WO2013145262A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2013145262A1 WO2013145262A1 PCT/JP2012/058594 JP2012058594W WO2013145262A1 WO 2013145262 A1 WO2013145262 A1 WO 2013145262A1 JP 2012058594 W JP2012058594 W JP 2012058594W WO 2013145262 A1 WO2013145262 A1 WO 2013145262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- inverters
- value
- invn
- output
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims description 9
- 101150110971 CIN7 gene Proteins 0.000 abstract description 116
- 101150110298 INV1 gene Proteins 0.000 abstract description 116
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 abstract description 116
- 238000004891 communication Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 5
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 5
- 239000000470 constituent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a power conversion device.
- Patent Document 1 A power supply system that operates by randomly selecting from a plurality of inverters is disclosed (see Patent Document 2). It is disclosed that the plurality of inverters are controlled by comparing the maximum power of the solar cell detected from the measurement data of the pyranometer and the thermometer with the total value of the rated outputs of the plurality of inverters (see Patent Document 3). . It is disclosed that inverters are connected to solar cells installed on respective roof surfaces facing different directions, and these inverters are controlled (see Patent Document 4).
- An object of the present invention is to provide a power conversion device capable of controlling a plurality of inverters and improving the accuracy of power supplied to a load.
- a power conversion device includes a plurality of inverters whose AC sides are connected in parallel, and a required power value required as a total output power of the plurality of inverters.
- Power command value determining means for determining a first power command value smaller than the apportioned power value apportioned in step 2 and a second power command value greater than the apportioned power value, and output power of the plurality of inverters as the power Control means for controlling with the first power command value and the second power command value determined by the command value determining means.
- FIG. 1 is a configuration diagram showing the configuration of the power conversion system according to the first embodiment of the present invention.
- FIG. 2 is a configuration diagram illustrating the configuration of the controller according to the first embodiment.
- FIG. 3 is a configuration diagram showing the configuration of the power conversion system according to the second embodiment of the present invention.
- FIG. 4 is a waveform diagram showing the relationship between the control cycle of the controller and the communication cycle of the inverter according to the second embodiment.
- FIG. 1 is a configuration diagram showing a configuration of a power conversion system 10 according to the first embodiment of the present invention.
- symbol is attached
- the power conversion system 10 includes a controller 1, n DC power sources 2, an AC power system 3, and n inverters INV1 to INVn.
- 'n' is an integer of 2 or more.
- a DC power supply 2 is connected to each of the DC sides of the inverters INV1 to INVn.
- the AC side of all inverters INV1 to INVn is connected to the AC power system 3.
- the inverters INV1 to INVn convert the DC power supplied from the DC power supply 2 into AC power and supply it to the AC power system 3.
- Inverters INV1 to INVn are controlled according to control command values C1 to Cn output from controller 1.
- each of the inverters INV1 to INVn is provided with a control unit (not shown).
- the inverters INV1 to INVn are controlled in addition to commands from the controller 1 by the control units provided respectively.
- the control unit performs monitoring, measurement, protection, transmission / reception of data with the controller 1, or mediation of control by the controller 1. Note that some of the functions executed by the control unit may be executed by the controller 1.
- the DC power supply 2 supplies DC power to inverters INV1 to INVn, respectively.
- the DC power source 2 may be any device that outputs DC power.
- the DC power source 2 is a PV (photovoltaic) cell, a secondary battery, or a converter.
- the AC power system 3 is an AC load that receives AC power Pt from the inverters INV1 to INVn.
- the AC power system 3 may include an AC power source.
- Controller 1 performs control to control all inverters INV1 to INVn.
- the controller 1 generates control command values C1 to Cn for controlling the inverters INV1 to INVn.
- the controller 1 outputs control command values C1 to Cn to the inverters INV1 to INVn to control output powers PQ1 to PQn of the inverters INV1 to INVn. Thereby, the power PQt supplied to the AC power system 3 is controlled.
- the controller 1 has a scheduling function for sequentially starting and stopping the inverters INV1 to INVn.
- FIG. 2 is a configuration diagram showing the configuration of the controller 1 according to the present embodiment.
- the controller 1 includes a set value detection unit 11, an operable number detection unit 12, and a control command generation unit 13.
- the required power value DM required by the AC power system 3 is input to the set value detection unit 11 from the upper control system.
- the required power value DM may be set in the controller 1 in advance.
- the set value detection unit 11 detects one or two set values for each of active power and reactive power.
- the set value is a value that determines an output power value preset in the inverters INV1 to INVn. Therefore, the set value determined by the set value detection unit 11 corresponds to the power command value for the output power PQ1 to PQn of each inverter INV1 to INVn.
- the set value detection unit 11 outputs the detected set value to the control command generation unit 13.
- the operable number detection unit 12 always detects the number n of the inverters INV1 to INVn that can be operated.
- the number n may be detected in any way.
- the operable number detection unit 12 always receives a signal indicating whether or not the operation is possible from wirings connected to the inverters INV1 to INVn.
- the required power value DM, one or two set values detected by the set value detection unit 11, and the number n detected by the operable number detection unit 12 are input to the control command generation unit 13.
- the control command generator 13 generates control command values C1 to Cn based on the required power value DM, one or two set values, and the number n.
- the control command generator 13 outputs the generated control command values C1 to Cn to the inverters INV1 to INVn, and individually controls the inverters INV1 to INVn.
- the control command values C1 to Cn include setting values (that is, power command values) for active power and reactive power, respectively.
- the control command values C1 to Cn include information necessary for controlling the inverters INV1 to INVn, information necessary for communication, and the like.
- Inverters INV1 to INVn output power PQ1 to PQn according to the received control command values C1 to Cn, respectively. As a result, the total power PQt output from the inverters INV1 to INVn is supplied to the AC power system 3.
- the required power value DM is required to supply active power corresponding to P% of the sum of the maximum output power of each of the n inverters INV1 to INVn to the AC power system 3. That is, all of the n inverters INV1 to INVn have an active power of just P% of the maximum output power (if the capacity is the same, the average active power divided by the required power value DM by n, and different capacities. If the required electric power value DM is distributed by the rated output of each inverter, the electric power corresponding to the required electric power value DM can be supplied to the AC power system 3.
- Controller 1 detects the number n of inverters INV1 to INVn that can be operated. Here, it is assumed that all n inverters INV1 to INVn are operable.
- the controller 1 applies to all the inverters INV1 to INVn.
- the control command values C1 to Cn are output so that P% active power is output at the common P% setting value. If the error between the setting value closest to P% and P% is smaller than the value obtained by dividing the resolution of the output power of the inverters INV1 to INVn by the number n, just set the setting value closest to P%. It may be regarded as a set value of P%.
- the controller 1 N inverters INV1 to INVn are controlled.
- the controller 1 searches for two set values CL and CH that can be output by the inverters INV1 to INVn.
- the small set value CL is a set value of CL% that is closest to P% and smaller than P%.
- the large set value CH is a set value of CH% that is closest to P% and larger than P%.
- the controller 1 determines inverters INV1 to INVn that output a small set value CL and inverters INV1 to INVn that output a large set value CH based on the number n of inverters INV1 to INVn that can be operated.
- the number of inverters INV1 to INVn that output two set values CL and CH, respectively, is such that the sum of the active powers output from all the inverters INV1 to INVn is closest to the required P% active power. It is determined.
- the controller 1 outputs control command values C1 to Cn to the respective inverters INV1 to INVn so as to output power according to the set values CL and CH.
- the required power value DM is required to supply active power corresponding to 60.3% of the sum of the maximum output power of each of the ten inverters INV1 to INVn to the AC power system 3. . Further, the resolution of the output power of the inverters INV1 to INVn is assumed to be 1% step.
- Controller 1 searches for a set value CL that is closest to 60.3% and smaller than 60.3%. The controller 1 determines that this set value CL is 60%. Further, the controller 1 searches for a set value CH that is closest to 60.3% and larger than 60.3%. The controller 1 determines that this set value CH is 61%.
- the controller 1 performs an operation for determining the number of inverters INV1 to INVn that output the set values CL and CH.
- Each of the inverters INV1 to INVn that outputs the set values CL and CH is set so that the total effective power of the ten inverters INV1 to INVn is closest to the active power required by the required power value DM. Determine the number.
- the controller 1 determines that the number of inverters INV1 to INVn that outputs a small set value CL is seven and the number of inverters INV1 to INVn that outputs a large set value CH is three.
- the controller 1 generates the control command values C1 to Cn so that the seven inverters INV1 to INVn output small set values CL and the three inverters INV1 to INVn output large set values CH.
- the inverters INV1 to INVn output power to the AC power system 3 according to the control command values C1 to Cn generated as described above.
- the inverters INV1 to INVn supply 60.3% active power to the AC power system 3 as required by the required power value DM, with an accuracy of 60% output relative to the command value 60.3%.
- the first inverter INV1 is stopped during the operation of the power conversion system 10. Further, it is assumed that the stopped inverter INV1 is outputting according to a small set value CL.
- the controller 1 detects that the number of operating units has decreased by 1 by the operable number detecting unit 12 to n ⁇ 1 units.
- the controller 1 shares each inverter INV2 to INVn except for the first inverter INV1 as in the case where the number of operating units is n so that the active power corresponding to the small set value CL is shared by n-1.
- the set value for is calculated.
- the controller 1 calculates the rate of change of the power supplied to the AC power system 3 when the power corresponding to the small set value CL is increased.
- the controller 1 When the calculated power change rate is within the preset allowable range of the output change rate, the controller 1 outputs the control command values C2 to Cn based on the set values for the calculated inverters INV2 to INVn.
- the output of the inverter INV1 is decreased and the outputs of the other inverters INV2 to INVn are increased so as not to exceed the allowable range of the output change rate of the total output power PQt.
- the controller 1 sets the set values for the inverters INV1 to INVn for outputting the increased required power value DM. To be within the allowable range of the output change rate.
- the controller 1 outputs control command values C1 to Cn based on the limited set values. Thereafter, the controller 1 gradually increases the set value until it reaches the set value before the limit so as not to exceed the allowable range of the output change rate, and outputs the control command values C1 to Cn.
- the inverters INV1 to INVn are controlled by dividing the required power value DM into a setting value CL smaller than a value divided by the number n of inverters INV1 to INVn that can be operated and a larger setting value CH,
- the resolution (%) of the total output power PQt of all the inverters INV1 to INVn can be made smaller than the resolution of the output powers PQ1 to PQn of the individual inverters INV1 to INVn.
- the controller 1 can increase the accuracy with which the total output power PQt of the inverters INV1 to INVn approaches the required power value DM.
- FIG. 3 is a configuration diagram showing a configuration of a power conversion system 10A according to the second embodiment of the present invention.
- the power conversion system 10A is obtained by replacing the controller 1 with the controller 1A in the power conversion system 10 according to the first embodiment shown in FIG.
- 10 A of power conversion systems are the structures similar to the power conversion system 10 which concerns on 1st Embodiment.
- Controller 1A outputs control command values C1 to Cn to inverters INV1 to INVn at regular time intervals.
- the controller 1A is the same as the controller 1 according to the first embodiment.
- FIG. 4 is a waveform diagram showing the relationship between the control cycle Ttx of the controller 1A according to this embodiment and the communication cycle Trx of the inverters INV1 to INVn.
- a waveform TX indicates the state of the controller 1A.
- Waveforms RX1 to RXn indicate the states of the control units of the inverters INV1 to INVn, respectively. In each of the waveforms TX and RX1 to RXn, the High level indicates that calculation processing is being performed, and the Low level indicates that calculation processing is not being performed.
- the period when the waveform TX of the controller 1A is at the high level is the control period Ttx.
- the control cycle Ttx is also the resolution of the control interval of the power conversion system 10A.
- the period when the waveforms RX1 to RXn of the inverters INV1 to INVn are at the high level is the communication period Trx with the controller 1A.
- the communication cycle Trx is set to be the shortest cycle.
- the controller 1A sequentially outputs the control command values C1 to Cn at regular intervals in the order of the first inverter INV1, the second inverter INV2,..., The n-th inverter INVn.
- the controller 1A outputs the control command value Cn to the last n-th inverter INVn, it outputs the control command values C1 to Cn in order from the first first inverter INV1.
- the controller 1A repeats this to control the total output power PQt of the inverters INV1 to INVn. That is, the controller 1A sequentially controls the output powers PQ1 to PQn of the inverters INV1 to INVn with time-divided time differences.
- controller 1A controls the total output power PQt of the inverters INV1 to INVn substantially in the control cycle Ttx.
- the controller 1A can control the individual inverters INV1 to INVn only in the communication cycle Trx.
- the controller 1A can control the total output power PQt of the inverters INV1 to INVn with a control cycle Ttx shorter than the shortest communication cycle Trx by controlling at least one inverter INV1 to INVn with the control cycle Ttx.
- the controller 1A can stably supply power to the AC power system 3 by controlling the total output power PQt of the inverters INV1 to INVn with the control cycle Ttx.
- the controller 1A changes the output power PQt significantly, the controller 1A reaches the target output power PQt quickly without causing a sudden power fluctuation by changing the output power PQt gradually in the control cycle Ttx. Can be made.
- the number of inverters INV1 to INVn for outputting the two set values CL and CH is determined so as to satisfy the required power.
- the method for determining the number of inverters INV1 to INVn is as follows. Not limited to.
- the inverters INV1 to INVn that output the two set values CL and CH may be determined in advance. Even if the number of inverters INV1 to INVn that output each of the two set values CL and CH is set in advance, the resolution of the total output power PQt of the inverters INV1 to INVn is always set to one set value. Compared with the case of outputting, it can be halved.
- the two setting values CL and CH are preferably set to the setting values closest to the power value desired to be output, but are not limited thereto. If the accuracy of the total output power PQt of the inverters INV1 to INVn is improved even if the two setting values CL and CH are not the closest to the power values to be output, what setting values CL and CH You may choose.
- each embodiment when there is a set value that is exactly the same as the power value that is desired to be output, all the inverters INV1 to INVn are controlled by the same set value, but this is not restrictive. If there are three or more inverters INV1 to INVn, control may always be performed with two set values. Even in this case, the resolution of the total output power PQt of the inverters INV1 to INVn can be reduced as compared with the case where the control is always performed with one set value.
- the controller 1 is controlled so that the output change rate does not exceed the allowable range when the power output from the inverters INV2 to INVn is increased after the one inverter INV1 is stopped. Even in this case, the controller 1 may perform control so as not to exceed the allowable range of the output change rate. For example, as a case where the output powers PQ1 to PQn of the inverters INV1 to INVn are suddenly changed, the DC power source 2 is a PV cell and the PV cell is suddenly irradiated. Even in such a case, the inverters INV1 to INVn are controlled so as to gradually increase the output power within the allowable range of the output change rate, thereby preventing sudden fluctuations in the power supplied to the AC power system 3. it can.
- the number n of operable inverters INV1 to INVn is detected, but may be set in advance. In this case, when any of the inverters INV1 to INVn fails, the number of workers set may be changed, or the inverters INV1 to INVn may be changed to another control method. .
- Another control method is, for example, a method of controlling all inverters INV1 to INVn to output power with the same set value.
- the description has been made on the assumption that all inverters INV1 to INVn have the same performance, such as the control period and the resolution of output power, but this is not restrictive.
- the inverters INV1 to INVn are controlled with a smaller set value CL and a larger set value CH, and the total output power PQt of the inverters INV1 to INVn is reduced with a resolution (%) smaller than the resolution (%) of the individual inverters INV1 to INVn. Any inverter configuration may be used as long as it can be controlled.
- the order and time interval for outputting the control command values C1 to Cn to the inverters INV1 to INVn have not been described, but the control command values C1 to Cn may be output in any way.
- the controller 1 may output the control command values C1 to Cn to the inverters INV1 to INVn in any order and time interval, or may always output the control command values C1 to Cn simultaneously in the communication cycle Trx. Good.
- the control cycle Ttx of the controller 1 is lengthened within a range shorter than the shortest communication cycle Trx with each of the inverters INV1 to INVn. It may be changed. As a result, even when the operable inverters INV1 to INVn decrease, the total output power PQt of the inverters INV1 to INVn can be controlled with the control interval Ttx at equal intervals.
- the number n detected by the operable unit detecting unit 12 may be used as the number of operable units.
- control command values may be simultaneously output to some of the plurality of inverters.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
図1は、本発明の第1の実施形態に係る電力変換システム10の構成を示す構成図である。なお、図中における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複した説明を省略する。
図3は、本発明の第2の実施形態に係る電力変換システム10Aの構成を示す構成図である。
Claims (8)
- 交流側が並列に接続された複数のインバータと、
前記複数のインバータの総和の出力電力として要求される要求電力値を前記複数のインバータのそれぞれの定格出力で按分した按分電力値よりも小さい第1の電力指令値と前記按分電力値よりも大きい第2の電力指令値を決定する電力指令値決定手段と、
前記複数のインバータの出力電力を、前記電力指令値決定手段により決定された前記第1の電力指令値及び前記第2の電力指令値で制御する制御手段と
を備えたことを特徴とする電力変換装置。 - 前記電力指令値決定手段は、前記第1の電力指令値及び前記第2の電力指令値を、前記複数のインバータが出力可能で前記按分電力値に最も近い電力指令値に決定すること
を特徴とする請求項1に記載の電力変換装置。 - 前記制御手段は、前記複数のインバータの総和の出力電力が前記要求電力値に最も近い電力値となるように、前記第1の電力指令値により出力させるインバータの数と前記第2の電力指令値により出力させるインバータの数をそれぞれ決定すること
を特徴とする請求項1又は請求項2に記載の電力変換装置。 - 前記複数のインバータの出力電力を、共通の1つの電力指令値で制御する共通制御手段と
を備えたことを特徴とする請求項1から請求項3のいずれか1項に記載の電力変換装置。 - 前記複数のインバータのうち運転可能なインバータの数を検出する運転可能数検出手段
を備えたことを特徴とする請求項1から請求項4のいずれか1項に記載の電力変換装置。 - 前記制御手段は、前記複数のインバータの総和の出力電力の変化率が予め設定された許容範囲内になるように制御すること
を特徴とする請求項1から請求項5のいずれか1項に記載の電力変換装置。 - 交流側が並列に接続された複数のインバータで構成された電力変換装置を制御する制御装置であって、
前記複数のインバータの総和の出力電力として要求される要求電力値を前記複数のインバータのそれぞれの定格出力で按分した按分電力値よりも小さい第1の電力指令値と前記按分電力値よりも大きい第2の電力指令値を決定する電力指令値決定手段と、
前記複数のインバータの出力電力を、前記電力指令値決定手段により決定された前記第1の電力指令値及び前記第2の電力指令値で制御する制御手段と
を備えたことを特徴とする電力変換装置の制御装置。 - 交流側が並列に接続された複数のインバータで構成された電力変換装置を制御する制御方法であって、
前記複数のインバータの総和の出力電力として要求される要求電力値を前記複数のインバータのそれぞれの定格出力で按分した按分電力値よりも小さい第1の電力指令値と前記按分電力値よりも大きい第2の電力指令値を決定し、
前記複数のインバータの出力電力を、決定した前記第1の電力指令値及び前記第2の電力指令値で制御すること
を含むことを特徴とする電力変換装置の制御方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/058594 WO2013145262A1 (ja) | 2012-03-30 | 2012-03-30 | 電力変換装置 |
ES12873338.3T ES2637323T3 (es) | 2012-03-30 | 2012-03-30 | Dispositivo de conversión de potencia |
CN201280072146.6A CN104471851B (zh) | 2012-03-30 | 2012-03-30 | 功率转换装置 |
IN8148DEN2014 IN2014DN08148A (ja) | 2012-03-30 | 2012-03-30 | |
EP12873338.3A EP2833540B1 (en) | 2012-03-30 | 2012-03-30 | Power conversion device |
US14/502,416 US20150016161A1 (en) | 2012-03-30 | 2014-09-30 | Power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/058594 WO2013145262A1 (ja) | 2012-03-30 | 2012-03-30 | 電力変換装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/502,416 Continuation US20150016161A1 (en) | 2012-03-30 | 2014-09-30 | Power converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145262A1 true WO2013145262A1 (ja) | 2013-10-03 |
Family
ID=49258626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/058594 WO2013145262A1 (ja) | 2012-03-30 | 2012-03-30 | 電力変換装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150016161A1 (ja) |
EP (1) | EP2833540B1 (ja) |
CN (1) | CN104471851B (ja) |
ES (1) | ES2637323T3 (ja) |
IN (1) | IN2014DN08148A (ja) |
WO (1) | WO2013145262A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3024134A3 (en) * | 2014-10-24 | 2016-08-03 | Sungrow Power Supply Co., Ltd. | Parallel inverter system, and shutdown control method and shutdown control device for parallel inverter system |
KR20170115808A (ko) * | 2016-04-08 | 2017-10-18 | 엘에스산전 주식회사 | 인버터 시스템의 제어 방법 |
JP2018110515A (ja) * | 2017-01-04 | 2018-07-12 | ビセド オサケユイチア | 電力システム並びに電力システムを制御する方法及び装置 |
US10536001B2 (en) | 2016-11-11 | 2020-01-14 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Photovoltaic system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3051686B1 (en) * | 2015-01-27 | 2017-11-01 | ABB Schweiz AG | Method for testing electric system and electric system |
US10402877B2 (en) * | 2016-03-24 | 2019-09-03 | Amadeus S.A.S. | Online transaction processing system for multi-product transactions |
KR102032157B1 (ko) * | 2018-02-09 | 2019-10-15 | 엘에스산전 주식회사 | 계통 연계형 인버터 시스템 |
JP7125875B2 (ja) * | 2018-07-26 | 2022-08-25 | 株式会社日立製作所 | プラント電力制御システムおよびその制御方法 |
CN112448562B (zh) * | 2019-08-30 | 2022-05-13 | 比亚迪股份有限公司 | Dc-dc变换器及其控制方法 |
EP4142137B1 (de) * | 2021-08-23 | 2024-03-13 | SAX Power GmbH | Schaltungsanordnung und verfahren zur erzeugung einer wechselspannung |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6194523A (ja) * | 1984-10-12 | 1986-05-13 | 信濃電気株式会社 | 負荷按分方式 |
JPH06197548A (ja) * | 1992-12-22 | 1994-07-15 | Matsushita Electric Works Ltd | インバータ装置 |
JPH06197543A (ja) * | 1992-12-24 | 1994-07-15 | Hitachi Ltd | 燃料電池インバータの電力制御装置 |
JPH07325635A (ja) | 1994-05-30 | 1995-12-12 | Sanyo Electric Co Ltd | インバータの出力制御装置 |
JP2000166098A (ja) | 1998-11-25 | 2000-06-16 | Daiwa House Ind Co Ltd | 太陽光発電屋根 |
JP2000305633A (ja) | 1999-04-20 | 2000-11-02 | Sanyo Electric Co Ltd | 複数のインバータを有する電源システムの運転方法 |
JP2000341959A (ja) | 1999-05-31 | 2000-12-08 | Kawasaki Steel Corp | 発電システム |
JP2001016859A (ja) * | 1999-06-29 | 2001-01-19 | Nissin Electric Co Ltd | 電力変換装置 |
JP2004235123A (ja) * | 2003-02-03 | 2004-08-19 | Matsushita Electric Ind Co Ltd | 放電灯点灯装置 |
JP2007336764A (ja) * | 2006-06-19 | 2007-12-27 | Yaskawa Electric Corp | 多相電力変換器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3545203B2 (ja) * | 1998-05-22 | 2004-07-21 | 三洋電機株式会社 | インバータの運転方法及び電源システム |
JP4177284B2 (ja) * | 2004-04-28 | 2008-11-05 | 株式会社ダイヘン | インバータ装置の制御方法 |
US6856269B1 (en) * | 2004-05-13 | 2005-02-15 | Winbond Electronics Corp. | D/A conversion method and D/A converter |
FI119580B (fi) * | 2007-02-06 | 2008-12-31 | Abb Oy | Menetelmä ja järjestely vaihtosuuntaajan yhteydessä |
US7843085B2 (en) * | 2007-10-15 | 2010-11-30 | Ampt, Llc | Systems for highly efficient solar power |
DE102007054647A1 (de) * | 2007-11-15 | 2009-06-18 | Siemens Ag | Solarwechselrichter mit mehreren parallel geschalteten Einzelwechselrichtern und mit einer übergeordneten elektronischen Steuereinheit |
TWI387188B (zh) * | 2008-07-10 | 2013-02-21 | Delta Electronics Inc | 輸入串聯輸出並聯的多個變換器之結構的控制方法 |
DE102008042199A1 (de) * | 2008-09-18 | 2010-04-01 | Robert Bosch Gmbh | Photovoltaik-Vorrichtung |
CN101604922B (zh) * | 2009-07-21 | 2011-02-02 | 南京航空航天大学 | 一种输出电流标幺值加权平均的逆变器并联均流方法 |
US9093861B2 (en) * | 2009-09-16 | 2015-07-28 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion system and uninterruptible power supply system |
US9685887B2 (en) * | 2012-10-12 | 2017-06-20 | Younicos Inc. | Controlling power conversion systems |
-
2012
- 2012-03-30 EP EP12873338.3A patent/EP2833540B1/en active Active
- 2012-03-30 WO PCT/JP2012/058594 patent/WO2013145262A1/ja active Application Filing
- 2012-03-30 IN IN8148DEN2014 patent/IN2014DN08148A/en unknown
- 2012-03-30 ES ES12873338.3T patent/ES2637323T3/es active Active
- 2012-03-30 CN CN201280072146.6A patent/CN104471851B/zh active Active
-
2014
- 2014-09-30 US US14/502,416 patent/US20150016161A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6194523A (ja) * | 1984-10-12 | 1986-05-13 | 信濃電気株式会社 | 負荷按分方式 |
JPH06197548A (ja) * | 1992-12-22 | 1994-07-15 | Matsushita Electric Works Ltd | インバータ装置 |
JPH06197543A (ja) * | 1992-12-24 | 1994-07-15 | Hitachi Ltd | 燃料電池インバータの電力制御装置 |
JPH07325635A (ja) | 1994-05-30 | 1995-12-12 | Sanyo Electric Co Ltd | インバータの出力制御装置 |
JP2000166098A (ja) | 1998-11-25 | 2000-06-16 | Daiwa House Ind Co Ltd | 太陽光発電屋根 |
JP2000305633A (ja) | 1999-04-20 | 2000-11-02 | Sanyo Electric Co Ltd | 複数のインバータを有する電源システムの運転方法 |
JP2000341959A (ja) | 1999-05-31 | 2000-12-08 | Kawasaki Steel Corp | 発電システム |
JP2001016859A (ja) * | 1999-06-29 | 2001-01-19 | Nissin Electric Co Ltd | 電力変換装置 |
JP2004235123A (ja) * | 2003-02-03 | 2004-08-19 | Matsushita Electric Ind Co Ltd | 放電灯点灯装置 |
JP2007336764A (ja) * | 2006-06-19 | 2007-12-27 | Yaskawa Electric Corp | 多相電力変換器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2833540A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3024134A3 (en) * | 2014-10-24 | 2016-08-03 | Sungrow Power Supply Co., Ltd. | Parallel inverter system, and shutdown control method and shutdown control device for parallel inverter system |
US9673731B2 (en) | 2014-10-24 | 2017-06-06 | Sungrow Power Supply Co., Ltd. | Parallel inverter system, and shutdown control method and shutdown control device for parallel inverter system |
KR20170115808A (ko) * | 2016-04-08 | 2017-10-18 | 엘에스산전 주식회사 | 인버터 시스템의 제어 방법 |
KR102572424B1 (ko) * | 2016-04-08 | 2023-08-29 | 엘에스일렉트릭(주) | 인버터 시스템의 제어 방법 |
US10536001B2 (en) | 2016-11-11 | 2020-01-14 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Photovoltaic system |
JP2018110515A (ja) * | 2017-01-04 | 2018-07-12 | ビセド オサケユイチア | 電力システム並びに電力システムを制御する方法及び装置 |
JP2022105671A (ja) * | 2017-01-04 | 2022-07-14 | ダンフォス エディトロン オサケユイチア | 電力システム並びに電力システムを制御する方法及び装置 |
JP7288290B2 (ja) | 2017-01-04 | 2023-06-07 | ダンフォス エディトロン オサケユイチア | 電力システム並びに電力システムを制御する方法及び装置 |
JP7300038B2 (ja) | 2017-01-04 | 2023-06-28 | ダンフォス エディトロン オサケユイチア | 電力システム並びに電力システムを制御する方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2833540A4 (en) | 2016-01-27 |
EP2833540B1 (en) | 2017-05-17 |
CN104471851B (zh) | 2017-06-06 |
ES2637323T3 (es) | 2017-10-11 |
CN104471851A (zh) | 2015-03-25 |
EP2833540A1 (en) | 2015-02-04 |
IN2014DN08148A (ja) | 2015-05-01 |
US20150016161A1 (en) | 2015-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013145262A1 (ja) | 電力変換装置 | |
JP5978292B2 (ja) | 電力変換装置 | |
US9627907B2 (en) | Storage battery control device, storage battery control method, program, electricity storage system, and power supply system | |
EP2899606B1 (en) | Power conditioner, and method for controlling same | |
US9496725B2 (en) | Power control apparatus, method, program, and integrated circuit, and storage battery unit | |
JP5756348B2 (ja) | 発電システム及び発電装置 | |
US10003194B2 (en) | Parallel battery system | |
EP3041109B1 (en) | Distributed power supply system and power conditioner | |
US9490634B2 (en) | Power distribution system using multiple power modules, and method | |
JP6170258B2 (ja) | 電力制御装置、電力供給システム及び電力供給システムの制御方法 | |
JP2016039721A (ja) | 直流配電システム | |
US9817424B2 (en) | Method and apparatus for maximum power point tracking for multi-input power converter | |
JP2016181976A (ja) | 電源装置 | |
JP2017118721A (ja) | 発電システム | |
KR101141038B1 (ko) | Can 통신을 이용한 병렬 구성된 dc/dc 컨버터 제어 시스템 및 이를 이용한 제어 방법 | |
CN115833210B (zh) | 一种多机并联储能系统及其充放电控制方法 | |
CN113315162B (zh) | 场站级储能系统及其能量管理系统和方法 | |
WO2015184869A1 (zh) | 逆变器的控制方法及逆变器 | |
JPWO2013145262A1 (ja) | 電力変換装置 | |
JPWO2019049380A1 (ja) | 発電システム | |
CN115765131A (zh) | 充电装置和充电控制方法 | |
CN108988397B (zh) | 一种储能变流器并联运行功率分配控制方法 | |
JP2017229186A (ja) | 太陽光発電装置 | |
JP2023006186A (ja) | 制御装置 | |
JP2016052238A (ja) | 電力変換システム、電力変換装置、電力変換方法および電力変換プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12873338 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507224 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012873338 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012873338 Country of ref document: EP |