[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013183234A1 - 透明電極およびその製造方法 - Google Patents

透明電極およびその製造方法 Download PDF

Info

Publication number
WO2013183234A1
WO2013183234A1 PCT/JP2013/003166 JP2013003166W WO2013183234A1 WO 2013183234 A1 WO2013183234 A1 WO 2013183234A1 JP 2013003166 W JP2013003166 W JP 2013003166W WO 2013183234 A1 WO2013183234 A1 WO 2013183234A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent
transparent conductive
film
insulating film
Prior art date
Application number
PCT/JP2013/003166
Other languages
English (en)
French (fr)
Inventor
貴志 一柳
山下 嘉久
中谷 誠一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014501321A priority Critical patent/JP5796202B2/ja
Priority to US14/232,070 priority patent/US9330811B2/en
Priority to CN201380002131.7A priority patent/CN103649886B/zh
Publication of WO2013183234A1 publication Critical patent/WO2013183234A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • H01L31/1888Manufacture of transparent electrodes, e.g. TCO, ITO methods for etching transparent electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a transparent electrode and a manufacturing method thereof.
  • this invention relates to the transparent electrode used for the electrode use of various devices, and its manufacturing method.
  • touch panels are frequently used as one of input devices for inputting data in portable terminals such as smartphones, computers, electronic notebooks, portable game machines, digital cameras, and the like.
  • the touch panel has high transparency, and can intuitively operate data input by sensing the position of a finger or pen that is in contact with or close to the input surface.
  • a transparent electrode used as an electrode for a touch panel is required to have high transmittance in the visible light region and high conductivity.
  • Such transparent electrodes are also used for solar cells, liquid crystal display elements, electrodes of various other light receiving elements, antistatic films, and the like.
  • low resistance transparent electrodes are required for display elements such as solar cells, liquid crystals, organic electroluminescence, inorganic electroluminescence, and touch panels used therefor.
  • ITO film containing tin (tin) as a dopant with respect to indium oxide is currently most industrially used.
  • Such an ITO film is a particularly low resistance film and can be easily obtained.
  • the In element which is the main raw material, is currently feared to be depleted, a material capable of forming a film having transparency and conductivity in place of ITO has been developed.
  • tin oxide (SnO 2 ) As a metal oxide used as a substitute for ITO, tin oxide (SnO 2 ), an oxide containing antimony as a dopant (ATO), or an oxide containing fluorine as a dopant (FTO) is used. Further, zinc oxide (ZnO), a material containing aluminum as a dopant (AZO), a material containing gallium as a dopant (GZO), and the like are also used (see, for example, Patent Document 1 and Patent Document 2).
  • a transparent electrode In order to form a transparent electrode from such a metal oxide, there are many physical film formation methods such as vapor deposition, sputtering and ion plating, or chemical film formation such as chemical vapor deposition (CVD). It is used. However, in these manufacturing methods, not only the film forming speed is very slow and the manufacturing cost is high, but also the size of the film forming is limited depending on the size of the vacuum vessel because a vacuum apparatus is used, and a large size is required. There was a problem that a transparent electrode could not be manufactured.
  • physical film formation methods such as vapor deposition, sputtering and ion plating, or chemical film formation such as chemical vapor deposition (CVD). It is used.
  • CVD chemical vapor deposition
  • a two-layer transparent electrode of an upper electrode and a lower electrode is required for use in a capacitive touch panel.
  • two sets of laminates in which a transparent conductive thin film is formed on a substrate are prepared.
  • the two sets are aligned with each other and bonded together by an “electrically insulating adhesive layer” to produce a touch panel.
  • an “electrically insulating adhesive layer” is produced by the inventors of the present application.
  • the inventors of the present application have found that such a configuration increases the number of layers of the touch panel and increases the total thickness, thereby reducing the transmittance in the visible light region.
  • the present inventors have found that it is not always preferable because it involves many complicated processes such as positioning of the upper electrode and the lower electrode at the time of sticking and preventing bubbles from being caught between layers. Furthermore, it has also been found that delamination can be induced by forming by bonding through an adhesive layer.
  • the present invention has been made in view of such circumstances. That is, one of the main objects of the present invention is to provide a transparent electrode that contributes to productivity improvement while providing an innovative configuration that replaces the “electrode configuration with the“ adhesive layer ”that has been essential in the past”. Is to provide.
  • the first transparent conductive film, the second transparent conductive film, and the transparent insulating film provided between them all comprise a metal compound, and the first transparent conductive film and the second transparent conductive film are Provided is a transparent electrode having a crystalline structure while the transparent insulating film has an amorphous structure.
  • first transparent conductive film, the second transparent conductive film, and the transparent insulating film provided therebetween comprise a metal compound.
  • “Layer / adhesive layer” is not used.
  • the “metal element constituting the metal compound” is the same among the first transparent conductive film, the second transparent conductive film and the transparent insulating film (that is, these The metal compounds in these three transparent thin films are compounds based on the same type of metal).
  • the present invention also provides a method for producing the transparent electrode.
  • a production method of the present invention comprises: The first transparent conductive film raw material, the transparent insulating film raw material, and the second transparent conductive film raw material are sequentially applied to the support substrate heated to a predetermined temperature, whereby the first transparent conductive film is formed on the support substrate.
  • a film, a transparent insulating film, and a second transparent conductive film are laminated, (I) applying a first transparent conductive film raw material to the support substrate to form the first transparent conductive film on the support substrate; (Ii) applying a transparent insulating film raw material to the first transparent conductive film to form a transparent insulating film on the first transparent conductive film; and (iii) a second transparent conductive film on the transparent insulating film.
  • the first transparent conductive film raw material, the transparent insulating film raw material, and the second transparent conductive film raw material are all raw materials containing an organometallic compound and an organic solvent, and in steps (i) and (iii)
  • the formed first transparent conductive film and second transparent conductive film have a crystal structure, while the transparent insulating film formed in step (ii) has an amorphous structure.
  • a raw material for the first transparent conductive film having the crystal structure and the first transparent conductive film and “a raw material for the non-crystalline transparent insulating film”. All of these are raw materials comprising an organometallic compound and an organic solvent.
  • the “metal element constituting the organometallic compound” is preferably the same between the first transparent conductive film raw material, the second transparent conductive film raw material, and the transparent insulating film raw material. (In other words, the organometallic compound used as the raw material for these three transparent films is a compound based on the same kind of metal).
  • the “adhesive layer” that has been considered essential in the past is not used, and therefore the number of laminated layers is reduced. Therefore, for example, when the transparent electrode of the present invention is used for touch panel applications, a thin and highly transparent touch panel can be realized. Moreover, even if the adhesive layer is not used, the first transparent conductive film, the second transparent conductive film, and the transparent insulating film are all made of a metal compound based on the same metal element, and therefore the mutual adhesion between the films. Is good and delamination is prevented.
  • the manufacturing method of the present invention uses all the same metal-based raw materials as film raw materials, and sequentially stacks these raw materials by a coating method such as a spray method, thereby realizing a relatively simple manufacturing process. Has been.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the transparent electrode of the present invention.
  • 2A to 2D are process cross-sectional views schematically showing an embodiment of the production method of the present invention.
  • FIG. 3 is a schematic diagram showing an aspect of spraying in the present invention.
  • FIG. 4 shows a chemical reaction formula when “diethyl zinc” is used as the organometallic compound of the film material.
  • 5 (a) to 5 (f) are process cross-sectional views schematically showing an embodiment of the manufacturing method of the present invention (particularly an embodiment in which “patterning treatment” is performed).
  • FIG. 6 is a top view schematically showing an aspect of a transparent electrode in a matrix type touch panel application.
  • the transparent electrode of the present invention will be described, and then the production method of the present invention will be described.
  • the various elements shown in the drawings are merely schematically shown for the purpose of understanding the present invention, and the dimensional ratio, appearance, and the like may be different from the actual ones.
  • the transparent electrode according to the present invention can be suitably used particularly for touch panel applications, as described in [Industrial Applicability], it is also suitable for electrode applications of various devices that require transparency. Can be used.
  • the transparent electrode 100 of the present invention includes a support substrate 10, a first transparent conductive film 20, a transparent insulating film 30, and a second transparent conductive film 40.
  • the first transparent conductive film 20 is provided on the support substrate 10
  • the transparent insulating film 30 is provided on the first transparent conductive film 20
  • the transparent insulating film 30 is provided on the transparent insulating film 30.
  • a second transparent conductive film 40 is provided.
  • the transparent electrode 100 of the present invention has a configuration in which the transparent insulating film 30 is disposed between the first transparent conductive film 20 and the second transparent conductive film 40 on the substrate 10.
  • the first transparent conductive film 20 and the second transparent conductive film 40 and the transparent insulating film 30 provided therebetween contain a metal compound.
  • the first transparent conductive film 20 and the second transparent conductive film 40 have a crystal structure, while the transparent insulating film 30 has an amorphous structure.
  • the metal elements constituting the three transparent film material metal compounds are the same. That is, it is preferable that the metal compounds contained in the first transparent conductive film 20, the second transparent conductive film 40, and the transparent insulating film 30 are all the same in the types of constituent metal elements.
  • An example of such a metal (metal element) is zinc (Zn).
  • the first transparent conductive film 20 and the second transparent conductive film 40 have a “crystal structure” in contrast to the transparent insulating film 30.
  • the transparent insulating film 30 has an “amorphous structure” in contrast to the first transparent conductive film 20 and the second transparent conductive film 40.
  • “Crystallinity” of the first transparent conductive film 20 / second transparent conductive film 40 and “non-crystalline” of the transparent insulating film 30 should be confirmed by using XRD analysis (X-ray diffraction). Can do. In this regard, those having a clear diffraction peak in XRD analysis (X-ray diffraction) are assumed to have a “crystal structure”, and those having no diffraction peak are assumed to have an “amorphous structure”.
  • the support substrate 10 has at least a function of supporting the transparent thin film provided thereon.
  • the support substrate 10 is preferably made of a material having a high transmittance that does not impair the transmittance when used as a touch panel.
  • the support substrate 10 include a substrate made of glass or plastic resin, and a resin film.
  • the resin film may be a polyester film (PEN film, PET film, etc.), an aramid film, a polyimide film, or the like.
  • the thickness of the support substrate 10 for example, when the main purpose is to improve the transmittance, it may be 100 ⁇ m or less (that is, 0 (not including 0 ⁇ m) to 100 ⁇ m).
  • the first transparent conductive film 20, the second transparent conductive film 40, and the transparent insulating film 30 are “transparent” as their names indicate.
  • “transparent” in the present invention is a visible light region (wavelength: about 400 nm to about 700 nm).
  • Substantially means an aspect in which the average transmittance is 80% or more. That is, the light transmittance at a wavelength of 400 nm to 700 nm for the first transparent conductive film 20, the second transparent conductive film 40, and the transparent insulating film 30 is 80% or more.
  • the first transparent conductive film 20 and the second transparent conductive film 40 have “conductive” as their names indicate.
  • “conductive” that is, “conductive” in the first transparent conductive film and the second transparent conductive film) in the present invention means that the sheet resistance of the film is 1 ⁇ 10 3 ⁇ / ⁇ or less. Is substantially pointed to.
  • the transparent insulating film 30 has “electrical insulating properties (that is, electrically high resistance properties)”.
  • “insulating” in the present invention substantially means an embodiment in which the sheet resistance of the film is 1 ⁇ 10 6 ⁇ / ⁇ or more. Yes.
  • the first transparent conductive film 20 and the second transparent conductive film 40 have a so-called “thin film” form.
  • the first transparent conductive film 20 and the second transparent conductive film 40 preferably each have a thickness of 2 ⁇ m or less (0 (not including 0) to 2 ⁇ m, for example, a thickness of 0.5 ⁇ m to 2 ⁇ m). ing. If it is thicker than 2 ⁇ m, there is a concern that cracks may occur due to in-film stress and electrical characteristics may deteriorate, or that transmittance may decrease due to white turbidity. Because.
  • Both the first transparent conductive film 20 and the second transparent conductive film 40 have a crystal structure as described above.
  • the metal compound constituting the material of the first transparent conductive film 20 and the second transparent conductive film 40 may be, for example, a zinc compound.
  • the metal compound contained in the transparent insulating film 30 is also a zinc compound. That is, in a preferred aspect, the metal compounds contained in the first transparent conductive film 20, the second transparent conductive film 40, and the transparent insulating film 30 are all zinc compounds (ie, Zn compounds).
  • the first transparent conductive film 20 and the second transparent conductive film 40 contain at least zinc oxide, while the transparent insulating film 30 contains at least zinc hydroxide. That is, the main film constituent material of the first transparent conductive film 20 and the second transparent conductive film 40 is zinc oxide (ZnO), while the main film constituent material of the transparent insulating film 30 is zinc hydroxide (ZnO). (OH) 2 ).
  • the first transparent conductive film 20 and the second transparent conductive film 40 may inevitably contain zinc hydroxide in addition to “zinc oxide” due to the film forming process, and vice versa.
  • the conductive film 30 inevitably contains zinc oxide in addition to “zinc hydroxide”.
  • the transparent insulating film 30 contains zinc hydroxide.
  • the first transparent conductive film 20 and the second transparent conductive film 40 are electrically insulated through the film 30, thereby providing two transparent conductive layers on the support substrate 10. A laminated structure is provided.
  • the first transparent conductive film 20 and the second transparent conductive film 40 having “crystalline” preferably have a needle-like crystal structure. That is, it is preferable that the first transparent conductive film 20 and the second transparent conductive film 40 are each made of a fine crystal with a square tip. Such needle-like crystals are preferably oriented in a direction substantially perpendicular to the support substrate (that is, the angular tips are oriented in a direction substantially perpendicular to the main surface of the support substrate. Preferably). In the case where the first transparent conductive film 20 and the second transparent conductive film 40 contain zinc oxide (ZnO), it is preferable that the zinc oxide crystal has a needle-like crystal structure. Such needle-shaped zinc oxide crystals are preferably oriented in a direction substantially perpendicular to the support substrate (that is, it can be said that the zinc oxide crystals are preferably oriented in a substantially constant direction as a whole).
  • the “non-crystalline” transparent insulating film 30 does not have a crystal structure, and therefore does not have a “structure oriented in a certain direction” (that is, an “amorphous form” in some embodiments). I have it).
  • the transparent insulating film 30 preferably includes spherical and spherical particles.
  • the thickness of the transparent insulating film 30 it may be, for example, 1 ⁇ m or more, and the upper limit is not particularly limited but is, for example, about 5 ⁇ m.
  • the transparent electrode of the present invention at least one of the first transparent conductive film 20, the second transparent conductive film 40, and the transparent insulating film 30 may contain a Group 3B element.
  • the first transparent conductive film 20 and the second transparent conductive film 40 contain a Group 3B element. More specifically, when the first transparent conductive film 20 and the second transparent conductive film 40 are made of “crystalline zinc oxide”, the first transparent conductive film 20 and the second transparent conductive film 40 may be used as dopants for the “crystalline zinc oxide”. It may contain a group 3B element.
  • the Ga (gallium) element it is preferable to contain at least one element selected from the group consisting of B (boron), Al (aluminum), Ga (gallium), and In (indium) as a dopant element. From the viewpoint of indium depletion, it is preferable that at least one element selected from the group consisting of B (boron), Al (aluminum) and Ga (gallium) excluding In is contained as a dopant element.
  • the Ga (gallium) element contributes to the flattening of the film, it can be said that the Ga (gallium) element is particularly preferable if this viewpoint is emphasized.
  • the Group 3B element contained in the first transparent conductive film 20 and the Group 3B element contained in the second transparent conductive film 40 may be different types of elements. Thereby, various physical properties such as conductivity can be appropriately changed between the first transparent conductive film 20 and the second transparent conductive film 40, and the degree of freedom in design as a transparent electrode is increased. Similarly, the type of dopant element may be different between the transparent conductive films 20 and 40 and the transparent insulating film 30.
  • the transparent electrode of the present invention may have a form in which the first transparent conductive film 20 and the second transparent conductive film 40 are patterned.
  • the “patterned form” contributes to the realization of a transparent electrode more suitable for, for example, a touch panel application.
  • the first transparent conductive film 20 and the second transparent conductive film 40 contain zinc oxide, such “zinc oxide” is a material that can be easily etched either acidic or alkaline. Therefore, the degree of freedom of the manufacturing process is increased.
  • a gas barrier film may be provided on the surface of the support substrate 10. That is, a thin film layer may be provided between the support substrate 10 and the first transparent conductive film 20. Such a gas barrier film can prevent “impregnation / diffusion of impurity ions, gas and / or moisture from the substrate 10 to the first transparent conductive film 20”.
  • the gas barrier film provided on the surface of the support substrate may include silicon oxide and / or silicon nitride.
  • the number of laminated layers is reduced. Therefore, for example, when the transparent electrode of the present invention is used as a transparent electrode for a touch panel, a thin and highly transparent touch panel is realized (that is, since the so-called “adhesive layer” is not used, the number of layers is generally reduced, Improved transmission has been achieved). Even without using an adhesive layer, the first transparent conductive film, the second transparent conductive film, and the transparent insulating film are all made of the same metal base material, so the mutual adhesion is good, and delamination is It is preferably prevented.
  • a zinc oxide based material that is rich in material resources and low in cost is used. Even such a material realizes a laminated structure suitable for a transparent electrode. Particularly in the case where the transparent electrode of the present invention is used as a transparent electrode for a touch panel, a “multilayer transparent electrode configuration suitable for a touch panel” is realized without reducing the transmittance. In this respect, the adhesive strength between the layers is relatively high because the transparent conductive thin film layer and the insulating layer use “similar materials based on zinc compounds”, while eliminating the need for an adhesive layer between the layers. It has become.
  • the present invention is a method for producing the transparent electrode, wherein the first transparent conductive film raw material, the transparent insulating film raw material, and the second transparent conductive film raw material are sequentially applied to a support substrate heated to a predetermined temperature. Thereby, the first transparent conductive film, the transparent insulating film, and the second transparent conductive film are laminated on the support substrate. That is, in the present invention, a film (in particular, a nano-order layer) is sequentially deposited on a substrate heated to a set temperature to form a film.
  • the “predetermined temperature” substantially means a temperature necessary for film formation. That is, in the manufacturing method of the present invention, the first transparent conductive film, the transparent insulating film, and the second transparent conductive film are formed from the respective coating raw materials due to the heat of the “heated support substrate”. However, the temperature required for the film formation corresponds to the “predetermined temperature”.
  • step (i) is performed. That is, as shown in FIGS. 2A and 2B, the first transparent conductive film material is applied to the support substrate 10 to form the first transparent conductive film 20 on the support substrate 10.
  • the supporting substrate used may be a glass substrate, a plastic resin substrate or a resin film (“glass substrate” is preferred when the dimensional stability against heat is particularly important).
  • glass substrate is preferred when the dimensional stability against heat is particularly important.
  • a commercially available substrate may be used as it is, or a substrate may be produced by a conventional production method.
  • a “gas barrier film” it is preferable to prepare a support substrate having a gas barrier film on its surface.
  • a gas barrier film can be formed on the surface of the support substrate by sputtering silicon oxide or silicon nitride by magnetron sputtering.
  • the first transparent conductive film raw material is a raw material containing an organic metal compound and an organic solvent.
  • the metal element constituting it is the same as the metal element of the organic metal compound in the other film raw materials (“transparent insulating film raw material” and “second transparent conductive film raw material”).
  • membrane material (metal compound) obtained depends on the kind of this organometallic compound.
  • the “organometallic compound” contained in the first transparent conductive film material may be an organic zinc compound (preferably diethyl zinc).
  • the “organic solvent” contained in the first transparent conductive film raw material may be any kind of solvent as long as it becomes a medium for the organometallic compound.
  • the “organic solvent” hexane, heptane, toluene or the like can be used. Further, dehydrated isopropyl alcohol as an alcohol solvent, an amine solvent such as trimethylamine or triethylamine as an electron-donating solvent, an ether solvent such as diethyl ether or diisopropyl ether, and the like can also be used as the “organic solvent”. A plurality of these solvents may be mixed.
  • a doping material may be added to the first transparent conductive film material.
  • the dope raw material include a Group 3B metal compound (Group 3B metal salt), for example, a chloride compound, a nitrate compound, an acetic acid compound, or an organometallic compound containing a Group 3B metal.
  • the first transparent conductive film raw material has fluidity, and therefore, the first transparent conductive film raw material can be applied onto the support substrate using an appropriate application method.
  • the first transparent conductive film material may be applied to the support substrate using a spray method, thereby forming the first transparent conductive film (see FIG. 3).
  • the first transparent conductive film raw material may be mixed with a carrier gas under atmospheric pressure, and the mixture may be sprayed onto a support substrate via a spray nozzle.
  • the size of the raw material droplets ejected from the nozzle in the spray method depends on various conditions such as the ease of evaporation of the solvent before landing on the support substrate, adhesion on the support substrate, and uniform in-plane coating properties. It is preferable to determine in consideration of the above. For example, it is preferable that the raw material droplets discharged from the spray nozzle have a uniform size in the range of 1 to 50 ⁇ m (more preferably in the range of 1 to 30 ⁇ m).
  • the first transparent conductive film material applied to the heated support substrate 10 is subjected to a heat treatment, whereby a first transparent conductive film is formed from the first transparent conductive film material.
  • the first transparent conductive film is formed from the first transparent conductive film raw material due to heat from the “supporting substrate heated to the set temperature”.
  • the heating temperature of the support substrate is preferably different from the “heating temperature of the support substrate” in the next step (ii). That is, it is preferable to change the heating temperature of the support substrate between “step (i) for forming the first transparent conductive film” and “step (ii) for forming the transparent insulating film”.
  • the heating temperature of the support substrate for forming the first transparent conductive film in step (i) is higher than “the heating temperature of the support substrate for forming the transparent insulating film in step (ii)”.
  • “heating temperature of support substrate for forming transparent insulating film in step (ii)” is changed to “heating of support substrate for forming first transparent conductive film in step (i)”. It is preferable to adjust “crystal” / “non-crystal” of the obtained film by lowering the temperature.
  • the set temperature of the support substrate in the step (i) is set higher than the “set temperature of the support substrate in the step (ii)”, in other words, “the set temperature of the support substrate in the step (ii)”.
  • the first transparent conductive film can be formed to have a “crystal structure” by making the temperature lower than the “set temperature of the support substrate in step (i)”, while the transparent insulating film can be formed to have an “amorphous structure”. Can be formed.
  • the “organometallic compound” contained in the first transparent conductive film raw material and the transparent insulating film raw material (described later) is an organic zinc compound (for example, diethyl zinc)
  • the transparent conductive film ”) can be formed to have a“ crystalline structure ”
  • the transparent insulating film ie,“ a transparent insulating film made of a zinc compound ”
  • the lower limit of the heating temperature of the “supporting substrate in step (ii)” is not particularly limited, but may be, for example, “about room temperature (about 20 ° C. to 25 ° C.)”.
  • step (ii) is performed. That is, as shown in FIGS. 2B and 2C, the transparent insulating film material is applied to the first transparent conductive film 20 to form the transparent insulating film 30 on the first transparent conductive film 20. .
  • the transparent insulating film raw material is a raw material containing an organic metal compound and an organic solvent.
  • the metal element constituting it is the same as the metal element of the organometallic compound in the other film raw materials (“first transparent conductive film raw material” and “second transparent conductive film raw material”).
  • membrane material (metal compound) obtained depends on the kind of this organometallic compound.
  • the “organometallic compound” contained in the transparent insulating film material may be an organic zinc compound (preferably diethyl zinc).
  • the “organic solvent” contained in the transparent insulating film raw material may be any kind of solvent as long as it is a medium for the organometallic compound.
  • hexane, heptane, toluene or the like can be used as the “organic solvent”.
  • dehydrated isopropyl alcohol as an alcohol solvent amine solvents such as trimethylamine and triethylamine as an electron-donating solvent, ether solvents such as diethyl ether and diisopropyl ether, and the like can also be used as the “organic solvent”. A plurality of these solvents may be mixed.
  • the doping material may be added to the transparent insulating film material.
  • a group 3B metal compound that is, a chloride compound, a nitric acid compound, an acetic acid compound or an organometallic compound containing a group 3B metal may be used.
  • the transparent insulating film raw material is also fluid, like the first transparent conductive film raw material. Therefore, the transparent insulating film raw material is formed on the first transparent conductive film 20 by using an appropriate coating method. Can be applied. In this regard, as mentioned above, the transparent insulating film material may be applied using a spray method, thereby forming a transparent insulating film (see FIG. 3).
  • the transparent insulating film raw material applied on the first transparent conductive film 20 is subjected to a heat treatment. Like the “first transparent conductive film raw material”, it is caused by the heat from the support substrate heated to the set temperature. Thus, a transparent insulating film is formed from the transparent insulating film raw material.
  • the heating temperature of the support substrate for forming the transparent insulating film in the step (ii) is “the heating temperature of the support substrate for forming the first transparent conductive film in the step (i)”.
  • the transparent insulating film can be formed to have an “amorphous structure”.
  • the heating temperature of the support substrate for forming the transparent insulating film in the step (ii) is more than “the heating temperature of the support substrate for forming the first transparent conductive film in the step (i)”.
  • the transparent insulating film can be formed to have an “amorphous structure”.
  • the “organometallic compound” contained in the transparent insulating film material and the first transparent conductive film material is an organic zinc compound (for example, diethyl zinc)
  • the supporting substrate in step (ii) Can be formed so as to have an “amorphous structure” (the “support substrate in step (i)” is heated to 100 ° C. or higher).
  • a “crystalline first transparent conductive film made of a zinc compound” is formed).
  • step (iii) is performed. That is, as shown in FIGS. 2C and 2D, the second transparent conductive film material is applied to the transparent insulating film 30 to form the second transparent conductive film 40 on the transparent insulating film 30. .
  • the second transparent conductive film material may be the same as the first transparent conductive film material.
  • the “organometallic compound” contained in the raw material is composed of the organic metal compound in the other film raw materials (“first transparent conductive film raw material” and “transparent insulating film raw material”). It is preferably the same as the metal element.
  • the obtained film material (metal compound) depends on the kind of the organometallic compound.
  • the “organometallic compound” contained in the second transparent conductive film material is an organozinc compound (preferably diethylzinc). Good.
  • the “organic solvent” contained in the second transparent conductive film raw material may be the same as that in the first transparent conductive film raw material.
  • what is necessary is just to mutually change the dope raw material added to these raw materials, when doping with a different kind of element between a 2nd transparent conductive film and a 1st transparent conductive film.
  • the second transparent conductive film raw material has fluidity like the first transparent conductive film raw material / transparent insulating film raw material. Therefore, the second transparent conductive film raw material is formed on the transparent insulating film 30 using an appropriate coating method.
  • the second transparent conductive film material can be supplied. In particular, it is preferable to apply the second transparent conductive film material using a spray method (see FIG. 3).
  • the second transparent conductive film raw material applied on the transparent insulating film 30 is subjected to a heat treatment, but is heated to a set temperature as in the case of the “first transparent conductive film raw material” and the “transparent insulating film raw material”. Due to heat from the support substrate, the second transparent conductive film is formed from the second transparent conductive film raw material.
  • the heating temperature of the support substrate for forming the second transparent conductive film in the step (iii) is changed to “the heating temperature of the support substrate for forming the transparent insulating film in the step (ii)”. By changing the heating temperature, the second transparent conductive film can be formed to have a “crystal structure”.
  • the “heating temperature of the support substrate for forming the second transparent conductive film in the step (iii)” is more than the “heating temperature of the support substrate for forming the transparent insulating film in the step (ii)”.
  • the second transparent conductive film can be formed to have a “crystal structure”.
  • the “organometallic compound” contained in the second transparent conductive film material and the transparent insulating film material is an organic zinc compound (for example, diethyl zinc)
  • “the supporting substrate in step (iii)” Can be formed to have a “crystal structure” by heating the substrate at 100 ° C. or higher (note that “the supporting substrate in step (ii)” is heated below 100 ° C.)
  • a “transparent insulating film having an amorphous structure made of a zinc compound” is formed).
  • the first transparent conductive film 20 and the second transparent conductive film 40 and the transparent insulation provided therebetween are finally formed on the support substrate 10.
  • a transparent electrode is obtained through lamination of a transparent thin film by a coating method. Therefore, a conventional technique such as “form an adhesive layer for bonding and align the upper electrode and the lower electrode”. This process step is omitted. Furthermore, the production method of the present invention forms a transparent thin film using a spray method, so that it can be formed at a high film formation rate in the atmosphere without requiring a large vacuum device, and as a result, is industrially useful. It is a manufacturing process.
  • the adhesion between the films is good, and the interlayer adhesion is higher than in an embodiment using a so-called “adhesive layer”.
  • “transparent conductive thin film” and “transparent insulating thin film” are obtained from substantially the same raw material by changing the heating temperature, but such heating temperature is generally low. That is, the heating temperature in each of the steps (i) to (iii) can be generally 300 ° C. or lower, preferably 200 ° C. or lower. Therefore, a resin film can be used as the support substrate, and the degree of freedom in design is increased. More specifically, while heating the support substrate in the steps (i) and (iii) is set to 100 ° C. or higher, the heating temperature of the support substrate in the step (ii) is set to less than 100 ° C. The heating of the support substrate in i) and (iii) can be performed at 100 ° C. or higher and 300 ° C. or lower (preferably 200 ° C. or lower).
  • diethyl zinc can be suitably used as the organometallic compound used for the film raw material.
  • a solution obtained by dissolving diethyl zinc in an organic solvent is mixed with a carrier gas under atmospheric pressure and sprayed onto the substrate (see FIG. 3).
  • a “atmospheric atmosphere in which water or water vapor is present at room temperature” is used as the spray atmosphere, the reaction of diethylzinc proceeds favorably, and a thin film mainly composed of zinc oxide can be obtained as a result (FIG. 4). (See the chemical formula).
  • the support substrate is heated to 100 ° C. or higher and 300 ° C.
  • a thin film of zinc oxide can be formed on the substrate (although the heating temperature can be changed in accordance with the heat-resistant temperature of the support substrate, in order to obtain a uniform crystal structure, the support substrate should be kept at 100 ° C. or higher. Preferably heated).
  • a transparent insulating film can be formed by mixing a solution obtained by dissolving diethyl zinc in an organic solvent with a carrier gas under atmospheric pressure and spraying the substrate (FIG. 3). reference).
  • the reaction of diethylzinc occurs favorably, and a thin film mainly composed of zinc hydroxide can be obtained as a result. (See chemical formula in FIG. 4).
  • the support substrate at the time of spraying is heated to “a temperature not lower than room temperature and lower than 100 ° C.”. This is because, if the heating temperature of the support substrate is such a temperature, when diethyl zinc is deposited, it can be deposited in an amorphous state without crystal growth to form an “insulating transparent thin film”.
  • the spray nozzle used for spray spraying may be used in a state of being inclined with respect to the support substrate. That is, the angle formed by the “ejection direction from the spray nozzle” and the “surface of the support substrate” (inclination angle “ ⁇ ” as shown in the lower dotted line in FIG. 3) is not vertical (90 °). For example, it may be in the range of 30 ° to 85 °.
  • the “tilted state” can be obtained by tilting the support nozzle with respect to the fixedly arranged support substrate, or vice versa, by tilting the support substrate with respect to the fixedly arranged spray nozzle. .
  • the crystal growth direction can be controlled with respect to the support substrate, and the crystal orientation can be improved.
  • the crystal orientation can be improved.
  • the inclination angle ⁇ is about 90 °
  • the needle-like crystals can be oriented in the direction perpendicular to the support substrate with respect to the crystal structures of the first transparent conductive film and the second transparent conductive film.
  • the inclination angle ⁇ is set to an angle other than 90 °, the crystal orientation can be changed according to the angle.
  • the first transparent conductive film may be subjected to a patterning process.
  • a patterning process For example, as shown in FIG. 5, after forming the 1st transparent conductive film 20 on the support substrate 10, it can pattern by performing an etching process using an etching liquid.
  • an etchant an acidic solution such as nitric acid, phosphoric acid, or sulfuric acid, or an alkaline solution such as a sodium hydroxide solution can be used.
  • the spray method after patterning on the support substrate 10 using a patterned mask, the film material can be sprayed and patterned by removing the mask, and the wet etching step can be performed. Patterning is possible without performing. In this case, a resist material can be used instead of the patterned mask.
  • the second transparent conductive film may be subjected to a patterning process. Specifically, as shown in FIG. 5, after the second transparent conductive film 40 is formed on the transparent insulating film 30, patterning is performed by performing an etching process using an etching solution. However, in this case, although the same etching solution as described above can be used, it is particularly preferable to perform the etching in consideration of the etching rate so as not to damage the transparent insulating film 30. In the case of using the spray method, similarly, after patterning is performed on the transparent insulating film 30 using a patterned mask, the film material is sprayed and patterned by removing the mask. it can. That is, the patterned second transparent conductive film 40 ′ can be obtained without subjecting the already formed laminate to the wet process, and electrical property deterioration due to moisture absorption of each layer can be effectively prevented. .
  • the production method of the present invention may further include a step of irradiating the first transparent conductive film with ultraviolet rays and / or a step of irradiating the second transparent conductive film with ultraviolet rays. That is, the first transparent conductive film 20 and the second transparent conductive film 40 may be irradiated with ultraviolet rays. This is because it is possible to reduce the resistance of the first transparent conductive film and the second transparent conductive film by irradiating light in the ultraviolet region. For example, light of 185 nm to 380 nm may be irradiated as ultraviolet rays. As a result, “impurity residue inhibiting conductivity” existing in the transparent conductive film can be suitably reduced, and as a result, a transparent conductive film having a lower sheet resistance can be realized.
  • the transparent electrode of the present invention that is further multilayered, It has a structure in which a plurality of transparent conductive films and transparent insulating films are alternately laminated on a support substrate, All of the plurality of laminated transparent conductive films and transparent insulating films comprise a metal compound, and While the transparent conductive film has a crystal structure, it can be said that the transparent insulating film is a transparent electrode having an amorphous structure. Even a transparent electrode having such a multilayer structure can be made of different dope materials among a plurality of transparent conductive thin films, and a transparent electrode with a higher degree of design freedom can be realized.
  • a transparent electrode Comprising : Support substrate, A first transparent conductive film provided on a support substrate; A transparent insulating film provided on the first transparent conductive film; and a second transparent conductive film provided on the transparent insulating film.
  • the first transparent conductive film, the second transparent conductive film, and the transparent insulating film provided between them all comprise a metal compound, and the first transparent conductive film and the second transparent conductive film are A transparent electrode having a crystalline structure while the transparent insulating film has an amorphous structure.
  • the metal element constituting the metal compound includes the same metal element between the first transparent conductive film, the second transparent conductive film, and the transparent insulating film.
  • Third aspect The transparent electrode according to the first aspect or the second aspect, wherein the metal compound is a zinc compound.
  • Fourth aspect In the second or third aspect, the first transparent conductive film and the second transparent conductive film comprise at least zinc oxide, while the transparent insulating film comprises at least zinc hydroxide. A transparent electrode characterized by that.
  • Fifth aspect The transparent electrode according to any one of the first to fourth aspects, wherein the crystal structures of the first transparent conductive film and the second transparent conductive film are needle-like crystals. .
  • the transparent electrode according to the fifth aspect wherein the needle-like crystals are oriented in a direction perpendicular to the support substrate.
  • Seventh aspect The transparent electrode according to the fifth or sixth aspect, which is dependent on the fourth aspect, wherein the zinc hydroxide contained in the transparent insulating film has a spherical shape.
  • Eighth aspect The transparent electrode according to any one of the first to seventh aspects, wherein the thickness of each of the first transparent conductive film and the second transparent conductive film is 2 ⁇ m or less.
  • at least one of the first transparent conductive film, the second transparent conductive film, and the transparent insulating film contains a Group 3B element. Characteristic transparent electrode.
  • Tenth aspect The transparent electrode according to the ninth aspect, wherein the first transparent conductive film and the second transparent conductive film contain a Group 3B element.
  • Eleventh aspect In the tenth aspect, the Group 3B element contained in the first transparent conductive film and the Group 3B element contained in the second transparent conductive film are different types of elements.
  • Twelfth aspect A transparent electrode according to any one of the first to eleventh aspects, wherein the first transparent conductive film and the second transparent conductive film are patterned.
  • Thirteenth aspect The transparent electrode according to any one of the first to twelfth aspects, wherein a gas barrier film is provided between the support substrate and the first transparent conductive film.
  • any one of the first to thirteenth aspects at least one further transparent insulating film and at least one further transparent conductive film are alternately provided on the second transparent conductive film.
  • a method for producing a transparent electrode comprising: The first transparent conductive film raw material, the transparent insulating film raw material, and the second transparent conductive film raw material are sequentially applied to the support substrate heated to a predetermined temperature, whereby the first transparent conductive film is formed on the support substrate.
  • the transparent insulating film and the second transparent conductive film are laminated, (I) applying a first transparent conductive film raw material to the support substrate to form the first transparent conductive film on the support substrate; (Ii) applying a transparent insulating film raw material to the first transparent conductive film to form a transparent insulating film on the first transparent conductive film; and (iii) a second transparent conductive film on the transparent insulating film.
  • the first transparent conductive film raw material, the transparent insulating film raw material, and the second transparent conductive film raw material are all raw materials containing an organometallic compound and an organic solvent, and in steps (i) and (iii) A method for producing a transparent electrode, wherein the first transparent conductive film and the second transparent conductive film to be formed have a crystal structure, while the transparent insulating film formed in the step (ii) has an amorphous structure.
  • the metal elements constituting the organometallic compound are all the same among the first transparent conductive film raw material, the second transparent conductive film raw material, and the transparent insulating film raw material.
  • a method for producing a transparent electrode, comprising a metal element comprising a metal element.
  • Eighteenth aspect A method for producing a transparent electrode according to the sixteenth aspect or the seventeenth aspect, wherein an organozinc compound is used as the organometallic compound.
  • Nineteenth aspect The transparent electrode according to any one of the sixteenth aspect to the eighteenth aspect, wherein the heating temperature of the support substrate is changed between steps (i) and (iii) and step (ii). Manufacturing method.
  • Twenty aspect In the nineteenth aspect, in steps (i) and (iii), the heating temperature of the support substrate is set to 100 ° C. or higher, while in step (ii), the heating temperature of the support substrate is set to less than 100 ° C.
  • a method for producing a transparent electrode is set to 100 ° C. or higher, while in step (ii), the heating temperature of the support substrate is set to less than 100 ° C.
  • Twenty-first aspect The method for producing a transparent electrode according to the twentieth aspect, wherein the heating temperature of the support substrate in steps (i) to (iii) is 200 ° C. or lower.
  • Twenty-second aspect In any one of the sixteenth to twenty-first aspects, the first transparent conductive film material, the transparent insulating film material, and the second transparent conductive film material are applied by spraying.
  • Twenty-third aspect The method for producing a transparent electrode according to the twenty-second aspect, wherein the spray nozzle is used in a state where a spray nozzle used for the spray spray is inclined with respect to the support substrate.
  • the method further includes the step of irradiating the first transparent conductive film with ultraviolet rays and / or the step of irradiating the second transparent conductive film with ultraviolet rays.
  • a method for producing a transparent electrode comprising: Twenty-fifth aspect : The method for producing a transparent electrode according to any one of the sixteenth to twenty-fourth aspects, wherein the method for producing a transparent electrode is a method for producing a transparent electrode used for a touch panel.
  • the transparent electrode according to the present invention can be used as an electrode of various devices (for example, “a multilayered electrode requiring high transmittance”).
  • the transparent electrode of the present invention has high reliability, high transmittance, and excellent productivity, it is particularly useful as a transparent electrode for touch panels (for capacitive touch panels).
  • the first transparent conductive thin film 20 and the second transparent conductive thin film 40 may be used as a touch panel application electrode formed in a matrix type).
  • this invention can be suitably utilized also for the electrode use as which transparency is similarly calculated
  • transparent electrode for example, Transparent electrode for touch panel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Position Input By Displaying (AREA)

