[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013146057A1 - 車両及び車両の制御方法 - Google Patents

車両及び車両の制御方法 Download PDF

Info

Publication number
WO2013146057A1
WO2013146057A1 PCT/JP2013/055307 JP2013055307W WO2013146057A1 WO 2013146057 A1 WO2013146057 A1 WO 2013146057A1 JP 2013055307 W JP2013055307 W JP 2013055307W WO 2013146057 A1 WO2013146057 A1 WO 2013146057A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
drive
vehicle
driving
switching
Prior art date
Application number
PCT/JP2013/055307
Other languages
English (en)
French (fr)
Inventor
野口真利
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US14/376,577 priority Critical patent/US9573466B2/en
Priority to CN201380016576.0A priority patent/CN104245387B/zh
Priority to JP2014507574A priority patent/JP5596243B2/ja
Priority to DE112013001826.8T priority patent/DE112013001826B4/de
Publication of WO2013146057A1 publication Critical patent/WO2013146057A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K2023/085Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles automatically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K2023/085Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles automatically actuated
    • B60K2023/0858Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles automatically actuated with electric means, e.g. electro-hydraulic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to, for example, a vehicle that switches between at least one of front-wheel drive and rear-wheel drive and all-wheel drive, and a control method thereof.
  • U.S. Pat. No. 5,540,299 (hereinafter referred to as “US 550299 A”) describes an engine 2 that drives front wheels 1FL, 1FR (primarily driven wheels), and rear wheels 1RL, 1RR (auxiliary drive wheels (auxiliary drive wheels)).
  • a method of driving a vehicle having motors ML, MR for driving secondarily driven wheels)) is disclosed (summary, Fig. 1, claim 1).
  • a predetermined value W23: YES in FIG. 15
  • normal driving means assisting driving, and is defined as a synonym for braking as “reverse driving” (column 8 from 55). 59th line). Further, from the viewpoint that it is preferable to improve the stability of the vehicle as four-wheel drive, it is said that the positive drive can be forcibly executed in the independent mode when YES in W23 of FIG. 15 ( Column 22, lines 33-40).
  • the front wheels 1FL and 1FR driven by the engine 2 are main drive wheels, and the rear wheels 1RL and 1RR driven by the motors ML and MR are auxiliary drive wheels. 1).
  • the front wheel drive using only the engine 2 and the four wheel drive using the engine 2 and the motors ML and MR are performed, but the rear wheel drive using only the motors ML and MR is not mentioned.
  • US Pat. No. 5,540,299 A does not consider what value the specific value of the lateral G used in W23 of FIG. 15 is.
  • the present invention has been made in view of such problems, and an object thereof is to provide a vehicle and a vehicle control method capable of suitably selecting a driving state in a configuration having an internal combustion engine.
  • a vehicle includes a first drive device that drives one of a front wheel and a rear wheel, a second drive device that includes an internal combustion engine and drives the other of the front wheel and the rear wheel, the first drive device, and the A driving state control device that controls a driving state of the front wheels and the rear wheels by controlling a second driving device; and an internal combustion engine control device that controls an operating state of the internal combustion engine, the driving state
  • the control device includes a first single drive state in which the vehicle is driven only by the driving force of the first drive device, and a second single drive state in which the vehicle is driven only by the drive force of the second drive device.
  • the driving state is switched between a driving state and a composite driving state in which the vehicle is driven by driving forces of the first driving device and the second driving device. Further, the driving state control device is switched from the first single driving state.
  • the switching to the composite drive state and the switching from the second single drive state to the composite drive state are executed based on a lateral acceleration related value related to the lateral acceleration acting on the vehicle, and the first single drive state
  • a second switching threshold value that is the lateral acceleration related value for switching from the second single driving state to the composite driving state. And a different value is set.
  • the threshold value of the lateral acceleration related value can be switched between when the internal combustion engine is operating and when the internal combustion engine is stopped. For this reason, for example, it is possible to switch the driving state in consideration of the balance between the energy consumption accompanying the operation of the internal combustion engine and the steering stability of the vehicle (the ability to steer the vehicle according to the driver's will).
  • the second switching threshold value may be smaller than the first switching threshold value.
  • a vehicle includes a first drive device that drives one of a front wheel and a rear wheel, a second drive device that includes an internal combustion engine and drives the other of the front wheel and the rear wheel, the first drive device, and the A driving state control device that controls a driving state of the front wheels and the rear wheels by controlling a second driving device; and an internal combustion engine control device that controls an operating state of the internal combustion engine, the driving state
  • the control device is a state in which the vehicle is driven only by the driving force of the first driving device, and a state in which the vehicle is driven by the driving force of the first driving device and the second driving device.
  • the drive state control device switches the first independent drive state to the composite drive state based on a lateral acceleration related value related to a lateral acceleration acting on the vehicle. And when the internal combustion engine is stopped, the threshold value at the time of stop, which is the lateral acceleration related value for switching from the first single drive state to the combined drive state, and the internal combustion engine is operating In the state, a value different from the threshold value at the time of operation which is the lateral acceleration related value for switching from the first single drive state to the composite drive state is set.
  • the stop threshold for switching from the first single drive state (the state where one of the front wheels and the rear wheels is driven) to the combined drive state, and when the internal combustion engine is operating
  • Different values are set for the operating threshold value for switching from the first single drive state to the composite drive state.
  • the threshold value of the lateral acceleration correlation value is switched between when the internal combustion engine is operating and when the internal combustion engine is stopped. For this reason, for example, it is possible to switch the driving state in consideration of the balance between the energy consumption accompanying the operation of the internal combustion engine and the steering stability of the vehicle (the ability to steer the vehicle according to the driver's will).
  • the operating threshold value may be smaller than the stopping threshold value. Accordingly, the switching from the first single drive state to the composite drive state at the time of operation of the internal combustion engine is performed faster than the switch from the first single drive state to the composite drive state when the internal combustion engine is stopped. . For this reason, when the internal combustion engine is operated before switching from the first single drive state to the composite drive state, it is possible to improve the steering stability at an early stage.
  • the internal combustion engine may selectively apply a driving force to a generator provided in the vehicle in the first single driving state. As a result, in the first single drive state, it is possible to supply electric power to the vehicle by operating the generator with the driving force from the internal combustion engine.
  • the vehicle control method includes a first drive device that drives one of a front wheel and a rear wheel, a second drive device that includes an internal combustion engine and drives the other of the front wheel and the rear wheel, and the first drive.
  • a vehicle control method comprising: a drive state control device that controls a drive state of the front wheels and the rear wheels by controlling a device and the second drive device; and an internal combustion engine control device that controls an operation state of the internal combustion engine.
  • the drive state control device drives the vehicle only by the first single drive state in which the vehicle is driven only by the drive force of the first drive device and only by the drive force of the second drive device.
  • a second single drive state which is a state
  • a composite drive state which is a state in which the vehicle is driven by the driving force of the first drive device and the second drive device
  • the drive state control device further includes: The switching from the single driving state to the combined driving state and the switching from the second single driving state to the combined driving state are executed based on a lateral acceleration related value related to the lateral acceleration acting on the vehicle, A first switching threshold which is the lateral acceleration related value for switching from the first single driving state to the composite driving state, and the lateral acceleration related value for switching from the second single driving state to the composite driving state. A different value is set for a certain second switching threshold value.
  • the vehicle control method includes a first drive device that drives one of a front wheel and a rear wheel, a second drive device that includes an internal combustion engine and drives the other of the front wheel and the rear wheel, and the first drive.
  • a vehicle control method comprising: a drive state control device that controls a drive state of the front wheels and the rear wheels by controlling a device and the second drive device; and an internal combustion engine control device that controls an operation state of the internal combustion engine.
  • the drive state control device is configured to use a first single drive state in which the vehicle is driven only by the drive force of the first drive device, and a drive force of the first drive device and the second drive device.
  • the driving state controller switches between the first driving state and the combined driving state in relation to a lateral acceleration acting on the vehicle.
  • a threshold value at the time of stop which is the lateral acceleration related value for switching from the first single drive state to the combined drive state when the internal combustion engine is stopped, and executed based on a lateral acceleration related value;
  • a different value is set to the operating threshold value which is the lateral acceleration related value for switching from the first independent driving state to the combined driving state.
  • FIG. 1 is a schematic configuration diagram of a vehicle drive system and its surroundings according to an embodiment of the present invention. It is a figure which shows an example of the mode of the driving
  • horizontal G time of slow acceleration
  • FIG. 8 is a flowchart for selecting a drive state switching prohibition threshold (details of S32 in FIG. 7). It is a figure which shows the 1st example of the relationship between an accelerator opening and a drive state switching prohibition threshold value. It is a figure which shows the 2nd example of the relationship between an accelerator opening and a drive state switching prohibition threshold value.
  • FIG. 1 It is a schematic block diagram of the drive system of the vehicle which concerns on the modification of this invention, and its periphery. It is a figure which shows the 1st example of the relationship between a longitudinal acceleration (henceforth "front-rear G") and a drive state switching prohibition threshold value. It is a figure which shows the 2nd example of the relationship between the front-back G and a drive state switching prohibition threshold value. It is a figure which shows an example of the relationship between a vehicle speed and a drive state switching prohibition threshold value.
  • FIG. 1 is a schematic configuration diagram of a drive system of a vehicle 10 and its surroundings according to an embodiment of the present invention.
  • the vehicle 10 includes an engine 12 and a first travel motor 14 (hereinafter referred to as “first motor 14” or “front motor 14”) arranged in series on the front side of the vehicle 10.
  • Second and third travel motors 16 and 18 (hereinafter referred to as “second and third motors 16 and 18” or “rear motors 16 and 18”) disposed on the rear side, and a high-voltage battery 20 (hereinafter referred to as “battery”).
  • 20 ”), first to third inverters 22, 24, and 26, and a drive electronic control unit 28 (hereinafter referred to as“ drive ECU 28 ”or“ ECU 28 ”).
  • the engine 12 and the first motor 14 transmit a driving force (hereinafter referred to as “front wheel driving force Ff”) to the left front wheel 32a and the right front wheel 32b (hereinafter collectively referred to as “front wheel 32”) via the transmission 30.
  • the engine 12 and the first motor 14 constitute a front wheel drive device 34 (steering wheel drive device).
  • the vehicle 10 is driven only by the first motor 14 when the load is low, is driven only by the engine 12 when the vehicle 10 is medium load, and is driven by the engine 12 and the first motor 14 when the vehicle 10 is high load.
  • the first motor 14 is driven by the engine 12 in a state where the engine 12 and the transmission 30 are disconnected (or connected) by a clutch (not shown), and the generated power is supplied to the battery 20. Or can be supplied to an auxiliary machine (not shown).
  • the first motor 14 can also be used as a generator.
  • the output shaft of the second motor 16 is connected to the rotation shaft of the left rear wheel 36a, and transmits driving force to the left rear wheel 36a.
  • the output shaft of the third motor 18 is connected to the rotation shaft of the right rear wheel 36b, and transmits the driving force to the right rear wheel 36b.
  • the second and third motors 16 and 18 constitute a rear wheel drive device 38 (non-steered wheel drive device).
  • the left rear wheel 36a and the right rear wheel 36b are collectively referred to as a rear wheel 36.
  • the driving force transmitted from the rear wheel driving device 38 to the rear wheel 36 is referred to as a rear wheel driving force Fr.
  • the high voltage battery 20 supplies power to the first to third motors 14, 16, 18 via the first to third inverters 22, 24, 26 and from the first to third motors 14, 16, 18.
  • the regenerative power Preg is charged.
  • the drive ECU 28 controls the engine 12 and the first to third inverters 22, 24, 26 based on outputs from various sensors and electronic control units (hereinafter referred to as “ECU”). Controls the output of the third motors 14, 16, and 18.
  • the drive ECU 28 includes an input / output unit 40, a calculation unit 42, and a storage unit 44.
  • the drive ECU 28 may be a combination of a plurality of ECUs. For example, a plurality of ECUs provided corresponding to the engine 12 and the first to third motors 14, 16, 18 respectively, and an ECU for managing the drive states of the engine 12 and the first to third motors 14, 16, 18
  • the drive ECU 28 may be configured as described above.
  • the various sensors output to the drive ECU 28 include, for example, a vehicle speed sensor 50, a shift position sensor 52, an accelerator pedal opening sensor 54, a yaw rate sensor 56, and a tire steering angle sensor 58.
  • the engine 12 is, for example, a 6-cylinder engine, but may be another engine such as a 2-cylinder, 4-cylinder, or 8-cylinder type.
  • the engine 12 is not limited to a gasoline engine, but may be an engine such as a diesel engine or an air engine.
  • the first to third motors 14, 16, and 18 are, for example, a three-phase AC brushless type, but may be other motors such as a three-phase AC brush type, a single-phase AC type, and a DC type.
  • the specifications of the first to third motors 14, 16, 18 may be the same or different.
  • the left rear wheel 36a and the right rear wheel 36b may be driven by one traveling motor.
  • the first to third inverters 22, 24, 26 have a three-phase bridge configuration, perform DC / AC conversion, convert DC to three-phase AC, and convert the first to third motors 14, 16,
  • the direct current after the alternating current / direct current conversion accompanying the regenerative operation of the first to third motors 14, 16, 18 is supplied to the high voltage battery 20.
  • the high voltage battery 20 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydride secondary battery, or a capacitor can be used. In this embodiment, a lithium ion secondary battery is used.
  • a DC / DC converter (not shown) is provided between the first to third inverters 22, 24, 26 and the high voltage battery 20, and the output voltage of the high voltage battery 20 or the output of the first to third motors 14, 16, 18 is provided. The voltage may be boosted or lowered.
  • the vehicle speed sensor 50 detects the vehicle speed V [km / h].
  • the shift position sensor 52 is a position of a shift lever (not shown) such as “P” as a parking range, “N” as a neutral range, “D” as a forward travel range, “R” as a reverse travel range, etc. "Shift position Ps" is detected.
  • the accelerator pedal opening sensor 54 detects the opening of an accelerator pedal (not shown) (hereinafter referred to as “accelerator opening ⁇ ap”).
  • the yaw rate sensor 56 detects the yaw rate Yr of the vehicle 10.
  • the tire steering angle sensor 58 has an actual steering angle (hereinafter referred to as “tire steering angle ⁇ ”) of the front wheel 32 as a steering wheel.
  • FIG. 2 shows an example of how the driving state (driving state) and the driving source are switched in this embodiment.
  • the drive ECU 28 controls the switching of the driving state (driving state) and the driving source.
  • the “traveling state” in FIG. 2 means whether the vehicle 10 is stopped, driving forward, regenerating, or driving backward, and the “driving state” indicates that the vehicle 10 is “RWD” (rear wheel drive). : Rear Wheel Drive), "FWD” (front wheel drive: Front Wheel Drive) or “AWD” (front and rear wheel drive: All Wheel Drive). RWD and FWD are both two-wheel drive (2WD), and AWD is four-wheel drive (4WD). Furthermore, the regeneration in FIG. 2 indicates that at least one of the first to third travel motors 14, 16, 18 is performing the regeneration.
  • shift position means the position of a shift lever (not shown)
  • P indicates a parking range
  • D indicates a forward travel range
  • R indicates a reverse travel range
  • drive source means a device for driving the vehicle 10
  • ENG means the engine 12
  • MOT when the drive state is “RWD” means the rear motors 16, 18.
  • ENG + MOT when the drive state is “AWD” indicates that the engine 12 and the front and rear motors 14, 16, and 18 are “regenerative”, and “regeneration” indicates at least one of the front and rear motors 14, 16, and 18. Means.
  • the vehicle speed V is divided into “low speed region”, “medium speed region”, “high speed region”, and “reverse region”, and the drive source is switched according to these categories.
  • RWD is used when the vehicle speed V is driving forward in the low speed range and when driving backward.
  • FWD or AWD is used when the vehicle speed V is driving forward in the middle speed range.
  • a threshold hereinafter referred to as “accelerator opening threshold TH ⁇ ” or “threshold TH ⁇ ”
  • FWD is set. Is selected, and AWD is selected when the accelerator opening exceeds the accelerator opening threshold.
  • FWD is used.
  • running state may be switched by a method as shown in FIG. 13 of US 2012/0015772 A1 and related description.
  • step S1 the ECU 28 determines whether or not the vehicle 10 needs to move forward. This determination is performed, for example, by confirming whether or not the shift position Ps notified from the shift position sensor 52 is a position indicating forward travel (forward travel range D). When advance is required (S1: YES), the process proceeds to step S2.
  • step S2 the ECU 28 determines whether or not the rear motors 16 and 18 can be driven. This determination is made based on, for example, the temperature of the rear motors 16 and 18, the occurrence of an abnormality in the rear motors 16 and 18, and the state of charge of the battery 20 (SOC: StateSOof Charge).
  • the temperature of each of the rear motors 16 and 18 (hereinafter referred to as “rear motor temperature”) is detected by a temperature sensor (not shown), and the rear motor temperature detects overheating of the rear motors 16 and 18.
  • the threshold value for determination is exceeded, it is determined that the rear motors 16 and 18 cannot be driven.
  • the output from various sensors for example, a voltage sensor, a current sensor, and a rotation angle sensor
  • the output from various sensors for example, a voltage sensor, a current sensor, and a rotation angle sensor
  • the determination as to whether or not the rear motors 16 and 18 can be driven may be made based on a criterion other than the above.
  • the ECU 28 sets the first flag FLG1 and the second flag FLG2 mainly based on the lateral G (lateral acceleration related value).
  • the first flag FLG1 is a flag (driving state switching prohibition determination flag) for setting whether or not switching of the driving state is prohibited, and is used in step S4 described later.
  • the second flag FLG2 is a flag (engine start determination flag) for setting whether to start the engine 12 regardless of whether the drive state is FWD, RWD, or AWD, and is used in step S6 described later. . Details of the method of setting the first flag FLG1 and the second flag FLG2 will be described later with reference to FIG.
  • step S4 the ECU 28 determines whether or not switching of the driving state is prohibited based on the first flag FLG1. Specifically, when the first flag FLG1 is 0, switching of the driving state is not prohibited (permitted), and when the first flag FLG1 is 1, switching of the driving state is prohibited.
  • step S5 When the first flag FLG1 is 1 and switching of the driving state is prohibited (S4: YES), in step S5, the ECU 28 fixes the driving state to AWD. When switching of the driving state is not prohibited (S4: NO), the process proceeds to step S6.
  • step S6 the ECU 28 determines whether or not to start the engine 12 based on the second flag FLG2. Specifically, when the second flag FLG2 is 0, the engine 12 is not started depending on the determination in step S6, and when the second flag FLG2 is 1, whether the drive state is FWD, RWD, or AWD. Regardless, the engine 12 is started.
  • step S8 If the engine 12 is not started based on the second flag FLG2 (S6: NO), the process proceeds to step S8.
  • step S7 the ECU 28 starts the engine 12 and proceeds to step S8.
  • the engine 12 is started in step S7 regardless of whether the driving state is FWD, RWD, or AWD. In other words, if the drive state at that time is FWD or AWD, the engine 12 is already in operation, and thus the operation state is continued as it is. On the other hand, if the driving state at that time is RWD, since the rear motors 16 and 18 are used as driving sources, the engine 12 is started, but is kept in an idling state.
  • the idling state is set in this way because when the second flag FLG2 is 1, the switching to the AWD (S5) is highly likely to be prohibited after that, and the transition to the AWD is performed. This is to perform smoothly.
  • step S8 the ECU 28 determines whether or not the vehicle 10 is decelerating. This determination is performed using the vehicle speed V from the vehicle speed sensor 50, for example.
  • step S9 the ECU 28 selects regeneration as the traveling state. Accordingly, the ECU 28 causes regeneration by at least one of the first to third travel motors 14, 16, 18.
  • step S10 the process proceeds to step S10 in FIG.
  • the ECU 28 determines whether or not the vehicle 10 has a low vehicle speed (for example, 0 to 30 km / h). This determination is performed using the vehicle speed V from the vehicle speed sensor 50, for example.
  • the vehicle speed V from the vehicle speed sensor 50, for example.
  • the ECU 28 selects RWD as the driving state. Accordingly, the vehicle 10 is driven by the rear motors 16 and 18.
  • the process proceeds to step S12.
  • step S12 the ECU 28 determines whether or not the vehicle 10 is at a medium vehicle speed (for example, 31 to 80 km / h). This determination is performed using the vehicle speed V from the vehicle speed sensor 50, for example.
  • the ECU 28 determines whether or not the accelerator opening ⁇ ap is equal to or less than the accelerator opening threshold TH ⁇ .
  • the threshold value TH ⁇ is a threshold value used for selecting FWD or AWD.
  • step S14 the ECU 28 selects FWD as the driving state. Accordingly, the vehicle 10 is driven by either one or both of the engine 12 and the first motor 14.
  • step S15 the ECU 28 selects AWD as the driving state. Accordingly, the vehicle 10 is driven by the engine 12 and the first to third motors 14, 16, and 18.
  • step S12 if the vehicle 10 is not at a medium vehicle speed (S12: NO), it can be said that the vehicle 10 is traveling at a high vehicle speed (for example, 81 km / h or more). In this case, in step S16, the ECU 28 selects FWD as the driving state.
  • a medium vehicle speed for example, 81 km / h or more.
  • step S17 when the rear motors 16 and 18 cannot be driven (S2: NO), the ECU 28 selects FWD as the driving state in step S17. This makes it possible to prevent transition to RWD or AWD when the rear motors 16 and 18 cannot be driven.
  • step S18 the ECU 28 determines whether the vehicle 10 needs to be moved backward. This determination is performed, for example, by confirming whether or not the shift position Ps notified from the shift position sensor 52 is a position indicating reverse (reverse travel range R). When the vehicle needs to move backward (S18: YES), in step S19, the ECU 28 selects RWD as the driving state. If it is not necessary to reverse the vehicle (S18: NO), in step S20, the ECU 28 selects the stop as the running state, and stops both the engine 12 and the first to third motors 14, 16, and 18.
  • FIG. 5 is a diagram illustrating the relationship between the lateral G and the turning radius ratio R / R0 during slow acceleration in accordance with the driving state.
  • the slow acceleration here means that the acceleration of the vehicle 10 is slow (the time differential value of the vehicle speed V is small), and corresponds to, for example, a state where the accelerator opening ⁇ ap is relatively small.
  • the turning radius ratio R / R0 is a value indicating how far the actual turning radius R [m] deviates from the reference turning radius R0 [m].
  • the turning radius ratio R / R0 is used as an index indicating the turning characteristics of the vehicle 10.
  • Japanese Patent Application Laid-Open No. 2011-252564 or Japanese Patent Application Laid-Open No. 2008-230513 can be used.
  • FIG. 6 is a diagram showing the relationship between the lateral G and the turning radius ratio R / R0 according to the driving state during wide open throttle (WOT).
  • WOT means so-called full throttle, and the accelerator opening ⁇ ap is maximized.
  • the turning radius ratio R / R0 for each drive state (FWD, RWD, and AWD) is Take almost equal values.
  • the lateral G exceeds the first deviation occurrence value Gdiv1
  • the turning radius ratio R / R0 of the FWD and the turning radius ratio R / R0 of the RWD and AWD start to deviate.
  • the lateral G exceeds the second divergence occurrence value Gdiv2 (second lateral G)
  • the turning radius ratio R / R0 of the RWD and the turning radius ratio R / R0 of the AWD start to diverge.
  • the vehicle 10 turns by switching the driving state.
  • the characteristics may change suddenly, which may cause the driver to feel uncomfortable. Therefore, in this embodiment, when the lateral G exceeds a predetermined threshold (hereinafter referred to as “driving state switching prohibiting threshold G1” or “first lateral G threshold G1”), switching of the driving state is prohibited.
  • the first lateral G threshold G1 includes the first lateral G threshold G1a (the first switching threshold and the stopping threshold) when the engine 12 is stopped at the current time (calculation time), and the engine 12 at the current time.
  • the first lateral G threshold G1b (second switching threshold and operating threshold) when the is operating is selectively used.
  • the first lateral G threshold G1 is used as a general term for the first lateral G thresholds G1a and G1b, or actually used for comparison with the lateral G among the first lateral G thresholds G1a and G1b.
  • the first lateral G threshold value G1a is set to a value equal to the lateral G at which the turning radius ratio R / R0 starts to deviate between FWD, RWD, and AWD (that is, the first deviation occurrence value Gdiv1). Is done.
  • the first lateral G threshold G1a may be set to a value smaller than the first deviation occurrence value Gdiv1.
  • the first lateral G threshold value G1a can be set to a value slightly larger than the first deviation occurrence value Gdiv1.
  • the lateral G where the turning radius ratio R / R0 is different for each driving state includes the first deviation occurrence value Gdiv1 and the second deviation occurrence value Gdiv2.
  • a smaller value that is, the first divergence occurrence value Gdiv1
  • a smaller value of the first divergence occurrence value Gdiv1 and the second divergence occurrence value Gdiv2 is referred to as a “divergence reference value Gref”.
  • the first lateral G threshold G1b used when the engine 12 is operating is set to a value smaller than the first lateral G threshold G1a used when the engine 12 is stopped. This is because when the engine 12 is stopped, it is preferable to slow the start of the engine 12 from the viewpoint of energy efficiency, and when the engine 12 is operating, the rear motors 16 and 18 are operated early. It is based on the viewpoint that it is preferable to improve the steering stability at an early stage.
  • the turning radius ratio R / R0 (and the first divergence occurrence value Gdiv1, the second divergence occurrence value Gdiv2, and the divergence reference value Gref) in each driving state is the acceleration state. It also changes depending on (for example, slow acceleration or WOT acceleration). Therefore, in the present embodiment, the first lateral G threshold G1 (first lateral G thresholds G1a and G1b) is made variable according to the accelerator opening ⁇ ap. As will be described later, the first lateral G threshold G1 may be variable using another index in addition to the accelerator opening ⁇ ap or instead of the accelerator opening ⁇ ap.
  • the driving state is fixed to AWD (S5 in FIG. 3). This makes it easier to stabilize the posture of the vehicle 10 even when the lateral G is large.
  • the first lateral G threshold G1a used when the engine 12 is stopped is referred to as a lateral G threshold (hereinafter referred to as “engine starting threshold G2” or “second lateral G threshold G2”) for starting the engine 12. ) Is also set. A value smaller than the first lateral G threshold G1a is set as the second lateral G threshold G2. As a result, it is possible to smoothly shift from the driving state where the engine 12 is not used for driving (that is, RWD) to AWD.
  • FIG. 7 is a flowchart (details of S3 in FIG. 3) for setting the first flag FLG1 and the second flag FLG2.
  • step S31 the ECU 28 acquires the accelerator opening degree ⁇ ap from the accelerator pedal opening degree sensor 54.
  • step S32 the ECU 28 selects the drive state switching prohibition threshold G1 (first lateral G threshold G1) based on the accelerator opening ⁇ ap (see FIGS. 5 and 6).
  • the threshold G1 is selected from the thresholds G1a and G1b. Details of the method of selecting the first lateral G threshold G1 will be described later with reference to FIG.
  • step S33 the ECU 28 selects the engine start threshold G2 (second lateral G threshold G2) based on the accelerator opening ⁇ ap (see FIGS. 5 and 6). Details of the selection method of the second lateral G threshold G2 will be described later.
  • step S34 the ECU 28 detects the lateral G.
  • the lateral G is detected by the following method. That is, the ECU 28 detects (or calculates) the lateral G using the following equation (1).
  • V is a vehicle speed detected by the vehicle speed sensor 50
  • is a tire steering angle detected by the tire steering angle sensor 58
  • A is a stability factor
  • L is a wheelbase. (See FIG. 8).
  • the lateral G increases as the tire steering angle ⁇ increases. Therefore, it is possible to reflect the driver's intention to turn even on the low ⁇ road where the first deviation occurrence value Gdiv1 and the second deviation occurrence value Gdiv2 are lower than those on the high ⁇ road.
  • the lateral G can be detected even on an inclined road or the like.
  • the ECU 28 may detect (or calculate) the lateral G using the following equation (2).
  • Equation (2) Yr is the yaw rate detected by the yaw rate sensor 56, and V is the vehicle speed detected by the vehicle speed sensor 50. According to Equation (2), it is possible to detect the lateral G even when the vehicle 10 is spinning. In addition, according to Expression (2), the lateral G can be detected even on an inclined road or the like.
  • the lateral G can be detected using a lateral G sensor (capacitance detection method, piezoresistive method, etc.) that itself detects the lateral G.
  • a lateral G sensor capactance detection method, piezoresistive method, etc.
  • step S35 the ECU 28 determines whether or not the lateral G detected in step S34 is lower than the drive state switching prohibition threshold G1 selected in step S32.
  • the lateral G is less than the threshold value G1 (S35: YES)
  • step S36 the ECU 28 sets the first flag FLG1 to 0 in order to permit switching of the driving state.
  • the lateral G does not fall below the threshold value G1 (S35: NO)
  • step S37 the ECU 28 sets the first flag FLG1 to 1 in order to prohibit switching of the driving state.
  • step S38 the ECU 28 determines whether or not the lateral G detected in step S34 is lower than the engine start threshold G2 selected in step S33. If the lateral G is lower than the threshold G2 (S38: YES), in step S39, the ECU 28 sets the second flag FLG2 to 0 in order to keep the engine 12 stopped if the current drive state is RWD. . On the other hand, when the lateral G does not fall below the threshold G2 (S38: NO), in step S40, the ECU 28 sets the second flag FLG2 to 1 in order to start the engine 12 even if the drive state is RWD.
  • FIG. 9 is a flowchart (details of S32 in FIG. 7) for setting the drive state switching prohibition threshold G1.
  • the ECU 28 determines whether or not the drive state at the present time (calculation time) is FWD or AWD. The determination uses, for example, a driving state selected by the ECU 28 itself. Alternatively, the drive state instructed by the ECU 28 may not always match the actual drive state of the wheels (the front wheels 32a and 32b and the rear wheels 36a and 36b). Therefore, the driving state may be determined using an actual measurement value (for example, an output from a wheel speed sensor (not shown) provided on each wheel).
  • an actual measurement value for example, an output from a wheel speed sensor (not shown) provided on each wheel.
  • step S52 the ECU 28 sets the first lateral G threshold G1b used when the engine 12 is operated according to the accelerator opening ⁇ ap (FIG. 5 and FIG. 5). (See FIG. 6).
  • the relationship between the accelerator opening ⁇ ap and the threshold value G1b is stored in advance in the storage unit 44 as a map, for example, as shown in FIG. 10 or FIG. Experimental values or simulation values can be used for the map.
  • the threshold G1b decreases as the accelerator opening ⁇ ap increases.
  • the threshold G1b is constant when the accelerator opening ⁇ ap is between 0 and ⁇ 1. This is based on the idea that there is no substantial meaning to change the threshold value G1b in a low acceleration state (0 to ⁇ 1). Further, the threshold G1b is decreased when the accelerator opening ⁇ ap is between ⁇ 1 and ⁇ 2. As described with reference to FIGS. 5 and 6 and the like, when the accelerator opening ⁇ ap is increased and the longitudinal acceleration (longitudinal G) is increased, the first divergence occurrence value Gdiv1 and the second divergence occurrence value Gdiv2 are It agrees with becoming smaller.
  • step S53 the ECU 28 determines whether or not the engine 12 is operating. For example, when the engine 12 is operating even though the drive state is RWD (driven by the rear motors 16 and 18), for example, the SOC of the battery 20 falls below a predetermined threshold (SOC threshold). Therefore, the first motor 14 may generate power with the driving force from the engine 12. Alternatively, there is a case where power generation by the first motor 14 is performed to supplement driving power in an auxiliary machine (not shown).
  • step S51 substantially determines whether or not the engine 12 is in operation, so step S51 can be omitted and only step S52 can be performed.
  • step S52 the ECU 28 sets the first lateral G threshold G1b used when the engine 12 is operated in accordance with the accelerator opening ⁇ ap.
  • step S54 the ECU 28 sets the first lateral G threshold G1a used when the engine 12 is stopped according to the accelerator opening ⁇ ap (see FIGS. 5 and 6). . Similar to the first lateral G threshold G1b, the relationship between the accelerator opening ⁇ ap and the threshold G1a is stored in advance in the storage unit 44 as a map as shown in FIG. 10 or FIG. 11, for example. Experimental values or simulation values can be used for the map.
  • the first lateral G threshold G1a used when the engine 12 is stopped becomes larger than the first lateral G threshold G1b used when the engine 12 is operating.
  • the first lateral G threshold G1a does not always need to be larger than the first lateral G threshold G1b, and when the accelerator opening ⁇ ap is small (for example, 0 to ⁇ 1) or when the accelerator opening ⁇ ap is large (for example, ⁇ 2
  • the first lateral G threshold value G1a and the first lateral G threshold value G1b can be made equal.
  • the threshold value G2 is set in the same manner as the threshold value G1.
  • the relationship between the accelerator opening degree ⁇ ap and the threshold value G2 is stored in advance in the storage unit 44 as a map. Experimental values or simulation values can be used for the map.
  • a difference from the threshold value G1 can be set in advance, and the threshold value G2 can be set based on the threshold value G1.
  • the driving force (front wheel driving force Ff) of the front wheel 32 as the steering wheel is gradually increased while gradually decreasing the driving force (rear wheel driving force Fr) of the rear wheel 36 as the non-steering wheel.
  • a state in which RWD and FDW are mixed that is, between 0.1 and 2.0 seconds, that is, an AWD state is used.
  • the AWD in this case (hereinafter also referred to as “transient AWD”) is not used when the drive ECU 28 determines that AWD is selected as the travel state (drive state) (“AWD” shown in FIG. 2). It is used only for shifting from RWD to FWD.
  • the AWD shown in FIG. 2 is set based on the flowcharts of FIG. 3 and FIG. 4, whereas the transient AWD is switched from RWD to FWD based on the flowcharts of FIG. 3 and FIG. Is used when it is determined.
  • the driving state is based on at least one of the vehicle speed V, the vehicle speed change amount (time differential value of the vehicle speed V), the accelerator opening ⁇ ap, the opening change amount (time differential value of the accelerator opening ⁇ ap), and the yaw rate Yr. You may switch.
  • total driving force Ftotal the total of the front wheel driving force Ff and the rear wheel driving force Fr (hereinafter referred to as “total driving force Ftotal”) is maintained constant.
  • total driving force Ftotal switching from RWD to FWD can be performed without changing the behavior of the vehicle 10, and it is possible to prevent the driver from feeling uncomfortable due to the behavior change accompanying the switching.
  • the total driving force Ftotal can be controlled to change according to at least one of the accelerator opening ⁇ ap, the opening change amount, and the vehicle speed change amount.
  • the accelerator opening degree ⁇ ap is large, when the opening degree change amount is a positive value, or when the vehicle speed change amount is a positive value, the total driving force Ftotal is increased, and when the accelerator opening degree ⁇ ap is small, it is opened.
  • the degree change amount is a negative value or when the vehicle speed change amount is a negative value, the total driving force Ftotal may be decreased.
  • the rear wheel driving force Fr is increased while the front wheel driving force Ff is kept constant, thereby increasing the total driving force Ftotal.
  • the rear wheel driving force Fr is increased while the front wheel driving force Ff is decreased to make the total driving force Ftotal constant or increased.
  • the total driving force Ftotal is increased by increasing the rear wheel driving force Fr while increasing the front wheel driving force Ff.
  • the front wheel driving force Ff is increased while the rear wheel driving force Fr is kept constant to increase the total driving force Ftotal.
  • the front wheel driving force Ff is increased while the rear wheel driving force Fr is decreased to make the total driving force Ftotal constant or increased.
  • the total driving force Ftotal is increased by increasing the front wheel driving force Ff while increasing the rear wheel driving force Fr.
  • the rear wheel driving force Fr is decreased while the front wheel driving force Ff is kept constant, thereby reducing the total driving force Ftotal.
  • the rear wheel driving force Fr is decreased while the front wheel driving force Ff is increased, and the total driving force Ftotal is made constant or decreased.
  • the total driving force Ftotal is decreased by decreasing the rear wheel driving force Fr while decreasing the front wheel driving force Ff.
  • the front wheel driving force Ff is reduced while the rear wheel driving force Fr is kept constant, thereby reducing the total driving force Ftotal.
  • the front wheel driving force Ff is decreased while the rear wheel driving force Fr is increased to make the total driving force Ftotal constant or decreased.
  • the total driving force Ftotal is decreased by decreasing the front wheel driving force Ff while decreasing the rear wheel driving force Fr.
  • First lateral G threshold G1a (first switching threshold) for switching (S51: NO ⁇ S54 in FIG. 9), and first lateral G threshold G1b (second switching threshold) for switching from FWD to AWD (S51: YES ⁇ S52) are set to different values (see FIG. 5 and the like).
  • the first lateral G threshold G1 can be switched between when the engine 12 is operating and when the engine 12 is stopped. For this reason, for example, it is possible to switch the driving state in consideration of the balance between the energy consumption accompanying the operation of the engine 12 and the steering stability of the vehicle 10 (the ability to steer the vehicle according to the driver's will). Become.
  • the first lateral G threshold G1b (second switching threshold) used for FWD is made smaller than the first lateral G threshold G1a (first switching threshold) used for RWD (see FIG. 5 and the like).
  • the first lateral G threshold G1a (when stopped) for switching from RWD to AWD when the engine 12 is stopped.
  • Threshold (S53 in FIG. 9: NO ⁇ S54)
  • a first lateral G threshold G1b (operation threshold) for switching from RWD to AWD when the engine 12 is operating (S53 in FIG. 9: YES ⁇ S52)
  • the first lateral G threshold G1 is switched between when the engine 12 is operating and when the engine 12 is stopped. For this reason, for example, it is possible to switch the driving state in consideration of the balance between the energy consumption accompanying the operation of the engine 12 and the steering stability of the vehicle 10.
  • the first lateral G threshold value G1b (operating threshold value) used when the engine 12 is operated (S53: YES) is used as the first lateral G threshold value used when the engine 12 is stopped (S53: NO). It is set to be smaller than G1a (stop threshold) (see FIG. 5 and the like).
  • A. Vehicle 10 (application target)
  • the vehicle 10 that is an automobile is described (FIG. 1), but the driving state at the first deviation occurrence value Gdiv1 (first lateral G) or the second deviation occurrence value Gdiv2 (second lateral G).
  • the vehicle is not limited to this as long as at least any two of FWD, RWD, and AWD can be switched.
  • any of a motorcycle, a motor tricycle, and a motor vehicle may be used.
  • the driving state in which the engine 12 is not operated (RWD in the above embodiment) and AWD are switched. If it is a vehicle which can do, it will not be restricted to this.
  • any of a motorcycle, a motor tricycle, and a motor vehicle may be used.
  • the vehicle 10 has one engine 12 and three travel motors 14, 16, 18 as drive sources, but the drive sources are not limited to this combination.
  • the vehicle 10 may have one or more traveling motors for the front wheels 32 and one or more traveling motors for the rear wheels 36 as drive sources.
  • only one traveling motor can be used for the front wheel 32 or the rear wheel 36.
  • the driving force may be distributed to the left and right wheels using a differential device.
  • FIG. 12 is a schematic configuration diagram of a drive system of a vehicle 10A and its surroundings according to a modification of the present invention.
  • the configurations of the front wheel drive device 34 and the rear wheel drive device 38 of the vehicle 10 according to the embodiment are reversed. That is, the front wheel drive device 34a of the vehicle 10A includes second and third travel motors 16a and 18a disposed on the front side of the vehicle 10A. Further, the rear wheel drive device 38a of the vehicle 10A includes an engine 12a and a first travel motor 14a arranged in series on the rear side of the vehicle 10A.
  • the front wheel 32 is a steering wheel and the rear wheel 36 is a non-steering wheel, but the configuration in which both the front wheel 32 and the rear wheel 36 are steering wheels and the rear wheel 36 are the same. It is also possible to adopt a configuration in which the steering wheel is used and the front wheel 32 is a non-steering wheel.
  • first to third traveling motors 14, 16, 18 are three-phase AC brushless type, but the present invention is not limited to this.
  • the first to third traveling motors 14, 16, and 18 may be a three-phase AC brush type, a single-phase AC type, or a DC type.
  • the first to third traveling motors 14, 16, and 18 are supplied with electric power from the high-voltage battery 20, but in addition to this, electric power may be supplied from the fuel cell.
  • the drive state is switched using the flowcharts of FIGS. 3 and 4, but the method of switching the drive state is not limited to this.
  • the switching may be performed based on at least one of the vehicle speed V, the vehicle speed change amount, the accelerator opening ⁇ ap, the opening change amount, and the yaw rate Yr.
  • the running state may be switched by a method as shown in FIG. 13 of US 2012/0015772 A1 and the related description.
  • FWD, RWD, and AWD can be switched as the driving state of the vehicle 10, but the driving at the first divergence occurrence value Gdiv1 (first lateral G) or the second divergence occurrence value Gdiv2 (second lateral G).
  • the present invention is not limited to this as long as at least any two of them can be switched.
  • the present invention can be applied to a configuration in which only switching between FWD and AWD (first switching) is possible, or a configuration in which only switching between RWD and AWD (second switching) is possible.
  • the driving state is changed. It fixed to AWD (S5 of FIG. 3).
  • the drive state selected when switching the drive state is prohibited need not be limited to AWD.
  • the drive state selected when switching the drive state is prohibited may be FWD or RWD.
  • it is possible to fix the driving state selected when switching the driving state is prohibited (the driving state immediately before the prohibition).
  • the first lateral G threshold G1a is set to a value equal to the first deviation occurrence value Gdiv1 as a boundary value at which the turning radius ratio R / R0 starts to deviate between FWD, RWD, and AWD (FIG. 5 and the like).
  • the first lateral G threshold G1a can be set to other values.
  • the first lateral G threshold G1a may be set to a value smaller than the first divergence occurrence value Gdiv1.
  • the first lateral G threshold value G1a can be set to a value slightly larger than the first deviation occurrence value Gdiv1.
  • the drive state switching prohibition threshold G1 is set to the value of the lateral G.
  • the value is not limited to this as long as it is a value related to the lateral G (a lateral acceleration related value) even if the value is not the lateral G itself.
  • the lateral acceleration related value here includes lateral G itself).
  • the first lateral G threshold G1 divided by the vehicle speed V (G1 / Even if V) is compared with the yaw rate Yr or the first lateral G threshold G1 divided by the yaw rate Yr (G1 / Yr) is compared with the vehicle speed V, the same effect can be produced.
  • a value that indirectly indicates the lateral G (in the above example, the yaw rate Yr or the vehicle speed V) is set to a predetermined threshold (the first lateral G threshold G1 is indirectly set).
  • the first lateral G threshold G1 is indirectly set.
  • the first lateral G threshold G1a is set to the first deviation occurrence value Gdiv1 or the deviation reference value Gref. May not be set as a reference.
  • the first lateral G threshold values G1a and G1b may be switched between when the engine 12 is operating and when it is stopped.
  • the first lateral G threshold G1b when the engine 12 is operating is smaller than the first lateral G threshold G1a when the engine 12 is stopped (see FIG. 5 and the like).
  • the first lateral G threshold G1a may be set larger.
  • the first lateral G threshold G1 (first lateral G thresholds G1a and G1b) is switched based on the accelerator opening ⁇ ap (see FIGS. 5, 6, 10, and 11).
  • the accelerator opening ⁇ ap any value that affects the turning radius ratio R / R0 corresponding to the switching of the driving state or a change (divergence) in the turning characteristic related value similar thereto.
  • Other values can also be used.
  • the drive state switching prohibition threshold values G1a and G1b (first lateral G threshold values G1a and G1b) based on the longitudinal acceleration (front and rear G).
  • the front and rear G can be detected by, for example, a front and rear G sensor (not shown).
  • the threshold values G1a and G1b decrease as the front and rear G increase.
  • the thresholds G1a and G1b are constant when the longitudinal G is between 0 and Gf1. This is based on the idea that there is no substantial meaning in changing the lateral G thresholds G1a and G1b in the state where the front and rear G are low (0 to Gf1). Further, the thresholds G1a and G1b are decreased between Gf1 and Gf2. This is because, as described with reference to FIGS. 5 and 6 and the like, when the front and rear G increases, the first divergence occurrence value Gdiv1 and the second divergence occurrence value Gdiv2 related to the lateral G decrease. Furthermore, when it becomes larger than Gf2, the threshold values G1a and G1b become constant. This is because, for example, the threshold values G1a and G1b have reached the minimum value.
  • the first lateral G threshold values G1a and G1b can be changed based on the vehicle speed V as shown in FIG.
  • the threshold values G1a and G1b are constant when the vehicle speed V is between 0 and V1. This is based on the idea that in a state where the vehicle speed V is low (0 to V1), there is no substantial meaning to change the threshold values G1a and G1b. Further, the thresholds G1a and G1b are decreased between V1 and V2. This is because, as described with reference to FIGS. 5 and 6, etc., when the vehicle speed V increases and the longitudinal G increases, the first divergence occurrence value Gdiv1 and the second divergence occurrence value Gdiv2 related to the lateral G decrease. It is. Further, when the vehicle speed V becomes higher than V2, the threshold values G1a and G1b become constant. This is because, for example, the threshold values G1a and G1b have reached the minimum value.
  • the first lateral G threshold values G1a and G1b may be changed based on an acceleration intention related value (other than the accelerator opening ⁇ ap) indicating the driver's acceleration intention.
  • an acceleration intention related value other than the accelerator opening ⁇ ap for example, a required value of the driving force of the engine 12 (required driving force) set according to the accelerator opening ⁇ ap, feedback control for the required driving force, and a limit
  • a target driving force that is actually set as a target value of the driving force of the engine 12 by performing various controls such as control can be used.
  • the first lateral G threshold values G1a and G1b can be fixedly used.
  • the first lateral G threshold G1a is set based on the deviation reference value Gref as a smaller value of the first deviation occurrence value Gdiv1 and the second deviation occurrence value Gdiv2. In other words, the first lateral G threshold G1a is used regardless of the content of switching of the driving state.
  • the first lateral G threshold G1a according to the switching contents of the driving state. Can be made variable. In other words, it is also possible to set different first lateral G threshold values G1a according to the switching contents of the driving state. For example, when switching between FWD and RWD or AWD, the first divergence occurrence value Gdiv1 is set as the first lateral G threshold G1a, and when switching between RWD and AWD, the second divergence occurrence value Gdiv2 is set as the first lateral G threshold G1a. It is also possible. In this case, the first lateral G threshold G1 when switching between RWD and AWD is further increased according to the operating state of the engine 12 (like the first lateral G thresholds G1a and G1b in the above embodiment). The threshold value G1a may be switched.
  • the first lateral G threshold G1a is set from the viewpoint of comparison with the first divergence occurrence value Gdiv1 (first lateral G) and the second divergence occurrence value Gdiv2 (second lateral G). Even if the first lateral G threshold value G1a is set by focusing on the amount of change in the turning radius ratio R / R0 when the driving state is switched, it is substantially the same.
  • the first lateral G threshold value G1a is the prediction of the turning radius ratio R / R0 when the switching between FWD and AWD (first switching) is performed in a state where the lateral G exceeds the first lateral G threshold value G1a.
  • the first switching and the second switching described here include a transient AWD when switching between FWD and RWD.
  • the first lateral G threshold value G1a can be set according to each of the first change amount and the second change amount.
  • the first lateral G threshold values G1a and G1b are stored in advance in the storage unit 44 of the ECU 28.
  • the first lateral G threshold values G1a and G1b can be calculated by sequentially calculating during operation. It is.
  • the relationship between the lateral G and the turning radius ratio R / R0 is stored for each driving state, and the lateral G where the change amount of the turning radius ratio R / R0 is equal to or greater than a predetermined value is defined as the first lateral G threshold G1a.
  • the first lateral G threshold G1b can be calculated from the relationship with the first lateral G threshold G1a.
  • Turning radius ratio R / R0 (value related to turning characteristics)
  • the turning radius ratio R / R0 is used as the turning characteristic related value that causes a deviation in relation to the lateral G when the driving state is switched.
  • other turning characteristic related values for example, The first lateral G threshold G1 and the second lateral G threshold G2 may be set based on the actual turning radius R itself or the slip ratio of any wheel).
  • Engine start threshold G2 (second lateral G threshold G2)
  • the second lateral G threshold G2 is set based on the accelerator opening ⁇ ap, but it is determined that there is a high possibility that the lateral G will be equal to or greater than the first lateral G threshold G1a in the future. If it can be started, it will not be restricted to this.
  • the second lateral G threshold G2 can be set based on other values (front and rear G, vehicle speed V) in addition to or instead of the accelerator opening ⁇ ap.
  • the second lateral G threshold G2 can be fixed and used in the same manner as the first lateral G threshold G1a.
  • the threshold value G2 can be set based on the threshold value G1a.
  • the amount of change (time differential value) of the lateral G is also small.
  • the threshold G2 is set by reducing the difference from the threshold G1a.
  • the threshold G2 may be set by increasing the difference from the threshold G1a.
  • step S2 of FIG. 3 it is determined whether or not the rear motors 16 and 18 can be driven by determining the temperature of the rear motors 16 and 18, the occurrence of an abnormality in the rear motors 16 and 18, and the SOC of the battery 20.
  • the present invention is not limited to this as long as it can be determined whether or not the rear motors 16 and 18 can be driven.
  • the determination may be made based on any one or two of the temperature of the rear motors 16 and 18, the occurrence of an abnormality in the rear motors 16 and 18, and the SOC of the battery 20.
  • the degree of deterioration of the battery 20 (number of times of charging, usage period, etc.) can also be used.
  • the engine 12 when RWD is selected, the engine 12 is stopped without idling except in step S7 in FIG. 3 and when the first motor 14 generates electric power by the driving force of the engine 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 内燃機関を有する構成において駆動状態を好適に選択することが可能な車両及び車両の制御方法を提供する。車両(10)及びその制御方法では、第1単独駆動状態(前輪(32)及び後輪(36)の一方が駆動される状態)から複合駆動状態へと切り替えるための第1切替閾値(G1a)と、第2単独駆動状態(内燃機関(12)により前輪(32)及び後輪(36)の他方が駆動される状態)から複合駆動状態へと切り替えるための第2切替閾値(G1b)とに異なる値が設定される。

Description

車両及び車両の制御方法
 この発明は、例えば、前輪駆動及び後輪駆動の少なくとも一方と全輪駆動との切替えを行う車両及びその制御方法に関する。
 米国特許第5540299号公報(以下「US 5540299 A」という。)には、前輪1FL、1FR(主駆動輪(primarily driven wheels))を駆動するエンジン2と、後輪1RL、1RR(補助駆動輪(secondarily driven wheels))を駆動するモータML、MRを有する車両の駆動方法が開示されている(要約、図1、請求項1)。US 5540299 Aでは、横G(すなわち、横加速度)が所定値以上となったとき(図15のW23:YES)、運転者によるハンドル操作による車体の姿勢制御に委ねるのが好ましいという観点から、正駆動の実行が禁止される(図15のW31、第22欄22~33行目)。ここにいう「正駆動」(normal driving)は、駆動補助(assisting drive)を意味し、「逆駆動」(reverse driving)としての制動(braking)の対義語として定義されている(第8欄55~59行目)。また、4輪駆動として、車両の安定性を向上させる方が好ましいという観点から、図15のW23でYESのときは、強制的に独立モードで正駆動を実行させることもできるとされている(第22欄33~40行目)。
 さらに、前輪の駆動と後輪の駆動を別個独立に行うことが可能な4輪駆動車が提案されている(米国特許出願公開第2012/0015772号公報(以下「US 2012/0015772 A1」という。))。US 2012/0015772 A1では、内燃機関4及び電動機5が直列に配置された駆動ユニット6により前輪Wfを駆動し、電動機2A、2Bにより後輪Wrを駆動する(図1、段落[0084]、[0085])。
 上記のように、US 5540299 Aでは、エンジン2により駆動される前輪1FL、1FRが主駆動輪とされ、モータML、MRにより駆動される後輪1RL、1RRが補助駆動輪とされる(請求項1)。換言すると、US 5540299 Aの車両では、エンジン2のみによる前輪駆動と、エンジン2及びモータML、MRによる4輪駆動とを行うが、モータML、MRのみによる後輪駆動については触れられていない。また、US 5540299 Aでは、図15のW23で用いる横Gの所定値を具体的にどのような値とするかについては検討されていない。
 この発明は、このような課題を考慮してなされたものであり、内燃機関を有する構成において駆動状態を好適に選択することが可能な車両及び車両の制御方法を提供することを目的とする。
 この発明に係る車両は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備えるものであって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第2駆動装置の駆動力のみにより前記車両を駆動させる状態である第2単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値が設定されることを特徴とする。
 この発明によれば、第1単独駆動状態(前輪及び後輪の一方が駆動される状態)から複合駆動状態へと切り替えるための第1切替閾値と、第2単独駆動状態(内燃機関により前輪及び後輪の他方が駆動される状態)から複合駆動状態へと切り替えるための第2切替閾値とに異なる値が設定される。換言すると、内燃機関が作動している場合と、内燃機関が停止している場合とで、横加速度関連値の閾値を切り替えることが可能となる。このため、例えば、内燃機関の作動に伴うエネルギ消費と車両の操縦安定性(運転者の意志通りに車両を操縦できる性能)とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
 前記第2切替閾値を前記第1切替閾値よりも小さくしてもよい。これにより、内燃機関による駆動を行わない第1単独駆動状態から複合駆動状態への切替えと比較して、内燃機関による駆動を行う第2単独駆動状態から複合駆動状態への切替えを早く行うこととなる。このため、複合駆動状態への切替え前に内燃機関を作動させている場合、早期に操縦安定性を向上させることが可能となる。
 この発明に係る車両は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備えるものであって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記内燃機関が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値が設定されることを特徴とする。
 この発明によれば、内燃機関の停止時において第1単独駆動状態(前輪及び後輪の一方が駆動される状態)から複合駆動状態へと切り替えるための停止時閾値と、内燃機関の作動時において第1単独駆動状態から複合駆動状態へと切り替えるための作動時閾値とに異なる値が設定される。換言すると、内燃機関が作動している場合と、内燃機関が停止している場合とで、横加速度相関値の閾値を切り替える。このため、例えば、内燃機関の作動に伴うエネルギ消費と車両の操縦安定性(運転者の意志通りに車両を操縦できる性能)とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
 前記作動時閾値を前記停止時閾値よりも小さくしてもよい。これにより、内燃機関の停止時における第1単独駆動状態から複合駆動状態への切替えと比較して、内燃機関の作動時における第1単独駆動状態から複合駆動状態への切替えを早く行うこととなる。このため、第1単独駆動状態から複合駆動状態への切替え前に内燃機関を作動させている場合、早期に操縦安定性を向上させることが可能となる。
 前記内燃機関は、前記第1単独駆動状態において、前記車両に設けられた発電機に対して選択的に駆動力を付与してもよい。これにより、第1単独駆動状態において、内燃機関からの駆動力により発電機を作動させることで車両内に電力を供給することが可能となる。
 この発明に係る車両の制御方法は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備える車両の制御方法であって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第2駆動装置の駆動力のみにより前記車両を駆動させる状態である第2単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値を設定することを特徴とする。
 この発明に係る車両の制御方法は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備える車両の制御方法であって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記内燃機関が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値を設定することを特徴とする。
この発明の一実施形態に係る車両の駆動系及びその周辺の概略構成図である。 前記実施形態における走行状態(駆動状態)及び駆動源の切替えの様子の一例を示す図である。 前記実施形態における走行状態(駆動状態)及び駆動源の切替えを行う第1フローチャートである。 前記実施形態における走行状態(駆動状態)及び駆動源の切替えを行う第2フローチャートである。 緩加速時における横加速度(以下「横G」という。)と旋回半径比との関係を駆動状態に応じて示す図である。 ワイド・オープン・スロットル(WOT)時における横Gと旋回半径比との関係を駆動状態に応じて示す図である。 第1フラグ及び第2フラグを設定するフローチャート(図3のS3の詳細)である。 横Gを検出するために用いる各種の値の定義を説明するための図である。 駆動状態切替え禁止閾値を選択するフローチャート(図7のS32の詳細)である。 アクセル開度と駆動状態切替え禁止閾値との関係の第1例を示す図である。 アクセル開度と駆動状態切替え禁止閾値との関係の第2例を示す図である。 この発明の変形例に係る車両の駆動系及びその周辺の概略構成図である。 前後加速度(以下「前後G」という。)と駆動状態切替え禁止閾値との関係の第1例を示す図である。 前後Gと駆動状態切替え禁止閾値との関係の第2例を示す図である。 車速と駆動状態切替え禁止閾値との関係の一例を示す図である。
I.一実施形態
A.構成
A-1.全体構成
 図1は、この発明の一実施形態に係る車両10の駆動系及びその周辺の概略構成図である。図1に示すように、車両10は、車両10の前側に直列配置されたエンジン12及び第1走行モータ14(以下「第1モータ14」又は「前側モータ14」という。)と、車両10の後ろ側に配置された第2及び第3走行モータ16、18(以下「第2及び第3モータ16、18」又は「後ろ側モータ16、18」という。)と、高圧バッテリ20(以下「バッテリ20」ともいう。)と、第1~第3インバータ22、24、26と、駆動電子制御装置28(以下「駆動ECU28」又は「ECU28」という。)とを有する。
 エンジン12及び第1モータ14は、トランスミッション30を介して左前輪32a及び右前輪32b(以下「前輪32」と総称する。)に駆動力(以下「前輪駆動力Ff」という。)を伝達する。エンジン12及び第1モータ14は、前輪駆動装置34(操舵輪駆動装置)を構成する。例えば、車両10が低負荷のときに第1モータ14のみによる駆動を行い、中負荷のときにエンジン12のみによる駆動を行い、高負荷のときにエンジン12及び第1モータ14による駆動を行う。或いは、図示しないクラッチによりエンジン12とトランスミッション30とを切り離した状態(又は接続した状態)でエンジン12により第1モータ14を駆動させることで第1モータ14による発電を行い、その発電電力をバッテリ20に充電し又は図示しない補機に供給することもできる。換言すると、第1モータ14を発電機として用いることもできる。
 第2モータ16は、その出力軸が左後輪36aの回転軸に接続されており、左後輪36aに駆動力を伝達する。第3モータ18は、その出力軸が右後輪36bの回転軸に接続されており、右後輪36bに駆動力を伝達する。第2及び第3モータ16、18は、後輪駆動装置38(非操舵輪駆動装置)を構成する。以下では、左後輪36a及び右後輪36bを合わせて後輪36と総称する。また、後輪駆動装置38から後輪36に伝達される駆動力を後輪駆動力Frという。
 高圧バッテリ20は、第1~第3インバータ22、24、26を介して第1~第3モータ14、16、18に電力を供給すると共に、第1~第3モータ14、16、18からの回生電力Pregを充電する。
 駆動ECU28は、各種センサ及び各電子制御装置(以下「ECU」という。)からの出力に基づいてエンジン12及び第1~第3インバータ22、24、26を制御することにより、エンジン12及び第1~第3モータ14、16、18の出力を制御する。駆動ECU28は、入出力部40、演算部42及び記憶部44を有する。また、駆動ECU28は、複数のECUを組み合わせたものであってもよい。例えば、エンジン12及び第1~第3モータ14、16、18それぞれに対応して設けた複数のECUと、エンジン12及び第1~第3モータ14、16、18の駆動状態を管理するECUとにより駆動ECU28を構成してもよい。
 駆動ECU28に対して出力する各種センサには、例えば、車速センサ50、シフト位置センサ52、アクセルペダル開度センサ54、ヨーレートセンサ56及びタイヤ舵角センサ58がある。
A-2.各部の構成及び機能
 エンジン12は、例えば、6気筒型エンジンであるが、2気筒、4気筒又は8気筒型等のその他のエンジンであってもよい。また、エンジン12は、ガソリンエンジンに限らず、ディーゼルエンジン、空気エンジン等のエンジンとすることができる。
 第1~第3モータ14、16、18は、例えば、3相交流ブラシレス式であるが、3相交流ブラシ式、単相交流式、直流式等のその他のモータであってもよい。第1~第3モータ14、16、18の仕様は等しくても異なるものであってもよい。また、左後輪36a及び右後輪36bを1つの走行モータで駆動してもよい。
 第1~第3インバータ22、24、26は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換して第1~第3モータ14、16、18に供給する一方、第1~第3モータ14、16、18の回生動作に伴う交流/直流変換後の直流を高圧バッテリ20に供給する。
 高圧バッテリ20は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等を利用することができる。本実施形態ではリチウムイオン2次電池を利用している。なお、第1~第3インバータ22、24、26と高圧バッテリ20との間に図示しないDC/DCコンバータを設け、高圧バッテリ20の出力電圧又は第1~第3モータ14、16、18の出力電圧を昇圧又は降圧してもよい。
 車両10の駆動系の構成としては、例えば、US 2012/0015772 A1に記載のものを用いることができる。
 車速センサ50は、車速V[km/h]を検出する。シフト位置センサ52は、図示しないシフトレバーの位置(駐車レンジとしての「P」、ニュートラルレンジとしての「N」、前進走行レンジとしての「D」、後退走行レンジとしての「R」等)(以下「シフト位置Ps」という。)を検出する。アクセルペダル開度センサ54は、図示しないアクセルペダルの開度(以下「アクセル開度θap」という。)を検出する。ヨーレートセンサ56は、車両10のヨーレートYrを検出する。タイヤ舵角センサ58は、操舵輪としての前輪32の実舵角(以下「タイヤ舵角σ」という。)がある。
B.各種制御
B-1.駆動状態の切替え
(1-1.概要)
 図2は、本実施形態における走行状態(駆動状態)及び駆動源の切替えの様子の一例を示す。本実施形態において、走行状態(駆動状態)及び駆動源の切替えは、駆動ECU28が制御する。
 図2の「走行状態」は、車両10が停車中、前進駆動中、回生中及び後退駆動中のいずれであるかを意味し、「駆動状態」は、車両10が「RWD」(後輪駆動:Rear Wheel Drive)、「FWD」(前輪駆動:Front Wheel Drive)又は「AWD」(前後輪駆動:All Wheel Drive)のいずれで駆動しているかを示す。RWD及びFWDは、いずれも2輪駆動(2WD)であり、AWDは、4輪駆動(4WD)である。さらに、図2中の回生は、第1~第3走行モータ14、16、18の少なくとも1つが回生を行っていることを示す。
 また、図2において、「シフト位置」は、図示しないシフトレバーの位置を意味し、「P」は駐車レンジを、「D」は前進走行レンジを、「R」は後退走行レンジを示す。
 さらに、図2において、「駆動源」は、車両10を駆動させる装置を意味し、「ENG」はエンジン12を、駆動状態が「RWD」であるときの「MOT」は後ろ側モータ16、18を、駆動状態が「AWD」であるときの「ENG+MOT」はエンジン12並びに前側及び後ろ側モータ14、16、18を、「回生」は、前側及び後ろ側モータ14、16、18の少なくともいずれかを意味する。
 図2に示すように、本実施形態では、車速Vを「低速域」、「中速域」、「高速域」及び「後退域」に区分し、これらの区分に応じて駆動源を切り替える。
 より具体的には、車速Vが低速域で前進駆動しているとき及び後退駆動しているときはRWDを用いる。
 車速Vが中速域で前進駆動しているときはFWD又はAWDを用いる。FWDとAWDの切替えは、アクセル開度θapについて閾値(以下「アクセル開度閾値THθ」又は「閾値THθ」という。)を設けておき、アクセル開度θapがアクセル開度閾値THθを下回るときはFWDを選択し、アクセル開度がアクセル開度閾値を上回るときはAWDを選択する。車速Vが高速域で前進駆動しているときはFWDを用いる。
 なお、走行状態(駆動状態)の切替えは、US 2012/0015772 A1の図13及びその関連記載に示すような方法で行ってもよい。
(1-2.駆動状態の具体的切替え)
(1-2-1.全体的な流れ)
 図3及び図4は、本実施形態における走行状態(駆動状態)及び駆動源の切替えを行う第1及び第2フローチャートである。ステップS1において、ECU28は、車両10の前進を要するか否かを判定する。当該判定は、例えば、シフト位置センサ52から通知されたシフト位置Psが、前進を示す位置(前進走行レンジD)であるか否かを確認することにより行う。前進を要する場合(S1:YES)、ステップS2に進む。
 ステップS2において、ECU28は、後ろ側モータ16、18の駆動が可能であるか否かを判定する。当該判定は、例えば、後ろ側モータ16、18の温度、後ろ側モータ16、18における異常発生及びバッテリ20の充電状態(SOC:State of Charge)に基づいて行う。
 より具体的には、図示しない温度センサにより後ろ側モータ16、18それぞれの温度(以下「後ろ側モータ温度」という。)を検出し、後ろ側モータ温度が、後ろ側モータ16、18の過熱を判定するための閾値を上回る場合、後ろ側モータ16、18の駆動が可能でないと判定する。また、後ろ側モータ16、18に関する各種センサ(例えば、電圧センサ、電流センサ、回転角センサ)からの出力が、後ろ側モータ16、18に異常が発生していることを判定するための閾値を超える場合、後ろ側モータ16、18の駆動が可能でないと判定する。さらに、バッテリ20のSOCが、後ろ側モータ16、18を駆動するのに十分であるか否かを判定するための閾値を下回る場合、後ろ側モータ16、18の駆動が可能でないと判定する。なお、後述するように、後ろ側モータ16、18の駆動が可能であるか否かの判定は、上記以外の判定基準に基づいて行ってもよい。
 後ろ側モータ16、18の駆動が可能である場合(S2:YES)、ステップS3において、ECU28は、主として横G(横加速度関連値)に基づいて第1フラグFLG1及び第2フラグFLG2を設定する。第1フラグFLG1は、駆動状態の切替えを禁止するか否かを設定するフラグ(駆動状態切替え禁止判定フラグ)であり、後述するステップS4で用いる。第2フラグFLG2は、駆動状態がFWD、RWD又はAWDのいずれであるかにかかわらず、エンジン12を始動するか否かを設定するフラグ(エンジン始動判定フラグ)であり、後述するステップS6で用いる。第1フラグFLG1及び第2フラグFLG2の設定方法の詳細は、図7を用いて後述する。
 続くステップS4において、ECU28は、第1フラグFLG1に基づいて駆動状態の切替えを禁止するか否かを判定する。具体的には、第1フラグFLG1が0のとき、駆動状態の切替えを禁止せず(許可し)、第1フラグFLG1が1のとき、駆動状態の切替えを禁止する。
 第1フラグFLG1が1であり、駆動状態の切替えを禁止する場合(S4:YES)、ステップS5において、ECU28は、駆動状態をAWDに固定する。駆動状態の切替えを禁止しない場合(S4:NO)、ステップS6に進む。
 ステップS6において、ECU28は、第2フラグFLG2に基づいてエンジン12を始動するか否かを判定する。具体的には、第2フラグFLG2が0のとき、ステップS6の判定によってはエンジン12を始動せず、第2フラグFLG2が1のとき、駆動状態がFWD、RWD又はAWDのいずれであるかにかかわらず、エンジン12を始動する。
 第2フラグFLG2に基づいてエンジン12を始動しない場合(S6:NO)、ステップS8に進む。第2フラグFLG2に基づいてエンジン12を始動する場合(S6:YES)、ステップS7において、ECU28は、エンジン12を始動させ、ステップS8に進む。
 なお、上記のように、ステップS7のエンジン12の始動は、駆動状態がFWD、RWD又はAWDのいずれであるかにかかわらず、行われる。換言すると、その時点における駆動状態がFWD又はAWDであれば、既にエンジン12は作動中であるため、そのまま作動状態を継続する。一方、その時点における駆動状態がRWDであれば、駆動源としては後ろ側モータ16、18を用いているため、エンジン12は始動させるものの、アイドリング状態で待機させる。このようにアイドリング状態としておくのは、第2フラグFLG2が1である場合、その後に駆動状態の切替えを禁止してAWDへの切替え(S5)を行う可能性が高いところ、AWDへの移行を円滑に行うためである。
 ステップS8において、ECU28は、車両10が減速中であるか否かを判定する。当該判定は、例えば、車速センサ50からの車速Vを用いて行う。車両10が減速中である場合(S8:YES)、ステップS9において、ECU28は、走行状態として回生を選択する。これに伴い、ECU28は、第1~第3走行モータ14、16、18の少なくとも1つにより回生を実行させる。一方、車両10が減速中でない場合(S8:NO)、図4のステップS10に進む。
 図4のステップS10において、ECU28は、車両10が低車速(例えば、0~30km/h)であるか否かを判定する。当該判定は、例えば、車速センサ50からの車速Vを用いて行う。車両10が低車速である場合(S10:YES)、ステップS11において、ECU28は、駆動状態としてRWDを選択する。これに伴い、後ろ側モータ16、18により車両10を駆動する。一方、車両10が低車速でない場合(S10:NO)、ステップS12に進む。
 ステップS12において、ECU28は、車両10が中車速(例えば、31~80km/h)であるか否かを判定する。当該判定は、例えば、車速センサ50からの車速Vを用いて行う。車両10が中車速である場合(S12:YES)、ステップS13において、ECU28は、アクセル開度θapが前記アクセル開度閾値THθ以下であるか否かを判定する。上記のように、閾値THθは、FWD又はAWDの選択に用いる閾値である。
 アクセル開度θapが閾値THθ以下である場合(S13:YES)、ステップS14において、ECU28は、駆動状態としてFWDを選択する。これに伴い、エンジン12及び第1モータ14のいずれか一方又は両方により車両10を駆動する。一方、アクセル開度θapが閾値THθ以下でない場合(S13:NO)、ステップS15において、ECU28は、駆動状態としてAWDを選択する。これに伴い、エンジン12及び第1~第3モータ14、16、18により車両10を駆動する。
 ステップS12に戻り、車両10が中車速でない場合(S12:NO)、車両10は高車速(例えば、81km/h以上)で走行していると言える。この場合、ステップS16において、ECU28は、駆動状態としてFWDを選択する。
 図3のステップS2に戻り、後ろ側モータ16、18の駆動が可能でない場合(S2:NO)、ステップS17において、ECU28は、駆動状態としてFWDを選択する。これにより、後ろ側モータ16、18が駆動不可な状況でのRWD又はAWDへの遷移を防止することが可能となる。
 ステップS1に戻り、前進を要さない場合(S1:NO)、ステップS18において、ECU28は、車両10の後退を要するか否かを判定する。当該判定は、例えば、シフト位置センサ52から通知されたシフト位置Psが、後退を示す位置(後退走行レンジR)であるか否かを確認することにより行う。後退を要する場合(S18:YES)、ステップS19において、ECU28は、駆動状態としてRWDを選択する。後退を要しない場合(S18:NO)、ステップS20において、ECU28は、走行状態として停車を選択し、エンジン12及び第1~第3モータ14、16、18のいずれも停止させる。
(1-2-2.第1フラグFLG1及び第2フラグFLG2の設定)
(1-2-2-1.考え方)
 図5は、緩加速時における横Gと旋回半径比R/R0との関係を駆動状態に応じて示す図である。ここにいう緩加速とは、車両10の加速が緩やかであること(車速Vの時間微分値が小さいこと)を意味し、例えば、アクセル開度θapが比較的小さい状態に対応する。旋回半径比R/R0は、実旋回半径R[m]が基準旋回半径R0[m]からどれだけ外れているかを示す値である。旋回半径比R/R0は、車両10の旋回特性を示す指標として用いる。
 基準旋回半径R0及び実旋回半径Rの算出方法の詳細は、例えば、特開2011-252564号公報又は特開2008-230513号公報を用いることができる。
 なお、基準旋回半径R0に対して実旋回半径Rが小さくなり、旋回半径比R/R0が小さくなると、オーバーステアの傾向を意味する。一方、基準旋回半径R0に対して実旋回半径Rが大きくなり、旋回半径比R/R0が大きくなると、アンダーステアの傾向を意味する。
 図6は、ワイド・オープン・スロットル(WOT)時における横Gと旋回半径比R/R0との関係を駆動状態に応じて示す図である。WOTは、いわゆるフルスロットルを意味し、アクセル開度θapが最大となる。
 図5(及び図6)に示すように、横Gが第1乖離発生値Gdiv1(第1横G)を下回るとき、各駆動状態(FWD、RWD及びAWD)についての旋回半径比R/R0は、略等しい値を取る。横Gが第1乖離発生値Gdiv1を上回ると、FWDの旋回半径比R/R0と、RWD及びAWDの旋回半径比R/R0とが乖離を始める。また、横Gが第2乖離発生値Gdiv2(第2横G)を上回ると、RWDの旋回半径比R/R0と、AWDの旋回半径比R/R0とが乖離を始める。
 上記のように、同一の横Gについて各駆動状態で旋回半径比R/R0の乖離が生じる場合(換言すると、乖離量が所定値を上回った場合)、駆動状態を切り替えることで車両10の旋回特性が急変して運転者に違和感を与えるおそれがある。そこで、本実施形態では、横Gが所定の閾値(以下「駆動状態切替え禁止閾値G1」又は「第1横G閾値G1」という。)を上回るとき、駆動状態の切替えを禁止する。
 本実施形態において、第1横G閾値G1は、現時点(演算時点)においてエンジン12が停止している場合の第1横G閾値G1a(第1切替閾値及び停止時閾値)と、現時点においてエンジン12が作動している場合の第1横G閾値G1b(第2切替閾値及び作動時閾値)とを選択的に用いる。以下では、第1横G閾値G1を第1横G閾値G1a、G1bの総称又は第1横G閾値G1a、G1bのうち実際に横Gとの比較に利用するものとして用いる。
 図5に示すように、第1横G閾値G1aは、FWDとRWD及びAWDとで旋回半径比R/R0に乖離が生じ始める横G(すなわち、第1乖離発生値Gdiv1)と等しい値に設定される。或いは、実際に乖離が始まる時点で駆動状態の切替えを確実に禁止する観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりも小さい値に設定してもよい。或いは、乖離量を所定値未満に抑えるという観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりもやや大きい値に設定することもできる。
 また、図5から明らかなように、駆動状態毎に旋回半径比R/R0の乖離が生じる横Gには、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2がある。このうち、本実施形態では、より小さい値(すなわち、第1乖離発生値Gdiv1)を第1横G閾値G1aとして設定している。以下では、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2のうち小さい値を「乖離基準値Gref」という。
 エンジン12の作動時に用いる第1横G閾値G1bは、エンジン12の停止時に用いる第1横G閾値G1aよりも小さい値に設定する。これは、エンジン12が停止している場合、エネルギ効率の観点からすれば、エンジン12の始動を遅くする方が好ましく、また、エンジン12が作動中である場合、後ろ側モータ16、18を早期に作動させることで操縦安定性を早期に高めることが好ましいとの観点に基づくものである。
 図5及び図6を比較すると理解されるように、各駆動状態での旋回半径比R/R0(並びに第1乖離発生値Gdiv1、第2乖離発生値Gdiv2及び乖離基準値Gref)は、加速状態(例えば、緩加速又はWOT加速の別)によっても変化する。そこで、本実施形態では、アクセル開度θapに応じて第1横G閾値G1(第1横G閾値G1a、G1b)を可変とする。後述するように、アクセル開度θapに加えて又はアクセル開度θapに代えて別の指標を用いて第1横G閾値G1を可変としてもよい。
 また、本実施形態では、横Gが大きくなったことに伴って駆動状態の切替えを禁止する際、駆動状態をAWDに固定する(図3のS5)。これにより、横Gが大きい状態でも車両10の姿勢を安定させ易くなる。
 駆動状態をAWDに固定する場合、エンジン12を作動させることとなる。それまでの駆動状態がRWDであり、横Gが第1横G閾値G1に到達して初めてエンジン12を始動させた場合、エンジン12が必要な出力に到達するまでに走行状態が不安定になる可能性も考えられる。そこで、本実施形態では、エンジン12の停止時に用いる第1横G閾値G1aについては、エンジン12を始動させる横Gの閾値(以下「エンジン始動閾値G2」又は「第2横G閾値G2」という。)を併せて設定する。第2横G閾値G2には、第1横G閾値G1aよりも小さい値を設定する。これにより、エンジン12を駆動に用いない駆動状態(すなわち、RWD)からAWDへの移行を円滑にすることが可能となる。
(1-2-2-2.具体的処理)
 図7は、第1フラグFLG1及び第2フラグFLG2を設定するフローチャート(図3のS3の詳細)である。ステップS31において、ECU28は、アクセルペダル開度センサ54からアクセル開度θapを取得する。
 ステップS32において、ECU28は、アクセル開度θapに基づいて駆動状態切替え禁止閾値G1(第1横G閾値G1)を選択する(図5及び図6参照)。上記のように、閾値G1は、閾値G1a、G1bから選択する。第1横G閾値G1の選択方法の詳細については、図9を用いて後述する。
 ステップS33において、ECU28は、アクセル開度θapに基づいてエンジン始動閾値G2(第2横G閾値G2)を選択する(図5及び図6参照)。第2横G閾値G2の選択方法の詳細については、後述する。
 ステップS34において、ECU28は、横Gを検出する。横Gの検出は、以下の方法で行う。すなわち、ECU28は、以下の式(1)を用いて横Gを検出(又は算出)する。
 横G=(V2×σ)/(1+A+V2)/L   ・・・(1)
 式(1)において、Vは、車速センサ50が検出した車速であり、σは、タイヤ舵角センサ58が検出したタイヤ舵角であり、Aは、スタビリティファクタであり、Lは、ホイールベースである(図8参照)。
 上記式(1)によれば、タイヤ舵角σの増加に応じて横Gが増加する。このため、高μ路に比べて第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2がより低い値となる低μ路においても、運転者の旋回意志を反映することが可能となる。加えて、式(1)によれば、傾斜路等であっても、横Gを検出することが可能となる。
 或いは、ECU28は、以下の式(2)を用いて横Gを検出(又は算出)してもよい。
 横G=Yr×V   ・・・(2)
 式(2)において、Yrは、ヨーレートセンサ56が検出したヨーレートであり、Vは、車速センサ50が検出した車速である。式(2)によれば、車両10がスピンしている場合でも、横Gを検出することが可能となる。加えて、式(2)によれば、傾斜路等であっても、横Gを検出することが可能となる。
 なお、横Gの検出は、それ自体で横Gを検出する横Gセンサ(静電容量検出方式、ピエゾ抵抗方式等)を用いて行うことも可能である。
 図7に戻り、ステップS35において、ECU28は、ステップS34で検出した横Gが、ステップS32で選択した駆動状態切替え禁止閾値G1を下回るか否かを判定する。横Gが閾値G1を下回る場合(S35:YES)、ステップS36において、ECU28は、駆動状態の切替えを許可するため、第1フラグFLG1に0を設定する。一方、横Gが閾値G1を下回らない場合(S35:NO)、ステップS37において、ECU28は、駆動状態の切替えを禁止するため、第1フラグFLG1に1を設定する。
 続くステップS38において、ECU28は、ステップS34で検出した横Gが、ステップS33で選択したエンジン始動閾値G2を下回るか否かを判定する。横Gが閾値G2を下回る場合(S38:YES)、ステップS39において、ECU28は、現在の駆動状態がRWDであればエンジン12を停止させたままとするため、第2フラグFLG2に0を設定する。一方、横Gが閾値G2を下回らない場合(S38:NO)、ステップS40において、ECU28は、駆動状態がRWDであってもエンジン12を始動させるため、第2フラグFLG2に1を設定する。
(1-2-2-3.駆動状態切替え禁止閾値G1の設定)
 図9は、駆動状態切替え禁止閾値G1を設定するフローチャート(図7のS32の詳細)である。ステップS51において、ECU28は、現時点(演算時点)における駆動状態がFWD又はAWDであるか否かを判定する。当該判定は、例えば、ECU28自身が選択している駆動状態を用いる。或いは、ECU28が指令した駆動状態と、実際の車輪(前輪32a、32b及び後輪36a、36b)の駆動状態は必ずしも一致しない場合がある。そこで、実測値(例えば、各車輪に設けた車輪速センサ(図示せず)からの出力)を用いて駆動状態を判定してもよい。
 現時点の駆動状態がFWD又はAWDである場合(S51:YES)、ステップS52において、ECU28は、エンジン12の作動時に用いる第1横G閾値G1bをアクセル開度θapに応じて設定する(図5及び図6参照)。なお、アクセル開度θapと閾値G1bとの関係は、例えば、図10又は図11に示すようマップとして予め記憶部44に記憶しておく。当該マップには、実験値又はシミュレーション値を利用することができる。
 図10では、アクセル開度θapが増加するに連れて閾値G1bが減少する。また、図11では、アクセル開度θapが0からθ1の間は閾値G1bが一定である。これは、加速度が低い状態(0~θ1)では、閾値G1bを変化させる実質的な意味がないとの考えに立ったものである。また、アクセル開度θapがθ1からθ2の間は閾値G1bを減少させる。これは、図5及び図6等を参照して説明したように、アクセル開度θapが増加して前後加速度(前後G)が大きくなると、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が小さくなることと符合する。
 図9のステップS51に戻り、現時点の駆動状態がFWD又はAWDでない場合(S51:NO)、ステップS53において、ECU28は、エンジン12が作動中であるか否かを判定する。駆動状態がRWD(後ろ側モータ16、18による駆動)であるにもかかわらず、エンジン12が作動中である場合としては、例えば、バッテリ20のSOCが、所定の閾値(SOC閾値)を下回っているため、エンジン12からの駆動力により第1モータ14で発電させる場合がある。或いは、図示しない補機における駆動電力を補うため、第1モータ14による発電を行う場合もある。
 なお、ステップS51は、実質的に、エンジン12が作動中であるか否かを判定するものであるため、ステップS51を省略して、ステップS52のみとすることもできる。
 エンジン12が作動中である場合(S53:YES)、上述したように、ステップS52において、ECU28は、エンジン12の作動時に用いる第1横G閾値G1bをアクセル開度θapに応じて設定する。
 エンジン12が作動中でない場合(S53:NO)、ステップS54において、ECU28は、エンジン12の停止時に用いる第1横G閾値G1aをアクセル開度θapに応じて設定する(図5及び図6参照)。なお、第1横G閾値G1bと同様、アクセル開度θapと閾値G1aとの関係は、例えば、図10又は図11に示すようなマップとして予め記憶部44に記憶しておく。当該マップには、実験値又はシミュレーション値を利用することができる。
 図10及び図11にも示すように、アクセル開度θapが等しい場合、エンジン12の停止時に用いる第1横G閾値G1aは、エンジン12の作動時に用いる第1横G閾値G1bよりも大きくなる。但し、第1横G閾値G1aが第1横G閾値G1bよりも常に大きくなる必要はなく、アクセル開度θapが小さい場合(例えば、0~θ1)又はアクセル開度θapが大きい場合(例えば、θ2以上)、第1横G閾値G1aと第1横G閾値G1bとを等しくすることもできる。
(1-2-2-4.エンジン始動閾値G2の設定)
 図7のステップS33に関し、閾値G2は、閾値G1と同様の方法で設定する。この場合、アクセル開度θapと閾値G2との関係は、マップとして予め記憶部44に記憶しておく。当該マップには、実験値又はシミュレーション値を利用することができる。或いは、閾値G1との差を予め設定しておき、閾値G1に基づいて閾値G2を設定することもできる。
(1-2―3.走行状態(駆動状態)の切替え時の処理)
 次に、走行状態(駆動状態)を切り替える際の処理について説明する。
(1-2-3-1.RWDからFWDへの切替え時)
 駆動ECU28が走行状態(駆動状態)をRWDからFWDに切り替えると判定した場合、駆動ECU28は、RWDからFWDに移行する過程において一時的にAWDを用いる。
 具体的には、非操舵輪としての後輪36の駆動力(後輪駆動力Fr)を徐々に減少させつつ、操舵輪としての前輪32の駆動力(前輪駆動力Ff)を徐々に増加させる。従って、一時的に(例えば、0.1~2.0秒のいずれかの間)RWDとFDWが混在する状態、すなわち、AWDの状態を用いる。
 但し、この場合におけるAWD(以下「過渡的AWD」ともいう。)は、駆動ECU28が走行状態(駆動状態)としてAWDを選択すると判定して用いるもの(図2に示す「AWD」)ではなく、あくまでRWDからFWDに移行するために用いるものである。換言すると、図2に示すAWDは、図3及び図4のフローチャートに基づいて設定されるものであるのに対し、過渡的AWDは、図3及び図4のフローチャートに基づいてRWDからFWDに切り替えると判定された場合に用いられるものである。なお、駆動状態は、車速V、車速変化量(車速Vの時間微分値)、アクセル開度θap、開度変化量(アクセル開度θapの時間微分値)及びヨーレートYrの少なくとも1つに基づいて切り替えてもよい。
 過渡的AWDに際しては、例えば、前輪駆動力Ff及び後輪駆動力Frの合計(以下「合計駆動力Ftotal」という。)を一定に維持する。これにより、RWDからFWDへの切替えを車両10の挙動変化なしに行い、当該切替えに伴う挙動変化による運転者の違和感を防止することが可能となる。
 或いは、過渡的AWDに際しては、例えば、アクセル開度θap、開度変化量及び車速変化量の少なくとも1つに応じて合計駆動力Ftotalを変化させるように制御することもできる。例えば、アクセル開度θapが大きいとき、開度変化量が正の値であるとき又は車速変化量が正の値であるとき、合計駆動力Ftotalを増加させ、アクセル開度θapが小さいとき、開度変化量が負の値であるとき又は車速変化量が負の値であるとき、合計駆動力Ftotalを減少させてもよい。
(1-2-3-2.FWDからRWDへの切替え時)
 FWDからRWDへの切替え時においても、RWDからFWDへの切替え時と同様の処理を行うことができる。すなわち、RWDからFWDへの切替えに際して過渡的AWDを介在させる。また、過渡的AWDに際しては、合計駆動力Ftotalを制御することができる。
(1-2-3-3.FWD又はRWDからAWDへの切替え時)
 FWDからAWDへの切替え時には、例えば、前輪駆動力Ffを一定にした状態で後輪駆動力Frを増加させて合計駆動力Ftotalを増加させる。或いは、前輪駆動力Ffを減少させながら後輪駆動力Frを増加させて合計駆動力Ftotalを一定にする又は増加させる。或いは、前輪駆動力Ffを増加させながら後輪駆動力Frを増加させて合計駆動力Ftotalを増加させる。
 同様に、RWDからAWDへの切替え時には、例えば、後輪駆動力Frを一定にした状態で前輪駆動力Ffを増加させて合計駆動力Ftotalを増加させる。或いは、後輪駆動力Frを減少させながら前輪駆動力Ffを増加させて合計駆動力Ftotalを一定にする又は増加させる。或いは、後輪駆動力Frを増加させながら前輪駆動力Ffを増加させて合計駆動力Ftotalを増加させる。
(1-2-3-4.AWDからFWD又はRWDへの切替え時)
 AWDからFWDへの切替え時には、例えば、前輪駆動力Ffを一定にした状態で後輪駆動力Frを減少させて合計駆動力Ftotalを減少させる。或いは、前輪駆動力Ffを増加させながら後輪駆動力Frを減少させて合計駆動力Ftotalを一定にする又は減少させる。或いは、前輪駆動力Ffを減少させながら後輪駆動力Frを減少させて合計駆動力Ftotalを減少させる。
 同様に、AWDからRWDへの切替え時には、例えば、後輪駆動力Frを一定にした状態で前輪駆動力Ffを減少させて合計駆動力Ftotalを減少させる。或いは、後輪駆動力Frを増加させながら前輪駆動力Ffを減少させて合計駆動力Ftotalを一定にする又は減少させる。或いは、後輪駆動力Frを減少させながら前輪駆動力Ffを減少させて合計駆動力Ftotalを減少させる。
C.本実施形態の効果
 横Gに応じたFDWからAWDへの切替え及びRWDからAWDへの切替え(図3のS4:YES→S5)に着目した場合、本実施形態によれば、RWDからAWDへと切り替えるための第1横G閾値G1a(第1切替閾値)(図9のS51:NO→S54)と、FWDからAWDへと切り替えるための第1横G閾値G1b(第2切替閾値)(S51:YES→S52)とに異なる値が設定される(図5等参照)。換言すると、エンジン12が作動している場合と、エンジン12が停止している場合とで、第1横G閾値G1を切り替えることが可能となる。このため、例えば、エンジン12の作動に伴うエネルギ消費と車両10の操縦安定性(運転者の意志通りに車両を操縦できる性能)とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
 加えて、本実施形態では、FWDに用いる第1横G閾値G1b(第2切替閾値)を、RWDに用いる第1横G閾値G1a(第1切替閾値)よりも小さくする(図5等参照)。これにより、エンジン12による駆動を行わないRWDからAWDへの切替えと比較して、エンジン12による駆動を行うFWDからAWDへの切替えを早く行うこととなる。このため、AWDへの切替え前にエンジン12を作動させている場合、早期に操縦安定性を向上させることが可能となる。
 また、駆動状態がRWDである場合におけるエンジン12の作動状態に着目した場合、本実施形態によれば、エンジン12の停止時においてRWDからAWDへと切り替えるための第1横G閾値G1a(停止時閾値)(図9のS53:NO→S54)と、エンジン12の作動時においてRWDからAWDへと切り替えるための第1横G閾値G1b(作動時閾値)(図9のS53:YES→S52)とに異なる値が設定される。換言すると、エンジン12が作動している場合と、エンジン12が停止している場合とで、第1横G閾値G1を切り替える。このため、例えば、エンジン12の作動に伴うエネルギ消費と車両10の操縦安定性とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
 加えて、本実施形態では、エンジン12の作動時(S53:YES)に用いる第1横G閾値G1b(作動時閾値)を、エンジン12の停止時(S53:NO)に用いる第1横G閾値G1a(停止時閾値)よりも小さくする(図5等参照)。これにより、エンジン12の停止時におけるRWDからAWDへの切替えと比較して、エンジン12の作動時におけるRWDからAWDへの切替えを早く行うこととなる。このため、RWDからAWDへの切替え前にエンジン12を作動させている場合、早期に操縦安定性を向上させることが可能となる。
II.変形例
 なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
A.車両10(適用対象)
 上記実施形態では、自動四輪車である車両10について説明したが(図1)、第1乖離発生値Gdiv1(第1横G)又は第2乖離発生値Gdiv2(第2横G)における駆動状態毎の旋回半径比R/R0の乖離の観点からすれば、FWD、RWD及びAWDのうち少なくともいずれか2つを切り替えることのできる車両であれば、これに限らない。例えば、自動二輪車、自動三輪車及び自動六輪車のいずれであってもよい。
 また、エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1を設定する観点からすれば、エンジン12を作動させない駆動状態(上記実施形態ではRWD)とAWDとを切り替えることのできる車両であれば、これに限らない。例えば、自動二輪車、自動三輪車及び自動六輪車のいずれであってもよい。
 上記実施形態では、車両10は、1つのエンジン12及び3つの走行モータ14、16、18を駆動源として有したが、駆動源はこの組合せに限らない。例えば、車両10は、前輪32用の1つ又は複数の走行モータと、後輪36用の1つ又は複数の走行モータを駆動源として有してもよい。例えば、前輪32用又は後輪36用に1つの走行モータのみを用いることができる。この場合、差動装置を用いて左右輪に駆動力を分配すればよい。また、第1乖離発生値Gdiv1(第1横G)又は第2乖離発生値Gdiv2(第2横G)における駆動状態毎の旋回半径比R/R0の乖離の観点からすれば、全ての車輪それぞれに個別の走行モータ(いわゆるインホイールモータを含む。)を割り当てる構成も可能である。
 さらに、エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1を設定する観点からすれば、1つの駆動用のエンジン12と1つの駆動用のモータ(第1~第3モータ14、16、18のいずれか)とがあればよい。
 図12は、この発明の変形例に係る車両10Aの駆動系及びその周辺の概略構成図である。車両10Aでは、上記実施形態に係る車両10の前輪駆動装置34及び後輪駆動装置38の構成が反対になっている。すなわち、車両10Aの前輪駆動装置34aは、車両10Aの前側に配置された第2及び第3走行モータ16a、18aを備える。また、車両10Aの後輪駆動装置38aは、車両10Aの後ろ側に直列配置されたエンジン12a及び第1走行モータ14aを備える。
 上記実施形態及び図12の変形例では、前輪32が操舵輪であり、後輪36が非操舵輪であったが、前輪32及び後輪36の両方を操舵輪とする構成及び後輪36を操舵輪とし、前輪32を非操舵輪とする構成も可能である。
B.第1~第3走行モータ14、16、18
 上記実施形態では、第1~第3走行モータ14、16、18を3相交流ブラシレス式としたが、これに限らない。例えば、第1~第3走行モータ14、16、18を3相交流ブラシ式、単相交流式又は直流式としてもよい。
 上記実施形態では、第1~第3走行モータ14、16、18は、高圧バッテリ20から電力が供給されたが、これに加え、燃料電池から電力を供給されてもよい。
C.車両10の駆動状態の制御
C-1.駆動状態の切替え
 上記実施形態では、図3及び図4のフローチャートを用いて駆動状態の切替えを行ったが、駆動状態の切替え方法は、これに限らない。例えば、車速V、車速変化量、アクセル開度θap、開度変化量及びヨーレートYrの少なくとも1つに基づいて切り替えてもよい。或いは、US 2012/0015772 A1の図13及びその関連記載に示すような方法で走行状態(駆動状態)の切替えを行ってもよい。
 上記実施形態では、車両10の駆動状態としてFWD、RWD及びAWDを切替え可能としたが、第1乖離発生値Gdiv1(第1横G)又は第2乖離発生値Gdiv2(第2横G)における駆動状態毎の旋回半径比R/R0の乖離の観点からすれば、これらのうち少なくともいずれか2つを切り替えることのできるものであれば、これに限らない。例えば、FWDとAWDとの切替え(第1切替え)のみが可能な構成、又はRWDとAWDとの切替え(第2切替え)のみが可能な構成にも適用することができる。エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1を設定する観点からすれば、1つの車両10駆動用のエンジン12と1つの車両10駆動用のモータとがあればよい。
 上記実施形態では、横Gが第1横G閾値G1以上となり(図7のS35:NO)、駆動状態の切替えを禁止するとき(図7のS37、図3のS4:YES)、駆動状態をAWDに固定した(図3のS5)。しかしながら、駆動状態の切替えを禁止するときに選択する駆動状態はAWDに限定しなくてもよい。例えば、駆動状態の切替えを禁止するときに選択する駆動状態はFWD又はRWDであってもよい。或いは、予め設定された特定の駆動状態を選択するのではなく、駆動状態の切替えを禁止するときに選択していた駆動状態(禁止直前の駆動状態)に固定することも可能である。
C-2.駆動状態切替え禁止閾値G1(第1横G閾値G1)
 上記実施形態では、FWDとRWD及びAWDとで旋回半径比R/R0が乖離を開始する境界値としての第1乖離発生値Gdiv1と等しい値を第1横G閾値G1aとしたが(図5等参照)、第1横G閾値G1aはその他の値に設定することもできる。例えば、実際に乖離が始まる時点で駆動状態の切替えを確実に禁止する観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりも小さい値に設定してもよい。或いは、乖離量を所定値未満に抑えるという観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりもやや大きい値に設定することもできる。
 上記実施形態では、駆動状態切替え禁止閾値G1を横Gの値としたが、横G自体の値でなくても、横Gに関連する値(横加速度関連値)であれば、これに限らない(ここにいう横加速度関連値には、横G自体を含む。)。例えば、上記式(2)では、ヨーレートYrと車速Vの積として横Gを算出すること(横G=Yr×V)に鑑み、第1横G閾値G1を車速Vで除したもの(G1/V)をヨーレートYrと比較する又は第1横G閾値G1をヨーレートYrで除したもの(G1/Yr)を車速Vと比較しても、同様の作用効果を生じさせることが可能である。換言すると、横Gを直接的に示す値の代わりに、横Gを間接的に示す値(上記例であれば、ヨーレートYr又は車速V)を所定の閾値(第1横G閾値G1を間接的に示す値)と比較しても、実質的には上記実施形態と同じことを意味する。上記式(1)についても同様のことが言える。
 また、エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1aを設定する観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1又は乖離基準値Grefを基準として設定しなくてもよい。換言すると、エンジン12の作動時と停止時とで第1横G閾値G1a、G1bを切り替えればよい。
 この点、上記実施形態では、エンジン12の作動時における第1横G閾値G1bを、エンジン12の停止時における第1横G閾値G1aよりも小さくしたが(図5等参照)、例えば、RWD時における操縦安定性の早期確保のため、第1横G閾値G1aよりも大きくしてもよい。
 上記実施形態では、アクセル開度θapに基づいて第1横G閾値G1(第1横G閾値G1a、G1b)を切り替えた(図5、図6、図10及び図11参照)。しかしながら、駆動状態の切替えに応じた旋回半径比R/R0又はこれと同様の旋回特性関連値の変化(乖離)に影響を与える値であれば、アクセル開度θapに加えて又はこれに代えて、その他の値を用いることもできる。
 例えば、図13及び図14に示すように、前後加速度(前後G)に基づいて駆動状態切替え禁止閾値G1a、G1b(第1横G閾値G1a、G1b)を変化させることも可能である。前後Gは、例えば、図示しない前後Gセンサにより検出することができる。図13では、前後Gが増加するに連れて閾値G1a、G1bが減少する。
 また、図14では、前後Gが0からGf1の間は閾値G1a、G1bが一定である。これは、前後Gが低い状態(0~Gf1)では、横Gの閾値G1a、G1bを変化させる実質的な意味がないとの考えに立ったものである。また、Gf1からGf2の間は閾値G1a、G1bを減少させる。これは、図5及び図6等を参照して説明したように、前後Gが大きくなると、横Gに関する第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が小さくなるためである。さらに、Gf2より大きくなると閾値G1a、G1bが一定となる。これは、例えば、閾値G1a、G1bが最小値に到達したためである。
 或いは、図15に示すように、車速Vに基づいて第1横G閾値G1a、G1bを変化させることもできる。図15では、車速Vが0からV1の間は閾値G1a、G1bが一定である。これは、車速Vが低い状態(0~V1)では、閾値G1a、G1bを変化させる実質的な意味がないとの考えに立ったものである。また、V1からV2の間は閾値G1a、G1bを減少させる。これは、図5及び図6等を参照して説明したように、車速Vが増加して前後Gが大きくなると、横Gに関する第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が小さくなるためである。さらに、車速VがV2より大きくなると閾値G1a、G1bが一定となる。これは、例えば、閾値G1a、G1bが最小値に到達したためである。
 或いは、運転者の加速意図を示す加速意図関連値(アクセル開度θap以外のもの)に基づいて第1横G閾値G1a、G1bを変化させてもよい。アクセル開度θap以外の加速意図関連値としては、例えば、アクセル開度θapに応じて設定されるエンジン12の駆動力の要求値(要求駆動力)、当該要求駆動力に対してフィードバック制御、リミット制御等の種々の制御を行って実際にエンジン12の駆動力の目標値として設定される目標駆動力を用いることができる。
 また、例えば、第1横G閾値G1a、G1b以上となる条件が非常に限定されている場合、第1横G閾値G1a、G1bを固定して用いることも可能である。
 上記実施形態では、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2のうち小さい値としての乖離基準値Grefを基準として第1横G閾値G1aを設定した。換言すると、駆動状態の切替えの内容にかかわらず、第1横G閾値G1aを用いた。
 しかしながら、図5及び図6に示すように、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が異なる値であることに着目すれば、駆動状態の切替え内容に応じて第1横G閾値G1aを可変とすることも可能である。換言すると、駆動状態の切替え内容に応じて異なる第1横G閾値G1aを設定することも可能である。例えば、FWDとRWD又はAWDとを切り替える場合には第1乖離発生値Gdiv1を第1横G閾値G1aとし、RWDとAWDとを切り替える場合には第2乖離発生値Gdiv2を第1横G閾値G1aとすることも可能である。この場合、RWDとAWDとを切り替える場合の第1横G閾値G1については、エンジン12の作動状態に応じて(上記実施形態における第1横G閾値G1a、G1bのように)さらに第1横G閾値G1aを切り替えてもよい。
 上記実施形態では、第1乖離発生値Gdiv1(第1横G)及び第2乖離発生値Gdiv2(第2横G)との比較の観点から第1横G閾値G1aを設定するものとして説明したが、駆動状態を切り替えた際の旋回半径比R/R0の変化量に焦点を当てて第1横G閾値G1aを設定しても実質的に同じである。
 すなわち、第1横G閾値G1aは、横Gが第1横G閾値G1aを上回っている状態でFWDとAWDとの切替え(第1切替え)を行ったとしたときの旋回半径比R/R0の予測変化量である第1変化量及びRWDとAWDとの切替え(第2切替え)を行ったとしたときの旋回半径比R/R0の予測変化量である第2変化量のうち小さい値に基づいて設定してもよい。なお、ここにいう第1切替え及び第2切替えには、FWDとRWDとを切り替える際の過渡的AWDを含む。或いは、駆動状態の切替え内容毎に第1横G閾値G1aを設定する場合、第1変化量及び第2変化量のそれぞれに応じて第1横G閾値G1aを設定することもできる。
 上記実施形態では、第1横G閾値G1a、G1bを予めECU28の記憶部44に記憶しておいたが、運転中に逐次演算することにより第1横G閾値G1a、G1bを算出することも可能である。この場合、例えば、横Gと旋回半径比R/R0の関係を駆動状態毎に記憶しておき、旋回半径比R/R0の変化量が所定値以上になる横Gを第1横G閾値G1aとし、第1横G閾値G1aとの関係から第1横G閾値G1bを演算することもできる。
C-3.旋回半径比R/R0(旋回特性関連値)
 上記実施形態では、駆動状態の切替えが行われた際、横Gとの関連で乖離が発生する旋回特性関連値として旋回半径比R/R0を用いたが、その他の旋回特性関連値(例えば、実旋回半径R自体、いずれかの車輪のスリップ率)に基づいて第1横G閾値G1及び第2横G閾値G2を設定してもよい。
C-4.エンジン始動閾値G2(第2横G閾値G2)
 上記実施形態では、アクセル開度θapに基づいて第2横G閾値G2を設定したが、将来的に横Gが第1横G閾値G1a以上となる可能性が高いことを判定してエンジン12を始動させておくことができれば、これに限らない。例えば、第1横G閾値G1aと同様、アクセル開度θapに加えて又はこれに代えて、その他の値(前後G、車速V)に基づいて第2横G閾値G2を設定することもできる。或いは、第1横G閾値G1a以上となる条件が非常に限定されている場合、第1横G閾値G1aと同様、第2横G閾値G2を固定して用いることも可能である。
 或いは、閾値G2は、閾値G1aに基づいて設定することも可能である。ここで、前後Gが小さい場合、横Gの変化量(時間微分値)も小さいとの考えに立てば、前後Gが小さい場合、閾値G1aとの差を小さくして閾値G2を設定し、前後Gが大きい場合、閾値G1aとの差を大きくして閾値G2を設定してもよい。
C-5.その他
 図3のステップS2では、後ろ側モータ16、18の駆動が可能であるか否かの判定を、後ろ側モータ16、18の温度、後ろ側モータ16、18における異常発生及びバッテリ20のSOCに基づいて行ったが、後ろ側モータ16、18の駆動が可能であるか否かの判定をすることができれば、これに限らない。例えば、後ろ側モータ16、18の温度、後ろ側モータ16、18における異常発生及びバッテリ20のSOCのいずれか1つ又は2つにより判定してもよい。
 或いは、上記各指標の一部若しくは全部に加え又はこれらに代えて、別の指標を用いることも可能である。例えば、バッテリ20の劣化度(充電回数、使用期間等)を用いることもできる。
 なお、図4のフローチャートでは、車両10が高車速であるとき(S12:NO)、FWDを選択して後ろ側モータ16、18を駆動させない。このため、実質的に、車速Vによっても後ろ側モータ16、18の駆動が可能であるか否かの判定を行っていることとなる。
 上記実施形態では、RWDを選択しているときには、図3のステップS7及びエンジン12の駆動力により第1モータ14で発電する場合を除き、エンジン12をアイドリングさせずに停止させることを念頭に置いていたが、図3のステップS7及び発電以外の場合においてエンジン12をアイドリング状態で待機させることも可能である。

Claims (7)

  1.  前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、
     内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、
     前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、
     前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)と
     を備える車両(10、10A)であって、
     前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第2駆動装置(34、38a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第2単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
     さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
     前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値が設定される
     ことを特徴とする車両(10、10A)。
  2.  請求項1記載の車両(10、10A)において、
     前記第2切替閾値を前記第1切替閾値よりも小さくする
     ことを特徴とする車両(10、10A)。
  3.  前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、
     内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、
     前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、
     前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)と
     を備える車両(10、10A)であって、
     前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
     さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
     前記内燃機関(12、12a)が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関(12、12a)が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値が設定される
     ことを特徴とする車両(10、10A)。
  4.  請求項3記載の車両(10、10A)において、
     前記作動時閾値を前記停止時閾値よりも小さくする
     ことを特徴とする車両(10、10A)。
  5.  請求項3又は4記載の車両(10、10A)において、
     前記内燃機関(12、12a)は、前記第1単独駆動状態において、前記車両(10、10A)に設けられた発電機に対して選択的に駆動力を付与する
     ことを特徴とする車両(10、10A)。
  6.  前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)とを備える車両(10、10A)の制御方法であって、
     前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第2駆動装置(34、38a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第2単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
     さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
     前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値を設定する
     ことを特徴とする車両(10、10A)の制御方法。
  7.  前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)とを備える車両(10、10A)の制御方法であって、
     前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
     さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
     前記内燃機関(12、12a)が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関(12、12a)が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値を設定する
     ことを特徴とする車両(10、10A)の制御方法。
PCT/JP2013/055307 2012-03-30 2013-02-28 車両及び車両の制御方法 WO2013146057A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/376,577 US9573466B2 (en) 2012-03-30 2013-02-28 Vehicle, and vehicle control method
CN201380016576.0A CN104245387B (zh) 2012-03-30 2013-02-28 车辆及车辆的控制方法
JP2014507574A JP5596243B2 (ja) 2012-03-30 2013-02-28 車両及び車両の制御方法
DE112013001826.8T DE112013001826B4 (de) 2012-03-30 2013-02-28 Fahrzeug und Fahrzeugsteuerverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081695 2012-03-30
JP2012081695 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146057A1 true WO2013146057A1 (ja) 2013-10-03

Family

ID=49259332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055307 WO2013146057A1 (ja) 2012-03-30 2013-02-28 車両及び車両の制御方法

Country Status (5)

Country Link
US (1) US9573466B2 (ja)
JP (1) JP5596243B2 (ja)
CN (1) CN104245387B (ja)
DE (1) DE112013001826B4 (ja)
WO (1) WO2013146057A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116860A (ja) * 2013-12-17 2015-06-25 本田技研工業株式会社 車両駆動システム
CN105848944A (zh) * 2013-12-27 2016-08-10 本田技研工业株式会社 车辆驱动系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723589B2 (ja) * 2010-09-30 2015-05-27 本田技研工業株式会社 前後輪駆動車両
DE102016204939A1 (de) * 2016-03-24 2017-09-28 Volkswagen Aktiengesellschaft Antriebsvorrichtung für ein Hybrid-Kraftfahrzeug und ein Verfahren zum Betrieb der Antriebsvorrichtung
WO2017216931A1 (ja) * 2016-06-16 2017-12-21 三菱電機株式会社 車両制御装置及び車両制御システム
KR101936995B1 (ko) * 2016-11-25 2019-01-10 현대자동차주식회사 모터 제어 방법 및 시스템
US11602999B1 (en) * 2018-05-01 2023-03-14 Zoox, Inc. Predictive control strategies for vehicles
JP7459824B2 (ja) * 2021-03-02 2024-04-02 トヨタ自動車株式会社 車両用駆動装置
WO2023150252A1 (en) * 2022-02-03 2023-08-10 Zimeno, Inc. Dba Monarch Tractor Vehicle electric motor hydraulic pump decoupling
US20230399073A1 (en) * 2022-06-13 2023-12-14 Kawasaki Motors, Ltd. Off-road vehicle and vehicle control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638305A (ja) * 1992-07-17 1994-02-10 Aqueous Res:Kk ハイブリッド型車両
JPH06328965A (ja) * 1993-05-21 1994-11-29 Honda Motor Co Ltd アンチロックブレーキ制御装置付車両における駆動状態切換制御方法
JPH09284911A (ja) * 1996-04-08 1997-10-31 Toyota Motor Corp 4輪駆動型ハイブリッド車両の駆動制御装置
JP2008273289A (ja) * 2007-04-26 2008-11-13 Denso Corp ハイブリッド車の制御装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US550299A (en) 1895-11-26 Millstone
JP2780717B2 (ja) * 1989-01-24 1998-07-30 日産自動車株式会社 四輪駆動車の駆動力配分制御装置
JPH03153411A (ja) * 1989-11-06 1991-07-01 Mazda Motor Corp サスペンションとステアリングの協調制御装置
JPH04159429A (ja) * 1990-10-20 1992-06-02 Japan Electron Control Syst Co Ltd 4輪駆動車用駆動力制御装置
JP2679416B2 (ja) * 1990-12-21 1997-11-19 日産自動車株式会社 車両の制動力前後配分制御装置
US5453930A (en) * 1991-02-08 1995-09-26 Nissan Motor Co., Ltd. Drive system for electric automobiles
US5259476A (en) * 1991-04-26 1993-11-09 Fuji Jukogyo Kabushiki Kaisha Torque distribution control system for a four-wheel drive motor vehicle
US5332059A (en) * 1991-04-26 1994-07-26 Fuji Jukogyo Kabushiki Kaisha Control system for a differential of a motor vehicle
US5301768A (en) * 1992-05-04 1994-04-12 Aisin Aw Co., Ltd. Four-wheel drive torque transfer mechanism
US5540299A (en) 1992-11-30 1996-07-30 Mazda Motor Corporation System for driving an automotive vehicle
JP3301183B2 (ja) * 1993-11-24 2002-07-15 日産自動車株式会社 車両の前後輪間駆動力配分制御装置
US5691900A (en) * 1994-07-28 1997-11-25 Kelsey-Hayes Company Method and system for turning detection
US5671144A (en) * 1995-05-01 1997-09-23 Zexel Torsen Inc. Combined power limiting and power distributing traction control system for improving vehicle performance in turns
JPH0986377A (ja) * 1995-09-26 1997-03-31 Aisin Seiki Co Ltd 液圧制御装置
DE19628981A1 (de) * 1996-07-18 1998-01-22 Teves Gmbh Alfred Verfahren zur Verbesserung des Regelverhaltens eines ABS
JP3976116B2 (ja) * 2000-09-29 2007-09-12 本田技研工業株式会社 車輌用2輪4輪駆動切換装置
JP3546408B2 (ja) * 2000-11-13 2004-07-28 本田技研工業株式会社 前後輪駆動車両の制御装置
JP2002147278A (ja) * 2000-11-15 2002-05-22 Honda Motor Co Ltd 車両における駆動トルク推定方法
JP3912399B2 (ja) 2003-09-29 2007-05-09 日産自動車株式会社 車両用駆動装置
JP2005304182A (ja) * 2004-04-12 2005-10-27 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP4417203B2 (ja) * 2004-08-23 2010-02-17 本田技研工業株式会社 4輪駆動車両の駆動力制御方法
DE102005026874B4 (de) * 2005-06-10 2017-05-11 Volkswagen Ag Vorrichtung und Verfahren zum Antrieb eines Fahrzeuges
JP4390785B2 (ja) 2006-05-24 2009-12-24 トヨタ自動車株式会社 四輪駆動式車両の駆動力制御装置
JP2008230513A (ja) 2007-03-22 2008-10-02 Toyota Motor Corp 車輪速度補正装置
JP2008037422A (ja) * 2007-09-10 2008-02-21 Hitachi Ltd ハイブリッド四輪駆動車の制御装置およびハイブリッド四輪駆動車
EP2106952A1 (en) * 2008-04-02 2009-10-07 GM Global Technology Operations, Inc. Motor vehicle having a switchable four wheel drive
EP3431813B1 (en) 2009-03-31 2019-10-09 Honda Motor Co., Ltd. Drive device and vehicle with same
DE102009002586A1 (de) * 2009-04-23 2010-10-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges, insbesondere eines Hybridfahrzeuges
US8903619B2 (en) * 2009-08-18 2014-12-02 Toyota Jidosha Kabushiki Kaisha Vehicle control system
DE102010015423A1 (de) * 2010-04-19 2011-10-20 Audi Ag Antriebsvorrichtung für ein allradgetriebenes Fahrzeug
JP2011252564A (ja) 2010-06-03 2011-12-15 Honda Motor Co Ltd 駆動制御装置
JP5126320B2 (ja) * 2010-08-30 2013-01-23 トヨタ自動車株式会社 車両の制御装置
JP5542014B2 (ja) * 2010-09-10 2014-07-09 富士重工業株式会社 車両挙動制御装置
GB2488156A (en) * 2011-02-18 2012-08-22 Land Rover Uk Ltd Vehicle and method for preventing switching between drive modes
US8219296B1 (en) * 2011-03-30 2012-07-10 Nissin Kogyo Co., Ltd. Control device for controlling drive force that operates on vehicle
JP6053095B2 (ja) * 2012-01-10 2016-12-27 本田技研工業株式会社 車両用自動変速機の制御装置
JP5944199B2 (ja) * 2012-03-30 2016-07-05 本田技研工業株式会社 車両及び車両の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638305A (ja) * 1992-07-17 1994-02-10 Aqueous Res:Kk ハイブリッド型車両
JPH06328965A (ja) * 1993-05-21 1994-11-29 Honda Motor Co Ltd アンチロックブレーキ制御装置付車両における駆動状態切換制御方法
JPH09284911A (ja) * 1996-04-08 1997-10-31 Toyota Motor Corp 4輪駆動型ハイブリッド車両の駆動制御装置
JP2008273289A (ja) * 2007-04-26 2008-11-13 Denso Corp ハイブリッド車の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116860A (ja) * 2013-12-17 2015-06-25 本田技研工業株式会社 車両駆動システム
CN105848944A (zh) * 2013-12-27 2016-08-10 本田技研工业株式会社 车辆驱动系统
EP3088267A4 (en) * 2013-12-27 2017-12-20 Honda Motor Co., Ltd. Vehicle drive system
US10155522B2 (en) 2013-12-27 2018-12-18 Honda Motor Co., Ltd. Vehicle drive system having improved switching between two wheel drive and all wheel drive
KR101947882B1 (ko) 2013-12-27 2019-02-13 혼다 기켄 고교 가부시키가이샤 차량 구동 시스템

Also Published As

Publication number Publication date
JP5596243B2 (ja) 2014-09-24
JPWO2013146057A1 (ja) 2015-12-10
US9573466B2 (en) 2017-02-21
CN104245387B (zh) 2017-09-05
CN104245387A (zh) 2014-12-24
US20150014081A1 (en) 2015-01-15
DE112013001826B4 (de) 2018-12-06
DE112013001826T5 (de) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5944199B2 (ja) 車両及び車両の制御方法
JP5596243B2 (ja) 車両及び車両の制御方法
JP4379406B2 (ja) 車両の駆動力配分制御装置
US10793124B2 (en) Vehicle wheel torque control systems and methods
EP1860012B1 (en) Engine Start Control
JP4325615B2 (ja) ハイブリッド車両のエンジン停止制御装置
JP2004104991A (ja) 回生制動を持つ車両の独立制動及び操縦性の制御方法及びシステム
WO2015099032A1 (ja) 車両及び車両の制御方法
JP5994842B2 (ja) 車両の駆動力制御装置
JP7283073B2 (ja) 四輪駆動車両のトルク制御装置
JP2007325372A (ja) 電動車両の制御装置
JP6382512B2 (ja) 車両
JP2007203998A (ja) 車両およびその制御方法
JP7287175B2 (ja) 四輪駆動車両の制御装置
JP2009018708A (ja) 車両およびその制御方法
JP2009018709A (ja) 車両およびその制御方法
JP7272130B2 (ja) 四輪駆動ハイブリッド車両
US12083928B2 (en) Vehicle control device, vehicle control method, and storage medium
JP3627706B2 (ja) 前後輪駆動車の制御装置
WO2022029937A1 (ja) シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両の制御装置
WO2022024373A1 (ja) シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両
JP2024155090A (ja) 車両用制御装置
JP2024099097A (ja) ハイブリッド四輪駆動車の走行モード切換方法およびハイブリッド四輪駆動車
JP2023063099A (ja) 車両制御装置
JP2020090217A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507574

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013001826

Country of ref document: DE

Ref document number: 1120130018268

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767964

Country of ref document: EP

Kind code of ref document: A1