[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013145713A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2013145713A1
WO2013145713A1 PCT/JP2013/002042 JP2013002042W WO2013145713A1 WO 2013145713 A1 WO2013145713 A1 WO 2013145713A1 JP 2013002042 W JP2013002042 W JP 2013002042W WO 2013145713 A1 WO2013145713 A1 WO 2013145713A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve seat
outer peripheral
compressor
valve body
central axis
Prior art date
Application number
PCT/JP2013/002042
Other languages
English (en)
French (fr)
Inventor
小村 正人
忠資 堀田
江原 俊行
井上 孝
神谷 治雄
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Priority to DE112013001840.3T priority Critical patent/DE112013001840T5/de
Priority to US14/389,132 priority patent/US9765780B2/en
Publication of WO2013145713A1 publication Critical patent/WO2013145713A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/062Arrangements for supercharging the working space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/025Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents the moving and the stationary member having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present disclosure relates to a compressor that injects intermediate pressure gas into a compression chamber.
  • a compressor in which a fluid to be compressed is injected into the compressor so as to supercharge the fluid to be compressed.
  • Electric compressors for refrigeration and air conditioning include reciprocating compressors, rotary compressors, and scroll compressors, but scroll compressors take advantage of the features of high efficiency, low noise, and low vibration. It has been put into practical use.
  • the scroll compressor intermediate pressure refrigerant gas is injected into a compression chamber formed between the fixed scroll and the orbiting scroll through a check valve, and the slow compression is a characteristic of the scroll compressor. Using stable compression, stable and efficient gas injection is realized.
  • the fixed scroll end plate is provided with an injection port that penetrates from the back side to the compression chamber in the wall thickness direction.
  • a block to which an injection pipe is connected is applied to the outer surface of the end plate of the fixed scroll corresponding to the injection port, and a check valve chamber is formed therebetween.
  • a check valve is configured by locking a reed valve body with a bolt at an inlet from an injection pipe in the block.
  • the inlet of the injection pipe and the injection port are installed coaxially.
  • a reed valve body valve stopper is provided in a part of the check valve chamber.
  • Patent Document 1 has a simple structure, a relatively small dead volume, and can prevent re-expansion of compressed fluid and outflow of lubricating oil.
  • problems (1) to (3) have occurred.
  • valve stopper When using a reed valve body, a valve stopper is required.
  • the prior art also has a description of providing a valve stopper, which requires a separate processing from the refrigerant passage, which increases the processing cost.
  • Patent Document 2 there is a compressor disclosed in Patent Document 2 as a compressor for a refrigeration cycle for injecting intermediate pressure gas.
  • a reed valve body that opens and closes in a direction orthogonal to the axial direction of the port is inserted into the injection port that protrudes from the back side of the fixed scroll, and the dead volume cannot be reduced.
  • Patent Document 3 performs liquid injection, and a connection pipe communicating with an injection port is provided with a filling for narrowing the cavity volume so as not to be gasified. As a whole flow path, dead volume is reduced. It was something that could not be done.
  • an object of the present disclosure is to provide a compressor that injects an intermediate pressure gas into a compression chamber with reduced dead volume and improved injection characteristics.
  • a compressor includes a low-pressure refrigerant supply path through which a low-pressure refrigerant flows, a compression chamber that compresses and discharges the refrigerant supplied from the low-pressure refrigerant supply path to a high pressure higher than the low pressure, and higher than the low pressure. And a housing having an intermediate pressure refrigerant supply path capable of communicating with the compression chamber via an injection port so as to inject a refrigerant having an intermediate pressure lower than the high pressure into the compression chamber.
  • the compressor further includes a check valve housed in a housing hole of the intermediate pressure refrigerant supply path adjacent to the inlet of the injection port, and the check valve includes a valve seat portion and a reed valve body.
  • the valve seat portion includes a valve seat and a valve seat passage that extends through the valve seat portion on a radially inner side of the valve seat and through which the refrigerant flows.
  • the center of the inlet of the injection port is offset from the central axis of the valve seat passage.
  • the reed valve body can be seated on the valve seat to close the valve seat passage and can be separated from the valve seat to open the valve seat passage.
  • a check valve chamber that houses at least a part of the reed valve body is provided between the valve seat portion in the housing hole and the wall surface of the housing hole. Provided.
  • FIG. 1 is an explanatory diagram illustrating a heat pump cycle according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of a compressor according to an embodiment of the present disclosure.
  • 3A is a cross-sectional view around the compression chamber of the compressor according to the embodiment of the present disclosure
  • FIG. 3B is an enlarged front cross-sectional view around the reed valve body
  • FIG. 3 is a plan view of a reed valve body.
  • FIG. 4A is a cross-sectional view around the reed valve body according to the first modified example of the embodiment of the present disclosure
  • FIG. 4B is a cross-sectional view of the reed valve body according to the first modified example. is there.
  • FIG.5 (A) is front sectional drawing of the periphery of the reed valve body in the 2nd modification of one Embodiment of this indication
  • FIG.5 (b) is front sectional drawing of an accommodation hole
  • FIG.5 (c) Is a plan view of a reed valve body of a second modified example.
  • FIG. 1 is an explanatory diagram showing a heat pump cycle of the present embodiment.
  • This heat pump cycle includes a compressor 1 that sucks and compresses refrigerant, a heat exchanger (water refrigerant heat exchanger) 2 that performs heat exchange between hot water and the refrigerant discharged by the compressor 1, and a heat exchanger.
  • the first expansion valve 3 and the second expansion valve 4 that depressurize the refrigerant that has flowed out from the heat exchanger 2, the heat exchanger (evaporator) 5 that absorbs heat from the outside air and evaporates the refrigerant, and the refrigerant that has flowed out of the heat exchanger 5 into the liquid
  • a gas-liquid separator 6 is provided that separates into a phase refrigerant and a gas phase refrigerant, stores excess refrigerant, and supplies the gas phase refrigerant to the compressor 1 via a refrigerant pipe 38.
  • the intermediate pressure refrigerant gas is branched from the first expansion valve 3 and at the branch point 7 upstream of the second expansion valve 4 and once decompressed by the first expansion valve 3.
  • the refrigerant discharge passage 54 (see FIG. 2) of the compressor 1 is connected to the refrigerant inlet 47 of the oil separator 40 via the refrigerant outlet 54 a and the refrigerant pipe 48.
  • the oil separator 40 serves to separate the lubricating oil from the compressed refrigerant discharged from the housing 30 of the compressor 1 and return the separated lubricating oil into the housing 30 via the pipe connecting member 34.
  • the principle of the present disclosure is applied to a heat pump cycle of a hot water supply system, but may be applied to other systems and refrigeration cycles (including a heat pump cycle) of an apparatus.
  • the principle of the present disclosure may be applied to a refrigeration cycle of a vehicle air conditioner, or may be applied to a refrigeration cycle of other industrial or household air conditioners.
  • an example in which the principle of the present disclosure is applied to the compressor 1 configured as a scroll compressor will be described.
  • the present disclosure is not necessarily limited to this, and other types of one-stage It can also be applied to a compression type compressor.
  • the principle of the present disclosure can be applied to a two-stage compression type compressor.
  • the gas-liquid separator 6 is provided on the downstream side of the heat exchanger 5, but the principle of the present disclosure is applied to a heat pump cycle in which the gas-liquid separator 6 is not provided. It can also be applied.
  • FIG. 2 is a cross-sectional view of the compressor 1 according to an embodiment of the present disclosure.
  • the compressor 1 is a scroll-type electric compressor, and a compression mechanism unit 10 that compresses refrigerant (refrigerant gas) and an electric motor unit 20 that drives the compression mechanism unit 10 are arranged in the vertical direction (vertical direction). It is a vertical type. In the present embodiment, the compressor 1 is described as a vertical type, but a horizontal type may be used.
  • the compression mechanism unit 10 and the electric motor unit 20 are accommodated in a housing 30.
  • the electric motor unit 20 includes a stator 21 that forms a stator and a rotor 22 that forms a rotor.
  • the stator 21 has a stator core 211 and a stator coil 212 wound around the stator core 211.
  • the power is supplied to the stator coil 212 through the power supply terminal 23.
  • the power supply terminal 23 is disposed at the upper end portion of the housing 30.
  • a rotating magnetic field is applied to the rotor 22 to generate a rotational force in the rotor 22, and the drive shaft 25 rotates integrally with the rotor 22.
  • the drive shaft 25 is formed in a cylindrical shape, and an internal space thereof constitutes an oil supply passage 251 that supplies lubricating oil to a sliding portion (lubrication target portion) of the drive shaft 25.
  • the oil supply passage 251 is opened at the lower end surface of the drive shaft 25, and the upper end surface of the drive shaft 25 is closed by the closing member 26.
  • the collar portion 252 is provided with a balance weight 254.
  • Balance weights 221 and 222 are also provided on both sides of the rotor 22 in the vertical direction.
  • the drive shaft 25 is supported by bearing portions 27 and 291.
  • the middle housing 29 has a cylindrical shape whose outer diameter and inner diameter increase stepwise from the upper side toward the lower side, and the outermost peripheral surface thereof is fixed to the cylindrical member 31 of the housing 30.
  • An upper portion of the middle housing 29 constitutes a bearing portion 291.
  • a movable scroll (also referred to as orbiting scroll) 11 that constitutes a movable member of the compression mechanism unit 10 is accommodated in a lower portion of the middle housing 29.
  • a fixed scroll 12 that is a fixed member of the compression mechanism unit 10 is fixedly held below the movable scroll 11.
  • the movable scroll 11 is configured to be slidable with respect to the fixed scroll 12.
  • the movable scroll 11 and the fixed scroll 12 have a disk-shaped movable scroll substrate portion 111 and a fixed scroll substrate portion 121, respectively.
  • the movable scroll substrate unit 111 and the fixed scroll substrate unit 121 are arranged so as to face each other in the vertical direction.
  • the eccentric part 253 is eccentric with respect to the rotation center of the drive shaft 25.
  • the movable scroll 11 and the fixed scroll 12 are provided with a rotation prevention mechanism (not shown) that prevents the movable scroll 11 from rotating around the eccentric portion 253. For this reason, when the drive shaft 25 rotates, the movable scroll 11 revolves (turns) around the rotation center of the drive shaft 25 without rotating around the eccentric portion 253.
  • Two thrust plates 13 and 14 are stacked in the vertical direction between the movable scroll 11 and the middle housing 29. Positioning of the thrust plate 13 with respect to the middle housing 29 is performed by positioning pins 131.
  • the thrust plate 14 is fixed to the movable scroll 11, and positioning with respect to the movable scroll 11 is performed by positioning pins 141.
  • the movable scroll 11 is formed with a spiral tooth portion (scroll wrap) 112 protruding from the movable scroll substrate portion 111 toward the fixed scroll 12 side.
  • a spiral tooth portion (scroll wrap) 122 that meshes with the tooth portion 112 of the movable scroll 11 is formed on the upper surface (surface on the movable scroll 11 side) of the fixed scroll substrate portion 121.
  • a plurality of crescent-shaped compression chambers 15 are formed by engaging the tooth portions 112 and 122 of the scrolls 11 and 12 and contacting each other at a plurality of locations.
  • the refrigerant is supplied to the compression chamber 15 through the refrigerant suction port 36 and the refrigerant suction passage 128.
  • the refrigerant suction port 36 and the refrigerant suction passage 128 constitute a low-pressure refrigerant supply passage 37 that supplies low-pressure refrigerant gas to the compression chamber 15.
  • a refrigerant pipe 38 is connected to the refrigerant suction port 36.
  • the refrigerant suction passage 128 of the fixed scroll substrate 121 is formed between the outermost peripheral portion of the spiral groove portion of the fixed scroll substrate 121 (the tooth portion 122 and the outer peripheral edge of the fixed scroll substrate 121. It communicates with the outermost peripheral portion of the groove).
  • a discharge hole 123 through which the refrigerant compressed in the compression chamber 15 is discharged is formed at the center of the fixed scroll substrate 121.
  • a discharge chamber 124 communicating with the discharge hole 123 is formed below the discharge hole 123 in the fixed scroll substrate part 121.
  • the discharge chamber 124 is defined by a recess 125 formed on the lower surface of the fixed scroll 12 and a partition member 18 fixed on the lower surface of the fixed scroll 12.
  • a reed valve body 17 that serves as a check valve that prevents the refrigerant from flowing back into the compression chamber 15 and a stopper 19 that restricts the maximum opening of the reed valve body 17 are disposed.
  • the refrigerant in the discharge chamber 124 is discharged to the outside of the housing 30 through the refrigerant discharge passage 54 formed in the fixed scroll substrate 121 and the refrigerant discharge port 54a (see FIG. 1) formed in the cylindrical member 31 of the housing 30. It has come to be.
  • the refrigerant discharge port 54 a of the housing 30 is connected to the refrigerant inlet 47 of the oil separator 40 via a refrigerant pipe 48.
  • the refrigerant that has flowed into the refrigerant inlet 47 of the oil separator 40 is introduced into the cylindrical space in the oil separator 40, causes the refrigerant to swirl in the cylindrical space, and the action of centrifugal force generated by the swirling flow of the refrigerant.
  • the oil separator 40 serves to separate the lubricating oil from the compressed refrigerant discharged from the housing 30 and return the separated lubricating oil into the housing 30 via the pipe connection member 34.
  • the refrigerant gas from which the lubricating oil has been separated is supplied to the heat exchanger 2 through the refrigerant pipe 49.
  • a fixed-side oil supply passage (not shown) is formed inside the fixed scroll substrate portion 121, and a fixed-side oil supply passage is formed inside the movable scroll substrate portion 111 during the revolving motion (turning) of the movable scroll 11.
  • a movable oil supply passage (not shown) that communicates intermittently is formed.
  • Lubricating oil from the oil separator 40 passes through the pipe connecting member 34 and is supplied between the fixed scroll substrate portion 121 and the movable scroll substrate portion 111, and then between the eccentric portion 253 and the boss portion 113 of the movable scroll 11. In addition to being supplied, the oil is supplied to the bearing portions 27 and 291 through the oil supply passage 251.
  • An oil storage chamber 35 is formed at the bottom of the housing 30.
  • the refrigerant supply / discharge path and the lubricant supply path described above are shown as examples, and are not limited to these, and may be replaced with other known modifications.
  • the compressor 1 shown in FIG. 2 is basically the same as the compressor disclosed in Patent Document 4 except for an injection mechanism (also referred to as an injection device) described below, and a part of the description is omitted.
  • FIG. 3A is a cross-sectional view around the compression chamber according to an embodiment of the present disclosure
  • FIG. 3B is an enlarged front cross-sectional view around the reed valve body
  • FIG. It is a top view of a valve body.
  • a plurality of injection ports 400 for injecting intermediate-pressure refrigerant into the corresponding compression chambers 15 are provided on the fixed scroll substrate portion 121 of the fixed scroll 12. ing. Since the plurality of ports 400 and their peripheral portions have substantially the same configuration, in the following description, only one of the plurality of ports 400 will be described.
  • the port 400 is offset from the valve seat passage 304 in the radial direction on the side opposite to the connecting portion 303a of the reed valve body 303 with respect to the valve seat passage 304 of the check valve 300. ing.
  • the refrigerant (intermediate pressure gas) injected into the compression chamber 15 is introduced into the compressor 1 from the branch point 7 in FIG.
  • the intermediate pressure pipe 8 is connected to the passage 9 provided in the partition member 18 in FIG. 2, and the intermediate pressure is supplied to the port 400 through the check valve 300 that is press-fitted into the accommodation hole 310 provided in the fixed scroll substrate portion 121.
  • An intermediate pressure refrigerant supply path 80 that supplies intermediate pressure gas (refrigerant gas) of an intermediate pressure to the compression chamber 15 is configured by the passage 9 and the accommodation hole 310 and the port 400 provided in the fixed scroll substrate portion 121. .
  • the pressure of the intermediate pressure gas supplied to the passage 9 through the intermediate pressure pipe 8 is higher than the pressure (suction pressure) of the low-pressure refrigerant sucked into the refrigerant suction port 36 of the compressor 1, and the refrigerant discharge of the compressor 1. It is lower than the pressure (discharge pressure) of the high-pressure refrigerant discharged from the outlet 54a.
  • suction pressure is the first pressure and the discharge pressure is the second pressure
  • a check valve 300 is provided between the passage 9 and the port 400 to prevent the refrigerant from flowing back from the port 400 to the passage 9.
  • the intermediate pressure gas is supplied in the order of the check valve 300 and the port 400. It passes through and is supplied to the compression chamber 15. A space between the compression chamber 15 and the check valve 300 becomes a dead volume. Since the presence of this volume causes reexpansion loss, it is desirable to make it as small as possible.
  • the check valve 300 is arranged as close to the compression chamber 15 as possible.
  • the accommodation hole 310 extends through the port 400 on the surface of the fixed scroll substrate 121 located on the opposite side of the compression chamber 15. It is recessed substantially parallel to the installation direction.
  • the accommodation hole 310 is formed as a circular hole having a substantially circular cross section. Further, as shown in FIG. 2, the port 400 and the accommodation hole 310 are provided in a limited region adjacent to the discharge chamber 124.
  • the extending direction of the port 400 and the extending direction of the accommodation hole 310 are inclined obliquely with respect to the axial direction of the central axis Od of the drive shaft 25.
  • the extension direction of the port 400 and the extension direction of the accommodation hole 310 are the axis of the central axis Od of the drive shaft 25 immediately below the compression chamber 15.
  • the port 400 and the accommodation hole 310 may be provided so as to be substantially parallel to the direction.
  • the check valve 300 is press-fitted into the accommodation hole 310 and is disposed adjacent to the inlet 400 a of the port 400. Thereby, the length of the port 400 can be shortened and the dead volume can be reduced.
  • the port 400 is usually preferably a straight flow path connected to the compression chamber 15 at the shortest distance.
  • the check valve 300 includes a valve seat portion (also referred to as a valve seat member) 302 and a reed valve body 303.
  • the valve seat portion 302 and the reed valve body 303 are formed separately from each other by metal (for example, iron or iron alloy).
  • metal for example, iron or iron alloy.
  • the method of assembling the check valve 300 is not limited to this method, and may be assembled by other methods.
  • a male screw may be provided on the outer peripheral surface of the valve seat portion 302 and a female screw may be provided on the inner peripheral surface of the accommodation hole 310.
  • the male screw of the valve seat portion 302 is screwed into the female screw of the accommodation hole 310, and the valve seat portion 302 is pressed and fixed to the reed valve body 303 inserted into the accommodation hole 310.
  • the space of the hole 310 constitutes a check valve chamber 301 for opening and closing the reed valve body 303.
  • the check valve chamber 301 accommodates at least a part of the reed valve body 303 (specifically, the open / close end portion 303b) when the reed valve body 303 is separated from the valve seat 302a.
  • the diameter of the check valve chamber 301 in the direction orthogonal to the central axis O of the valve seat passage 304 is set to be smaller than the diameter of the valve seat portion holding region 310 a of the accommodation hole 310. That is, the cross-sectional area of the check valve chamber 301 is set to be smaller than the cross-sectional area of the valve seat holding region 310a.
  • the shape of the check valve 300 is not limited to a circle, and may be another shape.
  • the reed valve body 303 is a single sheet in which a valve opening / closing end portion 303b surrounded by a C-shaped (arc-shaped) gap portion 303d is provided inside a circular outer peripheral seat portion 303c. It is made of a plate.
  • An open / close end portion 303b that can be seated on an annular valve seat 302a that surrounds the periphery of the valve seat passage 304 that penetrates the valve seat portion 302 in the plate thickness direction is connected to the circular outer peripheral seat portion 303c via the connecting portion 303a. ing.
  • the reed valve body 303 includes an opening / closing end 303b positioned within a range indicated by a length A with a point indicated by a symbol B in FIG. 3B as a rotation center and an adjacent connecting portion 303a as shown in FIG. As shown by the dotted line, the valve seat 302a is separated from the valve seat 302a and the valve seat passage 304 is opened.
  • the symbol d in FIG. 3B indicates the lift amount of the reed valve body 303 (more specifically, the open / close end portion 303b) at this time.
  • the lift amount from the valve seat 302a of the reed valve body 303 (specifically, the open / close end portion 303b) is made as small as possible.
  • the reed valve element 303 close to the valve seat 302a becomes a flow path resistance, which may cause a decrease in the flow rate.
  • the central axis O2 of the valve seat portion 302 (more specifically, the valve seat 302a) and the central axis O1 of the reed valve body 303 (circular outer circumferential seat portion 303c) are the central axis of the check valve chamber 301. It arrange
  • the center Op of the inlet 400a of the port 400 leading to the compression chamber 15 is a position opposite to the connecting portion 303a of the reed valve body 303 in the radial direction, and is offset from the center axis O of the valve seat passage 304. Place it at the specified position. Therefore, as shown by a broken line in FIG. 3B, when the open / close end portion 303b of the reed valve body 303 is separated from the valve seat 302a and opened, the refrigerant gas flows between the open / close end portion 303b and the valve seat 302a. After flowing out to the left in FIG. 3 (b) through the gap between the two, it can flow into the inlet 400 a of the port 400.
  • the center Op of the inlet 400a of the injection port 400 overlaps with a corresponding part of the gap 303d in a direction parallel to the central axis O of the valve seat passage 304, and this gap 303d corresponds.
  • a part of the reed valve body 303 is located on the opposite side of the connecting portion 303 a with respect to the central axis O of the valve seat passage 304 in the radial direction of the reed valve body 303.
  • the gap 303d is located in the region composed of the second quadrant II and the third quadrant III when the central axis O of the valve seat passage 304 in FIG. May be arranged so that the center Op of the inlet 400a of the port 400 overlaps a part of the port 400. Thereby, the effect which suppresses the above channel resistance can be acquired.
  • the reed valve body 303 (more specifically, the opening / closing end 303b) and the valve seat at the time of valve opening are provided.
  • the distance from the portion 302 (more specifically, the valve seat 302a) is maximized, so that the refrigerant can flow into the port 400 from the side where the flow path area is maximized, and pressure loss can be suppressed.
  • the flow resistance is reduced and the re-expansion loss due to dead volume is reduced, so that the performance ratio (flow rate characteristic) can be improved by about 25%.
  • the injection of the intermediate pressure gas into the compression chamber 15 is intended to increase the flow rate through the condenser (water refrigerant heat exchanger), and this flow rate increase can be about 25%.
  • the central axis O1 of the reed valve body 303 (more specifically, the circular outer peripheral seat portion 303c), the central axis O2 of the valve seat portion 302, and the central axis O3 of the check valve chamber 301 are arranged so as to be substantially concentric with each other.
  • the substantially circular outer peripheral edge of the circular outer peripheral seat portion 303c, the substantially circular outer peripheral edge of the valve seat portion 302, and the substantially circular inner peripheral edge of the check valve chamber 301 are arranged substantially concentrically with each other.
  • the central axis O of the valve seat passage 304 may not coincide with the central axes O1 to O3 in some cases. Even if it is possible.
  • the central axis O2 of the valve seat portion 302 and the central axis O of the valve seat passage 304 are separately displayed. These are generally substantially the same, but in order to include the case where they do not match within the scope of the present disclosure, they are displayed separately.
  • the reed valve body 303 Since the outer diameter of the circular outer peripheral sheet portion 303c of the reed valve body 303 is set slightly larger than the inner diameter of the accommodation hole 310, the reed valve body 303 is positioned by press-fitting without using bolts or the like. Can do. That is, the circular outer peripheral seat portion 303c and the valve seat portion 302 can be fixed to the accommodation hole 310 by press-fitting. This eliminates the need for fixtures such as bolts required in the prior art, and enables cost reduction.
  • FIG. 4A is a cross-sectional view around the reed valve body according to the first modification of the embodiment of the present disclosure
  • FIG. 4B is a cross-sectional view of the reed valve body.
  • a first outer peripheral tapered portion T1 is provided in the circular outer peripheral seat portion 303c
  • a second outer peripheral tapered portion T2 is also provided in the valve seat portion 302.
  • a first outer peripheral taper portion T1 whose outer diameter decreases gradually toward the injection port 400 side in the axial direction of the central axis O of the valve seat passage 304 is provided in the circular outer peripheral seat portion 303c.
  • a second outer peripheral edge tapered portion T2 whose outer diameter is gradually reduced toward the injection port 400 in the axial direction of the central axis O of the valve seat passage 304 is an end of the valve seat portion 302 adjacent to the circular outer peripheral seat portion 303c.
  • the radially inner end of the second outer peripheral tapered portion T2 corresponds to a corresponding portion of the circular outer peripheral sheet portion 303c positioned radially inward from the radial inner end of the first outer peripheral tapered portion T1, that is, the flat surface 303e. It is in contact.
  • the flat surface 303e of the circular outer peripheral seat portion 303c is brought into contact with the flat surface 302b of the valve seat portion 302 so as to be larger than the width (length in the radial direction) t1.
  • FIG. 4 (a) by inserting the inclined width t2 on the valve seat side, insertability and retention of the reed valve body 303 are ensured. If the relationship between the inclined width t1 and the inclined width t2 is opposite to the above relationship, the reed valve body 303 may be bent or damaged.
  • FIG. 5A is a front sectional view around the reed valve body in the second modified example of the embodiment of the present disclosure
  • FIG. 5B is a front sectional view of the accommodation hole 310
  • FIG. c) is a plan view of the reed valve body.
  • an inclined surface 301c that functions as a valve stopper when the reed valve body 303 is opened is pointed on the bottom surface 301a of the check valve chamber 301. It is formed on a substantially conical convex surface with P as the apex.
  • FIG. 5A is a front sectional view around the reed valve body in the second modified example of the embodiment of the present disclosure
  • FIG. 5B is a front sectional view of the accommodation hole 310
  • FIG. c) is a plan view of the reed valve body.
  • the central axis of the valve seat passage 304 includes a point B that is a rotation center when the open / close end portion 303b and the connecting portion 303a of the reed valve body 303 are separated from the valve seat 302a.
  • 0.05 to 0.5 that is, 0.05 ⁇ Tan ⁇ ⁇ 0.5
  • 0.05 to 0.5 that is, 0.05 ⁇ Tan ⁇ ⁇ 0.5
  • a stopper is constituted by the bottom surface 301a of the check valve chamber 301, and the number of parts can be reduced and the reliability of the reed valve can be ensured. Further, the taper shape can be processed simultaneously with the check valve chamber, which makes it possible to reduce the cost as compared with the conventional technique that requires separate processing.
  • the check valve 300 may be fixed by press-fitting or the like into a receiving hole provided in a fixing member (for example, a cylinder of a rotary compressor) provided with a port communicating with the compression chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

 逆止弁(300)は、弁座部(302)およびリード弁体(303)を備え、圧縮室(15)に中間圧の冷媒ガスを注入するインジェクションポート(400)の流入口(400a)に隣接する中間圧冷媒供給路(80)の収容穴(310)に収容されている。インジェクションポート(400)の流入口(400a)の中心(Op)は、弁座部(302)に設けられた弁座通路(304)の中心軸(O)からオフセットしている。

Description

圧縮機 関連出願の相互参照
 本開示は、2012年3月30日に出願された日本国特許出願第2012-81327号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。
 本開示は中間圧ガスを圧縮室にインジェクションする圧縮機に関する。
 特許文献1などに見られるように、圧縮機に圧縮対象流体をインジェクションして圧縮対象流体の過給を図るようにした圧縮機が知られている。冷凍空調用の電動圧縮機としては、圧縮部がレシプロ式のもの、ロータリー式のもの、スクロール式のものがあるが、スクロール式の圧縮機が高効率、低騒音、低振動という特徴を活かして実用化されてきた。そして、スクロール式圧縮機では、固定スクロールと旋回スクロールとの間に形成される圧縮室に、中間圧の冷媒ガスを、逆止弁を介してインジェクションして、スクロール式圧縮機の特徴である緩やかな圧縮を利用して、安定的に、効率のよいガスインジェクションを実現している。しかしながら、逆止弁から、固定スクロールと旋回スクロールとの間に形成される圧縮室までの経路が複雑かつ長い場合には、デッドボリュームが大きくなり、圧縮効率に影響を及ぼすとともに、潤滑油の侵入量を増大させ、抜けを悪化させて潤滑が不安定になり、性能が不安定になることが知られている。
 特許文献1の従来技術では、固定スクロールの鏡板に、その背面側から圧縮室までほぼ壁厚方向に貫通するインジェクションポートが設けられている。インジェクションポートに対応する固定スクロールの鏡板の外面には、インジェクションパイプが接続されたブロックを当てがい、双方の間に逆止弁室を形成している。ブロックにおけるインジェクションパイプからの導入口にリード弁体をボルトで係止して逆止弁を構成している。ここで、インジェクションパイプの導入口とインジェクションポートは、同軸状に設置されている。また、逆止弁室の一部にリード弁体のバルブストッパが設けられている。
 特許文献1の従来技術は、構造が簡易で、デッドボリュームが比較的小さく、圧縮流体の再膨張や潤滑油の流出を防止することができるものである。しかしながら、次のような(1)~(3)の問題点が生じていた。
 (1)従来技術ではリード弁体のリフト方向とインジェクションポートとの位置関係に留意しておらず、位置関係によっては流路抵抗が高くなり、インジェクション流量が低下する恐れがある。また、リード弁体の形状が大きいため、デッドボリュームをさらに低減したいときには搭載困難となる。
 (2)従来技術ではリード弁体を固定するボルトが必要となり、部品コストが高くなる。また、組み付け工数も増えるため、組み付けコストが高くなる。
 (3)通常、リード弁体を使用する場合、バルブストッパが必要となる。従来技術にもバルブストッパを設ける記載があり、冷媒通路と別加工を必要とするため、加工コストが高くなる。
 その他、中間圧ガスをインジェクションする冷凍サイクル用圧縮機としては、特許文献2において開示されたものがある。特許文献2においては、固定スクロールの背面側から突出したインジェクションポート内に、ポートの軸方向と直交する方向に開閉するリード弁体を挿入しており、デッドボリュームを低減することはできず、軸方向のスペース確保に問題があった。特許文献3は、リキッドインジェクションをおこなうもので、インジェクションポートに連通する接続管に、空洞容積を狭めるための詰め物を設けてガス化しないようにしたもので、流路全体としてはデッドボリュームを低減することができないものであった。
特開平11-107950号公報 特開2009-287512号公報 特開2003-74483号公報 特開2011-157895号公報
 本開示の目的は、上記問題に鑑み、中間圧ガスを圧縮室にインジェクションする圧縮機において、デッドボリュームを低減し、インジェクション特性を向上したものを提供することにある。
 本開示に基づく圧縮機は、低圧の冷媒が流れる低圧冷媒供給路と、前記低圧冷媒供給路から供給された前記冷媒を前記低圧より高い高圧に圧縮し、吐出する圧縮室と、前記低圧より高く、かつ、前記高圧より低い中間圧の冷媒を前記圧縮室にインジェクションすべく前記圧縮室に対しインジェクションポートを介して連通可能な中間圧冷媒供給路とを備えたハウジングを有する。圧縮機は、前記インジェクションポートの流入口に隣接する前記中間圧冷媒供給路の収容穴に収容された逆止弁をさらに有し、前記逆止弁は弁座部およびリード弁体を備える。前記弁座部は、弁座と、前記弁座の径方向内側において前記弁座部を貫通して延設され、前記冷媒が流れる弁座通路とを有する。前記インジェクションポートの前記流入口の中心が前記弁座通路の中心軸からオフセットしている。前記リード弁体は、前記弁座通路を閉鎖すべく前記弁座に対し着座可能であるとともに、前記弁座通路を開放すべく前記弁座から離座可能である。前記リード弁体が前記弁座から離座する際に、前記リード弁体の少なくとも一部を収容する逆止弁室を、前記収容穴における前記弁座部と、前記収容穴の壁面との間に設けている。
図1は、本開示の一実施形態のヒートポンプサイクルを示す説明図である。 図2は、本開示の一実施形態の圧縮機の断面図である。 図3(a)は、本開示の一実施形態の圧縮機の圧縮室周辺の断面図であり、図3(b)は、リード弁体周辺の正面拡大断面図であり、図3(c)は、リード弁体の平面図である。 図4(a)は、本開示の一実施形態の第一の変形例におけるリード弁体周辺の断面図であり、図4(b)は、第一の変形例のリード弁体の断面図である。 (a)は、本開示の一実施形態の第二の変形例におけるリード弁体の周辺の正面断面図であり、図5(b)は、収容穴の正面断面図であり、図5(c)は、第二の変形例のリード弁体の平面図である。
 以下、図面を参照して、本開示の一実施形態を説明する。以下に説明する実施形態およびその変形例において、同一構成の部分には、同一の符号を付してその説明を省略する。
 本開示の一実施形態は、本開示の原理を冷凍サイクル、より具体的には、給湯システムのヒートポンプサイクルに適用した例である。図1は、本実施形態のヒートポンプサイクルを示す説明図である。このヒートポンプサイクルは、冷媒を吸入して圧縮する圧縮機1と、給湯水と圧縮機1により吐出された冷媒とで熱交換を行う熱交換器(水冷媒熱交換器)2と、熱交換器2から流出した冷媒を減圧する第1膨張弁3および第2膨張弁4と、外気から吸熱して冷媒を蒸発させる熱交換器(蒸発器)5と、熱交換器5から流出した冷媒を液相冷媒と気相冷媒とに分離して余剰冷媒を蓄え、気相冷媒を冷媒配管38を介して圧縮機1に供給する気液分離器6とを備える。
 このヒートポンプサイクルにおいては、第1膨張弁3の下流かつ第2膨張弁4の上流の分岐点7で分岐し、第1膨張弁3によっていったん減圧された中間圧の冷媒ガスを、中間圧配管8を介して圧縮機1に供給する。圧縮機1の冷媒吐出通路54(図2参照)は、油分離器40の冷媒流入口47に、冷媒吐出口54aおよび冷媒配管48を介して接続されている。油分離器40は、圧縮機1のハウジング30から吐出された圧縮冷媒から潤滑油を分離し、分離された潤滑油を、配管接続部材34を介してハウジング30内に戻す役割を果たす。
 本開示の一実施形態では、本開示の原理を給湯システムのヒートポンプサイクルに適用しているが、その他のシステムや、装置の冷凍サイクル(ヒートポンプサイクルを含む)に適用してもよい。例えば、本開示の原理を車両空調装置の冷凍サイクルに適用しても良く、その他産業用や家庭用エアコンの冷凍サイクルに適用しても良い。また、本開示の一実施形態では、本開示の原理をスクロール圧縮機として構成された圧縮機1に適用した例について説明するが、必ずしもこれに限定されるものではなく、その他の形式の1段圧縮式の圧縮機に適用することもできる。さらに、本開示の原理は、2段圧縮式の圧縮機にも適用可能である。また、本開示の一実施形態のヒートポンプサイクルでは、熱交換器5の下流側に気液分離器6を設けているが、気液分離器6が設けられていないヒートポンプサイクルに本開示の原理を適用することもできる。
 図2は、本開示の一実施形態の圧縮機1の断面図である。この圧縮機1は、スクロール型の電動圧縮機であり、冷媒(冷媒ガス)を圧縮する圧縮機構部10と、圧縮機構部10を駆動する電動機部20とを上下方向(縦方向)に配置した縦置きタイプになっている。本実施形態では圧縮機1を縦置きタイプとして説明するが、横置きタイプであってもよい。圧縮機構部10および電動機部20はハウジング30に収容されている。電動機部20は、固定子をなすステータ21と、回転子をなすロータ22とを有している。ステータ21は、ステータコア211と、ステータコア211に巻き付けられたステータコイル212とを有している。
 ステータコイル212に対する電力の供給は給電端子23を介して行われる。給電端子23はハウジング30の上端部に配置されている。ステータコイル212に電力が供給されるとロータ22に回転磁界が与えられてロータ22に回転力が発生し、駆動軸25がロータ22と一体に回転する。駆動軸25は円筒状に形成されており、その内部空間は、駆動軸25の摺動部(潤滑対象部位)に潤滑油を供給する給油通路251を構成している。給油通路251は、駆動軸25の下端面にて開口しており、駆動軸25の上端面においては閉塞部材26で閉塞されている。
 駆動軸25のうちロータ22よりも下方側に突出している部位には、水平方向(軸方向と直交する方向)に突出する鍔部252が形成されている。鍔部252には、バランスウェイト254が設けられている。ロータ22の上下方向両側にもバランスウェイト221、222が設けられている。駆動軸25は、軸受部27、291で支承されている。ミドルハウジング29は、上方側から下方側に向かって階段状に外径および内径が拡大する円筒形状を有しており、その最外周面がハウジング30の筒状部材31に固定されている。ミドルハウジング29のうち上方側部位が軸受部291を構成している。ミドルハウジング29のうち下方側部位には、圧縮機構部10の可動部材をなす可動スクロール(旋回スクロールとも称する)11が収容されている。可動スクロール11の下方側には、圧縮機構部10の固定部材をなす固定スクロール12が固定保持されている。可動スクロール11は、固定スクロール12に対して摺動可能に構成されている。
 可動スクロール11および固定スクロール12は、円板状の可動スクロール基板部111および固定スクロール基板部121をそれぞれ有している。可動スクロール基板部111および固定スクロール基板部121は互いに上下方向に対向するように配置されている。可動スクロール基板部111の中心部には、駆動軸25の下端部、即ち、偏心部253が挿入される円筒状のボス部113が形成されている。偏心部253は、駆動軸25の回転中心に対して偏心している。
 可動スクロール11および固定スクロール12には、可動スクロール11が偏心部253周りに自転することを防止する自転防止機構(図示せず)が設けられている。このため、駆動軸25が回転すると、可動スクロール11は偏心部253周りに自転することなく、駆動軸25の回転中心を公転中心として公転運動(旋回)する。可動スクロール11とミドルハウジング29との間には、2枚のスラストプレート13、14が上下方向に積層されている。スラストプレート13のミドルハウジング29に対する位置決めは、位置決めピン131によって行われる。スラストプレート14は可動スクロール11に固定され、可動スクロール11に対する位置決めは、位置決めピン141によって行われている。
 可動スクロール11には、可動スクロール基板部111から固定スクロール12側に向かって突出する渦巻き状の歯部(スクロールラップ)112が形成されている。固定スクロール基板部121の上面(可動スクロール11側の面)には、可動スクロール11の歯部112と噛み合う渦巻き状の歯部(スクロールラップ)122が形成されている。両スクロール11、12の歯部112、122同士が噛み合って複数箇所で接触することによって、三日月状の圧縮室15が複数個形成される。圧縮室15には、冷媒吸入口36および冷媒吸入通路128を通じて冷媒が供給される。冷媒吸入口36および冷媒吸入通路128は、圧縮室15に低圧冷媒ガスを供給する低圧冷媒供給路37を構成している。冷媒吸入口36には冷媒配管38が接続されている。固定スクロール基板部121の冷媒吸入通路128は、固定スクロール基板部121の渦巻き状の溝部のうち最外周側の部位(歯部122と固定スクロール基板部121の外周縁部との間に形成される溝部のうちの最外周側の部位)と連通している。
 固定スクロール基板部121の中心部には、圧縮室15で圧縮された冷媒が吐出される吐出孔123が形成されている。固定スクロール基板部121内において吐出孔123の下方側には、吐出孔123と連通する吐出室124が形成されている。吐出室124は、固定スクロール12の下面に形成された凹部125と、固定スクロール12の下面に固定された区画部材18とによって区画形成されている。吐出室124には、圧縮室15への冷媒の逆流を防止する逆止弁をなすリード弁体17と、リード弁体17の最大開度を規制するストッパ19とが配置されている。吐出室124の冷媒は、固定スクロール基板部121内に形成された冷媒吐出通路54と、ハウジング30の筒状部材31に形成された冷媒吐出口54a(図1参照)とを通じてハウジング30外部へ吐出されるようになっている。
 図1に示すように、ハウジング30の冷媒吐出口54aは、油分離器40の冷媒流入口47に、冷媒配管48を介して接続されている。油分離器40の冷媒流入口47に流入した冷媒は、油分離器40内の円筒状空間に導入され、円筒状空間において冷媒に旋回流れを生じさせ、冷媒の旋回流れによって生じる遠心力の作用によって、冷媒から潤滑油が分離される。油分離器40は、ハウジング30から吐出された圧縮冷媒から潤滑油を分離し、分離された潤滑油を、配管接続部材34を介して、ハウジング30内に戻す役割を果たす。潤滑油が分離された冷媒ガスは、冷媒配管49を通じて、熱交換器2に供給される。
 固定スクロール基板部121の内部には、固定側給油通路(図示せず)が形成されており、可動スクロール基板部111の内部には、可動スクロール11の公転運動(旋回)時に固定側給油通路と間欠的に連通する可動側給油通路(図示せず)が形成されている。油分離器40からの潤滑油は、配管接続部材34を通り、固定スクロール基板部121と可動スクロール基板部111間に供給され、その後、偏心部253と、可動スクロール11のボス部113の間に供給されるとともに、給油通路251を介して、軸受部27、291などに供給される。ハウジング30の底部には、貯油室35が形成されている。
 以上説明した冷媒の供給・吐出経路、潤滑油の供給経路は、一例として示したものであって、これらに限定されるものではなく、その他の周知の変形例に置換しても良い。なお、図2に示した圧縮機1は、以下に述べるインジェクション機構(インジェクション装置とも称する)以外は、特許文献4の圧縮機と基本的には同じものであるので、説明を一部省略する。
 次に、中間圧ガスを圧縮機の圧縮室にインジェクションするインジェクション機構について説明する。図3(a)は、本開示の一実施形態の圧縮室周辺の断面図であり、図3(b)は、リード弁体周辺の正面拡大断面図であり、図3(c)は、リード弁体の平面図である。
 中間圧ガスを圧縮機の圧縮室にインジェクションする場合、特に、二酸化炭素を冷媒とするときには、高効率運転範囲では、比熱比・ガス密度が高く、デッドボリュームの低減とガスの流入性の向上が求められている。本実施形態では、中間圧の冷媒を対応する複数の圧縮室15にそれぞれインジェクションするための複数のインジェクションポート(以下、略してポートと称する)400が固定スクロール12の固定スクロール基板部121に設けられている。複数のポート400およびその周辺部は略同様の構成となっているため、以下の説明では、複数のポート400のうちの1つについてのみ説明する。また、必要であれば、複数のポート400に代えて、中間圧の冷媒を複数の圧縮室15のうちの対応する1つにインジェクションするための1つのポート400のみを設けてもよい。図3(b)に示すように、ポート400は、逆止弁300の弁座通路304に対して、リード弁体303の連結部303aと反対側において、弁座通路304から径方向にオフセットしている。
 圧縮室15にインジェクションされる冷媒(中間圧ガス)は、図1の分岐点7から、中間圧配管8を通って圧縮機1の内部に導入される。中間圧配管8は、図2の区画部材18に設けられた通路9に接続し、中間圧が、固定スクロール基板部121に設けられた収容穴310に圧入された逆止弁300を通じてポート400に供給される。通路9と、固定スクロール基板部121に設けられた収容穴310およびポート400とによって、圧縮室15に中間圧の中間圧ガス(冷媒ガス)を供給する中間圧冷媒供給路80が構成されている。なお、中間圧配管8を通じて通路9に供給される中間圧ガスの圧力は、圧縮機1の冷媒吸入口36に吸入される低圧の冷媒の圧力(吸入圧)より高く、圧縮機1の冷媒吐出口54aから吐口される高圧の冷媒の圧力(吐出圧)より低い。ここで、吸入圧を第1の圧力とし、吐出圧を第2の圧力とした場合、中間圧ガスの圧力は、第1の圧力より高く、第2の圧力より低い圧力と言える。通路9とポート400との間には、ポート400から通路9へと冷媒が逆流することを防止する逆止弁300が設けられており、中間圧ガスは、逆止弁300、ポート400の順に通過し、圧縮室15へ供給される。圧縮室15と逆止弁300との間の空間がデッドボリュームとなる。この容積の存在が再膨張損失の原因となるため、できるだけ小さくすることが望ましい。
 逆止弁300の詳細を図3(a)~図3(c)に示す。本実施形態では、逆止弁300を、できるだけ圧縮室15の近くに配置している。図3(a)の上下方向(駆動軸25の中心軸Odの軸線方向)において、圧縮室15とは反対側に位置する固定スクロール基板部121の表面には、収容穴310がポート400の延設方向に略平行に凹設されている。本実施形態では、収容穴310は略円形の断面を有する円形穴として形成されている。また、図2に示すように、ポート400および収容穴310を吐出室124に隣接する限られた領域に設けている。このため、ポート400の延設方向および収容穴310の延設方向は、駆動軸25の中心軸Odの軸線方向に対して斜めに傾斜している。しかし、対応する圧縮室15の真下に十分な領域を確保できる場合は、圧縮室15の真下において、ポート400の延設方向および収容穴310の延設方向が駆動軸25の中心軸Odの軸線方向に対して略平行になるように、ポート400および収容穴310を設けてもよい。逆止弁300は収容穴310に圧入され、ポート400の流入口400aに隣接して配置されている。これにより、ポート400の長さを短くして、デッドボリュームを小さくすることができる。ポート400は、圧縮室15までのデッドボリュームをできるだけ小さくするために、通常、圧縮室15に最短距離で接続する直線流路が好ましい。
 逆止弁300は、弁座部(弁座部材とも称する)302およびリード弁体303から構成されている。弁座部302およびリード弁体303は、金属(例えば、鉄または鉄合金)によりそれぞれ別体として形成されている。逆止弁300を収容穴310に組み付ける際、リード弁体303の円形外周シート部303cが収容穴310の壁面部、即ち、シート部310bに当接するまで、リード弁体303を収容穴310に圧入する。次いで、弁座部302を収容穴310内に圧入し、リード弁体303に当接した状態で固定している。これによって、弁座部302は、収容穴310の弁座部保持領域310aに接触した状態で直接保持される。逆止弁300の組み付け方法は、この方法に限定されるものではなく、他の方法で組み付けてもよい。例えば、弁座部302の外周面に雄ねじを設け、収容穴310の内周面に雌ねじを設けてもよい。この場合、弁座部302の雄ねじを収容穴310の雌ねじに螺合させ、収容穴310に挿入されたリード弁体303に対し、弁座部302を押圧して固定する。
 収容穴310にリード弁体303および弁座部302を組み付けた図3(a)および図3(b)の状態で、弁座部302と、ポート400の流入口400aとの間に位置する収容穴310の空間は、リード弁体303を開閉作動させるための逆止弁室301を構成している。逆止弁室301は、リード弁体303が弁座302aから離座する際に、リード弁体303の少なくとも一部(具体的には、開閉端部303b)を収容する。なお、本実施形態では、弁座通路304の中心軸Oに直交する方向における逆止弁室301の直径は、収容穴310の弁座部保持領域310aの直径より小さく設定されている。即ち、逆止弁室301の断面積は、弁座部保持領域310aの断面積より小さく設定されている。このように設定することにより、リード弁体303を収容穴310に圧入する際に、リード弁体303の円形外周シート部303cを当接させるシート部310bを収容穴310内に形成している。逆止弁300は、円形にすると、組み付け時にも好都合である。なお、逆止弁300の形状は円形に限定されるものではなく、他の形状であっても良い。図3(c)に示すように、リード弁体303は、円形外周シート部303cの内部に、C字形(円弧状)の空隙部303dに囲まれた弁開閉端部303bが設けられた1枚板で形成されている。そして、弁座部302を板厚方向に貫通する弁座通路304の周囲を取り囲む環状の弁座302aに着座可能な開閉端部303bが、連結部303aを介して円形外周シート部303cに連結されている。リード弁体303は、図3(b)に符号Bで示す点を回動中心として、長さAで示す範囲内に位置する開閉端部303bおよび隣接する連結部303aが、図3(b)に点線で示すように弁座302aから離座し、弁座通路304を開放するようになっている。図3(b)の符号dは、この時のリード弁体303(より具体的には、開閉端部303b)のリフト量を示す。
 通常、デッドボリュームを低減するためにリード弁体303(具体的には、開閉端部303b)の弁座302aからのリフト量はできるだけ小さくする。しかし、インジェクションされる冷媒が通過する際には、弁座302aに近接するリード弁体303は流路抵抗となり、流量が低下する原因となり得る。本実施形態では、弁座部302(より具体的には、弁座302a)の中心軸O2とリード弁体303(円形外周シート部303c)の中心軸O1は、逆止弁室301の中心軸O3と概略一致させるように配置する。一方、圧縮室15へと通じるポート400の流入口400aの中心Opは、径方向においてリード弁体303の連結部303aと反対側となる位置であって、弁座通路304の中心軸Oよりオフセットした位置に配置する。そのため、図3(b)に破線で示すように、リード弁体303の開閉端部303bが弁座302aから離座して開弁した際、冷媒ガスは、開閉端部303bと弁座302aとの間の間隙を通って図3(b)左側に流出した後、ポート400の流入口400aに流入することができる。このため、リード弁体303のリフト量dを小さくしても、流路抵抗を最小限に抑制することができる。特に、インジェクションポート400の流入口400aの中心Opは、空隙部303dのうちの対応する一部と、弁座通路304の中心軸Oに平行な方向において重なっており、この空隙部303dの対応する一部は、リード弁体303の径方向において、弁座通路304の中心軸Oに対し、連結部303aとは反対側に位置している。具体的には、図3(c)の弁座通路304の中心軸Oを原点、符号LをX軸とした際の第2象限IIおよび第3象限IIIからなる領域内に位置する空隙部303dの一部に、ポート400の流入口400aの中心Opが重なるように配置すればよい。これにより、上記のような流路抵抗を抑制する効果を得ることができる。
 特に、ポート400をリード弁体303の連結部303aと径方向反対側となる位置に配することによって、開弁時のリード弁体303(より具体的には、開閉端部303b)と弁座部302(より具体的には、弁座302a)との間隔が最大となり、よって流路面積が最大となる側から冷媒をポート400に流入させることができ、圧力損失を抑制することができる。
 以上の構成とすることにより、流路抵抗が軽減され、またデッドボリュームによる再膨張損失などが低減されるため、性能比(流量特性)を25%程度向上させることが可能である。圧縮室15への中間圧ガスのインジェクションはコンデンサ(水冷媒熱交換器)を流れる流量増加を狙ったものであり、この流量増加分を25%程度とすることができる。
 上述の本実施形態では、リード弁体303(より具体的には、円形外周シート部303c)の中心軸O1と、弁座部302の中心軸O2と、逆止弁室301の中心軸O3とが互いに略同心となるように配置している。これにより、円形外周シート部303cの略円形の外周縁と、弁座部302の略円形の外周縁と、逆止弁室301の略円形の内周縁とが互いに略同心に配置され、加工もしやすい。なお、ポート400の流入口400aの中心Opが、弁座通路304の中心軸Oとオフセットしてさえすれば、場合により弁座通路304の中心軸Oと中心軸O1~O3が一致していない場合でも実施可能である。なお、本実施形態では、弁座部302の中心軸O2と弁座通路304の中心軸Oとを別々に表示している。これらは通常は略一致しているが、一致していない場合をも本開示の範囲に含めるために、それぞれを別表示にしているものである。
 リード弁体303の円形外周シート部303cの外径は、収容穴310の内径よりも僅かに大きく設定しているため、リード弁体303の位置決めを、ボルトなどを使用することなく圧入で行うことができる。すなわち、円形外周シート部303c及び弁座部302を、収容穴310に、圧入で固定することができる。これにより、従来技術で必要とされるボルト等の固定具が不要となり、コスト低減が可能となる。
 本開示は上記実施形態に限定されるものではなく、本開示の範囲内において適切に変更してもよい。例えば、上記実施形態を以下のように変更してもよい。
 図4(a)は、本開示の実施形態の第一の変形例におけるリード弁体周辺の断面図であり、図4(b)は、リード弁体の断面図である。円形外周シート部303cに第1外周縁テーパー部T1を設け、弁座部302にも第2外周縁テーパー部T2を設ける。具体的には、弁座通路304の中心軸Oの軸線方向においてインジェクションポート400側に向かって外径が暫減する第1外周縁テーパー部T1が、円形外周シート部303cに設けられている。さらに、弁座通路304の中心軸Oの軸線方向においてインジェクションポート400側に向かって外径が暫減する第2外周縁テーパー部T2が、円形外周シート部303cに隣接する弁座部302の端部に設けられている。第2外周縁テーパー部T2の径方向内端は、第1外周縁テーパー部T1の径方向内端よりも径方向内側に位置する円形外周シート部303cの対応する部分、即ち、平坦面303eに当接している。弁座部302の径方向において第2外周縁テーパー部T2が形成される傾斜幅(径方向長さ)t2を、リード弁体303の径方向において第1外周縁テーパー部T1が形成される傾斜幅(径方向長さ)t1より大きくして、円形外周シート部303cの平坦面303eを弁座部302の平坦面302bに接触させるようにしている。図4(a)に示すように、弁座側の傾斜幅t2を大きくすることで、リード弁体303の挿入性や保持性を確保している。傾斜幅t1および傾斜幅t2の関係が上記の関係とは逆の場合には、リード弁体303を折り曲げたり、傷つけたりしてしまう恐れがある。
 リード弁体303の円形外周シート部303cにテーパーを設けると、バルブそのものの反りが大きくなり、シール性が悪化することが懸念される。このため、図4(b)に示すように、開閉端部303bが、円形外周シート部303cに連結されている連結部303aにおいて、テーパー部とは逆方向の曲げをあらかじめ施しておくことでシール性を維持する。これにより、リード弁体303のシール性を維持するとともに、組みつけが容易になり、コスト低減が可能となる。
 図5(a)は、本開示の実施形態の第二の変形例におけるリード弁体周辺の正面断面図であり、図5(b)は、収容穴310の正面断面図であり、図5(c)は、リード弁体の平面図である。この変形例では、図5(a)および図5(b)に示すように、逆止弁室301の底面301aに、リード弁体303の開弁時のバルブストッパとして機能する傾斜面301cを点Pを頂点とする略円錐凸面に形成したものである。図5(a)に示すように、リード弁体303の開閉端部303bおよび連結部303aが弁座302aから離座する際の回動中心となる点Bを含み、弁座通路304の中心軸Oに直交する仮想面Hに対する傾斜面301cの角度θを、バルブの作動形態に合わせて、Tanθ=0.05~1.0(即ち、0.05≦Tanθ ≦1.0)とすると良いが、好ましくは、0.05~0.5(即ち、0.05≦Tanθ ≦0.5)にすると良い。これにより、逆止弁室301の底面301aによってストッパを構成し、部品点数削減およびリードバルブの信頼性を確保することができる。また、テーパー形状は逆止弁室の加工と同時加工が可能となり、別加工を必要とする従来技術に比べて、コスト低減が可能となる。
 上記実施形態および変形例では、本開示の原理をスクロール型の圧縮機に適用した例を説明したが、その他の形式の圧縮機(例えば、ロータリー式圧縮機)に適用してもよい。その際、逆止弁300は、圧縮室に連通するポートが設けられた固定部材(例えば、ロータリー式圧縮機のシリンダ)に設けた収容穴に圧入等によって固定すればよい。

Claims (11)

  1. 低圧の冷媒が流れる低圧冷媒供給路(37)と、前記低圧冷媒供給路(37)から供給された前記冷媒を前記低圧より高い高圧に圧縮し、吐出する圧縮室(15)と、前記低圧より高く、かつ、前記高圧より低い中間圧の冷媒を前記圧縮室(15)にインジェクションすべく前記圧縮室(15)に対しインジェクションポート(400)を介して連通可能な中間圧冷媒供給路(80)とを備えたハウジング(30)と、
     弁座部(302)およびリード弁体(303)を備え、前記インジェクションポート(400)の流入口(400a)に隣接する前記中間圧冷媒供給路(80)の収容穴(310)に収容された逆止弁(300)と
    を備え、
     前記弁座部(302)は、弁座(302a)と、前記弁座(302a)の径方向内側において前記弁座部(302)を貫通して延設され、前記冷媒が流れる弁座通路(304)とを有し、
     前記インジェクションポート(400)の前記流入口(400a)の中心(Op)が前記弁座通路(304)の中心軸(O)からオフセットしており、
     前記リード弁体(303)は、前記弁座通路(304)を閉鎖すべく前記弁座(302a)に対し着座可能であるとともに、前記弁座通路(304)を開放すべく前記弁座(302a)から離座可能であり、
     前記リード弁体(303)が前記弁座(302a)から離座する際に、前記リード弁体(303)の少なくとも一部を収容する逆止弁室(301)を、前記収容穴(310)における前記弁座部(302)と、前記収容穴(310)の壁面との間に設けた圧縮機。
  2. 前記リード弁体(303)は、一枚板として形成され、かつ、
     前記弁座(302a)に対して着座および離座可能な開閉端部(303b)と、
     前記開閉端部(303b)の径方向外側に位置する円弧状空隙部(303d)と、
     前記開閉端部(303b)および前記円弧状空隙部(303d)の径方向外側に位置し、略円形の外周縁を有する円形外周シート部(303c)と、
     前記開閉端部(303b)を前記円形外周シート部(303c)に連結する連結部(303a)と
    を有する請求項1に記載の圧縮機。
  3. 前記円形外周シート部(303c)の中心軸(O)と、前記弁座部(302)の中心軸(O2)と、前記逆止弁室(301)の中心軸(O3)とが互いに略同心をなす請求項2に記載の圧縮機。
  4. 前記リード弁体(303)の前記円形外周シート部(303c)と、前記弁座部(302)とを、略円形の断面を有する前記収容穴(310)に圧入して固定している請求項2または3に記載の圧縮機。
  5. 前記弁座通路(304)の前記中心軸(O)の軸線方向において前記インジェクションポート(400)側に向かって外径が暫減する第1外周縁テーパー部(T1)が、前記円形外周シート部(303c)に設けられ、
     前記弁座通路(304)の前記中心軸(O)の軸線方向において前記インジェクションポート(400)側に向かって外径が暫減する第2外周縁テーパー部(T2)が、前記円形外周シート部(303c)に隣接する前記弁座部(302)の端部に設けられ、
     前記第2外周縁テーパー部(T2)の径方向内端は、前記1外周縁テーパー部(T1)の径方向内端よりも径方向内側に位置する前記円形外周シート部(303c)の対応する部分に当接し、
     前記第2外周縁テーパー部(T2)の径方向長さ(t2)は、前記1外周縁テーパー部(T1)の径方向長さ(t1)より大きい請求項2乃至4のいずれか一項に記載の圧縮機。
  6. 前記リード弁体(303)が前記弁座(302a)から離座した際に、前記リード弁体(303)が当接するストッパーを構成する傾斜面(301c)が、前記逆止弁室(301)の底面(301a)に設けられている請求項1乃至5のいずれか一項に記載の圧縮機。
  7. 前記傾斜面(301c)は、前記弁座通路(304)の前記中心軸(O)に直交する仮想面(H)に対し、
    0.05≦Tanθ ≦1.0
    の条件を満たす所定の角度で傾斜しており、前記θは、前記所定の角度を示す請求項6に記載の圧縮機。
  8. 前記インジェクションポート(400)の前記流入口(400a)の前記中心(Op)は、前記円弧状空隙部(303d)のうちの対応する一部と、前記弁座通路(304)の前記中心軸(O)に平行な方向において重なっており、前記円弧状空隙部(303d)の前記対応する一部は、前記リード弁体(303)の径方向において、前記弁座通路(304)の中心軸(O)に対し、前記連結部(303a)とは反対側に位置している請求項2乃至7のいずれか一項に記載の圧縮機。
  9. 前記圧縮機が、スクロール圧縮機である請求項1乃至8のいずれか一項に記載の圧縮機。
  10. 前記ハウジング(30)内において固定保持されている固定部材(12)と、前記固定部材(12)に対し摺動可能な可動部材(11)とをさらに備え、
     前記圧縮室(15)が前記固定部材(12)および前記可動部材(11)の間に設けられ、
     前記逆止弁(300)を収容する前記収容穴(310)と、前記インジェクションポート(400)とが前記固定部材(12)に設けられている請求項1乃至9のいずれか一項に記載の圧縮機。
  11. 前記逆止弁室(301)の断面積は、前記弁座部(302)と接触し、かつ、前記弁座部(302)を保持する前記収容穴(310)の弁座部保持領域(310a)の断面積より小さい請求項1乃至10のいずれか一項に記載の圧縮機。
PCT/JP2013/002042 2012-03-30 2013-03-26 圧縮機 WO2013145713A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013001840.3T DE112013001840T5 (de) 2012-03-30 2013-03-26 Kompressor
US14/389,132 US9765780B2 (en) 2012-03-30 2013-03-26 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081327A JP5745450B2 (ja) 2012-03-30 2012-03-30 圧縮機のインジェクション装置
JP2012-081327 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145713A1 true WO2013145713A1 (ja) 2013-10-03

Family

ID=49259012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002042 WO2013145713A1 (ja) 2012-03-30 2013-03-26 圧縮機

Country Status (4)

Country Link
US (1) US9765780B2 (ja)
JP (1) JP5745450B2 (ja)
DE (1) DE112013001840T5 (ja)
WO (1) WO2013145713A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129467A (ja) * 2014-01-08 2015-07-16 株式会社豊田自動織機 電動圧縮機
WO2016056189A1 (ja) * 2014-10-07 2016-04-14 株式会社デンソー 冷凍サイクル用圧縮機
EP3168478A4 (en) * 2014-07-08 2018-03-28 Daikin Industries, Ltd. Compressor
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
WO2023214497A1 (ja) * 2022-05-02 2023-11-09 ダイキン工業株式会社 圧縮機および空気調和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387613B2 (ja) 2014-01-08 2018-09-12 株式会社豊田自動織機 電動圧縮機
JP6399637B2 (ja) * 2014-02-28 2018-10-03 株式会社Soken 圧縮機
JP6355453B2 (ja) * 2014-06-27 2018-07-11 三菱電機株式会社 スクロール圧縮機
JP6507557B2 (ja) * 2014-10-16 2019-05-08 株式会社Soken 圧縮機
JP6460595B2 (ja) * 2014-12-04 2019-01-30 株式会社デンソー 圧縮機
JP6470697B2 (ja) * 2015-02-27 2019-02-13 ダイキン工業株式会社 圧縮機
JP6682810B2 (ja) * 2015-11-09 2020-04-15 ダイキン工業株式会社 圧縮機
JP2018009565A (ja) * 2016-06-30 2018-01-18 株式会社デンソー 多段圧縮機
JP6906932B2 (ja) * 2016-12-02 2021-07-21 三菱重工サーマルシステムズ株式会社 スクロール圧縮機
DE102019108079B4 (de) 2018-03-30 2023-08-31 Kabushiki Kaisha Toyota Jidoshokki Schneckenverdichter
KR20210109594A (ko) 2019-01-03 2021-09-06 아스펜 컴프레서 엘엘씨. 고성능 압축기 및 증기 압축 시스템
US11655820B2 (en) 2020-02-04 2023-05-23 Aspen Compressor, Llc Horizontal rotary compressor with enhanced tiltability during operation
DE102020207229A1 (de) 2020-06-09 2021-12-09 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Elektrischer Kältemittelantrieb für ein Kraftfahrzeug
CN113653641B (zh) * 2021-09-08 2023-04-14 珠海格力节能环保制冷技术研究中心有限公司 曲轴、摆动旋转式压缩机、空调器
US12098719B2 (en) * 2023-02-21 2024-09-24 Hanon Systems Vapor injection structure for a compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234592A (ja) * 1990-07-31 1992-08-24 Copeland Corp 冷凍装置用の液体注入装置
JPH04117195U (ja) * 1991-04-02 1992-10-20 サンデン株式会社 スクロール型圧縮機
JPH11107949A (ja) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd スクロール圧縮機
EP1936197A1 (en) * 2006-12-22 2008-06-25 Emerson Climate Technologies, Inc. Scroll compressor with vapor injection system
JP2008303858A (ja) * 2007-06-11 2008-12-18 Daikin Ind Ltd スクロール圧縮機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445333A (en) * 1981-07-16 1984-05-01 General Motors Corporation Valve assembly
US5329788A (en) * 1992-07-13 1994-07-19 Copeland Corporation Scroll compressor with liquid injection
US5722257A (en) * 1995-10-11 1998-03-03 Denso Corporation Compressor having refrigerant injection ports
GB9715742D0 (en) * 1997-07-26 1997-10-01 Knorr Bremse Systeme Gas compressors
JP3602700B2 (ja) 1997-10-06 2004-12-15 松下電器産業株式会社 圧縮機のインジェクション装置
US6139291A (en) * 1999-03-23 2000-10-31 Copeland Corporation Scroll machine with discharge valve
JP2003074483A (ja) 2001-08-31 2003-03-12 Sanyo Electric Co Ltd スクロール圧縮機
JP5314326B2 (ja) 2008-05-30 2013-10-16 三菱重工業株式会社 冷媒圧縮機
JP5445180B2 (ja) 2010-02-02 2014-03-19 株式会社デンソー 圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234592A (ja) * 1990-07-31 1992-08-24 Copeland Corp 冷凍装置用の液体注入装置
JPH04117195U (ja) * 1991-04-02 1992-10-20 サンデン株式会社 スクロール型圧縮機
JPH11107949A (ja) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd スクロール圧縮機
EP1936197A1 (en) * 2006-12-22 2008-06-25 Emerson Climate Technologies, Inc. Scroll compressor with vapor injection system
JP2008303858A (ja) * 2007-06-11 2008-12-18 Daikin Ind Ltd スクロール圧縮機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
JP2015129467A (ja) * 2014-01-08 2015-07-16 株式会社豊田自動織機 電動圧縮機
EP3168478A4 (en) * 2014-07-08 2018-03-28 Daikin Industries, Ltd. Compressor
US10190588B2 (en) 2014-07-08 2019-01-29 Daikin Industries, Ltd. Compressor having a check valve in the injection passage
WO2016056189A1 (ja) * 2014-10-07 2016-04-14 株式会社デンソー 冷凍サイクル用圧縮機
JP2016075233A (ja) * 2014-10-07 2016-05-12 株式会社デンソー 冷凍サイクル用圧縮機
WO2023214497A1 (ja) * 2022-05-02 2023-11-09 ダイキン工業株式会社 圧縮機および空気調和装置
JP2023165192A (ja) * 2022-05-02 2023-11-15 ダイキン工業株式会社 圧縮機および空気調和装置
JP7401804B2 (ja) 2022-05-02 2023-12-20 ダイキン工業株式会社 圧縮機および空気調和装置

Also Published As

Publication number Publication date
US9765780B2 (en) 2017-09-19
JP5745450B2 (ja) 2015-07-08
JP2013209954A (ja) 2013-10-10
US20150125330A1 (en) 2015-05-07
DE112013001840T5 (de) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2013145713A1 (ja) 圧縮機
US8998596B2 (en) Scroll compressor
US9435342B2 (en) Horizontal type scroll compressor
EP2759708B1 (en) Scroll compressor
EP2280172A1 (en) Refrigerant compressor and valve unit
WO2014178189A1 (ja) スクロール圧縮機
WO2013161255A1 (ja) スクロール圧縮機
WO2013121900A1 (ja) スクロール圧縮機
EP3015710B1 (en) Compressor
JP6130771B2 (ja) 圧縮機および冷凍サイクル装置
WO2016059772A1 (ja) 圧縮機
WO2016137002A1 (ja) スクロール型圧縮機
JP2003254276A (ja) ロータリコンプレッサ
EP3572670B1 (en) Scroll compressor
US12078175B2 (en) Compressor
JP6059452B2 (ja) 圧縮機の逆流防止構造
US10125770B2 (en) Cylinder-rotation compressor with a discharge valve
JP5789581B2 (ja) スクロール型圧縮機
JP2018127903A (ja) 圧縮機
WO2015033550A1 (ja) 圧縮機
WO2018003431A1 (ja) 多段圧縮機
JP6093676B2 (ja) 圧縮機
JP2020008009A (ja) スクロール圧縮機
KR20200108706A (ko) 전동식 압축기
WO2024147173A1 (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14389132

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013001840

Country of ref document: DE

Ref document number: 1120130018403

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769166

Country of ref document: EP

Kind code of ref document: A1