Abstract

 本発明の透明電極は、支持基板、支持基板上に設けられた第1透明導電性膜、第1透明導電性膜上に設けられた透明絶縁性膜、および、透明絶縁性膜上に設けられた第2透明導電性膜を有して成る。かかる本発明の透明電極では、第1透明導電性膜および第2透明導電性膜ならびにそれらの間に設けられた透明絶縁性膜の全てが金属化合物を含んで成り、また、第1透明導電性膜および第2透明導電性膜が結晶構造を有する一方、透明絶縁性膜が非結晶構造を有する。

Description

透明電極およびその製造方法
 本発明は、透明電極およびその製造方法に関する。より詳細には、本発明は、各種デバイスの電極用途に用いられる透明電極およびその製造方法に関する。
 デジタル機器・情報端末の普及に伴い、スマートフォン等を含む携帯端末、コンピュータ、電子手帳、携帯ゲーム機、デジタルカメラ等において、データ入力を行うための入力装置の1つとしてタッチパネルが多用されている。タッチパネルは、高い透明性を有しており、入力面に接触または接近した指やペンの位置を感知することによりデータ入力を直感的に操作できる。
 タッチパネルの電極として使用される透明電極は、可視光領域の高い透過率と高い導電性とが求められる。またこのような透明性を有する電極は、太陽電池や液晶表示素子、その他各種受光素子の電極、帯電防止膜等にも利用されている。特に太陽電池、液晶、有機エレクトロルミネッセンス、無機エレクトロルミネッセンス等のような表示素子や、それに用いられているタッチパネルに対しては低抵抗な透明電極が求められる。
 このような透明電極の透明導電性薄膜材料として、「酸化インジウムに対してスズ(錫)をドーパントとして含むITO膜」が現在最も工業的に利用されている。かかるITO膜は、特に低抵抗な膜であり、容易に得ることができる。しかしながら、その主原料であるIn元素は現在枯渇が懸念されるため、ITOに代わる透明性と導電性とを有する膜形成可能な材料につき開発が行われている。
 ITOの代替として用いられる金属酸化物としては、酸化スズ(SnO)や、それに対しアンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用されている。また、酸化亜鉛(ZnO)や、それに対しアルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)なども利用されている(例えば、特許文献1、特許文献2参照)。
 このような金属酸化物から透明電極を形成するには蒸着法、スパッタリング法やイオンプレーティング法などの物理的成膜法、または化学気相成長(CVD)法などの化学的成膜法が多く用いられている。しかしながら、これら製造方法では製膜速度が非常に遅く製造コストが高くなるだけでなく、真空装置を用いるがゆえに真空容器の大きさに依拠して製膜の大きさが制限されてしまい、大型の透明電極を製造できない等の問題があった。
特開2009-199986号公報 特開2009-224152号公報
 上記問題点に鑑み、塗布法で成膜することによって、CVD法などに比べて簡易な設備で生産性良く製造する方法が提案されている(例えば、「特開2010-126402号公報」参照)。本願発明者らは、かかる製造方法に関連してタッチパネルに用いられる透明電極の研究・開発を行っており、特に金属化合物系透明導電性薄膜を用いた透明電極の構成などにつき検討を重ねている。
 例えば静電容量方式のタッチパネルに使用するには上部電極と下部電極との2層の透明電極が必要である。一般的には、まず基板上に透明導電性薄膜を形成した積層体を2組用意する。そして、上部電極の配線パターンおよび下部電極の配線パターンを設けた後、かかる2組を相互に位置合わせして、“電気的絶縁性を有する接着層”によってそれらを貼り合わせてタッチパネルを製造している。本願発明者らは、かかる構成ではタッチパネルの層数が増えてしまい、総厚さも大きくなるため可視光領域の透過率を低化させる原因となることを見出した。また、製造時においては貼付時の上部電極と下部電極との位置合わせや、層間に気泡が噛みこまないようにするなどの煩雑なプロセスを多く伴い、必ずしも好適とはいえないことも見出した。更には、接着層を介して貼り合わせて形成していること自体で層間剥離を誘発し得ることも見出した。
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的の1つは、「従来必須とされてきた “接着層”を備えた電極構成」に取って代わる革新的な構成を備えると共に、生産性向上にも資する透明電極を提供することである。
 上記目的を達成するため、本発明では、
透明電極であって、
 支持基板、
 支持基板上に設けられた第1透明導電性膜、
 第1透明導電性膜上に設けられた透明絶縁性膜、および
 透明絶縁性膜上に設けられた第2透明導電性膜
を有して成り、
 第1透明導電性膜および第2透明導電性膜ならびにそれらの間に設けられた透明絶縁性膜の全てが金属化合物を含んで成り、また
 第1透明導電性膜および第2透明導電性膜が結晶構造を有する一方、透明絶縁性膜が非結晶構造を有する、透明電極が提供される。
 本発明の特徴の1つは、第1透明導電性膜および第2透明導電性膜ならびにそれらの間に設けられた透明絶縁性膜の全てが金属化合物を含んで成ることであり、いわゆる“接着層・接着剤層”を用いていないことである。特に好ましくは本発明の透明電極では、“金属化合物を構成する金属元素”が、第1透明導電性膜、第2透明導電性膜および透明絶縁性膜との間で同一である(つまり、これらの3つの透明薄膜における金属化合物は、同一種類の金属に基づく化合物となっている)。
 また、本発明では、上記透明電極を製造するための方法も提供される。かかる本発明の製造方法は、
 所定温度に加熱した支持基板に対して第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料を順次塗布し、それによって、その支持基板上にて第1透明導電性膜、透明絶縁性膜および第2透明導電性膜を積層形成しており、
 (i)支持基板に第1透明導電性膜原料を塗布して支持基板上に第1透明導電性膜を形成する工程、
 (ii)第1透明導電性膜に透明絶縁性膜原料を塗布して第1透明導電性膜上に透明絶縁性膜を形成する工程、および
 (iii)透明絶縁性膜に第2透明導電性膜原料を塗布して透明絶縁性膜上に第2透明導電性膜を形成する工程
を含んで成り、
 第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料の全てが、有機金属化合物および有機溶媒を含んで成る原料となっており、工程(i)および(iii)で形成される第1透明導電性膜および第2透明導電性膜が結晶構造を有する一方、工程(ii)で形成される透明絶縁性膜が非結晶構造を有している。
 本発明の製造方法の特徴の1つは、「結晶構造を有する第1透明導電性膜および第1透明導電性膜のための原料」および「非結晶性の透明絶縁性膜のための原料」の全てが、有機金属化合物および有機溶媒を含んで成る原料となっていることである。特に本発明の製造方法では、“有機金属化合物を構成する金属元素”を、好ましくは、第1透明導電性膜原料、第2透明導電性膜原料および透明絶縁性膜原料との間で全て同一にする(つまり、これらの3つの透明膜の原料となる有機金属化合物を、同一種類の金属に基づく化合物とする)。
 本発明の透明電極では、従来必須と考えられてきた“接着層”を用いておらず、それゆえ、積層数が減じられている。従って、例えば本発明の透明電極をタッチパネル用途に用いた場合、薄く透明性の高いタッチパネルを実現することができる。また、接着層を用いていないといえども、第1透明導電性膜、第2透明導電性膜および透明絶縁性膜とが全て同じ金属元素に基づく金属化合物から成り、それゆえに膜相互の密着性は良好であり、層間剥離が防止されている。
 また、本発明の製造方法は、膜原料として全て同一金属ベースの原料を用いていると共に、それら原料をスプレー法などの塗布法で順次に積層していくので、比較的簡易な製造プロセスが実現されている。
図1は、本発明の透明電極の構成を模式的に示した断面図である。 図2(a)~(d)は、本発明の製造方法の態様を模式的に示した工程断面図である。 図3は、本発明におけるスプレー噴霧の態様を示した模式図である。 図4は、膜原料の有機金属化合物として“ジエチル亜鉛”を用いた場合の化学反応式を示す。 図5(a)~(f)は、本発明の製造方法の態様(特に“パターニング処理”を行う態様)を模式的に示した工程断面図である。 図6は、マトリクス型のタッチパネル用途における透明電極の態様を模式的に示した上面図である。
 以下では、図面を参照しながら、本発明の実施態様を詳細に説明する。まず、本発明の透明電極について説明し、次いで、本発明の製造方法を説明する。尚、図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。また、本発明に係る透明電極は、特にタッチパネル用途に好適に用いることができるものの、[産業上の利用可能性]で説明するように、透明性が求められる各種デバイスの電極用途にも好適に用いることができる。
[本発明の透明電極構成]
 図1に、本発明の透明電極の構成を模式的に示す。図示されるように、本発明の透明電極100は、支持基板10、第1透明導電性膜20、透明絶縁性膜30および第2透明導電性膜40を有して成る。具体的には、支持基板10上に第1透明導電性膜20が設けられ、その第1透明導電性膜20上に透明絶縁性膜30が設けられ、そして、その透明絶縁性膜30上に第2透明導電性膜40が設けられている。つまり、本発明の透明電極100においては、基板10上にて第1透明導電性膜20と第2透明導電性膜40との間に透明絶縁性膜30が配置された構成となっている。
 特に本発明においては、第1透明導電性膜20および第2透明導電性膜40ならびにそれらの間に設けられた透明絶縁性膜30は金属化合物を含んでいる。また、第1透明導電性膜20および第2透明導電性膜40が結晶構造を有する一方、透明絶縁性膜30が非結晶構造を有している。
 かかる3つの透明膜材質の金属化合物につき、それを構成する金属元素が同一となっていることが好ましい。つまり、第1透明導電性膜20、第2透明導電性膜40および透明絶縁性膜30に含まれる金属化合物につき、その構成金属元素の種類が全て互いに同じとなっていることが好ましい。このような金属(金属元素)として例えば亜鉛(Zn)を挙げることができる。
 第1透明導電性膜20および第2透明導電性膜40は、透明絶縁性膜30とは対照的に“結晶構造”を有している。その一方、透明絶縁性膜30は、第1透明導電性膜20および第2透明導電性膜40とは対照的に“非結晶構造”を有している。第1透明導電性膜20/第2透明導電性膜40の“結晶性”と、透明絶縁性膜30の“非結晶性”とは、XRD分析(X線回折)を用いることにより確認することができる。この点、XRD分析(X線回折)において明確に回折ピークを有するものは“結晶構造”を有するものとされ、回折ピークがみられないものが“非結晶構造”を有するものとされる。
 本発明の透明電極において、支持基板10は、その上に設けられる透明薄膜を支える機能を少なくとも有している。例えば透明電極がタッチパネル用透明電極として用いられる場合、支持基板10は、タッチパネルとして利用される際に透過率を損なうことのない透過率の高い材料から構成されていることが好ましい。かかる支持基板10としては、例えばガラスもしくはプラスチック樹脂などからなる基板や、樹脂フィルムを挙げることができる。樹脂フィルムは、ポリエステルフィルム(PENフィルム、PETフィルムなど)、アラミドフィルムまたはポリイミドフィルムなどであってよい。支持基板10の厚さについていえば、例えば透過率の向上を主たる目的とする場合、100μm以下(即ち、0(0μmを含まず)~100μm)であってよい。
 第1透明導電性膜20、第2透明導電性膜40および透明絶縁性膜30は、それらの名称が示すように“透明”となっている。ここで、本発明にいう「透明」(即ち、第1透明導電性膜、第2透明導電性膜および透明絶縁性膜における“透明”)とは、可視光領域(波長:約400nm~約700nm)における平均透過率が80%以上となる態様を実質的に意味している。つまり、第1透明導電性膜20、第2透明導電性膜40および透明絶縁性膜30につき波長400nm~700nmの光透過率が80%以上となっている。
 本発明において、第1透明導電性膜20および第2透明導電性膜40は、それらの名称が示すように「導電性」を有している。ここで、本発明にいう「導電性」(即ち、第1透明導電性膜および第2透明導電性膜における“導電性”)とは、膜のシート抵抗が1×10Ω/□以下となる態様を実質的に指している。その一方、本発明において、透明絶縁性膜30は、その名称が示すように「電気的な絶縁性(即ち、電気的に高抵抗な性質)」を有している。ここで、本発明にいう「絶縁性」(即ち、透明絶縁性膜における“絶縁性”)とは、膜のシート抵抗が1×10Ω/□以上となる態様を実質的に意味している。
 第1透明導電性膜20および第2透明導電性膜40は、いわゆる“薄膜”の形態を有している。この点、第1透明導電性膜20および第2透明導電性膜40は、好ましくはそれぞれ2μm以下の厚み(0(0を含まず)~2μm、例えば0.5μm~2μmの厚み)を有している。2μmよりも厚くなると膜内応力に起因してクラックが発生し、電気的特性が低下する原因となったり、あるいは、白濁に起因して透過率が低下する原因となったりすることが懸念されるからである。
 第1透明導電性膜20および第2透明導電性膜40は、上述したように、双方とも結晶構造を有している。第1透明導電性膜20および第2透明導電性膜40の材質を構成する金属化合物は、例えば亜鉛化合物であってよい。ここで、好ましくは3つの透明膜における金属化合物が同一の金属元素を含むことに鑑みれば、透明絶縁性膜30に含まれる金属化合物もまた亜鉛化合物となる。つまり、ある好適な態様では、第1透明導電性膜20、第2透明導電性膜40および透明絶縁性膜30に含まれる金属化合物が全て亜鉛化合物(即ち、Zn化合物)となっている。
 より具体的な態様としては、第1透明導電性膜20および第2透明導電性膜40には酸化亜鉛が少なくとも含まれる一方、透明絶縁性膜30には水酸化亜鉛が少なくとも含まれる。つまり、第1透明導電性膜20および第2透明導電性膜40の主たる膜構成材料は酸化亜鉛(ZnO)となっている一方、透明絶縁性膜30の主たる膜構成材料は水酸化亜鉛(Zn(OH))となっている。尚、製膜プロセスに起因して第1透明導電性膜20および第2透明導電性膜40が“酸化亜鉛”以外に水酸化亜鉛を不可避的に含み得る場合があり、その逆で、透明絶縁性膜30が“水酸化亜鉛”以外に酸化亜鉛を不可避的に含み得る場合がある。ここで、第1透明導電性膜20および第2透明導電性膜40が酸化亜鉛を含んで成る一方、透明絶縁性膜30が水酸化亜鉛を含んで成る場合では、非結晶性の透明絶縁性膜30を介すことで第1透明導電性膜20と第2透明導電性膜40とが電気的に絶縁されており、それによって、支持基板10上にて2層の透明導電層を備えた積層構造が設けられている。
 “結晶性”を有する第1透明導電性膜20および第2透明導電性膜40は、針状の結晶構造を有していることが好ましい。つまり、第1透明導電性膜20および第2透明導電性膜40が、それぞれ、先端の角ばった形状の微細結晶からなることが好ましい。このような針状結晶は、好ましくは支持基板に対して略垂直な方向に配向していることが好ましい(即ち、角ばった先端が支持基板の主面に対して略垂直な方向に向いていることが好ましい)。第1透明導電性膜20および第2透明導電性膜40が酸化亜鉛(ZnO)を含んで成る場合では、酸化亜鉛結晶が針状の結晶構造を有していることが好ましく、更には、そのような針状の酸化亜鉛結晶が支持基板に対して略垂直な方向に配向していることが好ましい(つまり、酸化亜鉛結晶が全体として略一定の方向に向いていることが好ましいといえる)。
 一方、“非結晶性”の透明絶縁性膜30は、結晶構造を有しておらず、それゆえに“一定の方向に配向した構造”となっていない(つまり、ある態様では“アモルファス形態”を有しているといえる)。この点、例えば、透明絶縁性膜が水酸化亜鉛を含んで成る場合、透明絶縁性膜30は球状・球形状の粒子を含んでいることが好ましい。透明絶縁性膜30の厚さについていえば、例えば1μm以上であってよく、その上限値は特に制限ないものの例えば5μm程度である。
 本発明の透明電極においては、第1透明導電性膜20、第2透明導電性膜40および透明絶縁性膜30のうちの少なくとも1つが第3B族元素を含有していてもよい。これにより、“透明性”や“導電性”などの物性が特に意図的に制御され得る。好ましくは、第1透明導電性膜20および第2透明導電性膜40が第3B族元素を含有している。より具体的に例でいうと、第1透明導電性膜20および第2透明導電性膜40が“結晶性を有する酸化亜鉛”から成る場合、その“結晶性を有する酸化亜鉛”のドーパントとして第3B族元素を含有していてよい。つまり、B(ホウ素)、Al(アルミニウム)、Ga(ガリウム)およびIn(インジウム)から成る群から選択される少なくとも1種類の元素をドーパント元素として含有していることが好ましく、また、将来的なインジウム枯渇の観点でいえばInを除くB(ホウ素)、Al(アルミニウム)およびGa(ガリウム)から成る群から選択される少なくとも1種類の元素をドーパント元素として含有していることが好ましい。尚、特にGa(ガリウム)元素は、膜平坦化にも寄与するので、かかる観点を重視するならGa(ガリウム)元素が特に好ましいといえる。尚、第1透明導電性膜20に含有される第3B族元素と、第2透明導電性膜40に含有される第3B族元素とが相互に異なる種類の元素であってもよい。これにより、第1透明導電性膜20と第2透明導電性膜40とで導電性などの諸物性を適宜変えることができ、透明電極として設計自由度が増すことになる。同様に、透明導電性膜20,40と透明絶縁性膜30との間でドーパント元素の種類が異なっていてもよい。
 本発明の透明電極においては、第1透明導電性膜20および第2透明導電性膜40がパターニングされた形態を有していてよい。“パターニングされた形態”は、例えばタッチパネル用途により適した透明電極の実現に資する。この点、第1透明導電性膜20および第2透明導電性膜40が酸化亜鉛を含んで成る場合でいうと、かかる“酸化亜鉛”は酸性またはアルカリ性のいずれでも容易にエッチングされ得る材質であるので、製造プロセスの自由度は増したものとなる。
 本発明の透明電極においては、支持基板10の表面にガスバリア膜が設けられていてもよい。つまり、支持基板10と第1透明導電性膜20との間に薄膜状態の層が設けられていてよい。かかるガスバリア膜によって、「基板10から第1透明導電性膜20への不純物イオン、ガスおよび/または水分の進入・拡散」を防ぐことができる。あくまでも例示にすぎないが、支持基板の表面に設けられるガスバリア膜は、酸化珪素および/または窒化珪素を含んで成るものであってよい。
 以上説明してきた本発明の透明電極では積層数が減じられている。よって、例えば本発明の透明電極がタッチパネル用透明電極として用いられる場合、薄い透明性の高いタッチパネルが実現される(つまり、いわゆる“接着層”を用いていないので積層数が総じて減じられており、向上した透過率が達成されている)。また、接着層を用いずとも、第1透明導電性膜、第2透明導電性膜および透明絶縁性膜が全て同じ金属ベースの材質からなるので相互の密着性は良好であり、層間剥離などが好適に防止されている。そして、そのように電極薄膜層の全てが同じ金属ベースの材質から成るものであっても、少なくとも“結晶性”と“非結晶”との違いによって“導電性”と“絶縁性”との物性の違いが発現されており、電極として好適な積層構造が実現されている。
 より具体的にいえば、本発明においては、レアメタルが含まれるITO(Snをドープした酸化インジウム)を用いるのではなく、材料資源が豊富で低コストな材料である酸化亜鉛系を用いており、そのような材料であっても、透明電極に好適な積層構造を実現している。本発明の透明電極がタッチパネル用透明電極として用いられる場合では特に、「タッチパネルに好適な多層の透明電極構成」が透過率を低下させずに実現される。この点、層間の接着剤層を不要とつつも、透明導電性薄膜層および絶縁性層で「亜鉛化合物を主成分とした同系材料」が用いられているので層間の密着強度は比較的高いものとなっている。
[本発明の製造方法]
 次に、本発明の製造方法について説明する。かかる本発明は、上記透明電極の製造方法であって、所定温度に加熱した支持基板に対して第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料を順次塗布し、それによって支持基板上にて第1透明導電性膜、透明絶縁性膜および第2透明導電性膜を積層形成している。つまり、本発明では、設定温度に加熱した基板上に層(特にナノオーダーの層)を順次堆積させて膜形成を行う。
 本発明にいう「所定温度」とは、膜形成に必要な温度のことを実質的に意味している。つまり、本発明の製造方法では、第1透明導電性膜、透明絶縁性膜および第2透明導電性膜が“加熱された支持基板”の熱に起因して各塗布原料から形成されることになるが、その膜形成に必要とされる温度が「所定温度」に相当する。
 まず、工程(i)を実施する。つまり、図2(a)および(b)に示すように、支持基板10に第1透明導電性膜原料を塗布して支持基板10上に第1透明導電性膜20を形成する。
 用いられる支持基板は、ガラス基板、プラスチック樹脂基板ないしは樹脂フィルムなどであってよい(熱に対する寸法安定性が優れる点を特に重視すると“ガラス基板”が好ましい)。支持基板は、市販の基板をそのまま用いてもよいし、あるいは、常套の作成法で基板を作製してもよい。 “ガスバリア膜”を設ける場合では、表面にガスバリア膜が設けられた支持基板を用意することが好ましい。例えば、マグネトロンスパッタ法により、酸化珪素や窒化珪素をスパッタすることによって、支持基板の表面にガスバリア膜を形成することができる。
 第1透明導電性膜原料は、有機金属化合物および有機溶媒を含んで成る原料である。「有機金属化合物」は、それを構成する金属元素が、他の膜原料(“透明絶縁性膜原料”および“第2透明導電性膜原料”)における有機金属化合物の金属元素と同一となっていることが好ましい。また、得られる膜材質(金属化合物)はこの有機金属化合物の種類に依存する。あくまでも例示にすぎないが、第1透明導電性膜原料に含まれる「有機金属化合物」は有機亜鉛化合物(好ましくはジエチル亜鉛)であってよい。一方、第1透明導電性膜原料に含まれる「有機溶媒」は、有機金属化合物の媒体となるものであれば、いずれの種類の溶媒であってよい。例えば、「有機溶媒」としては、ヘキサンやヘプタン、トルエンなどを用いることができる。また、アルコール系溶媒として脱水したイソプロピルアルコール、電子供与性を持つ溶媒としてのトリメチルアミン、トリエチルアミンなどのアミン系溶媒、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル系溶媒等も「有機溶媒」として用いることができる。これらの溶媒が複数混合されているものであっても構わない。尚、ドーピングを行う場合では、第1透明導電性膜原料に、ドープ原料を添加しておけばよい。かかるドープ原料としては、第3B属金属の化合物(第3B属金属塩)、例えば、第3B属金属を含んだ塩化化合物、硝酸化合物、酢酸化合物または有機金属化合物などを挙げることができる。
