WO2013157621A1 - Masterbatch for electrically conductive resin, and electrically conductive resin - Google Patents
Masterbatch for electrically conductive resin, and electrically conductive resin Download PDFInfo
- Publication number
- WO2013157621A1 WO2013157621A1 PCT/JP2013/061574 JP2013061574W WO2013157621A1 WO 2013157621 A1 WO2013157621 A1 WO 2013157621A1 JP 2013061574 W JP2013061574 W JP 2013061574W WO 2013157621 A1 WO2013157621 A1 WO 2013157621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- conductive resin
- conductive
- masterbatch
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2507/00—Use of elements other than metals as filler
- B29K2507/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0005—Conductive
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2355/00—Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
- C08J2355/02—Acrylonitrile-Butadiene-Styrene [ABS] polymers
Definitions
- the carbon fiber in a preferred embodiment of the present invention is preferably 0.1 or more, preferably 0.2 to 2.0, and most preferably 0.5 to 1.5 in the above R value. In addition, it shows that crystallinity is so low that R value is large.
- JIS Z-2512 metal powder-tap density measurement method
- the carbon fibers may form secondary aggregates.
- the size of the secondary aggregate is preferably 1 ⁇ m to 5 mm in the longitudinal direction, more preferably 5 ⁇ m to 3 mm, and particularly preferably 10 ⁇ m to 1 mm. If it is 5 mm or more, scattering during handling is significant, and productivity may be reduced. Moreover, if it is 1 micrometer or less, the ratio of the carbon fiber which occupies in an aggregate is very small, and it may become difficult to acquire the desired addition effect as a filler.
- the masterbatch can be prepared by blending and kneading the carbon fiber as described above in a thermoplastic resin for a masterbatch.
- the content of carbon fiber in the master batch is preferably 6% by mass or more and 50% by mass or less in the conductive resin, more preferably 7% by mass or more and 30% by mass or less, and further preferably 8% by mass or more and 25% by mass. It is as follows. However, if the concentration of the carbon fiber is increased as much as possible based on the production of a general master batch, the effect in the present invention becomes poor. On the other hand, when the addition amount exceeds 50% by mass, it becomes difficult to produce a master batch.
- the shear is reduced with a twin screw extruder that does not use a kneading disk, or a device that does not apply high shear such as a pressure kneader, It is desirable to knead over time or to knead using a special mixing element in a single screw extruder.
- the reduction rate of Izod impact strength (ASTMD256, notched) with respect to the thermoplastic resin for dilution is 40% or less and the surface resistance value is 15 log ⁇ / cm 2 or less
- the reduction rate of Izod impact strength (ASTMD256, notched) to the thermoplastic resin for dilution is 60% or less and the surface resistance value is 15 log ⁇ / cm 2 or less. It is.
- molding method When manufacturing a molded product from these resins, a conventionally known resin molding method can be used. Examples of the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.
- a flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured.
- the evaluation results are shown in Table 1.
- the Izod impact value was as high as 130 J / m.
- Comparative Example 2-2 The operation was performed in the same manner as in Comparative Example 2-1, except that the resin for producing the master batch was replaced with ABS resin (C). The evaluation results are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Conductive Materials (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
The present invention pertains to a masterbatch for an electrically conductive resin. This masterbatch comprises both a thermoplastic resin exhibiting a melt flow rate (MFR) of 50 to 200 g/10min and a carbon fiber and has a carbon fiber content of 6 to 50 mass%. An electrically conductive resin obtained using the masterbatch exhibits high mechanical characteristics and high electrical conduction characteristics.
Description
本発明は導電性樹脂用マスターバッチ及び導電性樹脂に関する。
The present invention relates to a master batch for conductive resin and a conductive resin.
絶縁性の樹脂成形体に、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの炭素系フィラーや金属粉などの金属系フィラーなどを配合することによって、導電性または熱伝導性を有する樹脂複合材料が得られることが知られている。
A resin composite material having electrical conductivity or thermal conductivity can be obtained by blending carbon fillers such as carbon black, acetylene black and ketjen black and metal fillers such as metal powder into an insulating resin molding. It is known that
特許文献1では、表面導電化の一つの方法として絶縁性の熱可塑性樹脂成形体に導電性のフィラーを練り込んだ後に成形することにより、成形体に表面導電性を付与することが提案されている。
In Patent Document 1, as one method of surface conductivity, it is proposed to impart surface conductivity to a molded body by kneading a conductive filler into an insulating thermoplastic resin molded body and then molding. Yes.
特許文献2~5では、導電性フィラーとして炭素繊維を用いることが開示されている。
Patent Documents 2 to 5 disclose the use of carbon fibers as conductive fillers.
特許文献6~7では、導電性樹脂組成物及び一般的な着色樹脂組成物を作製する際にマスターバッチを経由して作製することが開示されている。
Patent Documents 6 to 7 disclose that a conductive resin composition and a general colored resin composition are manufactured via a master batch.
特許文献1の方法によると、必要な表面導電性を付与するために導電性フィラー添加量が多く必要となる。添加量が多くなると生成する樹脂成形体の力学的特性が低下し、強度や伸び、衝撃特性などが低くなったり、表面外観が悪くなる。
According to the method of Patent Document 1, a large amount of conductive filler is required in order to impart the necessary surface conductivity. When the addition amount is increased, the mechanical properties of the resin molded product to be produced are lowered, the strength, elongation, impact properties, etc. are lowered, and the surface appearance is deteriorated.
特許文献2~5に記載のように、炭素繊維を使用した場合はその高いアスペクト比の為に、上述のカーボンブラックなどの粒子状のフィラーを用いる場合と比較して、低添加量で導電性が発現する。一般に、フィラーの添加量が少ないと、マトリクス樹脂と比較した特性の低下は見られにくい。しかしながら、実際には炭素繊維をマトリクス樹脂中で均一に分散させることは困難であり、結果的には分散不良や成形不良の問題を生じやすい。
As described in Patent Documents 2 to 5, when carbon fiber is used, it has a low aspect ratio because of its high aspect ratio, and it is conductive with a low addition amount compared with the case where particulate filler such as carbon black is used. Is expressed. In general, when the amount of filler added is small, it is difficult to see a decrease in properties compared to the matrix resin. However, in practice, it is difficult to uniformly disperse the carbon fibers in the matrix resin, and as a result, problems such as poor dispersion and poor molding are likely to occur.
特許文献6~7に記載のように、一般的にフィラーを含有してマスターバッチを製造する場合は、希釈する熱可塑性樹脂の強度などの物性値を低下させることを回避するために極めて流動性に富む樹脂をマスターバッチの原料樹脂として使用しない。
As described in Patent Documents 6 to 7, when a masterbatch is generally produced containing a filler, it is extremely fluid in order to avoid reducing physical properties such as strength of the thermoplastic resin to be diluted. Do not use high-quality resin as raw material for masterbatch.
したがって、機械特性に優れ、高い導電特性を持つ導電性樹脂を提供することが求められていた。
Therefore, it has been demanded to provide a conductive resin having excellent mechanical properties and high conductive properties.
本発明は、以下の各態様を含む。
[1]メルトフローレートが50~200g/10minである熱可塑性樹脂と炭素繊維を含有し、炭素繊維の含有量が6質量%以上50質量%以下である導電性樹脂用マスターバッチ。
[2]前記炭素繊維がカーボンナノチューブである前記1に記載の導電性樹脂用マスターバッチ。
[3]前記熱可塑性樹脂がABS樹脂、AES樹脂、ASA樹脂、AS樹脂、HIPS樹脂、MBS樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリフェニレンエーテル及びポリアミドからなる群から選ばれる少なくとも1種である前記1または前記2に記載の導電性樹脂用マスターバッチ。
[4]前記1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチを希釈用熱可塑性樹脂で希釈してなる導電性樹脂であって、導電性樹脂中の炭素繊維含有量が0.5質量%以上6質量%未満である導電性樹脂。
[5]前記1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチを、二軸押出機を用いて希釈する導電性樹脂の製造方法。
[6]前記1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチと希釈用熱可塑性樹脂をドライブレンドし、射出成形する導電性樹脂成形体の製造方法。
[7]前記5に記載の方法で希釈した場合の前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が40%以下であり、かつ表面抵抗値が15logΩ/cm2以下である前記4に記載の導電性樹脂。
[8]前記6に記載の方法で希釈した場合の前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が60%以下であり、かつ表面抵抗値が15logΩ/cm2以下である前記4に記載の導電性樹脂。
[9]メルトフローレートが50~200g/10minである熱可塑性樹脂に6質量%以上50質量%以下になるように炭素繊維を混合する工程を含む導電性樹脂用マスターバッチの製造方法。
[10]炭素繊維がカーボンナノチューブである前記9に記載の導電性樹脂用マスターバッチの製造方法。
[11]前記4に記載の導電性樹脂を成形して得られた樹脂成形体に、電荷を有する塗料を吹き付けて塗膜を形成してなる車両用部品。 The present invention includes the following aspects.
[1] A masterbatch for a conductive resin containing a thermoplastic resin having a melt flow rate of 50 to 200 g / 10 min and carbon fiber, and having a carbon fiber content of 6% by mass to 50% by mass.
[2] The master batch for conductive resin as described in 1 above, wherein the carbon fiber is a carbon nanotube.
[3] The above 1 or 2, wherein the thermoplastic resin is at least one selected from the group consisting of ABS resin, AES resin, ASA resin, AS resin, HIPS resin, MBS resin, polyethylene, polypropylene, polycarbonate, polyphenylene ether and polyamide. The masterbatch for conductive resins as described in 2 above.
[4] A conductive resin obtained by diluting the conductive resin masterbatch according to any one of 1 to 3 with a thermoplastic resin for dilution, wherein the carbon fiber content in the conductive resin is 0. A conductive resin that is 5% by mass or more and less than 6% by mass.
[5] A method for producing a conductive resin in which the conductive resin master batch according to any one of 1 to 3 is diluted using a twin-screw extruder.
[6] A method for producing a conductive resin molded body, comprising dry blending the conductive resin masterbatch according to any one of 1 to 3 and a thermoplastic resin for dilution and injection molding.
[7] The decrease rate of Izod impact strength (ASTMD256, notched) with respect to the dilution thermoplastic resin when diluted by the method described in 5 above is 40% or less, and the surface resistance value is 15 logΩ / cm 2 or less. 5. The conductive resin as described in 4 above.
[8] A decrease rate of Izod impact strength (ASTMD256, notched) with respect to the dilution thermoplastic resin when diluted by the method described in 6 is 60% or less, and a surface resistance value is 15 logΩ / cm 2 or less. 5. The conductive resin as described in 4 above.
[9] A method for producing a masterbatch for a conductive resin, comprising a step of mixing carbon fibers in a thermoplastic resin having a melt flow rate of 50 to 200 g / 10 min so as to be 6% by mass to 50% by mass.
[10] The method for producing a masterbatch for a conductive resin as described in 9 above, wherein the carbon fiber is a carbon nanotube.
[11] A vehicle part formed by spraying a paint having a charge on a resin molded body obtained by molding the conductive resin as described in 4 above, to form a coating film.
[1]メルトフローレートが50~200g/10minである熱可塑性樹脂と炭素繊維を含有し、炭素繊維の含有量が6質量%以上50質量%以下である導電性樹脂用マスターバッチ。
[2]前記炭素繊維がカーボンナノチューブである前記1に記載の導電性樹脂用マスターバッチ。
[3]前記熱可塑性樹脂がABS樹脂、AES樹脂、ASA樹脂、AS樹脂、HIPS樹脂、MBS樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリフェニレンエーテル及びポリアミドからなる群から選ばれる少なくとも1種である前記1または前記2に記載の導電性樹脂用マスターバッチ。
[4]前記1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチを希釈用熱可塑性樹脂で希釈してなる導電性樹脂であって、導電性樹脂中の炭素繊維含有量が0.5質量%以上6質量%未満である導電性樹脂。
[5]前記1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチを、二軸押出機を用いて希釈する導電性樹脂の製造方法。
[6]前記1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチと希釈用熱可塑性樹脂をドライブレンドし、射出成形する導電性樹脂成形体の製造方法。
[7]前記5に記載の方法で希釈した場合の前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が40%以下であり、かつ表面抵抗値が15logΩ/cm2以下である前記4に記載の導電性樹脂。
[8]前記6に記載の方法で希釈した場合の前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が60%以下であり、かつ表面抵抗値が15logΩ/cm2以下である前記4に記載の導電性樹脂。
[9]メルトフローレートが50~200g/10minである熱可塑性樹脂に6質量%以上50質量%以下になるように炭素繊維を混合する工程を含む導電性樹脂用マスターバッチの製造方法。
[10]炭素繊維がカーボンナノチューブである前記9に記載の導電性樹脂用マスターバッチの製造方法。
[11]前記4に記載の導電性樹脂を成形して得られた樹脂成形体に、電荷を有する塗料を吹き付けて塗膜を形成してなる車両用部品。 The present invention includes the following aspects.
[1] A masterbatch for a conductive resin containing a thermoplastic resin having a melt flow rate of 50 to 200 g / 10 min and carbon fiber, and having a carbon fiber content of 6% by mass to 50% by mass.
[2] The master batch for conductive resin as described in 1 above, wherein the carbon fiber is a carbon nanotube.
[3] The above 1 or 2, wherein the thermoplastic resin is at least one selected from the group consisting of ABS resin, AES resin, ASA resin, AS resin, HIPS resin, MBS resin, polyethylene, polypropylene, polycarbonate, polyphenylene ether and polyamide. The masterbatch for conductive resins as described in 2 above.
[4] A conductive resin obtained by diluting the conductive resin masterbatch according to any one of 1 to 3 with a thermoplastic resin for dilution, wherein the carbon fiber content in the conductive resin is 0. A conductive resin that is 5% by mass or more and less than 6% by mass.
[5] A method for producing a conductive resin in which the conductive resin master batch according to any one of 1 to 3 is diluted using a twin-screw extruder.
[6] A method for producing a conductive resin molded body, comprising dry blending the conductive resin masterbatch according to any one of 1 to 3 and a thermoplastic resin for dilution and injection molding.
[7] The decrease rate of Izod impact strength (ASTMD256, notched) with respect to the dilution thermoplastic resin when diluted by the method described in 5 above is 40% or less, and the surface resistance value is 15 logΩ / cm 2 or less. 5. The conductive resin as described in 4 above.
[8] A decrease rate of Izod impact strength (ASTMD256, notched) with respect to the dilution thermoplastic resin when diluted by the method described in 6 is 60% or less, and a surface resistance value is 15 logΩ / cm 2 or less. 5. The conductive resin as described in 4 above.
[9] A method for producing a masterbatch for a conductive resin, comprising a step of mixing carbon fibers in a thermoplastic resin having a melt flow rate of 50 to 200 g / 10 min so as to be 6% by mass to 50% by mass.
[10] The method for producing a masterbatch for a conductive resin as described in 9 above, wherein the carbon fiber is a carbon nanotube.
[11] A vehicle part formed by spraying a paint having a charge on a resin molded body obtained by molding the conductive resin as described in 4 above, to form a coating film.
本発明の好ましい実施態様によれば、炭素繊維を含む導電性樹脂用マスターバッチを用いることにより機械特性に極めて優れ、高い導電特性を持つ導電性樹脂を得ることができる。
According to a preferred embodiment of the present invention, it is possible to obtain a conductive resin having extremely excellent mechanical properties and high conductive properties by using a masterbatch for conductive resins containing carbon fibers.
以下本発明について詳細に説明する。
「熱可塑性樹脂」
一般的に、熱可塑性樹脂の粘度はメルトフローレート(MFR)によって規定されている。本発明の好ましい実施態様において使用するマスターバッチ用熱可塑性樹脂は、MFRが50~200g/10minであり、さらに好ましいMFRは70~190g/10minであり、特に好ましいMFRは90~180g/10minである。MFRが50g/10min以上であることによりマスターバッチと希釈樹脂との混練が良好となり、結果として希釈後の樹脂中の炭素繊維の分散状態が均一となり、最終的に製造される樹脂の機械特性の低下が抑制される。また、MFRが200g/10min以下であることにより、ペレット状のマスターバッチに成形するのに必要な強度を得ることができる。 The present invention will be described in detail below.
"Thermoplastic resin"
Generally, the viscosity of a thermoplastic resin is defined by the melt flow rate (MFR). The masterbatch thermoplastic resin used in a preferred embodiment of the present invention has an MFR of 50 to 200 g / 10 min, a more preferred MFR of 70 to 190 g / 10 min, and a particularly preferred MFR of 90 to 180 g / 10 min. . When the MFR is 50 g / 10 min or more, the masterbatch and the diluted resin are kneaded well. As a result, the dispersion state of the carbon fibers in the diluted resin becomes uniform, and the mechanical properties of the resin finally produced are improved. Reduction is suppressed. Moreover, the intensity | strength required in order to shape | mold into a pellet-like masterbatch can be obtained because MFR is 200 g / 10min or less.
「熱可塑性樹脂」
一般的に、熱可塑性樹脂の粘度はメルトフローレート(MFR)によって規定されている。本発明の好ましい実施態様において使用するマスターバッチ用熱可塑性樹脂は、MFRが50~200g/10minであり、さらに好ましいMFRは70~190g/10minであり、特に好ましいMFRは90~180g/10minである。MFRが50g/10min以上であることによりマスターバッチと希釈樹脂との混練が良好となり、結果として希釈後の樹脂中の炭素繊維の分散状態が均一となり、最終的に製造される樹脂の機械特性の低下が抑制される。また、MFRが200g/10min以下であることにより、ペレット状のマスターバッチに成形するのに必要な強度を得ることができる。 The present invention will be described in detail below.
"Thermoplastic resin"
Generally, the viscosity of a thermoplastic resin is defined by the melt flow rate (MFR). The masterbatch thermoplastic resin used in a preferred embodiment of the present invention has an MFR of 50 to 200 g / 10 min, a more preferred MFR of 70 to 190 g / 10 min, and a particularly preferred MFR of 90 to 180 g / 10 min. . When the MFR is 50 g / 10 min or more, the masterbatch and the diluted resin are kneaded well. As a result, the dispersion state of the carbon fibers in the diluted resin becomes uniform, and the mechanical properties of the resin finally produced are improved. Reduction is suppressed. Moreover, the intensity | strength required in order to shape | mold into a pellet-like masterbatch can be obtained because MFR is 200 g / 10min or less.
本発明で用いる熱可塑性樹脂の種類は特に限定されない。マスターバッチに使用する熱可塑性樹脂と希釈用熱可塑性樹脂が、同一であるか、あるいは溶解性パラメータ(SP値)が近いなど相溶性がある方が希釈混合時の分散性の観点でより好ましい。
¡The type of thermoplastic resin used in the present invention is not particularly limited. It is more preferable from the viewpoint of dispersibility during dilution mixing that the thermoplastic resin used for the masterbatch and the thermoplastic resin for dilution are the same or have compatibility such as a close solubility parameter (SP value).
具体的な熱可塑性樹脂の例を挙げると、
ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-無水マレイン酸共重合体、(メタ)アクリル酸エステル-スチレン共重合体等のスチレン系(共)重合体;
ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AES(アクリロニトリル-エチレン(EPDM)-スチレン)樹脂、ASA(アクリロニトリル-スチレン-アクリレート)樹脂、HIPS(耐衝撃性ポリスチレン)樹脂等のゴム強化樹脂;
ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の、炭素数2~10のα-オレフィンの少なくとも1種をモノマーとするα-オレフィン(共)重合体及びその変性重合体(塩素化ポリエチレン等)、並びに環状オレフィン共重合体等のオレフィン系樹脂;
アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のエチレン系共重合体;
ポリ塩化ビニル、エチレン-塩化ビニル重合体、ポリ塩化ビニリデン等の塩化ビニル系樹脂;
ポリメタクリル酸メチル(PMMA)等の(メタ)アクリル酸エステルの1種以上をモノマーとする(共)重合体からなるアクリル系樹脂;
ポリアミド6、ポリアミド66、ポリアミド612等のポリアミド系樹脂(PA);
ポリカーボネート(PC);
ポリエチレンテレフタレート(PET)、ポリブチレンフタレート(PBT)、ポリエチレンナフタレート等のポリエステル系樹脂;
ポリアセタール樹脂(POM);
ポリフェニレンエーテル(PPE);
ポリアリレート樹脂;
ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂;
液晶ポリエステルといった液晶ポリマー;
ポリイミド、ポリアミドイミド、ポリエーテルイミド等のイミド樹脂;
ポリエーテルケトン等のケトン系樹脂;
ポリスルホン、ポリエーテルスルホン等のスルホン系樹脂;
ウレタン系樹脂;
ポリ酢酸ビニル;
ポリエチレンオキシド;
ポリビニルアルコール;
ポリビニルエーテル;
ポリビニルブチラート;
フェノキシ樹脂;
感光性樹脂;
生分解性プラスチック等があげられる。 Specific examples of thermoplastic resins are:
Styrene (co) polymers such as polystyrene, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, (meth) acrylic acid ester-styrene copolymer;
Rubber reinforced resins such as ABS (acrylonitrile-butadiene-styrene) resin, AES (acrylonitrile-ethylene (EPDM) -styrene) resin, ASA (acrylonitrile-styrene-acrylate) resin, HIPS (impact polystyrene) resin;
Α-olefin (co) polymers containing at least one α-olefin having 2 to 10 carbon atoms as a monomer, such as polyethylene, polypropylene, and ethylene-propylene copolymer, and modified polymers thereof (chlorinated polyethylene, etc.), And olefin resins such as cyclic olefin copolymers;
Ethylene copolymers such as ionomers, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers;
Vinyl chloride resins such as polyvinyl chloride, ethylene-vinyl chloride polymer, and polyvinylidene chloride;
An acrylic resin comprising a (co) polymer having at least one (meth) acrylic acid ester such as polymethyl methacrylate (PMMA) as a monomer;
Polyamide resins (PA) such as polyamide 6, polyamide 66, polyamide 612;
Polycarbonate (PC);
Polyester resins such as polyethylene terephthalate (PET), polybutylene phthalate (PBT), polyethylene naphthalate;
Polyacetal resin (POM);
Polyphenylene ether (PPE);
Polyarylate resin;
Fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride;
Liquid crystal polymers such as liquid crystal polyester;
Imide resins such as polyimide, polyamideimide, polyetherimide;
Ketone-based resins such as polyetherketone;
Sulfone resins such as polysulfone and polyethersulfone;
Urethane resin;
Polyvinyl acetate;
Polyethylene oxide;
Polyvinyl alcohol;
Polyvinyl ether;
Polyvinyl butyrate;
Phenoxy resin;
Photosensitive resin;
Examples include biodegradable plastics.
ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-無水マレイン酸共重合体、(メタ)アクリル酸エステル-スチレン共重合体等のスチレン系(共)重合体;
ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AES(アクリロニトリル-エチレン(EPDM)-スチレン)樹脂、ASA(アクリロニトリル-スチレン-アクリレート)樹脂、HIPS(耐衝撃性ポリスチレン)樹脂等のゴム強化樹脂;
ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の、炭素数2~10のα-オレフィンの少なくとも1種をモノマーとするα-オレフィン(共)重合体及びその変性重合体(塩素化ポリエチレン等)、並びに環状オレフィン共重合体等のオレフィン系樹脂;
アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のエチレン系共重合体;
ポリ塩化ビニル、エチレン-塩化ビニル重合体、ポリ塩化ビニリデン等の塩化ビニル系樹脂;
ポリメタクリル酸メチル(PMMA)等の(メタ)アクリル酸エステルの1種以上をモノマーとする(共)重合体からなるアクリル系樹脂;
ポリアミド6、ポリアミド66、ポリアミド612等のポリアミド系樹脂(PA);
ポリカーボネート(PC);
ポリエチレンテレフタレート(PET)、ポリブチレンフタレート(PBT)、ポリエチレンナフタレート等のポリエステル系樹脂;
ポリアセタール樹脂(POM);
ポリフェニレンエーテル(PPE);
ポリアリレート樹脂;
ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂;
液晶ポリエステルといった液晶ポリマー;
ポリイミド、ポリアミドイミド、ポリエーテルイミド等のイミド樹脂;
ポリエーテルケトン等のケトン系樹脂;
ポリスルホン、ポリエーテルスルホン等のスルホン系樹脂;
ウレタン系樹脂;
ポリ酢酸ビニル;
ポリエチレンオキシド;
ポリビニルアルコール;
ポリビニルエーテル;
ポリビニルブチラート;
フェノキシ樹脂;
感光性樹脂;
生分解性プラスチック等があげられる。 Specific examples of thermoplastic resins are:
Styrene (co) polymers such as polystyrene, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, (meth) acrylic acid ester-styrene copolymer;
Rubber reinforced resins such as ABS (acrylonitrile-butadiene-styrene) resin, AES (acrylonitrile-ethylene (EPDM) -styrene) resin, ASA (acrylonitrile-styrene-acrylate) resin, HIPS (impact polystyrene) resin;
Α-olefin (co) polymers containing at least one α-olefin having 2 to 10 carbon atoms as a monomer, such as polyethylene, polypropylene, and ethylene-propylene copolymer, and modified polymers thereof (chlorinated polyethylene, etc.), And olefin resins such as cyclic olefin copolymers;
Ethylene copolymers such as ionomers, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers;
Vinyl chloride resins such as polyvinyl chloride, ethylene-vinyl chloride polymer, and polyvinylidene chloride;
An acrylic resin comprising a (co) polymer having at least one (meth) acrylic acid ester such as polymethyl methacrylate (PMMA) as a monomer;
Polyamide resins (PA) such as polyamide 6, polyamide 66, polyamide 612;
Polycarbonate (PC);
Polyester resins such as polyethylene terephthalate (PET), polybutylene phthalate (PBT), polyethylene naphthalate;
Polyacetal resin (POM);
Polyphenylene ether (PPE);
Polyarylate resin;
Fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride;
Liquid crystal polymers such as liquid crystal polyester;
Imide resins such as polyimide, polyamideimide, polyetherimide;
Ketone-based resins such as polyetherketone;
Sulfone resins such as polysulfone and polyethersulfone;
Urethane resin;
Polyvinyl acetate;
Polyethylene oxide;
Polyvinyl alcohol;
Polyvinyl ether;
Polyvinyl butyrate;
Phenoxy resin;
Photosensitive resin;
Examples include biodegradable plastics.
これらの熱可塑性樹脂のうち、ABS樹脂、AES樹脂、ASA樹脂、AS樹脂、MBS樹脂、HIPS樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリアミド(PA)が好ましい。これらは、1種を単独であるいは2種以上を組み合わせて用いることができる。
Of these thermoplastic resins, ABS resin, AES resin, ASA resin, AS resin, MBS resin, HIPS resin, polyethylene, polypropylene, polycarbonate (PC), polyphenylene ether (PPE), and polyamide (PA) are preferable. These can be used alone or in combination of two or more.
更に耐衝撃性向上のために、上記熱可塑性樹脂にその他のエラストマー成分を添加した樹脂であってもよい。一般に衝撃性改良のために使用されるエラストマーとしては、EPRやEPDMのようなオレフィン系エラストマー、スチレンとブタジエンの共重合体から成るSBR等のスチレン系エラストマー、シリコン系エラストマー、ニトリル系エラストマー、ブタジエン系エラストマー、ウレタン系エラストマー、ポリアミド系エラストマー、エステル系エラストマー、フッ素系エラストマー、天然ゴム及びそれらのエラストマーに反応部位(二重結合、カルボン酸無水物基等)を導入した変性物のようなものが使用される。
Further, in order to improve impact resistance, a resin obtained by adding other elastomer components to the above thermoplastic resin may be used. In general, elastomers used for improving impact resistance include olefin elastomers such as EPR and EPDM, styrene elastomers such as SBR made of a copolymer of styrene and butadiene, silicone elastomers, nitrile elastomers, and butadiene elastomers. Elastomers, urethane elastomers, polyamide elastomers, ester elastomers, fluoroelastomers, natural rubber, and modified products in which reactive sites (double bonds, carboxylic anhydride groups, etc.) are introduced into these elastomers are used Is done.
「炭素繊維」
本発明の好ましい実施態様において、使用する炭素繊維は限定されないが、たとえば、ピッチ系炭素繊維、PAN系炭素繊維、カーボンファイバー、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。添加量を少なくするという観点からは、カーボンナノチューブを使用することが好ましい。好ましい態様のカーボンナノチューブは、繊維の中心部に空洞を有するチューブ状であり、グラフェン面が繊維軸に対して略平行に伸長している。なお、本発明において、略平行とは、繊維軸に対するグラフェン層の傾きが約±15度以内のことをいう。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。また、グラフェン層が1層であるシングルウォールカーボンナノチューブは表面エネルギーが高く、樹脂に分散する際に分繊性が悪く導電性付与の効果が小さくなる傾向がある。よって、グラフェン層が2層以上のダブルウォールカーボンナノチューブや3層以上のマルチウォールカーボンナノチューブが好ましく、3層以上のマルチウォールカーボンナノチューブが最も好ましい。 "Carbon fiber"
In a preferred embodiment of the present invention, the carbon fiber to be used is not limited, and examples thereof include pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber, carbon nanofiber, and carbon nanotube. From the viewpoint of reducing the amount added, it is preferable to use carbon nanotubes. The carbon nanotube of a preferred embodiment is a tube having a cavity at the center of the fiber, and the graphene surface extends substantially parallel to the fiber axis. In the present invention, “substantially parallel” means that the inclination of the graphene layer with respect to the fiber axis is within about ± 15 degrees. The hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous. In addition, single wall carbon nanotubes with a single graphene layer have high surface energy, and when dispersed in a resin, there is a tendency that the separation effect is poor and the effect of imparting conductivity tends to be small. Therefore, double-wall carbon nanotubes having two or more graphene layers and multi-wall carbon nanotubes having three or more layers are preferable, and multi-wall carbon nanotubes having three or more layers are most preferable.
本発明の好ましい実施態様において、使用する炭素繊維は限定されないが、たとえば、ピッチ系炭素繊維、PAN系炭素繊維、カーボンファイバー、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。添加量を少なくするという観点からは、カーボンナノチューブを使用することが好ましい。好ましい態様のカーボンナノチューブは、繊維の中心部に空洞を有するチューブ状であり、グラフェン面が繊維軸に対して略平行に伸長している。なお、本発明において、略平行とは、繊維軸に対するグラフェン層の傾きが約±15度以内のことをいう。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。また、グラフェン層が1層であるシングルウォールカーボンナノチューブは表面エネルギーが高く、樹脂に分散する際に分繊性が悪く導電性付与の効果が小さくなる傾向がある。よって、グラフェン層が2層以上のダブルウォールカーボンナノチューブや3層以上のマルチウォールカーボンナノチューブが好ましく、3層以上のマルチウォールカーボンナノチューブが最も好ましい。 "Carbon fiber"
In a preferred embodiment of the present invention, the carbon fiber to be used is not limited, and examples thereof include pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber, carbon nanofiber, and carbon nanotube. From the viewpoint of reducing the amount added, it is preferable to use carbon nanotubes. The carbon nanotube of a preferred embodiment is a tube having a cavity at the center of the fiber, and the graphene surface extends substantially parallel to the fiber axis. In the present invention, “substantially parallel” means that the inclination of the graphene layer with respect to the fiber axis is within about ± 15 degrees. The hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous. In addition, single wall carbon nanotubes with a single graphene layer have high surface energy, and when dispersed in a resin, there is a tendency that the separation effect is poor and the effect of imparting conductivity tends to be small. Therefore, double-wall carbon nanotubes having two or more graphene layers and multi-wall carbon nanotubes having three or more layers are preferable, and multi-wall carbon nanotubes having three or more layers are most preferable.
炭素繊維は、その繊維径が細い方が導電性付与効果が高い。好ましい平均繊維径は1nm以上100nm以下、より好ましくは1nm以上50nm以下、特に好ましくは1nm以上20nm以下である。分散性の観点からは、平均繊維径は2nm以上が好ましく、4nm以上がより好ましい。そのため、分散性と導電性付与効果を考慮した場合、平均繊維径は2~20nmが好ましく、4~20nmが最も好ましい。
Carbon fiber has a higher conductivity imparting effect when the fiber diameter is narrower. The average fiber diameter is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm, and particularly preferably 1 nm to 20 nm. From the viewpoint of dispersibility, the average fiber diameter is preferably 2 nm or more, and more preferably 4 nm or more. Therefore, when considering the dispersibility and conductivity imparting effect, the average fiber diameter is preferably 2 to 20 nm, and most preferably 4 to 20 nm.
炭素繊維がカーボンナノチューブのように内部が空洞になっている場合は、繊維径dと空洞部内径d0との比(d0/d)は特に限定されないが、0.1~0.9が好ましく、0.3~0.9がさらに好ましい。
When the inside of the carbon fiber is hollow like a carbon nanotube, the ratio (d 0 / d) between the fiber diameter d and the cavity inner diameter d 0 is not particularly limited, but is 0.1 to 0.9. Preferably, 0.3 to 0.9 is more preferable.
また、BET法による比表面積の下限は、好ましくは20m2/g、より好ましくは30m2/g、さらに好ましくは40m2/g、特に好ましくは50m2/gである。比表面積の上限は、特段無いが、好ましくは400m2/g、より好ましくは350m2/gである。さらに好ましくは300m2/gである。
Further, the lower limit of the specific surface area by the BET method is preferably 20 m 2 / g, more preferably 30 m 2 / g, still more preferably 40 m 2 / g, and particularly preferably 50 m 2 / g. The upper limit of the specific surface area is not particularly limited, but is preferably 400 m 2 / g, more preferably 350 m 2 / g. More preferably, it is 300 m 2 / g.
炭素繊維の表面結晶構造を評価するためには、様々な手法が提案されているが、例えば、ラマン分光法を用いる方法がある。ラマン分光法で1580cm-1付近に観測されるGバンドと1350cm-1付近に観測されるDバンドとの比(R値)で評価する方法が知られている。
Various methods have been proposed for evaluating the surface crystal structure of carbon fibers. For example, there is a method using Raman spectroscopy. How to evaluate the ratio of the D band observed in the vicinity of G band and 1350 cm -1 which is observed near 1580 cm -1 in Raman spectroscopy (R value) is known.
本発明の好ましい実施態様における炭素繊維は、上述のR値では0.1以上が好ましく、0.2~2.0が好ましく、0.5~1.5が最適である。なお、R値は大きいほど結晶性が低いことを示す。
The carbon fiber in a preferred embodiment of the present invention is preferably 0.1 or more, preferably 0.2 to 2.0, and most preferably 0.5 to 1.5 in the above R value. In addition, it shows that crystallinity is so low that R value is large.
炭素繊維の圧密比抵抗値は、密度1.0g/cm3において、1.0×10-2Ω・cm以下が好ましく、1.0×10-3Ω・cm~9.9×10-3Ω・cmがより好ましい。
The consolidation specific resistance value of the carbon fiber is preferably 1.0 × 10 −2 Ω · cm or less, and 1.0 × 10 −3 Ω · cm to 9.9 × 10 −3 at a density of 1.0 g / cm 3 . More preferably, Ω · cm.
炭素繊維の繊維長は特に限定されないが、繊維長が短すぎると、導電性の付与効果が小さくなる傾向があり、繊維長が長すぎるとマトリクス樹脂中への分散性が困難になる傾向がある。したがって、好ましい繊維の長さは、その繊維の太さにもよるが、通常は0.5μm~100μm、好ましくは0.5μm~10μm、更に好ましくは0.5μm~5μmである。
The fiber length of the carbon fiber is not particularly limited, but if the fiber length is too short, the conductivity imparting effect tends to be small, and if the fiber length is too long, dispersibility in the matrix resin tends to be difficult. . Accordingly, the preferred fiber length is usually 0.5 μm to 100 μm, preferably 0.5 μm to 10 μm, and more preferably 0.5 μm to 5 μm, although it depends on the thickness of the fiber.
炭素繊維自体は直線的であっても、くねくねと湾曲していても良い。ただし、くねくねと湾曲した繊維は樹脂との密着性に優れ、直線状の繊維と比較して界面強度が高くなるので樹脂複合材に添加した時の機械特性の低下が抑えられる点で、より好ましい。さらに、このくねくねした構造の為に、樹脂中に少量分散した場合でも、繊維同士のネットワークが途切れない一因となっており、従来技術のような直線に近い繊維では導電性が発現しないような低添加量領域においても導電性が発現される点で、より好ましい。
The carbon fiber itself may be straight or may be curved and twisted. However, twisted and curved fibers are more preferable because they have excellent adhesion to the resin and have higher interfacial strength than linear fibers, so that deterioration in mechanical properties when added to a resin composite can be suppressed. . In addition, because of this twisted structure, even when dispersed in a small amount in the resin, it is a cause that the network between the fibers is not interrupted, and conductivity is not expressed in the fiber near the straight line as in the prior art It is more preferable in that conductivity is exhibited even in a low addition amount region.
本発明において炭素繊維は凝集体を形成していることが好ましい。その場合の嵩密度は0.03~0.3g/cm3であることが好ましく、さらに好ましくは0.05~0.3g/cm3であり、特に好ましく0.07~0.3g/cm3である。嵩密度が0.03g/cm3未満では実質的に凝集体を成しておらず、マスターバッチ作製の段階で容易に分散するものの、2次混練でのせん断時には繊維が破断してしまい、所望の特性を得るための条件調整をする余地がなくなってしまうことがある。一方、嵩密度が0.3g/cm3以上ではその凝集の程度が極めて強固であり、一般的な混練手法によって分散させることが困難になることがある。
In the present invention, the carbon fiber preferably forms an aggregate. In this case, the bulk density is preferably 0.03 to 0.3 g / cm 3 , more preferably 0.05 to 0.3 g / cm 3 , and particularly preferably 0.07 to 0.3 g / cm 3. It is. When the bulk density is less than 0.03 g / cm 3 , substantially no agglomerates are formed and the fibers are easily dispersed at the stage of masterbatch production, but the fibers are broken during shearing in the secondary kneading, and thus desired. There is a case where there is no room for adjusting the conditions for obtaining the above characteristics. On the other hand, when the bulk density is 0.3 g / cm 3 or more, the degree of aggregation is extremely strong, and it may be difficult to disperse by a general kneading method.
嵩密度の測定方法は、たとえばJIS Z-2512(金属粉-タップ密度測定方法)を採用することが可能である。
As the bulk density measurement method, for example, JIS Z-2512 (metal powder-tap density measurement method) can be adopted.
本発明においては、炭素繊維は二次凝集体を形成していてもよい。二次凝集体のサイズは、長手方向の大きさが1μm~5mmであることが好ましく、さらに好ましくは5μm~3mm、特に好ましくは10μm~1mmである。5mm以上ではハンドリング時の飛散が顕著であり生産性が低下することがある。また、1μm以下では凝集体中に占める炭素繊維の割合が極めて少なく、フィラーとしての所望の添加効果を得るのが難しくなることがある。
In the present invention, the carbon fibers may form secondary aggregates. The size of the secondary aggregate is preferably 1 μm to 5 mm in the longitudinal direction, more preferably 5 μm to 3 mm, and particularly preferably 10 μm to 1 mm. If it is 5 mm or more, scattering during handling is significant, and productivity may be reduced. Moreover, if it is 1 micrometer or less, the ratio of the carbon fiber which occupies in an aggregate is very small, and it may become difficult to acquire the desired addition effect as a filler.
「炭素繊維の製造方法」
炭素繊維の製造方法は特に限定されないが、たとえば特開2008-174442号公報に開示されている方法が採用可能である。 "Production method of carbon fiber"
The method for producing the carbon fiber is not particularly limited, but for example, a method disclosed in Japanese Patent Application Laid-Open No. 2008-174442 can be employed.
炭素繊維の製造方法は特に限定されないが、たとえば特開2008-174442号公報に開示されている方法が採用可能である。 "Production method of carbon fiber"
The method for producing the carbon fiber is not particularly limited, but for example, a method disclosed in Japanese Patent Application Laid-Open No. 2008-174442 can be employed.
「導電性樹脂用マスターバッチ」
上記のような炭素繊維をマスターバッチ用熱可塑性樹脂に配合、混練してマスターバッチを調製することができる。マスターバッチ中の炭素繊維の含有量は、導電性樹脂中6質量%以上50質量%以下が好ましく、より好ましくは7質量%以上30質量%以下であり、さらに好ましくは8質量%以上25質量%以下である。ただし、一般的なマスターバッチ作製に基づいて、可能な限り炭素繊維を高濃度化すると、本発明における効果が乏しくなる。一方、添加量が50質量%を超えるとマスターバッチ作製自体が困難になる。 "Master batch for conductive resin"
The masterbatch can be prepared by blending and kneading the carbon fiber as described above in a thermoplastic resin for a masterbatch. The content of carbon fiber in the master batch is preferably 6% by mass or more and 50% by mass or less in the conductive resin, more preferably 7% by mass or more and 30% by mass or less, and further preferably 8% by mass or more and 25% by mass. It is as follows. However, if the concentration of the carbon fiber is increased as much as possible based on the production of a general master batch, the effect in the present invention becomes poor. On the other hand, when the addition amount exceeds 50% by mass, it becomes difficult to produce a master batch.
上記のような炭素繊維をマスターバッチ用熱可塑性樹脂に配合、混練してマスターバッチを調製することができる。マスターバッチ中の炭素繊維の含有量は、導電性樹脂中6質量%以上50質量%以下が好ましく、より好ましくは7質量%以上30質量%以下であり、さらに好ましくは8質量%以上25質量%以下である。ただし、一般的なマスターバッチ作製に基づいて、可能な限り炭素繊維を高濃度化すると、本発明における効果が乏しくなる。一方、添加量が50質量%を超えるとマスターバッチ作製自体が困難になる。 "Master batch for conductive resin"
The masterbatch can be prepared by blending and kneading the carbon fiber as described above in a thermoplastic resin for a masterbatch. The content of carbon fiber in the master batch is preferably 6% by mass or more and 50% by mass or less in the conductive resin, more preferably 7% by mass or more and 30% by mass or less, and further preferably 8% by mass or more and 25% by mass. It is as follows. However, if the concentration of the carbon fiber is increased as much as possible based on the production of a general master batch, the effect in the present invention becomes poor. On the other hand, when the addition amount exceeds 50% by mass, it becomes difficult to produce a master batch.
希釈用熱可塑性樹脂によるマスターバッチ希釈後の導電性樹脂中の炭素繊維の含有量は、0.5質量%以上6質量%未満が好ましく、さらに好ましくは0.5質量%以上3質量%以下である。含有量を0.5質量%以上とすることにより、樹脂成形体中に十分な導電性、熱伝導性の経路を作ることが可能となる。
The content of the carbon fiber in the conductive resin after dilution of the master batch with the dilution thermoplastic resin is preferably 0.5% by mass or more and less than 6% by mass, and more preferably 0.5% by mass or more and 3% by mass or less. is there. By setting the content to 0.5% by mass or more, it is possible to form a sufficiently conductive and thermally conductive path in the resin molded body.
「混練方法」
炭素繊維を熱可塑性樹脂に混練分散させる際には、炭素繊維の破断を極力抑えるように行うことが好ましい。具体的には、炭素繊維の破断率を20%以下に抑えることが好ましく、15%以下に抑えることが更に好ましく、10%以下に抑えることが特に好ましい。破断率は、混合・混練の前後での炭素繊維のアスペクト比(例えば、電子顕微鏡SEM観察により測定)を比較することにより評価する。 "Kneading method"
When kneading and dispersing the carbon fiber in the thermoplastic resin, it is preferable to carry out so as to suppress the breakage of the carbon fiber as much as possible. Specifically, the breaking rate of the carbon fiber is preferably suppressed to 20% or less, more preferably 15% or less, and particularly preferably 10% or less. The breaking rate is evaluated by comparing the aspect ratios of carbon fibers before and after mixing and kneading (for example, measured by observation with an electron microscope SEM).
炭素繊維を熱可塑性樹脂に混練分散させる際には、炭素繊維の破断を極力抑えるように行うことが好ましい。具体的には、炭素繊維の破断率を20%以下に抑えることが好ましく、15%以下に抑えることが更に好ましく、10%以下に抑えることが特に好ましい。破断率は、混合・混練の前後での炭素繊維のアスペクト比(例えば、電子顕微鏡SEM観察により測定)を比較することにより評価する。 "Kneading method"
When kneading and dispersing the carbon fiber in the thermoplastic resin, it is preferable to carry out so as to suppress the breakage of the carbon fiber as much as possible. Specifically, the breaking rate of the carbon fiber is preferably suppressed to 20% or less, more preferably 15% or less, and particularly preferably 10% or less. The breaking rate is evaluated by comparing the aspect ratios of carbon fibers before and after mixing and kneading (for example, measured by observation with an electron microscope SEM).
一般に、熱可塑性樹脂に無機フィラーを溶融混練する場合、凝集したフィラーに高せん断を加え、フィラーを解砕し、微細化して、溶融樹脂中へフィラーを均一に分散させる。混練時のせん断が弱いと、フィラーが十分に溶融樹脂中に分散せず、期待する性能や機能を持つ樹脂複合材料が得られない。高せん断力を発生させる混練機としては、石臼機構を利用したものや、同方向二軸押出機でスクリューエレメント中に高せん断のかかるニーディングディスクを導入したものが数多く使用されている。しかしながら炭素繊維を樹脂に混練する場合、余りに過剰な高せん断を樹脂や炭素繊維に印加すると、炭素繊維の破断が過剰に進むため、期待する性能や機能を持つ樹脂複合材料が得られない。一方、せん断力の弱い単軸押出機の場合は、炭素繊維の破断は抑えられるが、炭素繊維の分散が均一にならない。
Generally, when an inorganic filler is melt-kneaded into a thermoplastic resin, high shear is applied to the agglomerated filler, the filler is crushed and refined, and the filler is uniformly dispersed in the molten resin. If the shear during kneading is weak, the filler is not sufficiently dispersed in the molten resin, and a resin composite material having the expected performance and function cannot be obtained. Many kneading machines that generate a high shearing force use a stone mortar mechanism or a co-directional twin-screw extruder that introduces a kneading disk with high shear into a screw element. However, when carbon fiber is kneaded with resin, if excessively high shear is applied to the resin or carbon fiber, the carbon fiber breaks excessively, so that a resin composite material having the expected performance and function cannot be obtained. On the other hand, in the case of a single screw extruder having a weak shearing force, the breakage of the carbon fibers can be suppressed, but the dispersion of the carbon fibers is not uniform.
したがって、炭素繊維の破断を抑えながら、均一な分散をはかるためには、ニーディングディスクを使用しない二軸押出機でせん断を低減して、もしくは加圧ニーダーのような高せん断がかからない装置で、時間を掛けて混練するか、または単軸押出機において特殊なミキシングエレメントを使用して混練することが望ましい。
Therefore, in order to achieve uniform dispersion while suppressing breakage of the carbon fiber, the shear is reduced with a twin screw extruder that does not use a kneading disk, or a device that does not apply high shear such as a pressure kneader, It is desirable to knead over time or to knead using a special mixing element in a single screw extruder.
なお、マスターバッチを希釈用熱可塑性樹脂で希釈する際の混練条件においても、炭素繊維の破断を抑えながら、均一な分散をはかることが好ましい。このためには、ニーディングディスクを使用しない二軸押出機でせん断を低減して、もしくは加圧ニーダーのような高せん断がかからない装置で、時間を掛けて混練するか、または単軸押出機において特殊なミキシングエレメントを使用して混練する、あるいは射出成形機でドライブレンドすることが望ましい。
It should be noted that even in the kneading conditions when diluting the master batch with the thermoplastic resin for dilution, it is preferable to achieve uniform dispersion while suppressing breakage of the carbon fibers. For this purpose, it is possible to reduce the shear with a twin screw extruder not using a kneading disk, or to knead it with time in a high shear device such as a pressure kneader, or in a single screw extruder. It is desirable to knead using a special mixing element or dry blend with an injection molding machine.
本発明の好ましい実施態様における導電性樹脂は、二軸押出機での希釈の場合、前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が40%以下かつ表面抵抗値が15logΩ/cm2以下であり、またドライブレンドでの希釈の場合、前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が60%以下かつ表面抵抗値が15logΩ/cm2以下である。また、二軸押出機による希釈はアイゾット衝撃強度の低下率がドライブレンドでの希釈に比べて小さく、一方でドライブレンドによる希釈では二軸押出機による希釈に比べて希釈方法が簡便であるというように双方に利点がある。
When the conductive resin in a preferred embodiment of the present invention is diluted by a twin-screw extruder, the reduction rate of Izod impact strength (ASTMD256, notched) with respect to the thermoplastic resin for dilution is 40% or less and the surface resistance value is 15 log Ω / cm 2 or less, and in the case of dilution with a dry blend, the reduction rate of Izod impact strength (ASTMD256, notched) to the thermoplastic resin for dilution is 60% or less and the surface resistance value is 15 log Ω / cm 2 or less. It is. In addition, dilution with a twin-screw extruder has a smaller decrease in Izod impact strength than that with a dry blend, while dilution with a dry blend has a simpler dilution method than with a twin-screw extruder. There are advantages to both.
「成形方法」
これらの樹脂から成形品を製造する際には、従来から知られている樹脂の成形法によることができる。成形法としては、例えば、射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、トランスファー成形法などが挙げられる。 "Molding method"
When manufacturing a molded product from these resins, a conventionally known resin molding method can be used. Examples of the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.
これらの樹脂から成形品を製造する際には、従来から知られている樹脂の成形法によることができる。成形法としては、例えば、射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、トランスファー成形法などが挙げられる。 "Molding method"
When manufacturing a molded product from these resins, a conventionally known resin molding method can be used. Examples of the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.
「用途」
得られた導電性樹脂は、耐衝撃性と共に、導電性や帯電防止性が要求される製品、例えばOA機器、電子機器、導電性包装用部品、導電性摺動用部材、導電性熱伝導性部材、帯電防止性包装用部品、静電塗装が適用される車両用部品などの成形材料として好適に使用できる。特に、静電塗装の分野ではコスト面及び材料の物性の観点で、導電性フィラーの添加量を低減する要求が高く、かつ高強度の導電性樹脂成形体が求められることから、本発明の樹脂が好適である。 "Use"
The obtained conductive resin is a product that is required to have conductivity and antistatic properties as well as impact resistance, such as OA equipment, electronic equipment, conductive packaging parts, conductive sliding members, conductive thermal conductive members It can be suitably used as a molding material for antistatic packaging parts, automotive parts to which electrostatic coating is applied. In particular, in the field of electrostatic coating, from the viewpoint of cost and material properties, there is a high demand for reducing the amount of conductive filler added, and a high-strength conductive resin molded body is required. Is preferred.
得られた導電性樹脂は、耐衝撃性と共に、導電性や帯電防止性が要求される製品、例えばOA機器、電子機器、導電性包装用部品、導電性摺動用部材、導電性熱伝導性部材、帯電防止性包装用部品、静電塗装が適用される車両用部品などの成形材料として好適に使用できる。特に、静電塗装の分野ではコスト面及び材料の物性の観点で、導電性フィラーの添加量を低減する要求が高く、かつ高強度の導電性樹脂成形体が求められることから、本発明の樹脂が好適である。 "Use"
The obtained conductive resin is a product that is required to have conductivity and antistatic properties as well as impact resistance, such as OA equipment, electronic equipment, conductive packaging parts, conductive sliding members, conductive thermal conductive members It can be suitably used as a molding material for antistatic packaging parts, automotive parts to which electrostatic coating is applied. In particular, in the field of electrostatic coating, from the viewpoint of cost and material properties, there is a high demand for reducing the amount of conductive filler added, and a high-strength conductive resin molded body is required. Is preferred.
本発明における導電性樹脂の機械強度が極めて高い理由については、以下のように推定している。
従来技術においては、フィラー自体の分散性は比較的良好であるために、「(A)マスターバッチと希釈樹脂との溶融粘度差」及び「(B)マスターバッチ用樹脂の機械強度」のバランスによって希釈後の樹脂の機械強度が決まる。図2に溶融粘度のひとつの指標であるマスターバッチ用樹脂の流動性(MFR)と希釈後の樹脂の衝撃強度の関係を模式図化した。マスターバッチ用樹脂として低流動の樹脂を用いた場合、マスターバッチ用樹脂の機械強度は高いものの、フィラーの混合によりマスターバッチの溶融粘度が上昇するために、結果としてマスターバッチと希釈樹脂との粘度差が大きくなって樹脂同士の混合が不良となり機械強度は低くなる。一方、マスターバッチ用樹脂として超高流動の樹脂を用いた場合、フィラーを含有したマスターバッチと希釈樹脂との粘度差が小さくなるので、樹脂同士の混合は良好になるものの、マスターバッチ用樹脂として使用した超高流動樹脂の機械強度が低いために、最終的な樹脂の機械強度は低くなる。したがって、一般的なフィラーを用いる場合にあっては、流動性と機械強度のバランスのとれたマスターバッチ用樹脂が最適となる。 The reason why the mechanical strength of the conductive resin in the present invention is extremely high is estimated as follows.
In the prior art, since the dispersibility of the filler itself is relatively good, the balance of “(A) difference in melt viscosity between master batch and diluted resin” and “(B) mechanical strength of resin for master batch” The mechanical strength of the resin after dilution is determined. FIG. 2 schematically shows the relationship between the fluidity (MFR) of the masterbatch resin, which is one index of melt viscosity, and the impact strength of the diluted resin. When a low flow resin is used as the masterbatch resin, the masterbatch resin has high mechanical strength, but the melt viscosity of the masterbatch increases as a result of filler mixing. The difference becomes large and the mixing of the resins becomes poor and the mechanical strength is lowered. On the other hand, when an ultra-high flow resin is used as the masterbatch resin, the difference in viscosity between the filler-containing masterbatch and the diluted resin is reduced, so the mixing of the resins is good, but the masterbatch resin Since the mechanical strength of the ultra-high flow resin used is low, the mechanical strength of the final resin is low. Therefore, when a general filler is used, a masterbatch resin that balances fluidity and mechanical strength is optimal.
従来技術においては、フィラー自体の分散性は比較的良好であるために、「(A)マスターバッチと希釈樹脂との溶融粘度差」及び「(B)マスターバッチ用樹脂の機械強度」のバランスによって希釈後の樹脂の機械強度が決まる。図2に溶融粘度のひとつの指標であるマスターバッチ用樹脂の流動性(MFR)と希釈後の樹脂の衝撃強度の関係を模式図化した。マスターバッチ用樹脂として低流動の樹脂を用いた場合、マスターバッチ用樹脂の機械強度は高いものの、フィラーの混合によりマスターバッチの溶融粘度が上昇するために、結果としてマスターバッチと希釈樹脂との粘度差が大きくなって樹脂同士の混合が不良となり機械強度は低くなる。一方、マスターバッチ用樹脂として超高流動の樹脂を用いた場合、フィラーを含有したマスターバッチと希釈樹脂との粘度差が小さくなるので、樹脂同士の混合は良好になるものの、マスターバッチ用樹脂として使用した超高流動樹脂の機械強度が低いために、最終的な樹脂の機械強度は低くなる。したがって、一般的なフィラーを用いる場合にあっては、流動性と機械強度のバランスのとれたマスターバッチ用樹脂が最適となる。 The reason why the mechanical strength of the conductive resin in the present invention is extremely high is estimated as follows.
In the prior art, since the dispersibility of the filler itself is relatively good, the balance of “(A) difference in melt viscosity between master batch and diluted resin” and “(B) mechanical strength of resin for master batch” The mechanical strength of the resin after dilution is determined. FIG. 2 schematically shows the relationship between the fluidity (MFR) of the masterbatch resin, which is one index of melt viscosity, and the impact strength of the diluted resin. When a low flow resin is used as the masterbatch resin, the masterbatch resin has high mechanical strength, but the melt viscosity of the masterbatch increases as a result of filler mixing. The difference becomes large and the mixing of the resins becomes poor and the mechanical strength is lowered. On the other hand, when an ultra-high flow resin is used as the masterbatch resin, the difference in viscosity between the filler-containing masterbatch and the diluted resin is reduced, so the mixing of the resins is good, but the masterbatch resin Since the mechanical strength of the ultra-high flow resin used is low, the mechanical strength of the final resin is low. Therefore, when a general filler is used, a masterbatch resin that balances fluidity and mechanical strength is optimal.
しかしながら、フィラーとして炭素繊維を用いる場合、一般的なフィラーとは異なる挙動が起こっていると推定される。炭素繊維をフィラーとすると、「(A)マスターバッチと希釈樹脂との溶融粘度差」による混合不良は、樹脂同士の混合不良と合わせて炭素繊維の希釈樹脂への分散を妨げることになり、未分散の炭素繊維が衝撃時の破壊起点となるなど機械強度を大きく損なう結果となる。すなわち、「(B)マスターバッチ用樹脂の機械強度の高低」よりも「(A)マスターバッチと希釈樹脂との溶融粘度差」の方が大きく機械強度に寄与することが推定される。
However, when carbon fiber is used as a filler, it is estimated that a behavior different from that of a general filler occurs. When carbon fiber is used as a filler, poor mixing due to “(A) difference in melt viscosity between master batch and diluted resin”, together with poor mixing of resins, hinders dispersion of carbon fiber into diluted resin. As a result, the carbon strength of the dispersion becomes a starting point of fracture at the time of impact, resulting in a significant loss of mechanical strength. That is, it is estimated that “(A) difference in melt viscosity between master batch and diluted resin” contributes to mechanical strength more than “(B) high and low mechanical strength of masterbatch resin”.
そのため、超高流動樹脂をマスターバッチ用樹脂として用いることにより、最終的な導電性樹脂の機械強度の向上に繋がり、従来とは違う結果をもたらすものと推定される。
Therefore, it is presumed that using ultra-high flow resin as a resin for masterbatch leads to an improvement in the mechanical strength of the final conductive resin, resulting in a result different from the conventional one.
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、下記の実施例は例示のために示すものであって、いかなる意味においても、本発明を限定的に解釈するものではない。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. However, the following examples are shown for illustrative purposes and are not intended to limit the present invention in any way. Absent.
(1)使用成分
使用成分の内訳は以下の通りである。
(A)ABS樹脂-1(日本エーアンドエル株式会社製 クララスチック(登録商標)SXD-220、メルトフローレート90g/10min.(220℃、10kgf荷重))、アイゾット衝撃強度90J/m(ASTM D256)
(B)ABS樹脂-2(東レ株式会社製 トヨラック(登録商標)100-MPM-B1、メルトフローレート15g/10min.(220℃、10kgf荷重)、アイゾット衝撃強度210J/m(ASTM D256)
(C)ABS樹脂-3(東レ株式会社製 トヨラック(登録商標)300、メルトフローレート10g/10min.(220℃、10kgf荷重))、アイゾット衝撃強度330J/m(ASTM D256)
(220℃、10kgf荷重)) (1) Components used The breakdown of the components used is as follows.
(A) ABS resin-1 (Clarastic (registered trademark) SXD-220 manufactured by Nippon A & L Co., Ltd., melt flow rate 90 g / 10 min. (220 ° C., 10 kgf load)), Izod impact strength 90 J / m (ASTM D256) )
(B) ABS resin-2 (Toyolac (registered trademark) 100-MPM-B1, manufactured by Toray Industries, Inc., melt flow rate 15 g / 10 min. (220 ° C., 10 kgf load)), Izod impact strength 210 J / m (ASTM D256)
(C) ABS resin-3 (Toyolac (registered trademark) 300 manufactured by Toray Industries, Inc., melt flow rate 10 g / 10 min. (220 ° C., 10 kgf load)), Izod impact strength 330 J / m (ASTM D256)
(220 ° C, 10kgf load))
使用成分の内訳は以下の通りである。
(A)ABS樹脂-1(日本エーアンドエル株式会社製 クララスチック(登録商標)SXD-220、メルトフローレート90g/10min.(220℃、10kgf荷重))、アイゾット衝撃強度90J/m(ASTM D256)
(B)ABS樹脂-2(東レ株式会社製 トヨラック(登録商標)100-MPM-B1、メルトフローレート15g/10min.(220℃、10kgf荷重)、アイゾット衝撃強度210J/m(ASTM D256)
(C)ABS樹脂-3(東レ株式会社製 トヨラック(登録商標)300、メルトフローレート10g/10min.(220℃、10kgf荷重))、アイゾット衝撃強度330J/m(ASTM D256)
(220℃、10kgf荷重)) (1) Components used The breakdown of the components used is as follows.
(A) ABS resin-1 (Clarastic (registered trademark) SXD-220 manufactured by Nippon A & L Co., Ltd., melt flow rate 90 g / 10 min. (220 ° C., 10 kgf load)), Izod impact strength 90 J / m (ASTM D256) )
(B) ABS resin-2 (Toyolac (registered trademark) 100-MPM-B1, manufactured by Toray Industries, Inc., melt flow rate 15 g / 10 min. (220 ° C., 10 kgf load)), Izod impact strength 210 J / m (ASTM D256)
(C) ABS resin-3 (Toyolac (registered trademark) 300 manufactured by Toray Industries, Inc., melt flow rate 10 g / 10 min. (220 ° C., 10 kgf load)), Izod impact strength 330 J / m (ASTM D256)
(220 ° C, 10kgf load))
(D)炭素繊維-1
炭素繊維は、次のようにして作製した。硝酸鉄(III)九水和物1.81質量部をメタノール0.95質量部に添加し溶解させ、次いでチタン(IV)テトラブトキシド・テトラマー0.109質量部及び七モリブデン酸六アンモニウム0.079質量部を添加し溶解させて、溶液Aを得た。該溶液Aを中間アルミナ(住友化学製;AKP-G015)1質量部に滴下、混合した。混合後、100℃で4時間真空乾燥した。乾燥後、乳鉢で粉砕して触媒を得た。該触媒は、Feに対してMo10モル%、Ti10モル%を含み、中間アルミナに対してFeが25質量%担持されていた。 (D) Carbon fiber-1
The carbon fiber was produced as follows. 1.81 parts by mass of iron (III) nitrate nonahydrate was added to 0.95 parts by mass of methanol and dissolved, then 0.109 parts by mass of titanium (IV) tetrabutoxide tetramer and 0.079 parts of hexaammonium heptamolybdate 0.079 A part by mass was added and dissolved to obtain a solution A. The solution A was added dropwise to 1 part by weight of intermediate alumina (Sumitomo Chemical; AKP-G015) and mixed. After mixing, vacuum drying was performed at 100 ° C. for 4 hours. After drying, the catalyst was obtained by grinding in a mortar. The catalyst contained 10 mol% Mo and 10 mol% Ti with respect to Fe, and 25 mass% Fe was supported on the intermediate alumina.
炭素繊維は、次のようにして作製した。硝酸鉄(III)九水和物1.81質量部をメタノール0.95質量部に添加し溶解させ、次いでチタン(IV)テトラブトキシド・テトラマー0.109質量部及び七モリブデン酸六アンモニウム0.079質量部を添加し溶解させて、溶液Aを得た。該溶液Aを中間アルミナ(住友化学製;AKP-G015)1質量部に滴下、混合した。混合後、100℃で4時間真空乾燥した。乾燥後、乳鉢で粉砕して触媒を得た。該触媒は、Feに対してMo10モル%、Ti10モル%を含み、中間アルミナに対してFeが25質量%担持されていた。 (D) Carbon fiber-1
The carbon fiber was produced as follows. 1.81 parts by mass of iron (III) nitrate nonahydrate was added to 0.95 parts by mass of methanol and dissolved, then 0.109 parts by mass of titanium (IV) tetrabutoxide tetramer and 0.079 parts of hexaammonium heptamolybdate 0.079 A part by mass was added and dissolved to obtain a solution A. The solution A was added dropwise to 1 part by weight of intermediate alumina (Sumitomo Chemical; AKP-G015) and mixed. After mixing, vacuum drying was performed at 100 ° C. for 4 hours. After drying, the catalyst was obtained by grinding in a mortar. The catalyst contained 10 mol% Mo and 10 mol% Ti with respect to Fe, and 25 mass% Fe was supported on the intermediate alumina.
当該触媒を石英ボートに載せ、石英製反応管に該石英ボートを入れ、密閉した。反応管内を窒素ガスで置換し、窒素ガスを流しながら、反応器を室温から690℃まで60分間かけて昇温させた。窒素を流しながら690℃で30分間保持した。
The catalyst was placed on a quartz boat, and the quartz boat was placed in a quartz reaction tube and sealed. The inside of the reaction tube was replaced with nitrogen gas, and the reactor was heated from room temperature to 690 ° C. over 60 minutes while flowing nitrogen gas. It was kept at 690 ° C. for 30 minutes while flowing nitrogen.
温度690℃を維持したまま、窒素ガスを、窒素ガス(100容量部)と水素ガス(400容量部)との混合ガスAに切り替えて反応器に流し、30分間、還元反応させた。還元反応後、温度690℃を維持したまま、混合ガスAを、水素ガス(250容量部)とエチレンガス(250容量部)との混合ガスBに切り替え反応器に流し、60分間、気相成長反応させた。混合ガスBを窒素ガスに切り替え、反応器内を窒素ガスで置換し、室温まで冷やした。反応器を開き石英ボートを取り出した。触媒を核として成長した炭素繊維が得られた。当該炭素繊維の繊維径は15nm、BET法による比表面積は260m2/g、R値は1.1、密度1.0g/cm3における圧密比抵抗値は、1.2×10-3Ω・cm、嵩密度は0.08g/cm3であった。
While maintaining the temperature at 690 ° C., the nitrogen gas was switched to a mixed gas A of nitrogen gas (100 parts by volume) and hydrogen gas (400 parts by volume), and flowed into the reactor to carry out a reduction reaction for 30 minutes. After the reduction reaction, while maintaining the temperature at 690 ° C., the mixed gas A is switched to the mixed gas B of hydrogen gas (250 parts by volume) and ethylene gas (250 parts by volume), and is allowed to flow through the reactor for 60 minutes. Reacted. The mixed gas B was switched to nitrogen gas, the inside of the reactor was replaced with nitrogen gas, and the mixture was cooled to room temperature. The reactor was opened and the quartz boat was taken out. Carbon fibers grown with the catalyst as the core were obtained. The carbon fiber has a fiber diameter of 15 nm, a specific surface area according to the BET method of 260 m 2 / g, an R value of 1.1, and a consolidation specific resistance value of density 1.0 g / cm 3 is 1.2 × 10 −3 Ω · cm and the bulk density were 0.08 g / cm 3 .
(2)メルトフローレート測定方法
メルトフローレートは、ISO1133に準拠して、試験温度220℃、試験荷重10kgfにて測定を実施した。 (2) Melt flow rate measurement method The melt flow rate was measured at a test temperature of 220 ° C. and a test load of 10 kgf in accordance with ISO1133.
メルトフローレートは、ISO1133に準拠して、試験温度220℃、試験荷重10kgfにて測定を実施した。 (2) Melt flow rate measurement method The melt flow rate was measured at a test temperature of 220 ° C. and a test load of 10 kgf in accordance with ISO1133.
(3)表面抵抗測定方法
導電性樹脂の表面抵抗は次のようにして測定した。JIS K6911に準拠して、成形平板(100mm×100mm×3mm厚)を用いて2重リング電極法にて測定した。測定方法としては、デジタル超高抵抗計(R8340A/12702A、株式会社エーディーシー製)にて加電圧100Vを電極間に印加し、1分後の抵抗値を測定した。 (3) Surface resistance measuring method The surface resistance of the conductive resin was measured as follows. Based on JIS K6911, it measured by the double ring electrode method using the shaping | molding flat plate (100 mm x 100 mm x 3 mm thickness). As a measuring method, an applied voltage of 100 V was applied between the electrodes with a digital ultrahigh resistance meter (R8340A / 12702A, manufactured by ADC Co., Ltd.), and the resistance value after 1 minute was measured.
導電性樹脂の表面抵抗は次のようにして測定した。JIS K6911に準拠して、成形平板(100mm×100mm×3mm厚)を用いて2重リング電極法にて測定した。測定方法としては、デジタル超高抵抗計(R8340A/12702A、株式会社エーディーシー製)にて加電圧100Vを電極間に印加し、1分後の抵抗値を測定した。 (3) Surface resistance measuring method The surface resistance of the conductive resin was measured as follows. Based on JIS K6911, it measured by the double ring electrode method using the shaping | molding flat plate (100 mm x 100 mm x 3 mm thickness). As a measuring method, an applied voltage of 100 V was applied between the electrodes with a digital ultrahigh resistance meter (R8340A / 12702A, manufactured by ADC Co., Ltd.), and the resistance value after 1 minute was measured.
(4)体積固有抵抗測定法
体積固有抵抗値は次のようにして測定した。成形品より試験片を短冊状(50mm×10mm×3mm厚)に切り出し、長手方向の断面に導電テープを張り切断面間の電気抵抗値を測定した。測定方法としては、デジタル式絶縁抵抗機(MY40、YOKOGAWA社製)にて加電圧500Vにて該両端面間の抵抗値を測定し、次式により体積抵抗値を算出した。
体積抵抗値[Ω・cm]=抵抗値[Ω]×断面積[cm2]/試験片長さ[cm] (4) Volume resistivity measurement method Volume resistivity was measured as follows. A test piece was cut into a strip shape (50 mm × 10 mm × 3 mm thickness) from the molded product, and a conductive tape was stretched on the cross section in the longitudinal direction, and the electrical resistance value between the cut surfaces was measured. As a measuring method, a resistance value between the both end faces was measured with a digital insulation resistance machine (MY40, manufactured by YOKOGAWA) at an applied voltage of 500 V, and a volume resistance value was calculated according to the following formula.
Volume resistance [Ω · cm] = resistance [Ω] × cross-sectional area [cm 2 ] / test piece length [cm]
体積固有抵抗値は次のようにして測定した。成形品より試験片を短冊状(50mm×10mm×3mm厚)に切り出し、長手方向の断面に導電テープを張り切断面間の電気抵抗値を測定した。測定方法としては、デジタル式絶縁抵抗機(MY40、YOKOGAWA社製)にて加電圧500Vにて該両端面間の抵抗値を測定し、次式により体積抵抗値を算出した。
体積抵抗値[Ω・cm]=抵抗値[Ω]×断面積[cm2]/試験片長さ[cm] (4) Volume resistivity measurement method Volume resistivity was measured as follows. A test piece was cut into a strip shape (50 mm × 10 mm × 3 mm thickness) from the molded product, and a conductive tape was stretched on the cross section in the longitudinal direction, and the electrical resistance value between the cut surfaces was measured. As a measuring method, a resistance value between the both end faces was measured with a digital insulation resistance machine (MY40, manufactured by YOKOGAWA) at an applied voltage of 500 V, and a volume resistance value was calculated according to the following formula.
Volume resistance [Ω · cm] = resistance [Ω] × cross-sectional area [cm 2 ] / test piece length [cm]
(5)アイゾット衝撃値測定方法
物性評価には、アイゾット衝撃試験(ASTMD256、ノッチ付)片を作製し評価した。また、次式によりアイゾット衝撃強度低下率α(%)を算出した。
α(%)={希釈樹脂のアイゾット衝撃強度(J/m)-希釈後導電性樹脂のアイゾット衝撃強度(J/m)}/希釈樹脂のアイゾット衝撃強度(J/m)×100 (5) Izod impact value measuring method For the physical property evaluation, an Izod impact test (ASTMD256, with notch) piece was prepared and evaluated. Further, the Izod impact strength reduction rate α (%) was calculated by the following formula.
α (%) = {Izod impact strength of diluted resin (J / m) −Izod impact strength of conductive resin after dilution (J / m)} / Izod impact strength of diluted resin (J / m) × 100
物性評価には、アイゾット衝撃試験(ASTMD256、ノッチ付)片を作製し評価した。また、次式によりアイゾット衝撃強度低下率α(%)を算出した。
α(%)={希釈樹脂のアイゾット衝撃強度(J/m)-希釈後導電性樹脂のアイゾット衝撃強度(J/m)}/希釈樹脂のアイゾット衝撃強度(J/m)×100 (5) Izod impact value measuring method For the physical property evaluation, an Izod impact test (ASTMD256, with notch) piece was prepared and evaluated. Further, the Izod impact strength reduction rate α (%) was calculated by the following formula.
α (%) = {Izod impact strength of diluted resin (J / m) −Izod impact strength of conductive resin after dilution (J / m)} / Izod impact strength of diluted resin (J / m) × 100
本実施例及び比較例において、希釈樹脂はABS樹脂(B)である。なお、比較例3において、希釈後導電性樹脂のアイゾット衝撃強度(J/m)は混練後の導電性樹脂のアイゾット衝撃強度(J/m)に置き換えて算出した。
In this example and comparative example, the dilution resin is ABS resin (B). In Comparative Example 3, the Izod impact strength (J / m) of the diluted conductive resin was calculated by replacing the Izod impact strength (J / m) of the conductive resin after kneading.
実施例1
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(A)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。得られたマスターバッチは、同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口から希釈用ABS樹脂(B)と共に投入して希釈混練を行い、ペレタイザで切断しペレット状に加工した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレットから射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表1に示す。アイゾット衝撃値は130J/mと高い値であった。 Example 1
88% by mass of ABS resin (A) and 12% by mass of carbon fiber (D) are charged from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed. The obtained master batch is added together with the dilution ABS resin (B) from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), diluted and kneaded, cut with a pelletizer, and processed into pellets did. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured. The evaluation results are shown in Table 1. The Izod impact value was as high as 130 J / m.
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(A)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。得られたマスターバッチは、同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口から希釈用ABS樹脂(B)と共に投入して希釈混練を行い、ペレタイザで切断しペレット状に加工した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレットから射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表1に示す。アイゾット衝撃値は130J/mと高い値であった。 Example 1
88% by mass of ABS resin (A) and 12% by mass of carbon fiber (D) are charged from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed. The obtained master batch is added together with the dilution ABS resin (B) from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), diluted and kneaded, cut with a pelletizer, and processed into pellets did. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured. The evaluation results are shown in Table 1. The Izod impact value was as high as 130 J / m.
実施例2
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(A)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。得られたマスターバッチと希釈用ABS樹脂(B)のペレットをポリエチレンの袋の中で混合した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレット混合物から射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し(ドライブレンド射出成形)、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表1に示す。アイゾット衝撃値は90J/mであった。 Example 2
88% by mass of ABS resin (A) and 12% by mass of carbon fiber (D) are charged from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed. The obtained master batch and pellets of the dilution ABS resin (B) were mixed in a polyethylene bag. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece are produced from the obtained pellet mixture using an injection molding machine (FUNAC S-2000i100B) (dry blend injection molding), and surface resistance value, volume resistance value, and Izod impact value are measured. did. The evaluation results are shown in Table 1. The Izod impact value was 90 J / m.
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(A)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。得られたマスターバッチと希釈用ABS樹脂(B)のペレットをポリエチレンの袋の中で混合した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレット混合物から射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し(ドライブレンド射出成形)、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表1に示す。アイゾット衝撃値は90J/mであった。 Example 2
88% by mass of ABS resin (A) and 12% by mass of carbon fiber (D) are charged from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed. The obtained master batch and pellets of the dilution ABS resin (B) were mixed in a polyethylene bag. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece are produced from the obtained pellet mixture using an injection molding machine (FUNAC S-2000i100B) (dry blend injection molding), and surface resistance value, volume resistance value, and Izod impact value are measured. did. The evaluation results are shown in Table 1. The Izod impact value was 90 J / m.
比較例1-1
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(B)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。
得られたマスターバッチは、同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口から希釈用ABS樹脂(B)と共に投入して希釈混練を行い、ペレタイザで切断しペレット状に加工した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレットから射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表2に示す。 Comparative Example 1-1
88% by mass of ABS resin (B) and 12% by mass of carbon fiber (D) are added from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed.
The obtained master batch is added together with the dilution ABS resin (B) from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), diluted and kneaded, cut with a pelletizer, and processed into pellets did. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured. The evaluation results are shown in Table 2.
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(B)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。
得られたマスターバッチは、同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口から希釈用ABS樹脂(B)と共に投入して希釈混練を行い、ペレタイザで切断しペレット状に加工した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレットから射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表2に示す。 Comparative Example 1-1
88% by mass of ABS resin (B) and 12% by mass of carbon fiber (D) are added from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed.
The obtained master batch is added together with the dilution ABS resin (B) from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), diluted and kneaded, cut with a pelletizer, and processed into pellets did. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured. The evaluation results are shown in Table 2.
比較例1-2
マスターバッチ製造のための樹脂をABS樹脂(C)に代えた以外は比較例1-1と同様に操作を行った。評価結果を表2に示す。 Comparative Example 1-2
The operation was performed in the same manner as in Comparative Example 1-1 except that the resin for producing the master batch was replaced with ABS resin (C). The evaluation results are shown in Table 2.
マスターバッチ製造のための樹脂をABS樹脂(C)に代えた以外は比較例1-1と同様に操作を行った。評価結果を表2に示す。 Comparative Example 1-2
The operation was performed in the same manner as in Comparative Example 1-1 except that the resin for producing the master batch was replaced with ABS resin (C). The evaluation results are shown in Table 2.
比較例2-1
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(B)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。
得られたマスターバッチと希釈用ABS樹脂(B)のペレットをポリエチレンの袋の中で混合した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレット混合物から射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し(ドライブレンド射出成形)、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表2に示す。 Comparative Example 2-1
88% by mass of ABS resin (B) and 12% by mass of carbon fiber (D) are added from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed.
The obtained master batch and pellets of the dilution ABS resin (B) were mixed in a polyethylene bag. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece are produced from the obtained pellet mixture using an injection molding machine (S-2000i100B manufactured by FUNAC) (Dry blend injection molding), and a surface resistance value, a volume resistance value, and an Izod impact value are measured. did. The evaluation results are shown in Table 2.
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(B)88質量%と炭素繊維(D)12質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。
得られたマスターバッチと希釈用ABS樹脂(B)のペレットをポリエチレンの袋の中で混合した。希釈用のABS樹脂(B)の添加量は、希釈後の樹脂中における炭素繊維の含有率が1.5質量%となるように調整した。得られたペレット混合物から射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し(ドライブレンド射出成形)、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表2に示す。 Comparative Example 2-1
88% by mass of ABS resin (B) and 12% by mass of carbon fiber (D) are added from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, cut with a pelletizer, and pelletized. processed.
The obtained master batch and pellets of the dilution ABS resin (B) were mixed in a polyethylene bag. The amount of the diluted ABS resin (B) was adjusted so that the carbon fiber content in the diluted resin was 1.5% by mass. A flat plate test piece and an Izod test piece are produced from the obtained pellet mixture using an injection molding machine (S-2000i100B manufactured by FUNAC) (Dry blend injection molding), and a surface resistance value, a volume resistance value, and an Izod impact value are measured. did. The evaluation results are shown in Table 2.
比較例2-2
マスターバッチ製造のための樹脂をABS樹脂(C)に代えた以外は比較例2-1と同様に操作を行った。評価結果を表2に示す。 Comparative Example 2-2
The operation was performed in the same manner as in Comparative Example 2-1, except that the resin for producing the master batch was replaced with ABS resin (C). The evaluation results are shown in Table 2.
マスターバッチ製造のための樹脂をABS樹脂(C)に代えた以外は比較例2-1と同様に操作を行った。評価結果を表2に示す。 Comparative Example 2-2
The operation was performed in the same manner as in Comparative Example 2-1, except that the resin for producing the master batch was replaced with ABS resin (C). The evaluation results are shown in Table 2.
比較例3
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(B)98.5質量%と炭素繊維(D)1.5質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。得られたペレットから射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表2に示す。アイゾット衝撃値は70J/mと低く、表面抵抗値及び体積抵抗値は実施例1と同等レベルであった。 Comparative Example 3
98.5% by mass of ABS resin (B) and 1.5% by mass of carbon fiber (D) are introduced from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, and cut with a pelletizer. And processed into pellets. A flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured. The evaluation results are shown in Table 2. The Izod impact value was as low as 70 J / m, and the surface resistance value and volume resistance value were at the same level as in Example 1.
同方向二軸押出機(KZW15TW、株式会社テクノベル製)の主フィード口からABS樹脂(B)98.5質量%と炭素繊維(D)1.5質量%を投入して混練し、ペレタイザで切断しペレット状に加工した。得られたペレットから射出成形機(FUNAC製S-2000i100B)を用いて、平板試験片及びアイゾット試験片を作製し、表面抵抗値、体積抵抗値、アイゾット衝撃値を測定した。評価結果を表2に示す。アイゾット衝撃値は70J/mと低く、表面抵抗値及び体積抵抗値は実施例1と同等レベルであった。 Comparative Example 3
98.5% by mass of ABS resin (B) and 1.5% by mass of carbon fiber (D) are introduced from the main feed port of the same-direction twin screw extruder (KZW15TW, manufactured by Technobel Co., Ltd.), kneaded, and cut with a pelletizer. And processed into pellets. A flat plate test piece and an Izod test piece were prepared from the obtained pellets using an injection molding machine (S-2000i100B manufactured by FUNAC), and a surface resistance value, a volume resistance value, and an Izod impact value were measured. The evaluation results are shown in Table 2. The Izod impact value was as low as 70 J / m, and the surface resistance value and volume resistance value were at the same level as in Example 1.
以上より、導電性フィラーとして炭素繊維を用い、マスターバッチ用樹脂として極めて流動性に富む樹脂を用いることで、従来技術では到達できなかった高い機械特性、高い導電特性を持つ導電性樹脂を得ることができる。
From the above, by using carbon fiber as the conductive filler and using a resin with extremely high fluidity as the masterbatch resin, it is possible to obtain a conductive resin having high mechanical properties and high conductive properties that could not be achieved by the prior art. Can do.
Claims (11)
- メルトフローレートが50~200g/10minである熱可塑性樹脂と炭素繊維を含有し、炭素繊維の含有量が6質量%以上50質量%以下である導電性樹脂用マスターバッチ。 A master batch for conductive resin containing a thermoplastic resin having a melt flow rate of 50 to 200 g / 10 min and carbon fiber, and having a carbon fiber content of 6% by mass to 50% by mass.
- 前記炭素繊維がカーボンナノチューブである請求項1に記載の導電性樹脂用マスターバッチ。 The conductive resin masterbatch according to claim 1, wherein the carbon fibers are carbon nanotubes.
- 前記熱可塑性樹脂がABS樹脂、AES樹脂、ASA樹脂、AS樹脂、HIPS樹脂、MBS樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリフェニレンエーテル及びポリアミドからなる群から選ばれる少なくとも1種である請求項1または請求項2に記載の導電性樹脂用マスターバッチ。 The thermoplastic resin is at least one selected from the group consisting of ABS resin, AES resin, ASA resin, AS resin, HIPS resin, MBS resin, polyethylene, polypropylene, polycarbonate, polyphenylene ether and polyamide. The masterbatch for conductive resins as described in 2.
- 請求項1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチを希釈用熱可塑性樹脂で希釈してなる導電性樹脂であって、導電性樹脂中の炭素繊維含有量が0.5質量%以上6質量%未満である導電性樹脂。 A conductive resin obtained by diluting the conductive resin masterbatch according to any one of claims 1 to 3 with a dilution thermoplastic resin, wherein the carbon fiber content in the conductive resin is 0.5. A conductive resin having a mass percentage of less than 6 mass%.
- 請求項1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチを、二軸押出機を用いて希釈する導電性樹脂の製造方法。 A method for producing a conductive resin, comprising diluting the conductive resin masterbatch according to any one of claims 1 to 3 using a twin screw extruder.
- 請求項1乃至3のいずれか1項に記載の導電性樹脂用マスターバッチと希釈用熱可塑性樹脂をドライブレンドし、射出成形する導電性樹脂成形体の製造方法。 A method for producing a conductive resin molded body, which comprises dry blending a master batch for conductive resin according to any one of claims 1 to 3 and a thermoplastic resin for dilution and injection molding.
- 請求項5に記載の方法で希釈した場合の前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が40%以下であり、かつ表面抵抗値が15logΩ/cm2以下である請求項4に記載の導電性樹脂。 The reduction rate of the Izod impact strength (ASTMD256, notched) with respect to the dilution thermoplastic resin when diluted by the method according to claim 5 is 40% or less, and the surface resistance value is 15 logΩ / cm 2 or less. The conductive resin according to claim 4.
- 請求項6に記載の方法で希釈した場合の前記希釈用熱可塑性樹脂に対するアイゾット衝撃強度(ASTMD256、ノッチ付)の低下率が60%以下であり、かつ表面抵抗値が15logΩ/cm2以下である請求項4に記載の導電性樹脂。 The reduction rate of the Izod impact strength (ASTMD256, notched) with respect to the dilution thermoplastic resin when diluted by the method according to claim 6 is 60% or less, and the surface resistance value is 15 logΩ / cm 2 or less. The conductive resin according to claim 4.
- メルトフローレートが50~200g/10minである熱可塑性樹脂に6質量%以上50質量%以下になるように炭素繊維を混合する工程を含む導電性樹脂用マスターバッチの製造方法。 A method for producing a masterbatch for a conductive resin, comprising a step of mixing carbon fibers in a thermoplastic resin having a melt flow rate of 50 to 200 g / 10 min so as to be 6% by mass to 50% by mass.
- 炭素繊維がカーボンナノチューブである請求項9に記載の導電性樹脂用マスターバッチの製造方法。 The method for producing a masterbatch for a conductive resin according to claim 9, wherein the carbon fiber is a carbon nanotube.
- 請求項4に記載の導電性樹脂を成形して得られた樹脂成形体に、電荷を有する塗料を吹き付けて塗膜を形成してなる車両用部品。 A vehicle part formed by spraying a paint having a charge on a resin molded body obtained by molding the conductive resin according to claim 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-096202 | 2012-04-20 | ||
JP2012096202A JP2015117253A (en) | 2012-04-20 | 2012-04-20 | Conductive resin composition master batch |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013157621A1 true WO2013157621A1 (en) | 2013-10-24 |
Family
ID=49383570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/061574 WO2013157621A1 (en) | 2012-04-20 | 2013-04-19 | Masterbatch for electrically conductive resin, and electrically conductive resin |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015117253A (en) |
TW (1) | TW201402671A (en) |
WO (1) | WO2013157621A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180127556A1 (en) * | 2015-04-17 | 2018-05-10 | Polyone - Shanghai, China | Masterbatch containing carbon nanotubes as black pigment |
CN113646385A (en) * | 2019-03-26 | 2021-11-12 | 日商Mcc先进成型股份有限公司 | Resin composition |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2895534B1 (en) * | 2013-08-01 | 2016-04-13 | Total Research & Technology Feluy | Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced |
JP6872856B2 (en) * | 2016-03-31 | 2021-05-19 | 国立大学法人京都大学 | Manufacturing method of foamed resin molded products and foamed resin molded products |
JP6984331B2 (en) * | 2017-11-07 | 2021-12-17 | 日本ゼオン株式会社 | Method for manufacturing resin composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015333A (en) * | 2005-07-11 | 2007-01-25 | Idemitsu Kosan Co Ltd | Manufacturing method of electroconductive shaped article and electroconductive shaped article |
JP2011219735A (en) * | 2010-03-23 | 2011-11-04 | Dic Corp | Resin composition, and method of manufacturing resin composition |
JP2011241375A (en) * | 2010-04-23 | 2011-12-01 | Sumitomo Chemical Co Ltd | Heat dissipation member and part for lighting fixture comprising the same |
JP2013023579A (en) * | 2011-07-21 | 2013-02-04 | Tosoh Corp | Master batch |
-
2012
- 2012-04-20 JP JP2012096202A patent/JP2015117253A/en active Pending
-
2013
- 2013-04-19 TW TW102113965A patent/TW201402671A/en unknown
- 2013-04-19 WO PCT/JP2013/061574 patent/WO2013157621A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015333A (en) * | 2005-07-11 | 2007-01-25 | Idemitsu Kosan Co Ltd | Manufacturing method of electroconductive shaped article and electroconductive shaped article |
JP2011219735A (en) * | 2010-03-23 | 2011-11-04 | Dic Corp | Resin composition, and method of manufacturing resin composition |
JP2011241375A (en) * | 2010-04-23 | 2011-12-01 | Sumitomo Chemical Co Ltd | Heat dissipation member and part for lighting fixture comprising the same |
JP2013023579A (en) * | 2011-07-21 | 2013-02-04 | Tosoh Corp | Master batch |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180127556A1 (en) * | 2015-04-17 | 2018-05-10 | Polyone - Shanghai, China | Masterbatch containing carbon nanotubes as black pigment |
EP3283565A4 (en) * | 2015-04-17 | 2019-01-09 | PolyOne - Shanghai, China | Masterbatch containing carbon nanotubes as black pigment |
CN113646385A (en) * | 2019-03-26 | 2021-11-12 | 日商Mcc先进成型股份有限公司 | Resin composition |
CN113646385B (en) * | 2019-03-26 | 2024-02-27 | 日商Mcc先进成型股份有限公司 | Resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2015117253A (en) | 2015-06-25 |
TW201402671A (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013111862A1 (en) | Method for producing master batch for conductive resin, and master batch | |
Al-Saleh et al. | A review of vapor grown carbon nanofiber/polymer conductive composites | |
JP6386114B2 (en) | Method for producing conductive resin composition | |
JP6096806B2 (en) | Resin composition for electromagnetic shielding containing composite carbon material | |
KR101309738B1 (en) | Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof | |
US10125243B2 (en) | Composite material having a very low content of carbon-based nanofillers, process for the preparation thereof and uses thereof | |
Jiang et al. | Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes | |
KR101183016B1 (en) | Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof | |
WO2013157621A1 (en) | Masterbatch for electrically conductive resin, and electrically conductive resin | |
JP6757395B2 (en) | Conductive foam beads and their manufacturing method | |
CN102585348A (en) | Toughened conducting material and preparation method for toughened conducting material | |
KR102359134B1 (en) | Conductive resin composition, molded article and manufacturing method thereof | |
JP4896422B2 (en) | Method for producing fine carbon fiber-containing resin composition | |
JP2016108524A (en) | Conductive resin composition, conductive master batch, molded body, and production method of the same | |
KR101164287B1 (en) | Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof | |
JP7055871B2 (en) | Conductive concentrated resin composition, conductive polyamide resin composition, its manufacturing method and molded product | |
WO2021072357A1 (en) | Melt-compounded polyamide graphene composites | |
JP2019094486A (en) | Conductive resin composition and method for producing the same | |
KR101055620B1 (en) | Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method | |
WO2006106687A1 (en) | Process for production of resin composition containing fine carbon fiber | |
JP2006097006A (en) | Method for producing electrically conductive resin composition and application thereof | |
KR20170112980A (en) | Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same | |
WO2013094686A1 (en) | Resin molded body for electrostatic coating | |
JP6052020B2 (en) | Conductive polyethylene composition for injection molding and molded body and fuel system part using the same | |
Paria et al. | TPE nanocomposites; processing and additives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13778293 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13778293 Country of ref document: EP Kind code of ref document: A1 |