WO2013102957A1 - 電源システム装置 - Google Patents
電源システム装置 Download PDFInfo
- Publication number
- WO2013102957A1 WO2013102957A1 PCT/JP2012/000059 JP2012000059W WO2013102957A1 WO 2013102957 A1 WO2013102957 A1 WO 2013102957A1 JP 2012000059 W JP2012000059 W JP 2012000059W WO 2013102957 A1 WO2013102957 A1 WO 2013102957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- acc
- power supply
- control circuit
- signal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
- B60R16/033—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
Definitions
- the present invention relates to a power supply system device mounted on a vehicle.
- Patent Document 1 when the user of the in-vehicle device needs and when the power source has power supply capability, the in-vehicle device can be remotely operated as a communicable state by supplying power to the communication device,
- An in-vehicle device power management system that cuts off power supply to a communication device and reduces discharge of a vehicle battery as a power source when a user of the in-vehicle device requires it and when the power source does not have power supply capability It is disclosed.
- the in-vehicle multimedia device described in Patent Document 2 has an interface to which at least one functional module that operates by receiving power supply from a power supply and an expansion device is connected.
- a device When a device is connected, if there is an existing function module corresponding to the function module included in the expansion device among the existing function modules that existed before connection, power is supplied to this existing function module. And power is supplied to the function module provided in the extension device.
- a personal computer (hereinafter abbreviated as a personal computer) is stably supplied with power from a commercial power source or a dedicated battery, and a smartphone (or tablet PC) is also stably supplied with power from a dedicated battery.
- PCs and smartphones are equipped with uninterruptible power supplies or circuits with equivalent functions, and even if power supply from commercial power supplies or batteries becomes unstable, power is supplied without power failure. Continue to be.
- the battery of a personal computer or a smartphone is designed according to the specification of the current capacity of the device, and even when the maximum current is used, the operating voltage does not decrease. That is, in an OS used on a personal computer (PC-based OS) or an OS used in a smartphone (smartphone-based OS), a stable operation with respect to power supply is guaranteed.
- PC-based OS personal computer
- smartphone-based OS smartphone-based OS
- a dedicated battery is mounted on the ECU (electronic control unit) of the vehicle separately from the battery that supplies power to the electrical components of the vehicle, a general-purpose OS may be used. If it increases, the manufacturing work becomes complicated, and it is disadvantageous in terms of cost, and there is also a problem in terms of safety.
- Patent Documents 1 and 2 an in-vehicle battery can be used efficiently, but the power supply environment of the vehicle described above is not considered, and the inventions according to Patent Documents 1 and 2 are not considered. Even if it is applied, the general-purpose OS cannot be used as it is.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power supply system apparatus that can use a general-purpose OS in a power supply environment in a vehicle-mounted battery of a vehicle.
- a power supply system apparatus includes a primary power supply circuit block that generates a voltage obtained by stepping down a minimum voltage at the time of starting an engine of a vehicle, and a primary power supply circuit block.
- a secondary power supply circuit block that boosts the generated voltage to generate a power supply voltage, and supplies the power supply voltage to an integrated circuit device including a control block that executes a general-purpose operation system;
- a control circuit is provided for controlling the start and end of the operation of the circuit block and the secondary power supply circuit block.
- the general-purpose OS can be used in the power supply environment of the vehicle-mounted battery of the vehicle.
- 4 is a timing chart of an ACC signal, a Set / Reset signal, and an activation signal PowerON used in the power supply system apparatus according to Embodiment 1.
- movement of the ACC confirmation control circuit of FIG. 4 is a flowchart showing details of Set processing according to the first embodiment.
- 5 is a flowchart showing details of Reset processing according to the first embodiment.
- 10 is a timing chart of an ACC signal, a Set / Reset signal, a start signal PowerON, a Request signal, and a Status signal used in the power supply system apparatus according to the second embodiment. It is a flowchart which shows operation
- movement of the ACC confirmation control circuit of FIG. 12 is a flowchart illustrating details of a Sleep / Run process according to the second embodiment. 10 is a flowchart showing details of Reset processing according to the second embodiment. It is a block diagram which shows the structure of the power supply system apparatus which concerns on Embodiment 3 of this invention.
- 10 is a timing chart of an ACC signal, a Set / Reset signal, an activation signal PowerON, a Request signal, and a Status signal used in the power supply system apparatus according to Embodiment 3.
- 14 is a flowchart showing details of a Sleep / Run process according to the third embodiment.
- 12 is a flowchart illustrating details of a Stop process according to the third embodiment.
- FIG. 1 is a graph showing a voltage waveform of a vehicle-mounted battery when the vehicle engine is started.
- the in-vehicle battery supplies power to various electrical components in the vehicle when the vehicle engine is started, so that a voltage drop as shown in FIG. 1 occurs and the battery voltage waveform becomes irregular. It is known. In order to alleviate the irregularity of the battery voltage waveform, it is conceivable to introduce a capacitor and a single coil or a filter circuit combining these in the power supply path from the in-vehicle battery.
- the in-vehicle battery consumes a large amount of current to start the vehicle electrical components (for example, a starter) when the engine is started, and reaches the lowest voltage (+3 V in FIG. 1).
- the voltage returns from the lowest voltage to the steady voltage (+12 V in FIG. 1).
- an operable voltage value necessary for the operation of the ECU of the vehicle is specified. If the vehicle battery is normal, the operable voltage value of the ECU is lower than the lowest voltage at the time of engine start. That is, the operable voltage of the ECU is ensured even when the in-vehicle battery drops to the lowest voltage.
- the power supply voltage Vcc of the control block composed of an IC (integrated circuit device) including a CPU that executes a general-purpose OS of a personal computer or a smartphone (or tablet PC) is 3.3 V and 5.0 V, in recent years, Due to demands for low power consumption and low noise, integrated circuit devices that start up at a lower voltage of 3.3 V have become widespread. That is, if the power supply voltage Vcc can be stably supplied to the control block in the power supply environment of the vehicle, a stable operation of the general-purpose OS is guaranteed with respect to power supply.
- the general-purpose OS in the present invention is not a built-in OS whose processing content is adjusted according to the power supply environment of the vehicle or an OS dedicated to the vehicle, but Windows (registered trademark) used in a personal computer, a smartphone, and a tablet PC. Or an OS such as Linux (registered trademark) or Android (registered trademark).
- the power supply system apparatus stably supplies the power supply voltage Vcc to the control block using the lowest voltage of the on-vehicle battery and the return time from the lowest voltage to the steady voltage in the power supply environment peculiar to the vehicle. Is. Thereby, the operation
- FIG. 2 is a block diagram showing a configuration of the power supply system apparatus according to Embodiment 1 of the present invention, and shows a case where the power supply voltage Vcc is supplied to the control block including the integrated circuit device built in the smartphone. .
- the power supply system device 1 shown in FIG. 2 is a device that supplies a power supply voltage Vcc from a battery voltage of an in-vehicle battery (not shown in FIG. 2) to a control block that uses a general-purpose OS.
- the secondary power supply circuit block 3 and the ACC confirmation control circuit 4 are provided.
- the primary power supply circuit block 2 is connected to the on-vehicle battery (+ B), and a voltage (Mini + B ⁇ ) obtained by further reducing the battery voltage (Mini + B), which is the maximum drop when the vehicle engine starts, by a predetermined voltage (DropV).
- This is a step-down power supply circuit block that generates and outputs (DropV).
- the power supply terminal + B of the in-vehicle battery changes from +3.0 V, which is the battery voltage (Mini + B) after the maximum drop, to +12 V.
- the maximum voltage of the on-vehicle battery power supply terminal + B is defined as + 18V. In the following description, the maximum voltage of the power supply terminal + B is assumed to be + 18V.
- the fluctuation of the battery voltage waveform at the start of the engine is relatively reproducible if the in-vehicle battery is normal (in the example of FIG. 1, + 3V to + 12V).
- the minimum voltage (Mini + B) with relatively little fluctuation is used as a reference voltage for generating the power supply voltage Vcc.
- the secondary power supply circuit block 3 generates a power supply voltage Vcc by boosting the voltage (Mini + B ⁇ DropV) generated by the primary power supply circuit block 2, and includes the integrated circuit device mounted on the smartphone substrate 5.
- This is a boost power supply circuit block that is activated after the supply voltage Vcc is supplied to the block.
- the voltage + 2.8V generated by the primary power supply circuit block 2 is boosted to generate 3.3V and 5.0V, which are general power supply voltages of an IC including a CPU that executes a general-purpose OS.
- 3.3V and 5.0V power supply voltages are supplied to the integrated circuit device.
- the ACC confirmation control circuit 4 starts the power supply operation to the primary power circuit block 2 and the secondary power circuit block 3 when the accessory (ACC) signal for starting the electrical components of the vehicle is turned on.
