧縮要素101を駆動する電動要素102とが収納されている。圧縮要素101は、密閉容器103の下部に配置されている。電動要素102は、密閉容器103の上部(より詳しくは、圧縮要素101の上方)に配置されている。また、密閉容器103内の底部には、冷凍機油25を貯溜する油溜め104が設けられている。また、密閉容器103の側面には吸入管26、上面には吐出管24が取り付けられている。
 圧縮要素101を駆動する電動要素102は、例えば、ブラシレスDCモータで構成される。電動要素102は、密閉容器103の内周に固定された固定子21と、固定子21の内側に配設された回転子22とを備える。密閉容器103に溶接等で固定されたガラス端子23を介して固定子21のコイルに電力が供給されると、固定子21に発生した磁界によって回転子22の永久磁石に駆動力が付与され、回転子22が回転する。
 圧縮要素101は、吸入管26から低圧のガス冷媒を圧縮室に吸入して圧縮し、圧縮した冷媒を密閉容器103内に吐出するものである。密閉容器103内に吐出されたこの冷媒は、電動要素102を通過して密閉容器103の上部に固定(溶接)された吐出管24から外部(冷凍サイクルの高圧側)に吐出される。この圧縮要素101は、以下に示す圧縮要素101は以下に示す要素を有する。なお、本実施の形態1に係るベーン型圧縮機200は、ベーン枚数が2枚(第1のベーン9、第2のベーン10)のものについて示している。
(1)シリンダ1:全体形状が略円筒状で、中心軸方向の両端部が開口している。また、外周面から略円筒状に形成された内周面1bにかけて、吸入ポート1aが開口している。また、外周部には軸方向(内周面1bの中心軸に沿った方向)に貫通した油戻し穴1cが設けられている。
(2)フレーム2:略円板状部材の上部に円筒状部材が設けられたものであり、縦断面が略T字形状となっている。略円板状部材は、シリンダ1の一方の開口部(図2では上側)を閉塞するものである。この略円板状部材のシリンダ1側端面(図2では下面)には、シリンダ1の内周面1bと同心である有底円筒形状の凹部2aが形成されている。凹部2aには後述するベーンアライナ5及びベーンアライナ7が挿入され、凹部2aの外周面であるベーンアライナ軸受部2bで支承(回転自在に支持)される。また、フレーム2は、略円板状部材のシリンダ1側端面から略円筒状部材を貫通するように、貫通孔が形成されている。この貫通孔には、主軸受部2cが設けられている。主軸受部2cは、後述するロータシャフト4の回転軸部4bを支承するものである。また、フレーム2の略中央部には、吐出ポート2dが形成されている。なお吐出ポート2dは、後述のシリンダヘッド3に形成されていてもよい。
(3)シリンダヘッド3:略円板状部材の下部に円筒状部材が設けられたものであり、縦断面が略T字形状となっている(図1参照)。略円板状部材は、シリンダ1の他方の開口部(図2では下側)を閉塞するものである。この略円板状部材のシリンダ1側端面(図2では上面)には、シリンダ1の内周面1bと同心である有底円筒形状の凹部3aが形成されている。凹部3aには、後述するベーンアライナ6及びベーンアライナ8が挿入され、凹部3aの外周面であるベーンアライナ軸受部3bで支承される。また、シリンダヘッド3は、略円板状部材のシリンダ1側端面から略円筒状部材を貫通するように、貫通孔が形成されている。この貫通孔には、主軸受部3cが設けられている。主軸受部3cは、後述するロータシャフト4の回転軸部4cを支承するものである。
(4)ロータシャフト4:略円筒形状のロータ部4a、ロータ部4aと同心となるようにロータ部4aの上部に設けられた回転軸部4b、及び、ロータ部4aと同心となるようにロータ部4aの下部に設けられた回転軸部4cを備えている。ロータ部4aは、シリンダ1の中心軸と所定距離だけ偏心した回転軸を中心に回転運動を行うものである。回転軸部4b及び回転軸部4cは、上述のように、主軸受部2c及び主軸受部3cに支承されるものである。また、ロータ部4aには、軸方向に貫通する複数の略円筒状(断面が略円形)の貫通孔(ブッシュ保持部4d,4e及びベーン逃がし部4f,4g)が形成されている。これら貫通孔のうち、ブッシュ保持部4dとベーン逃がし部4fとが側面部において連通しており、ブッシュ保持部4eとベーン逃がし部4gとが側面部において連通している。また、ブッシュ保持部4d及びブッシュ保持部4eは、その側面部がロータ部4aの外周部側に開口している。また、ベーン逃がし部4f及びベーン逃がし部4gの軸方向端部はフレーム2の凹部2a及びシリンダヘッド3の凹部3aと連通している。また、ブッシュ保持部4dとブッシュ保持部4e、ベーン逃がし部4fとベーン逃がし部4gとは、ロータ部4aの回転軸に対してほぼ対称の位置に配置されている(後述する図4も参照)。
 また、ロータシャフト4の下端部には、例えば特開2009-264175号公報に記載されているような油ポンプ31(図1にのみ図示)が設けられている。この油ポンプ31は、ロータシャフト4の遠心力を利用して油溜め104内の冷凍機油25を吸引するものである。この油ポンプ31はロータシャフト4の軸中央部に設けられ軸方向に延在する給油路4hと連通しており、給油路4hと凹部2a間には給油路4i、給油路4hと凹部3a間には給油路4jが設けられている。また、回転軸部4bの主軸受部3cの上方の位置に排油穴4k(図1にのみ図示)が設けられている。
(5)ベーンアライナ5,7:部分リング状のベース部5c,7cと、このベース部5c,7cの一方の端面(図2では下側)に立設されたベーン保持部5a,7aと、を備えている。ベーン保持部5a,7aは、例えば断面略四角形の板状の突起である。本実施の形態1では、ベーン保持部5a,7aは、ベース部5c,7cの法線方向(径方向)に形成されている。
(6)ベーンアライナ6,8:部分リング状のベース部6c,8cと、このベース部6c,8cの一方の端面(図2では上側)に立設されたベーン保持部6a,8aと、を備えている。ベーン保持部6a,8aは、例えば断面略四角形の板状の突起である。本実施の形態1では、ベーン保持部6a,8aは、ベース部6c,8cの法線方向に形成されている。
(7)第1のベーン9:側面視略四角形の板状部材である。シリンダ1の内周面1b側に位置する先端部9a(ロータ部4aから突出する側の先端部)は、平面視において外側に凸となる円弧形状に形成されている。この先端部9aの円弧形状の半径は、シリンダ1の内周面1bの半径とほぼ同等の半径で構成されている。また、第1のベーン9の先端部9aと反対側の端部(以下、内周側端部という)近傍には、上面(フレーム2との対向面)に、ベーンアライナ5のベーン保持部5aが挿入されるスリット状の背面溝9bが形成されている。同様に、第1のベーン9の内周側端部近傍には、下面(シリンダヘッド3との対向面)に、ベーンアライナ6のベーン保持部6aが挿入されるスリット状の背面溝9bが形成されている。なお、本実施の形態1では、背面溝9bは、内周側端部から第1のベーン9の長手方向に沿って、ベーン保持部5a及びベーン保持部6aが挿入される範囲まで形成されている。これら背面溝9bは、第1のベーン9の長手方向に沿って、第1のベーン9の上面及び下面の全域に形成されても勿論よい。
(8)第2のベーン10:側面視略四角形の板状部材である。シリンダ1の内周面1b側に位置する先端部10a(ロータ部4aから突出する側の先端部)は、平面視において外側に凸となる円弧形状に形成されている。この先端部10aの円弧形状の半径は、シリンダ1の内周面1bの半径とほぼ同等の半径で構成されている。また、第2のベーン10の内周側端部近傍には、上面(フレーム2との対向面)に、ベーンアライナ7のベーン保持部7aが挿入されるスリット状の背面溝10bが形成されている。同様に、第2のベーン10の内周側端部近傍には、下面(シリンダヘッド3との対向面)に、ベーンアライナ8のベーン保持部8aが挿入されるスリット状の背面溝10bが形成されている。なお、本実施の形態1では、背面溝10bは、内周側端部から第2のベーン10の長手方向に沿って、ベーン保持部7a及びベーン保持部8aが挿入される範囲まで形成されている。これら背面溝10bは、第2のベーン10の長手方向に沿って、第2のベーン10の上面及び下面の全域に形成されても勿論よい。
(9)ブッシュ11,12:略半円柱状の部材を一対として構成される。ブッシュ11は、第1のベーン9を挟持した状態で、ロータ部4aのブッシュ保持部4dに回転自在に挿入される。また、ブッシュ12は、第2のベーン10を挟持した状態で、ロータ部4aのブッシュ保持部4eに回転自在に挿入される。つまり、第1のベーン9がブッシュ11の間を摺動することにより、第1のベーン9はロータ部4aに対して略遠心方向(シリンダ1の内周面1bの中心に対して遠心方向)に移動することができる。また、ブッシュ11がロータ部4aのブッシュ保持部4d内で回転することにより、第1のベーン9は揺動することができる。同様に、第2のベーン10がブッシュ12の間を摺動することにより、第2のベーン10はロータ部4aに対して略遠心方向に移動することができる。また、ブッシュ12がロータ部4aのブッシュ保持部4e内で回転することにより、第2のベーン10は揺動することができる。
 なお、第1のベーン9の背面溝9bにベーンアライナ5,6のベーン保持部5a,6aが挿入され、第2のベーン10の背面溝10bにベーンアライナ7,8のベーン保持部7a,8aが挿入されることにより、第1のベーン9及び第2のベーン10の先端の円弧の法線が常にシリンダ内周面1bの法線と一致するように方向が規制される。
 ここで、ベーンアライナ5,6,7,8、凹部2a,3aのベーンアライナ軸受部2b,3b、ブッシュ保持部4d,4e、及びブッシュ11,12が、本発明におけるベーン角度調整手段に相当する。
(動作説明)
 続いて、本実施の形態1に係るベーン型圧縮機200の動作について説明する。
 ロータシャフト4の回転軸部4bが駆動部である電動要素102からの回転動力を受けると、ロータ部4aは、シリンダ1内で回転する。ロータ部4aの回転に伴い、ロータ部4aの外周付近に配置されたブッシュ保持部4d,4eは、ロータシャフト4を回転軸(中心軸)とした円周上を移動する。そして、ブッシュ保持部4d,4e内に保持されている一対のブッシュ11,12、及びその一対のブッシュ11,12の間に回転可能に保持されている第1のベーン9及び第2のベーン10もロータ部4aとともに回転する。回転に伴って、ブッシュ11と第1のベーン9の側面及びブッシュ12と第2のベーン10の側面は互いに摺動を行う。また、ロータシャフト4のブッシュ保持部4dとブッシュ11、ブッシュ保持部4eとブッシュ12も互いに摺動することになる。
 このとき、第1のベーン9の背面溝9bにベーン保持部5aが摺動可能に挿入されたベーンアライナ5も、凹部2a内で回転することとなる。また、第1のベーン9の背面溝9bにベーン保持部6aが摺動可能に挿入されたベーンアライナ6も、凹部3a内で回転することとなる。上述のように、ベーンアライナ5が挿入される凹部2a及びベーンアライナ6が挿入される凹部3aは、シリンダ1の内周面1bと同心に形成されている。このため、ベーン保持部5a及びベーン保持部6aはシリンダ1の内周面1bの中心軸を中心に回転することとなるので、第1のベーン9は、その長手方向がシリンダ1の内周面1bの法線方向となるように向きが規制される。
 同様に、第2のベーン10の背面溝10bにベーン保持部7aが摺動可能に挿入されたベーンアライナ7も、凹部2a内で回転することとなる。また、第2のベーン10の背面溝10bにベーン保持部8aが摺動可能に挿入されたベーンアライナ8も、凹部3a内で回転することとなる。上述のように、ベーンアライナ7が挿入される凹部2a及びベーンアライナ8が挿入される凹部3aは、シリンダ1の内周面1bと同心に形成されている。このため、ベーン保持部7a及びベーン保持部8aはシリンダ1の内周面1bの中心軸を中心に回転することとなるので、第2のベーン10は、その長手方向がシリンダ1の内周面1bの法線方向となるように向きが規制される。
 更に、第1のベーン9及び第2のベーン10は、遠心力等により、シリンダ1の内周面1b方向に押し付けられ、第1のベーン9の先端部9a及び第2のベーン10の先端部10aはシリンダ1の内周面1bに沿って摺動する。この際、第1のベーン9の先端部9aの円弧の半径及び第2のベーン10の先端部10aの円弧の半径は、シリンダ1の内周面1bの半径とほぼ一致しており、また両者の法線もほぼ一致しているため、両者の間には十分な油膜が形成され流体潤滑となる。なお、第1のベーン9をシリンダ1の内周面1b方向へ移動させる際の構成としては、例えば、第1のベーン9の内周側端部近傍の空間に高圧又は中間圧の冷媒を導入し、第1のベーン9の先端部9a側の圧力と内周側端部側の圧力との圧力差を利用する構成としてもよい。また例えば、バネ等の弾性部材によって第1のベーン9を押して、第1のベーン9をシリンダ1の内周面1b方向へ移動させてもよい。第2のベーン10をシリンダ1の内周面1b方向へ移動させる際の構成も同様である。
 上述のように圧縮要素101の各構成部材が動作することにより、圧縮要素101では次のように、冷媒が圧縮される。
 図4は、本発明の実施の形態1に係る圧縮要素の断面図である。この図は、図1のI-I線に沿った断面図であり、図5で後述するようにロータ部4a(ロータシャフト4)の回転角度が90°の状態を示している。以下、図4に基づいて、本実施の形態1に係る圧縮要素101の冷媒圧縮動作について説明する。
 図4に示すように、ロータシャフト4のロータ部4aとシリンダ1の内周面1bは一箇所(図4に示す最近接点32)において最近接している。また、第1のベーン9とシリンダ1の内周面1b、第2のベーン10とシリンダ1の内周面1bとがそれぞれ一箇所で摺動することにより、シリンダ1内には3つの空間(吸入室13、中間室14、圧縮室15)が形成される。吸入室13には、冷凍サイクルの低圧側に連通する吸入ポート1aが開口している。圧縮室15は、フレーム2に形成された吐出ポート2dと連通している。なお、吐出ポート2dは、吐出時以外は図示しない吐出弁で閉塞されている。また、中間室14は、ロータ部4aがある回転角度範囲までは吸入ポート1aと連通するが、その後、吸入ポート1a及び吐出ポート2dのいずれとも連通しない回転角度範囲が有り、その後、吐出ポート2dと連通する。
 図5は、本発明の実施の形態1に係る圧縮要素の圧縮動作を示す説明図である。この図5は、図1のI-I線に沿った断面図である。以下、この図5を参照しながら、ロータ部4a(ロータシャフト4)の回転に伴い吸入室13、中間室14及び圧縮室15の容積が変化する様子を説明する。なお、各空間(吸入室13、中間室14、圧縮室15)の容積変化を説明するにあたり、ロータ部4a(ロータシャフト4)の回転角度を次のように定義する。まず、第1のベーン9とシリンダ1の内周面1bとの摺動箇所(接触箇所)が最近接点32と一致する状態を、「角度0°」と定義する。図5では、「角度0°」、「角度45°」、「角度90°」、「角度135°」の状態において、第1のベーン9及び第2のベーン10の位置と、そのときの吸入室13、中間室14及び圧縮室15の状態を示している。
 なお、図5の「角度0°」の図に示す矢印は、ロータシャフト4の回転方向(図5では時計方向)である。但し、他の図では、ロータシャフト4の回転方向を示す矢印は省略している。また、図5において「角度180°」以降の状態を示していないのは、「角度180°」になると、「角度0°」において第1のベーン9と第2のベーン10が入れ替わった状態と同じになり、以降は「角度0°」から「角度135°」までと同じ圧縮動作となるためである。
 また、吸入ポート1aは、最近接点32と、「角度90°」の状態において第1のベーン9の先端部9aとシリンダ1の内周面1bが摺動する点A(図4参照)と、の間(例えば、略45°)に設けられている。つまり、吸入ポート1aは、最近接点32から点Aまでの範囲に開口している。但し、図4及び図5では吸入ポート1aを単に「吸入」と表記している。
 また、吐出ポート2dは、最近接点32の近傍で、最近接点32から所定の角度(距離)だけロータ部4aの回転方向上流側(図4及び図5の左側)に設けられている(例えば、最近接点32から略30°だけロータ部4aの回転方向上流側)。但し、図4及び図5では吐出ポート2dを単に「吐出」と表記している。
 図5における「角度0°」では、最近接点32と第2のベーン10で仕切られた右側の空間は、中間室14で吸入ポート1aと連通しており、ガス(冷媒)を吸入する。最近接点32と第2のベーン10で仕切られた左側の空間は、吐出ポート2dに連通した圧縮室15となる。
 図5における「角度45°」では、第1のベーン9と最近接点32で仕切られた空間は吸入室13となり、第1のベーン9と第2のベーン10で仕切られた空間は中間室14となる。この状態では、中間室14は吸入ポート1aと連通している。中間室14の容積は「角度0°」のときより大きくなるので、ガスの吸入を続ける。また、第2のベーン10と最近接点32で仕切られた空間は圧縮室15で、圧縮室15の容積は「角度0°」のときより小さくなり、冷媒は圧縮され徐々にその圧力が高くなる。
 図5における「角度90°」では、第1のベーン9の先端部9aがシリンダ1の内周面1b上の点Aと重なるので、中間室14は吸入ポート1aと連通しなくなる。これにより、中間室14でのガスの吸入は終了する。また、この状態で、中間室14の容積は略最大となる。圧縮室15の容積は「角度45°」のときより更に小さくなり、冷媒の圧力は上昇する。吸入室13の容積は「角度45°」のときより大きくなり、吸入を続ける。
 図5における「角度135°」では、中間室14の容積は「角度90°」ときより小さくなり、冷媒の圧力は上昇する。また、圧縮室15の容積も「角度90°」のときより小さくなり、冷媒の圧力は上昇する。吸入室13の容積は「角度90°」のときより大きくなり、吸入を続ける。
 その後、第2のベーン10が吐出ポート2dに近づくが、冷凍サイクルの高圧(図示しない吐出弁を開くのに必要な圧力も含む)を圧縮室15の圧力が上回ると、吐出弁が開き圧縮室15の冷媒は、密閉容器103内に吐出される。密閉容器103内に吐出された冷媒は、電動要素102を通過して密閉容器103の上部に固定(溶接)された吐出管24から外部(冷凍サイクルの高圧側)に吐出される。したがって、密閉容器103内の圧力は高圧である吐出圧力となる。
 第2のベーン10が吐出ポート2dを通過すると、圧縮室15に高圧の冷媒が若干残る(ロスとなる)。そして、「角度180°」(図示せず)で、圧縮室15が消滅したとき、この高圧の冷媒は吸入室13にて低圧の冷媒に変化する。なお、「角度180°」では吸入室13が中間室14に移行し、中間室14が圧縮室15に移行して、以降圧縮動作を繰り返す。
 このように、ロータ部4a(ロータシャフト4)の回転により、吸入室13は徐々に容積が大きくなり、ガスの吸入を続ける。以後中間室14に移行するが、途中まで容積が徐々に容積が大きくなり、更にガスの吸入を続ける。途中で、中間室14の容積は最大となり、吸入ポート1aに連通しなくなるので、ここでガスの吸入を終了する。以後、中間室14の容積は徐々に小さくなり、ガスを圧縮する。その後、中間室14は圧縮室15に移行して、ガスの圧縮を続ける。所定の圧力まで圧縮されたガスは、シリンダ1、又はフレーム2やシリンダヘッド3の圧縮室15に開口する部分に形成された吐出ポート(例えば、吐出ポート2d)により吐出される。
 図6は、本発明の実施の形態1に係るベーンアライナの回転動作を説明するための底面断面図である。なお、図6では、ベーンアライナ6,8の回転動作を示している。また、図6の「角度0°」の図に示す矢印は、ベーンアライナ6,8の回転方向(図6では時計方向)である。但し、他の図では、ベーンアライナ6,8の回転方向を示す矢印は省略している。ロータシャフト4の回転により、第1のベーン9及び第2のベーン10がシリンダ1の中心周りに回転する(図5)ことにより、第1のベーン9及び第2のベーン10と嵌合されたベーンアライナ6,8も、図6に示すように凹部3a内を、ベーンアライナ軸受部3bに支持されてシリンダ1の中心周りに回転する。なお、この動作は凹部2a内をベーンアライナ軸受部2bに支持されて回転するベーンアライナ5,7についても同様である。
 上記の冷媒圧縮動作においてロータシャフト4が回転することにより、図1に矢印で示すように、油ポンプ31によって油溜め104から冷凍機油25が吸い上げられ、給油路4hに送り出される。給油路4hに送り出された冷凍機油25は、給油路4iを通ってフレーム2の凹部2a、給油路4jを通ってシリンダヘッド3の凹部3aに送り出される。
 凹部2a,3aに送り出された冷凍機油25は、ベーンアライナ軸受部2b,3bを潤滑するとともに、その一部は凹部2a,3aと連通したベーン逃がし部4f,4gに供給される。ここで、密閉容器103内の圧力は高圧である吐出圧力になっているため、凹部2a,3a及びベーン逃がし部4f,4g内の圧力も吐出圧力となる。また、凹部2a,3aに送り出された冷凍機油25の一部は、フレーム2の主軸受部2c及びシリンダヘッド3の主軸受部3cに供給される。
 ベーン逃がし部4f,4gに送り出された冷凍機油25は、次のように流れることとなる。
 図7は、本発明の実施の形態1に係るベーン近傍の要部拡大図である。なお、図7は、図4におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 上述のようにベーン逃がし部4fの圧力は吐出圧力であり、吸入室13及び中間室14の圧力より高いため、冷凍機油25は、第1のベーン9の側面とブッシュ11間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室13及び中間室14に送り出される。また、冷凍機油25は、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室13及び中間室14に送り出される。また、第1のベーン9は、ベーン逃がし部4fと吸入室13,中間室14との圧力差、及び遠心力によって、シリンダ1の内周面1bに押し付けられ、第1のベーン9の先端部9aはシリンダ1の内周面1bに沿って摺動する。このとき、中間室14に送り出された冷凍機油25の一部は第1のベーン9の先端部9aを潤滑しながら吸入室13に流入する。この際、第1のベーン9の先端部9aの円弧の半径は、シリンダ1の内周面1bの半径とほぼ一致しており、また両者の法線もほぼ一致しているため、両者の間には十分な油膜が形成され流体潤滑となる。
 なお、図7では、第1のベーン9で仕切られる空間が吸入室13と中間室14である場合について示したが、回転が進んで、第1のベーン9で仕切られる空間が中間室14と圧縮室15となる場合でも同様である。また、圧縮室15内の圧力がベーン逃がし部4fの圧力と同じ吐出圧力に達した場合でも、遠心力によって、冷凍機油25は圧縮室15に向かって送り出されることになる。なお、以上の動作は第1のベーン9まわりに対して示したが、第2のベーン10においても同様の動作を行う。
 上記の給油動作において、主軸受部2cに供給された冷凍機油25は主軸受部2cの隙間を通ってフレーム2の上方の空間に吐き出された後、シリンダ1の外周部に設けた油戻し穴1cより、油溜め104に戻される。また、主軸受部3cに供給された冷凍機油25は主軸受部2cの隙間を通って油溜め104に戻される。また、ベーン逃がし部4f,4gを介して吸入室13、中間室14及び圧縮室15に送り出された冷凍機油25も、最終的に冷媒とともに吐出ポート2dからフレーム2の上方の空間に吐き出され後、シリンダ1の外周部に設けた油戻し穴1cより、油溜め104に戻される。また、油ポンプ31により給油路4hに送り出された冷凍機油25のうち、余剰な冷凍機油25はロータシャフト4の上方の排油穴4kから、フレーム2の上方の空間に吐き出された後、シリンダ1の外周部に設けた油戻し穴1cより、油溜め104に戻される。
 以上、本実施の形態1に係るベーン型圧縮機200においては、ロータシャフト4の下端部に油ポンプ31を設け、ロータシャフト4内に給油路4h,4i,4jを設けたので、主軸受部2c,3c及びベーンアライナ軸受部2b,3bに冷凍機油25を確実に供給し潤滑することが可能となる。また、ベーン逃がし部4f及びベーン逃がし部4gの軸方向端部をフレーム2の凹部2a及びシリンダヘッド3の凹部3aと連通させたので、冷凍機油25はベーン逃がし部4f及びベーン逃がし部4gを通って、第1のベーン9の側面とブッシュ11間、第2のベーン10の側面とブッシュ12間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室13及び中間室14、又は中間室14及び圧縮室15に送り出される。さらに、中間室14又は圧縮室15に送り出された冷凍機油25の一部は、第1のベーン9の先端部9a及び第2のベーン10の先端部10aを潤滑しながら吸入室13又は中間室14に流入することになるので、ベーン側面とブッシュ間、ブッシュとブッシュ保持部間、ベーン先端部の各摺動部に冷凍機油25が確実に供給され潤滑することが可能となる。
 したがって、第1のベーン9の先端部9a及び第2のベーン10の先端部10aの円弧とシリンダ1の内周面1bの法線が常にほぼ一致するように圧縮動作行うために必要な機構(第1のベーン9及び第2のベーン10がシリンダ1の中心周りに回転運動する機構)を、回転軸部4b,4cとロータ部4aを一体的に構成して実現している(つまり、従来のベーン型圧縮機のロータ部両端に設けられていた端板を用いずに実現している)。このため、本実施の形態1に係るベーン型圧縮機200は、回転軸部4b,4cを小径の主軸受部2c,3cで支持できることで軸受摺動損失を低減し、且つ、ロータ部4aの外径や回転中心の精度を向上することができる。したがって、本実施の形態1に係るベーン型圧縮機200は、ロータ部4aとシリンダ内周面1b間を狭い隙間で形成して漏れ損失を低減することが可能となるので、高効率のベーン型圧縮機200を得ることができる。
 なお、上記のベーン型圧縮機200では、ベーンアライナ5,6,7,8のベーン保持部5a,6a,7a,8aを第1のベーン9の背面溝9b及び第2のベーン10の背面溝10bに嵌入し、第1のベーン9及び第2のベーン10の方向を規制する方法を示した。この方法の場合、ベーン保持部5a,6a,7a,8aや第1のベーン9の背面溝9b及び第2のベーン10の背面溝10bに薄肉部を有する。
 図2に示すように、ベーン保持部5a,6a,7a,8aは、四角形の板状の突起であるので、それ自身が強度的に弱い。
 図8は、本発明の実施の形態1に係るベーンを示す斜視図である。図8に示すように、第1のベーン9及び第2のベーン10は、背面溝9b,10bの両側部に薄肉部9c,10cを備える。
 そのため、本実施の形態1の方法を適用するためには、第1のベーン9及び第2のベーン10にかかる力の小さい、つまり動作圧力の低い冷媒を使用することが好ましい。例えば、標準沸点が-45℃以上の冷媒が好適であり、R600a(イソブタン)、R600(ブタン)、R290(プロパン)、R134a、R152a、R161、R407C、R1234yf、R1234ze等の冷媒であれば、ベーン保持部5a,6a,7a,8a及び第1のベーン9の背面溝9b及び第2のベーン10の背面溝10bの強度的な問題も無く使用できる。
 ここで、本実施の形態1に係るベーン型圧縮機200におけるベーン10の方向の規制方法は、上述の方法に限られるものではない。例えば、次のようにベーン10の方向を規制してもよい。
 図9は、本発明の実施の形態1にかかるベーン及びベーンアライナの別の一例を示す斜視図である。この図9は、ベーン10及びベーンアライナ8を示している。
 図9に示す第2のベーン10は、背面溝10bの代わりに突起部10dが設けられている。また、図9に示すベーンアライナ8は、板状の突起であるベーン保持部8aの代わりに、スリット状のベーン保持溝8bが設けられている。なお、図示していないが、ベーンアライナ7についても同様に、ベーン保持部7aの代わりにスリット状のベーン保持溝7bが設けられている。ベーン保持溝7b,8bに第2のベーン10の端面に設けた突起部10dが嵌入することで、第2のベーン10の先端の円弧とシリンダ1の内周面1bの法線が常にほぼ一致するように方向が規制される。なお、ベーンアライナ7,8のベーン保持溝7b、8bを通しでなく、内径側を止まりにして第2のベーン10がシリンダ1の内周面1b側と逆方向に過大に移動するのを規制してもよい。また、第1のベーン9とベーンアライナ5,6についても同様の構成としてもよい。以上の構成でも同様の効果が得られる。
 また例えば、次のようにベーン10の方向を規制してもよい。
 図10は、本発明の実施の形態1に係る圧縮要素の別の一例のベーン近傍を示す要部拡大図(平面断面図)である。
 図10において、Bは、ベーンアライナ6のベーン保持部6aの取付方向及び第1のベーン9の長手方向を示している。また、Cは、第1のベーン9の先端部9aの円弧の法線を示している。つまり、ベーンアライナ6のベーン保持部6aは、ベーンアライナ6のリング状部材の中心軸方向のベーン側の端面に、Bの方向に傾けて取り付けられている。これにより、第1のベーン9は、その長手方向がシリンダ1の内周面1bの法線に対して傾くように、ロータシャフト4のロータ部4aに設けられることとなる。また、第1のベーン9の先端部9aの円弧の法線Cは、ベーン長手方向Bと傾いており、ベーンアライナ6のベーン保持部6aを第1のベーン9の背面溝9bに挿入した状態においてシリンダ1の内周面1bの中心に向かうように構成される。つまり、第1のベーン9の先端部9aの円弧の法線Cは、シリンダ1の内周面1bの法線と略一致する。なお、第1のベーン9とベーンアライナ5、及び第2のベーン10とベーンアライナ7,8についても上記と同様の構成である。
 図10に示す構成においても、ベーン先端部(第1のベーン9の先端部9a、第2のベーン10の先端部10a)の円弧とシリンダ1の内周面1bの法線は回転中常に一致する状態で圧縮動作を行なうことが可能であり、また、冷凍機油25の流れも上記と同様であるため、上記と同様の効果が得られる。また、ベーン先端部(第1のベーン9の先端部9a及び第2のベーン10の先端部10a)の円弧長さを長くすることが可能となり、シール長さが増加することで、更にベーン先端部(第1のベーン9の先端部9a及び第2のベーン10の先端部10a)での漏れ損失を低減することも可能となる。
実施の形態2.
 実施の形態1で示した有底円筒状の凹部2a,3aの底部に、例えば以下のような溝部を形成してもよい。なお、本実施の形態2で特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図11は、本発明の実施の形態2に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。この図11は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。なお、図示しないが、ベーンアライナ軸受部3b(換言するとシリンダヘッド3の凹部3a)近傍も同様の形状としている。また、図11に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態2に係るベーン型圧縮機200は、フレーム2の凹部2aの底部の外周側に段差を設けて、シリンダ1の内周面1bと同心の環状の溝部2gを形成している。そして、ベーンアライナ5,7(より詳しくは、ベース部5c,7c)は凹部2a内の溝部2gに挿入されている。ベーンアライナ5,7は凹部2a内の溝部2gに嵌入されることで径方向の移動が規制されるため、ベーンアライナ5,7を実施の形態1よりも凹部2a内で安定に保持することができる。なお、フレーム2の凹部2aの段差を大きくし過ぎると、フレーム2の凹部2aの内径側の空間の軸方向高さが短くなり、給油路4iからフレーム2の凹部2aに冷凍機油25を送る際に抵抗となり給油が阻害される場合がある。このため、フレーム2の凹部2aの段差、つまり溝部2gの深さは、給油が阻害されない程度に適度な段差にしておくことが好ましい。
 以上、本実施の形態2に係るベーン型圧縮機200においては、冷凍機油25の流れは実施の形態1と同様であり、実施の形態1と同様の効果を得ることができる。また、本実施の形態2に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200と比べ、ベーンアライナ5,7をより安定してフレーム2の凹部2a内に保持することができ、ベーンアライナ6,8をより安定してシリンダヘッド3の凹部3a内に保持することができる。
実施の形態3.
 実施の形態1及び実施の形態2では、第1のベーン9とベーンアライナ5,6とが別体で構成され、第2のベーン10とベーンアライナ7,8とが別体で構成されていた。これに限らず、ベーンアライナ5,6のうちの少なくとも1つを第1のベーン9と一体で構成してもよい。同様に、ベーンアライナ7,8のうちの少なくとも1つを第2のベーン10と一体で構成してもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図12は、本発明の実施の形態3に係るベーン型圧縮機のベーン及びベーンアライナを示す斜視図である。図12では、ベーンとベーンアライナとを一体で構成する一例として、第2のベーン20とベーンアライナ8とを一体で構成する場合について示している。
 実施の形態1でもわかるように、第1のベーン9の背面溝9bと、ベーンアライナ5,6のベーン保持部5a,6aは、ベーン型圧縮機200(密閉型)の動作において相対位置関係が変化しない。同様に、第2のベーン10の背面溝10bと、ベーンアライナ7,8のベーン保持部7a,8aは、ベーン型圧縮機200(密閉型)の動作において相対位置関係が変化しない。そのため、両者(第1のベーン9とベーンアライナ5,6、及び第2のベーン10とベーンアライナ7,8)を一体化することが可能である。本実施の形態3では、第2のベーン10及びベーンアライナ8を別体で製作し、ベーンアライナ8のベーン保持部8aを第2のベーン10の背面溝10bに挿入した後、両者を固定して一体化している。
 なお、本実施の形態3では、第2のベーン10とベーンアライナ8とを一体化したが、ベーンアライナ7も同様に第2のベーン10と一体化してもよいし、一体化しなくてもよい。つまり、第2のベーン10とベーンアライナ7,8の少なくともいずれか一方とを一体化するものである。第1のベーン9についても同様で、第1のベーン9とベーンアライナ5,6の少なくとも一方とを一体化すればよい。
 続いて、本実施の形態3に係るベーン型圧縮機200の圧縮要素101の動作について説明する。本実施の形態3に係る圧縮要素101は、概略実施の形態1で示した圧縮要素101と同様の動作を行なうが、以下の点が実施の形態1で示した圧縮要素101と異なる。つまり、ベーンアライナ5,6の少なくとも一方と第1のベーン9とを一体化し、ベーンアライナ7,8の少なくとも一方と第2のベーン10とを一体化したことにより、第1のベーン9及び第2のベーン10は、ロータ部4aの略遠心方向への動きが固定される。このため、第1のベーン9の先端部9a及び第2のベーン10の先端部10aは、シリンダ1の内周面1bと摺動せず、第1のベーン9の先端部9a及び第2のベーン10の先端部10aとシリンダ1の内周面1bとの間が非接触状態(つまり微小隙間を保った状態)で回転する。
 本実施の形態3においても、冷凍機油25の流れは実施の形態1(図1及び図7参照)とほぼ同様となる。但し、第1のベーン9の先端部9a及び第2のベーン10の先端部10aとシリンダ1の内周面1bとが非接触となるため、ベーン先端部(第1のベーン9の先端部9a及び第2のベーン10の先端部10a)の摺動損失は発生しない。その分、第1のベーン9の先端部9a及び第2のベーン10の先端部10aとシリンダ1の内周面1bとの隙間を通って、高圧側から低圧側(例えば図7では、中間室14から吸入室13)に冷媒が漏れるため、漏れ損失が発生する。しかしながら、ベーン逃がし部4f,4gから高圧側の室に送り出された冷凍機油25によって、第1のベーン9の先端部9a及び第2のベーン10の先端部10aとシリンダ1の内周面1bとの隙間が確実にシールされるため、漏れ損失を極少に保つことが可能となる。このため、本実施の形態3のような構成にすることにより、実施の形態1よりも摺動損失が少なく、かつ損失全体も少ないベーン型圧縮機200を提供できるという効果がある。
 なお、ベーンとベーンアライナを一体化する構成は、図12に示す構成に限定されるものではなく、例えば以下の図13に示すような構成によってベーンとベーンアライナを一体化してもよい。
 図13は、本発明の実施の形態3に係るベーン型圧縮機の別の一例の圧縮要素を示す分解斜視図である。
 図13に示すベーン型圧縮機200の圧縮要素101では、ベーンとベーンアライナが別部品でなく、一体部品として形成されている。詳しくは、41は、第1のベーン9及びベーンアライナ5、6を一体の部品として形成した第1の一体ベーンである。また、42は、第2のベーン10及びベーンアライナ7、8を一体の部品として形成した第2の一体ベーンである。図13のように構成したベーン型圧縮機200においても、図12で示したベーン型圧縮機と同様の動作となり、同様の効果を得ることができる。
 なお、本実施の形態3では図示しなかったが、実施の形態1の図10で示した構成と同様に、ベーン先端部(第1のベーン9の先端部9a及び第2のベーン10の先端部10a)の円弧の法線をシリンダ1の内周面1bの法線とほぼ一致させ、ベーン長手方向はシリンダ内周面1bの法線方向に対し一定の傾きを持つように構成してもよい。これにより、ベーン先端部(第1のベーン9の先端部9a及び第2のベーン10の先端部10a)の円弧長さを長くすることが可能であり、シール長さが増加することで、更にベーン先端部(第1のベーン9の先端部9a及び第2のベーン10の先端部10a)での漏れ損失を低減することが可能となる。
 また、本実施の形態3に係るベーン型圧縮機200の凹部2a,3aに、実施の形態2のような段差を設け、ベーンアライナ5,6,7,8を溝部内で保持しても勿論よい。
実施の形態4.
 実施の形態1~実施の形態3で示したベーン型圧縮機200に次のような給油路を設けることにより、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図14は、本発明の実施の形態4に係るベーン型圧縮機を示す縦断面図である。また、図15は、このベーン型圧縮機の圧縮要素の断面図であり、図14のI-I線に沿った断面図である。なお、図14及び図15に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態4に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、フレーム2の凹部2aとシリンダ1の最近接点32とを連通する給油路が設けられている。この給油路は、給油路2eと給油路1dで構成されている。給油路2eはフレーム2に形成されており、一方の端部がフレーム2の凹部2aに開口し、他方の端部が給油路1dと連通するようにフレーム2のシリンダ1側端面に開口している。給油路1dは、シリンダ1に形成されており、一方の端部が給油路2eと連通するようにシリンダ1のフレーム2側端面に開口しており、他方の端部が最近接点32に開口している。
 フレーム2の凹部2a内の圧力は高圧である吐出圧力となっているので、フレーム2の凹部2aに供給された冷凍機油25の一部は、給油路2e及び給油路1dを通って最近接点32に供給される。これによって、ロータシャフト4のロータ部4aとシリンダ1の内周面1b間の隙間が冷凍機油25でシールされるため、高圧側から低圧側(例えば、図4においては圧縮室15から吸入室13)への冷媒の漏れを低減することが可能となる。
 以上、本実施の形態4においては、実施の形態1に示した効果に加えて、ロータシャフト4のロータ部4aとシリンダ1の内周面1b間の隙間における漏れ損失も低減できる効果が有るため、実施の形態1よりもさらに損失の少ないベーン型圧縮機200を提供できるという効果がある。
 なお、本実施の形態4に係るベーン型圧縮機200においても、実施の形態2のような段差を設けてベーンアライナ5,6,7,8を溝部内で保持してもよいし、実施の形態3のようにベーン及びベーンアライナを実施の形態3のように一体化してもよい。このように構成することにより、実施の形態2,3で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
 また、本実施の形態4では、フレーム2の凹部2aとシリンダ1の最近接点32とを連通する給油路を設けたが、給油路2eに相当する給油路をシリンダヘッド3に形成し、シリンダヘッド3の凹部3aとシリンダ1の最近接点32とを連通する給油路を設けてもよい。また、フレーム2の凹部2a及びシリンダヘッド3の凹部3aの双方とシリンダ1の最近接点32とを連通する給油路を設けてもよい。また、本実施の形態4では、給油路1dは最近接点32において1カ所のみ開口しているが、複数箇所に開口していてもよい。
実施の形態5.
 実施の形態1~実施の形態4で示したベーン型圧縮機200に次のような給油路を設けることによっても、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。なお、本実施の形態5において、特に記述しない項目については実施の形態1~実施の形態4と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図16は、本発明の実施の形態5に係るベーン型圧縮機を示す縦断面図である。なお、図16に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態5に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、油溜め104とシリンダ1の最近接点32とを連通する給油路が設けられている。この給油路は、給油路3dと給油路1eで構成されている。給油路3dはシリンダヘッド3に形成されており、一方の端部が油溜め104に浸漬したシリンダヘッド3の油溜め104側端面に開口し、他方の端部が給油路1eと連通するようにシリンダヘッド3のシリンダ1側端面に開口している。給油路1eは、シリンダ1に形成されており、一方の端部が給油路3dと連通するようにシリンダ1のシリンダヘッド3側端面に開口しており、他方の端部が最近接点32に開口している。
 油溜め104内の圧力は高圧である吐出圧力となっているので、油溜め104内の冷凍機油25の一部は、給油路3d及び給油路1eを通って最近接点32に供給される。これによって、ロータシャフト4のロータ部4aとシリンダ1の内周面1b間の隙間が冷凍機油25でシールされるため、高圧側から低圧側(例えば、図4においては圧縮室15から吸入室13)への冷媒の漏れを低減することが可能となる。
 以上、本実施の形態5においては、実施の形態1に示した効果に加えて、ロータシャフト4のロータ部4aとシリンダ1の内周面1b間の隙間における漏れ損失も低減できる効果が有るため、実施の形態4と同様に実施の形態1よりもさらに損失の少ないベーン型圧縮機200を提供できるという効果がある。
 なお、本実施の形態5で示した給油路を実施の形態2~実施の形態4で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態4で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
実施の形態6.
 実施の形態1~実施の形態5で示したベーン型圧縮機200に次のような給油路を設けることによっても、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。なお、本実施の形態6において、特に記述しない項目については実施の形態1~実施の形態5と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図17は、本発明の実施の形態6に係るベーン型圧縮機を示す縦断面図である。なお、図17に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態6に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、油溜め104とシリンダヘッド3の凹部3aとを連通する給油路3eがシリンダヘッド3に設けられている。
 上述したようにベーン逃がし部4f,4g内の圧力は高圧である吐出圧力となっている。このため、ベーン逃がし部4f,4g内の冷凍機油25は圧力差及び遠心力によって、吸入室13及び中間室14に供給される。このとき、本実施の形態6に係るベーン型圧縮機200は、実施の形態1で示した給油路に加えて給油路3eも備えているので、油溜め104内の冷凍機油25は、給油路3eからもシリンダヘッド3の凹部3aに供給され、ベーン逃がし部4f,4gを通って吸入室13及び中間室14に供給されることになる。
 したがって、本実施の形態6においては、実施の形態1に示した効果に加えて、シリンダヘッド3の凹部3aに供給される冷凍機油25は増加するため、実施の形態1よりもさらに損失の少ないベーン型圧縮機200を提供できるという効果がある。
 なお、本実施の形態6で示した給油路3eを実施の形態2~実施の形態5で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態5で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
実施の形態7.
 実施の形態1~実施の形態6で示したベーン型圧縮機200に次のような給油路(貫通穴)を設けることによっても、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。なお、本実施の形態7において、特に記述しない項目については実施の形態1~実施の形態6と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図18は、本発明の実施の形態7に係るベーン型圧縮機を示す縦断面図である。なお、図18に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態7に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、フレーム2の凹部2aとフレーム2の上方の空間とを連通する貫通穴2fがフレーム2に設けられている。本構成によれば、主軸受部2c通ってフレーム2の上方の空間に吐き出された冷凍機油25、及びロータシャフト4に設けた排油穴4kからフレーム2の上方の空間に吐き出された冷凍機油25のうちの一部は、貫通穴2fを通って再びフレーム2の凹部2aに戻されることになる。
 したがって、本実施の形態7においては、実施の形態1に示した効果に加えて、フレーム2の凹部2aに供給される冷凍機油25は増加するため、実施の形態1よりもさらに損失の少ないベーン型圧縮機200を提供できるという効果がある。
 また、本実施の形態7で示した貫通穴2fを実施の形態2~実施の形態6で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態6で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。特に、実施の形態6で示したベーン型圧縮機200に貫通穴2fを形成することにより、フレーム2の凹部2a及びシリンダヘッド3の凹部3aの双方において給油量を増加させることができるので、さらに損失低減効果が高まる。
 ここで、貫通穴2fの上端と連通し、上方に開口する凹部状の油保持部を設けることにより、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。
 図19は、本発明の実施の形態7に係るベーン型圧縮機の別の一例を示す縦断面図である。また、図20は、このベーン型圧縮機のフレームを示す平面図である。なお、図19に示す矢印は、冷凍機油25の流れを示している。
 図19及び図20に示すベーン型圧縮機200は、貫通穴2fの上端と連通し、上方に開口する凹部状の油保持部33がフレーム2に設けられている。本構成によれば、主軸受部2c通ってフレーム2の上方の空間に吐き出された冷凍機油25、及びロータシャフト4に設けた排油穴4kからフレーム2の上方の空間に吐き出された冷凍機油25のうちの一部は、油保持部33に貯溜され易くなる。このため、貫通穴2fを通って再びフレーム2の凹部2aに戻される油量は図18に示す構成よりも増加することになる。したがって、図19及び図20に示すベーン型圧縮機200は、図18に示すベーン型圧縮機200よりもさらに損失を低減できるという効果がある。
 なお、図18~図20では貫通穴2fを1個のみ設ける例について説明したが、貫通穴2fの個数は複数であってもよい。
実施の形態8.
 実施の形態1~実施の形態7で示したベーン型圧縮機200に次のような給油路を設けることにより、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。なお、本実施の形態8において、特に記述しない項目については実施の形態1~実施の形態7と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図21は、本発明の実施の形態8に係るベーン型圧縮機を示す縦断面図である。また、図22は、このベーン型圧縮機の圧縮要素の断面図であり、図21のI-I線に沿った断面図である。なお、図21及び図22に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態8に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、ロータシャフト4内の給油路4hとベーン逃がし部4f,4gとを連通する給油路4m,4nが設けられている。給油路4mは、ロータシャフト4内の給油路4hとベーン逃がし部4fとを連通するものであり、給油路4nは、ロータシャフト4内の給油路4hとベーン逃がし部4gとを連通するものである。本構成によれば、実施の形態1よりもベーン逃がし部4f,4gへの給油量が増えるため、ベーン側面とブッシュ間、ブッシュとブッシュ保持部間、ベーン先端部の各摺動部の潤滑がより良好となる。
 なお、本実施の形態8では、給油路4m,4nがそれぞれ1個の場合を示したが、複数個設けてもよい。また、給油路4m,4nを、実施の形態2~実施の形態7に示したベーン型圧縮機200に形成することにより、ベーン逃がし部4f,4gへの給油量が増えるため、実施の形態2~実施の形態7で示したベーン型圧縮機200よりも、ベーン側面とブッシュ間、ブッシュとブッシュ保持部間、ベーン先端部の各摺動部の潤滑がより良好となる(実施の形態3においては、ベーン先端部のシールがより良好となる)。
 また、本実施の形態8で示した給油路4m,4nを設ける場合、油溜め104内の冷凍機油25を給油路4m,4nを介してベーン逃がし部4f,4gに供給できるため、ベーン逃がし部4f,4gの両端面をフレーム2及びシリンダヘッド3の凹部2a,3aと連通させなくても、実施の形態1~実施の形態7と同等の給油が可能となる。
実施の形態9.
 実施の形態1~実施の形態8で示したベーン型圧縮機200に、フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する給油路、及び、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路を次のように形成してもよい。なお、本実施の形態9において、特に記述しない項目については実施の形態1~実施の形態8と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図23は、本発明の実施の形態9に係るベーン型圧縮機を示す縦断面図である。また、図24は、このベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。この図24は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。なお、図23及び図24に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態9に係るベーン型圧縮機200の基本構成は、実施の形態1で示したベーン型圧縮機200の構成と同じであるが、フレーム2の凹部2aの底部とベーンアライナ5,7との間に空隙2hを形成している点が実施の形態1で示したベーン型圧縮機200の構成と異なる。つまり、本実施の形態9に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する給油路となる空隙2hを備えている。なお、図示していないが、シリンダヘッド3の凹部3aの底部とベーンアライナ6,8との間にも、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路となる空隙が形成されている。
 このように構成されたベーン型圧縮機200においては、空隙2hが形成されているため、フレーム2の凹部2aに送り出された冷凍機油25は、この空隙2h(ベーンアライナ5,7の軸方向端面と凹部2a底部との間)を通ってベーンアライナ軸受部2bに送られる。このため、ベーンアライナ軸受部2bにより確実に給油することができ、ベーンアライナ軸受部2bをより確実に潤滑することができる。なお、この動作は、ベーンアライナ軸受部3bにおいても同様である。
 以上、本実施の形態9においては、ベーンアライナ軸受部2b,3bにより確実に給油することができ、ベーンアライナ軸受部2b,3bをより確実に潤滑することができる。このため、実施の形態1よりもさらに損失の少ないベーン型圧縮機200を提供できるという効果がある。
 なお、本実施の形態9で示した空隙を実施の形態2~実施の形態8で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態8で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
実施の形態10.
 実施の形態9で示した有底円筒状の凹部2a,3aの底部に、例えば以下のような溝部を形成してもよい。なお、本実施の形態10で特に記述しない項目については実施の形態9と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図25は、本発明の実施の形態10に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。この図25は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。なお、図示しないが、ベーンアライナ軸受部3b(換言するとシリンダヘッド3の凹部3a)近傍も同様の形状としている。また、図25に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態10に係るベーン型圧縮機200は、フレーム2の凹部2aの底部の外周側に段差を設けて、シリンダ1の内周面1bと同心の環状の溝部2gを形成している。そして、ベーンアライナ5,7(より詳しくは、ベース部5c,7c)は凹部2a内の溝部2gに挿入されている。また、ベーンアライナ5,7が凹部2a内の溝部2gに挿入された状態において、フレーム2の凹部2aの底部とベーンアライナ5,7との間に空隙2hが形成されている。ベーンアライナ5,7は凹部2a内の溝部2gに嵌入されることで径方向の移動が規制されるため、ベーンアライナ5,7を実施の形態9よりも凹部2a内で安定に保持することができる。なお、フレーム2の凹部2aの段差を大きくし過ぎると、フレーム2の凹部2aの内径側の空間の軸方向高さが短くなり、給油路4iからフレーム2の凹部2aに冷凍機油25を送る際に抵抗となり給油が阻害される場合がある。このため、フレーム2の凹部2aの段差、つまり溝部2gの深さは、給油が阻害されない程度に適度な段差にしておくことが好ましい。
 以上、本実施の形態10のように構成されたベーン型圧縮機200においても、空隙2hが形成されているため、フレーム2の凹部2aに送り出された冷凍機油25は、この空隙2h(ベーンアライナ5,7の軸方向端面と凹部2a底部との間)を通ってベーンアライナ軸受部2bに送られる。このため、ベーンアライナ軸受部2bにより確実に給油することができ、ベーンアライナ軸受部2bをより確実に潤滑することができる。なお、この動作は、ベーンアライナ軸受部3bにおいても同様である。
 また、本実施の形態10に係るベーン型圧縮機200においては、実施の形態9で示したベーン型圧縮機200と比べ、ベーンアライナ5,7をより安定してフレーム2の凹部2a内に保持することができ、ベーンアライナ6,8をより安定してシリンダヘッド3の凹部3a内に保持することができる。
実施の形態11.
 実施の形態9又は実施の形態10で示したベーン型圧縮機200に次のような給油路(貫通穴)を設けることによっても、さらに損失の少ないベーン型圧縮機200を得ることが可能となる。なお、本実施の形態11において、特に記述しない項目については実施の形態9又は実施の形態10と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図26は、本発明の実施の形態11に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図(縦断面図)である。この図26は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。なお、図示しないが、ベーンアライナ軸受部3b(換言するとシリンダヘッド3の凹部3a)近傍も同様の形状としている。また、図26に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態11に係るベーン型圧縮機200は、実施の形態9で示したベーン型圧縮機200の構成に加え、空隙2hと連通する油保持溝2iをベーンアライナ軸受部2bに備えている。本実施の形態11では、ベーンアライナ軸受部2bのシリンダ1と反対側の箇所に、全周に渡って油保持溝2iを形成している。
 このように構成されたベーン型圧縮機200においては、フレーム2の凹部2aに送り出された冷凍機油25は、空隙2h(ベーンアライナ5,7の軸方向端面と凹部2a底部との間)を通って油保持溝2iに送られる。油保持溝2iは、ベーンアライナ軸受部2bに隣接しているため、ベーンアライナ軸受部2bには、実施の形態9よりもさらに給油されやすくなる。このため、ベーンアライナ軸受部2bをより確実に潤滑することが可能となる。
 なお、本実施の形態11で示した油保持溝2iを実施の形態10で示したベーン型圧縮機200に形成することにより、つまり、油保持溝2iを溝部2gと連通するように形成することにより、実施の形態9で示したベーン型圧縮機200よりもベーンアライナ軸受部2bをより確実に潤滑することが可能となる。
実施の形態12.
 フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する給油路、及び、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路は、実施の形態9で示したものに限定されるものでなく、例えば次のように形成してもよい。なお、本実施の形態12において、特に記述しない項目については実施の形態1~実施の形態11と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図27は、本発明の実施の形態12に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図であり、図27(a)がベーンアライナ軸受部近傍の縦断面図となり、図27(b)が図27(a)のI-I線に沿った底面断面図となっている。なお、この図27は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。また、図27に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態12に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200に実施の形態9で示した空隙2hを設ける代わりに、フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する少なくとも1個の給油路2jを設けている。この給油路2jは、フレーム2に形成され、一端がベーンアライナ軸受部2bに開口し、他端が凹部2aに開口するものである。なお、図示していないが、シリンダヘッド3にも、給油路2jと同様の構成により、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路が形成されている。
 このように構成されたベーン型圧縮機200においては、給油路2jが形成されているため、フレーム2の凹部2aに送り出された冷凍機油25は、この給油路2jを通ってベーンアライナ軸受部2bに送られる。このため、本実施の形態12に係るベーン型圧縮機200も、実施の形態9で示したベーン型圧縮機200と同様に、ベーンアライナ軸受部2bにより確実に給油することができ、ベーンアライナ軸受部2bをより確実に潤滑することができる。なお、この動作は、ベーンアライナ軸受部3bにおいても同様である。
 なお、本実施の形態12に係るベーン型圧縮機200においても、実施の形態11と同様に、油保持溝2iをベーンアライナ軸受部2bに設けてもよい。つまり、給油路2jと連通する油保持溝2iをベーンアライナ軸受部2bに設けてもよい。
 図28は、本発明の実施の形態12に係るベーン型圧縮機の別の一例のベーンアライナ軸受部近傍を示す要部拡大図であり、図28(a)がベーンアライナ軸受部近傍の縦断面図となり、図28(b)が図28(a)のI-I線に沿った底面断面図となっている。なお、この図28は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。また、図28に示す矢印は、冷凍機油25の流れを示している。
 図28に示すベーン型圧縮機200は、ベーンアライナ軸受部2bのシリンダ1と反対側の箇所に、全周に渡って油保持溝2iが形成されている。この油保持溝2iは、給油路2jと連通している。
 このように構成されたベーン型圧縮機200においては、フレーム2の凹部2aに送り出された冷凍機油25は、給油路2jを通って油保持溝2iに送られる。油保持溝2iは、ベーンアライナ軸受部2bに隣接しているため、ベーンアライナ軸受部2bには、図27に示したベーン型圧縮機200よりもさらに給油されやすくなる。このため、ベーンアライナ軸受部2bをより確実に潤滑することが可能となる。
 なお、図示しないが、油保持溝2iをシリンダヘッド3内に設ければ、当然ながらベーンアライナ軸受部3bについても上記と同様の効果が得られる。また、本実施の形態12で示した給油路2jを実施の形態9~実施の形態11で示したベーン型圧縮機200に設けても勿論よい。そうすると、ベーンアライナ軸受部2bには複数の給油経路から凹部2a内の冷凍機油25が送られるため、ベーンアライナ軸受部2bがさらに給油されやすくなる。なお、これはベーンアライナ軸受部3bにおいても同様である。
 また、本実施の形態12で示した給油路を実施の形態2~実施の形態8で示したベーン型圧縮機200に形成することにより、ベーンアライナ軸受部2b,3bがより給油されやすくなるため、実施の形態2~実施の形態8で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
実施の形態13.
 フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する給油路、及び、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路は、例えば次のように形成してもよい。なお、本実施の形態13において、特に記述しない項目については実施の形態1~実施の形態12と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図29は、本発明の実施の形態13に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図であり、図29(a)がベーンアライナ軸受部近傍の縦断面図となり、図29(b)が図29(a)のI-I線に沿った底面断面図となっている。なお、この図29は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。また、図29に示す矢印は、冷凍機油25の流れを示している。
 本実施の形態13に係るベーン型圧縮機200は、実施の形態1に係るベーン型圧縮機200の構成に加え、フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する給油路として、ベーンアライナ5を径方向に貫通する(内周側から外周側に貫通する)少なくとも1個の給油路5dと、ベーンアライナ7を径方向に貫通する(内周側から外周側に貫通する)少なくとも1個の給油路7dと、を備えている。なお、図示していないが、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路として、ベーンアライナ6,8にも同様の給油路が形成されている。
 このように構成されたベーン型圧縮機200においては、フレーム2の凹部2aに送り出された冷凍機油25は、これら給油路5d,7dを通ってベーンアライナ軸受部2bに送られる。このため、本実施の形態13に係るベーン型圧縮機200も、実施の形態9で示したベーン型圧縮機200と同様に、ベーンアライナ軸受部2bにより確実に給油することができ、ベーンアライナ軸受部2bをより確実に潤滑することができる。なお、この動作は、ベーンアライナ軸受部3bにおいても同様である。
 なお、本実施の形態13で示した給油路5d,7dを実施の形態9~実施の形態12で示したベーンアライナ5,7に設けても勿論よい。そうすると、ベーンアライナ軸受部2bには複数の給油経路から凹部2a内の冷凍機油25が送られるため、ベーンアライナ軸受部2bがさらに給油されやすくなる。なお、これはベーンアライナ軸受部3bにおいても同様である。
 また、本実施の形態13で示した給油路を実施の形態2~実施の形態8で示したベーン型圧縮機200に形成することにより、ベーンアライナ軸受部2b,3bがより給油されやすくなるため、実施の形態2~実施の形態8で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
実施の形態14.
 フレーム2の凹部2aとベーンアライナ軸受部2bとを連通する給油路、及び、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路は、例えば次のように形成してもよい。なお、本実施の形態14において、特に記述しない項目については実施の形態1~実施の形態13と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図30は、本発明の実施の形態14に係るベーン型圧縮機のベーンアライナ軸受部近傍を示す要部拡大図であり、図30(a)がベーンアライナ軸受部近傍の縦断面図となり、図30(b)が図30(a)のI-I線に沿った底面断面図となっている。なお、この図30は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。また、図30に示す実線で示す矢印は冷凍機油25の流れを、破線で示す矢印はベーンアライナ5、7の回転方向を示している。
 本実施の形態14に係るベーン型圧縮機200は、実施の形態1に係るベーン型圧縮機200の構成に加え、給油路5f,7f及び少なくとも1つの給油路5e,7eを備えている。給油路5f,7fは、周方向給油路となるものであり、ベーンアライナ5,7のベース部5c,7cの周方向に沿ってベーンアライナ5,7に形成されている。また、給油路5f,7fは、回転方向側の端部及び回転方向と反対側の端部(反回転側端部)の双方が開口した形状となっている。給油路5e,7eは、径方向給油路となるものであり、給油路5f,7fとベーンアライナ5,7の外周側とを連通するものである。なお、図示していないが、シリンダヘッド3の凹部3aとベーンアライナ軸受部3bとを連通する給油路として、ベーンアライナ6,8にも同様の給油路が形成されている。
 このように構成されたベーン型圧縮機200においては、フレーム2の凹部2aに送り出された冷凍機油25は、ベーンアライナ5,7の回転方向の端部から給油路5f,7f内に流入し、給油路5e,7eを通ってベーンアライナ軸受部2bに送られる。このため、本実施の形態14に係るベーン型圧縮機200も、実施の形態9で示したベーン型圧縮機200と同様に、ベーンアライナ軸受部2bにより確実に給油することができ、ベーンアライナ軸受部2bをより確実に潤滑することができる。なお、この動作は、ベーンアライナ軸受部3bにおいても同様である。
 なお、給油路5f,7fは必ずしも両側端部が開口している必要はなく、例えば給油路5f,7fを次のように構成してもよい。
 図31は、本発明の実施の形態14に係るベーン型圧縮機の別の一例のベーンアライナ軸受部近傍を示す要部拡大図であり、図31(a)がベーンアライナ軸受部近傍の縦断面図となり、図31(b)が図31(a)のI-I線に沿った底面断面図となっている。なお、この図31は、ベーンアライナ軸受部2b(換言するとフレーム2の凹部2a)近傍を示している。また、図31に示す実線で示す矢印は冷凍機油25の流れを、破線で示す矢印はベーンアライナ5、7の回転方向を示している。
 図31に示すベーン型圧縮機200においては、給油路5f,7fは、回転方向側の端部のみが開口しており、回転方向と反対側の端部(反回転側端部)は封止されている。
 このように構成されたベーン型圧縮機200においては、ベーンアライナ5,7の回転方向の端部から給油路5f,7f内に流入した冷凍機油25は全て、給油路5e,7eを通ってベーンアライナ軸受部2bに送られる。このため、図30で示したベーン型圧縮機200よりもさらに確実にベーンアライナ軸受部2bへ給油することができ、ベーンアライナ軸受部2bをさらに確実に潤滑することができる。なお、この動作は、ベーンアライナ軸受部3bにおいても同様である。
 なお、本実施の形態14で示した給油路5f,7f及び給油路5e,7eを実施の形態9~実施の形態12で示したベーンアライナ5,7に設けても勿論よい。そうすると、ベーンアライナ軸受部2bには複数の給油経路から凹部2a内の冷凍機油25が送られるため、ベーンアライナ軸受部2bがさらに給油されやすくなる。なお、これはベーンアライナ軸受部3bにおいても同様である。
 また、本実施の形態14で示した給油路を実施の形態2~実施の形態8で示したベーン型圧縮機200に形成することにより、ベーンアライナ軸受部2b,3bがより給油されやすくなるため、実施の形態2~実施の形態8で示したベーン型圧縮機200よりもさらに損失の少ないベーン型圧縮機200を提供できる。
実施の形態15.
 実施の形態1~実施の形態14で示したベーン型圧縮機200に次のような給油路を形成るすことにより、第1のベーン9及び第2のベーンの先端部9a,10aをより確実に潤滑することが可能となる。なお、本実施の形態15において、特に記述しない項目については実施の形態1~実施の形態14と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図32は、本発明の実施の形態15に係るベーン型圧縮機を示す縦断面図である。また、図33は、このベーン型圧縮機の圧縮要素を示す分解斜視図である。また、図34は、この圧縮要素の断面図であり、図32のI-I線に沿った断面図である。なお、図32に示す矢印は冷凍機油25の流れを示している。
 本実施の形態15に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、第1のベーン9及び第2のベーン10を内周側から外周側(平面視における長手方向)に貫通する給油路9e,10eが設けられている。本実施の形態15では、給油路9e,10eは、第1のベーン9及び第2のベーン10の軸方向中央部付近に設けられている。
 このように構成されたベーン型圧縮機200は、冷媒圧縮動作において次のように冷凍機油25が流れる。なお、本実施の形態15に係るベーン型圧縮機200においては、ベーン9,10近傍以外の冷凍機油25の流れは、実施の形態1に係るベーン型圧縮機200と同様になっている。このため、以下では、ベーン9,10近傍以外の冷凍機油25について説明する。
 図35は、本発明の実施の形態15に係るベーン近傍の要部拡大図である。なお、図35は、図34におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 上述のようにベーン逃がし部4fの圧力は吐出圧力であり、吸入室13及び中間室14の圧力より高いため、ベーン逃がし部4fに供給された冷凍機油25は、第1のベーン9の側面とブッシュ11間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室13及び中間室14に送り出される。また、冷凍機油25は、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室13及び中間室14に送り出される。さらに、冷凍機油25は、第1のベーン9に設けた給油路9eを通って先端部9aに送り出される。ここで、第1のベーン9は、ベーン逃がし部4fと吸入室13,中間室14との圧力差、及び遠心力によって、シリンダ1の内周面1bに押し付けられ、第1のベーン9の先端部9aはシリンダ1の内周面1bに沿って摺動する。このとき、本実施の形態15に係るベーン型圧縮機200においては、給油路9eを通って第1のベーン9の先端部9aに送り出された冷凍機油25によっても、第1のベーン9の先端部9aとシリンダ1の内周面1bとの間を潤滑することができる。第1のベーン9の先端部9aを潤滑した冷凍機油25の一部は、圧力の低い吸入室13に流入する。
 ここで、中間室14に送り出された冷凍機油25の一部も第1のベーン9の先端部9aを潤滑しながら吸入室13に流入するが、第1のベーン9に給油路9eを設けた方が第1のベーン9の先端部9aの給油量をより多くできるので、第1のベーン9の先端部9aの潤滑がより確実で良好となる。この際、第1のベーン9の先端部9aの円弧の半径は、シリンダ1の内周面1bの半径とほぼ一致しており、また両者の法線もほぼ一致しているため、両者の間には十分な油膜が形成され流体潤滑となる。
 なお、図35では、第1のベーン9で仕切られる空間が吸入室13と中間室14である場合について示したが、回転が進んで、第1のベーン9で仕切られる空間が中間室14と圧縮室15となる場合でも同様である。また、圧縮室15内の圧力がベーン逃がし部4fの圧力と同じ吐出圧力に達した場合でも、遠心力によって、冷凍機油25は圧縮室15に向かって送り出されることになる。なお、以上の動作は第1のベーン9まわりに対して示したが、第2のベーン10においても同様の動作を行う。
 以上、本実施の形態15においては、実施の形態1の構成に加え、ベーン9,10を内周側から外周側(平面視における長手方向)に貫通する給油路9e,10eを設けたので、実施の形態1と比べ、第1のベーン9及び第2のベーン10の先端部9a,10aに油溜め104内の冷凍機油25をより十分に供給でき、第1のベーン9及び第2のベーン10の先端部9a,10aをより確実に潤滑することが可能となる。
 また、本実施の形態15で示した給油路9e,10eを実施の形態2~実施の形態14で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態14で示したベーン型圧縮機200よりも第1のベーン9及び第2のベーン10の先端部9a,10aをより確実に潤滑するベーン型圧縮機200を提供できる。
 なお、図32~図35では、第1のベーン9及び第2のベーン10の軸方向中央部付近に給油路9e,10eをそれぞれ1個設けたベーン型圧縮機200について説明した。しかしながら、給油路9e,10eの個数は任意であり、例えば次のようにベーン型圧縮機200を構成してもよい。
 図36は、本発明の実施の形態15に係るベーン型圧縮機の別の一例を示す縦断面図である。図36に示す矢印は冷凍機油25の流れを示している。
 図36に示すベーン型圧縮機200は、第1のベーン9に軸方向に沿って3個の給油路9eを設け、第2のベーン10にも軸方向に沿って3個の給油路10eを設けている。
 このようにベーン型圧縮機200を構成することにより、図32~図35で示したベーン型圧縮機200と比べて、第1のベーン9及び第2のベーン10の先端部9a,10aに軸方向により均一に冷凍機油25を供給できるので、より確実な潤滑が可能となる。なお。図36では給油路9e,10eを3個ずつ設けた場合を示したが、2個ずつでもよく、また4個ずつ以上でもよく、給油路の個数が増加するほど、第1のベーン9及び第2のベーン10の先端部9a,10aをより均一に潤滑することが可能となる。
実施の形態16.
 実施の形態15で示したベーン型圧縮機200に、さらに次のような給油路を形成してもよい。なお、本実施の形態16において、特に記述しない項目については実施の形態15と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図37は、本発明の実施の形態16に係るベーン型圧縮機のベーン近傍の要部拡大図である。なお、図37は回転角度90°の状態におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 本実施の形態16に係るベーン型圧縮機200は、実施の形態15に係るベーン型圧縮機200の構成に加え、給油路35a,35bを備えている。給油路35aは、ベーン9の回転方向と反対側となる側面側(反回転側となるブッシュ11と第1のベーン9の側面との摺動部)と給油路9eとを連通するものである。また、給油路35bは、ベーン9の回転方向の側面側(回転側となるブッシュ11と第1のベーン9の側面との摺動部)と給油路9eとを連通するものである。なお、図示していないが、第2のベーン10にも同様の給油路が形成されている。
 実施の形態15では、ベーン逃がし部4fから直接冷凍機油25がブッシュ11と第1のベーン9の側面との摺動部に供給される。これに対して、本実施の形態16では、これに加えて、ベーン逃がし部4fから第1のベーン9に設けた給油路9e及び給油路35a,35bを通って、冷凍機油25がブッシュ11と第1のベーン9の側面との摺動部に供給される。このため、本実施の形態16に係るベーン型圧縮機200は、実施の形態15で示したベーン型圧縮機200と比べ、ブッシュ11と第1のベーン9の側面との摺動部をより良好に潤滑できる。なお、当然ながら、以上の動作及び効果は第2のベーン10においても同様である。
 なお、給油路35a,35bは必ずしも双方とも設ける必要はなく、給油路35aのみ設けられていてもよい。
 図38は、本発明の実施の形態16に係るベーン型圧縮機の別の一例のベーン近傍を示す要部拡大図である。なお、図38は回転角度90°の状態におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 図38に示すベーン型圧縮機200は、給油路35aのみが設けられている。この図38に示すベーン型圧縮機200の動作及び効果について、以下に示す。
 図39は、図38に示すベーン型圧縮機のベーン及びブッシュに作用する荷重を示す模式図である。図中、実線で示す矢印36は、中間室14と吸入室13との圧力差によって、第1のベーン9に長さ方向と直交方向に作用する荷重である。また、実線で示す矢印37は、ブッシュ11に対して作用する第1のベーン9の長さ方向と直交方向の荷重である。なお、破線で示す矢印は回転方向を示している。
 実施の形態1(より詳しくは図5)において圧縮動作を示したように、回転方向に向かって冷媒が圧縮されることから、第1のベーン9に作用する荷重36は、図に示す方向(反回転方向)が正方向となる。このため、ブッシュ11に対して作用する第1のベーン9の長さ方向と直交方向の荷重37も図に示す方向(反回転方向)が正方向となる。したがって、第1のベーン9の側面とブッシュ11の摺動部のうち、反回転側の摺動部の方が回転側の摺動部よりも潤滑が厳しくなる。したがって、給油路35bを敢えて設ける必要は無く、給油路35aのみを設ける方が、給油路35bを通る無駄な冷凍機油25を減らせ、その分潤滑の厳しい反回転側の摺動部の方に給油できるので、より高い効果を得ることができる。
実施の形態17.
 実施の形態1~実施の形態14で示したベーン型圧縮機200に次のような給油路を形成るすことにより、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部をより確実に潤滑することが可能となる。なお、本実施の形態17において、特に記述しない項目については実施の形態1~実施の形態16と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図40は、本発明の実施の形態17に係るベーン型圧縮機のベーン近傍を示す要部拡大図である。なお、図40は回転角度90°の状態におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 本実施の形態17に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、ブッシュ11に形成され、一端が第1のベーン9側の側面に開口して他端がブッシュ保持部4d間側の側面に開口する給油路36a,36bを備えている。これら給油路36a,36bは、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部と、ブッシュ11と第1のベーン9の側面との摺動部と、を連通するものである。因みに、給油路36aは反回転側に、給油路36bは回転側に形成されている。
 このように構成されたベーン型圧縮機200においては、ベーン逃がし部4fからブッシュ11と第1のベーン9の側面との摺動部に送られた冷凍機油25の一部が、給油路36a,36bを通ってブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部に供給される。このため、本実施の形態17に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200と比べ、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部をより良好に潤滑できる。なお、当然ながら、以上の動作及び効果は第2のベーン10においても同様である。
 また、本実施の形態17で示した給油路を実施の形態2~実施の形態14で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態14で示したベーン型圧縮機200よりもさらに、ブッシュ11,12とブッシュ保持部4d,4e間の摺動部をより良好に潤滑できる。
 なお、本実施の形態17で示した給油路を実施の形態16で示したベーン型圧縮機200に設けることも可能である。
 図41は、本発明の実施の形態17に係るベーン型圧縮機の別の一例のベーン近傍を示す要部拡大図である。なお、図41は回転角度90°の状態におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 図41に示すベーン型圧縮機200は、第1のベーン9に形成された給油路35a,35bと連通するように、給油路36a,36bを設けている。このように構成されたベーン型圧縮機200においては、実施の形態16に示したベーン型圧縮機と同様、ベーン逃がし部4fに供給された冷凍機油25は、ブッシュ11と第1のベーン9の側面との摺動部を介して給油路36a,36bを通り、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部に供給される。さらに、図41に示すベーン型圧縮機200においては、ベーン逃がし部4fに供給された冷凍機油25は、給油路9e,35a,35bも通り、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部に供給される。このため、図41に示すベーン型圧縮機200は、実施の形態16に示したベーン型圧縮機と比べ、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部への給油量が増加するため、より効果が高い。
 なお、図39から明らかなように、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部も反回転側の方が潤滑が厳しい。したがって、図示はしないが、図40で示したベーン型圧縮機200においては、反回転側に形成した給油路36aのみを設けてもよい。そうすると、給油路36bを通る無駄な冷凍機油25を減らせ、その分潤滑の厳しい反回転側の摺動部の方に給油できるので、より効果が高い。また、図41で示したベーン型圧縮機200においては、反回転側に形成した給油路35a,36aのみを設けてもよい。そうすると、給油路35b,36bを通る無駄な冷凍機油25を減らせ、その分潤滑の厳しい反回転側の摺動部の方に給油できるので、より効果が高い。
 なお、当然ながら、以上の動作及び効果は第2のベーン10においても同様である。また、本実施の形態17で示した給油路を実施の形態15に示したベーン型圧縮機200に形成しても勿論よい。
実施の形態18.
 実施の形態1~実施の形態16で示したベーン型圧縮機200に次のような給油路を形成しても、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部をより確実に潤滑することが可能となる。なお、本実施の形態18において、特に記述しない項目については実施の形態1~実施の形態17と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図42は、本発明の実施の形態18に係るベーン型圧縮機のベーン近傍を示す要部拡大図である。なお、図42は回転角度90°の状態におけるベーン9近傍を示す要部拡大図となっており、図中に実線で示す矢印は冷凍機油25の流れ、破線で示す矢印は回転方向を示している。
 本実施の形態18に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200の構成に加え、ロータシャフト4のロータ部4aに形成され、一端がベーン逃がし部4fに開口し、他端がブッシュ保持部4dに開口する給油路37a,37bを備えている。給油路37aは、ブッシュ11のうちのベーン9よりも反回転側に配置される略半円柱形状部分と対向する範囲となるブッシュ保持部4dに開口している。また、給油路37bは、ブッシュ11のうちのベーン9よりも回転側に配置される略半円柱形状部分と対向する範囲となるブッシュ保持部4dに開口している。
 このように構成されたベーン型圧縮機200においては、ベーン逃がし部4fから冷凍機油25が給油路37a,37bを通って、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部に供給されるため、このため、本実施の形態18に係るベーン型圧縮機200は、実施の形態1で示したベーン型圧縮機200と比べ、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部をより良好に潤滑できる。なお、当然ながら、以上の動作及び効果は第2のベーン10においても同様である。
 なお、図示はしないが、図42で示したベーン型圧縮機200においては、反回転側に形成した給油路37aのみを設けてもよい。そうすると、給油路37bを通る無駄な冷凍機油25を減らせ、その分潤滑の厳しい反回転側の摺動部の方に給油できるので、ブッシュ11とロータシャフト4のブッシュ保持部4d間の摺動部は、より良好に潤滑される。
 また、本実施の形態18で示した給油路を実施の形態2~実施の形態17で示したベーン型圧縮機200に形成することにより、実施の形態2~実施の形態17で示したベーン型圧縮機200よりもさらに、ブッシュ11,12とブッシュ保持部4d,4e間の摺動部をより良好に潤滑できる。特に、本実施の形態18で示した給油路を実施の形態17で示したベーン型圧縮機200に形成することにより、複数の流路から冷凍機油25を供給してブッシュ11,12とブッシュ保持部4d,4e間の摺動部を潤滑できるので、ブッシュ11,12とブッシュ保持部4d,4e間の摺動部をさらに良好に潤滑できる。
 なお、以上の実施の形態1~実施の形態18では、ベーン枚数が2枚の場合について示したが、ベーン枚数が1枚の場合でも3枚以上の場合でも同様の構成であり、同様の効果が得られる。なお、実施の形態14を除いて、1枚ベーンの場合は、ベーンアライナは部分リングでなく、リングで構成してよい。
 また、実施の形態1~実施の形態18ではロータシャフト4の遠心力を利用した油ポンプ31について示したが、油ポンプの形態はいずれでもよく、例えば特開2009-62820号公報に記載の容積形ポンプを油ポンプ31として用いてもよい。
 1 シリンダ、1a 吸入ポート、1b 内周面、1c 油戻し穴、1d 給油路、1e 給油路、2 フレーム、2a 凹部、2b ベーンアライナ軸受部、2c 主軸受部、2d 吐出ポート、2e 給油路、2f 給油路、2g 溝部、2h 空隙、2i 油保持溝、2j 給油路、3 シリンダヘッド、3a 凹部、3b ベーンアライナ軸受部、3c 主軸受部、3d 給油路、3e 給油路、4 ロータシャフト、4a ロータ部、4b 回転軸部、4c 回転軸部、4d ブッシュ保持部、4e ブッシュ保持部、4f ベーン逃がし部、4g ベーン逃がし部、4h 給油路、4i 給油路、4j 給油路、4k 排油穴、4m 給油路、4n 給油路、5 ベーンアライナ、5a ベーン保持部、5c ベース部、5d 給油路、5e 給油路、5f 給油路、6 ベーンアライナ、6a ベーン保持部、6c ベース部、7 ベーンアライナ、7a ベーン保持部、7b ベーン保持溝、7c ベース部、7d 給油路、7e 給油路、7f 給油路、8 ベーンアライナ、8a ベーン保持部、8b ベーン保持溝、8c ベース部、9 第1のベーン、9a 先端部、9b 背面溝、9c 薄肉部、9e 給油路、10 第2のベーン、10a 先端部、10b 背面溝、10c 薄肉部、10d 突起部、10e 給油路、11 ブッシュ、12 ブッシュ、13 吸入室、14 中間室、15 圧縮室、21 固定子、22 回転子、23 ガラス端子、24 吐出管、25 冷凍機油、26 吸入管、31 油ポンプ、32 最近接点、33 油保持部、35a 給油路、35b 給油路、36a 給油路、36b 給油路、41 第1の一体ベーン、42 第2の一体ベーン、101 圧縮要素、102 電動要素、103 密閉容器、104 油溜め、200 ベーン型圧縮機。

Claims (37)

  1.  密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、
     前記圧縮要素が、
     円筒状の内周面が形成されたシリンダと、
     前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、
     前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、
     前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
     前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
     を備えたベーン型圧縮機において、
     前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、
     該ベーン角度調整手段は、
     リング形状又は部分リング形状に形成されたベース部を有し、該ベース部に形成された凸部又は凹部の一方が前記ベーンの両端部に形成された凸部又は凹部の他方に挿入されて前記ベーンに接続され、あるいは、該ベース部が前記ベーンの両端部に一体に取り付けられたベーンアライナと、
     前記フレーム及び前記シリンダヘッドのシリンダ側端面において前記シリンダの前記内周面の中心軸と同心に有底円筒形状の凹部が形成され、該凹部の外周面に設けられて該凹部に挿入された前記ベーンアライナの前記ベース部の外周面を摺動自在に支持するベーンアライナ軸受部と、
     を少なくとも備え、
     前記ロータシャフトに形成され、前記油溜めと前記フレーム及び前記シリンダヘッドの前記凹部とを連通する給油路と、
     該給油路に前記油溜め内の冷凍機油を供給する給油手段と、
     を備えたことを特徴とするベーン型圧縮機。
  2.  前記フレーム及び前記シリンダヘッドの前記凹部の底部に、前記シリンダの前記内周面の中心軸と同心のリング状の溝部を形成し、
     該溝部に、前記ベーンアライナの前記ベース部が挿入されたことを特徴とする請求項1に記載のベーン型圧縮機。
  3.  前記ロータ部には、前記回転軸方向に貫通する略円筒形状のブッシュ保持部が形成され、
     これらブッシュ保持部には、一対の略半円柱形状のブッシュが挿入され、
     前記ベーンは、前記ブッシュに挟まれて支持されることにより、前記ロータ部に、揺動可能且つ移動可能に支持されることを特徴とする請求項1又は請求項2に記載のベーン型圧縮機。
  4.  前記ロータ部には、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ブッシュ保持部よりも内周側において該ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部が形成され、
     該ベーン逃がし部が前記フレーム及び前記シリンダヘッドの前記凹部に連通していることを特徴とする請求項3に記載のベーン型圧縮機。
  5.  前記ロータ部と前記シリンダの前記内周面との最近接箇所に開口し、該開口部と前記フレーム及び前記シリンダヘッドのうちの少なくとも1つの前記凹部とを連通する給油路を備えたことを特徴とする請求項1~請求項4のいずれか一項に記載のベーン型圧縮機。
  6.  前記シリンダヘッドは、少なくとも一部が前記油溜めに浸漬するように配置され、
     一方の端部が前記ロータ部と前記シリンダの前記内周面との最近接箇所に開口し、他方の端部が前記油溜めに浸漬する範囲の前記シリンダヘッドの表面に開口した給油路を備えたことを特徴とする請求項1~請求項5のいずれか一項に記載のベーン型圧縮機。
  7.  前記シリンダヘッドは、少なくとも一部が前記油溜めに浸漬するように配置され、
     前記シリンダヘッドの前記凹部と前記油溜めとを連通する給油路を備えたことを特徴とする請求項1~請求項6のいずれか一項に記載のベーン型圧縮機。
  8.  下端が前記フレームの前記凹部に開口し、上端が前記フレームの上方の空間に開口する貫通穴を備えたことを特徴とする請求項1~請求項7のいずれか一項に記載のベーン型圧縮機。
  9.  前記フレームに、前記貫通穴の上端と連通し、上方に開口する凹部状の油保持部が形成されていることを特徴とする請求項8に記載のベーン型圧縮機。
  10.  密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、
     前記圧縮要素が、
     円筒状の内周面が形成されたシリンダと、
     前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、
     前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、
     前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
     前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
     を備えたベーン型圧縮機において、
     前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、
     該ベーン角度調整手段は、
     前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、
     一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、
     を少なくとも備え、
     前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、
     前記油溜めと前記ベーン逃がし部とを連通する給油路と、
     該給油路に前記油溜め内の冷凍機油を供給する給油手段と、
     を備えたことを特徴とするベーン型圧縮機。
  11.  前記油溜めと前記ベーン逃がし部とを連通する給油路は、
     前記ロータシャフト内に形成され、前記シャフト部の下端に開口する第1給油路と、
     該第1給油路と前記ベーン逃がし部とを連通する第2給油路と、
     を備えたことを特徴とする請求項10に記載のベーン型圧縮機。
  12.  密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、
     前記圧縮要素が、
     円筒状の内周面が形成されたシリンダと、
     前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、
     前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、
     前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
     前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
     を備えたベーン型圧縮機において、
     前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、
     該ベーン角度調整手段は、
     リング形状又は部分リング形状に形成されたベース部を有し、該ベース部に形成された凸部又は凹部の一方が前記ベーンの両端部に形成された凸部又は凹部の他方に挿入されて前記ベーンに接続され、あるいは、該ベース部が前記ベーンの両端部に一体に取り付けられたベーンアライナと、
     前記フレーム及び前記シリンダヘッドのシリンダ側端面において前記シリンダの前記内周面の中心軸と同心に有底円筒形状の凹部が形成され、該凹部の外周面に設けられて該凹部に挿入された前記ベーンアライナの前記ベース部の外周面を摺動自在に支持するベーンアライナ軸受部と、
     を少なくとも備え、
     前記ロータシャフトに形成され、前記油溜めと前記フレーム及び前記シリンダヘッドの前記凹部とを連通する給油路と、
     該給油路に前記油溜め内の冷凍機油を供給する給油手段と、
     前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路と、
     を備えたことを特徴とするベーン型圧縮機。
  13.  前記フレーム及び前記シリンダヘッドの前記凹部の底部に、前記シリンダの前記内周面の中心軸と同心のリング状の溝部を形成し、
     該溝部に、前記ベーンアライナの前記ベース部が挿入されたことを特徴とする請求項12に記載のベーン型圧縮機。
  14.  前記フレーム及び前記シリンダヘッドの前記凹部の底部と前記ベーンアライナの前記ベース部との間に空隙を形成し、
     該空隙を、前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路としたことを特徴とする請求項12に記載のベーン型圧縮機。
  15.  前記溝部の底部と前記ベーンアライナの前記ベース部との間に空隙を形成し、
     該空隙を、前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路としたことを特徴とする請求項13に記載のベーン型圧縮機。
  16.  前記ベーンアライナ軸受部に油保持溝を形成し、
     該油保持溝と、前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路と、を連通させたことを特徴とする請求項14又は請求項15に記載のベーン型圧縮機。
  17.  前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路は、
     前記フレームに形成され、一端が前記フレームの前記ベーンアライナ軸受部に開口し、他端が前記フレームの前記凹部に開口する第1の給油路と、
     前記シリンダヘッドに形成され、一端が前記シリンダヘッドの前記ベーンアライナ軸受部に開口し、他端が前記シリンダヘッドの前記凹部に開口する第2の給油路と、
     を備えたことを特徴とする請求項12~請求項16のいずれか一項に記載のベーン型圧縮機。
  18.  前記フレーム及び前記シリンダヘッドの前記ベーンアライナ軸受部に油保持溝を形成し、
     前記フレームの前記油保持溝と前記第1の給油路とを連通し、前記シリンダヘッドの前記油保持溝と前記第2の給油路とを連通したことを特徴とする請求項17に記載のベーン型圧縮機。
  19.  前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路は、
     前記ベーンアライナに形成され、該ベーンアライナの内周側から外周側に貫通する少なくとも1つの給油路を備えたことを特徴とする請求項12~請求項18のいずれか一項に記載のベーン型圧縮機。
  20.  前記ベーンアライナの前記ベース部は部分リング形状であり、
     前記フレーム及び前記シリンダヘッドの前記凹部と前記ベーンアライナ軸受部とを連通する給油路は、
     前記ベース部の周方向沿って前記ベーンアライナに形成され、回転方向側の端部及び回転方向と反対側の端部のうちの少なくとも1つが開口した周方向給油路と、
     該周方向給油路と前記ベーンアライナの外周側とを連通する径方向給油路と、
     を備えたことを特徴とする請求項12~請求項18のいずれか一項に記載のベーン型圧縮機。
  21.  前記周方向給油路は、回転方向と反対側の端部が封止されていることを特徴とする請求項20に記載のベーン型圧縮機。
  22.  密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、
     前記圧縮要素が、
     円筒状の内周面が形成されたシリンダと、
     前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、
     前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、
     前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
     前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
     を備えたベーン型圧縮機において、
     前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、
     該ベーン角度調整手段は、
     前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、
     一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、
     を少なくとも備え、
     前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、
     前記油溜めと前記ベーン逃がし部とを連通する給油路と、
     該給油路に前記油溜め内の冷凍機油を供給する給油手段と、
     前記ベーンに形成され、該ベーンの内周側から外周側に貫通する少なくとも1つの給油路と、
     を備えたことを特徴とするベーン型圧縮機。
  23.  前記ベーン角度調整手段は、
     リング形状又は部分リング形状に形成されたベース部を有し、該ベース部に形成された凸部又は凹部の一方が前記ベーンの両端部に形成された凸部又は凹部の他方に挿入されて前記ベーンに接続され、あるいは、該ベース部が前記ベーンの両端部に一体に取り付けられたベーンアライナと、
     前記フレーム及び前記シリンダヘッドのシリンダ側端面において前記シリンダの前記内周面の中心軸と同心に有底円筒形状の凹部が形成され、該凹部の外周面に設けられて該凹部に挿入された前記ベーンアライナの前記ベース部の外周面を摺動自在に支持するベーンアライナ軸受部と、
     を備えたことを特徴とする請求項22に記載のベーン型圧縮機。
  24.  前記ベーン逃がし部は前記フレーム及び前記シリンダヘッドの前記凹部と連通しており、
     前記油溜めと前記ベーン逃がし部とを連通する給油路は、前記ロータシャフトに形成され、前記油溜めと前記フレーム及び前記シリンダヘッドの前記凹部とを連通する第1の給油路を備え、
     前記油溜め内の冷凍機油は、該第1の給油路から前記凹部を通って前記ベーン逃がし部に供給されることを特徴とする請求項23に記載のベーン型圧縮機。
  25.  前記油溜めと前記ベーン逃がし部とを連通する給油路は、
     前記ロータシャフト内に形成され、前記シャフト部の下端に開口する第1給油路と、
     該第1給油路と前記ベーン逃がし部とを連通する第2給油路と、
     を備えたことを特徴とする請求項22に記載のベーン型圧縮機。
  26.  前記ベーンの内周側から外周側に貫通する少なくとも1つの給油路と、前記ベーンの側面側とを連通する給油路を備えたことを特徴とする請求項22~請求項25のいずれか一項に記載のベーン型圧縮機。
  27.  前記ベーンの内周側から外周側に貫通する少なくとも1つの給油路と、前記ベーンの側面側とを連通する給油路は、
     前記ベーンの回転方向と反対側の側面側にのみ連通していることを特徴とする請求項26に記載のベーン型圧縮機。
  28.  密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、
     前記圧縮要素が、
     円筒状の内周面が形成されたシリンダと、
     前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、
     前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、
     前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
     前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
     を備えたベーン型圧縮機において、
     前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、
     該ベーン角度調整手段は、
     前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、
     一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、
     を少なくとも備え、
     前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、
     前記油溜めと前記ベーン逃がし部とを連通する給油路と、
     該給油路に前記油溜め内の冷凍機油を供給する給油手段と、
     前記ブッシュに形成され、一端がベーン側の側面に開口し、他端がブッシュ保持部側の側面に開口するブッシュ内給油路と、
     を備えたことを特徴とするベーン型圧縮機。
  29.  前記ブッシュに形成され、一端がベーン側の側面に開口し、他端がブッシュ保持部側の側面に開口するブッシュ内給油路を備えたことを特徴とする請求項22~請求項27のいずれか一項に記載のベーン型圧縮機。
  30.  前記ブッシュ内給油路は、前記ベーンよりも反回転側に配置される略半円柱形状部分にのみ形成されたことを特徴とする請求項28又は請求項29に記載のベーン型圧縮機。
  31.  密閉容器と、該密閉容器内の底部に設けられ冷凍機油を貯溜する油溜めと、前記密閉容器内に設けられた電動要素及び圧縮要素と、を有し、
     前記圧縮要素が、
     円筒状の内周面が形成されたシリンダと、
     前記シリンダの内部において前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転運動する円柱形のロータ部、及び前記ロータ部に前記電動要素からの回転力を伝達するシャフト部を有し、該シャフト部の下端が前記油溜めに浸漬するロータシャフトと、
     前記シリンダの前記内周面の一方の開口端を閉塞し、軸受部で前記シャフト部を支承するフレームと、
     前記シリンダの前記内周面の他方の開口端を閉塞し、軸受部で前記シャフト部を支承するシリンダヘッドと、
     前記ロータ部に設けられ、前記ロータ部から突出する外周側の先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
     を備えたベーン型圧縮機において、
     前記ベーンの前記先端部の前記円弧形状の法線と前記シリンダの前記内周面の法線とが常にほぼ一致する状態で圧縮動作を行なうように前記ベーンを保持し、更に、前記ベーンを前記ロータ部に対して揺動可能且つ移動可能に支持するベーン角度調整手段を有し、
     該ベーン角度調整手段は、
     前記ロータ部に形成され、前記回転軸方向に貫通する略円筒形状のブッシュ保持部と、
     一対の略半円柱形状に形成され、前記ベーンを挟んで前記ブッシュ保持部に挿入されるブッシュと、
     を少なくとも備え、
     前記ロータ部は、前記ベーンの内周側の先端部が前記ロータ部と接触しないように、前記ロータ部の前記ブッシュ保持部よりも内周側となる位置に形成され、前記ブッシュ保持部と連通するように前記回転軸方向に貫通する略円筒形状のベーン逃がし部を備え、
     前記油溜めと前記ベーン逃がし部とを連通する給油路と、
     該給油路に前記油溜め内の冷凍機油を供給する給油手段と、
     前記ロータシャフトに形成され、一端が前記ベーン逃がし部に開口し、他端が前記ブッシュ保持部に開口する給油路と、
     を備えたことを特徴とするベーン型圧縮機。
  32.  前記ロータシャフトに形成され、一端が前記ベーン逃がし部に開口し、他端が前記ブッシュ保持部に開口する給油路を備えたことを特徴とする請求項28~請求項30のいずれか一項に記載のベーン型圧縮機。
  33.  前記ロータシャフトに形成され、一端が前記ベーン逃がし部に開口し、他端が前記ブッシュ保持部に開口する給油路は、
     前記ブッシュのうちの前記ベーンよりも反回転側に配置される略半円柱形状部分と対向する範囲となる前記ブッシュ保持部に開口していることを特徴とする請求項31又は請求項32に記載のベーン型圧縮機。
  34.  前記ベーン逃がし部内の圧力は、吐出圧力であることを特徴とする請求項22~請求項33のいずれか一項に記載のベーン型圧縮機。
  35.  前記密閉容器内の圧力は、吐出圧力であることを特徴とする請求項1~請求項34のいずれか一項に記載のベーン型圧縮機。
  36.  前記ベーンの前記先端部の前記円弧形状の半径と、前記シリンダの前記内周面の半径とがほぼ同等であることを特徴とする請求項1~請求項35のいずれか一項に記載のベーン型圧縮機。
  37.  冷媒として、標準沸点が-45℃以上の冷媒を用いることを特徴とする請求項1~請求項36のいずれか一項に記載のベーン型圧縮機。
PCT/JP2012/000107 2012-01-11 2012-01-11 ベーン型圧縮機 WO2013105129A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/000107 WO2013105129A1 (ja) 2012-01-11 2012-01-11 ベーン型圧縮機
EP12865224.5A EP2803862B1 (en) 2012-01-11 2012-01-11 Vane-type compressor
CN201280066569.7A CN104040179B (zh) 2012-01-11 2012-01-11 叶片型压缩机
JP2013553079A JP5657142B2 (ja) 2012-01-11 2012-01-11 ベーン型圧縮機
US14/350,959 US9382907B2 (en) 2012-01-11 2012-01-11 Vane-type compressor having an oil supply channel between the oil resevoir and vane angle adjuster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000107 WO2013105129A1 (ja) 2012-01-11 2012-01-11 ベーン型圧縮機

Publications (1)

Publication Number Publication Date
WO2013105129A1 true WO2013105129A1 (ja) 2013-07-18

Family

ID=48781112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000107 WO2013105129A1 (ja) 2012-01-11 2012-01-11 ベーン型圧縮機

Country Status (5)

Country Link
US (1) US9382907B2 (ja)
EP (1) EP2803862B1 (ja)
JP (1) JP5657142B2 (ja)
CN (1) CN104040179B (ja)
WO (1) WO2013105129A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510407A (ja) * 2018-01-11 2021-04-22 トゥーサークル インダストリーズ エーエス ベーンの静圧摺動軸受を伴う、回転式摺動ベーン機械
JP2021510408A (ja) * 2018-01-11 2021-04-22 トゥーサークル インダストリーズ エーエス ベーンの摺動軸受及び枢動軸受を伴う、回転式摺動ベーン機械

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736358B (zh) * 2014-12-26 2019-08-13 松下电器产业株式会社 液体用泵以及兰金循环装置
JP6599136B2 (ja) * 2015-06-09 2019-10-30 パナソニック株式会社 液体用ポンプ及びランキンサイクル装置
KR102591414B1 (ko) 2017-02-07 2023-10-19 엘지전자 주식회사 밀폐형 압축기
CN107191369B (zh) * 2017-06-29 2018-10-16 南京奥特佳新能源科技有限公司 防停机反转和泄漏的汽车空调用旋叶式压缩机
KR20190132020A (ko) * 2018-05-18 2019-11-27 현대자동차주식회사 내측링을 구비한 오일펌프
KR102367894B1 (ko) * 2020-05-22 2022-02-25 엘지전자 주식회사 로터리 압축기
CN115111161B (zh) * 2022-07-30 2024-02-02 西安丁杰动力科技有限公司 一种活塞式转子压缩机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247571B2 (ja) * 1973-01-29 1977-12-03
JPS538809A (en) * 1976-07-13 1978-01-26 Aisin Seiki Co Ltd Rotary vane type rotation machine
JPH04187887A (ja) * 1990-11-21 1992-07-06 Matsushita Electric Ind Co Ltd ロータリ式多段気体圧縮機
JPH10252675A (ja) 1997-03-13 1998-09-22 Matsushita Electric Ind Co Ltd ベーンロータリ圧縮機
JP2000352390A (ja) 1999-06-08 2000-12-19 Hiroyoshi Ooka ベーン軸支型回転圧縮機
JP2009062820A (ja) 2007-09-04 2009-03-26 Mitsubishi Electric Corp 密閉形ロータリ圧縮機
JP2009264175A (ja) 2008-04-23 2009-11-12 Mitsubishi Electric Corp 冷媒圧縮機

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191026718A (en) 1910-11-17 1911-08-17 Albert Bertram Lunn Improvements in or relating to Means for Separating and Supporting the Bows of Cape-cart Hoods and the like.
US1291618A (en) 1916-09-11 1919-01-14 Willard M Mcewen Combined fluid pump and motor.
US1339723A (en) 1916-10-12 1920-05-11 Walter J Piatt Rotary pump
US1444269A (en) 1920-11-01 1923-02-06 Walter J Piatt Rotary pump
US1486906A (en) * 1921-07-05 1924-03-18 Joseph H Kolar Engine
US1607383A (en) * 1923-05-25 1926-11-16 American Radiator Co Pump or compressor
GB244181A (en) 1924-09-13 1925-12-14 William Joe Stern Improvements in and connected with rotary pump machines
US2044873A (en) 1933-11-21 1936-06-23 Cecil J Beust Rotary compressor
CH181039A (de) 1935-01-28 1935-11-30 Rotorkompressoren A G Rotationskompressor mit in einem Gehäuse mit zylindrischer Bohrung exzentrisch zur Zylinderachse beidseitig gelagertem zylindrischem Rotor.
DE874944C (de) 1951-02-17 1953-04-27 Heinz Knebel Rotationskompressor
JPS51128704A (en) 1975-05-02 1976-11-09 Toyota Motor Corp Rotary vane pump
JPS5247571A (en) 1975-10-14 1977-04-15 Mitsubishi Heavy Ind Ltd Flue gas treatment method
JPS5260911A (en) 1975-11-14 1977-05-19 Hitachi Ltd Pumping motor
DE2832247A1 (de) * 1978-07-17 1980-01-31 Riedl Geb Vossberg Leonore Ger Schieberzellenverdichter mit unrundgehaeuse
JPS5629001A (en) 1979-08-18 1981-03-23 Masaichi Hashino Rotary piston mechanism
JPS5870087A (ja) 1981-10-21 1983-04-26 Kishino Masahide シリンダ−内壁に同心円的に回転する翼を持つ回転ピストン圧縮機
DE8434465U1 (de) 1984-11-24 1986-03-27 Robert Bosch Gmbh, 7000 Stuttgart Flügelabdichtung in Flügelzellenpumpen
JPS63131883A (ja) 1986-11-21 1988-06-03 Eagle Ind Co Ltd ベ−ンポンプ
US4958995A (en) 1986-07-22 1990-09-25 Eagle Industry Co., Ltd. Vane pump with annular recesses to control vane extension
JPS6373593U (ja) 1986-11-04 1988-05-17
KR900005076A (ko) * 1988-09-28 1990-04-13 시끼 모리야 롤링피스톤형 압축기
US5087183A (en) 1990-06-07 1992-02-11 Edwards Thomas C Rotary vane machine with simplified anti-friction positive bi-axial vane motion control
JP2812022B2 (ja) 1991-11-12 1998-10-15 松下電器産業株式会社 バイパス弁装置を備えた多段気体圧縮機
US5536153A (en) 1994-06-28 1996-07-16 Edwards; Thomas C. Non-contact vane-type fluid displacement machine with lubricant separator and sump arrangement
JPH08247064A (ja) 1995-03-07 1996-09-24 Daikin Ind Ltd スイングピストン形圧縮機
JPH08247063A (ja) 1995-03-07 1996-09-24 Daikin Ind Ltd スイングピストン形圧縮機
US6026649A (en) 1996-04-11 2000-02-22 Matsushita Electric Industrial Co., Ltd. Compressor provided with refrigerant and lubricant in specified relationship
TW385332B (en) 1997-02-27 2000-03-21 Idemitsu Kosan Co Refrigerating oil composition
KR20050018199A (ko) * 2003-08-14 2005-02-23 삼성전자주식회사 용량가변 회전압축기
JP5431805B2 (ja) 2009-06-24 2014-03-05 富士フイルム株式会社 組成物、化合物及び被膜形成方法
JP5637755B2 (ja) 2010-07-12 2014-12-10 三菱電機株式会社 ベーン型圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247571B2 (ja) * 1973-01-29 1977-12-03
JPS538809A (en) * 1976-07-13 1978-01-26 Aisin Seiki Co Ltd Rotary vane type rotation machine
JPH04187887A (ja) * 1990-11-21 1992-07-06 Matsushita Electric Ind Co Ltd ロータリ式多段気体圧縮機
JPH10252675A (ja) 1997-03-13 1998-09-22 Matsushita Electric Ind Co Ltd ベーンロータリ圧縮機
JP2000352390A (ja) 1999-06-08 2000-12-19 Hiroyoshi Ooka ベーン軸支型回転圧縮機
JP2009062820A (ja) 2007-09-04 2009-03-26 Mitsubishi Electric Corp 密閉形ロータリ圧縮機
JP2009264175A (ja) 2008-04-23 2009-11-12 Mitsubishi Electric Corp 冷媒圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510407A (ja) * 2018-01-11 2021-04-22 トゥーサークル インダストリーズ エーエス ベーンの静圧摺動軸受を伴う、回転式摺動ベーン機械
JP2021510408A (ja) * 2018-01-11 2021-04-22 トゥーサークル インダストリーズ エーエス ベーンの摺動軸受及び枢動軸受を伴う、回転式摺動ベーン機械
JP7256555B2 (ja) 2018-01-11 2023-04-12 トゥーサークル インダストリーズ エーエス ベーンの静圧摺動軸受を伴う、回転式摺動ベーン機械
JP7256556B2 (ja) 2018-01-11 2023-04-12 トゥーサークル インダストリーズ エーエス ベーンの摺動軸受及び枢動軸受を伴う、回転式摺動ベーン機械
JP7256556B6 (ja) 2018-01-11 2023-08-18 トゥーサークル インダストリーズ エーエス ベーンの摺動軸受及び枢動軸受を伴う、回転式摺動ベーン機械

Also Published As

Publication number Publication date
EP2803862A4 (en) 2015-10-21
US20140271303A1 (en) 2014-09-18
EP2803862B1 (en) 2019-12-25
JPWO2013105129A1 (ja) 2015-05-11
CN104040179B (zh) 2016-03-30
JP5657142B2 (ja) 2015-01-21
CN104040179A (zh) 2014-09-10
EP2803862A1 (en) 2014-11-19
US9382907B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5657142B2 (ja) ベーン型圧縮機
JP5425312B2 (ja) ベーン型圧縮機
KR101423009B1 (ko) 베인형 압축기
JP5774134B2 (ja) ベーン型圧縮機
KR20130086029A (ko) 베인형 압축기
JP5657144B2 (ja) ベーン型圧縮機
JP5777733B2 (ja) ベーン型圧縮機
JPWO2012023427A1 (ja) ベーン型圧縮機
JP2013142351A (ja) ベーン型圧縮機
JP5932675B2 (ja) ベーン型圧縮機
JP5661204B2 (ja) ベーン型圧縮機
JP5661203B2 (ja) ベーン型圧縮機
JP5921456B2 (ja) ベーン型圧縮機
JP6017023B2 (ja) ベーン型圧縮機
JP5595600B2 (ja) ベーン型圧縮機
CN103958897A (zh) 叶片型压缩机
JP2013142325A (ja) ベーン型圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280066569.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350959

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013553079

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012865224

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE