[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013191277A1 - 積層セラミックコンデンサ - Google Patents

積層セラミックコンデンサ Download PDF

Info

Publication number
WO2013191277A1
WO2013191277A1 PCT/JP2013/067094 JP2013067094W WO2013191277A1 WO 2013191277 A1 WO2013191277 A1 WO 2013191277A1 JP 2013067094 W JP2013067094 W JP 2013067094W WO 2013191277 A1 WO2013191277 A1 WO 2013191277A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
electrode portion
layer
ceramic capacitor
multilayer ceramic
Prior art date
Application number
PCT/JP2013/067094
Other languages
English (en)
French (fr)
Inventor
佐藤 恒
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014521523A priority Critical patent/JP5960816B2/ja
Priority to CN201380029618.4A priority patent/CN104335305B/zh
Priority to US14/410,561 priority patent/US9496087B2/en
Publication of WO2013191277A1 publication Critical patent/WO2013191277A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/236Terminals leading through the housing, i.e. lead-through
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/01Form of self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to a multilayer ceramic capacitor having an external electrode connected to the internal electrode layer on an end face of a multilayer body in which dielectric layers and internal electrode layers are alternately stacked.
  • a multilayer ceramic capacitor has a plurality of laminated dielectric layers, a plurality of internal electrode layers disposed between the respective dielectric layers, and internal layers at both end surfaces of the laminate of the dielectric layers and the internal electrode layers. It is comprised from the external electrode connected with the electrode layer.
  • Such a multilayer ceramic capacitor is manufactured by forming a laminate in which a dielectric layer and an internal electrode layer are formed by simultaneous firing, and then forming external electrodes on both end faces of the laminate.
  • the laminate is produced by laminating a plurality of laminates in which a conductive paste layer serving as an internal electrode layer is formed on a green sheet serving as a dielectric layer, and firing the raw laminate. .
  • the ceramic powder that is a dielectric and the metal powder such as silver (Ag) that is the conductor material of the internal electrode layer have different sintering shrinkage behaviors.
  • there is a gap between the dielectric layer and the internal electrode layer If this gap exists from the end surface to the inside of the laminate, in the subsequent external electrode formation process, particularly the plating process, plating solution or moisture will enter the laminate through the gap, resulting in deterioration of the insulation. There was a problem that would be low. Alternatively, there is a possibility that moisture remaining in the gap expands and damages the multilayer ceramic capacitor due to heating when the multilayer ceramic capacitor is mounted on a circuit board or the like.
  • the internal electrode layer and the external electrode are electrically connected by disposing the dielectric around the end of the internal electrode as a semiconductor between the internal electrode layer and the external electrode.
  • a structure separated by a semiconductor layer is known (see, for example, Patent Document 1).
  • the conductor resistance at the connection portion between the internal electrode layer and the external electrode is increased, so that the capacitor performance (tan ⁇ and high frequency characteristics) is likely to be deteriorated.
  • the semiconductor layer of the dielectric layer depends on the firing temperature and firing atmosphere in the manufacturing process, and the process control is difficult. There are problems that the dielectric properties of the ceramics deteriorate or vary.
  • An object of the present invention is to provide a multilayer ceramic capacitor in which a gap between an internal electrode layer and a dielectric layer is reduced while suppressing an increase in conductor resistance at an end portion of the internal electrode layer.
  • a multilayer ceramic capacitor according to one aspect of the present invention has an external electrode connected to an internal electrode layer on an end surface of a multilayer body in which dielectric layers and internal electrode layers are alternately stacked.
  • a connection electrode portion connected to the external electrode, and an internal electrode portion connected to the connection electrode portion and extending to the inside of the laminate, wherein the connection electrode portion includes the first conductor material and the first electrode material.
  • the first electrode material includes a material having a melting point higher than that of the first conductor material
  • the internal electrode portion includes the second conductor material or the second conductor material and the material having a higher melting point than the second conductor material
  • the connection electrode The portion is characterized in that the ratio of the material having a higher melting point than that of the first conductor material is larger than the ratio of the material having a higher melting point than that of the second conductor material in the internal electrode portion.
  • the internal electrode layer has a connection electrode portion in which the ratio of the material having a melting point higher than that of the conductor material is larger than that of the internal electrode portion. Since the sintering behavior during firing is close to that of the surrounding dielectric, there is no gap between the inner electrode layer and the dielectric layer, and the connecting electrode portion includes a conductor material. Therefore, the conductor resistance is relatively small.
  • (A) is a perspective view showing a multilayer ceramic capacitor in an embodiment of the present invention
  • (b) is a cross-sectional view taken along line AA of the multilayer ceramic capacitor shown in (a)
  • (c) is (a) 2 is a cross-sectional view taken along the line BB of the multilayer ceramic capacitor shown in FIG. It is sectional drawing which expands and shows the A section in FIG.1 (b).
  • (A) is sectional drawing which expands and shows the other example of the A section in FIG.1 (b)
  • (b) is sectional drawing which shows the other example of FIG.1 (c).
  • (A) is sectional drawing which expands and shows the other example of the A section in FIG.1 (b), (b) is sectional drawing which shows the further another example of FIG.1 (c). (A) is sectional drawing which expands and shows the further another example of the A section in FIG.1 (b).
  • the process for manufacturing the multilayer ceramic capacitor of the embodiment of the present invention is shown, (a) is a plan view partially enlarged ceramic green sheet, (b) is a cross-sectional view of FIG. 6 (a).
  • the process for manufacturing the multilayer ceramic capacitor of the embodiment of the present invention is shown, (a) is a plan view partially enlarged ceramic green sheet, (b) is a cross-sectional view of FIG. 7 (a).
  • FIG. 1A is a perspective view showing a multilayer ceramic capacitor 1 according to an embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA of the multilayer ceramic capacitor 1 shown in FIG.
  • FIG. 1C is a cross-sectional view taken along the line BB of the multilayer ceramic capacitor 1 shown in FIG.
  • the monolithic ceramic capacitor 1 may have either direction upward or downward, but for convenience, the orthogonal coordinate system xyz is defined and the positive side in the z direction is set as the upper side or the lower side. The following words shall be used.
  • the multilayer ceramic capacitor 1 basically includes a multilayer body 1 a that is a capacitor body and an external electrode 4. A plurality of laminated dielectric layers 2 and a plurality of internal electrode layers 3 disposed between the dielectric layers 2.
  • the multilayer body 1a of the multilayer ceramic capacitor 1 includes a first main surface (upper surface) and a second main surface (lower surface) facing each other, and a first side surface and a second side surface facing each other, It is formed in a substantially rectangular parallelepiped shape having one end face and a second end face.
  • the dimensions of the laminate 1a are such that the length of the long side of the laminate 1a is, for example, 0.4 to 3.2 mm, and the length of the short side of the laminate 1a is, for example, 0.2 to 1. 6 mm.
  • the dielectric layer 2 has a rectangular shape in plan view, and the thickness per layer is, for example, 1 to 2 ⁇ m.
  • the dielectric layer 2 is laminated, for example, 20 to 2000 layers in the laminated body 1a.
  • a dielectric ceramic such as BaTiO 3 , CaTiO 3 , SrTiO 3 or CaZrO 3 is used as a main component.
  • the dielectric layer 2 may be added with, for example, a Mn compound, an Fe compound, a Cr compound, a Co compound, a Ni compound, or the like as a subcomponent.
  • the internal electrode layer 3 is provided so that one end thereof is exposed to the first end surface or the second end surface of the multilayer body 1a.
  • the internal electrode layers 3 exposed at the first end face and the internal electrode layers 3 exposed at the second end face are alternately arranged so that parts thereof face each other with the dielectric layer 2 in between. Thereby, the multilayer ceramic capacitor 1 can obtain a capacitance.
  • the internal electrode layer 3 is disposed between the dielectric layers 2 of the laminate 1a.
  • the internal electrode layer 3 includes a connection electrode portion 3a connected to the external electrode 4, and an internal electrode portion 3b connected to the connection electrode portion 3a and extending to the inside of the multilayer body 1a.
  • the connection electrode portion 3a includes a first conductor material and a material having a melting point higher than that of the first conductor material
  • the internal electrode portion 3b includes a second conductor material or a second conductor material. And a material having a melting point higher than that of the second conductor material.
  • the ratio of the material having a melting point higher than that of the conductor material is larger than that of the internal electrode portion 3b.
  • the internal electrode portion 3b may be composed of only the second conductor material.
  • the internal electrode portion 3b is also made of the second conductor material and the second conductor material. It is preferable to include a material having a high melting point.
  • Examples of the conductor material of the internal electrode layer 3 include a metal material such as Ni, Cu, Ag, Pd or Au, or an alloy material containing one or more of these metal materials such as an Ag—Pd alloy. Can be mentioned. All the internal electrode layers 3 are preferably formed of the same metal material or alloy material. That is, the first conductor material and the second conductor material may be different from each other, or may be the same conductor material.
  • the material having a melting point higher than that of the conductor material contained in the internal electrode layer 3 is such that the sintering shrinkage behavior of the conductor paste layer 13 that becomes the internal electrode layer 3 is reduced during the firing in the manufacturing process of the multilayer ceramic capacitor 1 described later. This is to make the ceramic green sheet 12 close to the sintering behavior.
  • a material having a melting point higher than that of the conductor material has a melting point higher than that of the conductor material. Therefore, the sintering temperature is higher than that of the conductor material and is harder to sinter than the conductor material during firing.
  • a material for example, a ceramic material such as BaTiO 3 , CaTiO 3 , SrTiO 3, or Al 2 O 3 , a glass material, or a metal having a melting point higher than that of the above-described conductor material such as W, Mo, or Ti. Materials. If the material having a high melting point is a conductive material such as a metal material, it is preferable because the increase in the electric resistance of the internal electrode layer 3 can be suppressed.
  • the material having a high melting point the same material as the dielectric material of the dielectric layer 2 is preferable.
  • the laminate 1 a has a strong bond between the internal electrode layer 3 and the dielectric layer 2, and the gap is likely to be reduced. Further, in the laminated body 1a, a material having a high melting point is difficult to diffuse into the dielectric layer 2, and even if it diffuses, characteristics such as a dielectric constant and temperature characteristics of the dielectric of the dielectric layer 2 are greatly changed. There is no.
  • the ratio of the conductor material is 65 to 75% by volume, and the ratio of the material having a higher melting point than the conductor material is 25 to 35% by volume.
  • the ratio of the material having a high melting point is within this range, the multilayer body 1a does not have a gap in which the internal electrode portion 3b and the dielectric layer 2 are completely separated from each other.
  • the electric resistance of the internal electrode layer 3 does not become too high, and the characteristics such as tan ⁇ and high frequency characteristics of the multilayer ceramic capacitor 1 do not become low.
  • the ratio of a conductor material is 100 volume%.
  • connection electrode portion 3a when the material having a high melting point is an insulator, for example, the ratio of the conductor material is 20 to 55% by volume and the ratio of the material having a higher melting point than the conductor material is 45 to 80% by volume. Preferably there is. If the ratio of the material having a high melting point is within this range, the multilayer body 1a is located between the connection electrode portion 3a and the dielectric layer 2 from the outer end portion of the connection electrode portion 3a located on the end surface of the multilayer body 1a. There are no continuous gaps between the inner end portions of the connection electrode portions 3a located inside the multilayer body 1a.
  • the connection electrode portion 3a forms a continuous network (three-dimensional network structure) of the conductor material even when the ratio of the material having a high melting point is high, and between the outer end portion and the inner end portion.
  • the electrical connection is established, and the internal electrode portion 3b and the external electrode 4 can be electrically connected.
  • the ratio of the conductive material and the material having a high melting point in the connection electrode portion 3a and the internal electrode portion 3b can be confirmed as follows, for example. First, the multilayer ceramic capacitor 1 is cut and polished to obtain a cross section as shown in FIG. Then, the connecting electrode between the internal electrode portion 3b and the connecting electrode portion 3a, such as the portion A in FIG. 1, is observed and analyzed with an SEM (scanning electron microscope) and an EPMA (electron beam microanalyzer). The ratio of the conductor material and the material having a high melting point in the part 3a and the internal electrode part 3b is known.
  • SEM scanning electron microscope
  • EPMA electron beam microanalyzer
  • the dimensions of the internal electrode layer 3 are, for example, 0.39 to 3.1 mm in the long side direction (x direction in FIG. 1) of the laminate 1a, and the short side direction (y direction in FIG. 1) of the laminate 1a. Is, for example, 0.19 to 1.5 mm.
  • the size of the connection electrode portion 3a is the length in the long side direction (x direction in FIG. 1) of the laminate 1a, that is, the length from the internal electrode portion 3b to the external electrode 4 is 0.
  • the length in the short side direction (y direction in FIG. 1) of the laminated body 1a is equal to that of the internal electrode layer 3.
  • the thickness of the internal electrode layer 3 is not particularly limited, but is about 0.3 to 2 ⁇ m, for example.
  • connection electrode portion 3a is preferably thicker than the internal electrode portion 3b, as in the examples shown in FIGS. In this way, even if the specific resistance increases because the ratio of the material having a higher melting point than that of the internal electrode part 3b is high, the connection electrode part 3a can reduce the electrical resistance value due to the thick thickness. Further, when stress is applied to the laminate 1a, the internal electrode portion 3b starts from the end of the gap between the internal electrode layer 3 (internal electrode portion 3b) and the dielectric layer 2 inside the laminate 1a. Even if a crack occurs along the interface between the dielectric layer 2 and the dielectric layer 2, the connection electrode portion 3 a is thicker than the internal electrode portion 3 b, so that the crack can be prevented from progressing. It is possible to prevent a gap from going to the inside.
  • connection electrode portion 3a is thicker than the internal electrode portion 3b, and therefore, the internal electrode layer 3 exposed at the first end face. And the number of the internal electrode layers 3 are different between the portion where the internal electrode layer 3 exposed on the second end face and the portion where the internal electrode layer 3 faces and the portion on the external electrode side where only one of them overlaps (opposite region) The distortion of the dielectric layer 2 can be reduced.
  • the inner end portion of the connection electrode portion 3a is located between the end face of the stacked body 1a and the opposing region and is as close as possible to the end of the opposing region.
  • connection electrode part 3a may be, for example, about 0.3 to 2 ⁇ m thicker than the thickness of the internal electrode part 3b. Moreover, it is preferable that the edge part inside the connection electrode part 3a is located in the edge of an opposing area
  • the length in the short side direction (y direction in FIG. 1) of the multilayer body 1a is set to the length of the internal electrode portion 3b as in the example shown in FIG.
  • the length of the connection electrode portion 3a is preferably longer than the length.
  • connection electrode portion 3a is preferably arranged so as to overlap the end portion of the internal electrode portion 3b. If it does in this way, it will become difficult to form a clearance gap between the laminated body 1a and the dielectric layer 2 in the edge part of the internal electrode part 3b, and the clearance gap between the dielectric layer 2 in the edge part of the internal electrode layer 3 will be sufficient. Is further reduced.
  • a connection electrode portion 3a having an intermediate behavior between these sintering shrinkage behaviors is interposed between the internal electrode layer 3 (internal electrode portion 3b) and the dielectric layer 2. Therefore, in the laminate 1a, the gap generated due to the difference in the sintering shrinkage behavior between the internal electrode layer 3 (internal electrode portion 3b) and the dielectric layer 2 is reduced.
  • connection electrode part 3a can reduce electrical resistance, and can reduce the distortion of the dielectric layer 2 due to the difference in the number of internal electrode layers 3.
  • connection electrode portion 3 a having a material composition intermediate between these material compositions is interposed between the internal electrode layer 3 (internal electrode portion 3 b) and the dielectric layer 2. Therefore, the coupling between the internal electrode layer 3 (internal electrode portion 3b) and the dielectric layer 2 is strengthened, and the difference in thermal expansion coefficient is alleviated. The possibility of cracks occurring between the electrode part 3b) and the dielectric layer 2 is reduced.
  • the corners of the end portions of the connection electrode portions 3a overlapping the internal electrode portions 3b have roundness.
  • the boundary between the dielectric layer 2 and the connection electrode portion 3a having different material compositions does not have a corner portion where stress is likely to concentrate, there is a possibility that a crack is generated at the boundary starting from the corner portion. Is reduced.
  • the external electrodes 4 are respectively provided on predetermined end surfaces so as to connect the internal electrode layers 3 exposed on the respective end surfaces of the laminated body 1a to each other.
  • the external electrode 4 is formed with a thickness of 5 to 50 ⁇ m, for example.
  • the external electrode 4 is made of, for example, a metal material such as copper, silver, nickel, palladium, or an alloy thereof, and may include glass in order to improve the bonding force with the stacked body 1a.
  • the external electrode 4 may form a laminate of a Ni plating film and a Sn plating film on the surface.
  • the multilayer ceramic capacitor 1 having the above-described configuration can be manufactured by, for example, the following manufacturing method.
  • the ceramic green sheet 12 is obtained by preparing a slurry-like ceramic slurry by adding and mixing a suitable organic solvent or the like to the dielectric ceramic raw material powder and the organic binder, and molding the slurry by a doctor blade method or the like. .
  • the internal conductor paste layer 13b to be the internal electrode portion 3b is formed by printing a conductive paste on the ceramic green sheet 12 by a screen printing method or the like in a predetermined shape. As in the example shown in FIG. 6, a plurality of internal conductor paste layers 13 b are formed on one ceramic green sheet 12 in order to obtain a large number of multilayer ceramic capacitors 1 at the same time.
  • the conductor paste for the internal conductor paste layer 13b is prepared by adding a binder, a solvent, a dispersant, and the like to the above-described conductive material (metal material) powder of the internal electrode layer 3 and high melting point material powder and kneading.
  • connection conductor paste layer 13a to be the connection electrode portion 3a is formed so as to be in contact with the end portion of the internal conductor paste layer 13b.
  • the example shown in FIG. 7 shows a method of manufacturing the multilayer ceramic capacitor 1 in which the connection electrode portion 3a is arranged so as to overlap the end portion of the internal electrode portion 3b as in the examples shown in FIGS. Yes. That is, the connection conductor paste layer 13a to be the connection electrode portion 3a is formed so as to overlap the end portion of the internal conductor paste layer 13b.
  • connection conductor paste layer 13a by adjusting the viscosity of the conductor paste for the connection conductor paste layer 13a, a laminated ceramic in which the corners of the connection electrode portion 3a overlapping the internal electrode portion 3b are rounded as in the example shown in FIG.
  • the capacitor 1 can be manufactured. That is, the upper surface of the connection conductor paste layer 13a can be rounded by the surface tension of the conductor paste.
  • the conductor paste for the connection conductor paste layer 13a is produced in the same manner by increasing the amount of a material having a high melting point relative to the conductor paste for the internal conductor paste layer 13b described above.
  • the viscosity can be adjusted by adjusting the amount of binder or solvent.
  • a plurality of ceramic green sheets 12 on which the internal conductor paste layer 13b and the connection conductor paste layer 13a are formed are laminated.
  • the connecting conductor paste layers 13a are overlapped every other layer, and the ceramic green sheets 12 on which the inner conductor paste layer 13b and the connecting conductor paste layer 13a are not formed are stacked on the upper and lower sides.
  • the plurality of laminated ceramic green sheets 12 are pressed and integrated to form a large green laminate 11b including a large number of green laminates 11a as shown in FIG.
  • this large green laminate 11b is cut to form a multilayer 1a of the multilayer ceramic capacitor 1 as shown in FIG. 10B.
  • a body 11a is obtained.
  • the large green laminate 11b may be cut using a dicing blade 20, for example.
  • the laminate 1a is obtained by firing the raw laminate 11a at, for example, 800 to 1050 ° C.
  • the ceramic green sheet 12 becomes the dielectric layer 2
  • the internal conductor paste layer 13b and the connection conductor paste layer 13a become the internal electrode layer 3 as the internal electrode portion 3b and the connection electrode portion 3a, respectively.
  • angular part is rounded like the example shown to Fig.11 (a) by grinding
  • the external electrode 4 is formed by applying and baking a conductive paste for the external electrode 4 to be the external electrode 4 on both ends of the laminated body 1a.
  • the conductive paste for the external electrode 4 is produced by adding and kneading a binder, a solvent, a dispersant, and the like to the metal material powder constituting the external electrode 4 described above.
  • a metal layer such as a nickel (Ni) layer, a copper (Cu) layer, a gold (Au) layer, a tin (Sn) layer, or a solder layer is formed on the surface of the external electrode 4 as necessary.
  • a multilayer ceramic capacitor 1 is obtained.
  • the example of using the green sheet laminating method as the method for producing the large green laminate 11b has been described.
  • the printing / coating / drying of the ceramic slurry and the printing / coating of the conductor paste to be the internal electrode layer 3 are performed. You may use the printing lamination method which repeats drying.
  • a thin film forming method such as vapor deposition, plating, or sputtering may be used.
  • Multilayer ceramic capacitor 2 Dielectric layer 3: Internal electrode layer 3a: Connection electrode portion 3b: Internal electrode portion 4: External electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

【課題】 内部電極層の端部における導体抵抗の上昇を抑えつつ、内部電極層と誘電体層との間の隙間が低減された積層セラミックコンデンサを提供すること。 【解決手段】 積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された積層体1aの端面に内部電極層3と接続された外部電極4を有しており、内部電極層3は、外部電極4に接続している接続電極部3aと、接続電極部3aに接続され、積層体1aの内側へ延在する内部電極部3bとを有しており、接続電極部3aは、導体材料より融点の高い材料の比率が内部電極部3bよりも大きい。

Description

積層セラミックコンデンサ
 本発明は、誘電体層と内部電極層とが交互に積層された積層体の端面に前記内部電極層と接続された外部電極を有する積層セラミックコンデンサに関するものである。
 一般に、積層セラミックコンデンサは、積層された複数の誘電体層と、各誘電体層の間に配置された複数の内部電極層と、誘電体層と内部電極層との積層体の両端面において内部電極層と接続された外部電極とから構成されている。このような積層セラミックコンデンサは、誘電体層と内部電極層とを同時焼成で形成した積層体を作製した後に、この積層体の両端面に外部電極を形成して作製される。
 積層体は、誘電体層となるグリーンシートの上に内部電極層となる導体ペースト層を形成したものを複数枚積層して生積層体を作製し、生積層体を焼成することで作製される。この焼成時において、誘電体であるセラミック粉末と内部電極層の導体材料である銀(Ag)等の金属粉末とは、それぞれ焼結収縮挙動が異なることから、焼成して得られた積層体は、誘電体層と内部電極層との間に隙間を有する場合が多かった。この隙間が積層体の端面から内部にかけて存在すると、その後の外部電極の形成工程、特にめっき工程において、めっき液や水分が隙間を通して積層体内に浸入して、絶縁が劣化するなどして信頼性の低いものとなってしまう問題があった。あるいは、積層セラミックコンデンサの回路基板等への実装時の加熱によって、隙間に残留した水分が膨張して積層セラミックコンデンサを破壊してしまう虞があった。
 このような問題に対して、内部電極端部周辺の誘電体を半導体化したものを内部電極層と外部電極との間に配置することで、内部電極層と外部電極とは電気的には接続されているが、構造的には半導体層で分断された構造にしたものが知られている(例えば、特許文献1を参照。)。
特開平3-41710号公報
 しかしながら、従来の積層セラミックコンデンサの構造では、内部電極層と外部電極との接続部の導体抵抗が大きくなるのでコンデンサ性能(tanδや高周波特性)が低下しやすいものであった。また、誘電体層の半導体化は、製造工程における焼成時の温度や焼成雰囲気に左右され、その工程管理が難しいため、誘電体の半導体化した部分の範囲が大きくなったりばらついたりしてコンデンサ全体の誘電体特性が悪くなったり、ばらついたりするという問題があった。
 本発明は、内部電極層の端部における導体抵抗の上昇を抑えつつ、内部電極層と誘電体層との間の隙間が低減された積層セラミックコンデンサを提供することを目的とするものである。
 本発明の一つの態様による積層セラミックコンデンサは、誘電体層と内部電極層とが交互に積層された積層体の端面に内部電極層と接続された外部電極を有しており、内部電極層は、外部電極に接続している接続電極部と、接続電極部に接続され、積層体の内側へ延在する内部電極部とを有しており、接続電極部は、第1の導体材料と第1の導体材料より融点の高い材料を含んでおり、内部電極部は、第2の導体材料、または、第2の導体材料と第2の導体材料より融点の高い材料を含んでおり、接続電極部は、第1の導体材料より融点の高い材料の比率が内部電極部における第2の導体材料より融点の高い材料の比率よりも大きいことを特徴とする。
 本発明の一つの態様による積層セラミックコンデンサによれば、内部電極層は、導体材料より融点の高い材料の比率が内部電極部よりも大きい接続電極部を有していることから、接続電極部は焼成時の焼結挙動が周囲の誘電体に近いものとなるので、内部電極層の端部において誘電体層との間に隙間のないものとなるとともに、接続電極部は導体材料を含んで構成されているので導体抵抗も比較的小さいものとなる。
(a)は本発明の実施形態における積層セラミックコンデンサを示す斜視図であり、(b)は(a)に示された積層セラミックコンデンサのA-Aにおける断面図であり、(c)は(a)に示された積層セラミックコンデンサのB-Bにおける断面図である。 図1(b)におけるA部を拡大して示す断面図である。 (a)は図1(b)におけるA部の他の例を拡大して示す断面図であり、(b)は図1(c)の他の例を示す断面図である。 (a)は図1(b)におけるA部のさらに他の例を拡大して示す断面図であり、(b)は図1(c)のさらに他の例を示す断面図である。 (a)は図1(b)におけるA部のさらに他の例を拡大して示す断面図である。 本発明の実施形態の積層セラミックコンデンサを製造する工程を示すものであり、(a)はセラミックグリーンシートを部分的に拡大した平面図、(b)は図6(a)の断面図である。 本発明の実施形態の積層セラミックコンデンサを製造する工程を示すものであり、(a)はセラミックグリーンシートを部分的に拡大した平面図、(b)は図7(a)の断面図である。 本発明の実施形態の積層セラミックコンデンサを製造する工程を示す断面図である。 本発明の実施形態の積層セラミックコンデンサを製造する工程を示す断面図である。 (a)および(b)は、本発明の実施形態の積層セラミックコンデンサを製造する工程を示す断面図である。 (a)および(b)は、本発明の実施形態の積層セラミックコンデンサを製造する工程を示す断面図である。
 以下、本発明の実施形態について図面を参照して説明する。図1(a)は本発明の実施形態における積層セラミックコンデンサ1を示す斜視図であり、図1(b)は図1(a)に示された積層セラミックコンデンサ1のA-Aにおける断面図であり、図1(c)は図1(a)に示された積層セラミックコンデンサ1のB-Bにおける断面図である。なお、積層セラミックコンデンサ1は、いずれの方向が上方もしくは下方とされてもよいものであるが、便宜的に、直交座標系xyzを定義するとともに、z方向の正側を上方として、上面もしくは下面の語を用いるものとする。
 本発明の実施形態における積層セラミックコンデンサ1は、図1および図2に示されているように、基本的な構成として、コンデンサ本体である積層体1aと外部電極4とからなり、積層体1aは、複数の積層された誘電体層2、および誘電体層2の層間に配置された複数の内部電極層3を含む。積層セラミックコンデンサ1の積層体1aは、互いに対向する第1の主面(上面)及び第2の主面(下面)と、互いに対向する第1の側面及び第2の側面と、互いに対向する第1の端面及び第2の端面とを有する略直方体状に形成されている。また、積層体1aの寸法は、積層体1aの長辺の長さを、例えば、0.4~3.2mmとし、積層体1aの短辺の長さを、例えば、0.2~1.6mmとする。
 誘電体層2は平面視で矩形状であり、1層当たりの厚みは、例えば、1~2μmである。この誘電体層2は、積層体1a中において、例えば、20~2000層積層される。誘電体層2の材料としては、例えば、BaTiO、CaTiO、SrTiOまたはCaZrO等の誘電体セラミックスを主成分とするものである。また、誘電体層2は、副成分として、例えば、Mn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物等が添加されたものであってもよい。
 内部電極層3は、一端が積層体1aの第1の端面または第2の端面に露出するように設けられる。第1の端面に露出する内部電極層3と第2の端面に露出する内部電極層3とは、誘電体層2を介して一部が互いに対向するように交互に配置されている。これにより、積層セラミックコンデンサ1は、静電容量が得られるようになっている。
 この内部電極層3は、積層体1aの誘電体層2間にそれぞれ配置されている。内部電極層3は、外部電極4に接続している接続電極部3aと、接続電極部3aに接続され、積層体1aの内側へ延在する内部電極部3bとを有している。そして、この接続電極部3aは、第1の導体材料と第1の導体材料より融点の高い材料とを含んでなり、また、この内部電極部3bは、第2の導体材料、または、第2の導体材料と第2の導体材料より融点の高い材料とを含んでなる。そして、接続電極部3aは、導体材料より融点の高い材料の比率が内部電極部3bよりも大きい。内部電極部3bは第2の導体材料のみで構成されていてもよい。積層体1aの製造工程において、内部電極部3bと誘電体層2との間に形成される隙間をできるだけ小さくするためには、内部電極部3bも第2の導体材料と第2の導体材料より融点の高い材料とを含むのが好ましい。
 内部電極層3の導体材料としては、例えば、Ni、Cu、Ag、PdまたはAu等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えば、Ag-Pd合金などの合金材料などが挙げられる。全ての内部電極層3は、同一の金属材料または合金材料により形成されていることが好ましい。すなわち、第1の導体材料と第2の導体材料とは、互いに異なった導体材料であっても、また、互いに同じ導体材料であってもよい。
 内部電極層3に含まれる、導体材料より融点の高い材料は、後述する積層セラミックコンデンサ1の製造工程における焼成時に、内部電極層3となる導体ペースト層13の焼結収縮挙動を誘電体層2となるセラミックグリーンシート12の焼結挙動に近付けるためのものである。導体材料より融点の高い材料は、導体材料より融点が高いので、導体材料より焼結温度が高く、焼成時に導体材料よりも焼結し難いものである。そのような材料としては、例えば、BaTiO、CaTiO、SrTiOまたはAl等のセラミック材料やガラス材料、あるいは、W、MoまたはTi等の上記導体材料の金属材料より融点の高い金属材料が挙げられる。融点の高い材料が金属材料等の導電性の材料であれば、内部電極層3の電気抵抗が高くなるのが抑えられるので好ましい。
 融点の高い材料として、誘電体層2の誘電体材料と同じ材料であるのが好ましい。融点の高い材料が誘電体層2の誘電体材料である場合には、積層体1aは、内部電極層3と誘電体層2との結合が強くなるので間に隙間が少なくなりやすい。また、積層体1aは、融点の高い材料が誘電体層2に拡散し難く、拡散したとしても、誘電体層2の誘電体の比誘電率や温度特性などの特性が大きく変化してしまうことがない。
 内部電極部3bにおいては、融点の高い材料が絶縁体である場合には、例えば、導体材料の比率が65~75体積%で、導体材料より融点の高い材料の比率が25~35体積%であるのが好ましい。融点の高い材料の比率がこの範囲であれば、積層体1aは、内部電極部3bと誘電体層2とが完全に離間してしまうような隙間とはならず、また、積層セラミックコンデンサ1は、内部電極層3の電気抵抗が高くなりすぎて積層セラミックコンデンサ1のtanδや高周波特性等の特性が低いものとなることがない。また、内部電極部3bが導体材料のみで構成される場合には、導体材料の比率は100体積%である。
 接続電極部3aにおいては、融点の高い材料が絶縁体である場合には、例えば、導体材料の比率が20~55体積%で、導体材料より融点の高い材料の比率が45~80体積%であるのが好ましい。融点の高い材料の比率がこの範囲であれば、積層体1aは、接続電極部3aと誘電体層2との間に、積層体1aの端面に位置する接続電極部3aの外側の端部から積層体1aの内部に位置する接続電極部3aの内側の端部にかけて連続する隙間のないものとなる。また、導体材料が接続電極部3aの外側の端部から内側の端部にかけて連続して形成されるので、積層セラミックコンデンサ1は、内部電極層3の電気抵抗が高くなりすぎて積層セラミックコンデンサ1のtanδや高周波特性等の特性が低いものとなることがない。すなわち、接続電極部3aは、融点の高い材料の比率が高くても、導体材料が連続したネットワーク(3次元網目構造)を形成しており、外側の端部と内側の端部との間で導通され、内部電極部3bと外部電極4とを電気的に接続することができるようになっている。
 接続電極部3aおよび内部電極部3bにおける導体材料および融点の高い材料の比率は、例えば、以下のようにして確認することができる。まず、積層セラミックコンデンサ1を切断して研磨することで図1(b)に示されたような断面を出す。そして、図1のA部のような、内部電極部3bと接続電極部3aとの接続部分をSEM(走査電子顕微鏡)とEPMA(電子線マイクロアナライザー)とで観察・分析することで、接続電極部3aおよび内部電極部3bにおける導体材料と融点の高い材料との比率がわかる。
 内部電極層3の寸法は、積層体1aの長辺方向(図1におけるx方向)は、例えば、0.39~3.1mmであり、積層体1aの短辺方向(図1におけるy方向)は、例えば、0.19~1.5mmである。内部電極層3のうち、接続電極部3aの寸法は、積層体1aの長辺方向(図1におけるx方向)の長さ、すなわち内部電極部3bから外部電極4までの長さは、0.05~0.5mmであり、積層体1a短辺方向(図1におけるy方向)の長さは、内部電極層3と同等である。内部電極層3の厚さは、特に限定されないが、例えば、0.3~2μm程度である。
 接続電極部3aは、図3~図5に示す例のように、内部電極部3bよりも厚みが厚い方が好ましい。このようにすると、接続電極部3aは、内部電極部3bより融点の高い材料の比率が高いことで比抵抗が大きくなっても、厚みが厚いことで電気抵抗値を小さくすることができる。また、積層体1aに応力が加わった際に、積層体1aの内部における内部電極層3(内部電極部3b)と誘電体層2との間の隙間の端部を起点として、内部電極部3bと誘電体層2との界面に沿ってクラックが発生したとしても、接続電極部3aは、内部電極部3bよりも厚みが厚いことからクラックの進展を妨げることができるので、積層体1aの端面から内部に至る隙間ができるのを防ぐことができる。
 また、積層体1aの作製にグリーンシート積層法を用いて行なった場合には、接続電極部3aは、内部電極部3bよりも厚みが厚いことから、第1の端面に露出する内部電極層3と第2の端面に露出する内部電極層3とが対向して重なる部分(対向領域)と、どちらか一方のみが重なる外部電極側の部分との間で内部電極層3の数が異なることによる誘電体層2の歪みを低減することができる。このとき、接続電極部3aの内側の端部は、積層体1aの端面から対向領域までの間に位置し、対向領域の端にできるだけ近い位置にあるのが望ましい。接続電極部3aの厚みは、例えば、内部電極部3bの厚みより0.3~2μm程度厚くすればよい。また、接続電極部3aの内側の端部は、対向領域の端に位置するのが好ましい。
 接続電極部3aの電気抵抗値を小さくするために、図3(b)に示す例のように、積層体1aの短辺方向(図1におけるy方向)の長さは、内部電極部3bの長さより接続電極部3aの長さの方が長い方が好ましい。
 また、図4および図5に示す例のように、接続電極部3aは、内部電極部3bの端部に重なるように配置されるのがよい。このようにすると、積層体1aは、内部電極部3bの端部において誘電体層2との間に隙間が形成され難くなり、内部電極層3の端部における誘電体層2との間の隙間がより低減されたものとなる。積層体1aの製造工程における焼成の際に、内部電極層3(内部電極部3b)と誘電体層2との間に、これらの焼結収縮挙動の中間の挙動を有する接続電極部3aが介在するので、積層体1aは、内部電極層3(内部電極部3b)と誘電体層2との間の焼結収縮挙動の差に起因して発生する隙間が低減される。
 また、図4および図5に示す例のように、接続電極部3aと内部電極部3bとの重なり部の内側の端部は、積層体1aの端面から対向領域までの間に位置し、対向領域の端にできるだけ近い位置にあるのが望ましい。さらに、接続電極部3aと内部電極部3bとの重なり部の内側の端部は、対向領域の端に位置するのが好ましい。これにより、接続電極部3aは電気抵抗を小さくすることができるとともに、内部電極層3の数が異なることによる誘電体層2の歪みを低減することができる。
 また、焼成後の積層体1aにおいても、内部電極層3(内部電極部3b)と誘電体層2との間に、これらの材料組成の中間の材料組成を有する接続電極部3aが介在することから、内部電極層3(内部電極部3b)と誘電体層2との間の結合が強固となり、また、熱膨張係数の差も緩和されるので、積層体1aは、内部電極層3(内部電極部3b)と誘電体層2との間でクラックが発生する可能性が低減される。
 また、図5に示す例のように、内部電極部3bと重なる接続電極部3aの端部の角は丸みを有するのが好ましい。積層体1aは、材料組成の異なる誘電体層2と接続電極部3aとの境界が応力の集中しやすい角部を有していないので、角部を起点としてこの境界にクラックが発生する可能性が低減される。
 外部電極4は、積層体1aのそれぞれの端面に露出した内部電極層3を互いに接続するように、所定の端面にそれぞれ設けられる。この外部電極4は、厚みが、例えば、5~50μmで形成されている。外部電極4は、例えば、銅、銀、ニッケルまたはパラジウム、あるいは、これらの合金等の金属材料からなり、積層体1aとの接合力を向上させるためにガラスを含んでいてもよい。
 外部電極4の表面には、外部電極4の保護、および実装性の向上等のために、例えば、Niめっき膜やSnめっき膜などの1または複数のめっき膜が形成されていることが好ましい。例えば、外部電極4は、表面にNiめっき膜とSnめっき膜との積層体を形成してもよい。
 以上のような構成の積層セラミックコンデンサ1は、例えば、以下に示すような製造方法で作製することができる。まず、図6に示す例のように、誘電体層2となる複数のセラミックグリーンシート12上に内部電極部3bとなる内部導体ペースト層13bを形成する。セラミックグリーンシート12は、誘電体セラミックスの原料粉末および有機バインダに適当な有機溶剤等を添加し混合することによって泥漿状のセラミックスラリーを作製し、これをドクターブレード法等によって成形することによって得られる。
 内部電極部3bとなる内部導体ペースト層13bは、セラミックグリーンシート12上にスクリーン印刷法等によって、導体ペーストを所定形状に印刷して形成する。なお、図6に示す例のように、多数個の積層セラミックコンデンサ1を同時に得るために、1枚のセラミックグリーンシート12に複数の内部導体ペースト層13bを形成する。
 内部導体ペースト層13b用の導体ペーストは、上述した内部電極層3の導体材料(金属材料)の粉末および融点の高い材料の粉末にバインダ、溶剤、分散剤等を加えて混練することで作製される。
 次に、内部導体ペースト層13bの端部に接するように、接続電極部3aとなる接続導体ペースト層13aを形成する。図7に示す例では、図4および図5に示す例のような、接続電極部3aが内部電極部3bの端部に重なるように配置されている積層セラミックコンデンサ1を製造する方法を示している。すなわち、内部導体ペースト層13bの端部に重なるように、接続電極部3aとなる接続導体ペースト層13aを形成している。このとき、接続導体ペースト層13a用の導体ペーストの粘度を調整することによって、図5に示す例のような、内部電極部3bと重なる接続電極部3aの端部の角が丸みを有する積層セラミックコンデンサ1を作製することができる。すなわち、導体ペーストの表面張力によって、接続導体ペースト層13aの上面に丸みを持たせることができる。
 接続導体ペースト層13a用の導体ペーストは、上述した内部導体ペースト層13b用の導体ペーストに対して融点の高い材料の量を増やして同様にして作製される。粘度の調整は、バインダや溶剤の量により調整することができる。
 次に、図8に示す例のように、内部導体ペースト層13bおよび接続導体ペースト層13aが形成された複数のセラミックグリーンシート12を積層する。一層おきに接続導体ペースト層13aが重なるようにし、上下には内部導体ペースト層13bおよび接続導体ペースト層13aを形成していないセラミックグリーンシート12を積層する。積層された複数のセラミックグリーンシート12は、プレスして一体化することで、図9に示す例のような、多数個の生積層体11aを含む大型の生積層体11bとなる。
 次に、図10(a)に示す例のように、この大型の生積層体11bを切断して、図10(b)に示す例のような積層セラミックコンデンサ1の積層体1aとなる生積層体11aを得る。大型の生積層体11bの切断は、例えば、ダイシングブレード20を用いて行えばよい。
 そして、生積層体11aを、例えば、800~1050℃で焼成することによって積層体1aを得る。この工程によって、セラミックグリーンシート12は誘電体層2となり、内部導体ペースト層13bおよび接続導体ペースト層13aはそれぞれ内部電極部3bおよび接続電極部3aとなって内部電極層3となる。積層体1aは、バレル研磨等の研磨手段によって、図11(a)に示す例のように角部が丸められる。これにより積層体1aが欠け難いものとなる。
 次に、例えば積層体1aの両端部に外部電極4となる外部電極4用の導電ペーストを塗布し、焼き付けることにより外部電極4を形成する。外部電極4用の導電ペーストは、上述した外部電極4を構成する金属材料の粉末にバインダ、溶剤、分散剤等を加えて混練することで作製される。
 外部電極4の表面に、必要に応じて、ニッケル(Ni)層、銅(Cu)層、金(Au)層またはスズ(Sn)層あるいははんだ層等の金属層をめっき法により形成して、積層セラミックコンデンサ1を得る。
 上述した製造方法においては、大型の生積層体11bを作製する方法としてグリーンシート積層法を用いる例で説明したが、セラミックスラリーの印刷塗布・乾燥と内部電極層3となる導体ペーストの印刷塗布・乾燥を繰り返して行う印刷積層法を用いてもよい。
 また、外部電極4の形成方法として、導体ペーストを焼き付ける方法以外に、蒸着、めっきまたはスパッタリング等の薄膜形成法によって行なってもよい。
1:積層セラミックコンデンサ
2:誘電体層
3:内部電極層
3a:接続電極部
3b:内部電極部
4:外部電極

Claims (7)

  1.  誘電体層と内部電極層とが交互に積層された積層体の端面に前記内部電極層と接続された外部電極を有する積層セラミックコンデンサにおいて、
    前記内部電極層は、前記外部電極に接続している接続電極部と、
    該接続電極部に接続され、前記積層体の内側へ延在する内部電極部とを有しており、
    前記接続電極部は、第1の導体材料と該第1の導体材料より融点の高い材料を含んでおり、
    前記内部電極部は、第2の導体材料、または、該第2の導体材料と前記第2の導体材料より融点の高い材料を含んでおり、
    前記接続電極部は、前記第1の導体材料より融点の高い材料の比率が前記内部電極部における前記第2の導体材料より融点の高い材料の比率よりも大きいことを特徴とする積層セラミックコンデンサ。
  2.  前記第1の導体材料より融点の高い材料は、前記誘電体層の誘電体材料であることを特徴とする請求項1に記載の積層セラミックコンデンサ。
  3.  前記第2の導体材料より融点の高い材料は、前記誘電体層の誘電体材料であることを特徴とする請求項1または請求項2に記載の積層セラミックコンデンサ。
  4. 前記接続電極部は、前記内部電極部の端部に重なるように配置されていることを特徴とする請求項1乃至請求項3に記載の積層セラミックコンデンサ。
  5. 前記接続電極部は、前記内部電極部に重なる端部が丸みを有していることを特徴とする請求項4に記載の積層セラミックコンデンサ。
  6.  前記接続電極部は、前記内部電極部よりも厚みが厚いことを特徴とする請求項1乃至請求項5に記載の積層セラミックコンデンサ。
  7. 前記第1の導体材料および前記第2の導体材料は、同一の金属または同一の合金であることを特徴とする請求項1乃至請求項6に記載の積層セラミックコンデンサ。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2013/067094 2012-06-21 2013-06-21 積層セラミックコンデンサ WO2013191277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014521523A JP5960816B2 (ja) 2012-06-21 2013-06-21 積層セラミックコンデンサ
CN201380029618.4A CN104335305B (zh) 2012-06-21 2013-06-21 层叠陶瓷电容器
US14/410,561 US9496087B2 (en) 2012-06-21 2013-06-21 Multilayer ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-139875 2012-06-21
JP2012139875 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013191277A1 true WO2013191277A1 (ja) 2013-12-27

Family

ID=49768868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067094 WO2013191277A1 (ja) 2012-06-21 2013-06-21 積層セラミックコンデンサ

Country Status (4)

Country Link
US (1) US9496087B2 (ja)
JP (1) JP5960816B2 (ja)
CN (1) CN104335305B (ja)
WO (1) WO2013191277A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762032B1 (ko) * 2015-11-27 2017-07-26 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조 방법
JP6791068B2 (ja) * 2017-08-29 2020-11-25 株式会社村田製作所 コイル部品およびコイル部品付き実装基板
JP7190937B2 (ja) * 2019-02-27 2022-12-16 京セラ株式会社 積層セラミック電子部品
KR20190116164A (ko) * 2019-09-02 2019-10-14 삼성전기주식회사 적층 세라믹 전자부품
KR102712631B1 (ko) * 2019-12-12 2024-10-02 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조 방법
JP2022083829A (ja) * 2020-11-25 2022-06-06 株式会社村田製作所 積層セラミックコンデンサ
JP7548195B2 (ja) * 2021-11-19 2024-09-10 株式会社村田製作所 積層セラミックコンデンサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111553A (ja) * 1997-09-30 1999-04-23 Kyocera Corp 積層セラミックコンデンサ
JP2000138129A (ja) * 1998-10-30 2000-05-16 Kyocera Corp 積層セラミックコンデンサおよびその製造方法
JP2007335726A (ja) * 2006-06-16 2007-12-27 Tdk Corp 積層セラミックコンデンサ
JP2012253245A (ja) * 2011-06-03 2012-12-20 Tdk Corp 積層電子部品及び積層電子部品の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2852372B2 (ja) 1989-07-07 1999-02-03 株式会社村田製作所 積層セラミックコンデンサ
JP3959787B2 (ja) 1997-06-26 2007-08-15 井関農機株式会社 トラクタ等のキャビン
JPH1126285A (ja) * 1997-06-30 1999-01-29 Kyocera Corp 積層セラミックコンデンサ
US5889445A (en) * 1997-07-22 1999-03-30 Avx Corporation Multilayer ceramic RC device
JP2002231570A (ja) * 2001-01-30 2002-08-16 Kyocera Corp 積層型電子部品およびその製法
CN1598982A (zh) * 2003-09-18 2005-03-23 广东风华高新科技集团有限公司 内电极浆料及用该浆料制得的陶瓷电容器
JP4073416B2 (ja) * 2004-03-31 2008-04-09 Tdk株式会社 積層セラミックコンデンサ
JP2005294314A (ja) * 2004-03-31 2005-10-20 Tdk Corp 積層セラミックコンデンサ
JP2010045209A (ja) 2008-08-13 2010-02-25 Tdk Corp 積層セラミック電子部品の製造方法
US20100038120A1 (en) 2008-08-13 2010-02-18 Tdk Corporation Layered ceramic electronic component and manufacturing method therefor
KR20130111752A (ko) * 2012-04-02 2013-10-11 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
KR101823160B1 (ko) * 2012-04-26 2018-01-29 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111553A (ja) * 1997-09-30 1999-04-23 Kyocera Corp 積層セラミックコンデンサ
JP2000138129A (ja) * 1998-10-30 2000-05-16 Kyocera Corp 積層セラミックコンデンサおよびその製造方法
JP2007335726A (ja) * 2006-06-16 2007-12-27 Tdk Corp 積層セラミックコンデンサ
JP2012253245A (ja) * 2011-06-03 2012-12-20 Tdk Corp 積層電子部品及び積層電子部品の製造方法

Also Published As

Publication number Publication date
CN104335305A (zh) 2015-02-04
US9496087B2 (en) 2016-11-15
US20150325373A1 (en) 2015-11-12
CN104335305B (zh) 2017-05-31
JP5960816B2 (ja) 2016-08-02
JPWO2013191277A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5960816B2 (ja) 積層セラミックコンデンサ
US8737037B2 (en) Ceramic electronic component and method of manufacturing the same
KR102029469B1 (ko) 적층 세라믹 전자 부품 및 그 제조 방법
JP5313289B2 (ja) 積層セラミックコンデンサ
KR101474138B1 (ko) 적층 세라믹 전자 부품 및 그 제조 방법
JP5206440B2 (ja) セラミック電子部品
KR101952843B1 (ko) 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
KR101397835B1 (ko) 적층 세라믹 전자부품 및 이의 제조방법
JP5483498B2 (ja) 積層セラミック電子部品及びその製造方法
KR101532114B1 (ko) 적층 세라믹 전자부품
CN110828169B (zh) 多层陶瓷电容器及制造多层陶瓷电容器的方法
US10510488B2 (en) Multilayer ceramic capacitor
KR20200078083A (ko) 커패시터 부품
KR20130065199A (ko) 외부 전극용 도전성 페이스트, 이를 이용한 적층 세라믹 전자부품 및 이의 제조방법
KR20130005518A (ko) 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
KR20130111752A (ko) 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
KR20230040972A (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR20190121144A (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR20190121140A (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR101474152B1 (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR20190121175A (ko) 적층 세라믹 커패시터
US9281121B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
KR20140024584A (ko) 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
KR102041622B1 (ko) 적층 세라믹 전자부품 및 이의 제조방법
KR102078011B1 (ko) 적층 세라믹 전자 부품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14410561

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13806658

Country of ref document: EP

Kind code of ref document: A1