- the control circuit outputs a reset signal after outputting a set signal to be instructed for a predetermined period.
- the smartphone substrate 5 is a basic substrate of a smartphone, and a control block including an IC (integrated circuit device) including a CPU that performs processing by executing a smartphone-based OS is mounted.
- FIG. 3 is a timing chart of the ACC signal, Set / Reset signal, and activation signal PowerON used in the power supply system apparatus according to the first embodiment.
- the ACC confirmation control circuit 4 periodically monitors the state of the ACC signal, and uses a timer (not shown) for a predetermined time from the time when the ACC signal is turned on (indicated by a double arrow A in FIG. 3). Period).
- the predetermined time A is a time for determining the ON state of the ACC signal, for example, 200 milliseconds.
- the ACC confirmation control circuit 4 sets the Set / Reset signal to Set as shown in FIG.
- the power supply circuit block 3 is instructed to start operation.
- the primary power supply circuit block 2 receives the Set signal from the ACC confirmation control circuit 4, the voltage (Mini + B) obtained by stepping down the battery voltage (Mini + B) that is the maximum drop to the vehicle-mounted battery at the time of starting the engine by a predetermined voltage DropV. -DropV) is generated and output to the secondary power supply circuit block 3.
- the secondary power supply circuit block 3 receives the Set signal from the ACC confirmation control circuit 4 and receives the voltage (Mini + B-DropV) from the primary power supply circuit block 2, the power supply boosts the voltage (Mini + B-DropV). A voltage Vcc is generated.
- the secondary power supply circuit block 3 outputs the activation signal PowerON to the control block as shown in FIG. Start.
- the ACC confirmation control circuit 4 counts a predetermined time (time indicated by a double-headed arrow B in FIG. 3) from the time when the ACC signal is turned off.
- the predetermined time B is a time for determining that the ACC is in the OFF state, and is, for example, 30 seconds.
- the ACC confirmation control circuit 4 sets the Set / Reset signal to Reset as shown in FIG.
- the power supply circuit block 3 is instructed to end the operation.
- the primary power supply circuit block 2 When receiving the Reset signal from the ACC confirmation control circuit 4, the primary power supply circuit block 2 stops supplying the voltage (Mini + B ⁇ DropV) to the secondary power supply circuit block 3. Further, when the secondary power supply circuit block 3 also receives a Reset signal from the ACC confirmation control circuit 4, the supply of the power supply voltage Vcc to the control block of the smartphone substrate 5 is stopped. Thereby, operation
- FIG. 4 is a flowchart showing the operation of the ACC confirmation control circuit of FIG. 2, and shows the flow of the operation according to the timing chart of FIG.
- the ACC confirmation control circuit 4 when activated, the ACC confirmation control circuit 4 initializes the count value of a timer that counts every monitoring time (CountWait), which is a cycle for monitoring the state of the ACC signal, and determines the ON state of the ACC signal.
- the count number that defines the predetermined time A and the count number that defines the predetermined time B for determining the OFF state of the ACC signal are set as set values (step ST1).
- the monitoring time is 10 milliseconds
- the count number that defines the predetermined time A for turning on the Set signal is 20 counts
- the count number that defines the predetermined time B for turning on the Reset signal is 3000 counts.
- the time until the determination of the OFF state of the ACC signal is set longer than the save time of the user memory in which the user uses the application to store data in the general-purpose OS and the system memory used by the general-purpose OS according to the system state.
- FIG. 5 is a flowchart showing details of the Set process according to Embodiment 1, and shows the process of Step ST2 of FIG.
- the ACC confirmation control circuit 4 initializes the count value (TimerCounter) of the timer to “0” (step ST1a).
- the ACC confirmation control circuit 4 determines whether or not the ACC signal is in an ON state (step ST3a). If the ACC signal is not ON (step ST3a; NO), the process returns to step ST1a. On the other hand, when the ACC signal is in the ON state (step ST3a; YES), the ACC confirmation control circuit 4 increments the count value (TimerCounter) of the timer by 1 (step ST4a).
- the ACC confirmation control circuit 4 determines whether or not the timer count value (TimerCounter) has exceeded the count number (20 counts; SetON) set in Step ST1 of FIG. 4 (TimerCounter> SetON) (StepCounter> SetON). ST5a).
- the count value (TimerCounter) of the timer is equal to or smaller than the predetermined count number (SetON) (step ST5a; NO)
- the ACC confirmation control circuit 4 returns to step ST2a and shifts to the waiting state, and Repeat the process.
- the ACC confirmation control circuit 4 sets the Set / Reset signal to Set and sets the primary power supply circuit block 2
- the secondary power supply circuit block 3 is instructed to start operation (step ST6a).
- FIG. 6 is a flowchart showing details of the Reset process according to Embodiment 1, and shows the process of Step ST3 of FIG.
- the ACC confirmation control circuit 4 initializes the count value (TimerCounter) of the timer to “0” (step ST1b).
- the ACC confirmation control circuit 4 determines whether or not the ACC signal is in an OFF state (step ST3b). If the ACC signal is not OFF (step ST3b; NO), the process returns to step ST1b. On the other hand, when the ACC signal is in the OFF state (step ST3b; YES), the ACC confirmation control circuit 4 increments the timer count value (TimerCounter) by 1 (step ST4b).
- the ACC confirmation control circuit 4 determines whether or not the count value (TimerCounter) of the timer exceeds the predetermined count number (3000 counts; ResetON) set in Step ST1 of FIG. 4 (TimerCounter> ResetON). (Step ST5b). When the count value (TimerCounter) of the timer is equal to or less than the predetermined count number (ResetON) (step ST5b; NO), the ACC confirmation control circuit 4 returns to step ST2b and enters a wait state, and repeats the above-described processing.
- the ACC confirmation control circuit 4 sets the Set / Reset signal to Reset and sets the primary power supply circuit block 2
- the secondary power supply circuit block 3 is instructed to end the operation (step ST6b).
- the primary power supply circuit that generates the voltage (Mini + B-DropV) obtained by stepping down the minimum voltage when the vehicle engine is started of the vehicle-mounted battery that supplies power to the vehicle electrical components.
- a voltage (Mini + B-DropV) generated by the block 2 and the primary power supply circuit block 2 is boosted to generate a power supply voltage Vcc, and the power supply voltage Vcc is applied to an integrated circuit device including a control block that executes a general-purpose OS.
- a secondary power supply circuit block 3 that is activated after being supplied, and an ACC confirmation control circuit 4 that controls operation start and end of the primary power supply circuit block 2 and the secondary power supply circuit block 3 are provided.
- the primary power supply circuit block 2 and the secondary power supply circuit block 3 are Control so that the primary power supply circuit block 2 and the secondary power supply circuit block 3 are stopped when the accessory signal of the vehicle is kept OFF for a predetermined time B.
- the control block can be operated.
- the end of the operation is determined when the OFF state of the ACC signal continues for a predetermined time, the unstable operation at the end of the operation of the control block can be alleviated.
- FIG. FIG. 7 is a block diagram showing the configuration of the power supply system apparatus according to Embodiment 2 of the present invention, and shows a case where the power supply voltage Vcc is supplied to the control block built in the smartphone.
- a power supply system device 1A shown in FIG. 7 is a device that supplies a power supply voltage Vcc to a control block that uses a general-purpose OS from a battery voltage of an in-vehicle battery (not shown in FIG. 7).
- a secondary power supply circuit block 3 and an ACC confirmation control circuit 4A are provided.
- the ACC confirmation control circuit 4A operates in the same manner as the ACC confirmation control circuit 4 in FIG.
- FIG. 8 is a timing chart of an ACC signal, a Set / Reset signal, a start signal PowerON, a Request signal, and a Status signal used in the power supply system apparatus according to the second embodiment.
- the ACC confirmation control circuit 4A periodically monitors the value of the ACC signal, and counts a predetermined time A from the time when the ACC signal is turned on using a timer (not shown).
- the ACC confirmation control circuit 4A sets the Set / Reset signal to Set as shown in FIG. 8, and the primary power circuit block 2 and the secondary power circuit block. 3 is instructed to start the operation.
- the predetermined time A is set as a specification of the activation time in this system.
- the voltage (Mini + B) obtained by stepping down the battery voltage (Mini + B), which is the maximum drop in the vehicle-mounted battery at the time of starting the engine, by a predetermined voltage DropV. -DropV) is generated and output to the secondary power supply circuit block 3.
- the secondary power supply circuit block 3 receives the Set signal from the ACC confirmation control circuit 4A and receives the voltage (Mini + B-DropV) from the primary power supply circuit block 2, the power supply boosts the voltage (Mini + B-DropV). A voltage Vcc is generated.
