JP6386114B2 - Method for producing conductive resin composition - Google Patents
Method for producing conductive resin composition Download PDFInfo
- Publication number
- JP6386114B2 JP6386114B2 JP2017029481A JP2017029481A JP6386114B2 JP 6386114 B2 JP6386114 B2 JP 6386114B2 JP 2017029481 A JP2017029481 A JP 2017029481A JP 2017029481 A JP2017029481 A JP 2017029481A JP 6386114 B2 JP6386114 B2 JP 6386114B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- conductive resin
- carbon nanotubes
- copolymer
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 78
- 238000004519 manufacturing process Methods 0.000 title claims description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 81
- 239000002041 carbon nanotube Substances 0.000 claims description 78
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 78
- 239000004594 Masterbatch (MB) Substances 0.000 claims description 52
- 239000002952 polymeric resin Substances 0.000 claims description 42
- 229920000098 polyolefin Polymers 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 23
- 239000004698 Polyethylene Substances 0.000 claims description 21
- 230000006835 compression Effects 0.000 claims description 21
- 238000007906 compression Methods 0.000 claims description 21
- -1 polyethylene copolymer Polymers 0.000 claims description 19
- 229920000573 polyethylene Polymers 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 12
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 11
- 229920001903 high density polyethylene Polymers 0.000 claims description 9
- 239000004700 high-density polyethylene Substances 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 4
- 239000002828 fuel tank Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 claims description 3
- 229920006245 ethylene-butyl acrylate Polymers 0.000 claims description 3
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 claims description 3
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 3
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 3
- 229920001684 low density polyethylene Polymers 0.000 claims description 3
- 239000004702 low-density polyethylene Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 238000005453 pelletization Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 26
- 229920005992 thermoplastic resin Polymers 0.000 description 23
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 14
- 239000002048 multi walled nanotube Substances 0.000 description 9
- 239000011231 conductive filler Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0011—Combinations of extrusion moulding with other shaping operations combined with compression moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/9258—Velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/065—HDPE, i.e. high density polyethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/18—Applications used for pipes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
関連出願との相互引用
本出願は、2016年02月19日に出願された大韓民国特許出願第10−2016−0020000号に基づく優先権の利益を主張し、該当韓国特許出願の文献に開示されたすべての内容は本明細書の一部として組み入れるものとする。
Cross-citation with related application This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0020000 filed on Feb. 19, 2016, and was disclosed in the Korean patent application literature All the contents are incorporated as part of this specification.
技術分野
本発明は、伝導性樹脂組成物の製造方法に関し、より詳しくは、電気伝導性と機械的物性との間のトレードオフ(tradeoff)を緩和して両者を均衡的に具現し得る伝導性樹脂組成物の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a conductive resin composition. More specifically, the present invention relates to a conductive material capable of realizing a balanced trade-off between electrical conductivity and mechanical properties by relaxing the tradeoff. The present invention relates to a method for producing a resin composition.
熱可塑性樹脂は、加熱すると軟化して可塑性を示し、冷却すると固化するプラスチック(樹脂)を指称する。このような熱可塑性樹脂は、加工性及び成形性が優秀で各種生活用品、OA器機、電気/電子製品、車両用部品などに幅広く適用されている。 A thermoplastic resin refers to a plastic (resin) that softens when heated and exhibits plasticity and solidifies when cooled. Such thermoplastic resins are excellent in processability and moldability and are widely applied to various daily necessities, OA equipment, electrical / electronic products, vehicle parts and the like.
また、このような熱可塑性樹脂が使用される製品の種類及び特性によって、特殊な性質を付加して高付加価値の素材として使用しようする試みが持続的に行われている。 In addition, attempts have been continuously made to add special properties and use them as high-value-added materials depending on the types and characteristics of products in which such thermoplastic resins are used.
特に、樹脂製品間または他の素材との摩擦が発生する分野に熱可塑性樹脂を適用する場合、帯電現象による製品の損傷及び汚染が発生するので熱可塑性樹脂に電気伝導性を付与する必要性がある。 In particular, when a thermoplastic resin is applied to a field where friction between resin products or other materials occurs, it is necessary to impart electrical conductivity to the thermoplastic resin because the product is damaged and contaminated by a charging phenomenon. is there.
このように、従来熱可塑性樹脂に電気伝導性を付与するためにカーボンナノチューブ、カーボンブラック、黒鉛、カーボンファイバー、金属粉末、金属コーティング無機粉末または金属ファイバーなどの伝導性フィラーが使用されてきた。 Thus, conductive fillers such as carbon nanotubes, carbon black, graphite, carbon fiber, metal powder, metal-coated inorganic powder, or metal fiber have been conventionally used to impart electrical conductivity to thermoplastic resins.
ただし、電気伝導性の付与に意味のある結果を導出するためには、熱可塑性樹脂対比約10〜20重量%以上の伝導性フィラーを添加する必要があり、これは結果的に熱可塑性樹脂の耐衝撃性、伸び率、耐磨耗性のような固有の機械的物性の低下をもたらすようになる。 However, in order to derive a meaningful result for imparting electrical conductivity, it is necessary to add about 10 to 20% by weight or more of a conductive filler relative to the thermoplastic resin. It leads to a decrease in inherent mechanical properties such as impact resistance, elongation rate, and abrasion resistance.
特に、熱可塑性樹脂に電気伝導性及び機械的物性が同時に要求される分野、例えば、車両用燃料タンクまたは燃料ホースのような分野では、両者間のバランス維持の問題により製品の商用化に制限が発生する。 In particular, in fields where electrical conductivity and mechanical properties are required for thermoplastic resins at the same time, for example, fields such as fuel tanks or fuel hoses for vehicles, there is a limit to commercialization of products due to the problem of maintaining the balance between the two. Occur.
また、高粘度の熱可塑性樹脂に電気伝導性の付与が要求される場合、熱可塑性樹脂の特性に起因して伝導性フィラーの添加による十分な電気伝導性が具現されない問題点がある。 In addition, when it is required to impart electrical conductivity to a high viscosity thermoplastic resin, there is a problem that sufficient electrical conductivity due to the addition of a conductive filler is not realized due to the properties of the thermoplastic resin.
熱可塑性樹脂、特に高粘度の熱可塑性樹脂の機械的物性の低下を防止しながらも優秀な電気伝導性を具現し得る伝導性樹脂組成物を提供する。 Provided is a conductive resin composition capable of realizing excellent electrical conductivity while preventing deterioration of mechanical properties of thermoplastic resins, particularly high viscosity thermoplastic resins.
本発明の一側面は、(a)カーボンナノチューブ(CNT)と第1オレフィン系高分子樹脂を圧縮(圧出)してマスターバッチを製造する段階;及び(b)前記マスターバッチと第2オレフィン系高分子樹脂を混合する段階;を含む伝導性樹脂組成物の製造方法を提供する。 One aspect of the present invention is: (a) a step of producing a master batch by compressing (extruding) carbon nanotubes (CNT) and a first olefin polymer resin; and (b) the master batch and the second olefin system. A method for producing a conductive resin composition comprising the steps of: mixing a polymer resin.
一実施形態において、前記(a)段階は180〜300℃の温度で実行され得る。 In one embodiment, step (a) may be performed at a temperature of 180 to 300 ° C.
一実施形態において、前記(a)段階で前記圧縮(圧出)は10〜500kg/hrの速度で実行され得る。 In one embodiment, in the step (a), the compression (extruding) may be performed at a speed of 10 to 500 kg / hr.
一実施形態において、前記マスターバッチに含まれたカーボンナノチューブの含量は10〜30重量%であり得る。 In one embodiment, the content of carbon nanotubes included in the master batch may be 10 to 30% by weight.
一実施形態において、前記伝導性樹脂組成物に含まれたカーボンナノチューブの含量は0.1〜10重量%であり得る。 In one embodiment, the content of carbon nanotubes contained in the conductive resin composition may be 0.1 to 10% by weight.
一実施形態において、前記カーボンナノチューブの見掛け密度は0.01〜0.2g/mlであり得る。 In one embodiment, the apparent density of the carbon nanotubes may be 0.01 to 0.2 g / ml.
一実施形態において、前記第1及び第2オレフィン系高分子樹脂は、各々高密度ポリエチレン、低密度ポリエチレン、線形低密度ポリエチレン、ポリエチレン共重合体、ポリプロピレン及びこれらのうち2以上の混合物からなる群より選択される一つであり得る。 In one embodiment, each of the first and second olefin polymer resins is a group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, polyethylene copolymer, polypropylene, and a mixture of two or more thereof. It can be one selected.
一実施形態において、前記ポリエチレン共重合体は、エチレン酢酸ビニル(共重合体)、エチレンブチルアクリレート(共重合体)、エチレンエチルアクリレート(共重合体)及びこれらのうち2以上の混合物からなる群より選択される一つであり得る。 In one embodiment, the polyethylene copolymer is selected from the group consisting of ethylene vinyl acetate (copolymer), ethylene butyl acrylate (copolymer), ethylene ethyl acrylate (copolymer), and a mixture of two or more thereof. It can be one selected.
一実施形態において、前記第1オレフィン系高分子樹脂は、ポリエチレン及びエチレン酢酸ビニル(共重合体)が2〜3:1の重量比で混合されたものであり得る。 In one embodiment, the first olefin polymer resin may be a mixture of polyethylene and ethylene vinyl acetate (copolymer) in a weight ratio of 2 to 3: 1.
一実施形態において、前記(b)段階の前に、前記(a)段階の生成物をペレット化する段階をさらに含み得る。 In one embodiment, prior to step (b), the method may further include pelletizing the product of step (a).
本発明の他の側面は、前記(b)段階の後に、(c)前記伝導性樹脂組成物を成形する段階をさらに含む車両用燃料タンクの製造方法を提供する。 Another aspect of the present invention provides a method for manufacturing a fuel tank for a vehicle, further comprising (c) a step of molding the conductive resin composition after the step (b).
本発明のまた他の側面は、前記(b)段階の後に、(c)前記伝導性樹脂組成物を成形する段階をさらに含む車両用燃料ホースの製造方法を提供する。 According to still another aspect of the present invention, there is provided a method for manufacturing a fuel hose for a vehicle, further comprising (c) a step of molding the conductive resin composition after the step (b).
本発明の一側面によれば、伝導性フィラーと第1オレフィン系高分子樹脂を混合して高含量の伝導性フィラーを含むマスターバッチを製造し、これを前記第1オレフィン系高分子樹脂と同種であるか異種である第2オレフィン系高分子樹脂と混合することで、オレフィン系高分子樹脂の機械的物性の低下を防止し、優秀な電気伝導性を付与し得る。 According to one aspect of the present invention, a conductive batch and a first olefin polymer resin are mixed to produce a masterbatch containing a high content of conductive filler, which is the same as the first olefin polymer resin. By mixing with a second olefin polymer resin that is different or different, the mechanical properties of the olefin polymer resin can be prevented from being lowered and excellent electrical conductivity can be imparted.
本発明の効果は、上述した効果に限定されるものではなく、本発明の詳細な説明または特許請求の範囲に記載された発明の構成から推論可能なすべての効果を含む。 The effects of the present invention are not limited to the effects described above, but include all effects that can be inferred from the detailed description of the present invention or the structure of the invention described in the claims.
以下、添付図面を参照して本発明を説明する。しかしながら、本発明は多様な形態で具現することができる。したがって、ここで説明する実施形態に限定されるものではない。 Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention can be embodied in various forms. Therefore, the present invention is not limited to the embodiment described here.
明細書全体において、ある部分が所定構成要素を「含む」との用語は、特別に反対(限定)する記載がない限り、他の構成要素を除外するものではなく他の構成要素をさらに具備することを意味する。 Throughout the specification, the term “comprising” a part includes a predetermined component does not exclude other components but includes other components unless specifically stated to the contrary (limitation). Means that.
以下、添付図面を参照して本発明の実施例を詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の一側面による伝導性樹脂組成物の製造方法を示した図である。図1を参照すれば、本発明の一側面による伝導性樹脂組成物の製造方法は、(a)カーボンナノチューブと第1オレフィン系高分子樹脂を圧縮(圧出)してマスターバッチを製造する段階;及び(b)前記マスターバッチと第2オレフィン系高分子樹脂を混合する段階を含み得る。 FIG. 1 is a view showing a method for producing a conductive resin composition according to one aspect of the present invention. Referring to FIG. 1, a method for producing a conductive resin composition according to an aspect of the present invention includes: (a) a step of producing a master batch by compressing (extruding) carbon nanotubes and a first olefin polymer resin. And (b) mixing the masterbatch with a second olefin polymer resin.
伝導性樹脂組成物は、基本的に一定水準の機械的物性と成形性を有する高分子樹脂、及びこれに伝導性を付与し得る伝導性物質、例えば、金属、その他無機物などからなり得る。このような伝導性樹脂組成物を製造するためには、高分子樹脂と伝導性物質を混合するための工程が必要とされる(隋伴される)。 The conductive resin composition can be basically composed of a polymer resin having a certain level of mechanical properties and moldability, and a conductive material capable of imparting conductivity to the resin, such as metals and other inorganic materials. In order to manufacture such a conductive resin composition, a process for mixing the polymer resin and the conductive material is required (entrained).
従来、伝導性樹脂組成物の電気伝導性を向上させるために前記伝導性物質の含量を増加させる技術が提案された。ただし、同種の伝導性物質、特に、カーボンナノチューブの含量を一定水準以上に増加させると、樹脂自体の機械的物性だけではなく加工性、作業性などが低下する問題があった。これを解消するため、カーボンナノチューブに比べて伝導性付与の効果は微弱であるが加工性、作業性の優秀なカーボンブラックなどを併用して伝導性樹脂組成物のうち伝導性物質の総含量を増加させるための試みが行われた。 Conventionally, a technique for increasing the content of the conductive material in order to improve the electrical conductivity of the conductive resin composition has been proposed. However, when the content of the same kind of conductive material, in particular, the carbon nanotube is increased to a certain level or more, there is a problem that not only the mechanical properties of the resin itself but also workability and workability are deteriorated. In order to eliminate this, the effect of imparting conductivity is weak compared to carbon nanotubes, but the total content of conductive substances in the conductive resin composition can be reduced by using carbon black with excellent processability and workability. Attempts were made to increase it.
しかし、このような方式は、伝導性物質の種類と含量が相違するよう調節したに過ぎず、樹脂伝導性物質の混合が単一工程によって行われた点において共通する。 However, such a method is only adjusted so that the kind and content of the conductive material are different, and is common in that the mixing of the resin conductive material is performed by a single process.
これに対して、前記(a)段階では、伝導性フィラーであるカーボンナノチューブと第1オレフィン系高分子樹脂を混合、圧縮(圧出)して高濃度カーボンナノチューブマスターバッチを製造し得る。 On the other hand, in the step (a), the carbon nanotubes which are conductive fillers and the first olefin polymer resin are mixed and compressed (extruded) to produce a high concentration carbon nanotube master batch.
本明細書で使用した用語「マスターバッチ(master batch)」は、樹脂組成物を製造する場合に高濃度の添加剤を事前に分散させたもので、このようなマスターバッチの製造を通じてオレフィン系高分子樹脂内のカーボンナノチューブの分散性を向上させ得る。これによって、前記伝導性樹脂組成物の全領域に対して均一な電気伝導性を付与し得る。 As used herein, the term “masterbatch” is a pre-dispersed high concentration additive in the production of a resin composition. The dispersibility of the carbon nanotubes in the molecular resin can be improved. Thereby, uniform electrical conductivity can be imparted to the entire region of the conductive resin composition.
この時、前記マスターバッチは、球状(sphere)、ペレット状(pellet)などに製造し得るが、以降の段階で熱可塑性樹脂と配合されて前記カーボンナノチューブの分散性を向上させることが可能であれば、その形態に制限なしに製造し得る。 At this time, the master batch may be manufactured in a sphere shape, a pellet shape, or the like. However, it is possible to improve the dispersibility of the carbon nanotubes by being blended with a thermoplastic resin in a later stage. For example, it can be manufactured without limitation on its form.
前記カーボンナノチューブは、不導体である熱可塑性高分子樹脂、特に、オレフィン系高分子樹脂に電気伝導性を付与するための物質であって、前記カーボンナノチューブが添加された樹脂組成物を成形して製造されたプラスチック基材の表面抵抗を減少させることで電気伝導性を向上させ得る。 The carbon nanotube is a substance for imparting electrical conductivity to a thermoplastic polymer resin, particularly an olefin polymer resin, which is a non-conductor, and is formed by molding a resin composition to which the carbon nanotube is added. Electrical conductivity can be improved by reducing the surface resistance of the manufactured plastic substrate.
前記カーボンナノチューブを合成する方法には、アーク放電法(Arc−discharge)、熱分解法(Pyrolysis)、レーザー蒸着法(Laser vaporization)、プラズマ化学気相蒸着法(Plasma chemical vapor deposition)、熱化学気相蒸着法(Thermal chemical vapor deposition)などがあるが、合成方法に制限なしに製造された全てのカーボンナノチューブを使用し得る。 Examples of the method for synthesizing the carbon nanotube include an arc discharge method (Arc-discharge), a thermal decomposition method (Pyrolysis), a laser deposition method (Laser vaporization), a plasma chemical vapor deposition method (Plasma chemical vapor deposition), and a thermochemical vapor deposition method. Although there is a phase vapor deposition method, all carbon nanotubes manufactured without limitation on the synthesis method can be used.
また、前記カーボンナノチューブは、壁の個数によって単一壁カーボンナノチューブ(Single wall carbon nanotube)、二重壁カーボンナノチューブ(Double wall carbon nanotube)、多重壁カーボンナノチューブ(Multi wall carbon nanotube)、切頭された円錐型のグラフィン(truncated graphene)が多数積層された中空管形態のカーボンナノファイバー(cup−stacked carbon nanofiber)、及びこれらのうち2以上の混合物からなる群より選択される一つであり、好ましくは、製造の容易性及び経済性が優秀な多重壁カーボンナノチューブであり得るが、これに限定されるものではない。 The carbon nanotubes may be single walled carbon nanotubes, double walled carbon nanotubes, multi-walled carbon nanotubes, or multi-walled carbon nanotubes depending on the number of walls. A carbon nanofiber in the form of a hollow tube in which a large number of cone-shaped graphenes are laminated (cup-stacked carbon nanofiber), and a mixture of two or more of these, preferably May be a multi-walled carbon nanotube excellent in manufacturing ease and economy, but is not limited thereto.
一方、前記マスターバッチの母材になるオレフィン系高分子樹脂は、熱可塑性樹脂のうち相対的に広い温度範囲で物性変化が少なくて、成形性、耐候性、耐薬品性などが優秀である。 On the other hand, the olefin polymer resin used as the base material of the masterbatch has few changes in physical properties in a relatively wide temperature range among thermoplastic resins, and is excellent in moldability, weather resistance, chemical resistance, and the like.
前記第1オレフィン系高分子樹脂は、高密度ポリエチレン、低密度ポリエチレン、線形低密度ポリエチレン、ポリエチレン共重合体、ポリプロピレン、及びこれらのうち2以上の混合物からなる群より選択される一つであり、好ましくは、ポリエチレン系列であり、より好ましくは、高密度ポリエチレンであり得るが、これに限定されるものではない。 The first olefin polymer resin is one selected from the group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, polyethylene copolymer, polypropylene, and a mixture of two or more thereof. Preferably, it is a polyethylene series, and more preferably, it can be high-density polyethylene, but is not limited thereto.
また、前記ポリエチレン共重合体は、エチレン酢酸ビニル(共重合体)、エチレンブチルアクリレート(共重合体)、エチレンエチルアクリレート(共重合体)、及びこれらのうち2以上の混合物からなる群より選択される一つであり得るが、これに限定されるものではない。 The polyethylene copolymer is selected from the group consisting of ethylene vinyl acetate (copolymer), ethylene butyl acrylate (copolymer), ethylene ethyl acrylate (copolymer), and a mixture of two or more thereof. However, the present invention is not limited to this.
すなわち、前記第1オレフィン系高分子樹脂は、同種単量体が重合された単一重合体、異種単量体が重合された共重合体、またはこれらの混合物であり得る。前記共重合体は、重合形態の制限なしに交互共重合体(alternating copolymer)、ランダム共重合体(random copolymer)、ブロック共重合体(block copolymer)、またはグラフト共重合体(graft copolymer)であり得る。 That is, the first olefin polymer resin may be a single polymer obtained by polymerizing the same type monomers, a copolymer obtained by polymerizing different types of monomers, or a mixture thereof. The copolymer may be an alternating copolymer, a random copolymer, a block copolymer, or a graft copolymer without limitation of a polymerization form. obtain.
特に、前記マスターバッチの製造時、同種オレフィン系高分子樹脂を使用する場合に比べて異種オレフィン系高分子樹脂混合物を使用する場合、これらの間の相互作用によって樹脂組成物の電気伝導性と機械的物性のバランスが一層優秀に維持され得る。 In particular, when a different olefin polymer resin mixture is used in the production of the masterbatch as compared with the case where the same olefin polymer resin is used, the electrical conductivity and mechanical properties of the resin composition are affected by the interaction between them. The balance of physical properties can be maintained even better.
具体的に、前記第1オレフィン系高分子樹脂は、ポリエチレン(PE)及びエチレン酢酸ビニル(EVA)(共重合体)が1〜5:1、好ましくは、2〜3:1の重量比で混合されたものであり得る。両者間の重量比が前記範囲を外れた場合(脱すれば)、同種樹脂を使用する場合に比べて機械的物性の向上効果(はある)が微弱に(小さく)なり得る。 Specifically, the first olefin polymer resin is a mixture of polyethylene (PE) and ethylene vinyl acetate (EVA) (copolymer) in a weight ratio of 1 to 5: 1, preferably 2 to 3: 1. Could have been When the weight ratio between the two is out of the above range (if removed), the mechanical property improving effect (yes) can be weaker (smaller) than when the same kind of resin is used.
一方、前記(a)段階は、180〜300℃、好ましくは、220〜240℃、より好ましくは、230℃の温度で実行され得る。前記(a)段階の工程温度が180℃未満であれば、オレフィン系高分子樹脂が部分的に溶融されて圧縮(圧出)成形性とカーボンナノチューブの分散性が低下され、300℃を超過すれば、オレフィン系高分子樹脂の熱分解または変性が発生し得る。 Meanwhile, the step (a) may be performed at a temperature of 180 to 300 ° C, preferably 220 to 240 ° C, more preferably 230 ° C. If the process temperature in the step (a) is less than 180 ° C., the olefin polymer resin is partially melted to reduce the compression (extrusion) moldability and the dispersibility of the carbon nanotubes, exceeding 300 ° C. For example, thermal decomposition or modification of the olefin polymer resin may occur.