 第1透明導電性膜原料は、流動性を有するものであり、それゆえ、適当な塗布法を用いて支持基板上に第1透明導電性膜原料を塗布することができる。この点、好ましくはスプレー法を用いて第1透明導電性膜原料を支持基板に塗布し、それによって、第1透明導電性膜を形成してもよい(図3参照)。スプレー法では、図3に示すように、第1透明導電性膜原料を大気圧下でキャリアガスと混合し、その混合物をスプレーノズルを介して支持基板に噴霧してよい。スプレー法においてノズルから吐出される原料液滴の大きさは、支持基板に着弾するまでの溶媒の蒸発しやすさや、支持基板上への付着性や面内の均一な塗膜性などの諸条件を考慮して決定することが好ましい。例示すると、スプレーノズルから吐出される原料液滴は、1~50μmの範囲(より好ましくは1~30μmの範囲)で均一な大きさとなっているものが好ましい。
 加熱された支持基板10上に対して塗布された第1透明導電性膜原料は熱処理に付され、それによって、第1透明導電性膜原料から第1透明導電性膜が形成される。換言すれば、“設定温度に加熱した支持基板”からの熱に起因して、第1透明導電性膜が第1透明導電性膜原料から形成される。ここで、支持基板の加熱温度は、その次の工程(ii)における“支持基板の加熱温度”と異なることが好ましい。つまり、「第1透明導電性膜を形成するための工程(i)」と「透明絶縁性膜を形成するための工程(ii)」との間で支持基板の加熱温度を変えることが好ましい。
 本発明では、「工程(i)の第1透明導電性膜形成のための支持基板の加熱温度」を「工程(ii)の透明絶縁性膜形成のための支持基板の加熱温度」よりも高くすることによって、逆にいえば、「工程(ii)の透明絶縁性膜形成のための支持基板の加熱温度」を「工程(i)の第1透明導電性膜形成のための支持基板の加熱温度」よりも低くすることによって、得られる膜の“結晶”/“非結晶”を調整することが好ましい。つまり、「工程(i)における支持基板の設定温度」を「工程(ii)における支持基板の設定温度」よりも高くすること、逆にいえば、「工程(ii)における支持基板の設定温度」を「工程(i)における支持基板の設定温度」よりも低くすることによって、第1透明導電性膜を“結晶構造”を有するように形成できる一方、透明絶縁性膜を“非結晶構造”を有するように形成できる。
 より具体的な例でいうと、第1透明導電性膜原料および透明絶縁性膜原料(後述する)に含まれる「有機金属化合物」が有機亜鉛化合物(例えばジエチル亜鉛)である場合、「工程(i)における支持基板」を100℃以上に加熱する一方、「工程(ii)における支持基板」を100℃未満で加熱することによって、第1透明導電性膜(即ち、「亜鉛化合物から成る第1透明導電性膜」)を“結晶構造”を有するように形成できる一方、透明絶縁性膜(即ち、「亜鉛化合物から成る透明絶縁性膜」)を“非結晶構造”を有するように形成できる。「工程(ii)における支持基板」の加熱温度における下限値は、特に制限はないものの、例えば“室温程度(20℃~25℃程度)”であってよい
 工程(i)に引き続いて工程(ii)を実施する。つまり、図2(b)および(c)に示すように、第1透明導電性膜20に透明絶縁性膜原料を塗布して第1透明導電性膜20上に透明絶縁性膜30を形成する。
 透明絶縁性膜原料は、有機金属化合物および有機溶媒を含んで成る原料である。「有機金属化合物」は、それを構成する金属元素が、他の膜原料(“第1透明導電性膜原料”および“第2透明導電性膜原料”)における有機金属化合物の金属元素と同一となっていることが好ましい。また、得られる膜材質(金属化合物)はこの有機金属化合物の種類に依存する。あくまでも例示にすぎないが、透明絶縁性膜原料に含まれる「有機金属化合物」は有機亜鉛化合物(好ましくはジエチル亜鉛)であってよい。一方、透明絶縁性膜原料に含まれる「有機溶媒」は、有機金属化合物の媒体となるものであれば、いずれの種類の溶媒であってもよい。例えば、「有機溶媒」として、ヘキサンやヘプタン、トルエンなどを用いることができる。また、アルコール系溶媒として脱水したイソプロピルアルコール、電子供与性を持つ溶媒としてのトリメチルアミン、トリエチルアミンなどのアミン系溶媒、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル系溶媒等も「有機溶媒」として用いることができる。これらの溶媒が複数混合されているものであっても構わない。尚、ドーピングを行う場合では、透明絶縁性膜原料にドープ原料を添加しておけばよい。かかるドープ原料としては、上記と同様、第3B属金属の化合物、即ち、第3B属金属を含んだ塩化化合物、硝酸化合物、酢酸化合物または有機金属化合物などを用いてよい。
 透明絶縁性膜原料も、第1透明導電性膜原料と同様、流動性を有するものであり、それゆえ、適当な塗布法を用いることによって第1透明導電性膜20上に透明絶縁性膜原料を塗布することができる。この点、上記で触れたように、スプレー法を用いて透明絶縁性膜原料を塗布し、それによって、透明絶縁性膜を形成してよい(図3参照)。
 第1透明導電性膜20上に塗布された透明絶縁性膜原料は熱処理に付されるが、“第1透明導電性膜原料”と同様、設定温度に加熱した支持基板からの熱に起因して、透明絶縁性膜原料から透明絶縁性膜が形成される。上記で触れたように、「工程(ii)の透明絶縁性膜形成のための支持基板の加熱温度」は「工程(i)の第1透明導電性膜形成のための支持基板の加熱温度」と変えることによって、透明絶縁性膜を“非結晶構造”を有するように形成できる。具体的には、「工程(ii)の透明絶縁性膜形成のための支持基板の加熱温度」を「工程(i)の第1透明導電性膜形成のための支持基板の加熱温度」よりも低くすることによって、透明絶縁性膜を“非結晶構造”を有するように形成できる。より具体的な例では、透明絶縁性膜原料および第1透明導電性膜原料に含まれる「有機金属化合物」が有機亜鉛化合物(例えばジエチル亜鉛)である場合、「工程(ii)における支持基板」を100℃未満で加熱することによって、「亜鉛化合物から成る透明絶縁性膜」を“非結晶構造”を有するように形成できる(尚、「工程(i)における支持基板」は100℃以上に加熱することによって、「亜鉛化合物から成る結晶性の第1透明導電性膜」が形成される)。
 工程(ii)に引き続いて工程(iii)を実施する。つまり、図2(c)および(d)に示すように、透明絶縁性膜30に第2透明導電性膜原料を塗布して透明絶縁性膜30上に第2透明導電性膜40を形成する。
 かかる第2透明導電性膜原料は、第1透明導電性膜原料と同じであってよい。この点、原料に含まれる「有機金属化合物」は、それを構成する金属元素が、他の膜原料(“第1透明導電性膜原料”および“透明絶縁性膜原料”)における有機金属化合物の金属元素と同一となっていることが好ましい。また、得られる膜材質(金属化合物)はこの有機金属化合物の種類に依存し、例えば第2透明導電性膜原料に含まれる「有機金属化合物」が有機亜鉛化合物(好ましくはジエチル亜鉛)であってよい。第2透明導電性膜原料に含まれる「有機溶媒」は、第1透明導電性膜原料におけるものと同じものであってよい。尚、第2透明導電性膜と第1透明導電性膜との間で異なる種類の元素でドーピングを行う場合では、これら原料に添加するドープ原料を相互に変えればよい。
 第2透明導電性膜原料も、第1透明導電性膜原料・透明絶縁性膜原料と同様、流動性を有するものであり、それゆえ、適当な塗布法を用いて透明絶縁性膜30上に第2透明導電性膜原料を供給することができる。特にスプレー法を利用して第2透明導電性膜原料を塗布することが好ましい(図3参照)。
 透明絶縁性膜30上に塗布された第2透明導電性膜原料は熱処理に付されるが、“第1透明導電性膜原料”および“透明絶縁性膜原料”と同様、設定温度に加熱した支持基板からの熱に起因して、第2透明導電性膜原料から第2透明導電性膜が形成される。上記で間接的に触れたように、「工程(iii)の第2透明導電性膜形成のための支持基板の加熱温度」を「工程(ii)の透明絶縁性膜形成のための支持基板の加熱温度」と変えることによって、第2透明導電性膜を“結晶構造”を有するように形成できる。具体的には、「工程(iii)の第2透明導電性膜形成のための支持基板の加熱温度」を「工程(ii)の透明絶縁性膜形成のための支持基板の加熱温度」よりも高くすることによって、第2透明導電性膜を“結晶構造”を有するように形成できる。より具体的な例では、第2透明導電性膜原料および透明絶縁性膜原料に含まれる「有機金属化合物」が有機亜鉛化合物(例えばジエチル亜鉛)である場合、「工程(iii)における支持基板」を100℃以上で加熱することによって「亜鉛化合物から成る透明導電性膜」を“結晶構造”を有するように形成できる(尚、「工程(ii)における支持基板」を100℃未満で加熱することによって「亜鉛化合物から成る非結晶構造を有する透明絶縁性膜」が形成される)。
 以上のような工程(i)~(iii)を経ると、最終的に、支持基板10上において第1透明導電性膜20および第2透明導電性膜40ならびにそれらの間に設けられた透明絶縁性膜30の全てが同一金属元素を含み、かつ、第1透明導電性膜20および第2透明導電性膜40が結晶性を有する一方、透明絶縁性膜30が非結晶性を有する透明電極を得ることができる。
 本発明の製造方法では、塗布法による透明薄膜の積層を通じて透明電極を得るので、「貼り合わせを行うための接着層を形成し、かつ、上部電極と下部電極とを位置合わせする」といった従来技術のプロセス工程は省かれている。さらに、本発明の製造方法は、スプレー法を利用して透明薄膜を形成するので、大型の真空装置を必要とせず、大気中において速い成膜速度で形成でき、その結果、工業的に有用な製造プロセスとなっている。また、本発明の製造方法では、全ての膜原料の有機金属化合物を同一にするので、それぞれの膜間の密着性は良く、いわゆる“接着層”を用いる態様と比べて層間密着性が高い。
 以下では、本発明の製造方法につき、更に特徴的な事項を個々に説明していく。
 本発明の製造方法は、加熱温度を変えることによって、実質的に同一の原料から“透明導電性薄膜”と“透明絶縁性薄膜”とを得ているが、かかる加熱温度は総じて低い。つまり、工程(i)~(iii)のそれぞれの加熱温度は、総じて300℃以下、好ましくは200℃以下にすることができる。それゆえ、支持基板として樹脂フィルムなるものを用いることができ、設計自由度が高くなる。より具体的には、工程(i)および(iii)における支持基板の加熱を100℃以上にする一方、工程(ii)における支持基板の加熱温度を100℃未満にするが、かかる場合、工程(i)および(iii)における支持基板の加熱を100℃以上かつ300℃以下(好ましくは200℃以下)にできる。
 膜原料に用いられる有機金属化合物としては“ジエチル亜鉛”を好適に用いることができる。かかる場合、有機溶媒中にジエチル亜鉛を溶解して成る溶液を大気圧下でキャリアガスと混合して基板にスプレー噴霧することが好ましい(図3参照)。スプレー雰囲気として“室温中で水ないしは水蒸気の存在する大気雰囲気”を用いると、ジエチル亜鉛の反応が好適に進行して、酸化亜鉛を主成分とした薄膜を結果的に得ることができる(図4の化学式参照)。特に第1透明導電性膜および第2透明導電性膜を形成する場合、支持基板を100℃以上かつ300℃以下に加熱した状態にしておき、かかる基板表面に対してスプレー噴霧を実施すると、支持基板上で酸化亜鉛の薄膜を形成することができる(加熱温度は、支持基板の耐熱温度に合わせて変更することができものの、均一な結晶構造を得るためには、100℃以上に支持基板を加熱することが望ましい)。透明絶縁性膜の場合も同様に、有機溶媒中にジエチル亜鉛を溶解して成る溶液を大気圧下でキャリアガスと混合して基板にスプレー噴霧を実施することで形成することができる(図3参照)。特にスプレー雰囲気として“室温中で水ないしは水蒸気の存在する大気雰囲気”を制御することで、ジエチル亜鉛の反応が好適に生じて、水酸化亜鉛を主成分とした薄膜を結果的に得ることができる(図4の化学式参照)。尚、透明絶縁性膜の形成では、スプレー噴霧時の支持基板を「室温以上かつ100℃未満の温度」に加熱した状態にしておくことが好ましい。支持基板の加熱温度がそのような温度であれば、ジエチル亜鉛が堆積するときに結晶成長することなくアモルファスの状態で堆積して“絶縁性の透明薄膜”を形成できるからである。
 本発明では、スプレー噴霧に用いるスプレーノズルを支持基板に対して傾斜させた状態で用いてもよい。つまり、「スプレーノズルからの吐出方向」と「支持基板の表面」との成す角度(図3の下側点線内に示すような傾斜角度“α”)が、垂直(90°)でなくてもよく、例えば30°~85°の範囲であってよい。“傾斜状態”は、一定に固定配置された支持基板に対してスプレーノズルを傾けることによって、あるいはその逆で、一定に固定配置されたスプレーノズルに対して支持基板を傾けることによって得ることができる。このように、スプレーノズルを支持基板に対して傾斜させると、支持基板に対して結晶の成長方向をコントロールすることができ、結晶の配向性の向上を図ることができる。換言すれば、傾斜角度αを調整することによって、結晶の成長方向をコントロールすることができ、結晶の配向性を向上させることができる。例えば、傾斜角度αを約90°にすれば、第1透明導電性膜および第2透明導電性膜の結晶構造につき、針状結晶を支持基板に対して垂直方向に配向させることができるが、その傾斜角度αを90°以外の角度にすると、その角度に応じて結晶配向を変化させることができる。
 本発明では、第1透明導電性膜をパターニング処理に付してもよい。例えば、図5に示すように、支持基板10上に第1透明導電性膜20を形成した後、エッチング液を用いてエッチング処理することによりパターニングを施すことができる。エッチング液としては硝酸、リン酸、硫酸などの酸性溶液や、水酸化ナトリウム溶液のようなアルカリ性溶液を用いることができる。尚、スプレー法を用いる場合では、パターン加工されたマスクを用いて支持基板10上に位置合わせした後、膜原料をスプレー噴霧し、マスクを除去することでパターニングすることができ、ウェットエッチング工程を行うことなくパターニング可能である。尚、この場合、パターン加工されたマスクではなくレジスト材料を用いることも可能である。同様にして、第2透明導電性膜もパターニング処理に付してもよい。具体的には、図5に示すように、透明絶縁性膜30上に第2透明導電性膜40を形成した後、エッチング液を用いてエッチング処理することによりパターニングを施す。しかし、この場合エッチング液としては前記と同様のものを用いることができるものの、透明絶縁性膜30にダメージを与えないようにエッチングレートを考慮して行うことが特に好ましい。そして、スプレー法を用いる場合においては、同様に、パターン加工されたマスクを用いて透明絶縁性膜30上に位置合わせした後、膜原料をスプレー噴霧し、マスクを除去することでパターニングすることもできる。つまり、既に形成された積層体をウェット工程に付すことなくパターン化された第2透明導電性膜40’を得ることができ、各層の吸湿に起因する電気特性劣化を効果的に防ぐことができる。
 本発明の製造方法は、第1透明導電性膜に紫外線を照射する工程、および/または、第2透明導電性膜に紫外線を照射する工程を更に含んでいてよい。つまり、第1透明導電性膜20および第2透明導電性膜40に対して紫外線を照射してもよい。紫外線領域の光を照射することによって、第1透明導電性膜および第2透明導電性膜を低抵抗化させることが可能となるからである。例えば紫外線として185nm~380nmの光を照射してよい。これにより、透明導電性膜中に存在する“導電性を阻害する不純物残渣を好適に減じることができ、結果的にシート抵抗のより低い透明導電性膜を実現できる。
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。例えば以下の態様が考えられる。
 本発明の透明電極では、第2透明導電性膜上に別の付加的な透明絶縁性膜および透明導電性膜を形成し、それによって、更に多層化することも可能である。つまり、第2透明導電性膜上にて少なくとも1つの更なる透明絶縁性膜および少なくとも1つの更なる透明導電性膜を交互に設けてもよく、それによって、支持基板上において透明導電性膜と透明絶縁性膜とが交互に複数積層した構造を得てもよい。換言すれば、更に多層化した本発明の透明電極は、
 支持基板上にて透明導電性膜と透明絶縁性膜とが交互に複数積層された構造を有しており、
 その複数積層された透明導電性膜および透明絶縁性膜の全てが金属化合物を含んで成り、また、
 透明導電性膜が結晶構造を有する一方、透明絶縁性膜が非結晶構造を有する、透明電極であるといえる。
 このような多層構造の透明電極であっても、複数の透明導電性薄膜の間でドープ材料の異なるものにすることができ、より設計自由度が高い透明電極を実現できる。
 最後に、本発明は下記の態様を有するものであることを確認的に付言しておく。
第1態様:透明電極であって、
 支持基板、
 支持基板上に設けられた第1透明導電性膜、
 第1透明導電性膜上に設けられた透明絶縁性膜、および
 透明絶縁性膜上に設けられた第2透明導電性膜
を有して成り、
 第1透明導電性膜および第2透明導電性膜ならびにそれらの間に設けられた透明絶縁性膜の全てが金属化合物を含んで成り、また
 第1透明導電性膜および第2透明導電性膜が結晶構造を有する一方、透明絶縁性膜が非結晶構造を有する、透明電極。
第2態様:上記第1態様において、金属化合物を構成する金属元素として、第1透明導電性膜、第2透明導電性膜および透明絶縁性膜との間で全て同一となった金属元素が含まれることを特徴とする透明電極。
第3態様:上記第1態様または第2態様において、金属化合物が亜鉛化合物であることを特徴とする透明電極。
第4態様:上記第2態様または第3態様において、第1透明導電性膜および第2透明導電性膜が酸化亜鉛を少なくとも含んで成る一方、透明絶縁性膜が水酸化亜鉛を少なくとも含んで成ることを特徴とする透明電極。
第5態様:上記第1態様~第4態様のいずれかにおいて、第1透明導電性膜および第2透明導電性膜の結晶構造が、針状の結晶となっていることを特徴とする透明電極。
第6態様:上記第5態様において、針状の結晶が支持基板に対して垂直な方向に配向していることを特徴とする透明電極。
第7態様:上記第4態様に従属する上記第5態様または第6態様において、透明絶縁性膜に含まれる水酸化亜鉛が球状を有していることを特徴とする透明電極。
第8態様:上記第1態様~第7態様のいずれかにおいて、第1透明導電性膜および第2透明導電性膜のそれぞれの厚みが2μm以下であることを特徴とする透明電極。
第9態様:上記第1態様~第8態様のいずれかにおいて、第1透明導電性膜、第2透明導電性膜および透明絶縁性膜の少なくとも1つが第3B族元素を含有していることを特徴とする透明電極。
第10態様:上記第9態様において、第1透明導電性膜および第2透明導電性膜が第3B族元素を含有していることを特徴とする透明電極。
第11態様:上記第10態様において、第1透明導電性膜に含有される第3B族元素と、第2透明導電性膜に含有される第3B族元素とが相互に異なる種類の元素であることを特徴とする透明電極。
第12態様:上記第1態様~第11態様のいずれかにおいて、第1透明導電性膜および第2透明導電性膜がパターニングされた形態を有していることを特徴とする透明電極。
第13態様:上記第1態様~第12態様のいずれかにおいて、支持基板と第1透明導電性膜との間にガスバリア膜が設けられていることを特徴とする透明電極。
第14態様:上記第1態様~第13態様のいずれかにおいて、第2透明導電性膜上にて少なくとも1つの更なる透明絶縁性膜および少なくとも1つの更なる透明導電性膜が交互に設けられ、それによって、支持基板上において透明導電性膜と透明絶縁性膜とが交互に複数積層した構造を有していることを特徴とする透明電極。
第15態様:上記第1態様~第14態様のいずれかにおいて、透明電極がタッチパネルに用いられる透明電極であることを特徴とする透明電極。
第16態様:透明電極を製造する方法であって、
 所定温度に加熱した支持基板に対して第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料を順次塗布し、それによって、支持基板上にて第1透明導電性膜、透明絶縁性膜および第2透明導電性膜を積層形成しており、
 (i)支持基板に第1透明導電性膜原料を塗布して支持基板上に第1透明導電性膜を形成する工程、
 (ii)第1透明導電性膜に透明絶縁性膜原料を塗布して第1透明導電性膜上に透明絶縁性膜を形成する工程、および
 (iii)透明絶縁性膜に第2透明導電性膜原料を塗布して透明絶縁性膜上に第2透明導電性膜を形成する工程
を含んで成り、
 第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料の全てが、有機金属化合物および有機溶媒を含んで成る原料となっており、工程(i)および(iii)で形成される第1透明導電性膜および第2透明導電性膜が結晶構造を有する一方、工程(ii)で形成される透明絶縁性膜が非結晶構造を有する、透明電極の製造方法。
第17態様:上記第16態様において、有機金属化合物を構成する金属元素として、第1透明導電性膜原料、第2透明導電性膜原料および透明絶縁性膜原料との間で全て同一となった金属元素が含まれることを特徴とする透明電極の製造方法。
第18態様:上記第16態様または第17態様において、有機金属化合物として有機亜鉛化合物を用いることを特徴とする透明電極の製造方法。
第19態様:上記第16態様~第18態様のいずれかにおいて、工程(i)および(iii)と、工程(ii)とでは、支持基板の加熱温度を相互に変えることを特徴とする透明電極の製造方法。
第20態様:上記第19態様において、工程(i)および(iii)では支持基板の加熱温度を100℃以上にする一方、工程(ii)では支持基板の加熱温度を100℃未満にすることを特徴とする透明電極の製造方法。
第21態様:上記第20態様において、工程(i)~工程(iii)における支持基板の加熱温度が200℃以下であることを特徴とする透明電極の製造方法。
第22態様:上記第16態様~第21態様のいずれかにおいて、第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料の塗布をスプレー噴霧によって行うことを特徴とする透明電極の製造方法。
第23態様:上記第22態様において、スプレー噴霧に際しては、そのスプレー噴霧に用いるスプレーノズルを支持基板に対して傾斜させた状態で用いることを特徴とする透明電極の製造方法。
第24態様:上記第16態様~第23態様のいずれかにおいて、第1透明導電性膜に紫外線を照射する工程、および/または、第2透明導電性膜に紫外線を照射する工程を更に含んで成ることを特徴とする透明電極の製造方法。
第25態様:上記第16態様~第24態様のいずれかにおいて、透明電極の製造方法が、タッチパネルに用いられる透明電極の製造方法となっていることを特徴とする透明電極の製造方法。
 本発明に係る透明電極は、各種デバイスの電極(例えば「高い透過率が求められる多層構造の電極」))として利用することができる。
 より具体的には、本発明の透明電極は、高信頼性で高透過率であって、かつ生産性に優れているので、特にタッチパネル用透明電極として有用である(静電容量方式のタッチパネルに用いる場合では、図6に示すように、第1透明導電性薄膜20と第2透明導電性薄膜40とをマトリクス型に形成したタッチパネル用途電極として使用してよい)。更には、本発明は、有機ELディスプレイ、電子ペーパー、太陽電池等、透明性が同様に求められる電極用途に対しても好適に利用することができる。
関連出願の相互参照
 本出願は、日本国特許出願第2012-128890号(出願日:2012年6月6日、発明の名称「透明電極およびその製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるとする。
10 支持基板
20 第1透明導電性膜
20’ パターニングされた第1透明導電性膜
30 透明絶縁性膜
40 第2透明導電性膜
40’ パターニングされた第2透明導電性膜
100 透明電極(例えば、タッチパネル用透明電極)

Claims (25)

  1. 透明電極であって、
     支持基板、
     前記支持基板上に設けられた第1透明導電性膜、
     前記第1透明導電性膜上に設けられた透明絶縁性膜、および
     前記透明絶縁性膜上に設けられた第2透明導電性膜
    を有して成り、
     前記第1透明導電性膜および前記第2透明導電性膜ならびにそれらの間に設けられた前記透明絶縁性膜の全てが金属化合物を含んで成り、また
     前記第1透明導電性膜および前記第2透明導電性膜が結晶構造を有する一方、前記透明絶縁性膜が非結晶構造を有する、透明電極。
  2.  前記金属化合物を構成する金属元素として、前記第1透明導電性膜、前記第2透明導電性膜および前記透明絶縁性膜との間で全て同一となった金属元素が含まれることを特徴とする、請求項1に記載の透明電極。
  3.  前記金属化合物が亜鉛化合物であることを特徴とする、請求項1に記載の透明電極。
  4.  前記第1透明導電性膜および前記第2透明導電性膜が酸化亜鉛を少なくとも含んで成る一方、前記透明絶縁性膜が水酸化亜鉛を少なくとも含んで成ることを特徴とする、請求項2に記載の透明電極。
  5.  前記第1透明導電性膜および前記第2透明導電性膜の前記結晶構造が、針状の結晶となっていることを特徴とする、請求項1に記載の透明電極。
  6.  前記針状の結晶が前記支持基板に対して垂直な方向に配向していることを特徴とする、請求項5に記載の透明電極。
  7.  前記第1透明導電性膜および前記第2透明導電性膜が酸化亜鉛を少なくとも含んで成る一方、前記透明絶縁性膜が水酸化亜鉛を少なくとも含んで成り、また
     前記透明絶縁性膜に含まれる前記水酸化亜鉛が球状を有していることを特徴とする、請求項5に記載の透明電極。
  8.  前記第1透明導電性膜および前記第2透明導電性膜のそれぞれの厚みが2μm以下であることを特徴とする、請求項1に記載の透明電極。
  9.  前記第1透明導電性膜、前記第2透明導電性膜および前記透明絶縁性膜の少なくとも1つが第3B族元素を含有していることを特徴とする、請求項1に記載の透明電極。
  10.  前記第1透明導電性膜および前記第2透明導電性膜が第3B族元素を含有していることを特徴とする、請求項9に記載の透明電極。
  11.  前記第1透明導電性膜に含有される第3B族元素と、前記第2透明導電性膜に含有される第3B族元素とが相互に異なる種類の元素であることを特徴とする、請求項10に記載の透明電極。
  12.  前記第1透明導電性膜および前記第2透明導電性膜がパターニングされた形態を有していることを特徴とする、請求項1に記載の透明電極。
  13.  前記支持基板と前記第1透明導電性膜との間にガスバリア膜が設けられていることを特徴とする、請求項1に記載の透明電極。
  14.  前記第2透明導電性膜上にて少なくとも1つの更なる透明絶縁性膜および少なくとも1つの更なる透明導電性膜が交互に設けられ、それによって、前記支持基板上において透明導電性膜と透明絶縁性膜とが交互に複数積層した構造を有していることを特徴とする、請求項1に記載の透明電極。
  15.  前記透明電極がタッチパネルに用いられる透明電極であることを特徴とする、請求項1に記載の透明電極。
  16. 透明電極を製造する方法であって、
     所定温度に加熱した支持基板に対して第1透明導電性膜原料、透明絶縁性膜原料および第2透明導電性膜原料を順次塗布し、それによって、該支持基板上にて第1透明導電性膜、透明絶縁性膜および第2透明導電性膜を積層形成しており、
     (i)前記支持基板に前記第1透明導電性膜原料を塗布して該支持基板上に前記第1透明導電性膜を形成する工程、
     (ii)前記第1透明導電性膜に前記透明絶縁性膜原料を塗布して該第1透明導電性膜上に前記透明絶縁性膜を形成する工程、および
     (iii)前記透明絶縁性膜に前記第2透明導電性膜原料を塗布して該透明絶縁性膜上に前記第2透明導電性膜を形成する工程
    を含んで成り、
     前記第1透明導電性膜原料、前記透明絶縁性膜原料および前記第2透明導電性膜原料の全てが、有機金属化合物および有機溶媒を含んで成る原料となっており、工程(i)および(iii)で形成される前記第1透明導電性膜および前記第2透明導電性膜が結晶構造を有する一方、工程(ii)で形成される前記透明絶縁性膜が非結晶構造を有する、透明電極の製造方法。
  17.  前記有機金属化合物を構成する金属元素として、前記第1透明導電性膜原料、前記第2透明導電性膜原料および前記透明絶縁性膜原料との間で全て同一となった金属元素が含まれることを特徴とする、請求項16に記載の透明電極の製造方法。
  18.  前記有機金属化合物として有機亜鉛化合物を用いることを特徴とする、請求項16に記載の透明電極の製造方法。
  19.  工程(i)および(iii)と、工程(ii)とでは、前記支持基板の加熱温度を相互に変えることを特徴とする、請求項16に記載の透明電極の製造方法。
  20.  工程(i)および(iii)では前記支持基板の前記加熱温度を100℃以上にする一方、工程(ii)では前記支持基板の前記加熱温度を100℃未満にすることを特徴とする、請求項19に記載の透明電極の製造方法。
  21.  工程(i)~工程(iii)における前記支持基板の前記加熱温度が200℃以下であることを特徴とする、請求項20に記載の透明電極の製造方法。
  22.  前記第1透明導電性膜原料、前記透明絶縁性膜原料および前記第2透明導電性膜原料の前記塗布をスプレー噴霧によって行うことを特徴とする、請求項16に記載の透明電極の製造方法。
  23.  前記スプレー噴霧に際しては、該スプレー噴霧に用いるスプレーノズルを前記支持基板に対して傾斜させた状態で用いることを特徴とする、請求項22に記載の透明電極の製造方法。
  24.  前記第1透明導電性膜に紫外線を照射する工程、および/または、前記第2透明導電性膜に紫外線を照射する工程を更に含んで成ることを特徴とする、請求項16に記載の透明電極の製造方法。
  25.  前記透明電極の製造方法が、タッチパネルに用いられる透明電極の製造方法であることを特徴とする、請求項16に記載の透明電極の製造方法。
PCT/JP2013/003166 2012-06-06 2013-05-17 透明電極およびその製造方法 WO2013183234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014501321A JP5796202B2 (ja) 2012-06-06 2013-05-17 透明電極およびその製造方法
US14/232,070 US9330811B2 (en) 2012-06-06 2013-05-17 Transparent electrode and method for manufacturing the same
CN201380002131.7A CN103649886B (zh) 2012-06-06 2013-05-17 透明电极及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012128890 2012-06-06
JP2012-128890 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183234A1 true WO2013183234A1 (ja) 2013-12-12

Family

ID=49711642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003166 WO2013183234A1 (ja) 2012-06-06 2013-05-17 透明電極およびその製造方法

Country Status (4)

Country Link
US (1) US9330811B2 (ja)
JP (1) JP5796202B2 (ja)
CN (1) CN103649886B (ja)
WO (1) WO2013183234A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681305B1 (ko) * 2014-08-01 2016-12-02 주식회사 하이딥 터치 입력 장치
JP6527343B2 (ja) * 2014-08-01 2019-06-05 株式会社 ハイディープHiDeep Inc. タッチ入力装置
KR102221910B1 (ko) * 2014-10-10 2021-03-05 삼성디스플레이 주식회사 표시장치 및 그 제조방법
KR102302169B1 (ko) * 2015-01-06 2021-09-15 삼성디스플레이 주식회사 터치 스크린 패널 및 그 제조 방법
TWI653643B (zh) * 2017-12-04 2019-03-11 富元精密科技股份有限公司 透明導電體結構及其製造方法
JP2020167047A (ja) * 2019-03-29 2020-10-08 日東電工株式会社 ヒータ
CN111769166B (zh) * 2020-07-10 2022-02-08 浩物电子科技(苏州)有限公司 一种电极及其制备方法
KR102625556B1 (ko) * 2021-10-27 2024-01-15 인천대학교 산학협력단 다중층의 전면전극을 갖는 투명태양전지 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199986A (ja) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd 酸化亜鉛系透明導電膜積層体と透明導電性基板およびデバイス
JP2009224152A (ja) * 2008-03-14 2009-10-01 Sumitomo Metal Mining Co Ltd 透明電極、透明導電性基板および透明タッチパネル
WO2010103815A1 (ja) * 2009-03-10 2010-09-16 昭和電工株式会社 透明導電性材料の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658887B2 (en) * 2006-11-20 2014-02-25 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP5313568B2 (ja) 2008-07-11 2013-10-09 株式会社カネカ 透明導電膜
JP2010061425A (ja) * 2008-09-04 2010-03-18 Hitachi Displays Ltd タッチパネル、及びこれを用いた表示装置
JP5288464B2 (ja) 2008-11-27 2013-09-11 東ソー・ファインケム株式会社 酸化亜鉛薄膜の製造方法
JP5559704B2 (ja) * 2009-02-03 2014-07-23 株式会社カネカ 透明導電膜付き基板の製造方法ならびに多接合型薄膜光電変換装置および発光素子の製造方法
JP5463678B2 (ja) * 2009-02-04 2014-04-09 凸版印刷株式会社 透明導電性フィルム
JP5515567B2 (ja) 2009-09-29 2014-06-11 凸版印刷株式会社 透明導電性フィルム
CN102270069B (zh) 2010-06-03 2015-01-28 乐金显示有限公司 集成有触摸面板的显示设备
JP2012053594A (ja) 2010-08-31 2012-03-15 Sekisui Nano Coat Technology Co Ltd タッチパネル用透明導電性フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199986A (ja) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd 酸化亜鉛系透明導電膜積層体と透明導電性基板およびデバイス
JP2009224152A (ja) * 2008-03-14 2009-10-01 Sumitomo Metal Mining Co Ltd 透明電極、透明導電性基板および透明タッチパネル
WO2010103815A1 (ja) * 2009-03-10 2010-09-16 昭和電工株式会社 透明導電性材料の製造方法

Also Published As

Publication number Publication date
US9330811B2 (en) 2016-05-03
CN103649886A (zh) 2014-03-19
US20140151085A1 (en) 2014-06-05
CN103649886B (zh) 2016-04-20
JP5796202B2 (ja) 2015-10-21
JPWO2013183234A1 (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5796202B2 (ja) 透明電極およびその製造方法
WO2012161095A1 (ja) 導電膜用素材、導電膜積層体、電子機器、及びそれらの製造方法
JP5190554B1 (ja) 透明導電性フィルム
JP6176067B2 (ja) ガラス積層体および電子デバイスの製造方法
US20110001153A1 (en) Substrate bearing an electrode, organic light-emitting device incorporating it, and its manufacture
TWI550463B (zh) 導電膜及其製造方法
WO2014115770A1 (ja) 透明導電性基材ならびにその製造方法
JP6943249B2 (ja) 積層体、電子デバイスの製造方法、積層体の製造方法
JP4896854B2 (ja) 透明導電膜の製造方法
KR20170075507A (ko) 전도성 소자 및 이를 포함하는 전자 소자
WO2013172354A1 (ja) 導電膜用素材、導電膜積層体、電子機器、ならびに導電膜用素材および導電膜積層体の製造方法
CN104603320B (zh) 带透明电极的基板的制造方法、以及带透明电极的基板
TWI553523B (zh) 導電結構體前驅物、導電結構體及其製造方法、及觸控式螢幕面板
CN105039911B (zh) 一种透明导电薄膜及其制备方法
CN102950829B (zh) 导电玻璃及其制备方法
KR20140133317A (ko) 은 나노와이어 및 은 격자 복합 패턴을 포함하는 투명전극 및 이의 제조방법
KR20170016145A (ko) 도전체 제조 방법, 이로부터 제조된 도전체, 및 이를 포함하는 전자 소자
KR20150075173A (ko) 투명 전도성 산화물과 은 나노 와이어를 포함하는 투명 전극 및 그 제조방법
KR20150105798A (ko) 투명전극 및 그 제조방법
CN106222619A (zh) 一种基底、基板及其制作方法、电子器件
KR102363287B1 (ko) 도전체, 그 제조 방법, 및 이를 포함하는 소자
CN105518824A (zh) 液态玻璃的应用
JP2006049327A (ja) 導電性積層体
CN116264118A (zh) 一种透明导电复合膜片及制备方法
KR101828646B1 (ko) 알루미늄 패턴 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380002131.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014501321

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232070

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799975

Country of ref document: EP

Kind code of ref document: A1