WO2013150950A1 - 遠心鋳造製複合ロール及びその製造方法 - Google Patents
遠心鋳造製複合ロール及びその製造方法 Download PDFInfo
- Publication number
- WO2013150950A1 WO2013150950A1 PCT/JP2013/059228 JP2013059228W WO2013150950A1 WO 2013150950 A1 WO2013150950 A1 WO 2013150950A1 JP 2013059228 W JP2013059228 W JP 2013059228W WO 2013150950 A1 WO2013150950 A1 WO 2013150950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- outer layer
- shaft portion
- composite roll
- mold
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/02—Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
- B22D13/026—Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/03—Sleeved rolls
- B21B27/032—Rolls for sheets or strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/02—Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/02—Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
- B22D13/023—Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/16—Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
- C22C37/08—Cast-iron alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
Definitions
- the present invention relates to a centrifugal cast composite roll having a composite structure in which an outer layer formed by a centrifugal casting method and a tough inner layer are welded and integrated, and a manufacturing method thereof.
- the hot-rolling composite roll 10 includes an outer layer 1 in contact with the rolled material, and an inner layer 2 made of a material different from the outer layer 1 welded to the inner surface of the outer layer 1.
- the inner layer 2 includes a body core portion 21 welded to the outer layer 1, and a driving side shaft portion 22 and a driven side shaft portion 23 that extend integrally from the body core portion 21 to both sides.
- a clutch portion 24 used for driving torque transmission is integrally provided at the end of the driving side shaft portion 22.
- a convex portion 25 necessary for handling the composite roll 10 and the like is integrally provided at the end of the driven side shaft portion 23.
- the clutch portion 24 has an end surface 24a and a pair of flat cutout surfaces 24b, 24b that engage with driving means (not shown), and the convex portion 25 has an end surface 25a.
- the driving side shaft portion 22 and the driven side shaft portion 23 need to be machined to form a bearing portion, a neck portion, and the like.
- a composite roll 10 for hot rolling there is a composite roll having a composite structure in which an outer layer 1 made of centrifugal cast having excellent wear resistance and accident resistance and an inner layer 2 made of tough ductile cast iron are welded and integrated. Widely used.
- the hot rolling roll 10 when damage such as wear and roughening generated in the surface layer portion of the outer layer 1 due to thermal and mechanical loads due to contact with the rolled material progresses, the surface quality of the rolled material deteriorates.
- the composite roll 10 that has been worn and roughened is replaced with a composite roll 10 having no damage on the outer layer surface, and the outer layer 1 of the composite roll 10 removed from the rolling mill is re-polished to remove the damaged portion.
- the composite roll 10 after the re-grinding is again assembled in a rolling mill and used for rolling. If the composite roll 10 is frequently exchanged, the rolling must be interrupted frequently, so that productivity is hindered.
- the wear resistance of the outer layer 1 in contact with the rolled material has been improved.
- the service life of the composite roll 10 is extended as the wear resistance of the outer layer 1 is improved, it is also important to improve the wear resistance of the clutch portion 24 fastened to the torque transmission coupling. If the clutch portion 24 is significantly worn, the composite roll 10 cannot be used even if the outer layer 1 is not worn.
- JP-A-6-304612 describes an outer layer made of high-speed tool steel and C: 0.2 to 1.2% by weight of carbon steel or low alloy steel.
- C 2.5 to 3.5%
- Si 1.6 to 2.8%
- Mn 0.3 to 0.6%
- P ⁇ 0.05% S ⁇ 0.03%
- a composite roll for hot rolling in which a clutch portion to be cast is joined to an end portion of a shaft portion is disclosed.
- the driven side shaft portion 23 that does not require the same degree of hardness as the driving side shaft portion 22 becomes harder than necessary, and the workability is improved. There is a problem of deterioration.
- an object of the present invention is to provide a centrifugal cast composite roll in which the wear resistance of the driving side shaft portion is improved while maintaining the workability of the driven side shaft portion, and a manufacturing method thereof.
- the present inventors have appropriately determined (a) the rate of rise of the molten metal surface of the inner layer to be poured into the stationary casting mold after the outer layer is formed by centrifugal casting.
- Cr, Mo, and V or Cr, Mo, V, and Nb in the outer layer can be mixed more than the driven side shaft portion than the driven side shaft portion, so that the driving side shaft portion is driven side shaft.
- the harder driving side shaft portion has excellent wear resistance
- the driven side shaft portion that is not too hard has good workability. I came up with it.
- the first centrifugal cast composite roll of the present invention is formed by welding and integrating an outer layer formed by a centrifugal casting method and an inner layer made of ductile cast iron,
- the outer layer has a chemical composition containing at least Cr: 0.8 to 3.0%, Mo: 1.5 to 6.0%, and V: 1.8 to 5.5% on a mass basis, and the graphite area ratio in the metal structure is 0.3 to 10%.
- the inner layer has a trunk core portion welded to the outer layer, and a shaft portion that integrally extends from both ends of the trunk core portion,
- the total amount of Cr, Mo and V at both ends of both shaft portions is 0.15 to 2.0 mass%, and the difference in the total amount of Cr, Mo and V between one shaft portion and the other shaft portion is 0.2. It is characterized by being at least mass%.
- the outer layer of the first centrifugally cast composite roll preferably further contains C: 2.5 to 3.7%, Si: 1.2 to 3.0%, Mn: 0.2 to 1.5%, and Ni: 3.0 to 5.0% by mass. .
- the second centrifugal cast composite roll of the present invention is formed by welding and integrating an outer layer formed by a centrifugal casting method and an inner layer made of ductile cast iron,
- the outer layer has a chemical composition containing at least Cr: 0.8 to 3.0%, Mo: 1.5 to 6.0%, and V and Nb: a total of 1.8 to 5.5% on a mass basis, and has a graphite area ratio in the metal structure.
- the inner layer has a trunk core portion welded to the outer layer, and a shaft portion that integrally extends from both ends of the trunk core portion,
- the total amount of Cr, Mo, V, and Nb at the ends of both shaft portions is 0.15 to 2.0 mass%, and the total amount of Cr, Mo, V, and Nb between one shaft portion and the other shaft portion. The difference is 0.2% by mass or more.
- the outer layer of the second centrifugally cast composite roll preferably further contains C: 2.5 to 3.7%, Si: 1.2 to 3.0%, Mn: 0.2 to 1.5%, and Ni: 3.0 to 5.0% on a mass basis. .
- the outer layers of the first and second centrifugal cast composite rolls are further W: 0.1 to 5.0%, Ti: 0.003 to 5.0%, B: 0.001 to 0.5%, Al: 0.01 to 2.0%, Zr: 0.01 on a mass basis. It may contain at least one of ⁇ 0.5% and Co: 0.1 ⁇ 10%.
- the method for producing a centrifugal cast composite roll comprises (1) centrifugal casting of the outer layer with a rotating centrifugal casting cylindrical mold, and (2) standing up the cylindrical mold having the outer layer, with upper and lower ends thereof.
- An upper mold and a lower mold communicating with the outer layer respectively to constitute a stationary casting mold, and (3) a molten metal for the inner layer in a cavity formed by the upper mold, the outer layer and the lower mold.
- a step of casting wherein the rising speed of the molten metal surface in the upper mold is 100 mm / sec or less, which is smaller than the rising speed of the molten metal surface in the lower mold and the outer layer.
- the centrifugal cast composite roll of the present invention Cr, Mo and V, or Cr, Mo, V and Nb in the outer layer are mixed more in the drive side shaft portion having the clutch portion than in the driven side shaft portion.
- the drive side shaft portion is sufficiently hard and has excellent wear resistance
- the driven side shaft portion is not too hard and is easy to machine. Therefore, the centrifugally cast composite roll of the present invention has a significantly improved service life and good workability.
- the centrifugal cast composite roll of the present invention having such characteristics is obtained by controlling the rising speed of the molten metal surface for the inner layer to be poured after the outer layer is formed, so that the production method is efficient, Contributes to a significant reduction in the manufacturing cost of centrifugal cast composite rolls.
- FIG. 2 is a partial perspective view showing a clutch part side of the hot-rolling composite roll of FIG. It is a disassembled sectional view which shows an example of the casting_mold
- K1C fracture toughness value
- the first and second centrifugal cast composite rolls of the present invention both have the structure shown in FIG.
- the only difference between the first centrifugal cast composite roll and the second centrifugal cast composite roll is the composition of the outer layer. That is, V in the outer layer of the first centrifugal cast composite roll is (V + Nb) in the outer layer of the second centrifugal cast composite roll. Therefore, first, the outer layer composition of the first centrifugal cast composite roll will be described, and only the above differences will be described for the second centrifugal cast composite roll.
- Centrifugal cast composite roll (A) Outer layer (1) Composition of the outer layer of the first centrifugal cast composite roll
- the outer layer of the first centrifugal cast composite roll is at least Cr: 0.8 to 3.0%, Mo: 1.5 to 6.0%, and V: 1.8 to It consists of a Fe-based alloy having a chemical composition containing 5.5% and a graphite area ratio of 0.3 to 10% in the metal structure.
- This outer layer preferably further contains C: 2.5 to 3.7%, Si: 1.2 to 3.0%, Mn: 0.2 to 1.5%, and Ni: 3.0 to 5.0% by mass.
- (a) Cr: 0.8-3.0 mass% Cr is an effective element for maintaining the hardness and maintaining the wear resistance by making the base a bainite or martensite. If Cr is less than 0.8% by mass, the amount that dissolves in the inner layer is insufficient, and the wear resistance of the clutch portion is insufficient. On the other hand, if the Cr content exceeds 3.0% by mass, the crystallization of graphite is inhibited and the toughness of the matrix structure is lowered.
- the upper limit of the Cr content is preferably 2.5% by mass, more preferably 2.1% by mass.
- Mo 1.5-6.0% by mass Mo combines with C to form hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer and improving the hardenability of the matrix. Mo also produces tough and hard MC carbides together with V and Nb to improve wear resistance. In addition, Mo increases the specific gravity of the residual eutectic melt during the solidification process of the alloy melt, prevents centrifugation of the primary ⁇ phase, and suppresses the appearance of spotted segregation of bainite and / or martensite dendrites. If Mo is less than 1.5% by mass, the amount that dissolves in the inner layer is insufficient, and the wear resistance of the clutch portion is insufficient.
- Mo exceeds 6.0% by mass, the toughness of the outer layer is deteriorated and the tendency to whitening becomes strong, and the crystallization of graphite is inhibited.
- the lower limit of the Mo content is preferably 2.0% by mass, more preferably 2.5% by mass, and most preferably 3.0% by mass.
- the upper limit of the Mo content is preferably 5.5% by mass, more preferably 5.0% by mass, and most preferably 4.5% by mass.
- V is an element that combines with C to form hard MC carbide.
- This MC carbide has a Vickers hardness Hv of 2500 to 3000, and is the hardest of the carbides.
- Hv Vickers hardness
- V is less than 1.8% by mass, not only the amount of MC carbide precipitated is insufficient, but also the amount of melt into the inner layer is insufficient, so that the wear resistance of the clutch portion is insufficient.
- V exceeds 5.5% by mass MC carbide with a low specific gravity is concentrated inside the outer layer due to centrifugal force during centrifugal casting, and not only the MC carbide radial segregation becomes significant, but also MC carbide becomes coarse.
- the alloy structure becomes rough, and the surface becomes rough during rolling.
- the lower limit of the V content is preferably 2.0% by mass, more preferably 2.2% by mass, and most preferably 2.4% by mass.
- the upper limit of the V content is preferably 5.0% by mass, more preferably 4.5% by mass, and most preferably 4.0% by mass.
- (d) Total amount of Cr, Mo and V The total amount of Cr, Mo and V at the end of the shaft is 0.15 to 2.0% by mass on both sides of the shaft, and Cr, Mo and V on one shaft The difference between the total amount of Cr and the total amount of Cr, Mo and V in the other shaft portion is 0.2% by mass or more.
- the outer layer Cr, Mo and V content is Cr: 0.8-3.0%, Mo: 1.5-6.0%, V: 1.8-5.5%, adjusting the pouring conditions of the inner layer ductile cast iron, the outer layer Cr,
- carbide-forming elements such as Mo and V into the inner layer
- the wear resistance of the clutch is insufficient. If it exceeds 2.0% by mass, the amount of carbides produced is too much, so that it becomes brittle and the shaft portion may be broken.
- the total amount of Cr, Mo and V at the end of the shaft is more preferably 0.2 to 1.8% by mass for both shafts.
- the contents of Cr, Mo and V at the end of the shaft part are calculated by chemical analysis by collecting a sample from the end surface of the shaft part or a range within 100 mm from the end surface of the shaft part in the roll axis direction. Also, the shaft part contains at least one of Cu: 0.1-1.0%, P: 0.03-0.1%, Ni: 0.5-2.5%, Mn: 0.5-1.5% to further improve wear resistance, etc. You may let them.
- the difference between the total amount of Cr, Mo and V at the end of one shaft portion and the total amount of Cr, Mo and V at the end of the other shaft portion is 0.2 mass% or more.
- the total amount of Cr, Mo and V at the end of the shaft portion is relatively large, i.e., the amount of the carbide forming elements Cr, Mo and V in the outer layer mixed into the inner layer is larger than that of the other shaft portion, By using the driving side shaft portion in which the clutch portion is formed, the wear resistance of the clutch portion can be enhanced.
- the total amount of Cr, Mo, and V at the end of the shaft is relatively small, that is, the amount of carbide-forming elements Cr, Mo, and V in the outer layer mixed into the inner layer is smaller than that of the other shaft.
- the driven side shaft portion is not provided with the clutch portion, the driven side shaft portion is not harder than the drive side shaft portion and can be processed more easily than the drive side shaft portion.
- the difference between the total amount of Cr, Mo and V at the end of one shaft portion and the total amount of Cr, Mo and V at the end of the other shaft portion is more preferably 0.25% by mass or more.
- the outer layer of the second centrifugally cast composite roll has at least Cr: 0.8 to 3.0%, Mo: 1.5 to 6.0%, and V and Nb: It is composed of a Fe-based alloy having a chemical composition containing a total of 1.8 to 5.5% (except when Nb is 0%) and having a graphite area ratio of 0.3 to 10% in the metal structure.
- This outer layer preferably further contains C: 2.5 to 3.7%, Si: 1.2 to 3.0%, Mn: 0.2 to 1.5%, and Ni: 3.0 to 5.0% by mass.
- the chemical composition of the outer layer of the second centrifugal cast composite roll differs from the chemical composition of the outer layer of the first centrifugal cast composite roll only in that it is the total amount of V and Nb. Therefore, only the total amount of V and Nb will be described in detail below.
- V and Nb 1.8 to 5.5 mass% in total
- Nb combines with C to form hard MC carbide.
- the NbC-based MC carbide has a smaller difference from the molten metal density than the VC-based MC carbide, thereby reducing the segregation of the MC carbide.
- Nb increases the specific gravity of the residual eutectic melt during the solidification process of the molten alloy, prevents centrifugation of the primary ⁇ phase, and dendritic bainite and / or martensite transformed from austenite segregates in the form of spots. Suppress.
- the lower limit of the total amount of V and Nb is preferably 2.0% by mass, more preferably 2.2% by mass, and most preferably 2.4% by mass.
- the upper limit of the V content is preferably 5.0% by mass, more preferably 4.5% by mass, and most preferably 4.0% by mass.
- the lower limit of the Nb content is preferably 0.2% by mass, more preferably 0.3% by mass, and most preferably 0.5% by mass.
- the upper limit of the Nb content is preferably 1.5% by mass, more preferably 1.3% by mass, and most preferably 1.2% by mass.
- Composition common to the outer layers of the first and second centrifugal cast composite rolls (a) C: 2.5-3.7% by mass C combines with V, Nb, Cr, Mo and W to form hard carbides, contributing to the improvement of the wear resistance of the outer layer.
- the graphitization promoting elements of Si, Ni and Ti crystallize as graphite in the structure, thereby imparting seizure resistance to the outer layer and improving the toughness of the outer layer.
- C is less than 2.5% by mass, not only the crystallization of graphite is insufficient, but also the amount of crystallization of the hard carbide is too small to provide sufficient wear resistance to the outer layer.
- the lower limit of the C content is preferably 2.55% by mass, more preferably 2.65% by mass.
- the upper limit of the C content is preferably 3.6% by mass, more preferably 3.5% by mass, and most preferably 3.4% by mass.
- Si 1.2-3.0% by mass
- Si has a function of reducing oxide defects by deoxidation of the molten metal and promoting graphite crystallization, thereby contributing to suppression of seizure resistance and crack propagation.
- Si is less than 1.2% by mass, the deoxidizing action of the molten metal is insufficient, and graphite is also insufficient.
- Si exceeds 3.0% by mass, the alloy matrix becomes brittle and the toughness of the outer layer decreases. The embrittlement of the alloy base occurs particularly when the Si concentration in the base becomes 3.2 mass% or more.
- the lower limit of the Si content is preferably 1.4% by mass, and more preferably 1.5% by mass.
- the upper limit of the Si content is preferably 2.8% by mass, more preferably 2.7% by mass, and most preferably 2.5% by mass.
- the Si content preferably satisfies the condition of other elements and the formula (1) 1.
- Mn 0.2 to 1.5 mass%
- Mn has an action of fixing S as an impurity as MnS. If Mn is less than 0.2% by mass, these effects are insufficient. On the other hand, even if Mn exceeds 1.5% by mass, further effects cannot be obtained.
- the lower limit of the Mn content is preferably 0.3% by mass, more preferably 0.4% by mass, and most preferably 0.5% by mass.
- the upper limit of the Mn content is preferably 1.4% by mass, more preferably 1.3% by mass, and most preferably 1.2% by mass.
- Ni 3.0-5.0 mass% Ni has the effect of crystallizing graphite and improves the hardenability of the matrix structure. For this reason, it is possible to cause bainite or martensite transformation without causing pearlite transformation by adjusting the cooling rate in the mold after casting. If Ni is less than 3.0% by mass, the effect cannot be obtained sufficiently. On the other hand, when Ni exceeds 5.0% by mass, austenite is excessively stabilized, and transformation to bainite or martensite is difficult.
- the lower limit of the Ni content is preferably 3.2% by mass, more preferably 3.4% by mass, and most preferably 3.6% by mass.
- the upper limit of the Ni content is preferably 4.9% by mass, more preferably 4.8% by mass, and most preferably 4.7% by mass.
- the outer layer of the centrifugally cast composite rolling roll of the present invention may contain at least one of the following elements in addition to the above essential composition requirements.
- W 0.1-5.0% by mass W combines with C to form hard M 6 C and M 2 C carbides and contributes to improved wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, if W exceeds 5.0% by mass, the specific gravity of the molten metal is increased, so that carbide segregation is likely to occur. Therefore, when adding W, the preferable content is 5.0 mass% or less. On the other hand, when W is less than 0.1% by mass, the effect of addition is insufficient.
- the upper limit of the W content is preferably 4.5% by mass, more preferably 4.0% by mass, and most preferably 3.0% by mass. In order to obtain a sufficient addition effect, the lower limit of the W content is more preferably 0.1% by mass.
- Mo and W Total 1.5-6.0% by mass
- W combines with C to produce hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer and improving the hardenability of the matrix.
- Mo and W together with V and Nb produce tough and hard MC carbides and improve wear resistance.
- Mo and W increase the specific gravity of the residual eutectic melt during the solidification process of the molten alloy, prevent centrifugation of the primary ⁇ phase, and suppress the appearance of spotted segregation of bainite and / or martensite dendrites.
- the lower limit of the total amount of Mo and W is preferably 2.0% by mass, more preferably 2.5% by mass, and most preferably 3.0% by mass.
- the upper limit of the total amount of Mo and W is preferably 5.5% by mass, more preferably 5.0% by mass, and most preferably 4.5% by mass.
- Ti 0.003 to 5.0 mass% Ti combines with N and O, which are graphitization inhibiting elements, to form oxides or nitrides. Ti oxides or nitrides are suspended in the melt and become nuclei, which refine and homogenize MC carbides. However, if Ti exceeds 5.0% by mass, the viscosity of the molten metal increases and casting defects are likely to occur. Therefore, when adding Ti, the preferable content is 5.0 mass% or less. On the other hand, when Ti is less than 0.003 mass%, the effect of addition is insufficient.
- the lower limit of the Ti content is preferably 0.005% by mass.
- the upper limit of the Ti content is more preferably 3.0% by mass, and most preferably 1.0% by mass.
- Al 0.01-2.0 mass% Al combines with N and O, which are graphitization-inhibiting elements, to form oxides or nitrides, which are suspended in the molten metal to form nuclei, and MC carbides are crystallized finely and uniformly.
- N and O which are graphitization-inhibiting elements
- the preferable content of Al is 0.2% by mass or less.
- the Al content is less than 0.01% by mass, the effect of addition is insufficient.
- the upper limit of the Al content is more preferably 1.5% by mass, and most preferably 1.0% by mass.
- Zr 0.01 to 0.5 mass% Zr combines with C to form MC carbide, improving the wear resistance of the outer layer. Moreover, since the Zr oxide produced
- B 0.001 to 0.5 mass% B has the effect of refining the carbide.
- a small amount of B contributes to crystallization of graphite.
- the content of B is preferably 0.5% by mass or less.
- the upper limit of the B content is preferably 0.3% by mass, more preferably 0.1% by mass, and most preferably 0.05% by mass.
- Co 0.1-10.0 mass%
- Co is an element effective for strengthening the base organization. Co also facilitates crystallization of graphite. However, when Co exceeds 10% by mass, the toughness of the outer layer decreases. Therefore, the content of Co is preferably 10% by mass or less. On the other hand, if Co is less than 0.1% by mass, the effect of addition is insufficient.
- the upper limit of the Co content is preferably 8.0% by mass, more preferably 6.0% by mass, and most preferably 4.0% by mass.
- Nb / V 0.1 to 0.7
- Mo / V 0.7 to 2.5
- V + 1.2 Nb 2.5 to 5.5 Since V, Nb, and Mo all have the effect of increasing hard MC carbide essential for wear resistance, the total amount of these elements needs to be set to a predetermined level or more.
- V is an element that decreases the specific gravity of the molten metal
- Nb and Mo are elements that increase the specific gravity of the molten metal.
- the mass ratio of Nb / V is 0.1 to 0.7
- the mass ratio of Mo / V is 0.7 to 2.5
- V + 1.2% Nb is 2.5 to 5.5 mass%. If Nb / V, Mo / V, and V + 1.2 Nb are within these ranges, carbides based on V will contain appropriate amounts of Nb and Mo, the carbides will become heavy, and the dispersion of the carbides will be made uniform. Therefore, the occurrence of spot-like segregation of bainite and / or martensite dendrite is prevented. In particular, when V + 1.2% Nb exceeds 5.5%, MC carbide with a small specific gravity crystallized excessively concentrates on the inner side of the outer layer during the centrifugal casting process and inhibits welding with the inner layer.
- the lower limit of the mass ratio of Nb / V is preferably 0.12, more preferably 0.14, and most preferably 0.18.
- the upper limit of the mass ratio of Nb / V is preferably 0.6, more preferably 0.55, and most preferably 0.5.
- the lower limit of the Mo / V mass ratio is preferably 0.75, more preferably 0.8, and most preferably 0.85.
- the upper limit of the mass ratio of Mo / V is preferably 2.2, more preferably 1.95, and most preferably 1.75.
- the lower limit of V + 1.2 Nb is preferably 2.6% by mass, more preferably 2.7% by mass, and most preferably 2.8% by mass.
- the upper limit of V + 1.2 Nb is preferably 5.35% by mass, more preferably 5.2% by mass, and most preferably 5.0% by mass.
- the mass ratio of Mo / Cr is preferably in the range of 1.7 to 5.0.
- the mass ratio of Mo / Cr is less than 1.7, the Mo content is not sufficient with respect to the Cr content, and the area ratio of carbide particles mainly composed of Mo decreases.
- the mass ratio of Mo / Cr exceeds 5.0, carbides mainly composed of Mo increase, and the carbides become coarse, so the fracture toughness is inferior. Therefore, the mass ratio of Mo / Cr is preferably 1.7 to 5.0.
- the lower limit of the mass ratio of Mo / Cr is more preferably 1.8.
- the upper limit of the Mo / Cr mass ratio is more preferably 4.7, and most preferably 4.5.
- Mo and W have an action of forming a hard carbide of M 2 C or M 6 C. Since the action of Mo is twice that of W, the total amount of Mo and W can be expressed as (Mo + 0.5 W). (Mo + 0.5 W) forms M 2 C and M 6 C carbides and improves wear resistance, so it must be 1.5% by mass or more, but if it is too much, network-like eutectic carbides increase. Therefore, it is necessary to be 5.5% by mass or less.
- the outer layer structure is other than matrix, graphite, cementite, MC carbide, and MC carbide. Of carbides (M 2 C, M 6 C, etc.).
- the area ratio of graphite in the outer metal structure is 0.3 to 10%.
- the area ratio of graphite is preferably 0.5 to 8%, more preferably 1 to 7%.
- the inner layer 2 includes a body core portion 21 welded to the outer layer 1, and a driving side shaft portion extending integrally from both ends of the body core portion 21. 22 and a driven side shaft portion 23.
- the Nb content is zero, so that “Cr, Mo, and V” It shall mean diffusion. Therefore, in the following description, the first and second centrifugal cast composite rolls are not distinguished, and are simply referred to as the centrifugal cast composite rolls of the present invention.
- the inner layer of the outer layer 1 is casted under a predetermined pouring condition during or after solidification of the outer layer formed by the centrifugal casting method under a predetermined pouring condition.
- carbide forming elements Cr, Mo, V and Nb
- the base structure of the drive side shaft portion 22 and the driven side shaft portion 23 is solid solution strengthened, Increases hardness by forming carbides.
- the total content of Cr, Mo and V at the ends of both the drive side shaft portion 22 and the driven side shaft portion 23 is 0.15 to 2.0 mass%, and one drive side shaft portion 22 and the other driven side are driven.
- the difference in the total content of Cr, Mo and V with respect to the side shaft portion 23 needs to be 0.2% by mass or more.
- the “end portion of the drive side shaft portion 22” refers to a range within 100 mm from the end face 24a.
- the end portion of the driven side shaft portion 23 refers to a range within 100 mm from the end face 25a.
- the contents of Cr, Mo, V, and Nb are obtained by chemical analysis of samples collected from the drive side shaft portion 22 and the driven side shaft portion 23 within the above range.
- both shaft portions 22 and 23 If the total amount of Cr, Mo, V, and Nb at both ends of both shaft portions 22 and 23 is less than 0.15 mass%, the wear resistance of the clutch portion 24 is insufficient. On the other hand, if the total amount of Cr, Mo, V, and Nb exceeds 2.0 mass%, the generated carbide becomes too much, so both shaft portions 22 and 23 become brittle.
- the total amount of Cr, Mo, V and Nb at the ends of both shaft portions 22 and 23 is more preferably 0.2 to 1.8% by mass.
- the difference between the total amount of Cr, Mo, V, and Nb at the end of one shaft portion and the total amount of Cr, Mo, V, and Nb at the end of the other shaft portion is 0.2% by mass or more.
- the shaft portion of the one where the total amount of Cr, Mo, V and Nb is large (the amount of carbide forming elements mixed from the outer layer 1 to the inner layer 2 is large) as the driving side shaft portion 22 having the clutch portion 24, The wear resistance of the clutch portion 24 can be increased.
- the driven side shaft portion is made by setting the shaft portion with the smaller total amount of Cr, Mo, V and Nb (the amount of carbide-forming elements mixed from the outer layer 1 to the inner layer 2 is small) as the driven side shaft portion 23.
- 23 is harder than the drive side shaft portion 22 and is easy to process.
- the difference in the total amount is preferably 0.25% by mass or more.
- ductile cast iron for inner layer is C: 2.3-3.6%, Si: 1.5-3.5%, Mn on the basis of mass in addition to Cr, Mo, V and Nb. : 0.2 to 2.0%, and Ni: 0.3 to 2.0%.
- Al used as a deoxidizer is 0.1% or less
- Cu, Sn, As or Sb for improving hardness is 0.5% or less
- B, Ca, Na mixed from flux or refractory material or Zr may be contained in an amount of 0.2% or less.
- impurities S, P, N and O may be contained in a total of about 0.1% or less.
- the preferred chemical composition of the ductile cast iron for the inner layer is C: 2.3 to 3.6%, Si: 1.5 to 3.5%, Mn: 0.2 to 2.0%, Ni: 0.3 to 2.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, W: 0 to 0.7%, V: 0.05 to 1.0%, Nb: 0 to 0.7%, and Mg: 0.01 to 0.08%, with the balance being substantially Fe and inevitable impurities.
- (C) Intermediate layer The present invention utilizes the fact that Cr, Mo, V, and Nb of the outer layer 1 are mixed into the driving side shaft portion 22 and the driven side shaft portion 23 during casting of the inner layer 2, but it is necessary. Accordingly, an intermediate layer may be provided between the outer layer 1 and the inner layer 2.
- the preferred chemical composition of the intermediate layer is C: 2.3-3.6%, Si: 0.7-3.5%, Mn: 0.2-2.0%, Ni: 0.5-5.0%, Cr: 0.8-3.0%, Mo: 0.1- 3.0%, W: 0 to 3.0%, V: 0.1 to 3.0%, and Nb: 0 to 3.0%, with the balance being substantially Fe and inevitable impurities.
- the inner surface of the outer layer 1 is remelted and mixed into the intermediate layer, so Cr, Mo, V, and Nb are mixed into the intermediate layer. Since the inner surface of the intermediate layer is redissolved when the inner layer 2 is cast, Cr, Mo, V and Nb mixed in the intermediate layer from the outer layer 1 are mixed in the inner layer. Therefore, even when the intermediate layer is formed, the effect of the present invention can be obtained in the same manner.
- the average thickness of the intermediate layer is preferably 1 to 70 mm, more preferably 3 to 50 mm. .
- FIG. 3 (a) and FIG. 3 (b) show stationary casting used for casting the inner layer 2 after centrifugal casting of the outer layer 1 with a cylindrical mold 30 for centrifugal casting.
- the stationary casting mold 100 includes a cylindrical mold 30 having an outer layer 1 on the inner surface, and an upper mold 40 and a lower mold 50 provided at upper and lower ends thereof.
- the inner surface of the outer layer 1 in the cylindrical mold 30 has a cavity 60a for forming the body core portion 21 of the inner layer 2
- the upper die 40 has a cavity 60b for forming the driven side shaft portion 23 of the inner layer 2.
- the lower mold 50 has a cavity 60c for forming the drive side shaft portion 22 of the inner layer 2.
- the centrifugal casting method may be any of horizontal type, inclined type and vertical type.
- the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper mold 40 and the cavity 60c of the lower mold 50, and the entire inner layer 1 is integrally formed.
- a cavity 60 is configured.
- 31 and 33 in the cylindrical mold 30 are sand molds.
- 42 in the upper mold 40 and 52 in the lower mold 50 are each a sand mold.
- the lower mold 50 is provided with a bottom plate 53 for holding the inner layer molten metal.
- the cylindrical mold 30 obtained by centrifugally casting the outer layer 1 is placed upright on the lower die 50 for forming the drive side shaft portion 22 to form a cylindrical shape.
- An upper mold 40 for forming the driven side shaft portion 23 is installed on the mold 30 to constitute a stationary casting mold 100 for forming the inner layer 2.
- the stationary casting mold 100 as the outer layer formed by centrifugal casting is solidified during or after solidification, as the ductile cast iron melt for the inner layer 2 is injected into the cavity 60 from the upper opening 43 of the upper mold 40, the cavity 60 The inner surface of the molten metal gradually rises from the lower mold 50 to the upper mold 40, and the inner layer 2 including the driving side shaft portion 22, the trunk core portion 21, and the driven side shaft portion 23 is integrally cast. At that time, the inner surface portion of the outer layer 1 is remelted by the heat quantity of the molten metal, and Cr, Mo, V, and Nb in the outer layer 1 are mixed into the inner layer 2.
- the rising speed of the molten metal surface in the upper mold 30 for forming the driven side shaft portion 23 is set to 100 mm / sec or less, and the lower mold 40 for forming the driving side shaft portion 22 and the trunk core portion 21 are formed It is made smaller than the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) for use.
- the lower mold 40 for forming the driving side shaft portion 22 and the trunk core portion 21 are formed It is made smaller than the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) for use.
- Cr, Mo, V, and Nb that have come out of the outer layer 1 re-dissolved by pouring up to the core portion 21 remain at a predetermined degree on the drive side shaft portion 22 and the trunk portion 21, and are formed by the upper mold 40. Intrusion into the driven side shaft portion 23 is suppressed.
- the rising speed of the molten metal surface in the upper mold 40 exceeds 100 mm / sec, the molten metal in the lower mold 40 and the cylindrical mold 30 and the molten metal in the upper mold 40 are mixed by the stirring of the molten metal by pouring, The amount of Cr, Mo, V, and Nb in the driving side shaft portion 22 and the trunk core portion 21 mixed into the driven side shaft portion 23 becomes excessive.
- the rising speed of the molten metal surface in the upper mold 40 is preferably 10 to 100 mm / sec, more preferably 20 to 90 mm / sec.
- the rising speed of the molten metal surface in the upper mold 40 is preferably 50 to 150 mm / second smaller than the rising speed of the molten metal surface in the lower mold 50 and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1). Further, the rising speed of the molten metal surface in the lower mold 50 and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) are not particularly limited as long as there is no problem with pouring, but practically 100 to 200 mm. / Sec is preferred. The rising speed of the molten metal surface in the lower mold 50 and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) may be the same, or the former may be larger.
- the rising speed of the molten metal surface in the upper mold 40, the rising speed of the molten metal surface in the lower mold 50, and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) are average rising speeds respectively. .
- the difference being 0.2 mass% or more. Therefore, the wear resistance of the clutch portion 24 formed at the end of the drive side shaft portion 22 can be improved.
- the driven side shaft portion 23 has a smaller total amount of Cr, Mo, V and Nb, and therefore can be processed more easily than the drive side shaft portion 22.
- the drive side shaft portion is harder than the driven side shaft portion.
- the driven side shaft portion may have a higher hardness than the drive side shaft portion depending on the use and required performance of the roll.
- FIG. 4 shows another example of a mold used in the method of the present invention.
- the mold 110 includes a portion 71 corresponding to the cylindrical mold 30 for forming the outer layer 1 and the trunk core portion 21, a portion 72 corresponding to the upper die 40 for forming the driven side shaft portion 23, and a drive side shaft portion 22 formed.
- This is a mold in which a portion 73 corresponding to the lower mold 50 for use is integrally formed.
- Reference numerals 71a, 72a, and 73a denote sand molds.
- the mold 110 serves as both a centrifugal casting mold and a stationary casting mold. After the outer layer 1 is centrifugally cast using the mold 110, the entire mold 110 having the outer layer 1 formed on the inner surface is erected, and the ductile cast iron melt for the inner layer 2 is poured from the upper opening 74.
- the cylindrical mold 30 is erected in the case of the mold shown in FIG. 3, and the mold 110 is erected in the case of the mold shown in FIG. Then, the molten ductile iron for the inner layer 2 is poured from the upper opening.
- Examples 1 to 3 and Comparative Examples 1 and 2 A cylindrical mold 30 (with an inner diameter of 800 mm and a length of 2500 mm) having the structure shown in Fig. 3 (a) is installed in a horizontal centrifugal casting machine, and the outer layer 1 is centrifugally cast using a molten metal having the composition shown in Table 1. did. After the outer layer 1 is solidified, the cylindrical mold 30 with the outer layer 1 (thickness: 90 mm) formed on the inner surface is erected to form a hollow lower mold 50 (inner diameter 600 mm and longer) for forming the drive side shaft portion 22.
- the cylindrical mold 30 is erected on the cylindrical mold 30 and the hollow upper mold 40 (inner diameter 600 mm and length 2000 mm) for forming the driven shaft portion 23 is erected on the cylindrical mold 30.
- a stationary casting mold 100 shown in FIG. 3 (b) was constructed.
- a molten ductile cast iron having the composition shown in Table 1 was poured into the cavity 60 of the stationary casting mold 100 from the upper opening 43.
- the molten metal surface of the ductile cast iron rises in the order of the lower mold 50 for forming the driving shaft 22, the cylindrical mold 30 for forming the trunk core 21 (outer layer 1), and the upper mold 40 for forming the driven shaft 23. did.
- an integral inner layer 2 including the driving side shaft portion 22, the trunk core portion 21, and the driven side shaft portion 23 was formed inside the outer layer 1.
- the stationary casting mold 100 was disassembled and the composite roll was taken out and tempered at 500 ° C. Thereafter, the outer layer 1, the driving side shaft portion 22, and the driven side shaft portion 23 were processed into predetermined shapes by machining, and the clutch portion 24 and the convex portion 25 were formed. As a result of performing ultrasonic inspection on each composite roll thus obtained, it was confirmed that the outer layer 1 and the inner layer 2 were welded in a sound manner.
- Example 4 After forming an intermediate layer (thickness: 20 mm) having the composition shown in Table 1 on the inner surface of the outer layer 1, a composite roll was formed in the same manner as in Example 1 except that the cylindrical mold 30 was erected. As a result of ultrasonic inspection, it was confirmed that the outer layer 1, the intermediate layer, and the inner layer 2 were welded in a sound manner.
- the casting temperature of the outer layer, the inner layer and the intermediate layer, the lower die 50 for forming the driving side shaft portion 22, the cylindrical mold 30 for forming the trunk portion 21, and the driven side Table 2 shows the average rising speed of the inner layer molten metal surface in the upper mold 40 for forming the shaft portion 23.
- the average rising speed of the inner layer molten metal surface was calculated by measuring the weight of the inner layer molten metal and measuring the casting time. Further, the Cr, Mo, V, and Nb contents were analyzed for the samples cut out from the end surface 24a of the driving side shaft portion 22 and the end surface 25a of the driven side shaft portion 23. The results are shown in Table 3. Furthermore, from the micrograph of the sample cut out from each outer layer 1, the area ratio of graphite in the metal structure was measured by image analysis. The results are shown in Table 4.
- the rising speed of the molten iron surface of the ductile cast iron in the upper mold 40 for forming the driven side shaft portion 23 is 100 mm / sec or less, and the lower mold 50 for forming the driving side shaft portion 22
- the rise speed of the melt surface of the ductile cast iron and the rise speed of the melt surface of the ductile cast iron in the cylindrical mold 30 (outer layer 1) for forming the trunk portion 21 were smaller. Therefore, the total amount of Cr, Mo, V and Nb at the end of the drive side shaft portion 22 and the total amount of Cr, Mo, V and Nb at the end of the driven side shaft portion 23 are both 0.15 to 2.0 mass%. It was within the range, and the former was 0.2 mass% or more more than the latter.
- the rising speed of the molten iron surface of the ductile iron in the upper mold 40 is the rising speed of the molten iron surface of the ductile iron in the lower mold 50 and the cylindrical mold 30 (outer layer 1).
- the total amount of Cr, Mo, V and Nb at the end of the drive side shaft portion 22 and the total amount of Cr, Mo, V and Nb at the end of the driven side shaft portion 23 are both 0.15 to 2.0 mass%.
- the difference between the two was less than 0.2% by mass.
- Example 2 is the end of the drive side shaft 22 compared to Comparative Example 1.
- the difference between the total amount of Cr, Mo, V, and Nb in and the total amount of Cr, Mo, V, and Nb at the end of the driven shaft 23 was large. Therefore, both of the hardness of the clutch portion 24 of the drive side shaft portion 22 was sufficient, but the driven side shaft portion 23 of Example 2 is good because mixing of Cr, Mo, V and Nb is suppressed.
- the driven side shaft portion 23 of Comparative Example 1 was hard due to the large amount of Cr, Mo, V, and Nb mixed therein, and the machining time was significantly long.
- Example 3 when comparing Example 3 and Comparative Example 2 in which the total amount of Cr, Mo, V, and Nb at the end of the drive side shaft portion 22 is close, the hardness of the clutch portion 24 of the drive side shaft portion 22 is Although sufficient, the driven-side shaft portion 23 of Example 3 had good workability, whereas the driven-side shaft portion 23 of Comparative Example 2 was hard and the processing time was significantly longer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
前記外層は、質量基準で少なくともCr:0.8~3.0%、Mo:1.5~6.0%、及びV:1.8~5.5%を含有する化学組成を有し、かつ金属組織中の黒鉛面積率が0.3~10%のFe基合金からなり、
前記内層は、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する軸部とを有し、
両軸部とも端部におけるCr、Mo及びVの合計量が0.15~2.0質量%であり、かつ一方の軸部と他方の軸部との間でCr、Mo及びVの合計量の差が0.2質量%以上であることを特徴とする。
前記外層は、質量基準で少なくともCr:0.8~3.0%、Mo:1.5~6.0%、及びV及びNb:合計1.8~5.5%を含有する化学組成を有し、かつ金属組織中の黒鉛面積率が0.3~10%のFe基合金からなり、
前記内層は、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する軸部とを有し、
両軸部とも端部におけるCr、Mo、V及びNbの合計量が0.15~2.0質量%であり、かつ一方の軸部と他方の軸部との間でCr、Mo、V及びNbの合計量の差が0.2質量%以上であることを特徴とする。
(A) 外層
(1) 第一の遠心鋳造製複合ロールの外層の組成
第一の遠心鋳造製複合ロールの外層は、質量基準で少なくともCr:0.8~3.0%、Mo:1.5~6.0%、及びV:1.8~5.5%を含有する化学組成を有し、かつ金属組織中の黒鉛面積率が0.3~10%のFe基合金からなる。この外層はさらに、質量基準でC:2.5~3.7%、Si:1.2~3.0%、Mn:0.2~1.5%、及びNi:3.0~5.0%を含有するのが好ましい。
Crは基地をベイナイト又はマルテンサイトにして硬さを保持し、耐摩耗性を維持するのに有効な元素である。Crが0.8質量%未満では内層に溶け込む量が不足し、クラッチ部の耐損耗性が不十分である。一方、Crが3.0質量%を超えると、黒鉛の晶出が阻害され、基地組織の靭性が低下する。Cr含有量の上限は好ましくは2.5質量%であり、より好ましくは2.1質量%である。
MoはCと結合して硬質炭化物(M6C、M2C)を形成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。また、MoはV及びNbとともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。その上、Moは合金溶湯の凝固過程で残留共晶溶湯の比重を増加させ、初晶γ相の遠心分離を防ぎ、ベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析の出現を抑える。Moが1.5質量%未満では内層に溶け込む量が不足し、クラッチ部の耐損耗性が不十分である。一方、Moが6.0質量%を超えると、外層の靭性が劣化し、また白銑化傾向が強くなり、黒鉛の晶出が阻害される。Mo含有量の下限は好ましくは2.0質量%であり、より好ましくは2.5質量%であり、最も好ましくは3.0質量%である。Mo含有量の上限は好ましくは5.5質量%であり、より好ましくは5.0質量%であり、最も好ましくは4.5質量%である。
VはCと結合して硬質のMC炭化物を生成する元素である。このMC炭化物は2500~3000のビッカース硬さHvを有し、炭化物の中で最も硬い。Vが1.8質量%未満では、MC炭化物の析出量が不十分であるだけでなく、内層に溶け込む量が不足することにより、クラッチ部の耐損耗性が不十分である。一方、Vが5.5質量%を超えると、比重の軽いMC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、MC炭化物が粗大化して合金組織が粗くなり、圧延時に肌荒れしやすくなる。V含有量の下限は好ましくは2.0質量%であり、より好ましくは2.2質量%であり、最も好ましくは2.4質量%である。V含有量の上限は好ましくは5.0質量%であり、より好ましくは4.5質量%であり、最も好ましくは4.0質量%である。
軸部の端部におけるCr、Mo及びVの合計量が、両側の軸部ともに0.15~2.0質量%であり、一方の軸部のCr、Mo及びVの合計量と他方の軸部のCr、Mo及びVの合計量の差が0.2質量%以上である。外層のCr、Mo及びV含有量をCr:0.8~3.0%、Mo:1.5~6.0%、V:1.8~5.5%とし、内層材のダクタイル鋳鉄の注湯条件を調整して、外層のCr、Mo及びVといった炭化物形成元素を内層に特定量混入させることにより、内層材からなる軸部の基地組織を固溶強化するとともに炭化物が形成され、軸部が硬化する。軸部の端部におけるCr、Mo及びVの合計量が、両側の軸部がともに0.15質量%未満ではクラッチ部の耐損耗性が不十分となる。2.0質量%を超えると生成される炭化物が多くなり過ぎるため、脆くなり軸部が折損するおそれがある。軸部の端部におけるCr、Mo及びVの合計量が、両側の軸部ともに0.2~1.8質量%がより好ましい。軸部の端部におけるCr、Mo及びVの含有量は、軸部の端面又は軸部の端面からロール軸方向に100 mm以内の範囲から試料を採取して化学分析により算出する。また、軸部はさらに耐摩耗性等を改善するため、Cu:0.1~1.0%、P:0.03~0.1%、Ni:0.5~2.5%、Mn:0.5~1.5%のいずれか1種以上を含有させてもよい。
第二の遠心鋳造製複合ロールの外層は、質量基準で少なくともCr:0.8~3.0%、Mo:1.5~6.0%、及びV及びNb:合計1.8~5.5%(Nbが0%の場合を除く。)を含有する化学組成を有し、かつ金属組織中の黒鉛面積率が0.3~10%のFe基合金からなる。この外層はさらに、質量基準でC:2.5~3.7%、Si:1.2~3.0%、Mn:0.2~1.5%、及びNi:3.0~5.0%を含有するのが好ましい。第二の遠心鋳造製複合ロールの外層の化学組成は、V及びNbの合計量としている点でのみ第一の遠心鋳造製複合ロールの外層の化学組成と異なる。従って、V及びNbの合計量についてのみ、以下詳述する。
Vと同様に、NbもCと結合して硬質MC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbC系のMC炭化物は、VC系のMC炭化物より溶湯密度との差が小さいので、MC炭化物の偏析を軽減させる。さらに、Nbは合金溶湯の凝固過程で残留共晶溶湯の比重を増加させ、初晶γ相の遠心分離を防ぎ、オーステナイトから変態したデンドライト状のベイナイト及び/又はマルテンサイトが斑点状に偏析するのを抑える。V及びNbの合計量が1.8質量%未満では内層に溶け込む量が不足し、クラッチ部の耐損耗性が不十分である。一方、V及びNbの合計量が5.5質量%を超えると、白銑化傾向が強くなり、黒鉛の晶出を阻害する。
(a) C:2.5~3.7質量%
CはV、Nb、Cr、Mo及びWと結合して硬質炭化物を生成し、外層の耐摩耗性の向上に寄与する。また、Si、Ni及びTiの黒鉛化促進元素によって組織中に黒鉛として晶出し、もって外層に耐焼付性を付与するとともに、外層の靭性を向上させる。Cが2.5質量%未満では黒鉛の晶出が不十分であるだけでなく、硬質炭化物の晶出量が少なすぎて外層に十分な耐摩耗性を付与することができない。さらに、Cが2.5質量%未満では、オーステナイト晶出から共晶炭化物晶出までの温度差が大きいので、オーステナイトが遠心力により外周側に移動し、外層内部の溶湯では炭素が濃化しやすくなる。その結果、炭素濃化溶湯中でオーステナイトの粗大デンドライトの発生及び成長が起こりやすくなる。オーステナイトのデンドライトはベイナイト及び/又はマルテンサイトに変態し、粗大な斑点状偏析となる。
Siは溶湯の脱酸により酸化物の欠陥を減少するとともに、黒鉛晶出を助長する作用を有し、耐焼付き性及び亀裂の進展の抑制に寄与する。Siが1.2質量%未満では溶湯の脱酸作用が不十分であり、黒鉛も不十分である。一方、Siが3.0質量%を超えると合金基地が脆化し、外層の靱性は低下する。合金基地の脆化は、特に基地中のSi濃度が3.2質量%以上になると起こる。
Mnは溶湯の脱酸作用の他に、不純物であるSをMnSとして固定する作用を有する。Mnが0.2質量%未満ではそれらの効果は不十分である。一方、Mnが1.5質量%を超えてもさらなる効果は得られない。Mnの含有量の下限は好ましくは0.3質量%であり、より好ましくは0.4質量%であり、最も好ましくは0.5質量%である。Mnの含有量の上限は好ましくは1.4質量%であり、より好ましくは1.3質量%であり、最も好ましくは1.2質量%である。
Niは黒鉛を晶出させる作用があり、基地組織の焼入れ性を向上させる。このため、鋳造後に鋳型内での冷却速度を調整することにより、パーライト変態を起こさずにベイナイト又はマルテンサイト変態を起こさせることが可能となる。Niが3.0質量%未満ではその作用が十分に得られない。一方、Niが5.0質量%を超えるとオーステナイトが安定化しすぎ、ベイナイト又はマルテンサイトに変態しにくくなる。Niの含有量の下限は好ましくは3.2質量%であり、より好ましくは3.4質量%であり、最も好ましくは3.6質量%である。Niの含有量の上限は好ましくは4.9質量%であり、より好ましくは4.8質量%であり、最も好ましくは4.7質量%である。
本発明の遠心鋳造製複合圧延ロールの外層は、上記必須組成要件の他に、少なくとも一種の下記の元素を含有しても良い。
WはCと結合して硬質のM6C及びM2Cの炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが5.0質量%を超えると、溶湯の比重を重くするため、炭化物偏析が発生しやすくなる。従って、Wを添加する場合、その好ましい含有量は5.0質量%以下である。一方、Wが0.1質量%未満ではその添加効果は不十分である。Wの含有量の上限は好ましくは4.5質量%であり、より好ましくは4.0質量%であり、最も好ましくは3.0質量%である。また、十分な添加効果を得るためには、Wの含有量の下限はより好ましくは0.1質量%である。
Moと同様に、WもCと結合して硬質炭化物(M6C、M2C)を生成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。また、Mo及びWはV及びNbとともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。その上、Mo及びWは合金溶湯の凝固過程で残留共晶溶湯の比重を増加させ、初晶γ相の遠心分離を防ぎ、ベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析の出現を抑える。
Tiは黒鉛化阻害元素であるN及びOと結合し、酸化物又は窒化物を形成する。Tiの酸化物又は窒化物は溶湯中に懸濁されて核となり、MC炭化物を微細化及び均質化する。しかし、Tiが5.0質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。従って、Tiを添加する場合、その好ましい含有量は5.0質量%以下である。一方、Tiが0.003質量%未満ではその添加効果は不十分である。Tiの含有量の下限は好ましくは0.005質量%である。Tiの含有量の上限はより好ましくは3.0質量%であり、最も好ましくは1.0質量%である。
Alは黒鉛化阻害元素であるN及びOと結合して、酸化物又は窒化物を形成し、それが溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが2.0質量%を超えると、外層が脆くなり、機械的性質の劣化を招く。従って、Alの好ましい含有量は0.2質量%以下である。一方、Alの含有量が0.01質量%未満では、その添加効果は不十分である。Alの含有量の上限はより好ましくは1.5質量%であり、最も好ましくは1.0質量%である。
ZrはCと結合してMC炭化物を生成し、外層の耐摩耗性を向上させる。また溶湯中で生成したZr酸化物は結晶核として作用するために、凝固組織が微細になる。またMC炭化物の比重を増加させ偏析を防止する。しかし、Zrが0.5質量%を超えると、介在物を生成し好ましくない。従って、Zrの含有量は0.5質量%以下が好ましい。一方、Zrが0.01質量%未満では、その添加効果は不十分である。Zrの含有量の上限は好ましくは0.3質量%であり、より好ましくは0.2質量%であり、最も好ましくは0.1質量%である。
Bは炭化物を微細化する作用を有する。また微量のBは黒鉛の晶出に寄与する。しかし、Bが0.5質量%を超えると、白銑化効果が強くなり黒鉛が晶出しにくくなる。従って、Bの含有量は0.5質量%以下が好ましい。一方、Bが0.001質量%未満では、その添加効果は不十分である。Bの含有量の上限は好ましくは0.3質量%であり、より好ましくは0.1質量%であり、最も好ましくは0.05質量%である。
Coは基地組織の強化に有効な元素である。また、Coは黒鉛を晶出し易くする。しかし、Coが10質量%を超えると外層の靱性は低下する。従って、Coの含有量は10質量%以下が好ましい。一方、Coが0.1質量%未満では、その添加効果は不十分である。Coの含有量の上限は好ましくは8.0質量%であり、より好ましくは6.0質量%であり、最も好ましくは4.0質量%である。
(a) Nb/V:0.1~0.7、Mo/V:0.7~2.5、及びV+1.2 Nb:2.5~5.5
V、Nb及びMoはいずれも耐摩耗性に必須な硬質MC炭化物を増加させる作用を有するので、これらの元素の合計添加量を所定のレベル以上にする必要がある。また、Vは溶湯の比重を低下させる元素であるのに対し、Nb及びMoは溶湯の比重を増加させる元素である。従って、Vに対してNb及びMo含有量がバランスしていないと、溶湯の比重とオーステナイトの比重との差が大きくなり、遠心力によるオーステナイトの外層側への移動により炭素が顕著に濃化され、その結果オーステナイトのデンドライトが偏析しやすくなる。
Mo/Crの質量比は1.7~5.0の範囲内であるのが好ましい。Mo/Crの質量比が1.7未満では、Mo含有量がCr含有量に対して十分でなく、Moを主体とした炭化物粒子の面積率が低下する。一方、Mo/Crの質量比が5.0超ではMoを主体とする炭化物が多くなり、その炭化物が粗大化するので破壊靭性が劣る。従って、Mo/Crの質量比は1.7~5.0が好ましい。Mo/Crの質量比の下限はより好ましくは1.8である。Mo/Crの質量比の上限はより好ましくは4.7であり、最も好ましくは4.5である。
耐事故性を改善するため、ロール外層の破壊靭性値を、例えばホットストリップミルの後段用ワークロールの場合、18.5 MPa・m1/2以上とする必要がある。このために基地は十分靱性を有する必要がある。鋭意研究の結果、基地の破壊靭性値は基地中のSi固溶量が3.2%を超えると急激に低下することが分った。図5は基地中のSi固溶量と破壊靱性値との関係を示す。Si固溶量が3.2%以下では破壊靱性値はほぼ22 MPa・m1/2以上であるが、3.2%を超えると18.5 MPa・m1/2以下に低下する。基地中のSi固溶量を制限する合金組成について鋭意研究の結果、基地中のSi固溶量を3.2%以下とするには、Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]の条件を満たす必要があることが分った。
V、Nb、Cr、Mo及びWを含有する鋳鉄の凝固過程では、まずV及びNbの粒状のMC炭化物が晶出した後、Cr、Mo及びWは液相中に濃化し、M2C、M6C、M7C3、M23C6、M3C等のネットワーク状の共晶炭化物として晶出する。外層の破壊靭性値は炭化物の量及び形状に大きく依存し、特にネットワーク状の共晶炭化物が多いか粗大であると、破壊靭性値は著しく低下する。MC炭化物を形成するV及びNbに対してCが過剰で、かつ凝固過程で液相中に濃化するCr、Mo及びWが過剰な場合、粗大炭化物が形成され、外層の破壊靭性値が低下する。V及びNbに対してCが過剰か否かは(C-0.2 V-0.13 Nb)の項により判定され、Cr、Mo及びWが過剰か否かは(Cr+Mo+0.5 W)の項により判定される。鋭意研究の結果、破壊靭性値を低下させないための組成条件は、(C-0.2 V-0.13 Nb)+(Cr+Mo+0.5 W)≦9.5を満たすことであることが分った。破壊靭性値を18.5 MPa・m1/2以上とするには、左辺の値を9.5以下にする必要がある。
Mo及びWはM2C又はM6Cの硬質炭化物を形成する作用を有する。Mo の作用はW の作用の2倍であるので、Mo及びWの合計量は(Mo+0.5 W)で表すことができる。(Mo+0.5 W)はM2C、M6Cの炭化物を形成し耐摩耗性を向上させるため、1.5質量%以上である必要があるが、多すぎるとネットワーク状の共晶炭化物が多くなるので、5.5質量%以下である必要がある。
第一及び第二の遠心鋳造製複合ロールのいずれにおいても、外層組織は、基地、黒鉛、セメンタイト、MC炭化物、及びMC炭化物以外の炭化物(M2C、M6C等)を有する。第一及び第二の遠心鋳造製複合ロールのいずれにおいても、外層の金属組織における黒鉛の面積率は0.3~10%である。黒鉛の面積率が0.3%未満では、外層の耐摩耗性及び耐焼付性が不十分である。一方、黒鉛の面積率が10%を超えると、機械的性質が著しく低下する。黒鉛の面積率は好ましくは0.5~8%であり、より好ましくは1~7%である。
(1) 炭化物形成元素の分布
図1及び図2に示すように、内層2は、外層1に溶着した胴芯部21と、胴芯部21の両端から一体的に延出する駆動側軸部22及び従動側軸部23とを有する。外層1から内層2への「Cr、Mo、V及びNb」の拡散については、第一の遠心鋳造製複合ロールの場合、Nbの含有量がゼロであるので、「Cr、Mo及びV」の拡散を意味するものとする。従って、以下の説明では第一及び第二の遠心鋳造製複合ロールを区別せずに、単に本発明の遠心鋳造製複合ロールと呼ぶ。
最終製品の複合ロールにおいて内層用ダクタイル鋳鉄は、上記Cr、Mo、V及びNb以外に、質量基準でC:2.3~3.6%、Si:1.5~3.5%、Mn:0.2~2.0%、及びNi:0.3~2.0%を含有する。これらの元素の他に、脱酸剤として用いるAlを0.1%以下、硬度を向上させるためのCu、Sn、As又はSbを0.5%以下、及びフラックス又は耐火材から混入するB、Ca、Na又はZrを0.2%以下含有しても良い。また不純物として、S、P、N及びOを合計で約0.1%以下含有しても良い。内層用ダクタイル鋳鉄の好ましい化学組成は、質量基準でC:2.3~3.6%、Si:1.5~3.5%、Mn:0.2~2.0%、Ni:0.3~2.0%、Cr:0.05~1.0%、Mo:0.05~1.0%、W:0~0.7%、V:0.05~1.0%、及びNb:0~0.7%、及びMg:0.01~0.08%であり、残部が実質的にFe及び不可避的不純物である。
本発明では内層2の鋳造の際に外層1のCr、Mo、V及びNbが駆動側軸部22及び従動側軸部23に混入するのを利用しているが、必要に応じて外層1と内層2の間に中間層を設けても良い。中間層の好ましい化学組成は、質量基準でC:2.3~3.6%、Si:0.7~3.5%、Mn:0.2~2.0%、Ni:0.5~5.0%、Cr:0.8~3.0%、Mo:0.1~3.0%、W:0~3.0%、V:0.1~3.0%、及びNb:0~3.0%であり、残部が実質的にFe及び不可避的不純物である。
図3(a) 及び図3(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。静置鋳造用鋳型100は、内面に外層1を有する円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。円筒状鋳型30内の外層1の内面は内層2の胴芯部21を形成するためのキャビティ60aを有し、上型40は内層2の従動側軸部23を形成するためのキャビティ60bを有し、下型50は内層2の駆動側軸部22を形成するためのキャビティ60cを有する。遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
図3(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、表1に示す組成の溶湯を用いて外層1を遠心鋳造した。外層1が凝固した後、内面に外層1(厚さ:90 mm)が形成された円筒状鋳型30を起立させ、駆動側軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に従動側軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、図3(b) に示す静置鋳造用鋳型100を構成した。
外層1の内面に表1に示す組成の中間層(厚さ:20 mm)を形成した後、円筒状鋳型30を起立させた以外実施例1と同様にして、複合ロールを形成した。超音波検査を行った結果、外層1と中間層と内層2は健全に溶着していることが確認された。
○:クラッチ部の耐損耗性は良好であった。
×:クラッチ部が損耗しすぎて、複合ロールが使用不能になった。
Claims (6)
- 遠心鋳造法により形成した外層とダクタイル鋳鉄からなる内層とが溶着一体化した遠心鋳造製複合ロールであって、
前記外層は、質量基準で少なくともCr:0.8~3.0%、Mo:1.5~6.0%、及びV:1.8~5.5%を含有する化学組成を有し、かつ金属組織中の黒鉛面積率が0.3~10%のFe基合金からなり、
前記内層は、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する軸部とを有し、
両軸部とも端部におけるCr、Mo及びVの合計量が0.15~2.0質量%であり、かつ一方の軸部と他方の軸部との間でCr、Mo及びVの合計量の差が0.2質量%以上である
ことを特徴とする遠心鋳造製複合ロール。 - 請求項1項に記載の遠心鋳造製複合ロールにおいて、前記外層がさらに質量基準でC:2.5~3.7%、Si:1.2~3.0%、Mn:0.2~1.5%、及びNi:3.0~5.0%を含有することを特徴とする遠心鋳造製複合ロール。
- 遠心鋳造法により形成した外層とダクタイル鋳鉄からなる内層とが溶着一体化した遠心鋳造製複合ロールであって、
前記外層は、質量基準で少なくともCr:0.8~3.0%、Mo:1.5~6.0%、及びV及びNb:合計1.8~5.5%を含有する化学組成を有し、かつ金属組織中の黒鉛面積率が0.3~10%のFe基合金からなり、
前記内層は、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する軸部とを有し、
両軸部とも端部におけるCr、Mo、V及びNbの合計量が0.15~2.0質量%であり、かつ一方の軸部と他方の軸部との間でCr、Mo、V及びNbの合計量の差が0.2質量%以上である
ことを特徴とする遠心鋳造製複合ロール。 - 請求項3項に記載の遠心鋳造製複合ロールにおいて、前記外層がさらに質量基準でC:2.5~3.7%、Si:1.2~3.0%、Mn:0.2~1.5%、及びNi:3.0~5.0%を含有することを特徴とする遠心鋳造製複合ロール。
- 請求項1~4のいずれかに記載の遠心鋳造製複合ロールにおいて、前記外層がさらに質量基準でW:0.1~5.0%、Ti:0.003~5.0%、B:0.001~0.5%、Al:0.01~2.0%、Zr:0.01~0.5%、及びCo:0.1~10%の少なくとも一種を含有することを特徴とする遠心鋳造製複合ロール。
- 請求項1~5のいずれかに記載の遠心鋳造製複合ロールを製造する方法において、(1) 回転する遠心鋳造用円筒状鋳型で前記外層を遠心鋳造し、(2) 前記外層を有する前記円筒状鋳型を起立させ、その上下端にそれぞれ前記外層に連通する上型及び下型を設けて、静置鋳造用鋳型を構成し、(3) 前記上型、前記外層及び前記下型により構成されるキャビティに前記内層用の溶湯を鋳込む工程を有し、前記上型内における溶湯面の上昇速度が100 mm/秒以下で、前記下型及び前記外層内における溶湯面の上昇速度より小さいことを特徴とする方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380018372.0A CN104220192B (zh) | 2012-04-02 | 2013-03-28 | 离心铸造制复合辊及其制造方法 |
EP13772233.6A EP2740552B1 (en) | 2012-04-02 | 2013-03-28 | Centrifugally cast composite roller and method for manufacturing same |
IN8041DEN2014 IN2014DN08041A (ja) | 2012-04-02 | 2013-03-28 | |
SI201330190A SI2740552T1 (sl) | 2012-04-02 | 2013-03-28 | Centrifugalno ulit kompozitni valj in postopek za proizvodnjo le-tega |
US14/365,528 US9044807B2 (en) | 2012-04-02 | 2013-03-28 | Centrifugally cast composite roll and its production method |
KR1020147030757A KR101966264B1 (ko) | 2012-04-02 | 2013-03-28 | 원심 주조제 복합 롤 및 그 제조 방법 |
JP2013552054A JP5477522B1 (ja) | 2012-04-02 | 2013-03-28 | 遠心鋳造製複合ロール及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-083562 | 2012-04-02 | ||
JP2012083562 | 2012-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013150950A1 true WO2013150950A1 (ja) | 2013-10-10 |
Family
ID=49300440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059228 WO2013150950A1 (ja) | 2012-04-02 | 2013-03-28 | 遠心鋳造製複合ロール及びその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9044807B2 (ja) |
EP (1) | EP2740552B1 (ja) |
JP (1) | JP5477522B1 (ja) |
KR (1) | KR101966264B1 (ja) |
CN (1) | CN104220192B (ja) |
IN (1) | IN2014DN08041A (ja) |
SI (1) | SI2740552T1 (ja) |
WO (1) | WO2013150950A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104018096A (zh) * | 2014-05-16 | 2014-09-03 | 成都开元辊业有限公司 | 高速钢辊环及其制备方法 |
JP5843055B2 (ja) * | 2013-09-25 | 2016-01-13 | 日立金属株式会社 | 遠心鋳造製複合ロール及びその製造方法 |
JP2016093839A (ja) * | 2014-10-31 | 2016-05-26 | 日立金属株式会社 | 熱間圧延用複合ロールの製造方法 |
JPWO2018147367A1 (ja) * | 2017-02-08 | 2019-12-12 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
CN110819888A (zh) * | 2019-11-15 | 2020-02-21 | 山东金泰轧辊股份有限公司 | 高镍贝氏体离心复合辊环及制造方法 |
JPWO2019045068A1 (ja) * | 2017-08-31 | 2020-10-15 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
WO2021194437A1 (en) * | 2020-03-26 | 2021-09-30 | Entil Endustri Yatirimlari Ve Ticaret Anonim Sirketi | Multi-layered roller with high corrosion resistance |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2985088B1 (en) | 2013-04-11 | 2018-06-20 | Fujico Co., Ltd. | Method and device for producing rolling roll |
KR101587215B1 (ko) * | 2013-05-02 | 2016-01-20 | 히타치 긴조쿠 가부시키가이샤 | 원심 주조제 열간 압연용 복합 롤 |
US9387534B2 (en) * | 2014-08-29 | 2016-07-12 | Zf Friedrichshafen Ag | Control arm and a method for forming the same |
CN105603294B (zh) * | 2015-12-31 | 2017-12-19 | 山东瑞丰达机械股份有限公司 | 提高球墨铸铁离心式泵壳耐磨性能的方法 |
US9580777B1 (en) * | 2016-02-08 | 2017-02-28 | Roman Radon | Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom |
EP3315624B1 (en) * | 2016-09-05 | 2020-06-10 | Tpr Co., Ltd. | Cylindrical member made from lamellar graphite cast iron |
JP6313844B1 (ja) * | 2016-12-28 | 2018-04-18 | 株式会社クボタ | 圧延用複合ロール |
CN109465418B (zh) * | 2018-12-12 | 2021-01-08 | 中钢集团邢台机械轧辊有限公司 | 一种辊压机辊套及其制造方法 |
CN111168030B (zh) * | 2020-02-04 | 2021-06-25 | 三鑫重工机械有限公司 | 一种含石墨的贝氏体半钢板带粗轧工作辊 |
CN112139471B (zh) * | 2020-09-24 | 2022-04-08 | 邢台鸿科高速钢轧辊有限公司 | 一种棒线材及中宽带钢轧机用轧辊的浇铸箱及使用方法 |
CN113020262B (zh) * | 2021-03-25 | 2022-11-08 | 太原理工大学 | 一种预制交叉波纹界面的金属复合板轧制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58157202U (ja) * | 1982-04-09 | 1983-10-20 | 株式会社クボタ | 圧延用ロ−ル |
JPS59225806A (ja) * | 1983-06-07 | 1984-12-18 | Kubota Ltd | ネツク部の強靭な圧延用ロ−ルおよびその製造法 |
JPH06304612A (ja) | 1993-04-21 | 1994-11-01 | Nippon Steel Corp | 熱間圧延用ロール |
JP2003073767A (ja) * | 2001-08-31 | 2003-03-12 | Kawasaki Steel Corp | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
JP2005177809A (ja) * | 2003-12-19 | 2005-07-07 | Hitachi Metals Ltd | 圧延用ロールの外層材および圧延用ロール |
JP2012213780A (ja) * | 2011-03-31 | 2012-11-08 | Kubota Corp | 圧延用複合ロール及びその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2710997A (en) * | 1952-06-13 | 1955-06-21 | Campbell Wyant & Cannon Co | Method of producing bimetal castings |
US3659323A (en) * | 1968-07-26 | 1972-05-02 | Hitachi Ltd | A method of producing compound cast rolls |
US4000010A (en) * | 1974-03-29 | 1976-12-28 | Hitachi Metals, Ltd. | Roll and process for producing same |
FR2509640A1 (fr) * | 1981-07-17 | 1983-01-21 | Creusot Loire | Procede de fabrication d'une piece metallique composite et produits obtenus |
JP2898749B2 (ja) * | 1990-07-04 | 1999-06-02 | 株式会社クボタ | 高耐摩耗ロール材およびその製造法 |
DE69213608T2 (de) * | 1991-07-09 | 1997-02-06 | Hitachi Metals Ltd | Verbundwalze und Verfahren zur Herstellung derselben |
US5355932A (en) * | 1992-03-06 | 1994-10-18 | Hitachi Metals, Ltd. | Method of producing a compound roll |
JP2841276B2 (ja) * | 1994-06-29 | 1998-12-24 | 川崎製鉄株式会社 | 熱間圧延用ロール外層材及び熱間圧延用ロールの製造方法 |
JP3925308B2 (ja) * | 2002-05-29 | 2007-06-06 | Jfeスチール株式会社 | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
JP4354718B2 (ja) * | 2002-06-24 | 2009-10-28 | 日鉄住金ロールズ株式会社 | 遠心鋳造製熱間圧延用複合ロール |
JP4123903B2 (ja) * | 2002-11-12 | 2008-07-23 | Jfeスチール株式会社 | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
JP4311073B2 (ja) * | 2003-04-28 | 2009-08-12 | Jfeスチール株式会社 | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
CN101018880B (zh) * | 2004-09-13 | 2011-06-01 | 日立金属株式会社 | 轧辊用离心铸造外层及其制造方法 |
US8328703B2 (en) * | 2009-05-29 | 2012-12-11 | Acos Villares S.A. | Rolling mill cast roll |
-
2013
- 2013-03-28 WO PCT/JP2013/059228 patent/WO2013150950A1/ja active Application Filing
- 2013-03-28 KR KR1020147030757A patent/KR101966264B1/ko active IP Right Grant
- 2013-03-28 SI SI201330190A patent/SI2740552T1/sl unknown
- 2013-03-28 JP JP2013552054A patent/JP5477522B1/ja active Active
- 2013-03-28 CN CN201380018372.0A patent/CN104220192B/zh active Active
- 2013-03-28 US US14/365,528 patent/US9044807B2/en active Active
- 2013-03-28 IN IN8041DEN2014 patent/IN2014DN08041A/en unknown
- 2013-03-28 EP EP13772233.6A patent/EP2740552B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58157202U (ja) * | 1982-04-09 | 1983-10-20 | 株式会社クボタ | 圧延用ロ−ル |
JPS59225806A (ja) * | 1983-06-07 | 1984-12-18 | Kubota Ltd | ネツク部の強靭な圧延用ロ−ルおよびその製造法 |
JPH06304612A (ja) | 1993-04-21 | 1994-11-01 | Nippon Steel Corp | 熱間圧延用ロール |
JP2003073767A (ja) * | 2001-08-31 | 2003-03-12 | Kawasaki Steel Corp | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
JP2005177809A (ja) * | 2003-12-19 | 2005-07-07 | Hitachi Metals Ltd | 圧延用ロールの外層材および圧延用ロール |
JP2012213780A (ja) * | 2011-03-31 | 2012-11-08 | Kubota Corp | 圧延用複合ロール及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2740552A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5843055B2 (ja) * | 2013-09-25 | 2016-01-13 | 日立金属株式会社 | 遠心鋳造製複合ロール及びその製造方法 |
CN104018096A (zh) * | 2014-05-16 | 2014-09-03 | 成都开元辊业有限公司 | 高速钢辊环及其制备方法 |
CN104018096B (zh) * | 2014-05-16 | 2016-05-25 | 成都开元辊业有限公司 | 高速钢辊环及其制备方法 |
JP2016093839A (ja) * | 2014-10-31 | 2016-05-26 | 日立金属株式会社 | 熱間圧延用複合ロールの製造方法 |
JPWO2018147367A1 (ja) * | 2017-02-08 | 2019-12-12 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
JPWO2019045068A1 (ja) * | 2017-08-31 | 2020-10-15 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
JP7036119B2 (ja) | 2017-08-31 | 2022-03-15 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
CN110819888A (zh) * | 2019-11-15 | 2020-02-21 | 山东金泰轧辊股份有限公司 | 高镍贝氏体离心复合辊环及制造方法 |
WO2021194437A1 (en) * | 2020-03-26 | 2021-09-30 | Entil Endustri Yatirimlari Ve Ticaret Anonim Sirketi | Multi-layered roller with high corrosion resistance |
Also Published As
Publication number | Publication date |
---|---|
US20140377587A1 (en) | 2014-12-25 |
CN104220192B (zh) | 2016-05-11 |
JP5477522B1 (ja) | 2014-04-23 |
EP2740552A4 (en) | 2014-11-05 |
KR20150005578A (ko) | 2015-01-14 |
EP2740552A1 (en) | 2014-06-11 |
US9044807B2 (en) | 2015-06-02 |
KR101966264B1 (ko) | 2019-04-05 |
IN2014DN08041A (ja) | 2015-05-01 |
EP2740552B1 (en) | 2016-03-09 |
JPWO2013150950A1 (ja) | 2015-12-17 |
CN104220192A (zh) | 2014-12-17 |
SI2740552T1 (sl) | 2016-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477522B1 (ja) | 遠心鋳造製複合ロール及びその製造方法 | |
JP5843055B2 (ja) | 遠心鋳造製複合ロール及びその製造方法 | |
JP5423930B2 (ja) | 遠心鋳造製複合圧延ロール及びその製造方法 | |
JP5768947B2 (ja) | 遠心鋳造製熱間圧延用複合ロール | |
CN109070160B (zh) | 轧辊用外层和轧制用复合辊 | |
JP6191913B2 (ja) | 遠心鋳造製複合ロール及びその製造方法 | |
KR102378993B1 (ko) | 압연용 복합 롤 및 그의 제조 방법 | |
WO2019045068A1 (ja) | 圧延用複合ロール及びその製造方法 | |
JP4123903B2 (ja) | 熱間圧延用ロール外層材および熱間圧延用複合ロール | |
TWI469835B (zh) | Centrifugal casting legal compound roll and its manufacturing method | |
WO2021075561A1 (ja) | 熱間圧延用遠心鋳造複合ロール | |
JP2024027590A (ja) | 熱間圧延用ロール外層材および熱間圧延用複合ロール | |
JP2007144510A (ja) | 圧延用複合ロール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380018372.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013552054 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13772233 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013772233 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14365528 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147030757 Country of ref document: KR Kind code of ref document: A |