また、前記(a)段階で、前記カーボンナノチューブと前記第1オレフィン系高分子樹脂を10〜500kg/hr、好ましくは、10〜30kg/hrの速度で圧縮(圧出)し得る。前記圧縮(圧出)速度が10kg/hr未満であれば、生産性が低下され、500kg/hrを超過すれば、カーボンナノチューブと第1オレフィン系高分子樹脂の混合均一度が低下され得る。 In the step (a), the carbon nanotubes and the first olefin polymer resin can be compressed (extruded) at a rate of 10 to 500 kg / hr, preferably 10 to 30 kg / hr. If the compression (extruding) speed is less than 10 kg / hr, the productivity is lowered, and if it exceeds 500 kg / hr, the mixing uniformity of the carbon nanotube and the first olefin polymer resin can be lowered.
前記(a)段階の生成物であるマスターバッチは、高含量のカーボンナノチューブを含み得る。例えば、前記マスターバッチに含まれたカーボンナノチューブの含量は、10〜30重量%であり得る。 The masterbatch that is the product of step (a) may include a high content of carbon nanotubes. For example, the content of the carbon nanotubes included in the master batch may be 10 to 30% by weight.
前記マスターバッチに含まれたカーボンナノチューブの含量が10重量%未満であれば、カーボンナノチューブがマスターバッチに濃縮される程度が些細であり、30重量%を超過すれば、製造されたマスターバッチの組成が不均一になって加工性が低下され得る。 If the content of the carbon nanotubes contained in the master batch is less than 10% by weight, the degree to which the carbon nanotubes are concentrated in the master batch is insignificant, and if it exceeds 30% by weight, the composition of the manufactured master batch May become non-uniform and workability may be reduced.
前記マスターバッチの製造時に使用されるカーボンナノチューブは、粉末状のものを機械的、物理的に打錠してペレット形態に加工したもので、加工後のカーボンナノチューブの見掛け密度が0.01〜0.2g/ml、好ましくは、0.05〜0.2g/mlであり得る。前記カーボンナノチューブの見掛け密度が前記範囲を外れた場合(脱すれば)、カーボンナノチューブを10重量%以上含む濃縮マスターバッチを製造しにくい。また、ペレット形態に加工されたカーボンナノチューブは作業中に粉末の飛散を防止して作業環境を改善し得る。 The carbon nanotubes used in the production of the masterbatch are powdered ones that are mechanically and physically compressed into pellets, and the apparent density of the processed carbon nanotubes is 0.01-0. .2 g / ml, preferably 0.05-0.2 g / ml. When the apparent density of the carbon nanotubes is out of the above range (if removed), it is difficult to produce a concentrated master batch containing 10% by weight or more of carbon nanotubes. In addition, the carbon nanotubes processed into a pellet form can prevent the powder from being scattered during the work and improve the work environment.
一方、前記(a)段階で、圧縮(圧出)時に使用される圧縮(圧出)機は、一つのスクリューを具備した短縮圧縮(圧出)機、または複数のスクリューを具備した多軸圧縮(圧出)機であり、好ましくは、各成分間の均一な混合、圧縮(圧出)のために2個のスクリューが具備された2軸圧縮(圧出)機を例示し得る。 On the other hand, in the step (a), the compression (extruding) machine used at the time of compression (extruding) is a shortened compression (extruding) machine equipped with one screw, or multiaxial compression equipped with a plurality of screws. A (compression) machine, preferably a biaxial compression (compression) machine provided with two screws for uniform mixing and compression (compression) between components.
この時、前記圧縮(圧出)機を利用した混練過程でカーボンナノチューブの破損を抑制するため、好ましくは、2軸圧縮(圧出)機を使用して前記オレフィン系高分子樹脂を圧縮(圧出)機側から投入し、カーボンナノチューブをサイドフィーダー(Side feeder)を使用して前記圧縮(圧出)機に供給することで溶融混練する方法を使用し得る。 At this time, in order to suppress the breakage of the carbon nanotubes in the kneading process using the compression (extruding) machine, the olefin polymer resin is preferably compressed (compressed) using a biaxial compression (extruding) machine. A method of melting and kneading can be used by charging from the machine side and supplying the carbon nanotubes to the compression (pressing) machine using a side feeder.
前記(b)段階では、前記マスターバッチに含まれた高含量のカーボンナノチューブを第2オレフィン系高分子樹脂と混合して希釈(let−down)し得る。前記(b)段階で投与される前記第2オレフィン系高分子樹脂の量は、生成物である伝導性樹脂組成物のうちカーボンナノチューブの含量を0.1〜10重量%に希釈できる程度であれば十分である。 In the step (b), the high content of carbon nanotubes contained in the master batch may be mixed with the second olefin polymer resin and diluted (let-down). The amount of the second olefin polymer resin administered in the step (b) may be such that the carbon nanotube content in the product conductive resin composition can be diluted to 0.1 to 10% by weight. It is enough.
また、前記第2オレフィン系高分子樹脂は、前記第1オレフィン系高分子樹脂と同種であるか、必要に応じて、異種であってもよい。ただし、前記第1及び第2オレフィン系高分子樹脂の種類が相異なる場合にもこれらの間の相溶性を考慮してこれら各々に含まれた一つ以上の単量体が同一であるもの、またはこれら各々に含まれた一つ以上の樹脂が同一であるものを使用し得る。 The second olefin polymer resin may be the same as the first olefin polymer resin or may be different from the first olefin polymer resin as necessary. However, in the case where the types of the first and second olefin polymer resins are different, one or more monomers contained in each of them are the same in consideration of the compatibility between them, Alternatively, those in which one or more resins contained in each of them are the same can be used.
例えば、前記第1オレフィン系高分子樹脂がポリエチレンとエチレン酢酸ビニル(共重合体)の混合物である場合、前記第2オレフィン系高分子樹脂は、ポリエチレン、ポリエチレン共重合体、またはこれらの混合物であり得る。 For example, when the first olefin polymer resin is a mixture of polyethylene and ethylene vinyl acetate (copolymer), the second olefin polymer resin is polyethylene, a polyethylene copolymer, or a mixture thereof. obtain.
前記(a)及び(b)段階を通じて製造された伝導性樹脂組成物は、高粘度のオレフィン系高分子樹脂を母材に使用しながらも従来の製造方法、例えば、マスターバッチを経ないで製造された伝導性樹脂組成物に比べて電気伝導性を向上させると同時に機械的物性を維持して両者を均衡的に具現し得る。 The conductive resin composition manufactured through the steps (a) and (b) is manufactured without using a conventional manufacturing method, for example, a master batch, while using a high-viscosity olefin polymer resin as a base material. Compared with the conductive resin composition, the electrical conductivity can be improved, and at the same time, the mechanical properties can be maintained and both can be realized in a balanced manner.
具体的に、前記マスターバッチと第2オレフィン系高分子樹脂を混合して前記伝導性樹脂組成物に含まれたカーボンナノチューブの含量が0.1〜10重量%になるように希釈し得る。 Specifically, the master batch and the second olefin polymer resin may be mixed and diluted such that the content of carbon nanotubes contained in the conductive resin composition is 0.1 to 10% by weight.
前記伝導性樹脂組成物に含まれたカーボンナノチューブの含量が0.1重量%未満であれば、電気伝導性が低下され、10重量%を超過すれば、機械的物性が著しく低下され得る。 If the content of the carbon nanotubes contained in the conductive resin composition is less than 0.1% by weight, the electrical conductivity may be reduced, and if it exceeds 10% by weight, the mechanical properties may be significantly reduced.
前記(b)段階で、前記マスターバッチと前記第2オレフィン系高分子樹脂の混合は、溶融混合法(Melt compounding)、インサイツ重合法(In−situ polymerization)、溶液混合法(solution mixing)などを使用し得るが、好ましくは、圧縮(圧出)機などを利用して高温、高せん断力下でカーボンナノチューブを樹脂内に均一に分散させることで大容量化及び製造費用節減が可能な溶融混合法を使用し得る。前記圧縮(圧出)機の種類と特徴、選択基準などに関しては上述の通りである。 In the step (b), the masterbatch and the second olefin polymer resin may be mixed by a melt mixing method, an in-situ polymerization method, a solution mixing method, or the like. Although it can be used, it is preferable to use a compression (extruding) machine, etc., and melt mixing that can increase the capacity and reduce manufacturing costs by uniformly dispersing carbon nanotubes in the resin under high temperature and high shear force The method can be used. The type, characteristics, selection criteria, etc. of the compressor (extruder) are as described above.
前記(a)段階または(b)段階で、前記伝導性樹脂組成物の使用目的によって難燃剤、衝撃補強剤、難燃補助剤、滑剤、可塑剤、熱安定剤、帯電(積荷)防止剤、酸化防止剤、相溶化剤、光安定剤、顔料、染料、無機物添加剤、及びドリップ防止剤からなる群より選択される一つ以上の添加剤を追加で配合し得る。 In the step (a) or (b), a flame retardant, an impact reinforcing agent, a flame retardant auxiliary agent, a lubricant, a plasticizer, a thermal stabilizer, an antistatic (loading) preventing agent, depending on the purpose of use of the conductive resin composition. One or more additives selected from the group consisting of an antioxidant, a compatibilizer, a light stabilizer, a pigment, a dye, an inorganic additive, and an anti-drip agent may be additionally added.
前記添加剤の含量は、前記伝導性樹脂組成物の全体重量を基準として0.1〜10重量%であり得る。前記添加剤の含量が0.1重量%未満であれば、使用目的に適合する効果を具現しにくく、10重量%を超過すれば、オレフィン系高分子樹脂固有の物性を低下させ得る。 The content of the additive may be 0.1 to 10% by weight based on the total weight of the conductive resin composition. If the content of the additive is less than 0.1% by weight, it is difficult to realize an effect suitable for the intended purpose, and if it exceeds 10% by weight, the physical properties inherent to the olefin polymer resin can be lowered.
前記伝導性樹脂組成物は、射出、圧縮(圧出)成形などを通じてプラスチック成形品に製造され、広範囲な適用が可能なポリエチレン樹脂を母材に使用することで各種生活用品、OA機器、電気/電子製品、車両用部品などに使用され得る。 The conductive resin composition is manufactured into a plastic molded product through injection, compression (extruding) molding, etc., and uses a polyethylene resin, which can be applied in a wide range, as a base material. It can be used for electronic products, vehicle parts, and the like.
特に、前記伝導性樹脂組成物は、一定水準以上の機械的物性と一定水準以上の電気伝導性が均衡的、必須的に要求される車両用部品、具体的に、車両用燃料タンク(fuel tank)または車両用燃料ホース(fuel hose)に適用され得る。前記(a)及び(b)段階を通じてこのような成形品に要求される化学的、電気化学的、機械的物性は完備され得るので、前記伝導性樹脂組成物をモールド(mold)で成形することで最終製品を得られる。 In particular, the conductive resin composition is a vehicle component, specifically, a fuel tank, which requires a balanced and essential mechanical property of a certain level or more and electrical conductivity of a certain level or more. ) Or a vehicle fuel hose. Since the chemical, electrochemical and mechanical properties required for such a molded product can be completed through the steps (a) and (b), the conductive resin composition is molded by a mold. To get the final product.
また、前記伝導性樹脂組成物を利用して製造されたプラスチック成形品は、適用分野によって前記カーボンナノチューブの含量を変えて調節して表面抵抗が102〜1010Ω/sqとなる範囲で製造され、特に、帯電防止や優秀な電気伝導性の付与が要求される分野では102〜108Ω/sqとなる範囲で製造され得る。 In addition, a plastic molded product manufactured using the conductive resin composition is manufactured in a range in which the surface resistance is 10 2 to 10 10 Ω / sq by adjusting the content of the carbon nanotube according to the application field. In particular, it can be produced in a range of 10 2 to 10 8 Ω / sq in the field where antistatic properties and imparting excellent electrical conductivity are required.
実施例1
多重壁カーボンナノチューブ(MWCNT)をツインスクリュー圧縮(圧出)機のサイドフィーダー(Side Feeder)に投入し、ポリエチレン(HDPE、溶融指数5.0g/10min、ASTM D 1238)をメインホッパー(Main Hopper)に投入速度25kg/hrで投入した後、混練速度200rpm及び加工温度230℃下で溶融混練して、カーボンナノチューブの含量が10重量%であるマスターバッチを製造した。
Example 1
Multi-wall carbon nanotubes (MWCNT) are put into a side feeder (Side Feeder) of a twin screw compressor (extruder), and polyethylene (HDPE, melt index 5.0 g / 10 min, ASTM D 1238) is used as a main hopper (Main Hopper). Was added at a charging speed of 25 kg / hr, and then melt-kneaded at a kneading speed of 200 rpm and a processing temperature of 230 ° C. to produce a master batch having a carbon nanotube content of 10% by weight.
製造されたマスターバッチと異種のポリエチレン(HDPE、溶融指数0.3g/10min、ASTM D 1238)をツインスクリュー圧縮(圧出)機に投入し、混練速度200rpm及び加工温度250℃下で溶融混練して、カーボンナノチューブの含量が6重量%である樹脂組成物を製造した。 The manufactured masterbatch and a different kind of polyethylene (HDPE, melt index 0.3 g / 10 min, ASTM D 1238) are put into a twin screw compression (extruding) machine and melt kneaded at a kneading speed of 200 rpm and a processing temperature of 250 ° C. Thus, a resin composition having a carbon nanotube content of 6% by weight was produced.
実施例2
マスターバッチに含有されたカーボンナノチューブの含量が10重量%、樹脂組成物に含有されたカーボンナノチューブの含量が5重量%になるように調節したこと以外は、前記実施例1と同一な方法で樹脂組成物を製造した。
Example 2
The resin was prepared in the same manner as in Example 1 except that the content of carbon nanotubes contained in the master batch was adjusted to 10% by weight and the content of carbon nanotubes contained in the resin composition was 5% by weight. A composition was prepared.
実施例3
マスターバッチに含有されたカーボンナノチューブの含量が10重量%、樹脂組成物に含有されたカーボンナノチューブの含量が4重量%になるように調節したこと以外は、前記実施例1と同一な方法で樹脂組成物を製造した。
Example 3
The resin was prepared in the same manner as in Example 1 except that the content of carbon nanotubes contained in the master batch was adjusted to 10% by weight and the content of carbon nanotubes contained in the resin composition was 4% by weight. A composition was prepared.
実施例4
マスターバッチに含有されたカーボンナノチューブの含量が10重量%、樹脂組成物に含有されたカーボンナノチューブの含量が3重量%になるように調節したこと以外は、前記実施例1と同一な方法で樹脂組成物を製造した。
Example 4
The resin was prepared in the same manner as in Example 1 except that the content of carbon nanotubes contained in the master batch was adjusted to 10% by weight and the content of carbon nanotubes contained in the resin composition was adjusted to 3% by weight. A composition was prepared.
実施例5
多重壁カーボンナノチューブ(MWCNT)をツインスクリュー圧縮(圧出)機のサイドフィーダー(Side Feeder)に投入し、ポリエチレン(HDPE、溶融指数5.0g/10min、ASTM D 1238)とエチレン酢酸ビニル(EVA)(共重合体)とが7:3の重量比で混合された樹脂をメインホッパー(Main Hopper)に投入速度25kg/hrで投入した後、混練速度200rpm及び加工温度230℃下で溶融混練して、カーボンナノチューブの含量が10重量%であるマスターバッチを製造した。
Example 5
Multi-wall carbon nanotubes (MWCNT) are charged into a side feeder (Side Feeder) of a twin screw compressor (extruder), polyethylene (HDPE, melt index 5.0 g / 10 min, ASTM D 1238) and ethylene vinyl acetate (EVA) (Copolymer) and a resin mixed at a weight ratio of 7: 3 are charged into a main hopper at a charging speed of 25 kg / hr, and then melt-kneaded at a mixing speed of 200 rpm and a processing temperature of 230 ° C. A master batch having a carbon nanotube content of 10% by weight was produced.
その後、前記実施例1と同一な方法でカーボンナノチューブの含量が6重量%である樹脂組成物を製造した。 Thereafter, a resin composition having a carbon nanotube content of 6% by weight was produced in the same manner as in Example 1.
実施例6
マスターバッチに含有されたカーボンナノチューブの含量が10重量%、樹脂組成物に含有されたカーボンナノチューブの含量が5重量%になるように調節したこと以外は、前記実施例5と同一な方法で樹脂組成物を製造した。
Example 6
The resin was prepared in the same manner as in Example 5 except that the content of carbon nanotubes contained in the master batch was adjusted to 10% by weight and the content of carbon nanotubes contained in the resin composition was 5% by weight. A composition was prepared.
実施例7
マスターバッチに含有されたカーボンナノチューブの含量が10重量%、樹脂組成物に含有されたカーボンナノチューブの含量が4重量%になるように調節したこと以外は、前記実施例5と同一な方法で樹脂組成物を製造した。
Example 7
The resin was prepared in the same manner as in Example 5 except that the content of carbon nanotubes contained in the master batch was adjusted to 10% by weight and the content of carbon nanotubes contained in the resin composition was 4% by weight. A composition was prepared.
実施例8
マスターバッチに含有されたカーボンナノチューブの含量が10重量%、樹脂組成物に含有されたカーボンナノチューブの含量が3重量%になるように調節したこと以外は、前記実施例5と同一な方法で樹脂組成物を製造した。
Example 8
The resin was prepared in the same manner as in Example 5 except that the content of carbon nanotubes contained in the master batch was adjusted to 10% by weight and the content of carbon nanotubes contained in the resin composition was adjusted to 3% by weight. A composition was prepared.
比較例1
多重壁カーボンナノチューブ(MWCNT)をツインスクリュー圧縮(圧出)機のサイドフィーダー(Side Feeder)に投入し、ポリエチレン(HDPE、溶融指数0.3g/10min、ASTM D 1238)をツインスクリュー圧縮(圧出)機に投入速度25kg/hrで投入した後、混練速度200rpm及び加工温度250℃下で溶融混練して、カーボンナノチューブの含量が6重量%である樹脂組成を製造した。
Comparative Example 1
Multi-wall carbon nanotubes (MWCNT) are put into a side feeder (Side Feeder) of a twin screw compression (extruding) machine, and polyethylene (HDPE, melt index 0.3 g / 10 min, ASTM D 1238) is twin screw compression (extruding) ) After being charged into the machine at a charging speed of 25 kg / hr, melt-kneading was performed at a kneading speed of 200 rpm and a processing temperature of 250 ° C. to produce a resin composition having a carbon nanotube content of 6% by weight.
比較例2
樹脂組成物に含有されたカーボンナノチューブの含量が5重量%になるように調節したこと以外は、前記比較例1と同一な方法で樹脂組成物を製造した。
Comparative Example 2
A resin composition was produced in the same manner as in Comparative Example 1 except that the content of carbon nanotubes contained in the resin composition was adjusted to 5% by weight.
比較例3
樹脂組成物に含有されたカーボンナノチューブの含量が4重量%になるように調節したこと以外は、前記比較例1と同一な方法で樹脂組成物を製造した。
Comparative Example 3
A resin composition was produced in the same manner as in Comparative Example 1 except that the content of carbon nanotubes contained in the resin composition was adjusted to 4% by weight.
比較例4
樹脂組成物に含有されたカーボンナノチューブの含量が3重量%になるように調節したこと以外は、前記比較例1と同一な方法で樹脂組成物を製造した。
Comparative Example 4
A resin composition was produced in the same manner as in Comparative Example 1 except that the content of carbon nanotubes contained in the resin composition was adjusted to 3% by weight.
実験例1:製造方法及びカーボンナノチューブの含量による電気伝導性の測定
前記実施例1〜8及び比較例1〜4による樹脂組成物を油圧式射出機を利用して210℃で射出して、横30cm、縦20cmのサイズを有する長方形形態の射出品に製造した。
Experimental Example 1: Measurement of electrical conductivity according to production method and carbon nanotube content The resin compositions according to Examples 1 to 8 and Comparative Examples 1 to 4 were injected at 210 ° C. using a hydraulic injection machine, It was manufactured into an injection product having a rectangular shape having a size of 30 cm and a length of 20 cm.
製造された各々の射出品の表面抵抗(Ω/sq)を表面抵抗測定器(SIMCO、ST−4)で測定し、その結果を図2に示した。 The surface resistance (Ω / sq) of each manufactured injection product was measured with a surface resistance measuring instrument (SIMCO, ST-4), and the result is shown in FIG.
図2を参照すれば、マスターバッチの製造段階を経た後カーボンナノチューブ含量を希釈させて製造されたカーボンナノチューブ−高分子ナノ複合体が、マスターバッチの製造段階を経ずに製造されたカーボンナノチューブ−高分子ナノ複合体に比べて、同等(実施例4、8及び比較例4)乃至減少した(実施例1〜3、実施例5〜7及び比較例1〜3)表面抵抗を示し、最小105Ω/sq程度の値を示すこと(実施例1、5)を確認した。 Referring to FIG. 2, a carbon nanotube-polymer nanocomposite manufactured by diluting the carbon nanotube content after passing through the masterbatch manufacturing step is manufactured without passing through the masterbatch manufacturing step- Compared to the polymer nanocomposite, the surface resistance was the same (Examples 4 and 8 and Comparative Example 4) or decreased (Examples 1 to 3, Examples 5 to 7 and Comparative Examples 1 to 3). It was confirmed that the value was about 5 Ω / sq (Examples 1 and 5).
特に、カーボンナノチューブの含量が4重量%から5重量%に増加される区間では、マスターバッチの製造段階を経ない場合(比較例2、3)に比べて、マスターバッチの製造段階を経た後にカーボンナノチューブ含量を希釈させた場合(実施例2、3、6、7)に表面抵抗の急激な減少が観察され、カーボンナノチューブの含量を少量変更するだけでも一層向上した効果を示すことを確認した。 In particular, in the section where the content of carbon nanotubes is increased from 4% by weight to 5% by weight, the carbon after the masterbatch manufacturing stage is compared with the case where the masterbatch manufacturing stage is not passed (Comparative Examples 2 and 3). When the nanotube content was diluted (Examples 2, 3, 6, and 7), a rapid decrease in surface resistance was observed, and it was confirmed that even a small change in the content of carbon nanotubes showed a further improved effect.
また、マスターバッチの製造時、熱可塑性樹脂としてポリエチレンを単独で使用した場合(実施例3)に比べて、ポリエチレンとエチレン酢酸ビニル(共重合体)の混合物を使用した場合(実施例7)に、一定含量のカーボンナノチューブが含まれた伝導性樹脂組成物においてさらに減少された表面抵抗を示すことを確認した。 In addition, in the production of the masterbatch, in the case where a mixture of polyethylene and ethylene vinyl acetate (copolymer) is used (Example 7), compared to the case where polyethylene is used alone as the thermoplastic resin (Example 3). It was confirmed that the conductive resin composition containing a certain amount of carbon nanotubes showed a further reduced surface resistance.
このような結果を通じて、伝導性フィラーであるカーボンナノチューブが同一な含量で含まれても、伝導性樹脂組成物の製造時、マスターバッチを製造してこれを希釈させることで一層優秀な電気伝導性を付与することができ、さらに、マスターバッチの製造時に異種の熱可塑性樹脂混合物を使用することで電気伝導性を一層向上させ得ることが分かる。 Based on these results, even when carbon nanotubes, which are conductive fillers, are contained in the same content, it is possible to produce a masterbatch and dilute it at the time of manufacturing the conductive resin composition. Furthermore, it can be seen that the electrical conductivity can be further improved by using a mixture of different types of thermoplastic resins during the production of the masterbatch.
比較例5
カーボンナノチューブが含有されないポリエチレン(HDPE、溶融指数0.3g/10min、ASTM D 1238)を樹脂組成物に使用した。
Comparative Example 5
Polyethylene containing no carbon nanotubes (HDPE, melt index 0.3 g / 10 min, ASTM D 1238) was used for the resin composition.
実験例2:製造方法及びカーボンナノチューブの含量による機械的物性の測定
前記実施例1〜8及び比較例1〜5による樹脂組成物を、射出機を利用して250℃で射出して、機械的物性を測定するための試片(サンプル)を製造した。各々の試片(サンプル)に対して下記のような方法によってアイゾット(Izod)衝撃強度、引張強度及び伸び率を測定し、その結果を各々図3〜図5に示した。
Experimental Example 2: Measurement of mechanical properties according to production method and carbon nanotube content The resin compositions according to Examples 1 to 8 and Comparative Examples 1 to 5 were injected at 250 ° C. using an injection machine to mechanically A specimen (sample) for measuring physical properties was manufactured. Each specimen (sample) was measured for Izod impact strength, tensile strength, and elongation by the following method, and the results are shown in FIGS.
−アイゾット(Izod)衝撃強度(kgf・cm/cm):1/8″(インチ)の厚さの試片(サンプル)に対してASTM D256に基づいて測定した。 Izod impact strength (kgf · cm / cm): Measured according to ASTM D256 on a specimen having a thickness of 1/8 ″ (inch).
−引張強度(kgf/cm2)及び伸び率(%):ASTM D638に基づいて20mm/minの条件下で測定した。 - tensile strength (kgf / cm 2) and elongation (%): measured under the conditions of 20 mm / min based on ASTM D638.
図3を参照すれば、カーボンナノチューブを添加しない熱可塑性樹脂(比較例5)に比べて、カーボンナノチューブを添加して製造された熱可塑性樹脂組成物(実施例1〜8及び比較例1〜4)の衝撃強度は減少することが分かる。 Referring to FIG. 3, the thermoplastic resin compositions (Examples 1 to 8 and Comparative Examples 1 to 4) prepared by adding carbon nanotubes compared to the thermoplastic resin to which carbon nanotubes are not added (Comparative Example 5). It can be seen that the impact strength is reduced.
ただし、マスターバッチの製造後にこれを希釈させて製造された樹脂組成物(実施例1〜8)がマスターバッチの製造を経ずに製造された樹脂組成物(比較例1〜4)に比べて衝撃強度の減少幅が低いことを確認した。 However, the resin compositions (Examples 1 to 8) produced by diluting the master batch after the production of the master batch were compared with the resin compositions (Comparative Examples 1 to 4) produced without the production of the master batch. It was confirmed that the reduction in impact strength was low.
特に、カーボンナノチューブの含量が5重量%である場合、マスターバッチに異種の熱可塑性樹脂が含まれるように製造された樹脂組成物(実施例6)が、単一の熱可塑性樹脂が含まれるように製造された場合(実施例2)やマスターバッチの製造を経ない場合(比較例2)に比べて2倍ほど高い衝撃強度を示すことを確認した。 In particular, when the content of the carbon nanotube is 5% by weight, the resin composition (Example 6) manufactured so that the master batch contains a different kind of thermoplastic resin may contain a single thermoplastic resin. It was confirmed that the impact strength was about twice as high as that of the case (Example 2) produced in the above and the case where the masterbatch was not produced (Comparative Example 2).
図4を参照すれば、伝導性フィラーであるカーボンナノチューブが添加されない熱可塑性樹脂(比較例5)に比べて、カーボンナノチューブの添加量の増加によって樹脂組成物の引張強度は増加し(実施例1〜8及び比較例1〜4)、特に、単一の熱可塑性樹脂が含まれたマスターバッチの製造段階を経て製造された樹脂組成物(実施例1〜4)とマスターバッチの製造段階を経ずに製造された樹脂組成物(比較例1〜4)の引張強度がカーボンナノチューブの含量増加によって類似した増加傾向を示すことを確認した。 Referring to FIG. 4, the tensile strength of the resin composition increases as the amount of carbon nanotubes added increases compared to the thermoplastic resin to which carbon nanotubes as conductive fillers are not added (Comparative Example 5) (Example 1). To 8 and Comparative Examples 1 to 4), in particular, a resin composition (Examples 1 to 4) manufactured through a manufacturing stage of a masterbatch containing a single thermoplastic resin and a manufacturing stage of the masterbatch. It was confirmed that the tensile strengths of the resin compositions (Comparative Examples 1 to 4) produced without any change showed a similar increasing tendency as the carbon nanotube content increased.
また、図5を参照すれば、マスターバッチの製造段階を経て製造された樹脂組成物(実施例1〜8)は、カーボンナノチューブの含量が増加しても熱可塑性樹脂(比較例5)固有の伸び率を維持した一方、マスターバッチの製造段階を経ずに製造された樹脂組成物(比較例1〜4)は著しい伸び率の減少を示すことを確認した。 Referring to FIG. 5, the resin compositions (Examples 1 to 8) manufactured through the masterbatch manufacturing stage are inherent to the thermoplastic resin (Comparative Example 5) even if the content of carbon nanotubes increases. While maintaining the elongation, it was confirmed that the resin compositions (Comparative Examples 1 to 4) produced without passing through the masterbatch production stage showed a significant decrease in the elongation.
このような結果を通じて、伝導性フィラーが同一含量で含まれてもマスターバッチの製造段階の有無によって機械的物性の差が多少発生し、具体的に、マスターバッチの製造後にカーボンナノチューブの含量を希釈させて製造される樹脂組成物が一層優秀な機械的物性を示すことが分かる。 Through these results, even if the conductive filler is included in the same content, there will be a slight difference in mechanical properties depending on the presence or absence of the masterbatch production stage. Specifically, the carbon nanotube content is diluted after the masterbatch production. It can be seen that the resin composition produced by the process exhibits more excellent mechanical properties.
以上、添付した図面を参照して本発明の実施形態について説明したが、本発明が属する技術の分野における通常の知識を有する者であれば、本発明の技術的思想を逸脱しない範囲内で、様々な置換、変形及び変更が可能である。したがって、上述した実施形態及び実施例は全ての面で例示的なものであり、限定的ではないものと理解しなければならない。例えば、単一型として説明されている各構成要素は、分散して実施することができ、同様に分散されたものとして説明されている構成要素を結合された形態で実施することができる。 As described above, the embodiments of the present invention have been described with reference to the accompanying drawings. However, those who have ordinary knowledge in the technical field to which the present invention belongs may be used without departing from the technical idea of the present invention. Various substitutions, modifications, and changes are possible. Therefore, it should be understood that the above-described embodiments and examples are illustrative in all aspects and not limiting. For example, each component described as a single type can be implemented in a distributed manner, and components described as being similarly distributed can be implemented in a combined form.
本発明の範囲は、後述する特許請求の範囲により示されるが、特許請求の範囲の意味及び範囲、そしてその均等概念から導出される全ての変更又は変形された形態は、本発明の範囲に含まれるものと解釈しなければならない。 The scope of the present invention is indicated by the following claims, but all modifications or variations derived from the meaning and scope of the claims and equivalents thereof are included in the scope of the present invention. Must be interpreted.
Claims (11)
(b)前記マスターバッチと第2オレフィン系高分子樹脂を混合する段階;を含み、
前記第1オレフィン系高分子樹脂は、ポリエチレン及びエチレン酢酸ビニル(共重合体)が1〜5:1の重量比で混合されたことを特徴とする伝導性樹脂組成物の製造方法。 (A) compressing (pressing) the carbon nanotubes and the first olefin polymer resin to produce a master batch; and (b) mixing the master batch and the second olefin polymer resin. See
The method for producing a conductive resin composition, wherein the first olefin polymer resin is a mixture of polyethylene and ethylene vinyl acetate (copolymer) in a weight ratio of 1 to 5: 1 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0020000 | 2016-02-19 | ||
KR1020160020000A KR101830957B1 (en) | 2016-02-19 | 2016-02-19 | Method for manufacturing conductive resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017145414A JP2017145414A (en) | 2017-08-24 |
JP6386114B2 true JP6386114B2 (en) | 2018-09-05 |
Family
ID=59675922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017029481A Active JP6386114B2 (en) | 2016-02-19 | 2017-02-20 | Method for producing conductive resin composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6386114B2 (en) |
KR (1) | KR101830957B1 (en) |
CN (1) | CN107099077B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102220403B1 (en) * | 2017-09-14 | 2021-02-24 | 주식회사 엘지화학 | Preparing Method of Concentrated Conductive Resin and Polyamide Resin Composition Using the Same |
KR102085939B1 (en) * | 2017-12-14 | 2020-03-06 | 금호석유화학 주식회사 | A expanded bead having electrical conductivity and a method for manufacturing the same |
CN109161087A (en) * | 2018-07-17 | 2019-01-08 | 广州润锋科技股份有限公司 | A kind of preparation method of carbon nanotube composite polyethylene anti-static material |
KR102579779B1 (en) * | 2019-01-29 | 2023-09-19 | 미츠이·다우 폴리케미칼 가부시키가이샤 | Resin composition and molded body |
KR102148974B1 (en) * | 2019-11-27 | 2020-08-28 | 한화솔루션 주식회사 | Anti-slip conductive resin composition and molded article comprising thereof |
KR102453804B1 (en) | 2020-09-03 | 2022-10-12 | 주식회사 투디엠 | Filler for polymer composites and the process for producing the same |
KR102477947B1 (en) * | 2020-12-29 | 2022-12-15 | 한국신발피혁연구원 | Sponge-forming composition for absorbing static electricity |
KR102399883B1 (en) | 2021-02-09 | 2022-05-20 | 재단법인대구경북과학기술원 | Composite polymer pellets for extrusion and manufacturing method thereof |
KR102514631B1 (en) * | 2021-03-08 | 2023-03-27 | 주식회사 이루켐 | Manufacturing Method of Carbon Nanotube Masterbatch and Manufacturing Method of Electroconductive Polymer Composite by Using the Same |
CN114736444B (en) * | 2022-03-25 | 2023-07-28 | 四川大学 | Polymer-based conductive composite material for heat tracing belt and preparation method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100147A (en) * | 2001-09-25 | 2003-04-04 | Nagase & Co Ltd | Conductive material containing carbon nanotube and its manufacturing method |
ES2399364T3 (en) * | 2002-10-02 | 2013-03-27 | Dow Global Technologies Llc | Polymeric compositions comprising a homogeneously branched, low viscosity ethylene / alpha-olefin extender |
JP4878832B2 (en) * | 2005-12-26 | 2012-02-15 | 株式会社プライムポリマー | Molded body and manufacturing method thereof |
JP2007217633A (en) * | 2006-02-20 | 2007-08-30 | Prime Polymer:Kk | Molded product and its production process |
JP2009074072A (en) * | 2007-08-30 | 2009-04-09 | Hodogaya Chem Co Ltd | Method for improving conductivity of resin molded body comprising carbon nanotube by heat treatment |
HUE030729T2 (en) * | 2008-11-06 | 2017-05-29 | Clariant Int Ltd | Composition comprising propylene-olefin-copolymer waxes and carbon black |
US9085678B2 (en) * | 2010-01-08 | 2015-07-21 | King Abdulaziz City For Science And Technology | Clean flame retardant compositions with carbon nano tube for enhancing mechanical properties for insulation of wire and cable |
CN101831103B (en) * | 2010-05-24 | 2012-10-03 | 哈尔滨理工大学 | High-conductivity polyolefin composite material and preparation method thereof |
JP5998581B2 (en) * | 2012-03-30 | 2016-09-28 | 東洋インキScホールディングス株式会社 | Resin composition |
CN102617918B (en) * | 2012-04-11 | 2013-07-10 | 四川大学 | Method for preparing high-ductility conductive polymer composite material |
EP2660284A1 (en) * | 2012-05-04 | 2013-11-06 | Université Catholique De Louvain | Electroconductive nanocomposite |
JP6121742B2 (en) | 2013-02-15 | 2017-04-26 | 株式会社フジクラ | Conductive thermoplastic resin composition and cable |
JP2016108524A (en) * | 2014-12-04 | 2016-06-20 | 東洋インキScホールディングス株式会社 | Conductive resin composition, conductive master batch, molded body, and production method of the same |
-
2016
- 2016-02-19 KR KR1020160020000A patent/KR101830957B1/en active IP Right Grant
-
2017
- 2017-02-20 JP JP2017029481A patent/JP6386114B2/en active Active
- 2017-02-20 CN CN201710090051.1A patent/CN107099077B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017145414A (en) | 2017-08-24 |
CN107099077B (en) | 2020-07-31 |
KR20170098083A (en) | 2017-08-29 |
CN107099077A (en) | 2017-08-29 |
KR101830957B1 (en) | 2018-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6386114B2 (en) | Method for producing conductive resin composition | |
KR101851952B1 (en) | Electrically conductive resin composition and method of preparing the same | |
KR101309738B1 (en) | Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof | |
JP6757395B2 (en) | Conductive foam beads and their manufacturing method | |
EP3268415B1 (en) | Process for the preparation of composite articles having enhanced electrical properties | |
WO2013111862A1 (en) | Method for producing master batch for conductive resin, and master batch | |
US10290388B2 (en) | Conductive resin composition and plastic molded product using the same | |
TW201339221A (en) | Production method for conductive resin composition, and conductive resin composition | |
WO2021072357A1 (en) | Melt-compounded polyamide graphene composites | |
JP6705881B2 (en) | Conductive resin composition and method for producing the same | |
WO2018164897A1 (en) | Aliphatic polyketone modified with carbon nanostructures | |
WO2013157621A1 (en) | Masterbatch for electrically conductive resin, and electrically conductive resin | |
EP3620488A1 (en) | Electrically conductive resin composition and preparation method thereof | |
KR20170112980A (en) | Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same | |
JP2017179369A (en) | Electroconductive resin composite and electroconductive resin composition having excellent impact strength, and method of producing the same | |
EP3620489B1 (en) | Electrically conductive resin composition and preparation method thereof | |
KR101269088B1 (en) | Biodagradable polymer/carbon nano tube composite comprising bio-compatibilizer and the preparation thereof | |
EP3626778B1 (en) | Electrically conductive resin composition and preparation method thereof | |
KR20160144613A (en) | Composite having improved conductivity and Preparation Method Thereof | |
JP2006097005A (en) | Electrically conductive resin composition and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6386114 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |