[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013161317A1 - 多層カーボンナノチューブの精製方法 - Google Patents

多層カーボンナノチューブの精製方法 Download PDF

Info

Publication number
WO2013161317A1
WO2013161317A1 PCT/JP2013/002840 JP2013002840W WO2013161317A1 WO 2013161317 A1 WO2013161317 A1 WO 2013161317A1 JP 2013002840 W JP2013002840 W JP 2013002840W WO 2013161317 A1 WO2013161317 A1 WO 2013161317A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
carbon nanotube
solid
carbon nanotubes
nitric acid
Prior art date
Application number
PCT/JP2013/002840
Other languages
English (en)
French (fr)
Inventor
山本 竜之
中村 武志
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/396,539 priority Critical patent/US20150093322A1/en
Priority to CN201380034306.2A priority patent/CN104428244A/zh
Publication of WO2013161317A1 publication Critical patent/WO2013161317A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a multi-walled carbon nanotube with a small amount of impurities and a purification method for obtaining the same. More specifically, the present invention relates to multi-walled carbon nanotubes synthesized by a gas phase method and then washed with an acid, wherein the remaining amount of catalytic metal-derived metal elements and acid-derived anions is low, and to obtain the same. The present invention relates to a purification method.
  • Multi-walled carbon nanotubes are produced by chemical vapor deposition (thermal decomposition of hydrocarbons on catalytic metals to form carbon nanotubes) and physical vapor deposition (sublimation of graphite by arc or laser). And a method of forming carbon nanotubes in the cooling process).
  • the chemical vapor deposition method is suitable for mass synthesis because the scale-up of the reactor is relatively easy.
  • Chemical vapor deposition can be roughly divided into two methods. One is to dissolve catalyst such as benzene and other hydrocarbons such as metal compounds and sulfur, and supply hydrogen as a carrier gas to a reaction field heated to 1000 ° C or higher. This is a method of performing nanotube growth (floating catalyst method). The other is that a pre-prepared supported catalyst (a catalyst metal or precursor supported on a support) is introduced into a reaction field heated to 500 to 700 ° C., and a hydrocarbon such as ethylene and hydrogen or In this method, a mixed gas such as nitrogen is supplied and reacted (supported catalyst method).
  • a pre-prepared supported catalyst a catalyst metal or precursor supported on a support
  • a hydrocarbon such as ethylene and hydrogen or
  • a mixed gas such as nitrogen is supplied and reacted (supported catalyst method).
  • the floating catalyst method Since the floating catalyst method is reacted in a high temperature range of 1000 ° C. or higher, not only hydrocarbon decomposition on the catalyst metal but also hydrocarbon self-decomposition reaction proceeds.
  • Pyrolytic carbon deposits on the multi-walled carbon nanotubes grown from the catalyst metal, and grows in the fiber thickness direction.
  • the multi-walled carbon nanotube obtained by this method is covered with pyrolytic carbon having low crystallinity, so that the conductivity is relatively low.
  • it After synthesizing by the floating catalyst method, it is graphitized by heat treatment at a temperature of 2600 ° C. or higher in an inert gas atmosphere. By this heat treatment, crystal rearrangement and graphite crystal growth proceed, and the conductivity of the fiber is improved. Further, the catalytic metal is evaporated by the heat treatment, and multi-walled carbon nanotubes with few impurities are obtained.
  • the supported catalyst method is reacted at 500 to 800 ° C., the self-decomposition reaction of hydrocarbons is suppressed.
  • Thin multi-walled carbon nanotubes grown from the catalyst metal can be obtained.
  • This multi-walled carbon nanotube has a relatively high crystallinity and a relatively high conductivity. Therefore, it is not necessary to perform the heat treatment for graphitization as applied to the multi-walled carbon nanotube obtained by the floating catalyst method. Since the multi-walled carbon nanotubes synthesized by the supported catalyst method do not undergo heat treatment for graphitization, a catalytic metal in the order of percent remains in the multi-walled carbon nanotubes.
  • JP 2002-308610 A Japanese Patent No. 3887315
  • Multi-walled carbon nanotubes are mainly used as fillers for imparting electrical conductivity and thermal conductivity to resins and the like.
  • the catalytic metal contained in the product has an adverse effect on physical properties such as strength of the resin composite.
  • Multi-walled carbon nanotubes synthesized by the floating catalyst method and graphitized are used as conductive aids for positive and negative electrodes of lithium ion secondary batteries.
  • the residual catalytic metal is ionized during repeated charge and discharge, and the metal is deposited on the negative electrode happenss.
  • the metal deposited on the negative electrode grows so as to penetrate the separator, the positive electrode and the negative electrode are short-circuited.
  • Patent Document 1 describes a carbon nanotube purification method characterized in that carbon nanotubes are immersed in an acidic solution containing at least sulfuric acid to remove the metal. Even if the heat treatment after pickling described in Patent Document 1, that is, the heat treatment is performed at a temperature of less than 600 ° C., sulfate ions remain on the carbon nanotube surface. When this carbon nanotube is added to the positive electrode of the battery, the positive electrode active material may corrode due to the influence of sulfate ions.
  • Patent Document 2 discloses that a) a step of heating a mixture containing single-walled carbon nanotubes and accompanying impurities at a temperature sufficient to selectively remove carbon impurities in the presence of an oxidizing gas, and b) Exposing the mixture to an acid at a temperature in the range of 100 ° C. to 130 ° C. to remove metal impurities; and c) at a temperature and time sufficient to introduce openings into the single-walled carbon nanotubes.
  • a method for synthesizing a purified single-walled carbon nanotube having an open end, which comprises sequentially exposing the carbon nanotube to nitric acid, is described.
  • the heat treatment conditions after opening the tip of the single-walled carbon nanotube with nitric acid Therefore, the concern about electrode active material corrosion due to remaining nitrate ions cannot be solved.
  • An object of the present invention is to provide a multi-walled carbon nanotube with a small amount of elution of metal ions that may be deposited on the electrode of a battery and cause corrosion of the electrode active material, which may cause a short circuit, etc. It is to provide a purification method to obtain.
  • the present invention includes the following aspects.
  • the multi-walled carbon nanotubes synthesized by the vapor phase method are added to a nitric acid aqueous solution of 0.2 mol / L or more to dissolve the catalyst metal in the multi-walled carbon nanotubes, and solids are taken out by solid-liquid separation.
  • a method for purifying a multi-walled carbon nanotube, comprising heat-treating a solid at a temperature higher than 150 ° C.
  • the purification method according to [1] further comprising adding a solid substance collected by solid-liquid separation to pure water and then collecting the solid substance again by solid-liquid separation.
  • Multi-walled carbon nanotubes synthesized by a vapor phase method and then acid-washed, wherein the amount of the metal element derived from the catalytic metal remaining in the multi-walled carbon nanotubes is 1000 ppm or more and 8000 ppm or less by ICP emission analysis.
  • a step of producing a multi-walled carbon nanotube by a supported catalyst method a step of adding the multi-walled carbon nanotube to a 0.2 mol / L or more nitric acid aqueous solution, a step of taking out the multi-walled carbon nanotube by solid-liquid separation, the multi-walled carbon
  • a method for producing purified multi-walled carbon nanotubes comprising the step of heat-treating the nanotubes at a temperature higher than 150 ° C.
  • FIG. 3 is a view showing a transmission electron micrograph of an example of a multi-walled carbon nanotube before purification (photographing magnification: 500 k times; multi-walled carbon nanotube having a hollow structure, and pyrolytic carbon scattered on the surface).
  • FIG. 2 is a view showing a transmission electron micrograph of an example of a multi-walled carbon nanotube before purification (photographing magnification: 500 k times; multi-walled carbon nanotube having a structure in which some hollows are closed, and pyrolytic carbon is scattered on the surface.) .
  • FIG. 2 is a view showing a transmission electron micrograph of the multi-walled carbon nanotube purified in Example 1 (photographing magnification: 500 k times; multi-walled carbon nanotube having a hollow structure, and a disordered carbon structure is uniformly present on the surface).
  • Example 3 is a view showing a transmission electron micrograph of the multi-walled carbon nanotube purified in Example 1 (photographing magnification: 500 k times; multi-walled carbon nanotube having a structure in which a part of the hollow is closed, and a disordered carbon structure is uniformly present on the surface) . It is a figure which shows the longitudinal cross-section of the cell for powder resistance measurement. It is a figure which shows the laminated body used for the triode cell.
  • the method for purifying a multi-walled carbon nanotube according to an embodiment of the present invention is to dissolve the catalytic metal in the multi-walled carbon nanotube by adding the multi-walled carbon nanotube synthesized by a gas phase method to a 0.2 mol / L or more nitric acid aqueous solution. , Extract solids by solid-liquid separation, Heat treating the solid at a temperature higher than 150 ° C.
  • Multi-walled carbon nanotubes used in the purification method are synthesized by a gas phase method.
  • the supported catalyst method is preferable among the gas phase methods.
  • the supported catalyst method is a method for producing carbon fiber by reacting a carbon source in a gas phase using a catalyst obtained by supporting a catalyst metal on an inorganic support.
  • the inorganic carrier include alumina, magnesia, silica titania, calcium carbonate, and the like.
  • the inorganic carrier is preferably granular.
  • the catalyst metal include iron, cobalt, nickel, molybdenum, vanadium, and the like.
  • the supporting is performed by impregnating the support with a solution of the compound containing the catalytic metal element, coprecipitation of the solution containing the compound containing the catalytic metal element and the element constituting the inorganic support, or other known support. It can be done by the method.
  • the carbon source include methane, ethylene, acetylene and the like.
  • the reaction can be carried out in a reaction vessel such as a fluidized bed, moving bed, or fixed bed heated to 500 to 800 ° C.
  • a carrier gas can be used to supply the carbon source to the reaction vessel.
  • the carrier gas include hydrogen, nitrogen, and argon.
  • the reaction time is preferably 5 to 120 minutes.
  • the multi-walled carbon nanotubes used in the purification method preferably have a fiber outer diameter of 6 nm to 50 nm and an aspect ratio of 100 to 1000.
  • the fiber outer diameter is less than 6 nm, it becomes difficult to disperse the fibers one by one. Fibers having a fiber outer diameter of more than 50 nm are difficult to produce by the supported catalyst method.
  • the aspect ratio is less than 100, it is difficult to form an efficient conductive network when a composite is manufactured.
  • the aspect ratio is larger than 1000, the degree of entanglement between fibers becomes strong and dispersion becomes difficult.
  • the fiber outer diameter and aspect ratio are calculated by measuring the dimensions of the multi-walled carbon nanotubes shown in the microscopic observation photograph.
  • multi-walled carbon nanotubes synthesized by a gas phase method may be used as they are, but it is preferable to use them after pulverizing them before adding them to a nitric acid aqueous solution.
  • Multi-walled carbon nanotubes synthesized by a gas phase method, particularly a supported catalyst method generally form an aggregate (see FIG. 1). The size varies depending on the size of the catalyst used, but is usually about 50 ⁇ m to 2 mm. For efficient acid cleaning, the smaller the aggregate size, the more effective the contact efficiency with the cleaning liquid. Examples of a method for reducing the size of the aggregate include a dry pulverization method and a wet pulverization method.
  • Examples of the dry pulverization apparatus include a ball mill that uses the impact force and shear force of a medium, a pulverizer that uses an impact force such as a hammer mill, and a jet mill that uses a collision between objects to be crushed.
  • a bead mill using a shearing force of media can be used as an apparatus for wet pulverization.
  • the size of the aggregate after pulverization is preferably 1 ⁇ m to 200 ⁇ m, more preferably 1 ⁇ m to 20 ⁇ m.
  • multi-walled carbon nanotubes may be subjected to oxidation treatment by heating at 350 ° C. or more and 500 ° C. or less in the presence of oxygen such as in the air as a purification target. Since the wettability with water is improved by oxidizing the multi-walled carbon nanotubes, the familiarity between the aqueous nitric acid solution and the multi-walled carbon nanotube aggregates is improved, and the purification effect may be enhanced. When oxidized at 400 ° C. or higher, amorphous carbon having low crystallinity other than multi-walled carbon nanotubes disappears, so that the amount of metal dissolved by the aqueous nitric acid solution may increase.
  • the multi-walled carbon nanotube is added to a nitric acid aqueous solution to dissolve the catalytic metal in the multi-walled carbon nanotube.
  • the amount of the multi-walled carbon nanotube added to the nitric acid aqueous solution is preferably 0.1% by mass or more and 5% by mass or less, and more preferably 1% by mass or more and 4% by mass or less as a solid content concentration.
  • the solid content concentration can be calculated by a calculation formula of (mass of multi-walled carbon nanotube) / ⁇ (mass of multi-walled carbon nanotube) + (mass of nitric acid aqueous solution) ⁇ ⁇ 100.
  • the amount of multi-walled carbon nanotubes processed per unit time may be low.
  • the solid content concentration is higher than 5% by mass, the viscosity of the slurry is increased and the fluidity is lowered, so that the handling property in transfer or stirring may be lowered.
  • the concentration of the nitric acid aqueous solution used is usually 0.2 mol / L or more, preferably 0.5 mol / L or more and 12 mol / L or less.
  • concentration of the nitric acid aqueous solution is less than 0.2 mol / L, the oxidation ability and dissolution ability with respect to the metal tend to decrease.
  • the temperature at which the catalytic metal in the multi-walled carbon nanotube is dissolved is preferably 70 ° C. or higher and the boiling point or lower. Even if the temperature is less than 70 ° C., the metal can be dissolved, but the treatment tends to take a long time.
  • the dissolution operation can be performed under atmospheric pressure. When a pressurized container is used in the melting operation of the metal, the temperature can be set to 100 ° C. or higher, so that the treatment can be performed in a short time.
  • the temperature here is the temperature of a slurry in which multi-walled carbon nanotubes are dispersed in an aqueous nitric acid solution.
  • the time for dissolving using the aqueous nitric acid solution is not particularly limited as long as it is sufficient to dissolve the catalyst metal.
  • the temperature is set to 70 ° C. or more and the boiling point or less, it is usually 0.5 hours or more and 24 hours or less.
  • the multi-walled carbon nanotubes may float on the liquid surface by repelling the nitric acid aqueous solution
  • the multi-walled carbon nanotubes are added to the nitric acid aqueous solution and then mixed so that the multi-walled carbon nanotubes are in sufficient contact with the nitric acid aqueous solution.
  • the mixing method is not particularly limited. For example, a method of using heat convection without forcibly stirring, a method of stirring the slurry with a stirring blade, a method of circulating the slurry with a pump, and a gas jetted into the slurry. And bubbling.
  • a glass-lined one or one made of a corrosion-resistant material such as SUS or PTFE is preferable.
  • solid-liquid separation is performed to extract a solid matter.
  • the method for solid-liquid separation is not particularly limited.
  • Specific examples of solid-liquid separation equipment include screw presses, roller presses, rotary drum screens, belt screens, vibrating screens, multi-plate wave filters, vacuum dehydrators, pressure dehydrators, belt presses, centrifugal concentration dehydrators, Multiple disk dehydrator etc. are mentioned.
  • the moisture content of the cake-like solid obtained by solid-liquid separation is preferably less than 91% by mass.
  • the water content is represented by the formula: 100- (solid content concentration in cake (mass%)).
  • solid matter cake form
  • the solid content concentration during redispersion is preferably 0.1% by mass or more and 5% by mass or less.
  • the solid matter is again taken out by solid-liquid separation.
  • the re-dispersion in pure water and the re-extraction of the solid content by solid-liquid separation are performed until the pH of the liquid obtained by solid-liquid separation is preferably 1.5 or more and 6.0 or less, more preferably 2.0. It is preferable to carry out repeatedly until the value is 5.0 or less.
  • the extracted solid is heat-treated.
  • the temperature during the heat treatment is higher than 150 ° C.
  • the heat treatment is preferably performed at 200 ° C. or higher and lower than 350 ° C. in an atmosphere containing oxygen such as in the air so that the oxidation of the multi-walled carbon nanotube does not proceed.
  • the heat treatment can be performed at 200 ° C. or higher and lower than 1300 ° C. in an inert gas atmosphere such as argon or nitrogen or in a vacuum. By this heat treatment, moisture and nitrate ions contained in the solid are removed.
  • the multi-walled carbon nanotubes may agglomerate into a plate-like lump.
  • the multi-walled carbon nanotube is added to an electrode or the like, it is preferably pulverized using a dry pulverizer such as a pulverizer using an impact force such as a hammer or a jet mill using collision between objects to be pulverized.
  • the amount of the catalytic metal-derived metal element remaining in the multi-walled carbon nanotube is preferably 1000 ppm or more and 8000 ppm or less, more preferably 1000 ppm or more and 6500 ppm or less by ICP emission analysis. is there. Further, in the purified multi-walled carbon nanotube according to one embodiment of the present invention, the amount of acid-derived anions remaining in the multi-walled carbon nanotube is preferably less than 20 ppm, more preferably less than 10 ppm, by ion chromatography analysis.
  • the purified multi-walled carbon nanotube according to one embodiment of the present invention has a structure in which the outer layer portion that has been in contact with the nitric acid aqueous solution is uniformly disturbed.
  • the internal structure is the same as that before cleaning, and has a structure in which crystals are developed. That is, in the purified multi-walled carbon nanotube according to one embodiment of the present invention, the surface layer portion of the multi-walled carbon nanotube is covered with amorphous carbon (see FIGS. 5 and 6).
  • the purified multi-walled carbon nanotube according to one embodiment of the present invention has a function as a conductive additive, it can be suitably used for a positive electrode and / or a negative electrode of a battery.
  • the positive electrode of the battery can be produced from the purified multi-walled carbon nanotube according to one embodiment of the present invention, a positive electrode active material, and a binder.
  • the negative electrode of the battery can be produced from the purified multi-walled carbon nanotube according to one embodiment of the present invention, a negative electrode active material, and a binder.
  • the positive electrode active material one or two or more kinds of conventionally known materials (materials capable of occluding and releasing lithium ions) known as positive electrode active materials in lithium batteries can be selected and used. .
  • lithium-containing metal oxides that can occlude and release lithium ions are preferable.
  • this lithium-containing metal oxide a composite oxide containing lithium element and at least one element selected from Co, Mg, Cr, Mn, Ni, Fe, Al, Mo, V, W, Ti, and the like is used. Can be mentioned.
  • the negative electrode active material one or two or more kinds of conventionally known materials (materials capable of occluding and releasing lithium ions) known as negative electrode active materials in lithium-based batteries may be appropriately selected and used.
  • the material capable of inserting and extracting lithium ions include carbon materials, Si and Sn, or alloys and oxides containing at least one of them.
  • a carbon material is preferable.
  • the carbon material include artificial graphite produced by heat-treating natural graphite, petroleum-based and coal-based coke; hard carbon obtained by carbonizing a resin, mesophase pitch-based carbon material, and the like.
  • the surface spacing d 002 calculated from by powder X-ray diffraction (002) diffraction line is preferably 0.335 ⁇ 0.337 nm.
  • the negative electrode active material it is preferable to use a carbon material and an alloy or oxide containing at least one of Si and Sn, or at least one of them.
  • a carbon black conductive material such as acetylene black, furnace black, ketjen black and the like can be used in combination.
  • the binder can be appropriately selected from conventionally known materials as a binder for lithium-based battery electrodes.
  • binders include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, and vinylidene fluoride-tetrafluoroethylene copolymer.
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene copolymer rubber
  • Example 1 (catalyst preparation) Aluminum hydroxide (Hijilite M-43 manufactured by Showa Denko KK) was heat-treated at 850 ° C. for 2 hours in an air-flowing atmosphere to prepare a carrier. A 300 ml tall beaker was charged with 50 g of pure water, and 4.0 g of carrier was added and dispersed therein to prepare a carrier slurry. 16.6 g of pure water was put into a 50 ml beaker, and 0.32 g of hexaammonium heptamolybdate tetrahydrate (manufactured by Junsei Co., Ltd.) was added and dissolved therein.
  • Hijilite M-43 manufactured by Showa Denko KK
  • each of the catalyst solution and the pH adjusting solution was dropped onto the support slurry with a Pasteur pipette. It took 15 minutes to put the entire amount of the catalyst solution into the carrier slurry.
  • the contents of the tall beaker were separated with filter paper (5C), and the cake on the filter paper was sprayed with 50 g of pure water and washed. The washed filter cake was transferred to a magnetic dish and dried in a hot air drier at 120 ° C. for 6 hours. The obtained dried product was pulverized in a mortar to obtain a catalyst for synthesizing multi-walled carbon nanotubes.
  • Production Example 2 (Synthesis of multi-walled carbon nanotube) 1.0 g of the catalyst obtained in Production Example 1 was placed on a quartz boat. This was placed in the center of a horizontal tubular furnace (quartz tube: inner diameter 50 mm, length 1500 mm, soaking zone 600 mm). While flowing nitrogen gas through the horizontal tubular furnace at 500 ml / min, the temperature was raised to 680 ° C. over 30 minutes. Thereafter, the supply of nitrogen gas was stopped, and a mixed gas of ethylene and hydrogen (ethylene concentration 50% by volume) was allowed to flow at 2000 ml / min and reacted for 20 minutes to synthesize multi-walled carbon nanotubes.
  • a mixed gas of ethylene and hydrogen ethylene concentration 50% by volume
  • the supply of the mixed gas was stopped, switched to nitrogen gas, supplied, cooled to room temperature, and the multi-walled carbon nanotube was taken out from the furnace.
  • the obtained multi-walled carbon nanotubes contained a large number of aggregates having a particle diameter of 50 to 600 ⁇ m.
  • the multi-walled carbon nanotube had a specific surface area of 260 m 2 / g and a powder resistance of 0.016 ⁇ cm.
  • the metal contained in the multi-walled carbon nanotube was 11200 ppm for iron and 2000 ppm for molybdenum.
  • Production Example 3 (Crushing of multi-walled carbon nanotubes)
  • the multi-walled carbon nanotubes synthesized in Production Example 2 were pulverized using a jet mill STJ-200 manufactured by Seishin Enterprise Co., Ltd. under the conditions of a pusher nozzle pressure of 0.64 MPa and a gliding nozzle pressure of 0.60 MPa.
  • the pulverized multi-walled carbon nanotubes formed an aggregate having a 50% particle diameter D 50 of 6 ⁇ m in the volume-based cumulative particle size distribution.
  • the pulverized multi-wall carbon nanotubes had a specific surface area of 260 m 2 / g and a powder resistance of 0.018 ⁇ cm.
  • the metal contained in the pulverized multi-walled carbon nanotube was 11200 ppm of iron and 2000 ppm of molybdenum.
  • Nitric acid Reagent manufactured by Kanto Chemical Co. Nitric acid (concentration 60 to 61%) diluted with pure water was used.
  • Hydrochloric acid Reagent hydrochloric acid (concentration: 35.0-37.0%) manufactured by Kanto Chemical Co., Inc. diluted with pure water was used.
  • Sulfuric acid Reagent manufactured by Kanto Chemical Co. 3 mol% sulfuric acid diluted with pure water was used.
  • Pure water What was manufactured using the ultrapure water manufacturing apparatus RFU424TA (water quality 18.2 ohm-cm (25 degreeC)) by ADVANTEC company was used.
  • ⁇ Analysis method> (Specific surface area) Measurement was performed using nitrogen gas with a specific surface area measurement device (NOVA1000 manufactured by Yuasa Ionics).
  • the measurement jig shown in FIG. 7 was used.
  • the cell 4 is made of a resin having an inner size of 4 cm in width, 1 cm in depth, and 10 cm in depth, and includes a current terminal 3 made of a copper plate for flowing a current to the object to be measured 5 and a voltage measuring terminal 1 in the middle. .
  • a certain amount of sample is put in the cell 4, and the sample is compressed by applying force to the compression rod 2 from above.
  • a current of 0.1 A was passed through the sample, and the voltage between 2.0 cm of the two voltage measuring terminals 1 inserted from the bottom of the container at the time when the bulk density was 0.8 g / cm 3 was read. Is calculated.
  • Iron and molybdenum contained in the liquid separated into solid and liquid were quantified using an ICP emission spectrometer (ICPE-9000, manufactured by Shimadzu Corporation).
  • Example 1 (Acid cleaning) A separable flask (volume: 2 L) containing 990 g of a 0.5 mol / L nitric acid aqueous solution and a stirrer was set in a hot stirrer, and 10 g of multi-walled carbon nanotubes obtained in Production Example 3 were added while stirring the nitric acid aqueous solution. Thereafter, a separable flask equipped with a thermometer and a cooler was attached to the separable flask. Next, heating of the hot stirrer was started, the slurry temperature was raised to 90 ° C. over about 40 minutes, and held at 90 ° C. or higher for 3 hours. The slurry temperature at the end of the acid washing was 98 ° C.
  • Example 2 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the heat treatment method in Example 1 was changed to the following method. Table 2 shows the amount of impurities in the purified multi-walled carbon nanotube. Solids were placed on a glass boat. This was placed in a horizontal tubular furnace (quartz tube: inner diameter 50 mm, length 1500 mm, soaking zone 600 mm), and the temperature was raised from room temperature to 400 ° C. over 1 hour under argon flow, and kept at 400 ° C. for 3 hours. Then, it stood to cool until a furnace body temperature became 200 degrees C or less. Argon flow was stopped and the glass boat was recovered.
  • a horizontal tubular furnace quartz tube: inner diameter 50 mm, length 1500 mm, soaking zone 600 mm
  • Example 1 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the set temperature of the hot air dryer during heat treatment was changed to 100 ° C. Table 2 shows the amount of impurities in the purified multi-walled carbon nanotube.
  • Example 2 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the set temperature of the hot air dryer during heat treatment was changed to 150 ° C. Table 2 shows the amount of impurities in the purified multi-walled carbon nanotube.
  • Comparative Example 3 Purified multi-walled carbon nanotubes were produced in the same manner as in Comparative Example 2 except that the 0.5 mol / L nitric acid aqueous solution was changed to a 1 mol / L hydrochloric acid aqueous solution. The slurry temperature at the end of the acid washing was 98 ° C. Table 2 shows the amount of impurities in the purified multi-walled carbon nanotube.
  • Comparative Example 4 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 2 except that the 0.5 mol / L nitric acid aqueous solution was changed to a 1 mol / L hydrochloric acid aqueous solution. The slurry temperature at the end of the acid washing was 98 ° C. Table 2 shows the amount of impurities in the purified multi-walled carbon nanotube.
  • Comparative Example 5 Purified multi-walled carbon nanotubes were produced in the same manner as in Comparative Example 2 except that the 0.5 mol / L nitric acid aqueous solution was changed to a 0.5 mol / L sulfuric acid aqueous solution. The slurry temperature at the end of the acid washing was 98 ° C. Table 2 shows the amount of impurities in the purified multi-walled carbon nanotube.
  • Example 3 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the 0.5 mol / L nitric acid aqueous solution was changed to a 0.25 mol / L nitric acid aqueous solution. The slurry temperature at the end of the acid washing was 98 ° C. Table 3 shows the amount of impurities and the powder resistance in the purified multi-walled carbon nanotube.
  • Example 4 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that 990 g of 0.5 mol / L nitric acid aqueous solution was changed to 980 g of 1 mol / L nitric acid aqueous solution and the amount of multi-walled carbon nanotubes was changed from 10 g to 20 g. The slurry temperature at the end of the acid washing was 98 ° C. Table 3 shows the amount of impurities and the powder resistance in the purified multi-walled carbon nanotube.
  • Example 5 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the acid washing method in Example 1 was changed to the following method.
  • a three-one motor was set in a separable flask (volume 2 L) containing 960 g of a 3 mol / L nitric acid aqueous solution, and 40 g of the multi-walled carbon nanotubes obtained in Production Example 2 was added while stirring the nitric acid aqueous solution. Thereafter, the three-one motor was removed, and a separable cover equipped with a thermometer and a cooler was attached to the separable flask.
  • a mantle heater was attached to the lower part of the separable flask, heating of the mantle heater was started, the slurry temperature was set to 90 ° C. over about 40 minutes, and the temperature was maintained at 90 ° C. or more for 3 hours. The slurry temperature at the end of the acid cleaning was 102 ° C.
  • Table 3 shows the amount of impurities and the powder resistance in the purified multi-walled carbon nanotube.
  • Example 6 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the 0.5 mol / L nitric acid aqueous solution was changed to a 6 mol / L nitric acid aqueous solution. The slurry temperature at the end of the acid washing was 105 ° C. Table 3 shows the amount of impurities and the powder resistance in the purified multi-walled carbon nanotube.
  • Comparative Example 7 Purified multi-walled carbon nanotubes were produced in the same manner as in Example 1 except that the 0.5 mol / L nitric acid aqueous solution was changed to a 0.1 mol / L nitric acid aqueous solution. The slurry temperature at the end of the acid washing was 98 ° C. Table 3 shows the amount of impurities and the powder resistance in the purified multi-walled carbon nanotube.
  • the method for creating, testing, and analyzing the electrode for evaluation and the cell for evaluation are shown below.
  • FIG. 8 shows a schematic diagram of the laminate used in the triode cell.
  • Lithium metal foil 8 (counter electrode: manufactured by Honjo Metal Co., Ltd., 22 mm ⁇ 22 mm ⁇ 0.05 mmt) obtained by crimping a multi-walled carbon nanotube / PTFE composite electrode with a working electrode 6 and a copper mesh is used as separators 7a and 7b (Celguard manufactured by Cellguard).
  • the electrolyte was a mixed product of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of EMC (ethyl methyl carbonate), and an electrolyte in which LiPF 6 was dissolved at 1.0 mol / liter was used.
  • ⁇ Metal dissolution test method> An evaluation cell was connected to a potentio galvanostat (manufactured by Biologic Science instruments), and a voltage of 4.3 V was applied to the working electrode with respect to the reference electrode. Thereafter, the current value was maintained until it sufficiently attenuated (24 hours).
  • the metal contained in the multi-walled carbon nanotube / PTFE composite electrode elutes into the electrolyte as ions when a voltage is applied, and is reduced and deposited as a metal on the lithium metal foil as the counter electrode.
  • Example 7 The purified multi-walled carbon nanotubes obtained in Example 4 were pulverized for 1 minute using a juicer mixer (Panasonic Fiber Mixer MX-X57). Then, it mixed with PTFE, the multi-walled carbon nanotube / PTFE composite electrode and the cell for evaluation were produced, and the metal elution test was implemented. The results are shown in Table 4.
  • Comparative Example 8 A multi-walled carbon nanotube / PTFE composite electrode and an evaluation cell were prepared in the same manner as in Example 7 except that the purified multi-walled carbon nanotube obtained in Example 4 was replaced with the purified multi-walled carbon nanotube obtained in Comparative Example 3. The metal dissolution test was conducted. The results are shown in Table 4.
  • Comparative Example 9 A multi-walled carbon nanotube / PTFE composite electrode and an evaluation cell were prepared in the same manner as in Example 7, except that the purified multi-walled carbon nanotube obtained in Example 4 was replaced with the purified multi-walled carbon nanotube obtained in Comparative Example 7. The metal dissolution test was conducted. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 気相法により合成された多層カーボンナノチューブを、0.2mol/L以上の硝酸水溶液に添加して、多層カーボンナノチューブ中の触媒金属を溶解させ、 固液分離により固形物を採り出し、 該固形物を150℃より高い温度で熱処理することを含む方法を行うことによって、多層カーボンナノチューブに残存する触媒金属由来の金属元素の量がICP発光分析で1000ppm以上8000ppm以下であり、且つ多層カーボンナノチューブに残存する酸由来の陰イオンの量がイオンクロマトグラフ分析で20ppm未満である精製多層カーボンナノチューブを得る。

Description

多層カーボンナノチューブの精製方法
 本発明は不純物の量が少ない多層カーボンナノチューブおよびそれを得るための精製方法に関する。より詳細に、本発明は、気相法によって合成され次いで酸洗浄された多層カーボンナノチューブであって、触媒金属由来の金属元素および酸由来の陰イオンの残存量が低い多層カーボンナノチューブおよびそれを得るための精製方法に関する。
 多層カーボンナノチューブの製造方法としては、化学気相蒸着法(炭化水素などを触媒金属上で熱分解させ、カーボンナノチューブを形成する方法)と、物理気相蒸着法(アークやレーザーなどにより黒鉛を昇華させて、冷却過程でカーボンナノチューブを形成する方法)とがある。
 化学気相蒸着法はリアクターのスケールアップが比較的容易であるため大量合成に適した方法である。
 化学気相蒸着法は大きく分けて2つの方法に大別することができる。一つは、ベンゼンなどの炭化水素に触媒となる金属化合物やイオウなどの助触媒を溶解し、水素をキャリアガスとして1000℃以上に加熱された反応場に供給し、その場で触媒生成とカーボンナノチューブの成長とを行う方法(浮遊触媒法)である。他の一つは、500~700℃に加熱された反応場に予め調製された担持触媒(担体上に触媒金属または前駆体を担持したもの)を投入し、エチレンなどの炭化水素と、水素や窒素などの混合ガスを供給し反応させる方法(担持触媒法)である。
 浮遊触媒法は1000℃以上の高温域で反応させるので、触媒金属上での炭化水素の分解のみならず、炭化水素の自己分解反応が進行する。触媒金属を起点にして成長した多層カーボンナノチューブ上に熱分解炭素が沈着し、繊維の太さ方向にも成長する。この方法で得られた多層カーボンナノチューブは、結晶性の低い熱分解炭素で覆われているため導電性が比較的に低い。そこで浮遊触媒法で合成した後、不活性ガス雰囲気下2600℃以上の温度で熱処理して黒鉛化する。この熱処理により結晶の再配列、黒鉛結晶成長が進行し、繊維の導電性が向上する。また、熱処理により触媒金属が蒸発し、不純物の少ない多層カーボンナノチューブが得られる。
 一方、担持触媒法は500~800℃で反応させるので、炭化水素の自己分解反応が抑制される。触媒金属を起点にして成長した細い多層カーボンナノチューブを得ることができる。この多層カーボンナノチューブは比較的高い結晶性を有し、導電性が比較的に高い。したがって、浮遊触媒法で得られる多層カーボンナノチューブに施されるような黒鉛化のための熱処理を行う必要がない。担持触媒法で合成される多層カーボンナノチューブは、黒鉛化のための熱処理を経ないので、多層カーボンナノチューブの中にパーセントオーダーの触媒金属が残留している。
特開2002-308610号公報 特許3887315号公報
 多層カーボンナノチューブは、樹脂などに電気伝導性や熱伝導性を付与するための充填剤として主に使用されている。この用途では、生成物中に含まれる触媒金属が樹脂複合体の強度等の物性に悪影響を及ぼすほどの問題は起きていない。
 浮遊触媒法により合成され、黒鉛化処理した多層カーボンナノチューブはリチウムイオン二次電池の正極や負極の導電助剤として使用されている。一方、担持触媒法で合成し熱処理を経ていない多層カーボンナノチューブを、正極に導電助剤として添加した場合、充電放電を繰り返している間に残留触媒金属がイオン化し、負極上に金属が析出する現象が起きる。負極上に析出した金属がセパレータを貫通するほどに成長すると正極と負極との間が短絡する。
 残留金属を除去する方法として、特許文献1には、少なくとも硫酸を含む酸性溶液中にカーボンナノチューブを浸漬し、金属を除去することを特徴とするカーボンナノチューブの精製方法が記載されている。特許文献1に記載されている酸洗後の熱処理、つまり、600℃未満の温度で熱処理を実施したとしてもカーボンナノチューブ表面に硫酸イオンが残留してしまう。このカーボンナノチューブを電池の正極に添加した場合、硫酸イオンの影響で正極活物質が腐食する恐れがある。
 また、特許文献2にはa)単層カーボンナノチューブと付随不純物とを含む混合物を、酸化性ガスの存在下、カーボン不純物を選択的に除去するに充分な温度で加熱する工程と、b)前記混合物を100℃~130℃の範囲の温度で酸に露出して、金属不純物を除去する工程と、c)前記単層カーボンナノチューブに開口を導入するのに充分な温度と時間で、前記単層カーボンナノチューブを硝酸に露出する工程とを順次含むことを特徴とする、開放端を有する精製単層カーボンナノチューブを合成する方法が記載されている。しかし、硝酸で単層カーボンナノチューブの先端部を開口した後の熱処理条件については詳細な記述は見られない。したがって、残留する硝酸イオンによる電極活物質腐食の懸念点を解消することができない。
 本発明の目的は、電池の電極に析出して短絡(ショート)などを引き起すことがある金属イオンおよび電極活物質の腐食を引き起こすことがある陰イオンの溶出量が少ない多層カーボンナノチューブおよびそれを得るための精製方法を提供することである。
 本発明者らは、上記目的を達成するために鋭意検討した。その結果、以下のような態様を包含する本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
〔1〕気相法により合成された多層カーボンナノチューブを、0.2mol/L以上の硝酸水溶液に添加して多層カーボンナノチューブ中の触媒金属を溶解させ、 固液分離により固形物を採り出し、 該固形物を150℃より高い温度で熱処理することを含む、多層カーボンナノチューブの精製方法。
〔2〕固液分離により採り出された固形物を純水に添加して、次いで固液分離により固形物を再び採り出すことをさらに含む〔1〕に記載の精製方法。
〔3〕固液分離により採り出された固形物を純水に添加して、次いで固液分離により固形物を再び採り出すことを、固液分離により得られる液体のpHが1.5以上6.0以下になるまで繰り返す、〔2〕に記載の精製方法。
〔4〕硝酸水溶液に添加する多層カーボンナノチューブの量が、固形分濃度として、0.1質量%以上5質量%以下である、〔1〕~〔3〕のいずれかひとつに記載の精製方法。
〔5〕熱処理時の雰囲気が空気中であり且つ熱処理時の温度が200℃以上350℃未満である、〔1〕~〔4〕のいずれかひとつに記載の精製方法。
〔6〕多層カーボンナノチューブ中の触媒金属を硝酸水溶液で溶解させる工程を大気圧下で行う、〔1〕~〔5〕のいずれかひとつに記載の精製方法。
〔7〕多層カーボンナノチューブ中の触媒金属を硝酸水溶液で溶解させる工程の前に、多層カーボンナノチューブを粉砕することをさらに含む〔1〕~〔6〕のいずれかひとつに記載の精製方法。
〔8〕気相法により合成され次いで酸洗浄された多層カーボンナノチューブであって、多層カーボンナノチューブに残存する触媒金属由来の金属元素の量がICP発光分析で1000ppm以上8000ppm以下であり、且つ多層カーボンナノチューブに残存する酸由来の陰イオンの量がイオンクロマトグラフ分析で20ppm未満である精製多層カーボンナノチューブ。
〔9〕多層カーボンナノチューブの表層部がアモルファスカーボンに覆われている〔8〕に記載の精製多層カーボンナノチューブ。
〔10〕前記の〔8〕または〔9〕に記載の精製多層カーボンナノチューブを含有する電池用電極。
〔11〕担持触媒法により多層カーボンナノチューブを製造するステップ、0.2mol/L以上の硝酸水溶液に該多層カーボンナノチューブを添加するステップ、固液分離により該多層カーボンナノチューブを採り出すステップ、該多層カーボンナノチューブを150℃より高い温度で熱処理するステップを含む、精製多層カーボンナノチューブの製造方法。
精製前の多層カーボンナノチューブ凝集体の一例の走査電子顕微鏡写真を示す図である(写真中央 50倍 写真右上 2k倍)。 精製前の多層カーボンナノチューブ凝集体を粉砕したものの一例の走査電子顕微鏡写真を示す図である(写真中央 50倍 写真右上 2k倍)。 精製前の多層カーボンナノチューブの一例の透過電子顕微鏡写真を示す図である(撮影倍率500k倍; 中空構造を有する多層カーボンナノチューブ、表面に熱分解炭素が点在している。)。 精製前の多層カーボンナノチューブの一例の透過電子顕微鏡写真を示す図である(撮影倍率500k倍; 一部中空が閉じた構造を有する多層カーボンナノチューブ、表面に熱分解炭素が点在している。)。 実施例1で精製した多層カーボンナノチューブの透過電子顕微鏡写真を示す図である(撮影倍率500k倍; 中空構造を有する多層カーボンナノチューブ、表面に乱れた炭素構造が一様に存在している。)。 実施例1で精製した多層カーボンナノチューブの透過電子顕微鏡写真を示す図である(撮影倍率500k倍; 一部中空が閉じた構造を有する多層カーボンナノチューブ、表面に乱れた炭素構造が一様に存在)。 粉体抵抗測定用セルの縦断面を示す図である。 三極セルに用いた積層体を示す図である。
 本発明の一実施形態に係る多層カーボンナノチューブの精製方法は、気相法により合成された多層カーボンナノチューブを0.2mol/L以上の硝酸水溶液に添加して多層カーボンナノチューブ中の触媒金属を溶解させ、
 固液分離により固形物を採り出し、
 該固形物を150℃より高い温度で熱処理することを含む。
 精製方法に用いられる多層カーボンナノチューブは、気相法により合成されるものである。本発明では気相法のうち、担持触媒法が好ましい。
 担持触媒法は、無機担体上に触媒金属を担持してなる触媒を用いて、炭素源を気相中で反応させて炭素繊維を製造する方法である。無機担体としてはアルミナ、マグネシア、シリカチタニア、炭酸カルシウムなどが挙げられる。無機担体は粉粒状であることが好ましい。触媒金属としては鉄、コバルト、ニッケル、モリブデン、バナジウムなどが挙げられる。担持は、触媒金属元素を含む化合物の溶液を担体に含浸させることによって、触媒金属元素を含む化合物および無機担体を構成する元素を含む化合物の溶液を共沈させることによって、またはその他の公知の担持方法によって行うことができる。炭素源としてはメタン、エチレン、アセチレンなどが挙げられる。反応は、500~800℃に加熱した流動層、移動層、固定層などの反応容器内において行うことができる。炭素源を反応容器に供給するためにキャリアガスを用いることができる。キャリアガスとしては、水素、窒素、アルゴンなどが挙げられる。反応時間は好ましくは5~120分間である。
 精製方法に用いられる多層カーボンナノチューブは、その繊維外径が好ましくは6nm以上50nm以下であり、アスペクト比が好ましくは100以上1000以下である。繊維外径が6nm未満になると繊維を一本一本解して分散させることが困難となる。繊維外径が50nmを超える繊維は担持触媒法により作製することは難しい。アスペクト比が100未満であると、複合体を作製したときに効率的な導電ネットワークを形成することが難しい。アスペクト比が1000よりも大きくなると繊維同士の絡まり度合いが強くなり分散が困難となる。なお、繊維外径およびアスペクト比は顕微鏡観察写真に写った多層カーボンナノチューブの寸法を測定して算出する。
 精製方法に用いられる多層カーボンナノチューブは、気相法により合成された多層カーボンナノチューブをそのまま使用してもかまわないが、硝酸水溶液に添加する前に粉砕してから使用するのが好ましい。
 気相法、特に担持触媒法により合成される多層カーボンナノチューブは一般的に凝集体を形成している(図1参照)。その大きさは使用する触媒の大きさにより異なるが、通常50μm~2mm程度の大きさである。
 酸洗浄を効率的に行うには、凝集体の大きさが小さくなるほど洗浄液との接触効率の面で効果的である。凝集体の大きさを小さくする方法としては、乾式粉砕法と湿式粉砕法とが挙げられる。乾式粉砕用の機器としては、メディアの衝撃力とせん断力を利用したボールミル、ハンマーミルなどの衝撃力を利用したパルベライザー、被粉砕物同士の衝突を利用したジェットミルなどが挙げられる。湿式粉砕用の機器としては、メディアのせん断力を利用したビーズミルなどが挙げられる。粉砕後の凝集体の大きさは、好ましくは1μm~200μm、より好ましくは1μm~20μmである。
 また、多層カーボンナノチューブを空気中などの酸素存在下において350℃以上500℃以下で加熱して酸化処理したものを精製対象としてもかまわない。多層カーボンナノチューブを酸化することで水との濡れ性がよくなるので、硝酸水溶液と多層カーボンナノチューブ凝集体との馴染みがよくなり、精製効果が高まることがある。400℃以上で酸化すると多層カーボンナノチューブ以外の結晶性の低いアモルファス炭素が消失するので、硝酸水溶液による金属の溶解量が増大することもある。
 本発明においては、先ず、前記多層カーボンナノチューブを硝酸水溶液に添加して多層カーボンナノチューブ中の触媒金属を溶解させる。
 硝酸水溶液に添加する多層カーボンナノチューブの量は、固形分濃度として、好ましくは0.1質量%以上5質量%以下、より好ましくは1質量%以上4質量%以下である。
 固形分濃度は、(多層カーボンナノチューブの質量)/{(多層カーボンナノチューブの質量)+(硝酸水溶液の質量)}×100の計算式で算出できる。
 固形分濃度が0.1質量%未満では単位時間当たりの多層カーボンナノチューブ処理量が低くなることがある。固形分濃度が5質量%より高くなるとスラリー粘度が上がり流動性が低下するので、移送や撹拌などにおけるハンドリング性が低くなることがある。
 使用される硝酸水溶液の濃度は、通常、0.2mol/L以上、好ましくは0.5mol/L以上12mol/L以下である。硝酸水溶液の濃度が0.2mol/L未満になると金属に対する酸化能力及び溶解能力が低下傾向になる。
 多層カーボンナノチューブ中の触媒金属を溶解させる際の温度は70℃以上沸点以下が好ましい。温度が70℃未満であっても金属の溶解は可能であるが、処理に長い時間を要する傾向がある。溶解操作は大気圧下で行うことができる。金属の溶解操作において加圧容器を用いると、温度を100℃以上にすることができるので、処理を短時間で行うことができる。なお、ここでの温度は、硝酸水溶液に多層カーボンナノチューブが分散してなるスラリーの温度である。
 硝酸水溶液を用いて溶解させる時間は、触媒金属を溶解するのに十分な時間であれば特に制限されない。例えば、温度を70℃以上沸点以下にした場合は、通常、0.5時間以上24時間以下である。
 多層カーボンナノチューブは硝酸水溶液をはじいて液面に浮かんだ状態になることがあるので、硝酸水溶液に多層カーボンナノチューブを添加した後、多層カーボンナノチューブが硝酸水溶液に十分接触するように混合する。混合の方法は特に制限されず、例えば、強制的に攪拌することなく熱の対流を利用する方法、スラリーを攪拌羽根で攪拌する方法、スラリーをポンプにより循環させる方法、スラリー中にガスを噴出させてバブリングする方法などが挙げられる。硝酸水溶液による触媒金属の溶解に用いられる容器や機器としては、ガラスライニングされたものや、SUS、PTFEなど耐食性のある材料で作製されたものが好ましい。
 次に、本発明においては、固液分離を行い、固形物を採り出す。
 固液分離の方法は特に制限されない。固液分離用の機器の具体例としては、スクリュープレス、ローラープレス、ロータリードラムスクリーン、ベルトスクリーン、振動スクリーン、多重板波動フィルター、真空脱水機、加圧脱水機、ベルトプレス、遠心濃縮脱水機、多重円板脱水機などが挙げられる。
 固液分離により得られるケーキ状固形物の含水率は、91質量%未満であることが好ましい。なお、含水率は、式: 100-(ケーキ中の固形分濃度(質量%))で表される。
 固液分離された固形物(ケーキ状)を純水に添加し、それを撹拌して分散させることが好ましい。前記操作により多層カーボンナノチューブ表面に付着している酸成分および溶解金属成分を希釈する。再分散時の固形分濃度は0.1質量%以上5質量%以下が好ましい。純水に分散させた後、固液分離により固形物を再び採り出す。
 純水への再分散および固液分離による固形分の再採り出しは、固液分離により得られる液体のpHが、好ましくは1.5以上6.0以下になるまで、より好ましくは2.0以上5.0以下になるまで、繰り返し実施することが好ましい。pHが1.5未満の場合には、多層カーボンナノチューブの表面に硝酸イオンや溶解した金属が多く残っていることがある。純水のみでpHを6.0より高くするには、20回近い繰り返し操作を行う必要があるので、排水処理などの環境負荷が高まる傾向がある。
 また、減圧ろ過あるいは遠心分離操作時に固液分離した固形物(ケーキ状)に純水を散布して、固形物中に含まれる酸洗浄液を純水に置換することもできる。
 次に、本発明においては、採り出した固形物を熱処理する。
 熱処理時の温度は、150℃より高い温度である。熱処理は、空気中などの酸素を含む雰囲気においては、200℃以上350℃未満で行い、多層カーボンナノチューブの酸化が進行しないようにすることが好ましい。また、熱処理は、アルゴン、窒素などの不活性ガス雰囲気下や、真空下においては、200℃以上1300℃未満で行うことができる。この熱処理によって、固形物に含まれている水分及び硝酸イオンが除去される。
 熱処理を行うと多層カーボンナノチューブは凝集して板状などの塊になることがある。多層カーボンナノチューブを電極などに添加する場合には、ハンマーなどの衝撃力を利用したパルベライザー、被粉砕物同士の衝突を利用したジェットミルなどの乾式粉砕機を用いて粉砕することが好ましい。
 本発明の一実施形態に係る精製多層カーボンナノチューブは、多層カーボンナノチューブに残存する触媒金属由来の金属元素の量が、ICP発光分析で、好ましくは1000ppm以上8000ppm以下、より好ましくは1000ppm以上6500ppm以下である。
 また、本発明の一実施形態に係る精製多層カーボンナノチューブは、多層カーボンナノチューブに残存する酸由来の陰イオンの量が、イオンクロマトグラフ分析で、好ましくは20ppm未満、より好ましくは10ppm未満である。
 本発明の一実施形態に係る精製多層カーボンナノチューブは、硝酸水溶液と接触していた外層部が一様に乱れた構造を有する。一方、内部の構造は洗浄前と変わらず、結晶が発達した構造を有する。すなわち、本発明の一実施形態に係る精製多層カーボンナノチューブは、多層カーボンナノチューブの表層部がアモルファスカーボンに覆われている(図5、図6参照)。
 本発明の一実施形態に係る精製多層カーボンナノチューブは、導電助剤としての機能を有するので、電池の正極及び/又は負極に好適に使用することができる。電池の正極は、本発明の一実施形態に係る精製多層カーボンナノチューブと、正極活物質およびバインダーとから製造することができる。電池の負極は、本発明の一実施形態に係る精製多層カーボンナノチューブと、負極活物質およびバインダーとから製造することができる。
 正極活物質は、リチウム系電池において正極活物質として知られている従来公知の材料(リチウムイオンを吸蔵・放出可能な材料)の中から、一種又は二種以上を適宜選択して用いることができる。これらの中で、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。このリチウム含有金属酸化物としては、リチウム元素と、Co、Mg、Cr、Mn、Ni、Fe、Al、Mo、V、W及びTiなどの中から選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。
 負極活物質としては、リチウム系電池において負極活物質として知られている従来公知の材料(リチウムイオンを吸蔵・放出可能な材料)の中から、一種又は二種以上を適宜選択して用いることができる。例えば、リチウムイオンを吸蔵・放出可能な材料として、炭素材料、SiおよびSnのいずれか、またはこれらの少なくとも一種を含む合金や酸化物;などを挙げることができる。これらの中でも炭素材料が好ましい。前記炭素材料としては、天然黒鉛、石油系及び石炭系コークスを熱処理することで製造される人造黒鉛;樹脂を炭素化したハードカーボン、メソフェーズピッチ系炭素材料などを代表例として挙げることができる。天然黒鉛や人造黒鉛は、電池容量の増大の観点から、粉末X線回折による(002)回折線から算出される面間隔d002が0.335~0.337nmであることが好ましい。負極活物質として、炭素材料と、SiおよびSnのいずれか、またはこれらの少なくとも一種を含む合金や酸化物とを併用することが好ましい。
 導電助剤としては、本発明に係る精製多層カーボンナノチューブ以外に、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラック系導電性材料を併用することができる。
 バインダーとしては、リチウム系電池用電極のバインダーとして従来公知の材料から適宜選択して用いることができる。このようなバインダーとしては、例えばポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体などのフッ素含有高分子重合体、スチレン-ブタジエン共重合ゴム(SBR)などを挙げることができる。
 以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。
<多層カーボンナノチューブ>
製造例1(触媒調製)
 水酸化アルミニウム(昭和電工社製ハイジライトM-43)を空気が流れている雰囲気下で850℃、2時間熱処理して、担体を調製した。
 300mlトールビーカーに純水50gを入れ、それに担体4.0gを添加し分散させて、担体スラリーを調製した。
 50mlビーカーに純水16.6gを入れ、それに七モリブデン酸六アンモニウム四水和物(純正化学社製)0.32gを添加し溶解させた。その後、硝酸鉄(III)九水和物(関東化学社製)7.23gを添加し溶解させて触媒溶液を調製した。
 また、別の50mlビーカーに純水32.7gを入れ、それに炭酸アンモニウム(関東化学社製)8.2gを添加し溶解させてpH調整液を調製した。
 担体スラリーが入ったトールビーカーに撹拌子を入れ、マグネティックスターラーの上に載せて撹拌した。前記スラリーのpHが6.0±0.1に維持されるようにpH計で管理しながら触媒溶液およびpH調整液のそれぞれをパスツールピペットで担体スラリーに滴下した。触媒溶液を担体スラリーに全量投入するのに15分間要した。トールビーカーの内容物をろ紙(5C)で分離し、ろ紙上のケーキに純水50gを散布して洗浄した。洗浄したろ過ケーキを磁性皿に移し、それを120℃の熱風乾燥器にて6時間乾燥した。得られた乾燥物を乳鉢で粉砕して、多層カーボンナノチューブ合成用触媒を得た。
製造例2(多層カーボンナノチューブの合成)
 製造例1で得られた触媒1.0gを石英ボートに載せた。これを横型管状炉(石英管:内径50mm、長さ1500mm、均熱帯600mm)内の中央に置いた。該横型管状炉に窒素ガスを500ml/分で流しながら、30分間かけて680℃まで昇温した。その後、窒素ガスの供給を停止し、エチレンと水素との混合ガス(エチレン濃度50体積%)を2000ml/分で流し、20分間反応させて、多層カーボンナノチューブを合成した。混合ガスの供給を停止し、窒素ガスに切り替えて供給し、室温まで冷却し、多層カーボンナノチューブを炉から採り出した。得られた多層カーボンナノチューブは粒子径50~600μmの凝集体を多数含んでいるものであった。
 多層カーボンナノチューブは、比表面積が260m2/g、粉体抵抗が0.016Ωcmであった。また、多層カーボンナノチューブに含まれる金属は、鉄が11200ppm、モリブデンが2000ppmであった。
製造例3(多層カーボンナノチューブの粉砕)
 セイシン企業社製 ジェットミルSTJ-200を用いて、プッシャーノズル圧0.64MPa、グライディングノズル圧0.60MPaの条件で、製造例2で合成された多層カーボンナノチューブを粉砕した。粉砕された多層カーボンナノチューブは体積基準累積粒度分布における50%粒子径D50が6μmの凝集体を成していた。
 粉砕された多層カーボンナノチューブは、比表面積が260m2/g、粉体抵抗が0.018Ωcmであった。また、粉砕された多層カーボンナノチューブに含まれる金属は、鉄が11200ppm、モリブデンが2000ppmであった。
<本実施例において使用した薬品等>
 硝酸: 関東化学社製 試薬 硝酸(濃度60~61%)を純水により希釈したものを使用した。
 塩酸: 関東化学社製 試薬 塩酸(濃度35.0~37.0%)を純水により希釈したものを使用した。
 硫酸: 関東化学社製 試薬 3mol%硫酸を純水により希釈したものを使用した。
 純水: ADVANTEC社製 超純水製造装置RFU424TA(水質 18.2Ωcm(25℃))を用いて製造したものを使用した。
<分析方法>
(比表面積)
 比表面積測定装置(ユアサアイオニクス社製 NOVA1000)により窒素ガスを用いて測定を行った。
(粉体抵抗)
 図7に示す測定治具を用いた。セル4は、内寸が幅4cm×奥行1cm×深さ10cmの樹脂製で、被測定物5に電流を流すための銅板製の電流端子3と、途中に電圧測定用端子1を備えている。セル4に一定量の試料を入れ、上部から圧縮ロッド2に力をかけ試料を圧縮する。試料に電流0.1Aを流し、嵩密度0.8g/cm3の時点で容器底部から差し込まれた2つの電圧測定用端子1の2.0cm間の電圧を読み、以下の式から比抵抗Rを算出する。
 R=(電圧/電流)×(断面積/端子間距離)=(E/0.1)×(D/2)
ただし、電流方向の断面積D=圧縮体の高さ×奥行=d×1(cm2)、Eは端子間電圧[V]、Rは抵抗値[Ωcm]である。
 この比抵抗は加圧条件により変化する、低加圧の時は高い比抵抗を示すが、加圧を増すに従って比抵抗が低くなる。ある加圧値以上ではほぼ一定値となる。本実施例では、嵩密度0.8g/cm3に圧縮した時の比抵抗を圧密比抵抗とした。
(多層カーボンナノチューブ中の金属濃度)
 試料20~40mgをフッ素樹脂製ビーカーに採取し、硫酸2mlを添加、フッ素樹脂製時計皿を載せて、300℃に設定したセラミックヒータ上で30分間加熱する。その後、5分間程度放冷する。次いでこれに硝酸0.5mlを添加し加熱する。内容物が目視できなくなるまで前記硝酸添加および加熱放冷の操作を繰り返す。室温まで冷却後、純水を約20ml、50%-フッ酸を0.5ml添加し、60~70℃のホットプレート上で2時間加熱する。ビーカーの内容物をポリプロピレン製容器に移し50mlに定容し、ICP発光分析装置(エスアイアイナノテクノロジー社製 Vista-PRO)により鉄とモリブデンを定量した。
(多層カーボンナノチューブ中の陰イオン濃度)
 試料約0.2gをバイアル瓶に採取し、これに純水10mlを添加し、10分間超音波照射した。その後、48時間放置した。次いで、0.2μmのシリンジフィルターでろ過した純水で10倍に希釈してイオンクロマトグラフ(ダイオネクス社製 ICS-2000)で液中に含まれる陰イオンを測定し、試料質量に換算した。
(粒度測定)
 秤量した試料0.007gを純水20mlの入ったビーカーに入れ、トリトン希釈液(100倍純水希釈)を0.2g滴下する。前記ビーカーを超音波分散機で5分間処理した。その後、ビーカーに純水30mlを加え再度超音波分散機で3分間処理した。日機装社製 マイクロトラックHRAにより、分散液の粒度を測定した。
(固液分離で得られた液体のpH測定)
 固液分離し、吸引瓶にたまった液を2リットルビーカーに移す。マグネティックスターラーの上に攪拌子を入れた前記ビーカーを載せ、攪拌を行いながら、横河電機社製pH計(pH72)を使用してpH測定を行った。
(固液分離で得られた液体の金属濃度)
 ICP発光分析装置(島津製作所社製 ICPE-9000)により固液分離した液中に含まれる鉄とモリブデンを定量した。
(走査電子顕微鏡観察)
 試料粉末をカーボンテープに付着させ、金蒸着したものを観察試料とし、日本電子社製JSM-6390で観察を行った。
(透過電子顕微鏡観察)
 試料粉末をエタノール中に少量採取し、超音波照射によって分散させたものをカーボンマイクログリッド(支持膜付)に保持したものを観察試料とし、日立製作所社製 9500で観察を行った。
(固形分濃度測定)
 風袋を測定した時計皿の上に固液分離した固形物(ケーキ状)を約1g秤量し、150℃に保持した熱風乾燥機にセットし、3時間加熱処理を行う。加熱処理後、熱風乾燥機から取り出した時計皿および固形物をシリカゲルの入ったデシケータ内で30分間保持し、室温まで冷却する。冷却後、時計皿および固形物の質量を測定する。以下の式で固形分濃度を算出した。
 固形分濃度(質量%)
   =(乾燥後の固形物の質量)/(乾燥前の固形物の質量)×100
実施例1
(酸洗浄)
 0.5mol/Lの硝酸水溶液990gと攪拌子が入ったセパラブルフラスコ(容積2L)をホットスターラーにセットし、硝酸水溶液を攪拌しながら製造例3で得られた多層カーボンナノチューブ10gを投入した。その後、セパラブルフラスコに温度計と冷却器を備え付けたセパラブルカバーを取り付けた。次いでホットスターラーの加熱を開始し、約40分間かけてスラリー温度を90℃にし、90℃以上にて3時間保持した。酸洗浄終了時のスラリー温度は98℃であった。
(固液分離)
 セパラブルフラスコをホットスターラーから外し、ウォーターバスに入れて冷やした。40℃に冷やされたスラリーを、水流ポンプによる減圧条件でろ紙(5C)をセットしたヌッチェにてろ過した。ろ紙上のケーキ状固形物がひび割れし、減圧状態(-750mmHg)から大気圧近く(-150mmHg)になった時点でろ過を終了した。このときの固形分濃度は10質量%であった。ろ過液のpHをpH計で、ろ過液中の金属濃度をICP発光分析装置でそれぞれ測定した。結果を表1に示す。
(純水再分散-再固液分離)
 前記の固形物を1500gの純水と攪拌子が入ったビーカー(容積2L)に投入し、マグネティックスターラーで30分間攪拌してスラリーを得た。該スラリーを上記の固液分離方法と同じ手法でろ過した。
 この操作を5回実施した。各回において、ろ過液のpHをpH計で、ろ過液中の金属濃度をICP発光分析装置でそれぞれ測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(熱処理)
 得られた固形物を磁性皿に入れ、200℃に設定した熱風乾燥機を用いて9時間乾燥させて、精製多層カーボンナノチューブを得た。精製多層カーボンナノチューブ中の不純物量を表2に示す。
実施例2
 実施例1における熱処理の方法を以下の方法に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。精製多層カーボンナノチューブ中の不純物量を表2に示す。
 ガラスボートに固形物を載せた。これを横型管状炉(石英管:内径50mm、長さ1500mm、均熱帯600mm)に設置し、アルゴン流通下で室温から400℃までを1時間で昇温させ、400℃で3時間保持した。この後、炉体温度が200℃以下になるまで放冷した。アルゴンの流通を止めてガラスボートを回収した。
比較例1
 熱処理時の熱風乾燥機の設定温度を100℃に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。精製多層カーボンナノチューブ中の不純物量を表2に示す。
比較例2
 熱処理時の熱風乾燥機の設定温度を150℃に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。精製多層カーボンナノチューブ中の不純物量を表2に示す。
比較例3
 0.5mol/Lの硝酸水溶液を1mol/Lの塩酸水溶液に変えた以外は比較例2と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量を表2に示す。
比較例4
 0.5mol/Lの硝酸水溶液を1mol/Lの塩酸水溶液に変えた以外は実施例2と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量を表2に示す。
比較例5
 0.5mol/Lの硝酸水溶液を0.5mol/Lの硫酸水溶液に変えた以外は比較例2と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量を表2に示す。
比較例6
 0.5mol/Lの硝酸水溶液を0.5mol/Lの硫酸水溶液に変えた以外は実施例2と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例3
 0.5mol/Lの硝酸水溶液を0.25mol/Lの硝酸水溶液に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量および粉体抵抗を表3に示す。
実施例4
 0.5mol/Lの硝酸水溶液990gを1mol/Lの硝酸水溶液980gに変え、多層カーボンナノチューブの量を10gから20gに変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量および粉体抵抗を表3に示す。
実施例5
 実施例1における酸洗浄の方法を以下の方法に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。
 3mol/Lの硝酸水溶液960gが入ったセパラブルフラスコ(容積2L)にスリーワンモーターをセットし、硝酸水溶液を攪拌しながら製造例2で得られた多層カーボンナノチューブを40g投入した。その後、スリーワンモーターを外し、セパラブルフラスコに温度計と冷却器を備え付けたセパラブルカバーを取り付けた。次いでセパラブルフラスコ下部にマントルヒーターを取り付け、マントルヒーターの加熱を開始し、約40分間かけてスラリー温度を90℃にし、90℃以上にて3時間保持した。酸洗浄終了時のスラリー温度は102℃であった。精製多層カーボンナノチューブ中の不純物量および粉体抵抗を表3に示す。
実施例6
 0.5mol/Lの硝酸水溶液を6mol/Lの硝酸水溶液に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は105℃であった。精製多層カーボンナノチューブ中の不純物量および粉体抵抗を表3に示す。
比較例7
 0.5mol/Lの硝酸水溶液を0.1mol/Lの硝酸水溶液に変えた以外は実施例1と同じ手法にて精製多層カーボンナノチューブを製造した。酸洗浄終了時のスラリー温度は98℃であった。精製多層カーボンナノチューブ中の不純物量および粉体抵抗を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以下に評価用電極および評価用セルの作成方法、試験方法および分析方法を示す。
<多層カーボンナノチューブ/PTFEコンポジット電極の作成>
 精製多層カーボンナノチューブ1.6g(W1)およびPTFE0.4gを秤量してメノウ乳鉢に入れ、乳棒を用いて均一に混合した。さらにPTFEを伸ばすように強く混合し、ゴム状の多層カーボンナノチューブ/PTFEコンポジットを得た。
 得られたコンポジットを所定のサイズ(20mm×20mm×0.5mmt)に切り出し、アルミニウムタブリードを溶接したアルミニウムメッシュ(20mm×20mm×0.03mmt)に油圧式一軸プレス機を用いて15MPaの圧力で圧着し、多層カーボンナノチューブ/PTFEコンポジット電極を得た。
<評価セルの作成>
 セルの作成、セルの解体および対向極のエタノールへの溶解は露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
 図8に三極セルに用いた積層体の略図を示す。多層カーボンナノチューブ/PTFEコンポジット電極を作用極6と銅メッシュを圧着したリチウム金属箔8(対向極:本城金属社製、22mm×22mm×0.05mmt)を、セパレータ7a、7b(セルガード社製セルガード#2400、30mm×50mm×0.025mmt)2枚をそれらの間に挟んで積層した。二辺がヒートシールされたアルミラミネート材に前記積層体を挿入しタブリード9部分をヒートシールして三極セルを作成した。上記三極セルに電解液を注液し、真空ヒートシールすることにより評価用セルとした。
 電解液はEC(エチレンカーボネート)8質量部及びEMC(エチルメチルカーボネート)12質量部の混合品で、電解質としてLiPF6を1.0モル/リットル溶解したものを使用した。
<金属溶出試験方法>
 ポテンショ・ガルバノスタット(Biologic Science instruments製)に評価用セルを接続し、参照極に対して4.3Vの電圧を作用極に印加した。その後、電流値が十分に減衰するまで(24時間)保持した。多層カーボンナノチューブ/PTFEコンポジット電極に含まれる金属は電圧印加によりイオンとして電解液中に溶出し、対向極であるリチウム金属箔上で還元され金属として析出する。
<金属溶出量の分析方法>
 試験終了後、評価用セルをカッターで解体し、対向極(リチウム金属箔)を取出し、それの質量を測定した。不活性ガス雰囲気中で対向極をエタノールに浸け溶解させた。得られたエタノール溶液からエタノールを加熱除去し、残渣を混酸によりすべて溶解させた。この残渣の溶液をICP発光分析装置(エスアイアイナノテクノロジー社製 Vista-PRO)により分析し、液中に含まれるFe、Moをそれぞれ定量した(W2、W2’)。また、リファレンスとして未使用のリチウム金属(W3)のみをICP発光分析装置(エスアイアイナノテクノロジー社製 Vista-PRO)により分析し、液中に含まれるFe、Moをそれぞれ定量した(Wr、Wr’)。式(1)および(2)から溶出・析出したFeおよびMo溶出量[ppm]を算出した。

 Fe溶出量[ppm] 
 ={(W2/W1)-(Wr/W3)}×1000000    式(1)

 Mo溶出量[ppm] 
 ={(W2’/W1)-(Wr’/W3)}×1000000  式(2)
実施例7
 実施例4で得られた精製多層カーボンナノチューブをジューサーミキサー(パナソニック社製ファイバーミキサーMX-X57)で1分間解砕した。その後、PTFEと混合し、多層カーボンナノチューブ/PTFEコンポジット電極および評価用セルを作成して金属溶出試験を実施した。その結果を表4に示す。
比較例8
 実施例4で得られた精製多層カーボンナノチューブを比較例3で得られた精製多層カーボンナノチューブに変えた以外は実施例7と同じ手法で、多層カーボンナノチューブ/PTFEコンポジット電極および評価用セルを作成して金属溶出試験を実施した。その結果を表4に示す。
比較例9
 実施例4で得られた精製多層カーボンナノチューブを比較例7で得られた精製多層カーボンナノチューブに変えた以外は実施例7と同じ手法で、多層カーボンナノチューブ/PTFEコンポジット電極および評価用セルを作成して金属溶出試験を実施した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
1-電圧測定用端子
2-圧縮ロッド
3-銅板製の電流端子
4-樹脂製のセル
5-被測定物
6-作用極(多層カーボンナノチューブ/PTFEコンポジット電極)
7a、7b-セパレータ(2枚)
8-対抗極(銅メッシュを圧着したリチウム金属箔)
9-タブリード

Claims (11)

  1.  気相法により合成された多層カーボンナノチューブを、0.2mol/L以上の硝酸水溶液に添加して多層カーボンナノチューブ中の触媒金属を溶解させ、
     固液分離により固形物を採り出し、
     該固形物を150℃より高い温度で熱処理することを含む、多層カーボンナノチューブの精製方法。
  2.  固液分離により採り出された固形物を純水に添加して、次いで固液分離により固形物を再び採り出すことをさらに含む請求項1に記載の精製方法。
  3.  固液分離により採り出された固形物を純水に添加して、次いで固液分離により固形物を再び採り出すことを、固液分離により得られる液体のpHが1.5以上6.0以下になるまで繰り返す、請求項2に記載の精製方法。
  4.  硝酸水溶液に添加する多層カーボンナノチューブの量が、固形分濃度として、0.1質量%以上5質量%以下である、請求項1~3のいずれかひとつに記載の精製方法。
  5.  熱処理時の雰囲気が空気中であり且つ熱処理時の温度が200℃以上350℃未満である、請求項1~4のいずれかひとつに記載の精製方法。

  6.  多層カーボンナノチューブ中の触媒金属を硝酸水溶液で溶解させる工程を大気圧下で行う、請求項1~5のいずれかひとつに記載の精製方法。
  7.  多層カーボンナノチューブ中の触媒金属を硝酸水溶液で溶解させる工程の前に、多層カーボンナノチューブを粉砕することをさらに含む請求項1~6のいずれかひとつに記載の精製方法。
  8.  気相法により合成され次いで酸洗浄された多層カーボンナノチューブであって、多層カーボンナノチューブに残存する触媒金属由来の金属元素の量がICP発光分析で1000ppm以上8000ppm以下であり、且つ多層カーボンナノチューブに残存する酸由来の陰イオンの量がイオンクロマトグラフ分析で20ppm未満である精製多層カーボンナノチューブ。
  9.  多層カーボンナノチューブの表層部がアモルファスカーボンに覆われている請求項8に記載の精製多層カーボンナノチューブ。
  10.  請求項8または9に記載の精製多層カーボンナノチューブを含有する電池用電極。
  11.  担持触媒法により多層カーボンナノチューブを製造するステップ、0.2mol/L以上の硝酸水溶液に該多層カーボンナノチューブを添加するステップ、固液分離により該多層カーボンナノチューブを採り出すステップ、該多層カーボンナノチューブを150℃より高い温度で熱処理するステップを含む、精製多層カーボンナノチューブの製造方法。
PCT/JP2013/002840 2012-04-27 2013-04-26 多層カーボンナノチューブの精製方法 WO2013161317A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/396,539 US20150093322A1 (en) 2012-04-27 2013-04-26 Method for purifying multi-walled carbon nanotubes
CN201380034306.2A CN104428244A (zh) 2012-04-27 2013-04-26 多层碳纳米管的精制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-102657 2012-04-27
JP2012102657 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161317A1 true WO2013161317A1 (ja) 2013-10-31

Family

ID=49482659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002840 WO2013161317A1 (ja) 2012-04-27 2013-04-26 多層カーボンナノチューブの精製方法

Country Status (5)

Country Link
US (1) US20150093322A1 (ja)
JP (1) JPWO2013161317A1 (ja)
CN (1) CN104428244A (ja)
TW (1) TW201410597A (ja)
WO (1) WO2013161317A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008838A (ja) * 2016-07-12 2018-01-18 Jsr株式会社 カーボンナノチューブを含有する分散液から金属イオンを除去する方法、カーボンナノチューブ分散液、およびカーボンナノチューブ含有膜
WO2018043487A1 (ja) * 2016-08-31 2018-03-08 東レ株式会社 カーボンナノチューブ含有組成物の製造方法、カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ含有組成物
JP2018193257A (ja) * 2017-05-12 2018-12-06 日立造船株式会社 カーボンナノチューブ複合体およびその製造方法
CN111333055A (zh) * 2020-03-30 2020-06-26 江西远东电池有限公司 碳纳米管掺杂锂离子电池负极材料制备方法
WO2022138940A1 (ja) * 2020-12-25 2022-06-30 ダイキン工業株式会社 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池
JP7165365B1 (ja) 2021-09-16 2022-11-04 崑山科技大学 三次元束状多層カーボンナノチューブとその調製方法並びに作用電極の応用
CN115947339A (zh) * 2022-12-21 2023-04-11 中国科学院南京土壤研究所 层状双金属氢氧化物改性多壁碳纳米管及制备方法和应用、PFASs污染水体的处理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3263522A4 (en) 2015-02-27 2018-11-07 Hitachi Zosen Corporation High-density carbon nanotube aggregate and method of producing high-density carbon nanotube aggregate
CN106185873B (zh) * 2016-08-31 2018-09-25 无锡东恒新能源科技有限公司 智能化碳纳米管纯化系统
CN106379888B (zh) * 2016-08-31 2018-09-25 无锡东恒新能源科技有限公司 用于提高碳纳米管纯度的纯化系统
WO2019065200A1 (ja) 2017-09-29 2019-04-04 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP7558810B2 (ja) * 2018-04-12 2024-10-01 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ カーボンナノチューブ精製方法
CN112723339A (zh) * 2020-12-11 2021-04-30 深圳市德方纳米科技股份有限公司 阵列型掺杂多壁碳纳米管及其制备方法和电极材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081621A (ja) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd ナノワイヤーおよびその製造方法、並びにそれを用いたナノネットワーク、ナノネットワークの製造方法、炭素構造体、電子デバイス
WO2007088867A1 (ja) * 2006-02-01 2007-08-09 Otsuka Chemical Co., Ltd. カーボンナノチューブの製造方法及び製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081616A (ja) * 2001-07-05 2003-03-19 Honda Motor Co Ltd 単層カーボンナノチューブの精製方法
US20080213367A1 (en) * 2007-03-01 2008-09-04 Cromoz Inc. Water soluble concentric multi-wall carbon nano tubes
CN101164874B (zh) * 2007-09-26 2010-11-24 合肥工业大学 多壁碳纳米管的纯化方法
CN101752105A (zh) * 2010-01-21 2010-06-23 上海大学 碳纳米管掺杂的染料敏化太阳电池电极及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081621A (ja) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd ナノワイヤーおよびその製造方法、並びにそれを用いたナノネットワーク、ナノネットワークの製造方法、炭素構造体、電子デバイス
WO2007088867A1 (ja) * 2006-02-01 2007-08-09 Otsuka Chemical Co., Ltd. カーボンナノチューブの製造方法及び製造装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. REYHANI ET AL.: "The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi- walled carbon nanotubes", JOURNAL OF POWER SOURCES, vol. 183, 2008, pages 539 - 543 *
E. SALERNITANO ET AL.: "Purification of MWCNTs grown on a nanosized unsupported Fe-based powder catalyst", DIAMOND & RELATED MATERIALS, vol. 16, 2007, pages 1565 - 1570 *
H. KAJIURA ET AL.: "High-quality single-walled carbon nanotubes from arc-produced soot", CHEMICAL PHYSICS LETTERS, vol. 364, 2002, pages 586 - 592 *
W. HUANG ET AL.: "99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing", CARBON, vol. 41, 2003, pages 2585 - 2590 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008838A (ja) * 2016-07-12 2018-01-18 Jsr株式会社 カーボンナノチューブを含有する分散液から金属イオンを除去する方法、カーボンナノチューブ分散液、およびカーボンナノチューブ含有膜
WO2018043487A1 (ja) * 2016-08-31 2018-03-08 東レ株式会社 カーボンナノチューブ含有組成物の製造方法、カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ含有組成物
JPWO2018043487A1 (ja) * 2016-08-31 2018-09-06 東レ株式会社 カーボンナノチューブ分散液の製造方法
JP2018193257A (ja) * 2017-05-12 2018-12-06 日立造船株式会社 カーボンナノチューブ複合体およびその製造方法
CN111333055A (zh) * 2020-03-30 2020-06-26 江西远东电池有限公司 碳纳米管掺杂锂离子电池负极材料制备方法
WO2022138940A1 (ja) * 2020-12-25 2022-06-30 ダイキン工業株式会社 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池
JP7165365B1 (ja) 2021-09-16 2022-11-04 崑山科技大学 三次元束状多層カーボンナノチューブとその調製方法並びに作用電極の応用
JP2023043333A (ja) * 2021-09-16 2023-03-29 崑山科技大学 三次元束状多層カーボンナノチューブとその調製方法並びに作用電極の応用
CN115947339A (zh) * 2022-12-21 2023-04-11 中国科学院南京土壤研究所 层状双金属氢氧化物改性多壁碳纳米管及制备方法和应用、PFASs污染水体的处理方法
CN115947339B (zh) * 2022-12-21 2024-06-07 中国科学院南京土壤研究所 层状双金属氢氧化物改性多壁碳纳米管及制备方法和应用、PFASs污染水体的处理方法

Also Published As

Publication number Publication date
US20150093322A1 (en) 2015-04-02
TW201410597A (zh) 2014-03-16
JPWO2013161317A1 (ja) 2015-12-24
CN104428244A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2013161317A1 (ja) 多層カーボンナノチューブの精製方法
JP5497220B1 (ja) 複合炭素繊維
JP5497109B2 (ja) 複合炭素繊維
JP5497110B2 (ja) 複合炭素繊維の製造方法
JP6618926B2 (ja) 導電性ペーストの製造方法及び導電性ペースト
US10347916B2 (en) Graphene powder, method for producing graphene powder and electrode for lithium ion battery containing graphene powder
CN107148692B (zh) 电极用导电性组合物、使用该导电性组合物的电极以及锂离子二次电池
CN103972483A (zh) 复合电极材料
WO2009116261A1 (ja) カーボンナノチューブの製造方法
Zhang et al. A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries
JP5551883B2 (ja) メソフェーズ小球体および炭素材料の製造方法ならびにリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512375

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396539

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782616

Country of ref document: EP

Kind code of ref document: A1