- the secondary power supply circuit block 3 supplies the generated power supply voltage Vcc to the control block of the smartphone substrate 5, and then outputs the activation signal PowerON to the control block as shown in FIG. Start up.
- the ACC confirmation control circuit 4A transmits a Request signal for requesting the Run state to the control block of the smartphone substrate 5 as illustrated in FIG.
- the Run state is a state in which the control block operates while receiving the operation clock and consuming the power supply voltage Vcc supplied from the secondary power supply circuit block 3.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4A, the control block shifts to the requested operation state and responds to the ACC confirmation control circuit 4A as a Status signal.
- the control block transmits a Status signal indicating that it itself enters the Run state to the ACC confirmation control circuit 4A.
- the ACC confirmation control circuit 4A counts a predetermined time (time indicated by a double-headed arrow B1 in FIG. 8) from the time when the ACC signal is turned off.
- the predetermined time B1 is a time indicating that the ACC signal is intermittently turned off, and is, for example, 300 milliseconds. That is, it shows that the control block of the smartphone substrate 5 is operating in the low power consumption mode.
- the predetermined time B1 is set as a specification of the transition time from the normal mode to the low power consumption mode in this system.
- the sleep state is a state in which the operation clock to the control block is stopped and the consumption amount of the power supply voltage Vcc supplied from the secondary power supply circuit block 3 is lower than that in the run state.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4A, the control block shifts to the requested operation state and responds to the ACC confirmation control circuit 4A as a Status signal.
- the control block transmits a status signal indicating that the control block itself enters the sleep state to the ACC confirmation control circuit 4A.
- the ACC confirmation control circuit 4A counts a predetermined time (time indicated by a double-headed arrow A1 in FIG. 8) from the time when the ACC signal is turned on.
- the predetermined time A1 is a time indicating that the ACC signal has returned from the OFF state to the ON state, and is, for example, 150 milliseconds. That is, the control block of the smart phone substrate 5 should be returned from the sleep state to the run state.
- the predetermined time A1 is set as a specification of the transition time from the low power consumption mode to the normal mode in this system.
- the ACC confirmation control circuit 4A transmits a Request signal requesting the Run state to the control block of the smartphone substrate 5, as shown in FIG.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4A, the control block shifts to the requested operation state and responds to the ACC confirmation control circuit 4A as a Status signal.
- the control block transmits a status signal indicating that it enters the run state to the ACC confirmation control circuit 4A.
- the ACC confirmation control circuit 4A counts a predetermined time B1 from the time when the ACC signal is turned OFF.
- the ACC confirmation control circuit 4A transmits a Request signal requesting the Sleep state to the control block of the smartphone substrate 5, as shown in FIG.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4A, the control block shifts to the requested operation state and responds to the ACC confirmation control circuit 4A as a Status signal.
- the control block transmits a status signal indicating that the control block itself enters the sleep state to the ACC confirmation control circuit 4A.
- the ACC confirmation control circuit 4A counts a predetermined time B from the time when the ACC signal is turned off if the ACC signal is not turned on and the OFF state continues. ing.
- the ACC confirmation control circuit 4A transmits a Request signal for requesting the Stop state to the control block of the smartphone substrate 5, as shown in FIG.
- the Stop state is a state in which the operation clock is stopped, the supply of the power supply voltage Vcc from the secondary power supply circuit block 3 is also stopped, and the control block stops operating.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4A, it enters the Stop state requested by the Request signal.
- the predetermined time B is set longer than the saving time of the user memory in which the user uses the application to store data in the general-purpose OS and the system memory used by the general-purpose OS according to the system state.
- FIG. 9 is a flowchart showing the operation of the ACC confirmation control circuit of FIG. 7, and shows the flow of the operation according to the timing chart of FIG.
- the ACC confirmation control circuit 4A when activated, the ACC confirmation control circuit 4A initializes the count value of a timer that counts every monitoring time (CountWait), which is a cycle for monitoring the state of the ACC signal, and determines the ON state of the ACC signal.
- a count number that prescribes a time A, a count number that prescribes a predetermined time B1 for requesting the Sleep state, a count number that prescribes a predetermined time A1 that requests a return from the Sleep state to the Run state, and a Stop state Is set as a set value (step ST1b).
- the count number that defines the predetermined time B for requesting that is, the predetermined time B for determining the OFF state of the ACC signal.
- the monitoring time is 10 milliseconds
- the count number defining the predetermined time A for turning on the Set signal is 20 counts
- the count number defining the predetermined time B1 for requesting the sleep state is 30 counts.
- the count number defining the predetermined time A1 for requesting the return from the Sleep state to the Run state is 15 counts
- the ACC confirmation control circuit 4A performs the Set process (step ST2b).
- the Set process is the same as the process content shown in FIG. 5 in the first embodiment, and a description thereof will be omitted.
- the ACC confirmation control circuit 4A determines whether or not the control block is in the Run state based on the Status signal received from the control block of the smartphone substrate 5 (step ST3b). When the control block is not in the Run state (step ST3b; NO), the ACC confirmation control circuit 4A repeats the determination until the control block is in the Run state. When the control block is in the Run state (step ST3b; YES), the ACC confirmation control circuit 4A performs the Sleep / Run process based on the ON or OFF state of the ACC signal and ends the operation (step ST4b).
- FIG. 10 is a flowchart showing details of the Sleep / Run process according to the second embodiment, and shows the process of step ST4b of FIG.
- the ACC confirmation control circuit 4A determines whether or not the status signal received from the control block of the smartphone substrate 5 indicates the run state (step ST1c).
- the ACC confirmation control circuit 4A determines whether or not the ACC signal is in an OFF state (step ST4c). If the ACC signal is not OFF (step ST4c; NO), the process returns to step ST2c. On the other hand, when the ACC signal is in the OFF state (step ST4c; YES), the ACC confirmation control circuit 4A increments the count value (TimerCounter) of the timer by 1 (step ST5c).
- the ACC confirmation control circuit 4A determines whether or not the count value (TimerCounter) of the timer exceeds the predetermined count number (30 counts; SleepON) set in Step ST1b of FIG. 9 (TimerCounter> SleepON). (Step ST6c).
- the count value (TimerCounter) of the timer is equal to or less than the predetermined count number (SleepON) (step ST6c; NO)
- the ACC confirmation control circuit 4A returns to step ST3c and enters a wait state, and repeats the above-described processing.
- the ACC confirmation control circuit 4A transmits a Request signal requesting the Sleep state to the control block of the smartphone substrate 5 (Ste ST7c).
- the control block of the smartphone substrate 5 shifts to the sleep state in accordance with the Request signal from the ACC confirmation control circuit 4A, and responds to the ACC confirmation control circuit 4A as a Status signal. Thereafter, the ACC confirmation control circuit 4A shifts to a reset process (step ST8c).
- the ACC confirmation control circuit 4A initializes the count value (TimerCounter) of the timer to “0” (step ST9c).
- the ACC confirmation control circuit 4A determines whether or not the ACC signal is in an ON state (step ST11c). If the ACC signal is not in the ON state (step ST11c; NO), the process returns to step ST9c. On the other hand, when the ACC signal is in the ON state (step ST11c; YES), the ACC confirmation control circuit 4A increments the count value (TimerCounter) of the timer by 1 (step ST12c).
- the ACC confirmation control circuit 4A determines whether or not the timer count value (TimerCounter) exceeds the predetermined count number (15 counts; RunON) set in Step ST1b of FIG. 9 (TimerCounter> RunON). (Step ST13c). When the count value (TimerCounter) of the timer is equal to or less than the predetermined count number (RunON) (step ST13c; NO), the ACC confirmation control circuit 4A returns to step ST10c to enter a wait state and repeats the above-described processing.
- the ACC confirmation control circuit 4A transmits a Request signal requesting the Run state to the control block of the smartphone substrate 5. (Step ST14c).
- the control block of the smart phone substrate 5 shifts to the Run state in accordance with the Request signal from the ACC confirmation control circuit 4A, and responds to the ACC confirmation control circuit 4A as a Status signal. Thereafter, the ACC confirmation control circuit 4A sets the timer count value (TimerCounter) to “0” (step ST15c), and ends the Sleep / Run process.
- FIG. 11 is a flowchart showing details of the Reset process according to Embodiment 2, and shows the process of Step ST8c of FIG. First, after setting the Request signal to Run, the ACC confirmation control circuit 4A increments the timer count value (TimerCounter) by 1 (step ST1d).
- the ACC confirmation control circuit 4A determines whether or not the count value (TimerCounter) of the timer exceeds the predetermined count number (3000 counts; StopON) set in Step ST1b of FIG. 9 (TimerCounter> StopON). (Step ST2d).
- the count value (TimerCounter) of the timer is equal to or smaller than the predetermined count number (StopON) (step ST2d; NO)
- the ACC confirmation control circuit 4A ends the Reset process.
- the ACC confirmation control circuit 4A transmits a Request signal requesting the Stop state to the control block of the smartphone substrate 5. (Step ST3d).
- the control block of the smart phone substrate 5 shifts to the Stop state according to the Request signal of the ACC confirmation control circuit 4A.
- the ACC confirmation control circuit 4A sets the Set / Reset signal to Reset to instruct the primary power circuit block 2 and the secondary power circuit block 3 to end the operation (step ST4d).
- the ACC confirmation control circuit 4A has the normal operation state from the Run state and the Run state according to the duration of the ON state or OFF state of the ACC signal of the vehicle.
- the control block is requested to either the Sleep state, which is an operation state with low power consumption, or the Stop state, which is an operation stop state, and the control block operates in the operation state requested by the ACC confirmation control circuit 4A.
- FIG. 12 is a block diagram showing a configuration of a power supply system apparatus according to Embodiment 3 of the present invention, and shows a case where power supply voltage Vcc is supplied to a control block built in a smartphone.
- a power supply system device 1B shown in FIG. 12 is a device that supplies a power supply voltage Vcc to a control block that uses a general-purpose OS from a battery voltage of an in-vehicle battery (not shown in FIG. 12).
- a secondary power supply circuit block 3 and an ACC confirmation control circuit 4B are provided.
- the ACC confirmation control circuit 4B operates in the same manner as the ACC confirmation control circuit 4 shown in FIG.
- the control block of the smartphone substrate 5 shifts to an operation state corresponding to the Request signal from the ACC confirmation control circuit 4B, but shifts to the Stop state when the Sleep state continues for a predetermined time.
- FIG. 13 is a timing chart of an ACC signal, a Set / Reset signal, a start signal PowerON, a Request signal, and a Status signal used in the power supply system apparatus according to the third embodiment.
- the ACC confirmation control circuit 4B periodically monitors the value of the ACC signal, and counts a predetermined time A after the ACC signal is turned on using a timer (not shown).
- the ACC confirmation control circuit 4B sets the Set / Reset signal to Set and sets the primary power circuit block 2 and the secondary power circuit block. 3 is instructed to start the operation.
- the predetermined time A is set as a specification of the start time in this system.
- the primary power supply circuit block 2 When the Set signal is input from the ACC confirmation control circuit 4B, the primary power supply circuit block 2 reduces the battery voltage (Mini + B) that is maximum dropped to the vehicle-mounted battery at the time of starting the engine by a predetermined voltage DropV (Mini + B). -DropV) is generated and output to the secondary power supply circuit block 3.
- the secondary power supply circuit block 3 receives the Set signal from the ACC confirmation control circuit 4B and receives the voltage (Mini + B-DropV) from the primary power supply circuit block 2, the power supply boosts the voltage (Mini + B-DropV). A voltage Vcc is generated.
- the secondary power supply circuit block 3 supplies the generated power supply voltage Vcc to the control block of the smartphone substrate 5, and then outputs the activation signal PowerON to the control block as shown in FIG. Start up.
- the ACC confirmation control circuit 4B transmits a Request signal requesting the Run state to the control block of the smartphone substrate 5 as illustrated in FIG.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4B, the control block shifts to the requested operation state and responds to the ACC confirmation control circuit 4B as a Status signal.
- the control block enters the Run state, it transmits a Status signal indicating that it itself enters the Run state to the ACC confirmation control circuit 4B.
- the ACC confirmation control circuit 4B counts a predetermined time B1 from the time when the ACC signal is turned off.
- the ACC confirmation control circuit 4B transmits a Request signal requesting the Sleep state to the control block of the smartphone substrate 5 as shown in FIG.
- the control block of the smartphone substrate 5 shifts to the sleep state, which is the operation state indicated by the request signal received from the ACC confirmation control circuit 4B, and responds to the ACC confirmation control circuit 4B as a status signal.
- the predetermined time B1 is set as a specification of the transition time from the normal mode to the low power consumption mode in this system.
- the ACC confirmation control circuit 4B counts a predetermined time (a time indicated by a double arrow A1 in FIG. 13) after the ACC signal is turned on.
- the ACC confirmation control circuit 4B transmits a Request signal requesting the Run state to the control block of the smartphone substrate 5, as shown in FIG.
- the control block of the smartphone substrate 5 receives the Request signal from the ACC confirmation control circuit 4B, the control block shifts to the Run state requested by the Request signal and responds to the ACC confirmation control circuit 4B as a Status signal.
- the control block When the control block enters the Run state when the operation clock is supplied from the Sleep state, the control block transmits a Status signal indicating that it itself enters the Run state to the ACC confirmation control circuit 4B.
- the predetermined time A1 is set as a specification of the transition time from the low power consumption mode to the normal mode in this system.
- the ACC confirmation control circuit 4B counts a predetermined time B1 from the time when the ACC signal is turned off. When the OFF state of the ACC signal continues for a predetermined time B1, the ACC confirmation control circuit 4B transmits a Request signal requesting the Sleep state to the control block of the smartphone substrate 5, as shown in FIG. The control block of the smartphone substrate 5 shifts to the Sleep state requested by the Request signal received from the ACC confirmation control circuit 4B.
- the control block of the smartphone substrate 5 counts a predetermined time C from the time when the sleep state is entered.
- the control block of the smartphone substrate 5 shifts to the Stop state as shown in FIG. 13 and responds to the ACC confirmation control circuit 4B as a Status signal.
- the predetermined time C is set longer than the save time of the user memory in which the user uses the application to store data in the general-purpose OS and the system memory used by the general-purpose OS according to the system state.
- the main operation flow by the ACC confirmation control circuit 4B is the same as that in FIG. Further, the Set process by the ACC confirmation control circuit 4B is the same as that in FIG.
- FIG. 14 is a flowchart showing details of the Sleep / Run process according to the third embodiment, and corresponds to the process of step ST4b in FIG. 9 of the second embodiment.
- the ACC confirmation control circuit 4B determines whether or not the status signal received from the control block of the smartphone substrate 5 indicates the run state (step ST1e).
- the ACC confirmation control circuit 4B determines whether or not the ACC signal is in an OFF state (step ST4e). If the ACC signal is not OFF (step ST4e; NO), the process returns to step ST2e. On the other hand, if the ACC signal is in the OFF state (step ST4e; YES), the ACC confirmation control circuit 4B increments the timer count value (TimerCounter) by 1 (step ST5e).
- the ACC confirmation control circuit 4B determines whether or not the timer count value (TimerCounter) has exceeded a predetermined count cycle (30 counts; SleepON) (TimerCounter> SleepON) (Step ST6e). When the count value (TimerCounter) of the timer is equal to or less than the predetermined count number (SleepON) (step ST6e; NO), the ACC confirmation control circuit 4B returns to step ST3e and enters a wait state, and repeats the above-described processing.
- a predetermined count cycle (30 counts; SleepON) (TimerCounter> SleepON)
- step ST6e When the count value (TimerCounter) of the timer exceeds the predetermined count number (SleepON) (step ST6e; YES), the ACC confirmation control circuit 4B transmits a Request signal requesting the Sleep state to the control block of the smartphone substrate 5 ( In step ST7e), the Sleep / Run process is terminated.
- the control block of the smartphone substrate 5 shifts to the sleep state in accordance with the request signal of the ACC confirmation control circuit 4B, and responds to the ACC confirmation control circuit 4B as a status signal.
- the ACC confirmation control circuit 4B determines whether or not the Status signal received from the control block of the smartphone substrate 5 indicates the Sleep state (Step ST8e). ).
- the ACC confirmation control circuit 4B initializes the count value (TimerCounter) of the timer to “0” (step ST9e).
- the ACC confirmation control circuit 4B determines whether or not the ACC signal is in an ON state (step ST11e). If the ACC signal is not in the ON state (step ST11e; NO), the process returns to step ST9e. On the other hand, when the ACC signal is in the ON state (step ST11e; YES), the ACC confirmation control circuit 4B increments the timer count value (TimerCounter) by 1 (step ST12e).
- the ACC confirmation control circuit 4B determines whether or not the count value (TimerCounter) of the timer exceeds a predetermined count number (15 counts; RunON) (TimerCounter> RunON) (Step ST13e). When the count value (TimerCounter) of the timer is equal to or less than the predetermined count number (RunON) (step ST13e; NO), the ACC confirmation control circuit 4B returns to step ST10e and enters a wait state, and repeats the above-described processing.
- the ACC confirmation control circuit 4B transmits a Request signal requesting the Run state to the control block of the smartphone substrate 5 ( In step ST14e), the Sleep / Run process is terminated.
- the control block of the smartphone substrate 5 shifts to the Run state in accordance with the Request signal of the ACC confirmation control circuit 4B, and responds to the ACC confirmation control circuit 4B as a Status signal.
- the ACC confirmation control circuit 4B sets the Set / Reset signal to Reset, and the primary power circuit block 2 and the secondary power circuit block 3 Is instructed to end the operation (step ST15e).
- FIG. 15 is a flowchart showing details of the Stop process according to the third embodiment.
- This Stop process is a process that is performed when the control block of the smartphone substrate 5 enters the Sleep state.
- the control block of the smartphone substrate 5 initializes a count value (StopCounter) of a timer that counts the time to shift from the sleep state to the stop state, and count cycle time (countwait) and a predetermined shift to the stop state from the sleep state.
- a count number (StopON) indicating the time C is set (step ST1f). For example, the count cycle time (CountWait) is 10 milliseconds, and the count number (StopON) for shifting to the Stop state is 3000.
- count cycle time (CountWait) 10 milliseconds
- the control block of the smartphone substrate 5 determines whether or not the Request signal from the ACC confirmation control circuit 4B indicates the Run state (step ST3f).
- step ST3f When the Request signal indicates the Run state (step ST3f; YES), the control block of the smartphone substrate 5 sets its operation state to the Run state (step ST4f). Thereafter, the control block of the smartphone substrate 5 initializes the count value (StopCounter) of the timer to “0” (step ST5f), and returns to the process of step ST2f.
- StartCounter the count value of the timer
- step ST3f when the Request signal does not indicate the Run state (step ST3f; NO), the control block of the smartphone substrate 5 sets its operation state to the Sleep state (step ST6f). Thereafter, the control block of the smartphone substrate 5 increments the count value (StopCounter) of the timer by 1 (step ST7f).
- the control block of the smartphone substrate 5 determines whether or not the count value (StopCounter) of the timer has exceeded the predetermined count number (3000 count; StopON) set in step ST1f (StepCounter> StopON) (stepCount). ST8f).
- the count value (StopCounter) of the timer is equal to or less than the predetermined count number (StopON) (step ST8f; NO)
- the control block of the smartphone substrate 5 returns to step ST2f and enters a waiting state, and repeats the above-described processing.
- step ST8f When the count value (StopCounter) of the timer exceeds the predetermined count number (StopON) (step ST8f; YES), the control block of the smartphone substrate 5 shifts to the stop state (step ST9f), and the ACC is used as the status signal. In response to the confirmation control circuit 4B, the Stop process is terminated.
- the ACC confirmation control circuit 4B has the normal RUN state and the RUN state in accordance with the duration of the ON state or OFF state of the ACC signal of the vehicle.
- the control block requests one of the sleep states, which is an operation state with low power consumption, and the control block operates in the operation state requested from the ACC confirmation control circuit 4B, and the sleep state continues for a predetermined time C. Stop the operation.
- the control block of the smart phone substrate 5 shifts the operation to the end (Stop state) based on the duration of the Sleep state, instability at the end of the operation can be reduced.
- any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
- the power supply system apparatus is suitable for a vehicle power supply system apparatus including an electronic control unit capable of external connection of various information terminals because a general-purpose OS can be used in a power supply environment of a vehicle-mounted battery of the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Telephone Function (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
また、パソコンおよびスマートフォンは、無停電電源装置またはこれと同等の機能を有する回路を備えており、これらによって商用電源やバッテリからの電源供給が不安定になっても、停電することなく電源が供給され続ける。
実施の形態1.
図1は、車両のエンジン始動時における車載バッテリの電圧波形を示すグラフである。車載バッテリは、車両のエンジンが起動された際に、車両内の様々な電装品に対して電源を供給するため、図1に示すような電圧降下が発生してバッテリ電圧波形が不規則になることが知られている。このバッテリ電圧波形の不規則性を緩和するために、車載バッテリからの電源供給経路に、コンデンサおよびコイル単体もしくはこれらを組み合わせたフィルタ回路を導入することが考えられる。
また、車両のECUは、その動作に必要な動作可能電圧値が規定されている。車載バッテリが正常であれば、エンジン始動時の最低電圧よりもECUの動作可能電圧値が低い。つまり、車載バッテリが最低電圧まで下がっても、ECUの動作可能電圧は確保される。
すなわち、車両の電源環境において、制御ブロックに対して電源電圧Vccを安定して供給することができれば、電源供給に関して汎用OSの安定的な動作が保証される。
なお、本発明における汎用OSとは、車両の電源環境に応じて処理内容を調整した組み込みOSや車両専用のOSではなく、パソコンや、スマートフォン、タブレットPCで使用されている、Windows(登録商標)や、Linux(登録商標)、Android(登録商標)などのOSをいう。
なお、第1次電源回路ブロック2は、スマートフォン基板5に実装された制御ブロックの電源電圧Vcc>電圧(Mini+B-DropV)となるように、電圧(Mini+B-DropV)を生成する。すなわち、第1次電源回路ブロック2が、比較的安定した最低電圧(Mini+B)を降圧して一定の電圧(Mini+B-DropV)を生成する。例えば、最低電圧(Mini+B)=+3.0Vを0.2V降圧してリチウムイオン電池のセル電圧である+2.8Vを生成する。
例えば、第1次電源回路ブロック2により生成された電圧+2.8Vを昇圧して、汎用OSを実行するCPUを含むICの一般的な電源電圧である、3.3Vと5.0Vを生成し、制御ブロックにおける、3.3Vと5.0Vの電源電圧の集積回路デバイスに供給される。
スマートフォン基板5は、スマートフォンの基幹基板であって、スマートフォンベースのOSを実行して処理を行うCPUを含むIC(集積回路デバイス)を備えた制御ブロックが実装されている。
図3は、実施の形態1に係る電源システム装置で使用されるACC信号、Set/Reset信号および起動信号PowerONのタイミングチャートである。車両のキーがイグニッション(IG)オンされてエンジン始動が開始されると、ACC信号は、図3に示すようにOFF状態からON状態へ変化する。
ACC確認制御回路4は、ACC信号の状態を周期的にモニタしており、不図示のタイマを用いて、ACC信号がON状態になった時点から所定の時間(図3の両矢印Aで示す期間)をカウントする。所定の時間Aは、ACC信号のON状態を確定する時間であり、例えば200ミリ秒間である。
ここで、ACC信号のON状態が所定の時間A継続すると、ACC確認制御回路4は、図3に示すように、Set/Reset信号をSetにして、第1次電源回路ブロック2および第2次電源回路ブロック3に動作開始を指示する。
第2次電源回路ブロック3は、ACC確認制御回路4からSet信号を入力し、第1次電源回路ブロック2から電圧(Mini+B-DropV)を入力すると、電圧(Mini+B-DropV)を昇圧させた電源電圧Vccを生成する。
次に、第2次電源回路ブロック3は、生成した電源電圧Vccをスマートフォン基板5の制御ブロックに供給した後に、図3に示すように、起動信号PowerONを当該制御ブロックに出力して制御ブロックを起動させる。
ここで、ACC信号のOFF状態が所定の時間B継続すると、ACC確認制御回路4は、図3に示すように、Set/Reset信号をResetにして、第1次電源回路ブロック2および第2次電源回路ブロック3に動作終了を指示する。
また、第2次電源回路ブロック3も、ACC確認制御回路4からReset信号を入力すると、スマートフォン基板5の制御ブロックへの電源電圧Vccの供給を停止する。
これにより、スマートフォン基板5の制御ブロックの動作が停止する。
なお、第1次電源回路ブロック2では、所定の汎用OSのシャットダウン時間の経過後に、電源供給を停止するように配慮してもよい。
まず、ACC確認制御回路4は、起動すると、ACC信号の状態をモニタする周期である、モニタ時間(CountWait)ごとのカウントを行うタイマのカウント値を初期化して、ACC信号のON状態を確定する所定の時間Aを規定するカウント数と、ACC信号のOFF状態を確定する所定の時間Bを規定するカウント数を設定値として設定する(ステップST1)。
つまり、上記タイマで10ミリ秒ごとにACCの状態をモニタして、ACC信号のON状態が20カウント(20×10ミリ秒=200ミリ秒間)継続すると、ACCのON状態を確定する。また、ACC信号のOFF状態が3000カウント(3000×10ミリ秒=30秒間)継続すると、ACC信号のOFF状態を確定する。
ACC信号のOFF状態の確定までの時間は、汎用OSでユーザがアプリケーションを利用してデータを記憶させるユーザメモリおよび汎用OSがシステムの状態に応じて利用するシステムメモリの退避時間より長く設定する。
また、ACC確認制御回路4は、ACC信号のOFF状態が3000カウント(3000×10ミリ秒=30秒間)継続すると、Reset処理を実施して動作を終了する(ステップST3)。
まず、ACC確認制御回路4は、Set処理を開始すると、タイマのカウント値(TimerCounter)を初期化して“0”とする(ステップST1a)。
次に、ACC確認制御回路4は、タイマでモニタ時間(CountWait)(=10ミリ秒間)が経過するまで待ち状態に移行する(ステップST2a)。
一方、ACC信号がON状態であると(ステップST3a;YES)、ACC確認制御回路4は、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST4a)。
ここで、タイマのカウント値(TimerCounter)が、所定のカウント数(SetON)以下である場合(ステップST5a;NO)、ACC確認制御回路4は、ステップST2aに戻って待ち状態に移行し、上述の処理を繰り返す。
まず、ACC確認制御回路4は、Set処理を実施した後、タイマのカウント値(TimerCounter)を初期化して“0”とする(ステップST1b)。
次に、ACC確認制御回路4は、タイマでモニタ時間(CountWait)(=10ミリ秒間)が経過するまで待ち状態に移行する(ステップST2b)。
一方、ACC信号がOFF状態であると(ステップST3b;YES)、ACC確認制御回路4は、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST4b)。
タイマのカウント値(TimerCounter)が所定のカウント数(ResetON)以下である場合(ステップST5b;NO)、ACC確認制御回路4は、ステップST2bに戻って待ち状態となり、上述の処理を繰り返す。
このように構成することで、エンジン始動時に車載バッテリのバッテリ電圧波形が変動しても、バッテリ電圧の最低電圧を基準として生成された一定の電源電圧Vccを、汎用OSを実行する制御ブロックに供給して起動させるため、車両用に調整されたOSでなくても、安定した動作が行える。
図7は、この発明の実施の形態2に係る電源システム装置の構成を示すブロック図であり、スマートフォンに内蔵された制御ブロックに対して電源電圧Vccを供給する場合を示している。図7に示す電源システム装置1Aは、車載バッテリ(図7において不図示)のバッテリ電圧から、汎用OSを使用する制御ブロックに電源電圧Vccを供給する装置であり、第1次電源回路ブロック2、第2次電源回路ブロック3およびACC確認制御回路4Aを備える。ACC確認制御回路4Aは、図2のACC確認制御回路4と同様に動作するとともに、スマートフォン基板5の制御ブロックに対して所定の動作状態(Status)としてRun、Sleep、Stop状態を要求(Request)する。スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからのRequest信号に応じた動作状態に移行する。なお、図7において、図2と同一の構成要素には、同一符号を付して説明を省略する。
図8は、実施の形態2に係る電源システム装置で使用されるACC信号、Set/Reset信号、起動信号PowerON、Request信号およびStatus信号のタイミングチャートである。
ACC確認制御回路4Aは、ACC信号の値を周期的にモニタしており、不図示のタイマを用いて、ACC信号がONになった時点から所定の時間Aをカウントする。
ACC信号がONの状態が所定の時間A継続すると、ACC確認制御回路4Aは、図8に示すように、Set/Reset信号をSetにして第1次電源回路ブロック2および第2次電源回路ブロック3に動作開始を指示する。
所定の時間Aは、このシステムでの起動時間の仕様として設定する。
第2次電源回路ブロック3は、ACC確認制御回路4AからSet信号を入力し、第1次電源回路ブロック2から電圧(Mini+B-DropV)を入力すると、電圧(Mini+B-DropV)を昇圧させた電源電圧Vccを生成する。
次に、第2次電源回路ブロック3は、生成した電源電圧Vccをスマートフォン基板5の制御ブロックに供給した後、図8に示すように、起動信号PowerONを当該制御ブロックに出力して、制御ブロックを起動させる。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからRequest信号を受信すると、これにより要求された動作状態に移行し、その旨をStatus信号としてACC確認制御回路4Aへ応答する。ここでは、制御ブロックが、Run状態になると、自身がRun状態になることを示すStatus信号をACC確認制御回路4Aに送信する。
所定の時間B1は、このシステムでの通常モードから低消費電力モードへの移行時間の仕様として設定する。
ACC信号のOFF状態が所定の時間B1継続すると、ACC確認制御回路4Aは、図8に示すように、スマートフォン基板5の制御ブロックに対して、Sleep状態を要求するRequest信号を送信する。Sleep状態とは、制御ブロックへの動作クロックが停止されて、第2次電源回路ブロック3から供給される電源電圧Vccの消費量がRun状態のときより低い状態である。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからRequest信号を受信すると、これにより要求された動作状態に移行し、その旨をStatus信号としてACC確認制御回路4Aへ応答する。ここでは、制御ブロックが、Sleep状態になると、自身がSleep状態になることを示すStatus信号をACC確認制御回路4Aに送信する。
所定の時間A1は、このシステムでの低消費電力モードから通常モードへの移行時間の仕様として設定する。
ACC信号のON状態が所定の時間A1継続すると、ACC確認制御回路4Aは、図8に示すように、スマートフォン基板5の制御ブロックに対して、Run状態を要求するRequest信号を送信する。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからRequest信号を受信すると、これにより要求された動作状態に移行し、その旨をStatus信号としてACC確認制御回路4Aへ応答する。ここでは、制御ブロックが、Sleep状態から動作クロックが供給されてRun状態になると、自身がRun状態になることを示すStatus信号をACC確認制御回路4Aに送信する。
ACC信号のOFF状態が所定の時間B1継続すると、ACC確認制御回路4Aは、図8に示すように、スマートフォン基板5の制御ブロックに対して、Sleep状態を要求するRequest信号を送信する。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからRequest信号を受信すると、これにより要求された動作状態に移行し、その旨をStatus信号としてACC確認制御回路4Aへ応答する。ここでは、制御ブロックが、Sleep状態になると、自身がSleep状態になることを示すStatus信号をACC確認制御回路4Aに送信する。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからRequest信号を受信すると、Request信号で要求されたStop状態になる。
所定の時間Bは、汎用OSでユーザがアプリケーションを利用してデータを記憶させるユーザメモリおよび汎用OSがシステムの状態に応じて利用するシステムメモリの退避時間より長く設定する。
まず、ACC確認制御回路4Aは、起動すると、ACC信号の状態をモニタする周期であるモニタ時間(CountWait)ごとのカウントを行うタイマのカウント値を初期化して、ACC信号のON状態を確定する所定の時間Aを規定するカウント数と、Sleep状態を要求する所定の時間B1を規定するカウント数と、Sleep状態からRun状態への復帰を要求する所定の時間A1を規定するカウント数と、Stop状態を要求する所定の時間、すなわちACC信号のOFF状態を確定する所定の時間Bを規定するカウント数を設定値として設定する(ステップST1b)。
つまり、上記タイマで10ミリ秒ごとにACC信号の状態をモニタして、ACC信号のON状態が20カウント(20×10ミリ秒=200ミリ秒間)継続すると、ACCのON状態を確定する。
また、ACC信号のOFF状態が30カウント(30×10ミリ秒=300ミリ秒間)継続すると、Sleep状態を要求する。この状態からACC信号のON状態が15カウント(15×10ミリ秒=150ミリ秒間)継続すると、Run状態を要求する。さらに、ACC信号のOFF状態が3000カウント(3000×10ミリ秒=30秒間)継続すると、Stop状態を要求する。
なお、Set処理は、上記実施の形態1で図5を用いて示した処理内容と同様であるので、説明を省略する。
制御ブロックがRun状態である場合(ステップST3b;YES)、ACC確認制御回路4Aは、ACC信号のONまたはOFF状態に基づいて、Sleep/Run処理を実施して動作を終了する(ステップST4b)。
まず、ACC確認制御回路4Aは、Sleep/Run処理を開始すると、スマートフォン基板5の制御ブロックから受信されたStatus信号がRun状態を示しているか否かを判定する(ステップST1c)。
続いて、ACC確認制御回路4Aは、タイマでモニタ時間(CountWait)(=10ミリ秒間)が経過するまで待ち状態に移行する(ステップST3c)。
一方、ACC信号がOFF状態であると(ステップST4c;YES)、ACC確認制御回路4Aは、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST5c)。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4AからのRequest信号に従ってSleep状態に移行して、その旨をStatus信号としてACC確認制御回路4Aへ応答する。
この後、ACC確認制御回路4AはReset処理に移行する(ステップST8c)。
ACC確認制御回路4Aは、タイマでモニタ時間(CountWait)(=10ミリ秒間)が経過するまで待ち状態に移行する(ステップST10c)。
一方、ACC信号がON状態であると(ステップST11c;YES)、ACC確認制御回路4Aは、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST12c)。
この後、ACC確認制御回路4Aは、タイマのカウント値(TimerCounter)を“0”として(ステップST15c)、Sleep/Run処理を終了する。
まず、ACC確認制御回路4Aは、Request信号をRunに設定した後、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST1d)。
この後、ACC確認制御回路4Aは、Set/Reset信号をResetにして、第1次電源回路ブロック2および第2次電源回路ブロック3に動作終了を指示する(ステップST4d)。
このようにすることで、ACC信号が所定時間継続してOFF状態であるときに、スマートフォン基板5の制御ブロックをSleep状態で動作させることで、車両動作中の短時間B1の省エネルギー動作要求に応えることが可能である。
また、ACC信号がOFF状態から所定時間A1継続してON状態になったとき、制御ブロックの動作をRun状態とすることで、すばやい動作復帰を実現することができる。
図12は、この発明の実施の形態3に係る電源システム装置の構成を示すブロック図であり、スマートフォンに内蔵された制御ブロックに対して電源電圧Vccを供給する場合を示している。図12に示す電源システム装置1Bは、車載バッテリ(図12において不図示)のバッテリ電圧から、汎用OSを使用する制御ブロックに電源電圧Vccを供給する装置であり、第1次電源回路ブロック2、第2次電源回路ブロック3およびACC確認制御回路4Bを備える。ACC確認制御回路4Bは、図2のACC確認制御回路4と同様に動作するとともに、スマートフォン基板5の制御ブロックに対し所定の動作状態(Status)としてRun、Sleep状態を要求(Request)する。スマートフォン基板5の制御ブロックは、ACC確認制御回路4BからのRequest信号に応じた動作状態に移行するが、Sleep状態が所定の時間継続した場合にはStop状態に移行する。なお、図12において、図2と同一の構成要素には、同一符号を付して説明を省略する。
図13は、実施の形態3に係る電源システム装置で使用されるACC信号、Set/Reset信号、起動信号PowerON、Request信号およびStatus信号のタイミングチャートである。
ACC確認制御回路4Bは、ACC信号の値を周期的にモニタしており、不図示のタイマを用いて、ACC信号がON状態になってから所定の時間Aをカウントする。
ACC信号のON状態が所定の時間A継続すると、ACC確認制御回路4Bは、図13に示すように、Set/Reset信号をSetにして、第1次電源回路ブロック2および第2次電源回路ブロック3に動作開始を指示する。
なお、所定の時間Aは、このシステムでの起動時間の仕様として設定する。
第2次電源回路ブロック3は、ACC確認制御回路4BからSet信号を入力し、第1次電源回路ブロック2から電圧(Mini+B-DropV)を入力すると、電圧(Mini+B-DropV)を昇圧させた電源電圧Vccを生成する。
次に、第2次電源回路ブロック3は、生成した電源電圧Vccをスマートフォン基板5の制御ブロックに供給した後、図13に示すように、起動信号PowerONを当該制御ブロックに出力して、制御ブロックを起動させる。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4BからRequest信号を受信すると、これにより要求された動作状態に移行し、その旨をStatus信号としてACC確認制御回路4Bへ応答する。ここでは、制御ブロックが、Run状態になると、自身がRun状態になることを示すStatus信号をACC確認制御回路4Bに送信する。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4Bから受信したRequest信号が示す動作状態であるSleep状態に移行し、その旨をStatus信号としてACC確認制御回路4Bへ応答する。
なお、所定の時間B1は、このシステムでの通常モードから低消費電力モードへの移行時間の仕様として設定する。
ACC信号のON状態が所定の時間A1継続すると、ACC確認制御回路4Bは、図13に示すように、スマートフォン基板5の制御ブロックに対して、Run状態を要求するRequest信号を送信する。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4BからRequest信号を受信した場合、Request信号で要求されたRun状態に移行して、その旨をStatus信号としてACC確認制御回路4Bへ応答する。
制御ブロックが、Sleep状態から動作クロックが供給されてRun状態になると、自身がRun状態になることを示すStatus信号を、ACC確認制御回路4Bに送信する。
なお、所定の時間A1は、このシステムでの低消費電力モードから通常モードへの移行時間の仕様として設定する。
なお、所定の時間Cは、汎用OSでユーザがアプリケーションを利用してデータを記憶させるユーザメモリおよび汎用OSがシステムの状態に応じて利用するシステムメモリの退避時間より長く設定する。
ACC確認制御回路4Bによる主要な動作の流れは、上記実施の形態2の図9と同様であるので説明を省略する。
また、ACC確認制御回路4BによるSet処理は、上記実施の形態1の図5と同様であるので説明を省略する。
まず、ACC確認制御回路4Bは、Sleep/Run処理を開始すると、スマートフォン基板5の制御ブロックから受信されたStatus信号がRun状態を示しているか否かを判定する(ステップST1e)。
続いて、ACC確認制御回路4Bは、タイマでモニタ時間(CountWait)(=10ミリ秒間)が経過するまで待ち状態に移行する(ステップST3e)。
一方、ACC信号がOFF状態であると(ステップST4e;YES)、ACC確認制御回路4Bは、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST5e)。
タイマのカウント値(TimerCounter)が所定のカウント数(SleepON)以下である場合(ステップST6e;NO)、ACC確認制御回路4Bは、ステップST3eに戻って待ち状態となり、上述の処理を繰り返す。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4BのRequest信号に従ってSleep状態に移行して、その旨をStatus信号としてACC確認制御回路4Bへ応答する。
ここで、Status信号がSleep状態を示している場合(ステップST8e;YES)、ACC確認制御回路4Bは、タイマのカウント値(TimerCounter)を初期化して“0”とする(ステップST9e)。
ACC確認制御回路4Bは、タイマでモニタ時間(CountWait)(=10ミリ秒間)が経過するまで待ち状態に移行する(ステップST10e)。
一方、ACC信号がON状態であると(ステップST11e;YES)、ACC確認制御回路4Bは、タイマのカウント値(TimerCounter)を1インクリメントする(ステップST12e)。
タイマのカウント値(TimerCounter)が所定のカウント数(RunON)以下である場合(ステップST13e;NO)、ACC確認制御回路4Bは、ステップST10eに戻って待ち状態となり、上述の処理を繰り返す。
スマートフォン基板5の制御ブロックは、ACC確認制御回路4BのRequest信号に従ってRun状態に移行して、その旨をStatus信号としてACC確認制御回路4Bへ応答する。
まず、スマートフォン基板5の制御ブロックは、Sleep状態からStop状態に移行する時間をカウントするタイマのカウント値(StopCounter)を初期化し、カウント周期時間(CountWait)と、Sleep状態からStop状態に移行させる所定時間Cを示すカウント数(StopON)を設定する(ステップST1f)。
例えば、カウント周期時間(CountWait)を10ミリ秒とし、Stop状態に移行するカウント数(StopON)を3000とする。
タイマでカウント周期時間(CountWait)(=10ミリ秒間)が経過すると、スマートフォン基板5の制御ブロックは、ACC確認制御回路4BからのRequest信号がRun状態を示しているか否かを判定する(ステップST3f)。
この後、スマートフォン基板5の制御ブロックは、タイマのカウント値(StopCounter)を1インクリメントする(ステップST7f)。
このように、スマートフォン基板5の制御ブロックがSleep状態の継続時間に基づいて動作を終了(Stop状態)に移行することから、動作終了時における不安定性を低減することができる。
Claims (4)
- 車両の電装品に給電する車載バッテリの、前記車両のエンジン始動時における最低電圧を降圧した電圧を生成する第1次電源回路ブロックと、
前記第1次電源回路ブロックにより生成された電圧を昇圧して電源電圧を生成し、汎用オペレーションシステムを実行する制御ブロックを含む集積回路デバイスに当該電源電圧を供給してから起動させる第2次電源回路ブロックと、
前記第1次電源回路ブロックおよび前記第2次電源回路ブロックの動作開始および終了を制御する制御回路を備える電源システム装置。 - 前記制御回路は、前記車両のアクセサリ信号のON状態が所定の時間継続すると、前記第1次電源回路ブロックおよび前記第2次電源回路ブロックに対して動作を開始するように制御し、前記車両のアクセサリ信号のOFF状態が所定の時間継続すると、前記第1次電源回路ブロックおよび前記第2次電源回路ブロックに対して動作を停止するように制御することを特徴とする請求項1記載の電源システム装置。
- 前記制御回路は、前記車両のアクセサリ信号のON状態またはOFF状態の継続時間に応じて、通常の動作状態であるRun状態、前記Run状態よりも消費電力が低い動作状態であるSleep状態および動作停止状態であるStop状態のいずれかを、前記集積回路デバイスに要求し、
前記集積回路デバイスは、前記制御回路から要求された動作状態で動作することを特徴とする請求項1記載の電源システム装置。 - 前記制御回路は、前記車両のアクセサリ信号のON状態またはOFF状態の継続時間に応じて、通常の動作状態であるRun状態および前記Run状態よりも消費電力が低い動作状態であるSleep状態のいずれかを前記集積回路デバイスに要求し、
前記集積回路デバイスは、前記制御回路から要求された動作状態で動作するとともに、前記Sleep状態が所定の時間継続すると、動作を停止することを特徴とする請求項1記載の電源システム装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013552043A JP5478785B2 (ja) | 2012-01-06 | 2012-01-06 | 電源システム装置 |
US14/362,418 US9586544B2 (en) | 2012-01-06 | 2012-01-06 | Power source system device |
CN201280066065.5A CN104053579B (zh) | 2012-01-06 | 2012-01-06 | 电源系统装置 |
DE112012005596.9T DE112012005596B4 (de) | 2012-01-06 | 2012-01-06 | Stromquellen-Systemvorrichtung |
PCT/JP2012/000059 WO2013102957A1 (ja) | 2012-01-06 | 2012-01-06 | 電源システム装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/000059 WO2013102957A1 (ja) | 2012-01-06 | 2012-01-06 | 電源システム装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013102957A1 true WO2013102957A1 (ja) | 2013-07-11 |
Family
ID=48745035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/000059 WO2013102957A1 (ja) | 2012-01-06 | 2012-01-06 | 電源システム装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9586544B2 (ja) |
JP (1) | JP5478785B2 (ja) |
CN (1) | CN104053579B (ja) |
DE (1) | DE112012005596B4 (ja) |
WO (1) | WO2013102957A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017033718A1 (ja) * | 2015-08-24 | 2017-03-02 | 株式会社デンソー | 電源制御装置およびヘッドアップディスプレイ装置 |
JP2017043342A (ja) * | 2015-08-24 | 2017-03-02 | 株式会社デンソー | 電源制御装置およびヘッドアップディスプレイ装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9682671B2 (en) * | 2014-06-10 | 2017-06-20 | Ford Global Technologies, Llc | Vehicle system with battery boost and bypass control |
CN105984408B (zh) * | 2015-05-19 | 2018-03-06 | 乐视生态汽车(浙江)有限公司 | 车载设备的开关控制方法和装置 |
CN110031692B (zh) * | 2018-01-10 | 2023-07-21 | 厦门雅迅网络股份有限公司 | 一种辅助车载设备准确识别acc状态的方法与电路 |
CN112918409B (zh) * | 2019-12-06 | 2023-09-29 | 厦门雅迅网络股份有限公司 | 一种电源管理系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010035278A (ja) * | 2008-07-25 | 2010-02-12 | Toyota Motor Corp | 車両用電源装置 |
JP2010048123A (ja) * | 2008-08-20 | 2010-03-04 | Toyota Motor Corp | 車両用電源装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5166538A (en) * | 1986-12-15 | 1992-11-24 | Peter Norton | Dual or single voltage vehicular power supply with improved switch driver and load dump |
DE19542085B4 (de) | 1994-12-30 | 2007-07-05 | Robert Bosch Gmbh | Sicherheitseinrichtung für Fahrzeuginsassen |
JPH11291843A (ja) | 1998-04-06 | 1999-10-26 | Sony Corp | 車載用機器の電源装置 |
US20040249534A1 (en) | 2002-04-12 | 2004-12-09 | Kunihiro Yamada | Power supply management system for vehicle mounted apparatus |
EP1495915B1 (en) | 2002-04-12 | 2015-04-01 | Aisin Aw Co., Ltd. | Power supply management system for vehicle mounted apparatus |
US7352154B2 (en) * | 2004-01-14 | 2008-04-01 | Vanner, Inc. | Electrical system control for a vehicle |
JP4461824B2 (ja) | 2004-02-13 | 2010-05-12 | トヨタ自動車株式会社 | 自動車、自動車の制御方法、制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
JP4306534B2 (ja) * | 2004-05-25 | 2009-08-05 | 株式会社デンソー | 乗員保護装置 |
US7701079B2 (en) * | 2004-08-06 | 2010-04-20 | Continental Automotive Systems, Inc. | Automotive electrical system |
JP4146408B2 (ja) * | 2004-09-10 | 2008-09-10 | 三菱電機株式会社 | ステアリング制御装置 |
KR100906909B1 (ko) * | 2006-12-12 | 2009-07-08 | 현대자동차주식회사 | 연료전지 하이브리드 전기 차량의 파워다운 제어방법 |
JP4618814B2 (ja) * | 2007-12-07 | 2011-01-26 | 本田技研工業株式会社 | 車両用電源装置 |
WO2010116523A1 (ja) | 2009-04-10 | 2010-10-14 | トヨタ自動車株式会社 | 車載マルチメディア装置及びその電力供給方法 |
JP2012006585A (ja) * | 2010-06-22 | 2012-01-12 | Mando Corp | 電子制御装置及び車両制御方法 |
JP5368508B2 (ja) * | 2011-05-16 | 2013-12-18 | 三菱電機株式会社 | 車載電子制御装置 |
US20140265560A1 (en) * | 2013-03-15 | 2014-09-18 | Levant Power Corporation | System and method for using voltage bus levels to signal system conditions |
KR101592650B1 (ko) * | 2013-12-26 | 2016-02-11 | 현대모비스 주식회사 | 친환경 차량의 저전압 직류 변환 장치를 위한 멀티 전압 출력 제공 장치 및 방법 |
-
2012
- 2012-01-06 DE DE112012005596.9T patent/DE112012005596B4/de not_active Expired - Fee Related
- 2012-01-06 US US14/362,418 patent/US9586544B2/en active Active
- 2012-01-06 CN CN201280066065.5A patent/CN104053579B/zh active Active
- 2012-01-06 JP JP2013552043A patent/JP5478785B2/ja active Active
- 2012-01-06 WO PCT/JP2012/000059 patent/WO2013102957A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010035278A (ja) * | 2008-07-25 | 2010-02-12 | Toyota Motor Corp | 車両用電源装置 |
JP2010048123A (ja) * | 2008-08-20 | 2010-03-04 | Toyota Motor Corp | 車両用電源装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017033718A1 (ja) * | 2015-08-24 | 2017-03-02 | 株式会社デンソー | 電源制御装置およびヘッドアップディスプレイ装置 |
JP2017043342A (ja) * | 2015-08-24 | 2017-03-02 | 株式会社デンソー | 電源制御装置およびヘッドアップディスプレイ装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112012005596T5 (de) | 2014-09-18 |
US20150048674A1 (en) | 2015-02-19 |
CN104053579A (zh) | 2014-09-17 |
JPWO2013102957A1 (ja) | 2015-05-11 |
JP5478785B2 (ja) | 2014-04-23 |
CN104053579B (zh) | 2015-09-02 |
US9586544B2 (en) | 2017-03-07 |
DE112012005596B4 (de) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5478785B2 (ja) | 電源システム装置 | |
US8090988B2 (en) | Saving information to flash memory during power failure | |
JP4479797B2 (ja) | 電子制御装置 | |
US10033215B2 (en) | Storage battery system, method of updating storage battery system, and storage medium | |
US20140245036A1 (en) | Electronic apparatus, charging control method, charging system, and data transmission system | |
WO2017022169A1 (ja) | バッテリ制御装置、電子機器、バッテリパック及びバッテリ制御方法 | |
US7915987B2 (en) | Acoustic noise reduction in power supply inductors | |
JP2013132183A (ja) | 充電回路およびそれを利用した電子機器 | |
JP5912514B2 (ja) | 電子機器 | |
US20130342154A1 (en) | Charging apparatus | |
JP6053280B2 (ja) | 充電回路およびそれを利用した電子機器 | |
US20140138960A1 (en) | Method for jump starting a vehicle | |
JP2014051979A (ja) | 自動車のジャンプスタート方法、および自動車のジャンプスタート装置 | |
US9431897B2 (en) | Electric device | |
CN114665457A (zh) | 用于对电力供应源编程以促进动态性能调优的设备和方法 | |
TWI505593B (zh) | 可配置電源供應系統及電源供應配置方法 | |
JP2011239631A (ja) | 電源回路 | |
JP2021157769A (ja) | バッテリ電力が限られているシステムのためのターボサポート | |
JP2008043082A (ja) | 電源装置 | |
JP6231752B2 (ja) | デバイス制御装置およびデバイス制御方法 | |
WO2021056163A1 (zh) | 电池管理方法和无人机 | |
JP2007202341A (ja) | 電子機器 | |
JP2015007852A (ja) | 制御装置の電源回路 | |
CN111064881B (zh) | 摄像头装置和电子设备 | |
CN113859552B (zh) | 一种电池管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12864493 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013552043 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14362418 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120055969 Country of ref document: DE Ref document number: 112012005596 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12864493 Country of ref document: EP Kind code of ref document: A1 |