[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013145128A1 - Route search device, control method, and program - Google Patents

Route search device, control method, and program Download PDF

Info

Publication number
WO2013145128A1
WO2013145128A1 PCT/JP2012/057950 JP2012057950W WO2013145128A1 WO 2013145128 A1 WO2013145128 A1 WO 2013145128A1 JP 2012057950 W JP2012057950 W JP 2012057950W WO 2013145128 A1 WO2013145128 A1 WO 2013145128A1
Authority
WO
WIPO (PCT)
Prior art keywords
inter
route
vehicle distance
distance information
information
Prior art date
Application number
PCT/JP2012/057950
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 恒川
詩紋 居坂
喬浩 鎌田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/057950 priority Critical patent/WO2013145128A1/en
Publication of WO2013145128A1 publication Critical patent/WO2013145128A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3446Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes

Definitions

  • the present invention relates to route search technology.
  • Patent Document 1 adds a cost that is an index of difficulty of passing through a road (link) from a certain branch point (node) to the next branch point on the route, and adds up the cost.
  • a technique for determining a route that minimizes the optimum route as an optimum route is disclosed.
  • the present invention has been made to solve the above problems, and provides a route search device, a control method, and a program capable of appropriately executing a route search in consideration of the density of a traveling vehicle.
  • the main purpose is to solve the above problems, and provides a route search device, a control method, and a program capable of appropriately executing a route search in consideration of the density of a traveling vehicle. The main purpose.
  • the route setting means for setting the route from the departure point to the arrival point, and the inter-vehicle distance that is information on the distance between the moving bodies heading in the same direction in each predetermined section included in the route Vehicle distance information acquisition means for acquiring distance information, wherein the route setting means sets the route based on the vehicle distance information.
  • the invention according to claim 11 is a control method executed by the route search device, the route setting step for setting a route from the departure point to the arrival point, and the same direction in each predetermined section included in the route
  • the invention according to claim 12 is a program executed by the route search device, wherein the route setting means for setting a route from the departure point to the arrival point and a predetermined section included in the route in the same direction Causing the route search device to function as an inter-vehicle distance information acquisition unit that acquires inter-vehicle distance information that is information related to a distance between mobile bodies that are headed, and the route setting unit sets the route based on the inter-vehicle distance information.
  • 1 shows a schematic configuration of a route search system.
  • 1 shows a schematic configuration of a probe information providing apparatus.
  • 1 shows a schematic configuration of a server device.
  • 1 shows a schematic configuration of a client terminal.
  • the data structure of the inter-vehicle distance statistical information is shown.
  • It is a flowchart which shows the process sequence which the control part of a probe information provision apparatus performs.
  • It is a flowchart which shows the procedure of the production
  • It is an example of the flowchart which shows the procedure of the route search process which the control part of a server apparatus performs.
  • It is a flowchart which shows the process sequence which a client terminal performs.
  • a graph is shown in which node S is the departure point, node G is the destination, and nodes A and B are intermediate points.
  • the data structure of the inter-vehicle distance statistical information which concerns on a modification is shown. It is a flowchart which shows the process sequence which the control part of a client terminal performs in a modification. It is a table which shows the relationship between the average inter-vehicle distance and the display form of a link.
  • the route search device includes route setting means for setting a route from a departure point to an arrival point, and mobiles heading in the same direction in each predetermined section included in the route.
  • Inter-vehicle distance information acquisition means for acquiring inter-vehicle distance information, which is information relating to the distance, and the route setting means sets the route based on the inter-vehicle distance information.
  • the route search device includes route setting means and inter-vehicle distance information acquisition means.
  • the route setting means sets a route from the departure point to the arrival point.
  • the inter-vehicle distance information acquisition means acquires inter-vehicle distance information, which is information related to the distance between moving bodies heading in the same direction in each predetermined section included in the route.
  • the route setting means sets the above-described route based on the inter-vehicle distance information. By doing in this way, the route search device can search and set an optimal route in consideration of the density of the traveling vehicle.
  • the inter-vehicle distance information is information related to a distance in the front-rear direction between moving bodies that are traveling in the same lane and are positioned in the front-rear direction.
  • the inter-vehicle distance information is an average value of the distances between the moving bodies.
  • the route setting means selects a route having a minimum combined value of the passing difficulty index in each section of the route from the departure point to the arrival point.
  • the indicator is weighted with a coefficient having a negative correlation with the value indicated by the inter-vehicle distance information in the corresponding section.
  • the inter-vehicle distance information acquisition unit acquires, from the mobile body, information on the distance to the front mobile body measured by the mobile body traveling in each section. Generate inter-vehicle distance information.
  • the route search apparatus can receive the information on the distance from the moving body traveling in various sections to the moving body ahead, and can suitably generate the inter-vehicle distance information.
  • the route setting unit measures a time zone in which the vehicle is expected to travel in the section when traveling according to the route, and a distance between the moving bodies in the section.
  • the inter-vehicle distance information used for setting the route is determined based on the time zone. In general, the degree of congestion on each road may vary from time to time. Therefore, according to this aspect, the route search device can appropriately select the inter-vehicle distance information to be used based on the time zone, and can perform the route search reflecting the density of the traveling vehicle more accurately.
  • the route setting unit is configured to set the route based on a moving direction or / and a traveling lane of the moving body when the distance between the moving bodies is measured. Determine distance information.
  • the route search device appropriately selects the inter-vehicle distance information to be used based on the moving direction or / and the traveling lane of the moving object at the time of measurement, and performs the route search that more accurately reflects the density of the traveling vehicle. It can be carried out.
  • the inter-vehicle distance information acquisition unit when there is a section in which the inter-vehicle distance information cannot be acquired, among the sections included in the route, The inter-vehicle distance information is estimated based on the inter-vehicle distance information of the section in which the inter-vehicle distance information continuous to the section where the inter-vehicle distance information cannot be acquired.
  • the route search device can preferably generate inter-vehicle distance information and set a route based on the inter-vehicle distance information.
  • the inter-vehicle distance information acquisition means sets an upper limit value to a value indicated by the inter-vehicle distance information.
  • the route search device can suppress an excessive variation in the value of the inter-vehicle distance information, and can appropriately perform a route search according to the ease of actual driving.
  • the inter-vehicle distance information acquisition means when there is a section in which the inter-vehicle distance information cannot be acquired among the sections included in the route, Is set to the upper limit value.
  • the section where the inter-vehicle distance information cannot be acquired is a section where the vehicle does not pass so much and the density of the traveling vehicle is low. Therefore, according to this aspect, the route search device can appropriately generate the inter-vehicle distance information.
  • a control method executed by the route search device executed by the route search device, the route setting step for setting a route from the departure point to the arrival point, and in each predetermined section included in the route,
  • the route search device can search and set an optimal route in consideration of the density of the traveling vehicle.
  • a program executed by the route search device, the route setting means for setting a route from the departure point to the arrival point, and the same in each predetermined section included in the route The route search device is caused to function as an inter-vehicle distance information acquisition unit that acquires inter-vehicle distance information that is information relating to a distance between moving bodies that travel in a direction, and the route setting unit sets the route based on the inter-vehicle distance information.
  • the route search device can search and set an optimal route in consideration of the density of the traveling vehicle.
  • the program is stored in a storage medium.
  • FIG. 1 shows a schematic configuration of a route search system according to the present embodiment.
  • the route search system according to the present embodiment is a system that performs route search in consideration of statistical information of the inter-vehicle distance.
  • the route search system includes a probe information providing device 100 including an inter-vehicle distance sensor 102, a server device 200 that performs route search, and a client terminal 300 that makes a route search processing request to the server device 200. And have.
  • a probe information providing device 100 including an inter-vehicle distance sensor 102
  • server device 200 that performs route search
  • client terminal 300 that makes a route search processing request to the server device 200.
  • a specific configuration for each component of the route search system will be described.
  • FIG. 2 shows a schematic configuration of the probe information providing device 100.
  • the probe information providing apparatus 100 is, for example, an in-vehicle navigation apparatus, and includes an inter-vehicle distance sensor 102, a GPS receiver 103, a storage unit 104, a control unit 105, and a communication unit 106, as shown in FIG. Have.
  • the inter-vehicle distance sensor 102, the GPS receiver 103, the storage unit 104, the control unit 105, and the communication unit 106 are connected to each other via the bus line 101.
  • the inter-vehicle distance sensor 102 is an inter-vehicle distance (also referred to as an “inter-vehicle distance Lb”) between a vehicle on which the probe information providing apparatus 100 is mounted and a vehicle traveling in the same lane as the vehicle and traveling in front of the vehicle. measure.
  • the inter-vehicle distance sensor 102 may measure the inter-vehicle distance Lb using an ultrasonic wave or a laser, or may measure the inter-vehicle distance Lb by analyzing an image of a camera that captures the front of the vehicle.
  • the GPS receiver 103 receives radio waves carrying downlink data including positioning data from a plurality of GPS satellites.
  • the positioning data is used to detect the absolute position (current position) of the vehicle from latitude and longitude information.
  • the storage unit 104 is configured by, for example, an HDD or the like, and based on the control of the control unit 105, information on the inter-vehicle distance Lb measured by the inter-vehicle distance sensor 102, time information at the time of measurement, and position information at the time of measurement ( These are collectively referred to as “sensor information Is”).
  • the control unit 105 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and performs overall control of the probe information providing apparatus 100. Specific control will be described in detail in the [Control Method] section with reference to FIG.
  • the communication unit 106 transmits a probe traffic information signal including the sensor information Is (also referred to as “probe information signal S1”) to the server device 200 based on the control of the control unit 105.
  • the communication unit 106 is, for example, a mobile phone or a dedicated communication card.
  • FIG. 3 shows a schematic configuration of the server device 200.
  • the server device 200 includes a storage unit 204, a control unit 205, and a communication unit 206.
  • the storage unit 204, the control unit 205, and the communication unit 206 are connected to each other via the bus line 201.
  • the storage unit 204 is configured by, for example, an HDD and stores various data used for route search processing such as map data.
  • the map data includes road data represented by links corresponding to roads and nodes corresponding to road connecting portions (intersections), facility information about each facility, and the like.
  • the storage unit 204 stores sensor information Is included in the probe information signal S1 based on the control of the control unit 205.
  • the storage unit 204 is based on the control of the control unit 205, and the link identification information (also referred to as “link ID”) and the average value for each link ID of the inter-vehicle distance Lb included in the sensor information Is (“average inter-vehicle distance”).
  • a database (also referred to as “inter-vehicle distance statistical information Isdb”) associated with “distance ALb” is stored.
  • the average inter-vehicle distance ALb is an example of “inter-vehicle distance information” in the present invention, and is used for weighting a link cost, which is an index of difficulty of passing through a road corresponding to each link.
  • FIG. 5 shows the data structure of the inter-vehicle distance statistical information Isdb.
  • the inter-vehicle distance statistical information Isdb is associated with an average inter-vehicle distance ALb for each link ID.
  • the average inter-vehicle distance ALb on the road corresponding to the link ID “2245” is “1 m” and the average inter-vehicle distance on the road corresponding to the link ID “2246”.
  • the distance ALb is “15 m”
  • the average inter-vehicle distance ALb on the road corresponding to the link ID “2247” is “100 m”.
  • the average inter-vehicle distance ALb is associated with each link ID.
  • an upper limit “LimLb” (for example, 100 m) is provided in advance for the average inter-vehicle distance ALb.
  • the above-described upper limit value LimLb is set to the inter-vehicle distance Lb that does not hinder the presence of the forward vehicle in driving, and is set in advance based on, for example, experiments.
  • the corresponding average inter-vehicle distance ALb is set to the upper limit value LimLb even for a link ID that does not have information on the inter-vehicle distance Lb that is a sample for calculating the average inter-vehicle distance ALb.
  • the control unit 205 includes memories such as a CPU, a ROM, and a RAM, and performs overall control of the server device 200 by executing a program stored in the memory.
  • the control unit 205 generates or updates the inter-vehicle distance statistical information Isdb based on the sensor information Is of the received probe information signal S1 at predetermined time intervals. This specific control will be described in detail with reference to FIG. 7 in the [Control Method] section.
  • control unit 205 searches for an optimum route having a minimum link cost among routes from the departure point to the destination. At this time, when calculating the link cost of each link, the control unit 205 has a coefficient having a negative correlation with the average inter-vehicle distance ALb (“inter-vehicle distance coefficient Cb”) with respect to the link cost calculated in consideration of the passage time and the like. Also weighted by multiplying. This specific control will be described in detail with reference to FIG. 8 in the [Control Method] section.
  • the communication unit 206 transmits and receives various data based on the control of the control unit 205.
  • the communication unit 206 receives the probe information signal S1 from the probe information providing apparatus 100.
  • the communication unit 206 receives from the client terminal 300 a signal (also referred to as “route search request signal S2”) to execute a route search specifying a departure place and a destination.
  • the communication unit 206 transmits a signal (also referred to as “route search result signal S ⁇ b> 3”) indicating a route search execution result such as optimal route information and required time to the client terminal 300.
  • the server device 200 is an example of a “route search device” in the present invention
  • the control unit 205 is an example of a “route setting unit” and an “inter-vehicle distance information acquisition unit” in the present invention.
  • FIG. 4 shows a schematic configuration of the client terminal 300.
  • the client terminal 300 is, for example, an in-vehicle navigation device, a portable terminal, or a personal computer.
  • the input unit 303, the storage unit 304, the control unit 305, the communication unit 306, and the display unit 307 are connected to each other via the bus line 301.
  • the input unit 303 is a button, a remote controller, a mouse, a keyboard, or the like, and accepts an input for designating a starting point and a destination used for route search.
  • the client terminal 300 is a navigation device having a GPS receiver
  • the input unit 303 may accept only an input for designating a destination. In this case, the departure place is set to the current position measured by the GPS receiver.
  • the storage unit 304 is configured by, for example, an HDD.
  • various data used for navigation processing such as map data are stored.
  • the control unit 305 has a memory such as a CPU, a ROM, and a RAM, and performs overall control of the client terminal 300 by executing a program stored in the memory. Specific control will be described in detail in the [Control Method] section with reference to FIG.
  • the communication unit 306 transmits a route search request signal S2 designating a departure place and a destination to the server device 200 under the control of the control unit 305. Further, the communication unit 306 receives the route search result signal S3 from the server device 200.
  • the display unit 307 displays various display data on a display or the like under the control of the control unit 305. For example, when the communication unit 306 receives the route search result signal S3, the display unit 307 displays the optimum route indicated by the route search result signal S3 on the map or the necessity of the optimum route based on the control of the control unit 305. Or display time.
  • FIG. 6 is an example of a flowchart showing a process procedure performed by the control unit 105 of the probe information providing apparatus 100.
  • control unit 105 determines whether there is a power-off request (step S101). And when there exists a power-off request
  • the control unit 105 determines whether or not the present time is the acquisition timing of the sensor information Is (step S102). For example, when acquiring the sensor information Is for each predetermined time width, the control unit 105 determines whether or not the above-described time width has elapsed since the last time sensor information Is was acquired. If it is determined that the present time is the acquisition timing of the sensor information Is (step S102: Yes), the control unit 105 acquires the sensor information Is and stores it in the storage unit 104 (step S103).
  • control unit 105 generates, as sensor information Is, the inter-vehicle distance Lb acquired by the inter-vehicle distance sensor 102, the position information acquired by the GPS receiver 103, and time information indicating the measurement date and time of the inter-vehicle distance Lb. And stored in the storage unit 104. On the other hand, when it is determined that the present time is not the acquisition timing of the sensor information Is (step S102: No), the control unit 105 returns the process to step S101.
  • the control unit 105 determines whether or not the present time is the transmission timing of the sensor information Is (step S104). For example, when the sensor information Is is transmitted to the server device 200 every predetermined time width, the control unit 105 determines whether or not the above-described time width has elapsed since the last transmission of the sensor information Is. If it is determined that the present time is the transmission timing of the sensor information Is (step S104: Yes), the control unit 105 extracts the sensor information Is that has not been transmitted to the server device 200 from the storage unit 104, and sets it as the probe information signal S1 It transmits to the server apparatus 200 (step S105). And the control part 105 returns a process to step S101. On the other hand, when the present time is not the transmission timing of the sensor information Is (step S104: No), the control unit 105 returns the process to step S101.
  • the server apparatus 200 suitably receives the sensor information Is including the inter-vehicle distance Ls from each of the plurality of probe information providing apparatuses 100. Can be acquired.
  • the control unit 205 of the server device 200 individually performs the generation processing of the inter-vehicle distance statistical information Isdb and the route search processing based on the route search request signal S2.
  • each of these processes will be described.
  • FIG. 7 is an example of a flowchart illustrating a procedure of generation processing of inter-vehicle distance statistical information Isdb executed by the control unit 205 of the server device 200.
  • control unit 205 determines whether or not a power-off request has been made (step S201). And when there exists a power-off request
  • the control unit 205 determines whether or not the probe information signal S1 has been received from the probe information providing apparatus 100 (step S202).
  • the control unit 205 receives the probe information signal S1 from the probe information providing apparatus 100 (step S202: Yes)
  • the control unit 205 stores the sensor information Is included in the received probe information signal S1 in the storage unit 204 (step S203).
  • the control part 205 returns a process to step S201, when the probe information signal S1 is not received from the probe information provision apparatus 100 (step S202: No).
  • the control unit 205 determines whether or not the present time is the timing for creating the database of the sensor information Is (step S204). For example, when updating the average inter-vehicle distance ALb of the inter-vehicle distance statistical information Isdb for each predetermined time width, the control unit 205 determines whether or not the above-described time width has elapsed since the previous update. If the present time is the timing for creating the database of the sensor information Is (step S204: Yes), the control unit 205 advances the process to step S205. On the other hand, when the present time is not the timing for creating the database of the sensor information Is (step S204: No), the control unit 205 returns the process to step S201.
  • the control unit 205 generates inter-vehicle distance statistical information Isdb (step S205).
  • the control unit 205 first extracts the sensor information Is to be calculated from the storage unit 204, then refers to the road data, and each sensor information Is is generated from the position information included in the sensor information Is. A link ID corresponding to a road is recognized.
  • the control unit 205 calculates an average inter-vehicle distance ALb that is an average value of the inter-vehicle distance Lb included in the corresponding sensor information Is for each link ID.
  • the control unit 205 sets the value of the average inter-vehicle distance ALb exceeding the upper limit value LimLb to the upper limit value LimLb.
  • the control unit 205 can suppress unnecessary variation of the average inter-vehicle distance ALb by providing the upper limit value LimLb for the average inter-vehicle distance ALb.
  • control unit 205 sets the average inter-vehicle distance ALb of the link ID having no information of the inter-vehicle distance Lb as a sample for calculating the average inter-vehicle distance ALb to the upper limit value LimLb.
  • the road where the sensor information IS cannot be acquired is a section where the vehicle does not pass so much and the density of the traveling vehicle is low. Accordingly, this enables the control unit 205 to appropriately set the average inter-vehicle distance ALb for all link IDs. And the control part 205 returns a process to step S201 after execution of step S205.
  • FIG. 8 is an example of a flowchart showing the procedure of route search processing executed by the control unit 205 of the server apparatus 200.
  • control unit 205 determines whether or not there is a power-off request (step S301). And when there exists a power-off request
  • control unit 205 determines whether or not the route search request signal S2 designating the departure place and the destination is received (step S302).
  • the control unit 205 starts route search processing using the Dijkstra method or the like (step S303). Specifically, the control unit 205 executes processing from step S304 to step S307 described later.
  • the control part 205 returns a process to step S301, when not receiving route search request signal S2 (step S302: No).
  • step S304 the control unit 205 calculates a link cost for the link of the candidate route (step S304). For example, the control unit 205 determines, for each target link, a cost related to the time for passing the link, a cost related to the distance of the link, a cost related to a toll such as a toll road, a cost related to a road type such as a main road and a vehicle width A link cost is calculated by multiplying each cost by a predetermined ratio.
  • route search conditions such as time priority and distance priority are defined in the route search request signal S2
  • the control unit 205 sets a large ratio to multiply the cost for which priority is specified.
  • link cost is calculated. Note that the average inter-vehicle distance ALb is not taken into account in the link cost calculated in step S304.
  • the control unit 205 weights the link cost by the inter-vehicle distance coefficient Cb (step S305). Specifically, first, the control unit 205 calculates an inter-vehicle distance coefficient Cb having a negative correlation with the average inter-vehicle distance ALb associated with the target link with reference to a predetermined formula or the like. For example, the inter-vehicle distance coefficient Cb may be a reciprocal of the average inter-vehicle distance ALb. Next, the control unit 205 multiplies the link cost calculated in step S304 by the inter-vehicle distance coefficient Cb.
  • step S306 the control unit 205 increases the link cost for a link having a smaller average inter-vehicle distance ALb. Thereby, the control part 205 can set link cost appropriately according to a driver
  • control unit 205 searches for a route that minimizes the weighted link cost (step S306). As a result, the control unit 205 recognizes the sum of the optimum route from the departure point to the target node and the link cost.
  • the control unit 205 determines whether or not the route search is completed (step S307). In other words, the control unit 205 determines whether the optimum route from the departure point to the destination has been identified.
  • the control unit 205 transmits a route search result signal S3 to the client terminal 300 (step S308).
  • control unit 205 transmits information on the optimum route from the specified departure place to the destination, information on the time required for the optimum route, and the like as the route search result signal S3 to the client terminal 300. Then, the control unit 205 returns the process to step S301.
  • the route search is not completed (step S307: No)
  • the control unit 205 adds a node to be searched for the optimum route. Then, the process of step S304 is performed again.
  • FIG. 9 is a flowchart showing a process procedure performed by the client terminal 300.
  • control unit 305 determines whether or not there is a power-off request (step S401). And when there exists a power-off request
  • the control unit 305 determines whether or not a departure place and a destination are set (step S402). Specifically, the control unit 305 determines whether or not there is an input from the input unit 303 specifying a departure place, a destination, and the like. When the client terminal 300 has a GPS receiver, the control unit 305 may set the departure point to the current location measured by the GPS receiver regardless of the input of the input unit 303. Further, the control unit 305 may accept input regarding route search conditions such as charge priority and distance priority from the input unit 303 in addition to the departure point and destination. And when a departure place, a destination, etc. are set (step S402: Yes), the control part 305 advances a process to step S403. On the other hand, when the departure place or the destination is not set (step S402: No), the control unit 305 returns the process to step S401.
  • control unit 305 transmits a route search request signal S2 designating a departure place and a destination to the server device 200 (step S403). Then, the control unit 305 determines whether or not the route search result signal S3 is received from the server device 200 (step S404). And control part 305 displays a route search result based on route search result signal S3, when route search result signal S3 is received from server apparatus 200 (Step S404: Yes) (Step S405). For example, based on the route search result signal S3, the control unit 305 displays the optimum route together with the map on the display unit 307, or displays the time required for the optimum route or / and information on the waypoints passing through the display unit 307. To do. And after execution of step S405, or when the control part 305 has not received route search result signal S3 (step S404: No), the control part 305 returns a process to step S401.
  • FIG. 10 shows a graph in which the node S is a departure point, the node G is a destination, and the nodes A and B are intermediate points.
  • the link cost “LCbef” before weighting by the inter-vehicle distance coefficient Cb and the inter-vehicle distance coefficient Cb are set for the links connecting the nodes.
  • the path with the minimum sum of the link costs LCbef is a path that passes through the node S, the node B, and the node G.
  • this route includes links ending with node B and node G having a relatively large inter-vehicle distance coefficient Cb of “3.0”. Therefore, in this case, when the vehicle actually travels along this route, a situation occurs in which the amount of traffic is large and it is difficult to drive.
  • the control unit 205 can select a route having a statistically long inter-vehicle distance Lb and a small risk of rear-end collision or contact as the optimum route.
  • the data structure of the inter-vehicle distance statistical information Isdb is not limited to that shown in FIG. Instead, the inter-vehicle distance statistical information Isdb may further define the relationship between the link ID and the average inter-vehicle distance ALb based on other items.
  • FIG. 11A shows inter-vehicle distance statistical information Isdb that defines the relationship between the link ID and the average inter-vehicle distance ALb for each time zone.
  • the average inter-vehicle distance ALb is determined for each link ID every four time zones, that is, every six hours.
  • the control unit 205 recognizes the time zone in which the inter-vehicle distance Lb indicated by each sensor information Is is calculated based on the time information included in the sensor information Is, so that the average inter-vehicle distance ALb in each time zone is obtained. calculate.
  • the route search request signal S2 includes information specifying a scheduled time zone
  • the server device 200 calculates the inter-vehicle distance coefficient Cb based on the specified time zone during the route search process.
  • the average inter-vehicle distance ALb used for calculation is selected.
  • the inter-vehicle distance statistical information Isdb may define the relationship between the link ID and the average inter-vehicle distance ALb for each day of the week instead of or in addition to the time zone.
  • FIG. 11B shows inter-vehicle distance statistical information Isdb that defines the relationship between the link ID and the average inter-vehicle distance ALb for each traveling direction.
  • the average inter-vehicle distance ALb is determined for each link ID depending on whether it is an up lane or a down lane.
  • the probe information providing apparatus 100 further adds information on the traveling direction to the probe information signal S1, and the control unit 205 recognizes the traveling direction on the target link based on the information, thereby An average inter-vehicle distance ALb in the traveling direction is calculated.
  • the control unit 205 of the server device 200 selects the average inter-vehicle distance ALb used for calculating the inter-vehicle distance coefficient Cb based on the moving direction when passing through each link during the route search process.
  • FIG. 11C shows inter-vehicle distance statistical information Isdb that defines the relationship between the link ID and the average inter-vehicle distance ALb for each lane.
  • the average inter-vehicle distance ALb is determined for each link ID depending on whether the vehicle is a traveling lane or an overtaking lane.
  • the control unit 205 calculates the average inter-vehicle distance ALb for each recognized lane, for example, by recognizing which of the driving lane or the overtaking lane was traveling based on the position information included in the sensor information Is.
  • the route search request signal S2 includes information designating which of the driving lane and the overtaking lane is preferentially traveled, and the server device 200 adds the specified lane in the route searching process. Based on this, the average inter-vehicle distance ALb used for calculating the inter-vehicle distance coefficient Cb is selected.
  • the server device 200 has the inter-vehicle distance statistical information Isdb in which the relationship between the link ID and the average inter-vehicle distance ALb is defined in detail by other items, so that the inter-vehicle distance in accordance with the inter-vehicle distance Lb during actual travel.
  • a distance coefficient Cb can be set.
  • the client terminal 300 may perform the route search process.
  • the client terminal 300 has map data necessary for performing route search processing in the storage unit 303, and downloads the inter-vehicle distance statistical information Isdb from the server device 200 at a predetermined timing.
  • FIG. 12 is a flowchart showing a processing procedure executed by the control unit 305 of the client terminal 300 in the modification.
  • control unit 305 determines whether or not there is a power-off request (step S501). When there is a power-off request (step S501: Yes), the control unit 305 ends the process of the flowchart. On the other hand, when there is no power-off request (step S501: No), the control unit 305 advances the process to step S502.
  • the control unit 305 determines whether or not a departure place and a destination are set (step S502). At this time, the control unit 305 may accept input regarding route search conditions such as charge priority and distance priority from the input unit 303 in addition to the departure point and destination.
  • the control unit 305 starts route search processing (step S503). Specifically, the control unit 305 executes the same processing as Step S304 to Step S307 in FIG. 8 in Step S504 to Step S507.
  • the control unit 305 calculates the inter-vehicle distance coefficient Cb based on the inter-vehicle distance statistical information Isdb downloaded from the server device 200, and weights the link cost calculated in step S504.
  • step S507 determines in step S507 that the route search has been completed (step S507: Yes)
  • the control unit 305 displays the route search result (step S508). For example, based on the route search result, the control unit 305 displays the optimum route together with the map on the display unit 307, or displays the required time of the optimum route or / and the passing intermediate point on the display unit 307.
  • the client terminal 300 functions as a “route search device” in the present invention
  • the control unit 305 functions as a “route setting unit” and an “inter-vehicle distance information acquisition unit” in the present invention.
  • the configuration of the route search system shown in FIG. 1 is an example, and the configuration to which the present invention can be applied is not limited to this. Instead of this, the route search system may not include the server device 200.
  • the client terminal 300 receives the probe information signal S1 from the probe information providing apparatus 100, and generates the inter-vehicle distance statistical information Isdb by executing the flowchart shown in FIG. 7 based on the received probe information signal S1. . Then, the client terminal 300 executes the flowchart of FIG. 12 described in Modification 2 and performs route search processing.
  • the client terminal 300 has an inter-vehicle distance sensor instead of receiving the probe information signal S1 from another device, and executes the flowchart shown in FIG. 7 on the basis of the inter-vehicle distance Lb measured by itself.
  • the statistical information Isdb may be generated.
  • the route search system includes only the client terminal 300.
  • the client terminal 300 functions as a “route search device” in the present invention
  • the control unit 305 functions as a “route setting unit” and an “inter-vehicle distance information acquisition unit” in the present invention.
  • the control unit 205 weights the link cost calculated in step S304 with the inter-vehicle distance coefficient Cb in step S305.
  • the method to which the present invention is applicable is not limited to this.
  • the control unit 205 regards the inter-vehicle distance coefficient Cb as the cost related to the inter-vehicle distance Lb, and calculates the link cost in step S304, like the other costs, multiplied by a predetermined ratio.
  • the distance coefficient Cb may be added to the link cost.
  • the control unit 205 can preferably execute the route search in consideration of the inter-vehicle distance Lb.
  • the control unit 205 sets the average inter-vehicle distance ALb of the link ID having no information of the inter-vehicle distance Lb to the same value as the average inter-vehicle distance ALb of the link ID existing in the vicinity of the link.
  • the control unit 205 calculates the average inter-vehicle distance ALb of the link ID of the road with the link ID that does not have the information of the inter-vehicle distance Lb and the link ID of another road that matches or approximates the traveling condition such as the vehicle speed limit and the information of the road width.
  • the average inter-vehicle distance ALb of the link ID without the information on the inter-vehicle distance Lb may be set.
  • control unit 205 appropriately sets the average inter-vehicle distance ALb for all link IDs even when there is a link ID without information on the inter-vehicle distance Lb, and the inter-vehicle distance Lb. It is possible to suitably execute a route search process considering the above.
  • the client terminal 300 may determine the display mode of each link based on the inter-vehicle distance statistical information Isdb.
  • FIG. 13A shows the relationship between the average inter-vehicle distance ALb and the road display color displayed on the map when the display color of the road (link) displayed on the map is changed according to the average inter-vehicle distance ALb. It is a table.
  • the client terminal 300 colors the road displayed on the map in a darker color as the average inter-vehicle distance ALb is shorter. Thereby, the client terminal 300 can make a user recognize suitably the density of the traveling vehicle in the said road based on the display color of the road displayed on the map.
  • FIG. 13B is a table showing the relationship between the average inter-vehicle distance ALb and the road display line when the road display line displayed on the map is changed according to the average inter-vehicle distance ALb.
  • the client terminal 300 shortens the interval between the lines indicating the road displayed on the map as the average inter-vehicle distance ALb is shorter. Thereby, the client terminal 300 can make a user recognize suitably the density of the traveling vehicle in the said road based on the space
  • the client terminal 300 may display the value of the corresponding average inter-vehicle distance ALb for each road displayed on the map.
  • the client terminal 300 receives the inter-vehicle distance statistical information Isdb at regular time intervals, for example.
  • the client terminal 300 can make a user grasp the congestion degree of each road based on the inter-vehicle distance Lb.
  • the present invention can be suitably applied to a device that performs route search.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

The route search device of the present invention has a route setting means and an inter-vehicle distance information acquiring means. The route setting means sets a route from a departure point to an arrival point. The inter-vehicle distance information acquiring means acquires inter-vehicle distance information which is information relating to the distance between moving bodies headed in the same direction, in predetermined sections included in a route. The route setting means then sets the route described above on the basis of the inter-vehicle distance information.

Description

ルート探索装置、制御方法、及びプログラムRoute search apparatus, control method, and program
 本発明は、ルート探索技術に関する。 The present invention relates to route search technology.
 従来から、ルート探索を行う際に、ダイクストラ法やそれを応用したアルゴリズムを用いて出発地から目的地までの最適なルートを探索する技術が知られている。例えば、特許文献1には、経路上のある分岐点(ノード)から次の分岐点までの道路(リンク)を通過するまでの通過し難さの指標であるコストを足し合わせ、コストの合算値が最小となる経路を最適経路として定める技術が開示されている。 Conventionally, when performing a route search, a technique for searching for an optimal route from the starting point to the destination using the Dijkstra method or an algorithm applied thereto is known. For example, Patent Document 1 adds a cost that is an index of difficulty of passing through a road (link) from a certain branch point (node) to the next branch point on the route, and adds up the cost. A technique for determining a route that minimizes the optimum route as an optimum route is disclosed.
特開平09-178500号公報JP 09-178500 A
 従来のように、走行時間に関するコストや走行距離に関するコスト、料金に関するコストなどを用いて最適経路を探索した場合、ルート探索により得られた最適経路を実際に走行すると、走行する車両の密度が高く、混雑していて走行しにくい場合があった。 As in the past, when searching for an optimal route using costs related to travel time, costs related to travel distance, costs related to tolls, etc., when actually traveling on the optimal route obtained by route search, the density of vehicles traveling is high. In some cases, it was crowded and difficult to travel.
 本発明は、上記のような課題を解決するためになされたものであり、走行する車両の密度を考慮したルート探索を適切に実行することが可能なルート探索装置、制御方法及びプログラムを提供することを主な目的とする。 The present invention has been made to solve the above problems, and provides a route search device, a control method, and a program capable of appropriately executing a route search in consideration of the density of a traveling vehicle. The main purpose.
 請求項1に記載の発明では、出発地点から到着地点までのルートを設定するルート設定手段と、前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得手段と、を有し、前記ルート設定手段は、前記車間距離情報に基づいて前記ルートを設定することを特徴とする。 In the first aspect of the present invention, the route setting means for setting the route from the departure point to the arrival point, and the inter-vehicle distance that is information on the distance between the moving bodies heading in the same direction in each predetermined section included in the route Vehicle distance information acquisition means for acquiring distance information, wherein the route setting means sets the route based on the vehicle distance information.
 請求項11に記載の発明では、ルート探索装置が実行する制御方法であって、出発地点から到着地点までのルートを設定するルート設定工程と、前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得工程と、を有し、前記ルート設定工程は、前記車間距離情報に基づいて前記ルートを設定することを特徴とする。 The invention according to claim 11 is a control method executed by the route search device, the route setting step for setting a route from the departure point to the arrival point, and the same direction in each predetermined section included in the route An inter-vehicle distance information acquisition step of acquiring inter-vehicle distance information, which is information relating to the distance between mobile bodies facing the vehicle, wherein the route setting step sets the route based on the inter-vehicle distance information. To do.
 請求項12に記載の発明では、ルート探索装置が実行するプログラムであって、出発地点から到着地点までのルートを設定するルート設定手段と、前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得手段として前記ルート探索装置を機能させ、前記ルート設定手段は、前記車間距離情報に基づいて前記ルートを設定することを特徴とする。 The invention according to claim 12 is a program executed by the route search device, wherein the route setting means for setting a route from the departure point to the arrival point and a predetermined section included in the route in the same direction Causing the route search device to function as an inter-vehicle distance information acquisition unit that acquires inter-vehicle distance information that is information related to a distance between mobile bodies that are headed, and the route setting unit sets the route based on the inter-vehicle distance information. Features.
ルート探索システムの概略構成を示す。1 shows a schematic configuration of a route search system. プローブ情報提供装置の概略構成を示す。1 shows a schematic configuration of a probe information providing apparatus. サーバ装置の概略構成を示す。1 shows a schematic configuration of a server device. クライアント端末の概略構成を示す。1 shows a schematic configuration of a client terminal. 車間距離統計情報のデータ構造を示す。The data structure of the inter-vehicle distance statistical information is shown. プローブ情報提供装置の制御部が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which the control part of a probe information provision apparatus performs. サーバ装置の制御部が実行する車間距離統計情報の生成処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the production | generation process of the inter-vehicle distance statistical information which the control part of a server apparatus performs. サーバ装置の制御部が実行するルート探索処理の手順を示すフローチャートの一例である。It is an example of the flowchart which shows the procedure of the route search process which the control part of a server apparatus performs. クライアント端末が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which a client terminal performs. ノードSを出発地、ノードGを目的地、ノードA、Bをこれらの中間地点としたグラフを示す。A graph is shown in which node S is the departure point, node G is the destination, and nodes A and B are intermediate points. 変形例に係る車間距離統計情報のデータ構造を示す。The data structure of the inter-vehicle distance statistical information which concerns on a modification is shown. 変形例において、クライアント端末の制御部が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which the control part of a client terminal performs in a modification. 平均車間距離とリンクの表示形態との関係を示すテーブルである。It is a table which shows the relationship between the average inter-vehicle distance and the display form of a link.
 本発明の1つの好適な実施形態では、ルート探索装置は、出発地点から到着地点までのルートを設定するルート設定手段と、前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得手段と、を有し、前記ルート設定手段は、前記車間距離情報に基づいて前記ルートを設定する。 In one preferred embodiment of the present invention, the route search device includes route setting means for setting a route from a departure point to an arrival point, and mobiles heading in the same direction in each predetermined section included in the route. Inter-vehicle distance information acquisition means for acquiring inter-vehicle distance information, which is information relating to the distance, and the route setting means sets the route based on the inter-vehicle distance information.
 上記ルート探索装置は、ルート設定手段と、車間距離情報取得手段とを有する。ルート設定手段は、出発地点から到着地点までのルートを設定する。車間距離情報取得手段は、ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する。そして、ルート設定手段は、車間距離情報に基づいて上述のルートを設定する。このようにすることで、ルート探索装置は、走行する車両の密度を考慮した最適なルートを探索かつ設定することができる。 The route search device includes route setting means and inter-vehicle distance information acquisition means. The route setting means sets a route from the departure point to the arrival point. The inter-vehicle distance information acquisition means acquires inter-vehicle distance information, which is information related to the distance between moving bodies heading in the same direction in each predetermined section included in the route. The route setting means sets the above-described route based on the inter-vehicle distance information. By doing in this way, the route search device can search and set an optimal route in consideration of the density of the traveling vehicle.
 上記ルート探索装置の一態様では、前記車間距離情報は、同一車線を走行し、前後に位置する移動体間の前後方向における距離に関する情報である。このようにすることで、ルート探索装置は、走行する車両の同一車線における密度を考慮した最適なルートを探索かつ設定することができる。 In one aspect of the route search device, the inter-vehicle distance information is information related to a distance in the front-rear direction between moving bodies that are traveling in the same lane and are positioned in the front-rear direction. By doing in this way, the route search device can search and set an optimum route in consideration of the density of the traveling vehicle in the same lane.
 上記ルート探索装置の他の一態様では、前記車間距離情報は、前記移動体同士の距離の平均値である。このようにすることで、ルート探索装置は、過去の統計より、車間距離が長くて衝突や接触の危険度が少ないルートを設定することができる。 In another aspect of the route search device, the inter-vehicle distance information is an average value of the distances between the moving bodies. By doing in this way, the route search device can set a route with a longer distance between vehicles and less risk of collision or contact than past statistics.
 上記ルート探索装置の他の一態様では、前記ルート設定手段は、前記出発地点から前記到着地点までのルートのうち、当該ルートの各区間における通り難さの指標の合算値が最小となるルートを設定し、前記指標は、対応する区間における前記車間距離情報が示す値と負の相関を有する係数により重み付けがなされる。このようにすることで、ルート探索装置は、車間距離が短い区間ほど通り難さの指標を高くし、車間距離が長くて運転し易いルートを設定することができる。 In another aspect of the route search device, the route setting means selects a route having a minimum combined value of the passing difficulty index in each section of the route from the departure point to the arrival point. The indicator is weighted with a coefficient having a negative correlation with the value indicated by the inter-vehicle distance information in the corresponding section. By doing in this way, the route search device can set a route that is easy to drive with a longer inter-vehicle distance by increasing the difficulty index as the section having a shorter inter-vehicle distance.
 上記ルート探索装置の他の一態様では、前記車間距離情報取得手段は、前記各区間を走行する移動体が測定した前方の移動体との距離の情報を当該移動体から取得することで、前記車間距離情報を生成する。このようにすることで、ルート探索装置は、種々の区間を走行中の移動体から前方の移動体との距離の情報を受信し、車間距離情報を好適に生成することができる。 In another aspect of the route search device, the inter-vehicle distance information acquisition unit acquires, from the mobile body, information on the distance to the front mobile body measured by the mobile body traveling in each section. Generate inter-vehicle distance information. By doing in this way, the route search apparatus can receive the information on the distance from the moving body traveling in various sections to the moving body ahead, and can suitably generate the inter-vehicle distance information.
 上記ルート探索装置の他の一態様では、前記ルート設定手段は、前記ルートに従って走行した場合に前記区間を走行することが予測される時間帯と、当該区間について前記移動体同士の距離を測定した時間帯と、に基づき、前記ルートの設定に用いる前記車間距離情報を決定する。一般に、時間帯ごとに各道路の混雑度が異なる場合がある。従って、この態様により、ルート探索装置は、時間帯に基づき使用すべき車間距離情報を適切に選定し、走行車両の密度をより的確に反映したルート探索を行うことができる。 In another aspect of the route search device, the route setting unit measures a time zone in which the vehicle is expected to travel in the section when traveling according to the route, and a distance between the moving bodies in the section. The inter-vehicle distance information used for setting the route is determined based on the time zone. In general, the degree of congestion on each road may vary from time to time. Therefore, according to this aspect, the route search device can appropriately select the inter-vehicle distance information to be used based on the time zone, and can perform the route search reflecting the density of the traveling vehicle more accurately.
 上記ルート探索装置の他の一態様では、前記ルート設定手段は、前記移動体同士の距離を測定した際の当該移動体の移動方向又は/及び走行車線に基づき、前記ルートの設定に用いる前記車間距離情報を決定する。この態様により、ルート探索装置は、測定時の移動体の移動方向又は/及び走行車線に基づき、使用すべき車間距離情報を適切に選定し、走行車両の密度をより的確に反映したルート探索を行うことができる。 In another aspect of the route search device, the route setting unit is configured to set the route based on a moving direction or / and a traveling lane of the moving body when the distance between the moving bodies is measured. Determine distance information. According to this aspect, the route search device appropriately selects the inter-vehicle distance information to be used based on the moving direction or / and the traveling lane of the moving object at the time of measurement, and performs the route search that more accurately reflects the density of the traveling vehicle. It can be carried out.
 上記ルート探索装置の他の一態様では、前記車間距離情報取得手段は、前記ルートに含まれる各区間のうち、前記車間距離情報を取得できない区間が存在する場合、当該区間の車間距離情報を、前記車間距離情報を取得できない区間に連続する前記車間距離情報を取得した区間の車間距離情報に基づき推定する。この態様により、ルート探索装置は、車間距離情報を取得できない区間が存在する場合であっても、好適に車間距離情報を生成し、車間距離情報に基づきルートを設定することができる。 In another aspect of the route search device, the inter-vehicle distance information acquisition unit, when there is a section in which the inter-vehicle distance information cannot be acquired, among the sections included in the route, The inter-vehicle distance information is estimated based on the inter-vehicle distance information of the section in which the inter-vehicle distance information continuous to the section where the inter-vehicle distance information cannot be acquired. According to this aspect, even when there is a section in which inter-vehicle distance information cannot be acquired, the route search device can preferably generate inter-vehicle distance information and set a route based on the inter-vehicle distance information.
 上記ルート探索装置の他の一態様では、前記車間距離情報取得手段は、前記車間距離情報が示す値に上限値を設ける。一般に、車間距離が十分に長い場合、運転のしやすさは車間距離によって変わらない。従って、この態様により、ルート探索装置は、車間距離情報の値が過度にばらつくのを抑制し、実際の運転のしやすさに即して適切にルート探索を行うことができる。 In another aspect of the route search device, the inter-vehicle distance information acquisition means sets an upper limit value to a value indicated by the inter-vehicle distance information. In general, when the inter-vehicle distance is sufficiently long, the ease of driving does not change depending on the inter-vehicle distance. Therefore, according to this aspect, the route search device can suppress an excessive variation in the value of the inter-vehicle distance information, and can appropriately perform a route search according to the ease of actual driving.
 上記ルート探索装置の他の一態様では、前記車間距離情報取得手段は、前記ルートに含まれる各区間のうち、前記車間距離情報を取得できない区間が存在する場合、当該区間の車間距離情報の値を、前記上限値に設定する。一般に、車間距離情報を取得できない区間は、車両があまり通らず、走行車両の密度が低い区間であることが推測される。従って、この態様により、ルート探索装置は、車間距離情報を適切に生成することができる。 In another aspect of the route search device, the inter-vehicle distance information acquisition means, when there is a section in which the inter-vehicle distance information cannot be acquired among the sections included in the route, Is set to the upper limit value. In general, it is presumed that the section where the inter-vehicle distance information cannot be acquired is a section where the vehicle does not pass so much and the density of the traveling vehicle is low. Therefore, according to this aspect, the route search device can appropriately generate the inter-vehicle distance information.
 本発明の他の好適な実施形態では、ルート探索装置が実行する制御方法であって、出発地点から到着地点までのルートを設定するルート設定工程と、前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得工程と、を有し、前記ルート設定工程は、前記車間距離情報に基づいて前記ルートを設定することを特徴とする。ルート探索装置は、この制御方法を使用することで、走行する車両の密度を考慮した最適なルートを探索かつ設定することができる。 In another preferred embodiment of the present invention, there is provided a control method executed by the route search device, the route setting step for setting a route from the departure point to the arrival point, and in each predetermined section included in the route, An inter-vehicle distance information acquisition step of acquiring inter-vehicle distance information, which is information relating to the distance between moving bodies heading in the same direction, wherein the route setting step sets the route based on the inter-vehicle distance information. Features. By using this control method, the route search device can search and set an optimal route in consideration of the density of the traveling vehicle.
 本発明の他の好適な実施形態では、ルート探索装置が実行するプログラムであって、出発地点から到着地点までのルートを設定するルート設定手段と、前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得手段として前記ルート探索装置を機能させ、前記ルート設定手段は、前記車間距離情報に基づいて前記ルートを設定する。ルート探索装置は、このプログラムを実行することで、走行する車両の密度を考慮した最適なルートを探索かつ設定することができる。好適には、上記プログラムは、記憶媒体に記憶される。 In another preferred embodiment of the present invention, a program executed by the route search device, the route setting means for setting a route from the departure point to the arrival point, and the same in each predetermined section included in the route The route search device is caused to function as an inter-vehicle distance information acquisition unit that acquires inter-vehicle distance information that is information relating to a distance between moving bodies that travel in a direction, and the route setting unit sets the route based on the inter-vehicle distance information. . By executing this program, the route search device can search and set an optimal route in consideration of the density of the traveling vehicle. Preferably, the program is stored in a storage medium.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [概略構成]
 図1は、本実施例に係るルート探索システムの概略構成を示す。本実施例に係るルート探索システムは、車間距離の統計情報を考慮したルート探索を行うシステムである。図1に示すように、ルート探索システムは、車間距離センサ102を備えるプローブ情報提供装置100と、ルート探索を行うサーバ装置200と、ルート探索の処理要求をサーバ装置200に対して行うクライアント端末300とを有する。以下、ルート探索システムの構成要素ごとに具体的な構成について説明する。
[Schematic configuration]
FIG. 1 shows a schematic configuration of a route search system according to the present embodiment. The route search system according to the present embodiment is a system that performs route search in consideration of statistical information of the inter-vehicle distance. As shown in FIG. 1, the route search system includes a probe information providing device 100 including an inter-vehicle distance sensor 102, a server device 200 that performs route search, and a client terminal 300 that makes a route search processing request to the server device 200. And have. Hereinafter, a specific configuration for each component of the route search system will be described.
 (1)プローブ情報提供装置の構成
 図2は、プローブ情報提供装置100の概略構成を示す。プローブ情報提供装置100は、例えば車載用のナビゲーション装置であり、図2に示すように、車間距離センサ102と、GPS受信機103と、記憶部104と、制御部105と、通信部106とを有する。車間距離センサ102、GPS受信機103、記憶部104、制御部105、及び通信部106は、バスライン101を介して相互に接続されている。
(1) Configuration of Probe Information Providing Device FIG. 2 shows a schematic configuration of the probe information providing device 100. The probe information providing apparatus 100 is, for example, an in-vehicle navigation apparatus, and includes an inter-vehicle distance sensor 102, a GPS receiver 103, a storage unit 104, a control unit 105, and a communication unit 106, as shown in FIG. Have. The inter-vehicle distance sensor 102, the GPS receiver 103, the storage unit 104, the control unit 105, and the communication unit 106 are connected to each other via the bus line 101.
 車間距離センサ102は、プローブ情報提供装置100が搭載された車両と、当該車両と同一車線を走行し、当該車両の前方を走行する車両との車間距離(「車間距離Lb」とも呼ぶ。)を計測する。車間距離センサ102は、超音波やレーザを用いて車間距離Lbを計測してもよく、車両前方を撮影するカメラの画像を解析することにより車間距離Lbを計測してもよい。 The inter-vehicle distance sensor 102 is an inter-vehicle distance (also referred to as an “inter-vehicle distance Lb”) between a vehicle on which the probe information providing apparatus 100 is mounted and a vehicle traveling in the same lane as the vehicle and traveling in front of the vehicle. measure. The inter-vehicle distance sensor 102 may measure the inter-vehicle distance Lb using an ultrasonic wave or a laser, or may measure the inter-vehicle distance Lb by analyzing an image of a camera that captures the front of the vehicle.
 GPS受信機103は、複数のGPS衛星から、測位用データを含む下り回線データを搬送する電波を受信する。測位用データは、緯度及び経度情報等から車両の絶対的な位置(現在位置)を検出するために用いられる。 The GPS receiver 103 receives radio waves carrying downlink data including positioning data from a plurality of GPS satellites. The positioning data is used to detect the absolute position (current position) of the vehicle from latitude and longitude information.
 記憶部104は、例えば、HDDなどにより構成され、制御部105の制御に基づき、車間距離センサ102が計測した車間距離Lbの情報、当該計測時の時刻情報、及び当該計測時での位置情報(これらをまとめて「センサ情報Is」とも呼ぶ。)を記憶する。 The storage unit 104 is configured by, for example, an HDD or the like, and based on the control of the control unit 105, information on the inter-vehicle distance Lb measured by the inter-vehicle distance sensor 102, time information at the time of measurement, and position information at the time of measurement ( These are collectively referred to as “sensor information Is”).
 制御部105は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを有し、プローブ情報提供装置100の全般的な制御を行う。具体的な制御については、[制御方法]のセクションで図6を参照して詳しく説明する。 The control unit 105 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and performs overall control of the probe information providing apparatus 100. Specific control will be described in detail in the [Control Method] section with reference to FIG.
 通信部106は、制御部105の制御に基づき、センサ情報Isを含むプローブ交通情報の信号(「プローブ情報信号S1」とも呼ぶ。)をサーバ装置200へ送信する。ここで、通信部106は、例えば、携帯電話や専用の通信カードである。 The communication unit 106 transmits a probe traffic information signal including the sensor information Is (also referred to as “probe information signal S1”) to the server device 200 based on the control of the control unit 105. Here, the communication unit 106 is, for example, a mobile phone or a dedicated communication card.
 (2)サーバ装置の構成
 図3は、サーバ装置200の概略構成を示す。サーバ装置200は、図3に示すように、記憶部204と、制御部205と、通信部206とを有する。記憶部204、制御部205、及び通信部206は、バスライン201を介して相互に接続されている。
(2) Configuration of Server Device FIG. 3 shows a schematic configuration of the server device 200. As illustrated in FIG. 3, the server device 200 includes a storage unit 204, a control unit 205, and a communication unit 206. The storage unit 204, the control unit 205, and the communication unit 206 are connected to each other via the bus line 201.
 記憶部204は、例えば、HDDなどにより構成され、地図データなどのルート探索処理に用いられる各種データを記憶する。地図データは、道路に相当するリンクと、道路の接続部分(交差点)に相当するノードとにより表された道路データや、各施設に関する施設情報などを含む。さらに、記憶部204は、制御部205の制御に基づき、プローブ情報信号S1に含まれるセンサ情報Isを記憶する。また、記憶部204は、制御部205の制御に基づき、リンクの識別情報(「リンクID」とも呼ぶ。)と、センサ情報Isに含まれる車間距離LbのリンクIDごとの平均値(「平均車間距離ALb」とも呼ぶ。)とを関連付けたデータベース(「車間距離統計情報Isdb」とも呼ぶ。)を記憶する。平均車間距離ALbは、本発明における「車間距離情報」の一例であり、各リンクに対応する道路の通過し難さの指標であるリンクコストの重み付けを行うために用いられる。 The storage unit 204 is configured by, for example, an HDD and stores various data used for route search processing such as map data. The map data includes road data represented by links corresponding to roads and nodes corresponding to road connecting portions (intersections), facility information about each facility, and the like. Furthermore, the storage unit 204 stores sensor information Is included in the probe information signal S1 based on the control of the control unit 205. In addition, the storage unit 204 is based on the control of the control unit 205, and the link identification information (also referred to as “link ID”) and the average value for each link ID of the inter-vehicle distance Lb included in the sensor information Is (“average inter-vehicle distance”). A database (also referred to as “inter-vehicle distance statistical information Isdb”) associated with “distance ALb” is stored. The average inter-vehicle distance ALb is an example of “inter-vehicle distance information” in the present invention, and is used for weighting a link cost, which is an index of difficulty of passing through a road corresponding to each link.
 図5は、車間距離統計情報Isdbのデータ構造を示す。図5に示すように、車間距離統計情報Isdbには、リンクIDごとに、それぞれ平均車間距離ALbが関連付けられている。例えば、図5に示す車間距離統計情報Isdbによれば、リンクID「2245」に対応する道路での平均車間距離ALbは「1m」であり、リンクID「2246」に対応する道路での平均車間距離ALbは「15m」であり、リンクID「2247」に対応する道路での平均車間距離ALbは「100m」である。このように、車間距離統計情報Isdbは、各リンクIDに対して、平均車間距離ALbが関連付けられる。 FIG. 5 shows the data structure of the inter-vehicle distance statistical information Isdb. As shown in FIG. 5, the inter-vehicle distance statistical information Isdb is associated with an average inter-vehicle distance ALb for each link ID. For example, according to the inter-vehicle distance statistical information Isdb shown in FIG. 5, the average inter-vehicle distance ALb on the road corresponding to the link ID “2245” is “1 m” and the average inter-vehicle distance on the road corresponding to the link ID “2246”. The distance ALb is “15 m”, and the average inter-vehicle distance ALb on the road corresponding to the link ID “2247” is “100 m”. Thus, in the inter-vehicle distance statistical information Isdb, the average inter-vehicle distance ALb is associated with each link ID.
 好適には、平均車間距離ALbには、上限値「LimLb」(例えば100m)が予め設けられる。上述の上限値LimLbは、運転上前方車両の存在が支障とならない車間距離Lbに設定され、例えば実験等に基づき予め設定される。また、平均車間距離ALbを算出するためのサンプルとなる車間距離Lbの情報がないリンクIDに対しても、対応する平均車間距離ALbは、上限値LimLbに設定される。 Preferably, an upper limit “LimLb” (for example, 100 m) is provided in advance for the average inter-vehicle distance ALb. The above-described upper limit value LimLb is set to the inter-vehicle distance Lb that does not hinder the presence of the forward vehicle in driving, and is set in advance based on, for example, experiments. Further, the corresponding average inter-vehicle distance ALb is set to the upper limit value LimLb even for a link ID that does not have information on the inter-vehicle distance Lb that is a sample for calculating the average inter-vehicle distance ALb.
 制御部205は、CPUやROM及びRAMなどのメモリを有し、メモリに記憶されたプログラムを実行することで、サーバ装置200の全般的な制御を行う。制御部205は、所定時間間隔ごとに、受信したプローブ情報信号S1のセンサ情報Isに基づき、車間距離統計情報Isdbを生成又は更新する。この具体的な制御については、[制御方法]のセクションで図7を参照して詳しく説明する。 The control unit 205 includes memories such as a CPU, a ROM, and a RAM, and performs overall control of the server device 200 by executing a program stored in the memory. The control unit 205 generates or updates the inter-vehicle distance statistical information Isdb based on the sensor information Is of the received probe information signal S1 at predetermined time intervals. This specific control will be described in detail with reference to FIG. 7 in the [Control Method] section.
 さらに、制御部205は、出発地から目的地までの経路のうち、リンクコストの合計値が最小となる最適経路を探索する。このとき、制御部205は、各リンクのリンクコストを算出する際、通過時間等を勘案して算出したリンクコストに対し、平均車間距離ALbと負の相関を有する係数(「車間距離係数Cb」とも呼ぶ。)を乗じることで重み付けを行う。この具体的な制御については、[制御方法]のセクションで図8を参照して詳しく説明する。 Further, the control unit 205 searches for an optimum route having a minimum link cost among routes from the departure point to the destination. At this time, when calculating the link cost of each link, the control unit 205 has a coefficient having a negative correlation with the average inter-vehicle distance ALb (“inter-vehicle distance coefficient Cb”) with respect to the link cost calculated in consideration of the passage time and the like. Also weighted by multiplying. This specific control will be described in detail with reference to FIG. 8 in the [Control Method] section.
 通信部206は、制御部205の制御に基づき、各種データの送信及び受信を行う。例えば、通信部206は、プローブ情報提供装置100からプローブ情報信号S1を受信する。また、通信部206は、クライアント端末300から出発地及び目的地を指定したルート探索を実行する旨の信号(「ルート探索要求信号S2」とも呼ぶ。)を受信する。さらに、通信部206は、最適経路の情報や所要時間などのルート探索の実行結果を示す信号(「ルート探索結果信号S3」とも呼ぶ。)をクライアント端末300へ送信する。 The communication unit 206 transmits and receives various data based on the control of the control unit 205. For example, the communication unit 206 receives the probe information signal S1 from the probe information providing apparatus 100. In addition, the communication unit 206 receives from the client terminal 300 a signal (also referred to as “route search request signal S2”) to execute a route search specifying a departure place and a destination. Further, the communication unit 206 transmits a signal (also referred to as “route search result signal S <b> 3”) indicating a route search execution result such as optimal route information and required time to the client terminal 300.
 なお、サーバ装置200は、本発明における「ルート探索装置」の一例であり、制御部205は、本発明における「ルート設定手段」及び「車間距離情報取得手段」の一例である。 The server device 200 is an example of a “route search device” in the present invention, and the control unit 205 is an example of a “route setting unit” and an “inter-vehicle distance information acquisition unit” in the present invention.
 (3)クライアント端末の構成
 図4は、クライアント端末300の概略構成を示す。クライアント端末300は、例えば、車載用のナビゲーション装置、携帯端末、パーソナルコンピュータであり、図4に示すように、入力部303と、記憶部304と、制御部305と、通信部306と、表示部307とを有する。入力部303と、記憶部304と、制御部305と、通信部306と、表示部307とは、バスライン301を介して相互に接続されている。
(3) Configuration of Client Terminal FIG. 4 shows a schematic configuration of the client terminal 300. The client terminal 300 is, for example, an in-vehicle navigation device, a portable terminal, or a personal computer. As shown in FIG. 4, the input unit 303, the storage unit 304, the control unit 305, the communication unit 306, and the display unit. 307. The input unit 303, the storage unit 304, the control unit 305, the communication unit 306, and the display unit 307 are connected to each other via the bus line 301.
 入力部303は、ボタン、リモートコントローラ、マウス、キーボードなどであり、ルート探索に用いる出発地及び目的地を指定する入力を受け付ける。なお、クライアント端末300がGPS受信機を有するナビゲーション装置である場合、入力部303は、目的地を指定する入力のみを受け付けてもよい。この場合、出発地は、GPS受信機が計測した現在位置に設定される。 The input unit 303 is a button, a remote controller, a mouse, a keyboard, or the like, and accepts an input for designating a starting point and a destination used for route search. When the client terminal 300 is a navigation device having a GPS receiver, the input unit 303 may accept only an input for designating a destination. In this case, the departure place is set to the current position measured by the GPS receiver.
 記憶部304は、例えば、HDDなどにより構成される。クライアント端末300がナビゲーション装置の場合、地図データなどのナビゲーション処理に用いられる各種データを記憶する。 The storage unit 304 is configured by, for example, an HDD. When the client terminal 300 is a navigation device, various data used for navigation processing such as map data are stored.
 制御部305は、CPUやROM及びRAMなどのメモリを有し、メモリに記憶されたプログラムを実行することで、クライアント端末300の全般的な制御を行う。具体的な制御については、[制御方法]のセクションで図9を参照して詳しく説明する。 The control unit 305 has a memory such as a CPU, a ROM, and a RAM, and performs overall control of the client terminal 300 by executing a program stored in the memory. Specific control will be described in detail in the [Control Method] section with reference to FIG.
 通信部306は、制御部305の制御の下、出発地及び目的地を指定したルート探索要求信号S2をサーバ装置200へ送信する。さらに、通信部306は、ルート探索結果信号S3をサーバ装置200から受信する。 The communication unit 306 transmits a route search request signal S2 designating a departure place and a destination to the server device 200 under the control of the control unit 305. Further, the communication unit 306 receives the route search result signal S3 from the server device 200.
 表示部307は、制御部305の制御の下、各種表示データをディスプレイなどに表示する。例えば、表示部307は、通信部306がルート探索結果信号S3を受信した場合、制御部305の制御に基づき、ルート探索結果信号S3が示す最適経路を地図上に表示したり、最適経路の所要時間を表示したりする。 The display unit 307 displays various display data on a display or the like under the control of the control unit 305. For example, when the communication unit 306 receives the route search result signal S3, the display unit 307 displays the optimum route indicated by the route search result signal S3 on the map or the necessity of the optimum route based on the control of the control unit 305. Or display time.
 [制御方法]
 次に、プローブ情報提供装置100、サーバ装置200、及びクライアント端末300が実行する処理について、それぞれ図6乃至図8に示すフローチャートを参照して具体的に説明する。
[Control method]
Next, processing executed by the probe information providing apparatus 100, the server apparatus 200, and the client terminal 300 will be specifically described with reference to flowcharts shown in FIGS.
 (1)プローブ情報提供装置が実行する処理
 図6は、プローブ情報提供装置100の制御部105が実行する処理手順を示すフローチャートの一例である。
(1) Process Performed by Probe Information Providing Apparatus FIG. 6 is an example of a flowchart showing a process procedure performed by the control unit 105 of the probe information providing apparatus 100.
 まず、制御部105は、電源オフ要求があったか否か判定する(ステップS101)。そして、電源オフ要求があった場合(ステップS101:Yes)、制御部105はフローチャートの処理を終了する。一方、電源オフ要求がない場合(ステップS101:No)、制御部105は、ステップS102へ処理を進める。 First, the control unit 105 determines whether there is a power-off request (step S101). And when there exists a power-off request | requirement (step S101: Yes), the control part 105 complete | finishes the process of a flowchart. On the other hand, when there is no power-off request (step S101: No), the control unit 105 advances the process to step S102.
 次に、制御部105は、現在がセンサ情報Isの取得タイミングか否か判定する(ステップS102)。例えば、センサ情報Isを所定の時間幅ごとに取得する場合、制御部105は、前回センサ情報Isを取得した時から上述の時間幅だけ経過したか否か判定する。そして、現在がセンサ情報Isの取得タイミングであると判断した場合(ステップS102:Yes)、制御部105は、センサ情報Isを取得し、記憶部104に記憶する(ステップS103)。具体的には、制御部105は、車間距離センサ102が取得した車間距離Lbと、GPS受信機103が取得した位置情報と、車間距離Lbの計測日時を示す時刻情報とをセンサ情報Isとして生成し、記憶部104に記憶する。一方、現在がセンサ情報Isの取得タイミングでないと判断した場合(ステップS102:No)、制御部105は、ステップS101へ処理を戻す。 Next, the control unit 105 determines whether or not the present time is the acquisition timing of the sensor information Is (step S102). For example, when acquiring the sensor information Is for each predetermined time width, the control unit 105 determines whether or not the above-described time width has elapsed since the last time sensor information Is was acquired. If it is determined that the present time is the acquisition timing of the sensor information Is (step S102: Yes), the control unit 105 acquires the sensor information Is and stores it in the storage unit 104 (step S103). Specifically, the control unit 105 generates, as sensor information Is, the inter-vehicle distance Lb acquired by the inter-vehicle distance sensor 102, the position information acquired by the GPS receiver 103, and time information indicating the measurement date and time of the inter-vehicle distance Lb. And stored in the storage unit 104. On the other hand, when it is determined that the present time is not the acquisition timing of the sensor information Is (step S102: No), the control unit 105 returns the process to step S101.
 次に、制御部105は、現在がセンサ情報Isの送信タイミングであるか否か判定する(ステップS104)。例えば、センサ情報Isを所定の時間幅ごとにサーバ装置200に送信する場合、制御部105は、センサ情報Isを前回送信したときから上述の時間幅だけ経過したか否か判定する。そして、現在がセンサ情報Isの送信タイミングであると判断した場合(ステップS104:Yes)、制御部105は、サーバ装置200に未送信のセンサ情報Isを記憶部104から取り出し、プローブ情報信号S1としてサーバ装置200に送信する(ステップS105)。そして、制御部105は、ステップS101へ処理を戻す。一方、現在がセンサ情報Isの送信タイミングでない場合(ステップS104:No)、制御部105は、ステップS101へ処理を戻す。 Next, the control unit 105 determines whether or not the present time is the transmission timing of the sensor information Is (step S104). For example, when the sensor information Is is transmitted to the server device 200 every predetermined time width, the control unit 105 determines whether or not the above-described time width has elapsed since the last transmission of the sensor information Is. If it is determined that the present time is the transmission timing of the sensor information Is (step S104: Yes), the control unit 105 extracts the sensor information Is that has not been transmitted to the server device 200 from the storage unit 104, and sets it as the probe information signal S1 It transmits to the server apparatus 200 (step S105). And the control part 105 returns a process to step S101. On the other hand, when the present time is not the transmission timing of the sensor information Is (step S104: No), the control unit 105 returns the process to step S101.
 このように、制御部105が図6に示すフローチャートの処理を実行することで、サーバ装置200は、複数のプローブ情報提供装置100から、各道路での車間距離Lsを含むセンサ情報Isを好適に取得することができる。 As described above, when the control unit 105 executes the process of the flowchart illustrated in FIG. 6, the server apparatus 200 suitably receives the sensor information Is including the inter-vehicle distance Ls from each of the plurality of probe information providing apparatuses 100. Can be acquired.
 (2)サーバ装置が実行する処理
 サーバ装置200の制御部205は、車間距離統計情報Isdbの生成処理と、ルート探索要求信号S2に基づくルート探索処理とをそれぞれ個別に行う。以下、これらの処理について、それぞれ説明する。
(2) Processing executed by server device The control unit 205 of the server device 200 individually performs the generation processing of the inter-vehicle distance statistical information Isdb and the route search processing based on the route search request signal S2. Hereinafter, each of these processes will be described.
 (2-1)車間距離統計情報の生成処理
 図7は、サーバ装置200の制御部205が実行する車間距離統計情報Isdbの生成処理の手順を示すフローチャートの一例である。
(2-1) Generation Processing of Inter-vehicle Distance Statistical Information FIG. 7 is an example of a flowchart illustrating a procedure of generation processing of inter-vehicle distance statistical information Isdb executed by the control unit 205 of the server device 200.
 まず、制御部205は、電源オフ要求があったか否か判定する(ステップS201)。そして、電源オフ要求があった場合(ステップS201:Yes)、制御部205はフローチャートの処理を終了する。一方、電源オフ要求がない場合(ステップS201:No)、制御部205は、ステップS202へ処理を進める。 First, the control unit 205 determines whether or not a power-off request has been made (step S201). And when there exists a power-off request | requirement (step S201: Yes), the control part 205 complete | finishes the process of a flowchart. On the other hand, when there is no power-off request (step S201: No), the control unit 205 advances the process to step S202.
 次に、制御部205は、プローブ情報信号S1をプローブ情報提供装置100から受信したか否か判定する(ステップS202)。そして、制御部205は、プローブ情報信号S1をプローブ情報提供装置100から受信した場合(ステップS202:Yes)、受信したプローブ情報信号S1に含まれるセンサ情報Isを記憶部204に記憶する(ステップS203)。一方、制御部205は、プローブ情報信号S1をプローブ情報提供装置100から受信していない場合(ステップS202:No)、ステップS201へ処理を戻す。 Next, the control unit 205 determines whether or not the probe information signal S1 has been received from the probe information providing apparatus 100 (step S202). When the control unit 205 receives the probe information signal S1 from the probe information providing apparatus 100 (step S202: Yes), the control unit 205 stores the sensor information Is included in the received probe information signal S1 in the storage unit 204 (step S203). ). On the other hand, the control part 205 returns a process to step S201, when the probe information signal S1 is not received from the probe information provision apparatus 100 (step S202: No).
 次に、制御部205は、現在がセンサ情報Isをデータベース化するタイミングであるか否か判定する(ステップS204)。例えば、制御部205は、所定の時間幅ごとに車間距離統計情報Isdbの平均車間距離ALbを更新する場合、前回の更新時から上述の時間幅だけ経過したか否か判定する。そして、現在がセンサ情報Isをデータベース化するタイミングである場合(ステップS204:Yes)、制御部205は、ステップS205へ処理を進める。一方、現在がセンサ情報Isをデータベース化するタイミングではない場合(ステップS204:No)、制御部205は、ステップS201へ処理を戻す。 Next, the control unit 205 determines whether or not the present time is the timing for creating the database of the sensor information Is (step S204). For example, when updating the average inter-vehicle distance ALb of the inter-vehicle distance statistical information Isdb for each predetermined time width, the control unit 205 determines whether or not the above-described time width has elapsed since the previous update. If the present time is the timing for creating the database of the sensor information Is (step S204: Yes), the control unit 205 advances the process to step S205. On the other hand, when the present time is not the timing for creating the database of the sensor information Is (step S204: No), the control unit 205 returns the process to step S201.
 次に、制御部205は、車間距離統計情報Isdbを生成する(ステップS205)。この場合、まず、制御部205は、計算の対象となるセンサ情報Isを記憶部204から取り出した後、道路データを参照し、センサ情報Isに含まれる位置情報から各センサ情報Isが生成された道路に相当するリンクIDを認識する。次に、制御部205は、リンクIDごとに、該当するセンサ情報Isに含まれる車間距離Lbの平均値である平均車間距離ALbを算出する。 Next, the control unit 205 generates inter-vehicle distance statistical information Isdb (step S205). In this case, the control unit 205 first extracts the sensor information Is to be calculated from the storage unit 204, then refers to the road data, and each sensor information Is is generated from the position information included in the sensor information Is. A link ID corresponding to a road is recognized. Next, the control unit 205 calculates an average inter-vehicle distance ALb that is an average value of the inter-vehicle distance Lb included in the corresponding sensor information Is for each link ID.
 このとき、制御部205は、上限値LimLbを超えた平均車間距離ALbの値を上限値LimLbに設定する。一般に、車間距離が十分に長い場合、運転のしやすさは車間距離によって変わらない。従って、制御部205は、平均車間距離ALbに上限値LimLbを設けることで、平均車間距離ALbの値が不要にばらつくのを抑制することができる。 At this time, the control unit 205 sets the value of the average inter-vehicle distance ALb exceeding the upper limit value LimLb to the upper limit value LimLb. In general, when the inter-vehicle distance is sufficiently long, the ease of driving does not change depending on the inter-vehicle distance. Therefore, the control unit 205 can suppress unnecessary variation of the average inter-vehicle distance ALb by providing the upper limit value LimLb for the average inter-vehicle distance ALb.
 さらに、制御部205は、平均車間距離ALbを算出するためのサンプルとなる車間距離Lbの情報がないリンクIDの平均車間距離ALbを、上限値LimLbに設定する。一般に、センサ情報ISが取得できない道路は、車両があまり通らず、走行車両の密度が低い区間であることが推測される。従って、これにより、制御部205は、全てのリンクIDに対して平均車間距離ALbを適切に設定することができる。そして、制御部205は、ステップS205の実行後、ステップS201へ処理を戻す。 Further, the control unit 205 sets the average inter-vehicle distance ALb of the link ID having no information of the inter-vehicle distance Lb as a sample for calculating the average inter-vehicle distance ALb to the upper limit value LimLb. In general, it is presumed that the road where the sensor information IS cannot be acquired is a section where the vehicle does not pass so much and the density of the traveling vehicle is low. Accordingly, this enables the control unit 205 to appropriately set the average inter-vehicle distance ALb for all link IDs. And the control part 205 returns a process to step S201 after execution of step S205.
 (2-2)ルート探索処理
 図8は、サーバ装置200の制御部205が実行するルート探索処理の手順を示すフローチャートの一例である。
(2-2) Route Search Processing FIG. 8 is an example of a flowchart showing the procedure of route search processing executed by the control unit 205 of the server apparatus 200.
 まず、制御部205は、電源オフ要求があったか否か判定する(ステップS301)。そして、電源オフ要求があった場合(ステップS301:Yes)、制御部205はフローチャートの処理を終了する。一方、電源オフ要求がない場合(ステップS301:No)、制御部205は、ステップS302へ処理を進める。 First, the control unit 205 determines whether or not there is a power-off request (step S301). And when there exists a power-off request | requirement (step S301: Yes), the control part 205 complete | finishes the process of a flowchart. On the other hand, when there is no power-off request (step S301: No), the control unit 205 advances the process to step S302.
 次に、制御部205は、出発地及び目的地等を指定したルート探索要求信号S2を受信したか否か判定する(ステップS302)。そして、制御部205は、ルート探索要求信号S2を受信した場合(ステップS302:Yes)、ダイクストラ法などを用いたルート探索処理を開始する(ステップS303)。具体的には、制御部205は、後述するステップS304乃至ステップS307の処理を実行する。一方、制御部205は、ルート探索要求信号S2を受信しない場合(ステップS302:No)、ステップS301へ処理を戻す。 Next, the control unit 205 determines whether or not the route search request signal S2 designating the departure place and the destination is received (step S302). When the route search request signal S2 is received (step S302: Yes), the control unit 205 starts route search processing using the Dijkstra method or the like (step S303). Specifically, the control unit 205 executes processing from step S304 to step S307 described later. On the other hand, the control part 205 returns a process to step S301, when not receiving route search request signal S2 (step S302: No).
 次に、制御部205は、ステップS304において、候補となる経路のリンクに対してリンクコストを算出する(ステップS304)。例えば、制御部205は、対象の各リンクについて、当該リンクを通過する時間に関するコスト、当該リンクの距離に関するコスト、有料道路などの料金に関するコスト、幹線道路や車幅などの道路種別に関するコストなどの各コストに対し、それぞれ定められた割合を乗じて合算したリンクコストを算出する。この時、ルート探索要求信号S2において、時間優先、距離優先などのルート探索条件が定められていた場合には、制御部205は、優先する旨の指定があったコストに乗じる割合を大きく設定した上で、リンクコストを算出する。なお、ステップS304で算出したリンクコストには、平均車間距離ALbが勘案されていない。 Next, in step S304, the control unit 205 calculates a link cost for the link of the candidate route (step S304). For example, the control unit 205 determines, for each target link, a cost related to the time for passing the link, a cost related to the distance of the link, a cost related to a toll such as a toll road, a cost related to a road type such as a main road and a vehicle width A link cost is calculated by multiplying each cost by a predetermined ratio. At this time, when route search conditions such as time priority and distance priority are defined in the route search request signal S2, the control unit 205 sets a large ratio to multiply the cost for which priority is specified. Above, link cost is calculated. Note that the average inter-vehicle distance ALb is not taken into account in the link cost calculated in step S304.
 次に、制御部205は、車間距離係数Cbによるリンクコストの重み付けを行う(ステップS305)。具体的には、まず、制御部205は、所定の式等を参照して、対象となるリンクに関連付けられた平均車間距離ALbと負の相関を有する車間距離係数Cbを算出する。例えば、車間距離係数Cbは、平均車間距離ALbの逆数であってもよい。次に、制御部205は、ステップS304で算出したリンクコストに対し、車間距離係数Cbを乗じる。 Next, the control unit 205 weights the link cost by the inter-vehicle distance coefficient Cb (step S305). Specifically, first, the control unit 205 calculates an inter-vehicle distance coefficient Cb having a negative correlation with the average inter-vehicle distance ALb associated with the target link with reference to a predetermined formula or the like. For example, the inter-vehicle distance coefficient Cb may be a reciprocal of the average inter-vehicle distance ALb. Next, the control unit 205 multiplies the link cost calculated in step S304 by the inter-vehicle distance coefficient Cb.
 一般に、車間距離Lbが小さいほど、運転者は、前方の車に注意して運転する必要があり、運転上ストレスが掛かる。また、車間距離Lbが小さいほど、前方車との接触などの可能性も高まる。以上を勘案し、制御部205は、ステップS306において、平均車間距離ALbが小さいリンクほど、リンクコストを大きくする。これにより、制御部205は、運転者の感覚に即して適切にリンクコストを設定することができる。 In general, the smaller the inter-vehicle distance Lb, the more the driver needs to drive while paying attention to the vehicle ahead, and the driver is stressed. In addition, the smaller the inter-vehicle distance Lb, the higher the possibility of contact with the preceding vehicle. In consideration of the above, in step S306, the control unit 205 increases the link cost for a link having a smaller average inter-vehicle distance ALb. Thereby, the control part 205 can set link cost appropriately according to a driver | operator's sense.
 そして、制御部205は、重み付け後のリンクコストが最小となる経路を探索する(ステップS306)。これにより、制御部205は、出発地から対象のノードまでの最適経路及びリンクコストの合算値を認識する。次に、制御部205は、ルート探索が完了したか否か判定する(ステップS307)。言い換えると、制御部205は、出発地から目的地までの最適経路が特定できたか否か判定する。そして、ルート探索が完了した場合(ステップS307:Yes)、制御部205は、ルート探索結果信号S3をクライアント端末300に送信する(ステップS308)。具体的には、制御部205は、特定した出発地から目的地までの最適経路の情報、及び、当該最適経路の所要時間の情報等をルート探索結果信号S3としてクライアント端末300に送信する。そして、制御部205は、ステップS301へ処理を戻す。一方、ルート探索が完了していない場合(ステップS307:No)、即ち、特定した最適経路の近傍に目的地が存在しない場合、制御部205は、最適経路を探索する対象となるノードを追加して再びステップS304の処理を行う。 Then, the control unit 205 searches for a route that minimizes the weighted link cost (step S306). As a result, the control unit 205 recognizes the sum of the optimum route from the departure point to the target node and the link cost. Next, the control unit 205 determines whether or not the route search is completed (step S307). In other words, the control unit 205 determines whether the optimum route from the departure point to the destination has been identified. When the route search is completed (step S307: Yes), the control unit 205 transmits a route search result signal S3 to the client terminal 300 (step S308). Specifically, the control unit 205 transmits information on the optimum route from the specified departure place to the destination, information on the time required for the optimum route, and the like as the route search result signal S3 to the client terminal 300. Then, the control unit 205 returns the process to step S301. On the other hand, when the route search is not completed (step S307: No), that is, when the destination does not exist in the vicinity of the identified optimum route, the control unit 205 adds a node to be searched for the optimum route. Then, the process of step S304 is performed again.
 (3)クライアント端末が実行する処理
 図9は、クライアント端末300が実行する処理手順を示すフローチャートである。
(3) Process Performed by Client Terminal FIG. 9 is a flowchart showing a process procedure performed by the client terminal 300.
 まず、制御部305は、電源オフ要求があったか否か判定する(ステップS401)。そして、電源オフ要求があった場合(ステップS401:Yes)、制御部305はフローチャートの処理を終了する。一方、電源オフ要求がない場合(ステップS401:No)、制御部305は、ステップS402へ処理を進める。 First, the control unit 305 determines whether or not there is a power-off request (step S401). And when there exists a power-off request | requirement (step S401: Yes), the control part 305 complete | finishes the process of a flowchart. On the other hand, when there is no power-off request (step S401: No), the control unit 305 advances the process to step S402.
 次に、制御部305は、出発地及び目的地等が設定されたか否か判定する(ステップS402)。具体的には、制御部305は、入力部303から出発地及び目的地等を指定する入力があったか否か判定する。なお、クライアント端末300がGPS受信機を有する場合、制御部305は、入力部303の入力によらず、出発地をGPS受信機により測定した現在地に設定してもよい。また、制御部305は、出発地及び目的地に加え、料金優先、距離優先などのルート探索条件に関する入力を入力部303から受け付けてもよい。そして、出発地及び目的地等が設定された場合(ステップS402:Yes)、制御部305は、ステップS403へ処理を進める。一方、出発地又は目的地が設定されていない場合(ステップS402:No)、制御部305は、ステップS401へ処理を戻す。 Next, the control unit 305 determines whether or not a departure place and a destination are set (step S402). Specifically, the control unit 305 determines whether or not there is an input from the input unit 303 specifying a departure place, a destination, and the like. When the client terminal 300 has a GPS receiver, the control unit 305 may set the departure point to the current location measured by the GPS receiver regardless of the input of the input unit 303. Further, the control unit 305 may accept input regarding route search conditions such as charge priority and distance priority from the input unit 303 in addition to the departure point and destination. And when a departure place, a destination, etc. are set (step S402: Yes), the control part 305 advances a process to step S403. On the other hand, when the departure place or the destination is not set (step S402: No), the control unit 305 returns the process to step S401.
 次に、制御部305は、出発地及び目的地等を指定したルート探索要求信号S2をサーバ装置200に送信する(ステップS403)。そして、制御部305は、サーバ装置200からルート探索結果信号S3を受信したか否か判定する(ステップS404)。そして、制御部305は、サーバ装置200からルート探索結果信号S3を受信した場合(ステップS404:Yes)、ルート探索結果信号S3に基づきルート探索結果を表示する(ステップS405)。例えば、制御部305は、ルート探索結果信号S3に基づき、最適経路を地図と共に表示部307に表示したり、最適経路の所要時間又は/及び通過する中間地点の情報を表示部307に表示させたりする。そして、ステップS405の実行後、又は、制御部305がルート探索結果信号S3を受信していない場合(ステップS404:No)、制御部305は、ステップS401に処理を戻す。 Next, the control unit 305 transmits a route search request signal S2 designating a departure place and a destination to the server device 200 (step S403). Then, the control unit 305 determines whether or not the route search result signal S3 is received from the server device 200 (step S404). And control part 305 displays a route search result based on route search result signal S3, when route search result signal S3 is received from server apparatus 200 (Step S404: Yes) (Step S405). For example, based on the route search result signal S3, the control unit 305 displays the optimum route together with the map on the display unit 307, or displays the time required for the optimum route or / and information on the waypoints passing through the display unit 307. To do. And after execution of step S405, or when the control part 305 has not received route search result signal S3 (step S404: No), the control part 305 returns a process to step S401.
 [効果]
 次に、本実施例の効果について図10を参照して補足説明する。図10は、ノードSを出発地、ノードGを目的地、ノードA、Bをこれらの中間地点としたグラフを示す。図10では、各ノードを結ぶリンクに対し、車間距離係数Cbによる重み付け前のリンクコスト「LCbef」と、車間距離係数Cbとがそれぞれ設定されている。
[effect]
Next, the effect of the present embodiment will be supplementarily described with reference to FIG. FIG. 10 shows a graph in which the node S is a departure point, the node G is a destination, and the nodes A and B are intermediate points. In FIG. 10, the link cost “LCbef” before weighting by the inter-vehicle distance coefficient Cb and the inter-vehicle distance coefficient Cb are set for the links connecting the nodes.
 この場合、重み付け前のリンクコストLCbefの合算値が最小となる経路を探索したときには、ノードS、ノードA、ノードGを通る経路の重み付け前リンクコストLCbefの合算値は、7(=3+4)となり、ノードS、ノードB、ノードGを通る経路の重み付け前リンクコストLCbefの合算値は、6(=4+2)となる。従って、この場合、リンクコストLCbefの合算値が最小となる経路は、ノードS、ノードB、ノードGを通る経路となる。しかし、この経路には、車間距離係数Cbが比較的大きい「3.0」であるノードBとノードGとを終端とするリンクが含まれる。従って、この場合、この経路を実際に走行すると、通行量が多く運転しにくいという事態が生じる。 In this case, when searching for a route that minimizes the sum of the link costs LCbef before weighting, the sum of the link weights LCbef before weighting of the routes passing through the nodes S, A, and G is 7 (= 3 + 4). , The total value of the link weight LCbef before weighting of the route passing through the node S, the node B, and the node G is 6 (= 4 + 2). Therefore, in this case, the path with the minimum sum of the link costs LCbef is a path that passes through the node S, the node B, and the node G. However, this route includes links ending with node B and node G having a relatively large inter-vehicle distance coefficient Cb of “3.0”. Therefore, in this case, when the vehicle actually travels along this route, a situation occurs in which the amount of traffic is large and it is difficult to drive.
 一方、車間距離係数Cbによる重み付け後のリンクコストの合算値が最小となる経路を探索したときには、ノードS、ノードA、ノードGを通る経路のリンクコストの合算値は、7.0(=3×1.0+4×1.0)となり、ノードS、ノードB、ノードGを通る経路のリンクコストの合算値は、10.0(=4×1.0+2×3.0)となる。従って、この場合、重み付け後リンクコストLCaftの合算値が最小となる経路は、ノードS、ノードA、ノードGを通る経路となる。このように、本実施例によれば、制御部205は、統計的に車間距離Lbが長く、追突や接触の危険度の小さい経路を最適経路として選択することができる。 On the other hand, when searching for a route that minimizes the sum of the link costs after weighting by the inter-vehicle distance coefficient Cb, the sum of the link costs of the routes passing through the nodes S, A, and G is 7.0 (= 3 × 1.0 + 4 × 1.0), and the total value of the link cost of the route passing through the nodes S, B, and G is 10.0 (= 4 × 1.0 + 2 × 3.0). Therefore, in this case, the route having the minimum sum of the weighted link costs LCaft is a route passing through the node S, the node A, and the node G. As described above, according to the present embodiment, the control unit 205 can select a route having a statistically long inter-vehicle distance Lb and a small risk of rear-end collision or contact as the optimum route.
 [変形例]
 以下、上述の実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて上述の実施例に適用してもよい。
[Modification]
Hereinafter, modified examples suitable for the above-described embodiments will be described. The following modifications may be applied in any combination to the above-described embodiments.
 (変形例1)
 車間距離統計情報Isdbのデータ構造は、図5に示すものに限定されない。これに代えて、車間距離統計情報Isdbは、リンクIDと平均車間距離ALbとの関係を他の項目に基づきさらに詳細に規定してもよい。
(Modification 1)
The data structure of the inter-vehicle distance statistical information Isdb is not limited to that shown in FIG. Instead, the inter-vehicle distance statistical information Isdb may further define the relationship between the link ID and the average inter-vehicle distance ALb based on other items.
 図11(A)は、時間帯ごとに、リンクIDと平均車間距離ALbとの関係を規定した車間距離統計情報Isdbを示す。図11(A)では、各リンクIDに対して、4つの時間帯ごとに、即ち6時間ごとに、平均車間距離ALbが定められている。この場合、制御部205は、センサ情報Isに含まれる時刻情報に基づき、各センサ情報Isが示す車間距離Lbが計算対象となる時間帯を認識することで、各時間帯の平均車間距離ALbを算出する。この場合、例えば、ルート探索要求信号S2には、走行予定の時間帯を指定する情報が含まれ、サーバ装置200は、指定された時間帯に基づき、ルート探索処理時において、車間距離係数Cbを算出するために用いる平均車間距離ALbを選択する。なお、車間距離統計情報Isdbは、時間帯に代えて、またはこれに加えて、曜日ごとに、リンクIDと平均車間距離ALbとの関係を規定してもよい。 FIG. 11A shows inter-vehicle distance statistical information Isdb that defines the relationship between the link ID and the average inter-vehicle distance ALb for each time zone. In FIG. 11A, the average inter-vehicle distance ALb is determined for each link ID every four time zones, that is, every six hours. In this case, the control unit 205 recognizes the time zone in which the inter-vehicle distance Lb indicated by each sensor information Is is calculated based on the time information included in the sensor information Is, so that the average inter-vehicle distance ALb in each time zone is obtained. calculate. In this case, for example, the route search request signal S2 includes information specifying a scheduled time zone, and the server device 200 calculates the inter-vehicle distance coefficient Cb based on the specified time zone during the route search process. The average inter-vehicle distance ALb used for calculation is selected. The inter-vehicle distance statistical information Isdb may define the relationship between the link ID and the average inter-vehicle distance ALb for each day of the week instead of or in addition to the time zone.
 図11(B)は、進行方向ごとに、リンクIDと平均車間距離ALbとの関係を規定した車間距離統計情報Isdbを示す。図11(B)では、各リンクIDに対して、上り車線か下り車線かに応じて、平均車間距離ALbが定められている。この場合、プローブ情報提供装置100は、プローブ情報信号S1に進行方向に関する情報をさらに付加し、制御部205は、当該情報に基づき、対象となるリンク上での進行方向を認識することで、各進行方向の平均車間距離ALbを算出する。この場合、サーバ装置200の制御部205は、ルート探索処理時に、各リンクを通過する際の移動方向に基づき、車間距離係数Cbを算出するために用いる平均車間距離ALbを選択する。 FIG. 11B shows inter-vehicle distance statistical information Isdb that defines the relationship between the link ID and the average inter-vehicle distance ALb for each traveling direction. In FIG. 11 (B), the average inter-vehicle distance ALb is determined for each link ID depending on whether it is an up lane or a down lane. In this case, the probe information providing apparatus 100 further adds information on the traveling direction to the probe information signal S1, and the control unit 205 recognizes the traveling direction on the target link based on the information, thereby An average inter-vehicle distance ALb in the traveling direction is calculated. In this case, the control unit 205 of the server device 200 selects the average inter-vehicle distance ALb used for calculating the inter-vehicle distance coefficient Cb based on the moving direction when passing through each link during the route search process.
 図11(C)は、車線ごとに、リンクIDと平均車間距離ALbとの関係を規定した車間距離統計情報Isdbを示す。図11(B)では、各リンクIDに対して、走行車線か追い越し車線かに応じて、平均車間距離ALbが定められている。この場合、制御部205は、例えばセンサ情報Isに含まれる位置情報に基づき走行車線又は追い越し車線のいずれを走行していたか認識することで、認識した車線ごとに平均車間距離ALbを算出する。この場合、例えば、ルート探索要求信号S2には、走行車線又は追い越し車線のいずれを優先的に走行するかを指定する情報が含まれ、サーバ装置200は、ルート探索処理において、指定された車線に基づき、車間距離係数Cbを算出するために用いる平均車間距離ALbを選択する。 FIG. 11C shows inter-vehicle distance statistical information Isdb that defines the relationship between the link ID and the average inter-vehicle distance ALb for each lane. In FIG. 11B, the average inter-vehicle distance ALb is determined for each link ID depending on whether the vehicle is a traveling lane or an overtaking lane. In this case, the control unit 205 calculates the average inter-vehicle distance ALb for each recognized lane, for example, by recognizing which of the driving lane or the overtaking lane was traveling based on the position information included in the sensor information Is. In this case, for example, the route search request signal S2 includes information designating which of the driving lane and the overtaking lane is preferentially traveled, and the server device 200 adds the specified lane in the route searching process. Based on this, the average inter-vehicle distance ALb used for calculating the inter-vehicle distance coefficient Cb is selected.
 このように、サーバ装置200は、リンクIDと平均車間距離ALbとの関係を他の項目により詳細に規定した車間距離統計情報Isdbを有することで、実際の走行時の車間距離Lbに即した車間距離係数Cbを設定することができる。 As described above, the server device 200 has the inter-vehicle distance statistical information Isdb in which the relationship between the link ID and the average inter-vehicle distance ALb is defined in detail by other items, so that the inter-vehicle distance in accordance with the inter-vehicle distance Lb during actual travel. A distance coefficient Cb can be set.
 (変形例2)
 サーバ装置200がルート探索処理を実行する代わりに、クライアント端末300がルート探索処理を行ってもよい。例えば、この場合、クライアント端末300は、記憶部303にルート探索処理を行うのに必要な地図データを有し、かつ、車間距離統計情報Isdbをサーバ装置200から所定のタイミングでダウンロードする。
(Modification 2)
Instead of the server device 200 executing the route search process, the client terminal 300 may perform the route search process. For example, in this case, the client terminal 300 has map data necessary for performing route search processing in the storage unit 303, and downloads the inter-vehicle distance statistical information Isdb from the server device 200 at a predetermined timing.
 図12は、変形例において、クライアント端末300の制御部305が実行する処理手順を示すフローチャートである。 FIG. 12 is a flowchart showing a processing procedure executed by the control unit 305 of the client terminal 300 in the modification.
 まず、制御部305は、電源オフ要求があったか否か判定する(ステップS501)。そして、電源オフ要求があった場合(ステップS501:Yes)、制御部305はフローチャートの処理を終了する。一方、電源オフ要求がない場合(ステップS501:No)、制御部305は、ステップS502へ処理を進める。 First, the control unit 305 determines whether or not there is a power-off request (step S501). When there is a power-off request (step S501: Yes), the control unit 305 ends the process of the flowchart. On the other hand, when there is no power-off request (step S501: No), the control unit 305 advances the process to step S502.
 次に、制御部305は、出発地及び目的地等が設定されたか否か判定する(ステップS502)。このとき、制御部305は、出発地及び目的地に加え、料金優先、距離優先などのルート探索条件に関する入力を入力部303から受け付けてもよい。そして、出発地及び目的地が設定された場合(ステップS502:Yes)、制御部305は、ルート探索処理を開始する(ステップS503)。具体的には、制御部305は、図8のステップS304乃至ステップS307と同様の処理を、ステップS504乃至ステップS507において実行する。このとき、ステップS505では、制御部305は、サーバ装置200からダウンロードした車間距離統計情報Isdbに基づき、車間距離係数Cbを算出し、ステップS504で算出したリンクコストの重み付けを行う。 Next, the control unit 305 determines whether or not a departure place and a destination are set (step S502). At this time, the control unit 305 may accept input regarding route search conditions such as charge priority and distance priority from the input unit 303 in addition to the departure point and destination. When the departure place and the destination are set (step S502: Yes), the control unit 305 starts route search processing (step S503). Specifically, the control unit 305 executes the same processing as Step S304 to Step S307 in FIG. 8 in Step S504 to Step S507. At this time, in step S505, the control unit 305 calculates the inter-vehicle distance coefficient Cb based on the inter-vehicle distance statistical information Isdb downloaded from the server device 200, and weights the link cost calculated in step S504.
 そして、制御部305は、ステップS507においてルート探索が完了したと判断した場合(ステップS507:Yes)、ルート探索結果を表示する(ステップS508)。例えば、制御部305は、ルート探索結果に基づき、最適経路を地図と共に表示部307に表示したり、最適経路の所要時間又は/及び通過する中間地点を表示部307に表示させたりする。 If the control unit 305 determines in step S507 that the route search has been completed (step S507: Yes), the control unit 305 displays the route search result (step S508). For example, based on the route search result, the control unit 305 displays the optimum route together with the map on the display unit 307, or displays the required time of the optimum route or / and the passing intermediate point on the display unit 307.
 このように、クライアント端末300がルート探索処理を行う場合も、好適に車間距離Lbを考慮した最適経路を探索することができる。この場合、クライアント端末300は、本発明における「ルート探索装置」として機能し、制御部305は、本発明における「ルート設定手段」及び「車間距離情報取得手段」として機能する。 As described above, even when the client terminal 300 performs the route search process, it is possible to search for the optimum route in consideration of the inter-vehicle distance Lb. In this case, the client terminal 300 functions as a “route search device” in the present invention, and the control unit 305 functions as a “route setting unit” and an “inter-vehicle distance information acquisition unit” in the present invention.
 (変形例3)
 図1に示すルート探索システムの構成は、一例であり、本発明が適用可能な構成は、これに限定されない。これに代えて、ルート探索システムは、サーバ装置200を有しなくてもよい。
(Modification 3)
The configuration of the route search system shown in FIG. 1 is an example, and the configuration to which the present invention can be applied is not limited to this. Instead of this, the route search system may not include the server device 200.
 この場合、クライアント端末300は、プローブ情報提供装置100からプローブ情報信号S1を受信し、受信したプローブ情報信号S1に基づき、図7に示すフローチャートを実行することで、車間距離統計情報Isdbを生成する。そして、クライアント端末300は、変形例2で述べた図12のフローチャートを実行し、ルート探索処理を行う。 In this case, the client terminal 300 receives the probe information signal S1 from the probe information providing apparatus 100, and generates the inter-vehicle distance statistical information Isdb by executing the flowchart shown in FIG. 7 based on the received probe information signal S1. . Then, the client terminal 300 executes the flowchart of FIG. 12 described in Modification 2 and performs route search processing.
 また、クライアント端末300は、他の装置からプローブ情報信号S1を受信する代わりに、車間距離センサを有し、自ら計測した車間距離Lbに基づき、図7に示すフローチャートを実行することで、車間距離統計情報Isdbを生成してもよい。この場合、ルート探索システムは、クライアント端末300のみから構成される。 In addition, the client terminal 300 has an inter-vehicle distance sensor instead of receiving the probe information signal S1 from another device, and executes the flowchart shown in FIG. 7 on the basis of the inter-vehicle distance Lb measured by itself. The statistical information Isdb may be generated. In this case, the route search system includes only the client terminal 300.
 本変形例において、クライアント端末300は、本発明における「ルート探索装置」として機能し、制御部305は、本発明における「ルート設定手段」及び「車間距離情報取得手段」として機能する。 In this modification, the client terminal 300 functions as a “route search device” in the present invention, and the control unit 305 functions as a “route setting unit” and an “inter-vehicle distance information acquisition unit” in the present invention.
 (変形例4)
 図8の説明では、制御部205は、ステップS304で算出したリンクコストに対し、ステップS305において車間距離係数Cbによる重み付けを行った。しかし、本発明が適用可能な方法は、これに限定されない。これに代えて、制御部205は、車間距離係数Cbを車間距離Lbに関するコストとみなし、ステップS304でリンクコストを算出する際に、他のコストと同様に、予め定められた割合を乗じた車間距離係数Cbをリンクコストに加算してもよい。この場合であっても、制御部205は、車間距離Lbを考慮したルート探索を好適に実行することができる。
(Modification 4)
In the description of FIG. 8, the control unit 205 weights the link cost calculated in step S304 with the inter-vehicle distance coefficient Cb in step S305. However, the method to which the present invention is applicable is not limited to this. Instead of this, the control unit 205 regards the inter-vehicle distance coefficient Cb as the cost related to the inter-vehicle distance Lb, and calculates the link cost in step S304, like the other costs, multiplied by a predetermined ratio. The distance coefficient Cb may be added to the link cost. Even in this case, the control unit 205 can preferably execute the route search in consideration of the inter-vehicle distance Lb.
 (変形例5)
 制御部205は、図7のステップS205において、車間距離統計情報Isdbを生成する際、車間距離Lbの情報がないリンクIDの平均車間距離ALbを上限値LimLbに設定する代わりに、他のリンクIDの平均車間距離ALbに基づき推定してもよい。
(Modification 5)
When the control unit 205 generates the inter-vehicle distance statistical information Isdb in step S205 of FIG. 7, instead of setting the average inter-vehicle distance ALb of the link ID without the inter-vehicle distance Lb to the upper limit value LimLb, another link ID It may be estimated based on the average inter-vehicle distance ALb.
 例えば、制御部205は、車間距離Lbの情報がないリンクIDの平均車間距離ALbを、当該リンクの近傍に存在するリンクIDの平均車間距離ALbと同一の値に設定する。他の例では、制御部205は、車間距離Lbの情報がないリンクIDの道路と車速制限や道路幅の情報などの走行条件が一致または近似する他の道路のリンクIDの平均車間距離ALbを、当該車間距離Lbの情報がないリンクIDの平均車間距離ALbに設定してもよい。 For example, the control unit 205 sets the average inter-vehicle distance ALb of the link ID having no information of the inter-vehicle distance Lb to the same value as the average inter-vehicle distance ALb of the link ID existing in the vicinity of the link. In another example, the control unit 205 calculates the average inter-vehicle distance ALb of the link ID of the road with the link ID that does not have the information of the inter-vehicle distance Lb and the link ID of another road that matches or approximates the traveling condition such as the vehicle speed limit and the information of the road width. Alternatively, the average inter-vehicle distance ALb of the link ID without the information on the inter-vehicle distance Lb may be set.
 このようにすることで、制御部205は、車間距離Lbの情報がないリンクIDが存在する場合であっても、全てのリンクIDに対して平均車間距離ALbを適切に設定し、車間距離Lbを考慮したルート探索処理を好適に実行することができる。 By doing in this way, the control unit 205 appropriately sets the average inter-vehicle distance ALb for all link IDs even when there is a link ID without information on the inter-vehicle distance Lb, and the inter-vehicle distance Lb. It is possible to suitably execute a route search process considering the above.
 (変形例6)
 クライアント端末300は、地図を表示する際、各リンクの表示態様を、車間距離統計情報Isdbに基づき決定してもよい。
(Modification 6)
When displaying the map, the client terminal 300 may determine the display mode of each link based on the inter-vehicle distance statistical information Isdb.
 図13(A)は、平均車間距離ALbに応じて地図に表示される道路(リンク)の表示色を変更する場合の平均車間距離ALbと地図に表示される道路の表示色との関係を示すテーブルである。この例では、クライアント端末300は、平均車間距離ALbが短いほど、地図に表示される道路を濃い色に着色する。これにより、クライアント端末300は、地図に表示された道路の表示色に基づき、当該道路における走行車両の密度をユーザに好適に認識させることができる。 FIG. 13A shows the relationship between the average inter-vehicle distance ALb and the road display color displayed on the map when the display color of the road (link) displayed on the map is changed according to the average inter-vehicle distance ALb. It is a table. In this example, the client terminal 300 colors the road displayed on the map in a darker color as the average inter-vehicle distance ALb is shorter. Thereby, the client terminal 300 can make a user recognize suitably the density of the traveling vehicle in the said road based on the display color of the road displayed on the map.
 図13(B)は、平均車間距離ALbに応じて地図に表示される道路の表示線を変更する場合の平均車間距離ALbと道路の表示線との関係を示すテーブルである。この例では、クライアント端末300は、平均車間距離ALbが短いほど、地図に表示される道路を示す線の間隔を短くする。これにより、クライアント端末300は、地図に表示された道路を示す線の間隔に基づき、当該道路における走行車両の密度をユーザに好適に認識させることができる。 FIG. 13B is a table showing the relationship between the average inter-vehicle distance ALb and the road display line when the road display line displayed on the map is changed according to the average inter-vehicle distance ALb. In this example, the client terminal 300 shortens the interval between the lines indicating the road displayed on the map as the average inter-vehicle distance ALb is shorter. Thereby, the client terminal 300 can make a user recognize suitably the density of the traveling vehicle in the said road based on the space | interval of the line which shows the road displayed on the map.
 また、さらに他の例では、クライアント端末300は、地図上に表示された各道路に対して、対応する平均車間距離ALbの値を表示してもよい。なお、これらの例では、クライアント端末300は、例えば一定の時間間隔ごとに車間距離統計情報Isdbを受信する。 In yet another example, the client terminal 300 may display the value of the corresponding average inter-vehicle distance ALb for each road displayed on the map. In these examples, the client terminal 300 receives the inter-vehicle distance statistical information Isdb at regular time intervals, for example.
 このようにすることで、クライアント端末300は、車間距離Lbに基づく各道路の混雑度をユーザに把握させることができる。 By doing in this way, the client terminal 300 can make a user grasp the congestion degree of each road based on the inter-vehicle distance Lb.
 本発明は、ルート探索を行う装置に好適に適用することができる。 The present invention can be suitably applied to a device that performs route search.
 100 プローブ情報提供装置
 102 車間距離センサ
 103 GPS受信機
 105 制御部
 200 サーバ装置
 205 制御部
 300 クライアント端末
 303 入力部
 305 制御部
 307 表示部
DESCRIPTION OF SYMBOLS 100 Probe information provision apparatus 102 Inter-vehicle distance sensor 103 GPS receiver 105 Control part 200 Server apparatus 205 Control part 300 Client terminal 303 Input part 305 Control part 307 Display part

Claims (12)

  1.  出発地点から到着地点までのルートを設定するルート設定手段と、
     前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得手段と、
     を有し、
     前記ルート設定手段は、前記車間距離情報に基づいて前記ルートを設定することを特徴とするルート探索装置。
    A route setting means for setting a route from the departure point to the arrival point;
    Inter-vehicle distance information acquisition means for acquiring inter-vehicle distance information, which is information related to the distance between moving bodies heading in the same direction, in each predetermined section included in the route;
    Have
    The route search device, wherein the route setting means sets the route based on the inter-vehicle distance information.
  2.  前記車間距離情報は、同一車線を走行し、前後に位置する移動体間の前後方向における距離に関する情報であることを特徴とする請求項1に記載のルート探索装置。 The route search device according to claim 1, wherein the inter-vehicle distance information is information related to a distance in a front-rear direction between moving bodies that are traveling in the same lane and are positioned in the front-rear direction.
  3.  前記車間距離情報は、前記移動体同士の距離の平均値であることを特徴とする請求項1または2に記載のルート探索装置。 The route search device according to claim 1 or 2, wherein the inter-vehicle distance information is an average value of a distance between the moving bodies.
  4.  前記ルート設定手段は、前記出発地点から前記到着地点までのルートのうち、当該ルートの各区間における通り難さの指標の合算値が最小となるルートを設定し、
     前記指標は、対応する区間における前記車間距離情報が示す値と負の相関を有する係数により重み付けがなされることを特徴とする請求項1乃至3のいずれか一項に記載のルート探索装置。
    The route setting means sets a route having a minimum combined value of passing difficulty indexes in each section of the route from the departure point to the arrival point,
    The route search device according to any one of claims 1 to 3, wherein the index is weighted by a coefficient having a negative correlation with a value indicated by the inter-vehicle distance information in a corresponding section.
  5.  前記車間距離情報取得手段は、前記各区間を走行する移動体が測定した前方の移動体との距離の情報を当該移動体から取得することで、前記車間距離情報を生成することを特徴とする請求項1乃至4のいずれか一項に記載のルート探索装置。 The inter-vehicle distance information acquiring means generates the inter-vehicle distance information by acquiring information on the distance from the moving body ahead measured by the moving body traveling in each section from the moving body. The route search apparatus as described in any one of Claims 1 thru | or 4.
  6.  前記ルート設定手段は、前記ルートに従って走行した場合に前記区間を走行することが予測される時間帯と、当該区間について前記移動体同士の距離を測定した時間帯と、に基づき、前記ルートの設定に用いる前記車間距離情報を決定することを特徴とする請求項1乃至5のいずれか一項に記載のルート探索装置。 The route setting means is configured to set the route based on a time zone in which the vehicle is predicted to travel in the section when traveling according to the route and a time zone in which the distance between the moving bodies is measured for the section. The route search device according to any one of claims 1 to 5, wherein the inter-vehicle distance information used for a vehicle is determined.
  7.  前記ルート設定手段は、前記移動体同士の距離を測定した際の当該移動体の移動方向又は/及び走行車線に基づき、前記ルートの設定に用いる前記車間距離情報を決定することを特徴とする請求項1乃至5のいずれか一項に記載のルート探索装置。 The route setting means determines the inter-vehicle distance information used for setting the route based on a moving direction or / and a traveling lane of the moving bodies when the distance between the moving bodies is measured. Item 6. The route search device according to any one of Items 1 to 5.
  8.  前記車間距離情報取得手段は、前記ルートに含まれる各区間のうち、前記車間距離情報を取得できない区間が存在する場合、当該区間の車間距離情報を、前記車間距離情報を取得できない区間に連続する前記車間距離情報を取得した区間の車間距離情報に基づき推定することを特徴とする請求項1乃至7のいずれか一項に記載のルート探索装置。 The inter-vehicle distance information acquisition means, when there is a section where the inter-vehicle distance information cannot be acquired, among the sections included in the route, the inter-vehicle distance information of the section is continued to the section where the inter-vehicle distance information cannot be acquired. The route search device according to any one of claims 1 to 7, wherein the route information is estimated based on distance information of a section from which the distance information is acquired.
  9.  前記車間距離情報取得手段は、前記車間距離情報が示す値に上限値を設けることを特徴とする請求項1乃至8のいずれか一項に記載のルート探索装置。 The route search device according to any one of claims 1 to 8, wherein the inter-vehicle distance information acquisition means sets an upper limit value to a value indicated by the inter-vehicle distance information.
  10.  前記車間距離情報取得手段は、前記ルートに含まれる各区間のうち、前記車間距離情報を取得できない区間が存在する場合、当該区間の車間距離情報の値を、前記上限値に設定することを特徴とする請求項9に記載のルート探索装置。 The inter-vehicle distance information acquisition means sets a value of the inter-vehicle distance information of the section to the upper limit value when there is a section from which the inter-vehicle distance information cannot be acquired among the sections included in the route. The route search device according to claim 9.
  11.  ルート探索装置が実行する制御方法であって、
     出発地点から到着地点までのルートを設定するルート設定工程と、
     前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得工程と、
     を有し、
     前記ルート設定工程は、前記車間距離情報に基づいて前記ルートを設定することを特徴とする制御方法。
    A control method executed by a route search device,
    A route setting process for setting a route from the departure point to the arrival point;
    Inter-vehicle distance information acquisition step for acquiring inter-vehicle distance information, which is information relating to the distance between moving bodies heading in the same direction, in each predetermined section included in the route;
    Have
    The route setting step sets the route based on the inter-vehicle distance information.
  12.  ルート探索装置が実行するプログラムであって、
     出発地点から到着地点までのルートを設定するルート設定手段と、
     前記ルートに含まれる所定の各区間における、同一方向に向かう移動体同士の距離に関する情報である車間距離情報を取得する車間距離情報取得手段
    として前記ルート探索装置を機能させ、
     前記ルート設定手段は、前記車間距離情報に基づいて前記ルートを設定することを特徴とするプログラム。
    A program executed by the route search device,
    A route setting means for setting a route from the departure point to the arrival point;
    In the predetermined sections included in the route, the route search device functions as an inter-vehicle distance information acquisition unit that acquires inter-vehicle distance information, which is information related to the distance between moving bodies heading in the same direction,
    The route setting means sets the route based on the inter-vehicle distance information.
PCT/JP2012/057950 2012-03-27 2012-03-27 Route search device, control method, and program WO2013145128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057950 WO2013145128A1 (en) 2012-03-27 2012-03-27 Route search device, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057950 WO2013145128A1 (en) 2012-03-27 2012-03-27 Route search device, control method, and program

Publications (1)

Publication Number Publication Date
WO2013145128A1 true WO2013145128A1 (en) 2013-10-03

Family

ID=49258495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057950 WO2013145128A1 (en) 2012-03-27 2012-03-27 Route search device, control method, and program

Country Status (1)

Country Link
WO (1) WO2013145128A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062359A (en) * 2014-09-18 2016-04-25 株式会社デンソー Driving load estimation device and method for estimating driving load
JP2016081078A (en) * 2014-10-09 2016-05-16 株式会社トランストロン Information processing device, inter-vehicular distance analysis method, and program
JP2017041020A (en) * 2015-08-18 2017-02-23 富士通株式会社 Travel section evaluation method, travel section evaluation program, and travel section evaluation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059188A (en) * 2004-08-20 2006-03-02 Matsushita Electric Ind Co Ltd Traffic information system and information analyzer
JP2008210123A (en) * 2007-02-26 2008-09-11 Aisin Aw Co Ltd Traffic jam information production device
JP2010223681A (en) * 2009-03-23 2010-10-07 Denso Corp Navigation device
WO2012002099A1 (en) * 2010-06-29 2012-01-05 本田技研工業株式会社 Congestion prediction device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059188A (en) * 2004-08-20 2006-03-02 Matsushita Electric Ind Co Ltd Traffic information system and information analyzer
JP2008210123A (en) * 2007-02-26 2008-09-11 Aisin Aw Co Ltd Traffic jam information production device
JP2010223681A (en) * 2009-03-23 2010-10-07 Denso Corp Navigation device
WO2012002099A1 (en) * 2010-06-29 2012-01-05 本田技研工業株式会社 Congestion prediction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062359A (en) * 2014-09-18 2016-04-25 株式会社デンソー Driving load estimation device and method for estimating driving load
US10509122B2 (en) 2014-09-18 2019-12-17 Denso Corporation Driving burden estimation device and driving burden estimation method
JP2016081078A (en) * 2014-10-09 2016-05-16 株式会社トランストロン Information processing device, inter-vehicular distance analysis method, and program
JP2017041020A (en) * 2015-08-18 2017-02-23 富士通株式会社 Travel section evaluation method, travel section evaluation program, and travel section evaluation device

Similar Documents

Publication Publication Date Title
US8706408B2 (en) Navigation system and route search method
JP6063237B2 (en) Traffic jam prediction device, traffic jam prediction system, traffic jam prediction method, and program
US20110004397A1 (en) Traveling information creating device, traveling information creating method and program
JP6261636B2 (en) Information processing apparatus, information processing method, and program
CN106662457B (en) Destination estimation system and destination estimation method
JP4796880B2 (en) Traffic information processing equipment
JP2005189056A (en) Navigation system
JP2024052926A (en) Information processing device, information processing method, information processing program, and recording medium
JP5184613B2 (en) NAVI SERVER, NAVI DEVICE, AND NAVI SYSTEM
JP2008241466A (en) Method of estimating traveling time, navigation device, and program
JP5513360B2 (en) Traffic jam information generating apparatus, traffic jam information generating method, and program
US8447453B2 (en) Navigation device and navigation system
WO2013145128A1 (en) Route search device, control method, and program
JP2020008436A (en) Route information assistance device and route information assistance system
JP2014066655A (en) Route search device and route search method
CN107209898B (en) Server, navigation device, and method for setting transmission exclusion area in advertisement information transmission system
JP2009019978A (en) Navigation server, navigation device, and navigation system
JP2008250454A (en) Device for calculating link traveling time
JP5892425B2 (en) Cost calculation device, cost calculation program, and navigation device
JP5513362B2 (en) Speed information generating apparatus, speed information generating method, traffic jam information generating apparatus, and program
JP2013167452A (en) Navigation system
JP5452437B2 (en) Route search device
JP2008268149A (en) Navigation apparatus and route guidance method
JP2008241349A (en) Method of estimating traveling time, navigation device, and program
JP2014059221A (en) Route notification device and navigation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP