[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013146361A1 - 歯車伝動装置 - Google Patents

歯車伝動装置 Download PDF

Info

Publication number
WO2013146361A1
WO2013146361A1 PCT/JP2013/057456 JP2013057456W WO2013146361A1 WO 2013146361 A1 WO2013146361 A1 WO 2013146361A1 JP 2013057456 W JP2013057456 W JP 2013057456W WO 2013146361 A1 WO2013146361 A1 WO 2013146361A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
gear
groove
gear transmission
eccentric body
Prior art date
Application number
PCT/JP2013/057456
Other languages
English (en)
French (fr)
Inventor
善和 堤
勇一郎 浅川
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2013146361A1 publication Critical patent/WO2013146361A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/323Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising eccentric crankshafts driving or driven by a gearing

Definitions

  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-29393 discloses a gear transmission in which an external gear rotates eccentrically while meshing with an internal gear.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-29393 is referred to as Patent Document 1.
  • the through-hole is formed in the external gear.
  • An eccentric body is engaged with the through hole via a cylindrical roller bearing.
  • a hole is provided in the crankshaft. The hole extends from the end of the crankshaft to the cylindrical roller bearing. The lubricant is supplied to the cylindrical roller bearing through the hole.
  • a ring (washer, inner race) is attached to the crankshaft in order to restrict movement of the crankshaft in the axial direction.
  • the ring is attached to the crankshaft at a position adjacent to the eccentric body. This ring prevents the lubricant from entering the cylindrical roller bearing. Therefore, in the technique of Patent Document 1, a lubricant passage is provided inside the crankshaft in order to supply the lubricant to the inside of the cylindrical roller bearing without being obstructed by the ring.
  • rolling elements sometimes block the outlet of the lubricant passage. As a result, the gear transmission of Patent Document 1 may be difficult to supply the lubricant into the cylindrical roller bearing.
  • This specification provides the gear transmission excellent in the performance which supplies a lubrication agent inside a cylindrical roller bearing.
  • the gear transmission disclosed in the present specification includes an internal gear, an external gear, a shaft for eccentrically rotating the internal gear or the external gear, and a ring attached to the shaft.
  • the external gear rotates relatively eccentrically while meshing with the internal gear.
  • the shaft has an eccentric body.
  • the eccentric body engages with a through-hole formed in one of the gears, and the engaged gear (internal gear or external gear) rotates eccentrically.
  • the ring is coaxially attached to the shaft at a position adjacent to the eccentric body.
  • the ring may be, for example, an inner race of a bearing that supports the shaft.
  • grooves are formed on the outer peripheral surface of the shaft from the position where the eccentric body is disposed to the both ends in the axial direction of the shaft through the inside of the ring.
  • crankshaft the shaft and the eccentric body may be collectively referred to as “crankshaft”.
  • crankshaft a type in which the external gear rotates eccentrically will be mainly described.
  • the technology disclosed in this specification can also be applied to a gear transmission of a type in which the internal gear rotates eccentrically.
  • the eccentric body engages with the external gear. Specifically, the eccentric body engages with a through-hole formed in the external gear through a cylindrical roller bearing.
  • the lubricant present at the axial end of the shaft passes through the groove formed in the shaft (through the inside of the ring) to the eccentric body without being obstructed by the ring. Supplied. More specifically, the lubricant is supplied to the surface (axial end surface) of the eccentric body through the inside of the ring. The lubricant supplied to the surface of the eccentric body moves to the outer peripheral side of the eccentric body and is supplied to the inside of the cylindrical roller bearing.
  • the rolling element (cylindrical roller) of the cylindrical roller bearing does not contact the surface of the eccentric body. Therefore, in the above gear transmission, the lubricant outlet (surface of the eccentric body) is not blocked by the rolling elements (cylindrical rollers).
  • the above gear transmission can supply more lubricant to the inside of the cylindrical roller bearing than before.
  • Sectional drawing of the gear transmission of 1st Example is shown.
  • the expanded sectional view of the part enclosed with the broken line II of FIG. 1 is shown.
  • the front view (figure seen from the direction orthogonal to the axis line of a shaft) of the shaft used with the gear transmission of the 1st example is shown.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. Sectional drawing along the VV line of FIG. 3 is shown.
  • Sectional drawing (part in which the 1st vertical groove is formed) of the shaft of 2nd Example is shown.
  • Sectional drawing (part in which the 2nd vertical groove is formed) of the shaft of 2nd Example is shown.
  • the front view of the shaft used with the gear transmission of 3rd Example is shown.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG.
  • FIG. 9 is a sectional view taken along line XX in FIG.
  • the front view of the shaft used with the gear transmission of 4th Example is shown.
  • the front view of the shaft used with the gear transmission of 5th Example is shown.
  • Sectional drawing of the gear transmission of 6th Example is shown.
  • the front view of the shaft used with the gear transmission of 6th Example is shown.
  • FIG. 15 is a sectional view taken along line XV-XV in FIG. 14.
  • a plurality of eccentric bodies may be fitted to the shaft.
  • a gap may be provided between the eccentric bodies in the axial direction of the shaft.
  • channel currently formed in the shaft may extend to the clearance gap.
  • the groove formed in the shaft may be continuous from one end to the other end in the axial direction of the shaft.
  • the lubricant is easy to move in the axial direction of the shaft.
  • a gear may be splined to the groove.
  • an input gear may be fixed to a shaft in order to rotate the shaft. In that case, the input gear is engaged with the output shaft of the motor.
  • An example of the input gear is a spur gear.
  • the groove formed in the shaft may extend obliquely with respect to the axis of the shaft. Along with the rotation of the shaft, a force that moves in the groove acts on the lubricant. Many lubricants can be supplied inside the cylindrical roller bearing.
  • the groove formed in the shaft may be spiral. Even in the case of a spiral groove, a force that moves in the groove acts on the lubricant as the shaft rotates. Moreover, the length of the groove in the axial direction of the shaft can be increased. Since a lot of lubricant is accumulated in the groove, the lubricant is easily supplied into the cylindrical roller bearing.
  • the ring attached to the shaft may be an inner race of a bearing that rotatably supports the shaft.
  • Some types of bearings require an inner race. In such a case, if the ring also serves as the inner race of the bearing, the number of parts constituting the gear transmission can be reduced.
  • the gear transmission 100 will be described with reference to FIGS. In the following description, when there are a plurality of parts of the same type and the common characteristics of those parts are described, the reference numerals may be omitted.
  • the gear transmission 100 is a type of reduction device that rotates eccentrically while the external gear 20 meshes with the internal gear 24.
  • the gear transmission 100 uses the difference in the number of teeth between the external gear 20 and the internal gear 24 to increase the torque transmitted to the crankshaft 10 (decelerate the rotation) and output it from the carrier 2.
  • the gear transmission 100 uses the difference in the number of teeth between the external gear 20 and the internal gear 24 to rotate the carrier 2 relative to the case 42.
  • the gear transmission 100 will be described in detail.
  • the gear transmission 100 includes an internal gear 24, a carrier 2, a crankshaft 10, and two external gears 20X and 20Y.
  • the internal gear 24 includes a case 42 and a plurality of internal teeth pins 22 arranged on the inner periphery of the case 42.
  • the carrier 2 is supported on the case 42 coaxially with the internal gear 24 by a pair of bearings 40.
  • the pair of bearings 40 are angular ball bearings. The pair of angular ball bearings 40 restricts the carrier 2 from moving in the axial direction and the radial direction with respect to the case 42.
  • the carrier 2 includes a first plate 2a and a second plate 2c.
  • a through hole 2d extending in the direction of the axis 36 is formed in the first plate 2a and the second plate 2c.
  • a columnar portion 2b extends from the first plate 2a toward the second plate 2c, and the columnar portion 2b and the second plate 2c are fixed.
  • the columnar portion 2 b of the carrier 2 passes through the through hole 4 of the external gear 20.
  • a gap is secured between the inner wall of the through hole 4 and the columnar portion 2b.
  • the axis 36 is the axis of the carrier 2 and the internal gear 24.
  • the carrier 2 supports the crankshaft 10 and the external gear 20.
  • the axis 32 of the crankshaft 10 is parallel to the axis 36. That is, the crankshaft 10 extends parallel to the axis 36 at a position offset from the axis 36.
  • the crankshaft 10 includes a shaft 6 and two eccentric bodies 8X and 8Y.
  • the eccentric body 8 is fitted to the shaft 6. Specifically, the shaft 6 is press-fitted into the center hole of the eccentric bodies 8 ⁇ / b> X and 8 ⁇ / b> Y, and the eccentric body 8 is fixed to the shaft 6. In the direction of the axis 32, a gap is provided between the eccentric body 8X and the eccentric body 8Y.
  • a groove extending in the radial direction may be formed on the surface of the eccentric body 8 (end surface in the direction of the axis 32).
  • a groove extending in the radial direction is preferably formed on the surface of the eccentric body 8 on the side adjacent to the ring. Details of the ring will be described later.
  • the crankshaft 10 is supported on the carrier 2 by a pair of tapered roller bearings 14. The pair of tapered roller bearings 14 restricts the crankshaft 10 from moving relative to the carrier 2 in the axial direction and the radial direction.
  • the tapered roller bearing 14 includes an inner race 14a fitted to the shaft 6 (crankshaft 10), a tapered roller 14b, and an outer race 14c attached to the carrier 2.
  • a washer 16 is interposed between the inner race 14 a and the eccentric body 8. The washer 16 is in contact with the eccentric body 8.
  • the inner race 14 a and the washer 16 are both ring-shaped and are attached to the shaft 6 coaxially. The washer 16 restricts the cylindrical roller bearing 18 from moving in the axial direction.
  • Cylindrical roller bearings 18X and 18Y are disposed between the two washers 16 in the direction of the axis 32.
  • cylindrical roller bearing 18X is in contact with the washer 16
  • the other end of the cylindrical roller bearing 18X is in contact with one end of the cylindrical roller bearing 18Y
  • the other end of the cylindrical roller bearing 18Y is in contact with the washer 16.
  • the washer 16 is positioned by the inner race 14a. Therefore, it can be said that the inner race 14a and the washer 16 are integrated to restrict the movement of the cylindrical roller bearing 18 in the axial direction. That is, the inner race 14a and the washer 16 have functional integrity. Therefore, it can be said that not only the washer 16 but also the inner race 14 a is adjacent to the eccentric body 8.
  • the inner race 14a and the washer 16 are an example of a ring.
  • the inner race 14a and the washer 16 may be integrally formed.
  • channel extended in radial direction may be formed in the surface at the side of the eccentric body 8 of a ring (washer 16).
  • the gear transmission 100 may include a plurality of crankshafts 10. Specifically, the gear transmission 100 includes three crankshafts 10. In FIG. 1, one of the three crankshafts 10 appears. The respective crankshafts 10 are arranged at equal intervals around the axis 36.
  • a plurality of vertical grooves 30 are formed on the outer peripheral surface of the shaft 6 along the axial direction of the shaft 6 (in the direction of the axis 32).
  • the shaft 6 is formed with two lateral grooves 33 along the circumferential direction (see also FIG. 3).
  • the longitudinal groove 30 passes through the inner race 14a. More specifically, the longitudinal groove 30 extends from the end of the eccentric body 8 on the inner race 14 a side, passes through the inner side of the inner race 14 a, and extends toward the axial end of the shaft 6. Thereby, the lubricant can be supplied from the axial end of the shaft 6 to the surface of the eccentric body 8 on the inner race 14a side. Further, the longitudinal groove 30 passes through the inside of the eccentric body 8.
  • the longitudinal groove 30 extends from the end of the eccentric body 8 on the inner race 14a side, passes through the inside of the eccentric body 8, and extends to a gap portion between the eccentric body 8X and the eccentric body 8Y.
  • the lubricant can be supplied from the axial end of the shaft 6 to the gap between the eccentric body 8X and the eccentric body 8Y.
  • a portion of the shaft 6 to which the inner race 14a and the eccentric body 8 are attached is referred to as a first portion 6a
  • the vertical groove 30 formed in the first portion 6a is referred to as a first vertical groove 30a. (See also FIG. 3).
  • the input gear 34 is fixed to the shaft 6 (crankshaft 10).
  • the input gear 34 is splined to the longitudinal groove 30 formed in the shaft 6.
  • the input gear 34 is fixed to the shaft 6 outside the pair of tapered roller bearings 14.
  • a portion of the shaft 6 to which the input gear 34 is attached may be referred to as a second portion 6b, and the vertical groove 30 formed in the second portion 6b may be referred to as a second vertical groove 30b. (See also FIG. 3).
  • An oil seal 44 is disposed between the first plate 2a and the case 42.
  • a cap 5 is fitted in the through hole 2d of the first plate 2a. The oil seal 44 and the cap 5 prevent the lubricant and the like inside the gear transmission 100 from leaking to the outside of the gear transmission 100.
  • the operation of the gear transmission 100 will be briefly described.
  • the crankshaft 10 rotates.
  • the eccentric body 8 rotates eccentrically with respect to the axis 32 as the crankshaft 10 rotates.
  • the external gear 20 rotates eccentrically while meshing with the internal gear 24 as the eccentric body 8 rotates eccentrically.
  • the number of teeth of the external gear 20 and the number of teeth of the internal gear 24 are different.
  • the external gear 20 is supported by the carrier 2, and the internal gear 24 is formed on the inner peripheral surface of the case 42. Therefore, when the external gear 20 rotates eccentrically, the carrier 2 rotates relative to the case 42 according to the difference in the number of teeth between the external gear 20 and the internal gear 24.
  • the vertical groove 30 is formed on the outer periphery of the shaft 6.
  • the lubricant is supplied into the longitudinal groove 30 from the axial end of the shaft 6.
  • the lubricant in the longitudinal groove 30 is supplied into the cylindrical roller bearing 18 through the gap between the washer 16 and the eccentric body 8 as indicated by an arrow 50.
  • the lubricant is supplied into the cylindrical roller bearing 18 through the gap between the eccentric bodies 8X and 8Y as indicated by an arrow 52.
  • the lubricant in the longitudinal groove 30 is supplied to the inside of the cylindrical roller bearing 18 along the surface of the eccentric body 8 (end surface in the direction of the axis 32).
  • the rolling elements (cylindrical rollers) of the cylindrical roller bearing 18 do not contact the surface of the eccentric body 8. Therefore, in the gear transmission 100, the lubricant can be supplied to the inside of the cylindrical roller bearing 18 without being obstructed by the rolling elements of the cylindrical roller bearing 18.
  • the washer 16 is in contact with the eccentric body 8.
  • the lubricant passage (the gap between the washer 16 and the eccentric body 8) becomes narrow.
  • a groove extending in the radial direction may be formed on the surface of the washer 16 on the eccentric body 8 side and / or on the surface of the eccentric body 8 on the washer 16 side. A clearance is ensured between the washer 16 and the eccentric body 8, and the lubricant is easily supplied into the cylindrical roller bearing 18.
  • FIG. 3 schematically shows the characteristics of the vertical grooves 30 formed in the shaft 6 and does not accurately indicate the number, pitch, and the like of the vertical grooves 30.
  • the longitudinal groove 30 extends from one end of the first portion 6 a to the other end along the axial direction of the shaft 6.
  • the vertical groove 30 is divided into a first vertical groove 30 a and a second vertical groove 30 b by a horizontal groove 33.
  • the first vertical groove 30a and the second vertical groove 30b are processed at a time and are substantially the same groove. Therefore, it can be said that the vertical groove 30 continuously extends from one end of the shaft 6 to the other end (the entire first portion 6a and the second portion 6b).
  • the depth of the first vertical groove 30a (the maximum depth of the first vertical groove 30a) D1 is equal to the depth D2 of the second vertical groove 30b.
  • the pitch (circumferential interval) R1 of the first vertical grooves 30a is equal to the pitch R2 of the second vertical grooves 30b. That is, the shape of the first vertical groove 30a formed in the first portion 6a in which the inner race 14a and the eccentric body 8 are fitted is the second vertical length formed in the second portion 6b in which the input gear 34 is splined. It is equal to the shape of the groove 30b.
  • the first vertical groove 30a and the second vertical groove 30b can be processed at a time.
  • the first vertical groove 30a and the second vertical groove 30b are formed by forming the vertical groove 30 extending from one end to the other end of the shaft 6 in the axial direction and then forming the horizontal groove 33.
  • the input gear 34 can be spline-coupled to the shaft 6 using the longitudinal groove 30 that is a lubricant passage.
  • the lubricant can be supplied into the cylindrical roller bearing 18 by using the longitudinal groove 30 for spline coupling the input gear 34 to the shaft.
  • a ring that restricts the input gear 34 from moving in the direction of the axis 32 is attached to the lateral groove 33.
  • the depth D11 of the first vertical groove 130a is deeper than the depth D12 of the second vertical groove 130b. That is, the depth D12 of the second vertical groove 130b is shallower than the depth D11 of the first vertical groove 130a.
  • the pitch R11 of the first vertical groove 130a is equal to the pitch of the second vertical groove 130b.
  • the shape of the second vertical groove 130b is equal to the shape of the second vertical groove 30b of the shaft 6 in the first embodiment (see also FIG. 5). Compared with the shaft 6, the shaft 106 can pass more lubricant in the first longitudinal groove 130 a. Therefore, more lubricant can be supplied into the cylindrical roller bearing 18 (see FIG. 1).
  • the pitch R11 of the first vertical groove 130a is equal to the pitch R12 of the second vertical groove 130b.
  • the shaft 106 is formed with a groove having a pitch R11 (R12) and a depth D12 from one end to the other end of the shaft 106, and then a part of the groove in the axial direction (a portion corresponding to the first portion 6a in FIG. 3). It can be formed only by increasing the depth to the depth D11. Therefore, it can be said that the longitudinal groove 130 also extends continuously from one end of the shaft to the other end.
  • FIG. 8 schematically shows the characteristics of the longitudinal groove 230 formed in the shaft 206.
  • the number of first vertical grooves 230a is smaller than the number of second vertical grooves 230b. That is, the shape of the longitudinal groove is greatly different between the first portion 206a and the second portion 206b.
  • the depth D21 of the first vertical groove 230a is equal to the depth D22 of the second vertical groove 230b.
  • the pitch R21 of the first vertical groove 230a is wider than the pitch R22 of the second vertical groove 230b. That is, the pitch R22 of the adjacent second vertical grooves 230b formed in the second portion 206b is narrower than the pitch R21 of the adjacent first vertical grooves 230a formed in the first portion 206a.
  • the shape of the second vertical groove 230b is equal to the shape of the second vertical groove 30b of the shaft 6 (see also FIG. 5).
  • the first vertical groove 230a corresponds to a form in which every other convex portion between the adjacent second vertical grooves 230b is deleted.
  • the shaft 206 By using the shaft 206, compared with the case where the shaft 6 is used, a lot of lubricant can be passed through the first vertical groove 230a. As a result, more lubricant can be supplied into the cylindrical roller bearing 18 (see FIG. 1).
  • every other convex portion between the longitudinal grooves 230 is formed on the first portion 206a of the shaft 206. It can be formed simply by deleting. Therefore, it can be said that the longitudinal groove 230 also extends continuously from one end of the shaft to the other end.
  • FIG. 11 schematically shows the characteristics of the vertical grooves 330 formed in the shaft 306, and does not accurately indicate the number, pitch, and the like of the vertical grooves 330.
  • the first vertical groove 330a extends obliquely with respect to the axial direction.
  • the second vertical groove 330b extends along the axial direction.
  • a force that moves in the first vertical groove 330a acts on the lubricant in the first vertical groove 330a.
  • the 1st vertical groove 330a can be formed using the technique which manufactures a helical gear.
  • the input gear 34 can be fixed using the second vertical groove 330b.
  • FIG. 12 schematically shows the characteristics of the vertical grooves 430 formed in the shaft 406, and does not accurately indicate the number, pitch, and the like of the vertical grooves 430.
  • the first vertical groove 430a extends obliquely with respect to the axial direction, and the first vertical groove 430a has a spiral shape. Also in the case of the shaft 406, when the shaft 406 rotates, a force that moves in the first vertical groove 430a acts on the lubricant in the first vertical groove 430a. Furthermore, compared with the 1st vertical groove 330a of the shaft 306 of 4th Example, the length of the 1st vertical groove 430a can be lengthened. Therefore, a lot of lubricant can be held in the first vertical groove 430a. In addition, since the 2nd vertical groove 430b is extended along the axial direction, the input gear 34 (refer FIG. 1) can be fixed using the 2nd vertical groove 430b.
  • the gear transmission 500 will be described with reference to FIGS.
  • the gear transmission 500 is a modification of the gear transmission 100, and the same components as the gear transmission 100 may be denoted by the same reference numerals or the lower two digits with the same reference numerals, and description thereof may be omitted.
  • the gear transmission 500 is different from the crankshaft 10 of the gear transmission 100 only in the structure of the crankshaft 510. More precisely, the structure of the shaft 506 is different from the shaft 6 of the gear transmission 100.
  • a through hole 507 is formed inside the shaft 506. More specifically, the central through hole 507a continuously extends from one end of the shaft 506 to the other end along the axis of the shaft 506.
  • the first through hole 507b, the second through hole 507c, and the third through hole 507d extend in the radial direction of the shaft 506 (the direction perpendicular to the axis 32).
  • the through holes 507b to 507d are connected to the central through hole 507a and the first vertical groove 30a.
  • the first through hole 507b and the third through hole 507d communicate with the first vertical groove 30a in the direction of the axis 32 between the eccentric body 8 and the inner race 14a, that is, at the position where the washer 16 is disposed.
  • the second through hole 507c communicates with the first vertical groove 30a between the eccentric bodies 8X and 8Y in the direction of the axis 32.
  • the through holes 507b to 507d connect the central through hole 507a and all the first vertical grooves 30a. That is, the number of each of the through holes 507b to 507d is equal to the number of the first vertical grooves 30a.
  • the shapes of the through holes 507b to 507d are all the same.
  • the through holes 507b to 507d may connect the central through hole 507a and a part of the first vertical grooves 30a. That is, the number of through holes 507b to 507d may be smaller than the number of first vertical grooves 30a.
  • the crankshaft 510 rotates, the cylindrical roller bearing 18 moves around the eccentric body 8. Therefore, even if the through holes 507b to 507d are connected to only some of the first vertical grooves 30a, the lubricant that has passed through the through holes 507b to 507d is distributed to all the rolling elements (cylindrical rollers) of the cylindrical roller bearing 18. Go around.
  • the first through hole 507b and the third through hole 507d may be formed in the shaft 506.
  • only the second through hole 507c may be formed in the shaft 506.
  • the eccentric body is press-fitted and fixed to a shaft having a longitudinal groove continuous from one end to the other end.
  • the longitudinal groove only needs to pass inside the inner race of the tapered roller bearing.
  • the crankshaft may be one in which the eccentric body and the shaft are integrally formed.
  • the number of eccentric bodies may be one. If the groove passes inside the inner race of the tapered roller bearing, the lubricant present at the axial end of the shaft can move to the surface of the eccentric body and supply the lubricant into the cylindrical roller bearing. be able to.
  • the grooves do not necessarily have to be continuous from one end to the other end of the shaft. . If the groove extends to the gap between the eccentric bodies, the lubricant can be supplied between the eccentric bodies.
  • the bearing that supports the shaft may not be a tapered roller bearing.
  • a cylindrical roller bearing may be used.
  • a cylindrical ring may be fitted without fitting the inner race to the shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

 歯車伝動装置は、内歯歯車と、内歯歯車と噛み合いながら相対的に偏心回転する外歯歯車を備える。偏心体を有するシャフトが、内歯歯車と外歯歯車の一方に係合している。シャフトには、偏心体に隣接しているリングが取り付けられている。シャフトの外周面に溝が形成されている。その溝は、偏心体が配置されている位置からリングの内側を通過して、シャフトの軸方向の両端に向けて延びている。

Description

歯車伝動装置
 本出願は、2012年3月30日に出願された日本国特許出願第2012-079453号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。本明細書は歯車伝動装置に関する技術を開示する。
 外歯歯車が内歯歯車と噛み合いながら相対的に偏心回転する歯車伝動装置が知られている。このような歯車伝動装置では、偏心体を備えたシャフト(クランクシャフト)を用いて、外歯歯車又は内歯歯車を偏心回転させる。特開2006-29393号公報には、外歯歯車が内歯歯車と噛み合いながら偏心回転する歯車伝動装置が開示されている。以下の説明では、特開2006-29393号公報を特許文献1と称する。特許文献1の歯車伝動装置は、外歯歯車に貫通孔が形成されている。その貫通孔に、偏心体が、円筒ころ軸受を介して係合している。特許文献1では、円筒ころ軸受に潤滑剤を供給するために、クランクシャフトの内部に孔を設けている。その孔は、クランクシャフトの端部から円筒ころ軸受に至っている。潤滑剤は、その孔を通じて、円筒ころ軸受に供給される。
 特許文献1の歯車伝動装置は、クランクシャフトの軸方向への移動を規制するために、リング(ワッシャ、インナーレース)がクランクシャフトに取り付けられている。リングは、偏心体に隣接する位置で、クランクシャフトに取り付けられている。このリングは、潤滑剤が円筒ころ軸受の内部に侵入することを邪魔している。そのため、特許文献1の技術は、リングに邪魔されることなく円筒ころ軸受の内部に潤滑剤を供給するために、クランクシャフトの内部に潤滑剤の通路を設けている。しかしながら、特許文献1の歯車伝動装置は、転動体(円筒ころ)が潤滑剤の通路の出口を塞いでしまうことがある。その結果、特許文献1の歯車伝動装置は、潤滑剤が円筒ころ軸受の内部に供給されにくくなることが起こり得る。本明細書は、円筒ころ軸受の内部に潤滑剤を供給する性能に優れた歯車伝動装置を提供する。
 本明細書が開示する歯車伝動装置は、内歯歯車と、外歯歯車と、内歯歯車又は外歯歯車を偏心回転させるシャフトと、シャフトに取り付けられているリングを備えている。外歯歯車は、内歯歯車と噛み合いながら相対的に偏心回転する。シャフトは、偏心体を有している。その偏心体が、の一方の歯車に形成されている貫通孔に係合し、係合している歯車(内歯歯車又は外歯歯車)を偏心回転させる。リングは、偏心体に隣接する位置でシャフトに同軸に取り付けられている。リングは、例えば、シャフトを支持する軸受のインナーレースであってよい。この歯車伝動装置では、シャフトの外周面に、偏心体が配置されている位置からリングの内側を通過してシャフトの軸方向の両端に向けて、溝が形成されている。なお、本明細書では、シャフトと偏心体を併せて、「クランクシャフト」と称することがある。また、以下の説明では、主として外歯歯車が偏心回転するタイプについて説明する。しかしながら、本明細書が開示する技術は、内歯歯車が偏心回転するタイプの歯車伝動装置にも適用可能である。
 外歯歯車が偏心回転するタイプの歯車伝動装置の場合、偏心体は、外歯歯車に係合する。具体的には、偏心体は、円筒ころ軸受を介して、外歯歯車に形成されている貫通孔に係合する。上記の歯車伝動装置の場合、シャフトの軸方向端部に存在する潤滑剤が、リングに邪魔されることなく、シャフトに形成されている溝を通って(リングの内側を通って)偏心体に供給される。より具体的には、潤滑剤は、リングの内側を通って偏心体の表面(軸方向の端面)に供給される。偏心体の表面に供給された潤滑剤は、偏心体の外周側に移動し、円筒ころ軸受の内部に供給される。円筒ころ軸受の転動体(円筒ころ)は、偏心体の表面に接触しない。そのため、上記の歯車伝動装置では、潤滑剤の出口(偏心体の表面)が、転動体(円筒ころ)によって塞がれることがない。上記の歯車伝動装置は、円筒ころ軸受の内部に従来よりも多くの潤滑剤を供給することができる。
第1実施例の歯車伝動装置の断面図を示す。 図1の破線IIで囲った部分の拡大断面図を示す。 第1実施例の歯車伝動装置で用いているシャフトの正面図(シャフトの軸線に直交する方向から見た図)を示す。 図3のIV-IV線に沿った断面図を示す。 図3のV-V線に沿った断面図を示す。 第2実施例のシャフトの断面図(第1縦溝が形成されている部分)を示す。 第2実施例のシャフトの断面図(第2縦溝が形成されている部分)を示す。 第3実施例の歯車伝動装置で用いているシャフトの正面図を示す。 図8のIX-IX線に沿った断面図を示す。 図8のX-X線に沿った断面図を示す。 第4実施例の歯車伝動装置で用いているシャフトの正面図を示す。 第5実施例の歯車伝動装置で用いているシャフトの正面図を示す。 第6実施例の歯車伝動装置の断面図を示す。 第6実施例の歯車伝動装置で用いているシャフトの正面図を示す。 図14のXV-XV線に沿った断面図を示す。
 以下、本明細書で開示する実施例の技術的特徴の幾つかを記す。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
 (特徴1)複数の偏心体が、シャフトに嵌合されていてよい。この場合、シャフトの軸方向において、夫々の偏心体の間に隙間が設けられていてもよい。さらに、シャフトに形成されている溝が、その隙間まで延びていてもよい。このような構造にすれば、潤滑剤が、偏心体と偏心体の隙間にも供給される。潤滑剤が、円筒ころ軸受の内部に一層供給されやすくなる。
 (特徴2)シャフトに形成されている溝は、シャフトの軸方向の一端から他端まで連続していてもよい。潤滑剤が、シャフトの軸方向に移動しやすい。
 (特徴3)溝がシャフトの軸方向の一端から他端まで連続している場合、その溝に、歯車がスプライン結合していてもよい。歯車伝動装置では、シャフトを回転させるために、入力歯車をシャフトに固定することがある。その場合、その入力歯車を、モータの出力シャフトに係合させる。潤滑剤を供給するための溝に入力歯車をスプライン結合することにより、入力歯車を固定するためだけの加工をシャフトに施す必要がなくなる。入力歯車の一例として、平歯車が挙げられる。
 (特徴4)シャフトに形成されている溝は、シャフトの軸線に対して斜めに延びていてよい。シャフトの回転に伴って、潤滑剤に、溝内を移動する力が作用する。多くの潤滑剤を、円筒ころ軸受の内部に供給することができる。
 (特徴5)シャフトに形成されている溝は、らせん状であってもよい。らせん状の溝であっても、シャフトの回転に伴って、潤滑剤に、溝内を移動する力が作用する。また、シャフトの軸方向における溝の長さを長くすることができる。多くの潤滑剤が溝内に蓄積されるので、円筒ころ軸受の内部に潤滑剤が供給されやすい。
 (特徴6)シャフトに取り付けられているリングが、シャフトを回転可能に支持する軸受のインナーレースであってよい。軸受の種類によっては、インナーレースが必要なものがある。そのような場合、リングが軸受のインナーレースを兼ねていれば、歯車伝動装置を構成する部品数を少なくすることができる。
(第1実施例)
 図1~図5を参照し、歯車伝動装置100について説明する。以下の説明では、複数個が存在する同一種類の部品については、それらの部品に共通な特徴を説明する場合に、符号のアルファベットを省略することがある。歯車伝動装置100は、外歯歯車20が内歯歯車24と噛み合いながら偏心回転するタイプの減速装置である。歯車伝動装置100は、外歯歯車20と内歯歯車24の歯数差を利用し、クランクシャフト10に伝達されたトルクを増大して(回転を減速して)キャリア2から出力する。別言すると、歯車伝動装置100は、外歯歯車20と内歯歯車24の歯数差を利用し、キャリア2をケース42に対して回転させる。以下、歯車伝動装置100について詳細に説明する。
 図1に示すように、歯車伝動装置100は、内歯歯車24とキャリア2とクランクシャフト10と2個の外歯歯車20X,20Yを備えている。内歯歯車24は、ケース42と、ケース42の内周に配置されている複数の内歯ピン22を備えている。キャリア2は、一対の軸受40によって、内歯歯車24と同軸にケース42に支持されている。一対の軸受40は、アンギュラ玉軸受である。一対のアンギュラ玉軸受40は、キャリア2がケース42に対してアキシャル方向及びラジアル方向に移動することを規制している。
 キャリア2は、第1プレート2aと第2プレート2cを備えている。第1プレート2aと第2プレート2cには、軸線36方向に延びている貫通孔2dが形成されている。第1プレート2aから第2プレート2cに向けて柱状部2bが延びており、柱状部2bと第2プレート2cが固定されている。キャリア2の柱状部2bが、外歯歯車20の貫通孔4を通過している。貫通孔4の内壁と柱状部2bとの間には、隙間が確保されている。なお、軸線36が、キャリア2及び内歯歯車24の軸線である。キャリア2は、クランクシャフト10と外歯歯車20を支持している。
 クランクシャフト10の軸線32は、軸線36に平行である。すなわち、クランクシャフト10は、軸線36からオフセットした位置で、軸線36に平行に延びている。クランクシャフト10は、シャフト6と2個の偏心体8X,8Yを備えている。偏心体8は、シャフト6に嵌合している。具体的には、シャフト6が偏心体8X,8Yの中央の孔に圧入されており、偏心体8がシャフト6に固定されている。軸線32方向において、偏心体8Xと偏心体8Yの間に隙間が設けられている。なお、偏心体8の表面(軸線32方向の端面)には、径方向(軸線32に直交する方向)に延びる溝が形成されていてもよい。特に、偏心体8の両面のうちのリングが隣接している側の面に、径方向に延びる溝が形成されているとよい。リングの詳細については後述する。クランクシャフト10は、一対の円錐ころ軸受14によって、キャリア2に支持されている。一対の円錐ころ軸受14は、クランクシャフト10がキャリア2に対してアキシャル方向及びラジアル方向に移動することを規制している。
 円錐ころ軸受14は、シャフト6(クランクシャフト10)に嵌合しているインナーレース14aと、円錐ころ14bと、キャリア2に取り付けられているアウターレース14cを備えている。インナーレース14aと偏心体8の間には、ワッシャ16が介在している。ワッシャ16は、偏心体8に接している。インナーレース14aとワッシャ16は、ともにリング状であり、シャフト6に同軸に取り付けられている。ワッシャ16は、円筒ころ軸受18が軸方向に移動することを規制している。軸線32方向において、円筒ころ軸受18X,18Yが、2個のワッシャ16の間に配置されている。円筒ころ軸受18Xの一端がワッシャ16に接し、円筒ころ軸受18Xの他端が円筒ころ軸受18Yの一端に接し、円筒ころ軸受18Yの他端がワッシャ16に接している。このような構成により、円筒ころ軸受18X,18Yが軸方向に移動することが規制されている。
 ワッシャ16は、インナーレース14aによって位置決めされている。そのため、インナーレース14aとワッシャ16が一体となって、円筒ころ軸受18の軸方向への移動を規制しているといえる。すなわち、インナーレース14aとワッシャ16は、機能的な一体性を有している。そのため、ワッシャ16だけでなく、インナーレース14aも偏心体8に隣接しているといえる。インナーレース14aとワッシャ16は、リングの一例である。なお、インナーレース14aとワッシャ16は、一体に形成されていてもよい。また、リング(ワッシャ16)の偏心体8側の表面に、径方向に延びる溝が形成されていてもよい。
 軸線32方向において、偏心体8X,8Yは、2個のインナーレース14aの間でシャフト6(クランクシャフト10)に嵌合している。偏心体8X,8Yの夫々が、外歯歯車20X,20Yの貫通孔内に位置している。円筒ころ軸受18が、外歯歯車20の貫通孔の内周面と偏心体8の外周面との間に介在している。偏心体8は、円筒ころ軸受18を介して外歯歯車20の貫通孔に係合している。外歯歯車20は、クランクシャフト10を介してキャリア2に支持されている。なお、歯車伝動装置100は、複数のクランクシャフト10を備えていてよい。具体的には、歯車伝動装置100は、3個のクランクシャフト10を備えている。図1には、3個のクランクシャフト10のうちの1個が現れている。各々のクランクシャフト10は、軸線36の周りに等間隔に配置されている。
 シャフト6の外周面には、シャフト6の軸方向(軸線32方向)に沿って複数の縦溝30が形成されている。また、シャフト6には、周方向に沿って、2個の横溝33が形成されている(図3も参照)。縦溝30は、インナーレース14aの内側を通過している。より詳細には、縦溝30は、偏心体8のインナーレース14a側の端部から、インナーレース14aの内側を通過して、シャフト6の軸方向端部に向けて延びている。これにより、シャフト6の軸方向端部から偏心体8のインナーレース14a側の表面に潤滑剤を供給することができる。また、縦溝30は、偏心体8の内側を通過している。より詳細には、縦溝30は、偏心体8のインナーレース14a側の端部から、偏心体8の内側を通過して、偏心体8Xと偏心体8Yの隙間部分にまで延びている。これにより、シャフト6の軸方向端部から偏心体8Xと偏心体8Yの隙間に潤滑剤を供給することができる。以下の説明では、シャフト6のうち、インナーレース14a及び偏心体8が取り付けられている部分を第1部分6aと称し、第1部分6aに形成されている縦溝30を第1縦溝30aと称することがある(図3も参照)。
 入力歯車34が、シャフト6(クランクシャフト10)に固定されている。入力歯車34は、シャフト6に形成されている縦溝30にスプライン結合している。シャフト6の軸方向において、入力歯車34は、一対の円錐ころ軸受14の外側でシャフト6に固定されている。以下の説明では、シャフト6のうち、入力歯車34が取り付けられている部分を第2部分6bと称し、第2部分6bに形成されている縦溝30を第2縦溝30bと称することがある(図3も参照)。
 第1プレート2aとケース42の間にオイルシール44が配置されている。キャップ5が、第1プレート2aの貫通孔2dに嵌め込まれている。オイルシール44及びキャップ5は、歯車伝動装置100の内部の潤滑剤等が歯車伝動装置100の外部に漏れることを防止している。
 歯車伝動装置100の動作を簡単に説明する。モータ(図示省略)のトルクが入力歯車34に伝達されると、クランクシャフト10が回転する。偏心体8は、クランクシャフト10の回転に伴って、軸線32に対して偏心回転する。外歯歯車20は、偏心体8の偏心回転に伴って、内歯歯車24と噛み合いながら偏心回転する。外歯歯車20の歯数と内歯歯車24の歯数(内歯ピン22の数)は異なる。上記したように、外歯歯車20はキャリア2に支持されており、内歯歯車24はケース42の内周面に形成されている。よって、外歯歯車20が偏心回転すると、外歯歯車20と内歯歯車24の歯数差に応じて、キャリア2がケース42に対して回転する。
 図2を参照し、歯車伝動装置100の利点を説明する。上記したように、シャフト6の外周に縦溝30が形成されている。潤滑剤は、シャフト6の軸方向端部から縦溝30内に供給される。縦溝30内の潤滑剤は、矢印50に示すように、ワッシャ16と偏心体8の隙間を通って、円筒ころ軸受18の内部に供給される。また、潤滑剤は、矢印52に示すように、偏心体8Xと8Yの隙間を通って、円筒ころ軸受18の内部に供給される。具体的には、縦溝30内の潤滑剤は、偏心体8の表面(軸線32方向の端面)を伝って、円筒ころ軸受18の内部に供給される。円筒ころ軸受18の転動体(円筒ころ)は、偏心体8の表面に接触しない。そのため、歯車伝動装置100では、円筒ころ軸受18の転動体に邪魔されることなく、円筒ころ軸受18の内部に潤滑剤を供給することができる。
 上記したように、ワッシャ16は、偏心体8に接している。ワッシャ16と偏心体8が密接すると、潤滑剤の通路(ワッシャ16と偏心体8の隙間)が狭くなる。その結果、潤滑剤が、矢印50に示すように移動することが困難になり得る。このような場合、ワッシャ16の偏心体8側の表面及び/又は偏心体8のワッシャ16側の表面に、径方向に延びる溝を形成すればよい。ワッシャ16と偏心体8の間に隙間が確保され、潤滑剤が、円筒ころ軸受18の内部に供給されやすくなる。
 図3~図5を参照し、シャフト6に形成されている縦溝30の特徴について説明する。なお、図3は、シャフト6に形成されている縦溝30の特徴を模式的に示しており、縦溝30の数、ピッチ等を正確に示すものではない。図3に示すように、縦溝30は、シャフト6の軸方向に沿って、第1部分6aの一端から他端まで延びている。縦溝30は、横溝33によって、第1縦溝30aと第2縦溝30bに分断されている。後述するが、第1縦溝30aと第2縦溝30bは一度に加工されており、実質的に同一の溝である。そのため、縦溝30は、シャフト6の一端から他端まで(第1部分6aと第2部分6bの全体)連続して延びているといえる。
 図4,図5に示すように、第1縦溝30aの深さ(第1縦溝30aの最大深さ)D1は、第2縦溝30bの深さD2と等しい。また、第1縦溝30aのピッチ(周方向の間隔)R1は、第2縦溝30bのピッチR2と等しい。すなわち、インナーレース14a及び偏心体8が嵌合する第1部分6aに形成されている第1縦溝30aの形状が、入力歯車34がスプライン結合する第2部分6bに形成されている第2縦溝30bの形状と等しい。
 上記したように、シャフト6では、第1縦溝30aと第2縦溝30bの形状が等しいので、第1縦溝30aと第2縦溝30bを一度に加工することができる。例えば、シャフト6の軸方向の一端から他端に至る縦溝30を形成した後、横溝33を形成することにより、第1縦溝30aと第2縦溝30bが形成される。歯車伝動装置100では、潤滑剤の移動通路である縦溝30を用いて、入力歯車34をシャフト6にスプライン結合することができる。別言すると、入力歯車34をシャフトにスプライン結合するための縦溝30を用いて、潤滑剤を円筒ころ軸受18の内部に供給することができる。横溝33には、入力歯車34が軸線32方向へ移動することを規制するリングが取り付けられている。
(第2実施例)
 図6,図7を参照し、第2実施例の歯車伝動装置について説明する。本実施例の歯車伝動装置は、シャフト(クランクシャフト)に形成されている溝の形状が第1実施例の歯車伝動装置100と異なるだけである。図6は、歯車伝動装置100の図4に示した断面に相当する。図7は、歯車伝動装置100の図5に示した断面に相当する。
 図6,図7に示すように、第1縦溝130aの深さD11が、第2縦溝130bの深さD12よりも深い。すなわち、第2縦溝130bの深さD12が、第1縦溝130aの深さD11よりも浅い。第1縦溝130aのピッチR11は、第2縦溝130bのピッチと等しい。第2縦溝130bの形状は、第1実施例におけるシャフト6の第2縦溝30bの形状と等しい(図5も参照)。シャフト106は、シャフト6と比較して、第1縦溝130a内に多くの潤滑剤を通すことができる。そのため、円筒ころ軸受18(図1を参照)の内部に、一層多くの潤滑剤を供給することができる。なお、上記したように、第1縦溝130aのピッチR11と第2縦溝130bのピッチR12は等しい。シャフト106は、ピッチR11(R12),深さD12の溝をシャフト106の一端から他端まで形成した後に、軸線方向の一部(図3の第1部分6aに相当する部分)の溝の深さを深さD11まで深くするだけで形成することができる。そのため、縦溝130も、シャフトの一端から他端まで連続して延びているといえる。
(第3実施例)
 図8~図10を参照し、第3実施例の歯車伝動装置について説明する。本実施例の歯車伝動装置も、シャフト(クランクシャフト)に形成されている溝の形状が第1実施例の歯車伝動装置100と異なるだけである。なお、図8は、シャフト206に形成されている縦溝230の特徴を模式的に示したものである。
 図8に示すように、第1縦溝230aの数は、第2縦溝230bの数よりも少ない。すなわち、第1部分206aと第2部分206bでは、縦溝の形状が大きく異なる。図9,図10に示すように、第1縦溝230aの深さD21は、第2縦溝230bの深さD22と等しい。第1縦溝230aのピッチR21は、第2縦溝230bのピッチR22よりも広い。すなわち、第2部分206bに形成されている隣り合う第2縦溝230bのピッチR22が、第1部分206aに形成されている隣り合う第1縦溝230aのピッチR21よりも狭い。なお、第2縦溝230bの形状は、シャフト6の第2縦溝30bの形状と等しい(図5も参照)。
 第1縦溝230aは、隣り合う第2縦溝230b間の凸部を、1個おきに削除した形態に相当する。シャフト206を用いることにより、シャフト6を用いる場合と比較して、第1縦溝230a内に多くの潤滑剤を通すことができる。その結果、円筒ころ軸受18(図1を参照)の内部に、一層多くの潤滑剤を供給することができる。なお、シャフト206は、ピッチR22,深さD21(D22)の溝をシャフト206の一端から他端まで形成した後に、シャフト206の第1部分206aについて、縦溝230間の凸部を1個おきに削除するだけで形成することができる。そのため、縦溝230も、シャフトの一端から他端まで連続して延びているといえる。
(第4実施例)
 図11を参照し、第4実施例の歯車伝動装置について説明する。本実施例の歯車伝動装置は、シャフト(クランクシャフト)に形成されている縦溝の形状が第1実施例の歯車伝動装置100と異なるだけである。なお、図11は、シャフト306に形成されている縦溝330の特徴を模式的に示しており、縦溝330の数、ピッチ等を正確に示すものではない。
 図11に示すように、第1縦溝330aが軸方向に対して斜めに延びている。第2縦溝330bは、軸方向に沿って延びている。シャフト306の場合、シャフト306が回転すると、第1縦溝330a内の潤滑剤に、第1縦溝330a内を移動する力が作用する。その結果、円筒ころ軸受18(図1を参照)に供給される潤滑剤の量が増し、円筒ころ軸受18の劣化を一層抑制することができる。なお、第1縦溝330aは、はすば歯車を製造する技術を用いて形成することができる。また、第2縦溝330bが軸方向に沿って延びているので、第2縦溝330bを利用して入力歯車34(図1を参照)を固定することができる。
(第5実施例)
 図12を参照し、第5実施例の歯車伝動装置について説明する。本実施例の歯車伝動装置は、シャフト(クランクシャフト)に形成されている縦溝の形状が第1実施例の歯車伝動装置100と異なるだけである。なお、図12は、シャフト406に形成されている縦溝430の特徴を模式的に示しており、縦溝430の数、ピッチ等を正確に示すものではない。
 図12に示すように、シャフト406では、第1縦溝430aが軸方向に対して斜めに延びているとともに、第1縦溝430aがらせん状である。シャフト406の場合も、シャフト406が回転すると、第1縦溝430a内の潤滑剤に、第1縦溝430a内を移動する力が作用する。さらに、第4実施例のシャフト306の第1縦溝330aと比較して、第1縦溝430aの長さを長くすることができる。そのため、第1縦溝430a内に、多くの潤滑剤を保持することができる。なお、第2縦溝430bが軸方向に沿って延びているので、第2縦溝430bを利用して入力歯車34(図1を参照)を固定することができる。
(第6実施例)
 図13~図15を参照し、歯車伝動装置500について説明する。歯車伝動装置500は歯車伝動装置100の変形例であり、歯車伝動装置100と同じ部品には、同じ符号又は下二桁が同じ符号を付すことにより説明を省略することがある。歯車伝動装置500は、クランクシャフト510の構造が、歯車伝動装置100のクランクシャフト10と異なるだけである。より正確には、シャフト506の構造が、歯車伝動装置100のシャフト6と異なる。
 図13に示すように、シャフト506の内部に、貫通孔507が形成されている。より詳細には、中央貫通孔507aが、シャフト506の軸線に沿って、シャフト506の一端から他端まで連続して延びている。第1貫通孔507b,第2貫通孔507c及び第3貫通孔507dが、シャフト506の径方向(軸線32に直交する方向)に向けて延びている。貫通孔507b~507dは、中央貫通孔507aと第1縦溝30aに繋がっている。第1貫通孔507bと第3貫通孔507dは、軸線32方向において、偏心体8とインナーレース14aの間、すなわち、ワッシャ16が配置されている位置で第1縦溝30aに連通している。第2貫通孔507cは、軸線32方向において、偏心体8X,8Yの間で第1縦溝30aに連通している。
 図14,図15に示すように、貫通孔507b~507dは、中央貫通孔507aと全ての第1縦溝30aとを繋いでいる。すなわち、貫通孔507b~507dの夫々の数は、第1縦溝30aの数に等しい。また、貫通孔507b~507dの形状は、全て等しい。貫通孔507を備えることにより、シャフト506の外周面からだけでなく、シャフト506の内部からも円筒ころ軸受18の内部に潤滑剤が供給される。すなわち、シャフト506を用いることにより、円筒ころ軸受18の劣化を一層抑制することができる。
 なお、貫通孔507b~507dは、中央貫通孔507aと一部の第1縦溝30aを繋いでいてもよい。すなわち、貫通孔507b~507dの夫々の数は、第1縦溝30aの数よりも少なくてもよい。クランクシャフト510が回転すると、円筒ころ軸受18は、偏心体8の周りを移動する。そのため、貫通孔507b~507dが一部の第1縦溝30aにのみ繋がっていても、貫通孔507b~507dを通過してきた潤滑剤は、円筒ころ軸受18の全ての転動体(円筒ころ)に行き渡る。なお、貫通孔507b~507dの全てが、シャフト506に形成されている必要はない。例えば、第1貫通孔507bと第3貫通孔507dが、シャフト506に形成されていてもよい。あるいは、第2貫通孔507cのみが、シャフト506に形成されていてもよい。
 上記実施例では、縦溝がシャフトの一端から他端まで連続している例を示した。いずれの場合も、偏心体は、一端から他端まで連続している縦溝を有するシャフトに圧入されて固定されている。しかしながら、縦溝は、円錐ころ軸受のインナーレースの内側を通過していればよい。この場合、クランクシャフトは、偏心体とシャフトが一体に形成されたものであってもよい。また、偏心体は1個であってもよい。溝が円錐ころ軸受のインナーレースの内側を通過していれば、シャフトの軸方向端部に存在する潤滑剤が偏心体の表面に移動することができ、円筒ころ軸受内に潤滑剤を供給することができる。
 また、複数の偏心体がシャフトに嵌合しており、夫々の偏心体の内側に溝が形成される場合であっても、必ずしも溝がシャフトの一端から他端まで連続していなくてもよい。溝が偏心体の隙間にまで延びていれば、偏心体間に潤滑剤を供給することができる。
 シャフト(クランクシャフト)を支持する軸受は、円錐ころ軸受でなくてもよい。例えば、円筒ころ軸受であってもよい。この場合、シャフトにインナーレースを嵌合させることなく、円筒状のリングを嵌合させればよい。
 上記実施例では、外歯歯車が偏心回転する歯車伝動装置について説明した。しかしながら、本明細書で開示する技術は、内歯歯車が偏心回転する歯車伝動装置に適用することもできる。重要なことは、偏心体が固定されているシャフトの外周面に溝が形成されていることである。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (10)

  1.  内歯歯車と、
     内歯歯車と噛み合いながら相対的に偏心回転する外歯歯車と、
     内歯歯車又は外歯歯車の一方の歯車に形成されている貫通孔に係合する偏心体を有しているとともに、前記一方の歯車を偏心回転させるシャフトと、
     前記シャフトに同軸に取り付けられているとともに偏心体に隣接しているリングと、を備えており、
     前記シャフトの外周面に、偏心体が配置されている位置から前記リングの内側を通過して前記シャフトの軸方向の両端に向けて、溝が形成されている歯車伝動装置。
  2.  複数の偏心体が前記シャフトに嵌合されており、
     前記シャフトの軸方向において、夫々の偏心体の間に隙間が設けられており、
     前記溝が、前記隙間まで延びている請求項1に記載の歯車伝動装置。
  3.  前記溝が、前記シャフトの軸方向の一端から他端まで連続している請求項1又は2に記載の歯車伝動装置。
  4.  前記溝に、歯車がスプライン結合している請求項3に記載の歯車伝動装置。
  5.  前記歯車がスプライン結合している部分に形成されている溝が、他の部分に形成されている溝よりも浅い請求項4に記載の歯車伝動装置。
  6.  前記歯車がスプライン結合している部分に形成されている隣り合う溝のピッチが、他の部分に形成されている隣り合う溝のピッチよりも狭い請求項4に記載の歯車伝動装置。
  7.  前記溝が、シャフトの軸線に対して斜めに延びている請求項1から6のいずれか一項に記載の歯車伝動装置。
  8.  前記溝が、らせん状である請求項7に記載の歯車伝動装置。
  9.  シャフトの軸方向に沿って中央貫通孔が形成されており、
     前記溝と中央貫通孔を繋ぐ貫通孔が、シャフトの径方向に延びている請求項1から8のいずれか一項に記載の歯車伝動装置。
  10.  前記リングが、シャフトを回転可能に支持する軸受のインナーレースである請求項1から9のいずれか一項に記載の歯車伝動装置。
     
PCT/JP2013/057456 2012-03-30 2013-03-15 歯車伝動装置 WO2013146361A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012079453A JP5922464B2 (ja) 2012-03-30 2012-03-30 歯車伝動装置
JP2012-079453 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146361A1 true WO2013146361A1 (ja) 2013-10-03

Family

ID=49259622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057456 WO2013146361A1 (ja) 2012-03-30 2013-03-15 歯車伝動装置

Country Status (3)

Country Link
JP (1) JP5922464B2 (ja)
TW (1) TWI597439B (ja)
WO (1) WO2013146361A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138913A (zh) * 2015-11-03 2018-06-08 索尤若驱动有限及两合公司 斜置轴承和具有止推片的减速器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532386B2 (ja) * 2015-11-18 2019-06-19 住友重機械工業株式会社 偏心揺動型の歯車装置
WO2021182357A1 (ja) * 2020-03-12 2021-09-16 Ntn株式会社 電動アクチュエータ
JP7463140B2 (ja) * 2020-03-12 2024-04-08 Ntn株式会社 電動アクチュエータ
CN115789179B (zh) * 2023-02-01 2023-07-25 河北傲盈能源科技有限公司 等距与不等距的双偏心同步旋转轴及其组装式曲轴结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108656U (ja) * 1985-12-27 1987-07-11
JPH05340451A (ja) * 1992-01-17 1993-12-21 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造
JP2006057772A (ja) * 2004-08-20 2006-03-02 Sumitomo Heavy Ind Ltd 遊星減速機構の遊星回転部材のピン構造及びピンの製造方法
JP2010169247A (ja) * 2008-12-26 2010-08-05 Ntn Corp 鉄道車両駆動ユニット
JP2013064451A (ja) * 2011-09-16 2013-04-11 Sumitomo Heavy Ind Ltd 偏心揺動型の減速装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108656U (ja) * 1985-12-27 1987-07-11
JPH05340451A (ja) * 1992-01-17 1993-12-21 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造
JP2006057772A (ja) * 2004-08-20 2006-03-02 Sumitomo Heavy Ind Ltd 遊星減速機構の遊星回転部材のピン構造及びピンの製造方法
JP2010169247A (ja) * 2008-12-26 2010-08-05 Ntn Corp 鉄道車両駆動ユニット
JP2013064451A (ja) * 2011-09-16 2013-04-11 Sumitomo Heavy Ind Ltd 偏心揺動型の減速装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138913A (zh) * 2015-11-03 2018-06-08 索尤若驱动有限及两合公司 斜置轴承和具有止推片的减速器

Also Published As

Publication number Publication date
JP5922464B2 (ja) 2016-05-24
TW201348621A (zh) 2013-12-01
JP2013210025A (ja) 2013-10-10
TWI597439B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2013146361A1 (ja) 歯車伝動装置
KR101669380B1 (ko) 기어 전동 장치와 그것에 사용되는 크랭크 샤프트 구조체
WO2011083640A1 (ja) 歯車伝動装置
JP5931279B2 (ja) 動力伝達装置
KR102262294B1 (ko) 기어 전동 장치
JP6237212B2 (ja) 遊星歯車機構
WO2018168763A1 (ja) 差動減速機
WO2018168762A1 (ja) 差動減速機のシリーズ及び差動減速機のシリーズの製造方法
JP5606587B2 (ja) 歯車装置
JP6335006B2 (ja) 歯車伝動装置
CN207145576U (zh) 一种差速器用行星齿轮
JP6744244B2 (ja) 差動減速機
JP2007016931A (ja) スラストワッシャの潤滑油路構造
WO2013108717A1 (ja) 歯車伝動装置
JP6349681B2 (ja) ラジアルころ軸受用保持器及びラジアルころ軸受
CN105041981B (zh) 齿轮传动装置
JP7193976B2 (ja) 偏心揺動型減速装置
JP5339743B2 (ja) 歯車装置
KR101950519B1 (ko) 회전력 전달용 아이들기어의 윤활공급구조
JP2018091414A (ja) 撓み噛合い式歯車装置
JP6391437B2 (ja) 撓み噛合い式歯車装置
JP6551125B2 (ja) 歯車伝動装置
JP2020070864A (ja) 遊星歯車装置
JP2009204089A (ja) 針状ころ軸受用の保持器及び針状ころ軸受
JP2006342928A (ja) ディファレンシャル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770237

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13770237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE