[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013140762A1 - 複合磁性材料とその製造方法 - Google Patents

複合磁性材料とその製造方法 Download PDF

Info

Publication number
WO2013140762A1
WO2013140762A1 PCT/JP2013/001753 JP2013001753W WO2013140762A1 WO 2013140762 A1 WO2013140762 A1 WO 2013140762A1 JP 2013001753 W JP2013001753 W JP 2013001753W WO 2013140762 A1 WO2013140762 A1 WO 2013140762A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
metal magnetic
powder
magnetic
magnetic material
Prior art date
Application number
PCT/JP2013/001753
Other languages
English (en)
French (fr)
Inventor
高橋 岳史
翔太 西尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014506024A priority Critical patent/JP6229166B2/ja
Priority to EP13763567.8A priority patent/EP2830070B1/en
Priority to CN201380015615.5A priority patent/CN104221102B/zh
Priority to US14/376,811 priority patent/US9691529B2/en
Publication of WO2013140762A1 publication Critical patent/WO2013140762A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms

Definitions

  • the present invention relates to a composite magnetic material used for inductors, choke coils, transformers and the like of electronic devices and a method for manufacturing the same.
  • a choke coil used in a high-frequency circuit uses a ferrite magnetic core using ferrite powder and a composite magnetic material (powder magnetic core) which is a molded body of metal magnetic powder.
  • ferrite cores have the disadvantages of low saturation magnetic flux density and low DC superposition characteristics. For this reason, in the conventional ferrite core, a gap of about several hundred ⁇ m is provided in a direction perpendicular to the magnetic path in order to ensure the DC superposition characteristics, thereby preventing a decrease in the inductance L value during DC superposition.
  • a wide gap is a source of beat sound.
  • a significant copper loss occurs in the copper winding due to the leakage magnetic flux generated from the gap in the high frequency band.
  • a composite magnetic material produced by molding a metal magnetic powder has a remarkably large saturation magnetic flux density compared to a ferrite magnetic core, which is advantageous for downsizing. Further, unlike a ferrite magnetic core, it can be used without a gap, so that copper loss due to beat noise and leakage magnetic flux is small.
  • Core loss of composite magnetic material usually consists of eddy current loss and hysteresis loss.
  • the resistivity of metal magnetic powder is low. Therefore, when the magnetic field changes, an eddy current flows so as to suppress the change. Therefore, eddy current loss becomes a problem. Eddy current loss increases in proportion to the square of the frequency and the square of the size through which the eddy current flows. Therefore, if the surface of the metal magnetic particles constituting the metal magnetic powder is coated with an insulating material, the size of the eddy current flowing can be suppressed from the entire core extending between the metal magnetic particles to only within the metal magnetic particles. As a result, eddy current loss can be reduced.
  • the composite magnetic material is molded at a high pressure, a large number of processing strains are introduced into the molded body, the magnetic permeability is lowered, and the hysteresis loss is increased.
  • the molded body is heat-treated after the molding process in order to relieve the strain as necessary.
  • the relaxation of strain introduced into the metal magnetic powder is a phenomenon that occurs at a heat treatment temperature of 1/2 or more of the melting point, and is preferably at least 600 ° C. or more in order to sufficiently relax the strain in an alloy rich in Fe. Needs to heat-treat the molded body at 700 ° C. or higher. That is, when using a composite magnetic material, it is important to heat-treat the molded body at a high temperature while maintaining the insulation between the metal magnetic particles.
  • Epoxy resin, phenol resin, vinyl chloride resin, etc. are used as the insulating binder for the composite magnetic material. Since such an organic resin has low heat resistance, the molded body is thermally decomposed when heat-treated at a high temperature in order to alleviate strain. Therefore, such an insulating binder cannot be used.
  • Patent Document 1 For such a problem, for example, a method using a polysiloxane resin has been proposed (for example, Patent Document 1).
  • the present invention is a composite magnetic material capable of high-temperature heat treatment and realizing excellent magnetic properties and a method for producing the same.
  • the composite magnetic material of the present invention contains metal magnetic powder composed of a plurality of metal magnetic particles and mica as an inorganic insulator interposed between the metal magnetic particles.
  • the content of Fe contained in mica is 15 wt% or less in terms of Fe 2 O 3 when the entire mica is 100 wt%.
  • the method for producing a composite magnetic material of the present invention first, the metal magnetic powder and mica are mixed and dispersed between each other to prepare a mixed powder. Thereafter, this mixed powder is pressure-molded to form a compact. Then, the molded body is heat treated.
  • the content of Fe contained in mica is 15 wt% or less in terms of Fe 2 O 3 when the entire mica is 100 wt%.
  • mica which is an inorganic insulator excellent in heat resistance
  • the reaction between the metal magnetic particles during the high temperature heat treatment can be suppressed.
  • the content of Fe in mica to 15 wt% or less in terms of Fe 2 O 3 , it is possible to produce a composite magnetic material having sufficient magnetic properties while ensuring sufficient insulation between metal magnetic particles.
  • the heat resistance of the insulating material that insulates between the metal magnetic particles is improved to some extent as compared with organic resins such as epoxy resin and phenol resin.
  • the heat-resistant temperature is about 500 to 600 ° C., and heat treatment at higher temperatures is difficult.
  • the composite magnetic material according to the present embodiment includes a metal magnetic powder composed of a plurality of metal magnetic particles and mica as an inorganic insulator interposed between the metal magnetic particles.
  • Mica is roughly classified into mineral mica, which is a natural resource, and artificial mica produced by solid-phase reaction synthesis or melt synthesis.
  • the mineral mica include muscovite, phlogopite, biotite and the like
  • examples of the artificial mica include fluorine tetrasilicon mica and fluorine phlogopite. Any mica can be used in the present embodiment.
  • mica is excellent in heat resistance, it is possible to suppress reaction between metal magnetic particles even during high-temperature heat treatment by interposing between metal magnetic particles.
  • the Fe content is 15 wt% or less in terms of Fe 2 O 3 .
  • Fe can take divalent and trivalent valences, which may cause hopping conduction.
  • the electron conductivity due to the above factors can be reduced, and the insulation of mica itself can be improved.
  • the inclusion of Fe in the mica reduces the hardness of the mica itself and improves the deformability. Therefore, the composite magnetic material can be densified after pressure molding. Therefore, it is more preferable that the mica contains a slight amount of Fe. Specifically, it is preferable that the mica Fe content is in the range of 0.5 wt% or more and 15 wt% or less in terms of Fe 2 O 3 . As a result, excellent magnetic properties can be realized.
  • the mica has a flat shape.
  • the amount of mica added can be reduced, and the filling rate of the metal magnetic powder in the composite magnetic material can be increased.
  • the magnetic characteristics can be improved.
  • the aspect ratio of the mica particles is 4 or more.
  • the preferred average length of the major axis in mica is about 0.02 to 1.5 times the average particle diameter of the metal magnetic particles.
  • the amount of mica added is preferably 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the metal magnetic powder. By making the addition amount within this range, sufficient electrical insulation between the metal magnetic particles can be secured, and the filling rate of the metal magnetic powder in the compact of the composite magnetic material (for example, dust core) Improves the magnetic properties.
  • the metal magnetic powder contains at least Fe, and preferably comprises at least one selected from the group consisting of Fe, Fe—Si alloys, Fe—Ni alloys, and Fe—Si—Al alloys. Has been.
  • the content of Si in the Fe—Si alloy is preferably 1 wt% or more and 8 wt% or less, and the balance is Fe and inevitable impurities.
  • Si content is 1 wt% or more, the magnetic characteristics are improved, and when the Si content is 8 wt% or less, the saturation magnetic flux density is increased and the deterioration of the DC superposition characteristics can be suppressed.
  • the magnetic properties can be improved and the magnetic anisotropy and magnetostriction constant can be reduced.
  • Si reacts with oxygen to form a thin Si oxide on the surface of the metal magnetic particles. Therefore, electrical insulation between the metal magnetic particles can be improved and eddy current loss can be reduced.
  • the Ni content is preferably 40 wt% or more and 90 wt% or less, and the balance is Fe and inevitable impurities.
  • the Ni content is 40 wt% or more, the magnetic characteristics are improved.
  • the Ni content is 90 wt% or less, the saturation magnetic flux density is increased and the deterioration of the DC superposition characteristics can be suppressed.
  • about 1 wt% to 6 wt% of Mo may be added. In this case, the magnetic permeability can be increased.
  • the Si content is preferably 6 wt% or more and 10 wt% or less
  • the Al content is preferably 5 wt% or more and 9 wt% or less
  • the balance is Fe and inevitable impurities.
  • a magnetic powder composed of an Fe—Si—Al-based alloy is preferred because it has the lowest loss and improves the total soft magnetic properties.
  • the average particle diameter of the metal magnetic particles is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the molding density can be increased and the magnetic properties are improved.
  • the eddy current loss in a high frequency can be reduced because an average particle diameter shall be 100 micrometers or less. More preferably, it is good to set it as 50 micrometers or less.
  • the average particle size of the metal magnetic particles can be measured by a laser diffraction particle size distribution measurement method. In this measurement method, the particle diameter of a particle to be measured that shows the same diffraction / scattered light pattern as a sphere having a diameter of 10 ⁇ m is 10 ⁇ m regardless of its shape.
  • the metal magnetic particles are preferably spherical, and the aspect ratio is in the range of 1 to 3, more preferably in the range of 1 to 2.
  • the molding density can be improved in the molded body formed by pressure molding of the metal magnetic powder, which contributes to the improvement of the magnetic permeability.
  • the method for producing the metal magnetic powder is not particularly limited. Various atomization methods and various pulverized powders can be used.
  • a method for manufacturing the composite magnetic material in the present embodiment will be described.
  • a magnetic metal powder and an inorganic insulator are mixed and dispersed together to prepare a mixed powder.
  • Various ball mills such as a rotating ball mill and a planetary ball mill, a V blender, a planetary mixer, and the like can be used.
  • a binder is mixed with the above mixed powder to prepare a granulated powder.
  • the apparatus and method used in this granulation step are not particularly limited.
  • the method used for mixing and dispersing the above-described metal magnetic powder and inorganic insulator can be used. It is also possible to add a binder at the same time when mixing and dispersing the metal magnetic powder and the inorganic insulator.
  • the granulation process is not essential.
  • the binder it is possible to use various coupling agents of silane, titanium, chromium, and aluminum, silicone resin, epoxy resin, acrylic resin, butyral resin, phenol resin, and the like.
  • Preferable examples include various silane-based, titanium-based, chromium, and aluminum-based coupling agents or silicone resins. When these are used, the oxide remains in the composite magnetic material after the high-temperature heat treatment.
  • the remaining oxide plays a role of bonding the metal magnetic particles and the inorganic insulator, and increases the mechanical strength of the composite magnetic material after the high-temperature heat treatment.
  • an epoxy resin, an acrylic resin, a butyral resin, a phenol resin, or the like may be added simultaneously as long as the mechanical strength of the composite magnetic material can be sufficiently secured.
  • the molding method in this pressure molding step is not particularly limited, and a normal pressure molding method can be applied.
  • the molding pressure is preferably in the range of 6 ton / cm 2 or more and 20 ton / cm 2 or less.
  • the molding pressure is lower than 6 ton / cm 2 , the filling rate of the metal magnetic powder becomes low, and high magnetic properties cannot be obtained.
  • the mold becomes larger and the productivity is lowered to ensure the mechanical strength of the mold during pressure molding, leading to an increase in product cost.
  • the molded body is heat-treated.
  • the reduced magnetic properties are recovered by relaxing the processing strain introduced into the metal magnetic powder during pressure molding.
  • a higher heat treatment temperature is preferable because more processing strain can be relaxed.
  • the heat treatment temperature is preferably in the range of 700 ° C. or higher and 1000 ° C. or lower. By performing the heat treatment within this temperature range, the processing strain can be sufficiently relaxed. Therefore, it is possible to improve the magnetic characteristics of the compact and suppress eddy current loss.
  • the atmosphere of the heat treatment process is preferably a non-oxidizing atmosphere in order to suppress a decrease in soft magnetic characteristics due to oxidation of the metal magnetic powder.
  • the molded body may be heat-treated in an inert atmosphere such as argon gas, nitrogen gas or helium gas, a reducing atmosphere such as hydrogen gas, or a vacuum atmosphere.
  • Sample No. listed in (Table 1). 1 to Sample No. 11 is composed of Si: 8.9 wt%, Al: 5.4 wt%, and the balance is Fe and inevitable impurities.
  • the average particle size is 22 ⁇ m.
  • the aspect ratio of mica, which is an inorganic insulator, is 30, and the average length of the major axis is 15 ⁇ m.
  • Other specifications are as described in (Table 1). That is, sample no. 1 to Sample No. 11, the mica Fe content is different.
  • the amount of mica added is 1.2 parts by weight with respect to 100 parts by weight of the metal magnetic powder.
  • a mixed powder is prepared by mixing the metal magnetic powder and each mica.
  • a silicone resin as a binder After adding 1.0 part by weight of a silicone resin as a binder to 100 parts by weight of the obtained mixed powder, a small amount of toluene is added and kneaded and dispersed to prepare a granulated powder.
  • the granulated powder is pressure-molded at a molding pressure of 11 ton / cm 2 and then heat-treated at 850 ° C. for 1 h in an argon gas atmosphere.
  • the shape of the produced sample is a toroidal core, the outer shape is 14 mm, the inner diameter is 10 mm, and the height is about 2 mm.
  • DC superimposition characteristics and core loss are evaluated for the obtained samples.
  • the DC superposition characteristics the magnetic permeability at an applied magnetic field of 54 Oe and a frequency of 110 kHz is measured with an LCR meter.
  • the core loss is measured using an AC BH curve measuring machine at a measurement frequency of 120 kHz and a measurement magnetic flux density of 0.1 T. Further, the content of Fe in mica is obtained by ICP emission analysis. The measurement results are shown in (Table 1).
  • Table 1 shows that the content of Fe in mica is 15 wt% or less in terms of Fe 2 O 3 .
  • the toroidal cores 1 to 9 are sample Nos. It can be seen that the magnetic permeability and the core loss are much better than those of 10 and 11.
  • Sample No. The contents of Fe in mica at 10 and 11 are 16 wt% and 20 wt%, respectively, in terms of Fe 2 O 3 .
  • sample no. 1 to Sample No. 3 and sample no. 4 to Sample No. 9 is preferable, the Fe content is preferably in the range of 0.5 wt% or more and 15 wt% or less in terms of Fe 2 O 3 , and shows better magnetic permeability and lower core loss.
  • the material composition of the metal magnetic powder in No. 21 is Ni: 49 wt%, and the balance is Fe and inevitable impurities.
  • the average particle size is 16 ⁇ m.
  • the aspect ratio of mica is 20, and the average length of the major axis is 10 ⁇ m. Fluorophlogopite is used as mica.
  • Other specifications are as described in (Table 2). That is, sample no. 12 to Sample No. In No. 21, the mica Fe content is different.
  • the amount of mica added is 1.0 part by weight with respect to 100 parts by weight of the metal magnetic powder.
  • a mixed powder is prepared by mixing the metal magnetic powder and each mica.
  • the prepared sample shape is a toroidal core having the same dimensions as described above.
  • DC superimposition characteristics and core loss are evaluated for the obtained samples.
  • the DC superposition characteristics the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 120 kHz is measured with an LCR meter.
  • the core loss is measured using an AC BH curve measuring machine at a measurement frequency of 110 kHz and a measurement magnetic flux density of 0.1 T.
  • the content of Fe in mica is obtained by ICP emission analysis. The measurement results are shown in (Table 2).
  • Table 2 shows that the sample No. 1 in which the content of Fe in mica is 15 wt% or less in terms of Fe 2 O 3 is used.
  • the toroidal cores 12 to 19 have sample nos. It can be seen that the magnetic permeability and remarkably lower core loss than those of 20 and 21 are exhibited.
  • Sample No. The contents of Fe in mica at 20 and 21 are 16 wt% and 19 wt% in terms of Fe 2 O 3 , respectively.
  • Sample No. 12 to Sample No. 14 and Sample No. 15 to Sample No. Comparison with 19 shows that the Fe content is preferably in the range of 0.5 wt% or more and 15 wt% or less in terms of Fe 2 O 3 , and shows more excellent magnetic permeability and low core loss.
  • the material composition of the metal magnetic powder in 31 is Si: 5.1 wt%, and the balance is Fe and inevitable impurities.
  • the average particle size is 19 ⁇ m.
  • the aspect ratio of mica is 6, and the average length of the major axis is 5 ⁇ m.
  • fluorine tetrasilicon mica is used as mica.
  • Other specifications are as described in (Table 3). That is, sample no. 22 to Sample No. In 31, the mica Fe content is different.
  • the amount of mica added is 2.0 parts by weight with respect to 100 parts by weight of the metal magnetic powder.
  • a mixed powder is prepared by mixing the metal magnetic powder and each mica.
  • the prepared sample shape is a toroidal core having the same dimensions as described above.
  • DC superimposition characteristics and core loss are evaluated for the obtained samples.
  • the magnetic permeability at an applied magnetic field of 52 Oe and a frequency of 120 kHz is measured with an LCR meter.
  • the core loss is measured using an AC BH curve measuring machine at a measurement frequency of 110 kHz and a measurement magnetic flux density of 0.1 T.
  • the content of Fe in mica is obtained by ICP emission analysis. The measurement results are shown in (Table 3).
  • Table 3 shows that the content of Fe in mica is 15 wt% or less in terms of Fe 2 O 3 and the sample No.
  • the toroidal cores 22 to 29 are sample Nos. It can be seen that the magnetic permeability and the core loss are much better than those of 30 and 31.
  • Sample No. The contents of Fe in mica at 30 and 31 are 16 wt% and 25 wt%, respectively, in terms of Fe 2 O 3 .
  • the Fe content is preferably in the range of 0.5 wt% or more and 15 wt% or less in terms of Fe 2 O 3 , and it can be seen that more excellent magnetic permeability and low core loss are exhibited.
  • the composite magnetic material according to the present embodiment has excellent magnetic properties because the content of Fe in mica is 15 wt% or less in terms of Fe 2 O 3 . Further, the content of Fe in the mica is more preferably 0.5 wt% or more and 15 wt% or less in terms of Fe 2 O 3 .
  • the content of Fe in mica is more preferably 0.5 wt% or more and 8 wt% or less in terms of Fe 2 O 3.
  • the content of Fe in mica is 0.5 wt% or more in terms of Fe 2 O 3 , More preferably, it is 9 wt% or less. Therefore, when any one of the above three types of metal magnetic powders is used, the content of Fe in the mica is more preferably 0.5 wt% or more and 8 wt% or less in terms of Fe 2 O 3 .
  • the metal magnetic powder in 37 is Fe powder having an average particle diameter of 10 ⁇ m.
  • the aspect ratio of mica is 20, and the average length of the major axis is 8 ⁇ m.
  • Fluorophlogopite is used as mica.
  • the Fe content of mica obtained by ICP emission analysis is 4 wt% in terms of Fe 2 O 3 .
  • the amount of mica added is 3.0 parts by weight with respect to 100 parts by weight of the metal magnetic powder.
  • a mixed powder is prepared by mixing the metal magnetic powder and each mica.
  • the prepared sample shape is a toroidal core having the same dimensions as described above.
  • DC superimposition characteristics and core loss are evaluated for the obtained samples.
  • the DC superposition characteristics the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 150 kHz is measured with an LCR meter.
  • the core loss is measured using an AC BH curve measuring machine at a measurement frequency of 100 kHz and a measurement magnetic flux density of 0.1 T. The measurement results are shown in (Table 4).
  • Table 4 shows that the sample No. 5 produced with a molding pressure of 6 ton / cm 2 or more. It can be seen that toroidal cores of 33 to 37 exhibit excellent magnetic permeability and low core loss.
  • the material composition of the metal magnetic powder in 45 is Ni: 78 wt%, Mo: 4.3 wt%, and the balance is Fe and inevitable impurities.
  • the average particle size is 18 ⁇ m.
  • the aspect ratio of mica is 35, and the average length of the major axis is 11 ⁇ m. Fluorophlogopite is used as mica.
  • the Fe content of mica obtained by ICP emission analysis is 3 wt% in terms of Fe 2 O 3 .
  • the amount of mica added is 2.5 parts by weight with respect to 100 parts by weight of the metal magnetic powder.
  • a mixed powder is prepared by mixing the metal magnetic powder and each mica.
  • DC superimposition characteristics and core loss are evaluated for the obtained samples.
  • the DC superposition characteristics the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 120 kHz is measured with an LCR meter.
  • the core loss is measured using an AC BH curve measuring machine at a measurement frequency of 120 kHz and a measurement magnetic flux density of 0.1 T. The measurement results are shown in (Table 5).
  • the present invention is useful for realizing excellent magnetic properties in a composite magnetic material used in an inductor, choke coil, transformer, etc. of an electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 複合磁性材料は、複数の金属磁性粒子で構成された金属磁性粉末と、この金属磁性粒子間に介在する無機絶縁物として雲母を含む。雲母に含まれるFeの含有量は雲母の全体を100wt%としたときにFe換算で15wt%以下である。この複合磁性材料を作製するには、まず上記金属磁性粉末と雲母とを混合し、互いの間に分散させて混合粉末を調製する。その後、この混合粉末を加圧成形して成形体を形成する。そして成形体を熱処理する。

Description

複合磁性材料とその製造方法
 本発明は電子機器のインダクタ、チョークコイル、トランス等に用いられる複合磁性材料とその製造方法に関する。
 近年の電気・電子機器の小型化に伴い、磁性材料を用いたインダクタ部品についても小型化かつ高効率化が要求されている。インダクタ部品として、例えば高周波回路で用いられるチョークコイルでは、フェライト粉末を用いたフェライト磁芯および金属磁性粉末の成形体である複合磁性材料(圧粉磁芯)が用いられている。
 このうち、フェライト磁芯は飽和磁束密度が小さく、直流重畳特性が低いという欠点を有している。このため、従来のフェライト磁芯においては、直流重畳特性を確保すべく磁路に対して垂直な方向に数100μm程度のギャップを設け、直流重畳時のインダクタンスL値の低下を防止している。しかしながら、このような広いギャップはうなり音の発生源となる。また特に高周波帯域においてギャップから発生する漏洩磁束によって、銅巻線に著しい銅損が発生する。
 これに対して、金属磁性粉末を成形して作製される複合磁性材料は、フェライト磁芯に比べて著しく大きい飽和磁束密度を有しており、小型化には有利である。また、フェライト磁芯と異なりギャップ無しで使用できるため、うなり音や漏洩磁束による銅損が小さい。
 しかしながら、透磁率およびコア損失については、複合磁性材料はフェライト磁芯より優れているとはいえない。特にチョークコイルやインダクタに使用する複合磁性材料では、コア損失が大きい分、コアの温度上昇が大きくなる。したがって複合磁性材料を用いたインダクタ部品は小型化しにくい。また、その磁気特性を向上するために複合磁性材料の成形密度を上げる必要がある。通常、6ton/cm以上の成形圧力が必要であり、製品によっては10ton/cm以上の成形圧力が必要である。
 複合磁性材料のコア損失は、通常、渦電流損失とヒステリシス損失とからなる。一般的に金属磁性粉末の固有抵抗値は低い。そのため、磁界が変化すると、その変化を抑制するように渦電流が流れる。したがって、渦電流損失が問題となる。渦電流損失は周波数の二乗および渦電流が流れるサイズの二乗に比例して増大する。したがって、金属磁性粉末を構成する金属磁性粒子の表面を絶縁材で被覆すれば、渦電流が流れるサイズを金属磁性粒子間にわたるコア全体から、金属磁性粒子内のみに抑えることができる。その結果、渦電流損失を低減させることができる。
 一方、複合磁性材料は高い圧力で成形されるため、多数の加工歪が成形体に導入され、透磁率が低下し、ヒステリシス損失が増大する。これを回避するため、成形加工後、必要に応じて歪みを緩和するために成形体は熱処理される。一般的に金属磁性粉末に導入された歪の緩和は融点の1/2以上の熱処理温度で起こる現象であり、Feリッチ組成の合金において歪みを十分に緩和するためには少なくとも600℃以上、好ましくは700℃以上で成形体を熱処理する必要がある。すなわち、複合磁性材料を用いる場合、金属磁性粒子間の絶縁性を確保したままの状態で、成形体を高温で熱処理することが重要である。
 複合磁性材料用の絶縁性結着剤としては、エポキシ樹脂、フェノール樹脂、塩化ビニル樹脂等が使用される。このような有機系樹脂の耐熱性は低いため、歪みを緩和するために成形体を高温で熱処理すると熱分解される。したがってこのような絶縁性結着剤を使用することはできない。
 このような課題に対し、例えばポリシロキサン樹脂を用いる方法が提案されている(例えば、特許文献1)。
特開平6-29114号公報
 本発明は、高温熱処理を可能とし優れた磁気特性を実現する複合磁性材料とその製造方法である。本発明の複合磁性材料は、複数の金属磁性粒子で構成された金属磁性粉末と、この金属磁性粒子間に介在する無機絶縁物として雲母を含む。雲母に含まれるFeの含有量は雲母の全体を100wt%としたときにFe換算で15wt%以下である。また本発明の複合磁性材料の製造方法では、まず上記金属磁性粉末と雲母とを混合し、互いの間に分散させて混合粉末を調製する。その後、この混合粉末を加圧成形して成形体を形成する。そして成形体を熱処理する。雲母に含まれるFeの含有量は雲母の全体を100wt%としたときにFe換算で15wt%以下である。
 本発明の複合磁性材料では、金属磁性粒子間に耐熱性に優れた無機絶縁物である雲母が介在する。そのため、高温熱処理時における金属磁性粒子間の反応を抑制することができる。また、雲母のFeの含有量をFe換算で15wt%以下とすることにより金属磁性粒子間の絶縁性を十分に確保し優れた磁気特性を有する複合磁性材料を作製することができる。
 ポリシロキサン樹脂を用いることで、エポキシ樹脂、フェノール樹脂等の有機系樹脂に比べて金属磁性粒子間を絶縁する絶縁材の耐熱性はある程度、向上する。しかしながらポリシロキサン樹脂を用いても、耐熱温度は500~600℃程度でありそれ以上の温度での熱処理は困難である。
 以下、本発明の実施の形態による複合磁性材料について説明する。本実施の形態による複合磁性材料は、複数の金属磁性粒子で構成された金属磁性粉末と、この金属磁性粒子間に介在する無機絶縁物として雲母を含む。
 雲母は天然資源である鉱物雲母と、固相反応合成や溶融合成により製造される人工雲母に大別される。鉱物雲母としては白雲母、金雲母、黒雲母等、人工雲母としてはフッ素四珪素雲母、フッ素金雲母等が挙げられる。本実施の形態においては、いずれの雲母でも用いることが可能である。
 雲母は耐熱性に優れるため、金属磁性粒子間に介在することにより、高温熱処理時においても金属磁性粒子間の反応を抑制することができる。
 雲母においてFeの含有量はFe換算で15wt%以下である。Feは価数として2価および3価をとり得ることから、ホッピング伝導を生じる可能性がある。雲母中のFeの含有量をFe換算で15wt%以下に制限することにより、上記要因による電子伝導性を低減し、雲母自体の絶縁性を向上させることができる。
 なお理由は明確ではないが、雲母中にFeを含有することによって、雲母自体の硬度が低下して変形性が向上する。そのため、加圧成形後に複合磁性材料を高密度化することができる。したがって雲母がわずかにFeを含んでいるほうがより好ましい。具体的には、雲母のFeの含有量をFe換算で0.5wt%以上、15wt%以下の範囲にすることが好ましい。その結果、優れた磁気特性を実現することができる。
 また、雲母が扁平形状を有することが好ましい。扁平形状粉末を用いた場合、球状粉末と比較して金属磁性粒子間の絶縁性を確保しやすい。そのため、雲母の添加量を低減することができ、複合磁性材料中の金属磁性粉末の充填率を上げることができる。その結果、磁気特性を向上することができる。雲母の粒子のアスペクト比が4以上であることがより好ましい。
 なお、扁平形状の雲母における長軸の平均長さが、金属磁性粒子の平均粒子径よりも小さ過ぎると金属磁性粒子間の絶縁性が低下してしまい、先に説明した扁平形状による絶縁効果が得られにくいものとなる。この場合、雲母の添加量を増加させる必要があり、複合磁性材料中の金属磁性粉末の充填率が低下し、磁気特性が低下する。一方、雲母の長軸の平均長さが金属磁性粒子の平均粒子径よりも大きすぎると金属磁性粒子同士が一部接触し、金属磁性粒子間の電気絶縁性が十分に確保されず、渦電流損失が増加する。したがって、雲母における好ましい長軸の平均長さは、金属磁性粒子の平均粒子径に対して0.02倍~1.5倍程度である。
 また、雲母の添加量は、金属磁性粉末100重量部に対し0.1重量部以上、5重量部以下が好ましい。添加量をこの範囲内にすることで、金属磁性粒子間の電気絶縁性を十分に確保することができるとともに、複合磁性材料の成形体(例えば、圧粉磁心)中の金属磁性粉末の充填率が向上して磁気特性が向上する。
 本実施の形態において、金属磁性粉末は、少なくともFeを含み、好ましくはFe、Fe-Si系合金、Fe-Ni系合金、Fe-Si-Al系合金よりなる群から選ばれる少なくとも1種で構成されている。
 Fe-Si系合金におけるSiの含有量は1wt%以上、8wt%以下が好ましく、残部はFe及び不可避な不純物である。Siの含有量が1wt%以上であれば、磁気特性が高くなり、8wt%以下であれば飽和磁束密度が大きくなるとともに、直流重畳特性の低下を抑制することができる。
 上記のようにSiの含有量を制限することによって、磁気特性が向上するとともに、磁気異方性および磁歪定数を小さくすることができる。また、Siは酸素と反応して、金属磁性粒子の表面に微小な薄さのSi酸化物を形成する。そのため、金属磁性粒子間の電気絶縁性を高め、渦電流損失を低減させることができる。
 Fe-Ni系合金における、Niの含有量は40wt%以上、90wt%以下が好ましく、残部はFe及び不可避な不純物である。Niの含有量が40wt%以上であれば、磁気特性が高くなり、90wt%以下であれば飽和磁束密度が大きくなるとともに、直流重畳特性の低下を抑制することができる。さらに、1wt%~6wt%程度のMoを添加してもよい。この場合、透磁率を高くすることができる。
 Fe-Si-Al系合金における、Siの含有量は6wt%以上、10wt%以下、Alの含有量は5wt%以上、9wt%以下が好ましく、残部はFe及び不可避な不純物である。Si、Alの添加量を上記組成範囲内にすることにより、軟磁気特性を向上させることができるとともに、飽和磁束密度を大きくし、直流重畳特性の低下を抑制することができる。
 なお、上述した種々の金属磁性粉末のうち、Fe-Si-Al系合金で構成された磁性粉末は、最も低損失でありトータルの軟磁気特性が向上するものとなり好ましい。
 金属磁性粒子の平均粒径は、1μm以上、100μm以下であることが好ましい。平均粒径を1μm以上とすることにより成形密度を高くすることができるとともに磁気特性が向上する。また平均粒径を100μm以下とすることで、高周波での渦電流損失を低減することができる。さらに好ましくは50μm以下とすることが良い。なお、金属磁性粒子の平均粒子径は、レーザ回折式粒度分布測定法により測定できる。この測定法では、直径10μmの球と同じ回折・散乱光のパターンを示す被測定粒子の粒子径は、その形状に関わらず10μmとする。
 なお、金属磁性粒子の形状が扁平形状または鱗片形状などのように表面積が大きい場合、金属磁性粒子は互いに接触してしまい、渦電流損失が大きくなってしまう。そのため、金属磁性粒子は球形状が好ましく、アスペクト比が1~3の範囲、さらに好ましくは1~2の範囲である。また、金属磁性粒子が球状であることで、金属磁性粉末を加圧成形して形成された成形体において、成形密度を向上させることができ、透磁率向上に寄与する。
 金属磁性粉末の製造方法は特に限定されない。各種アトマイズ法や各種粉砕粉を用いることが可能である。
 次に本実施の形態における複合磁性材料の製造方法について説明する。まず金属磁性粉末と無機絶縁物とを混合し、互いに分散させて混合粉末を調製する。この混合、分散工程に用いる装置や工法は特に限定されない。回転ボールミル、遊星型ボールミル等各種ボールミル、またはVブレンダー、プラネタリーミキサー等を用いることが可能である。
 次に上記混合粉末に結合材を混合して造粒粉を調製する。この造粒工程においても用いる装置や工法は特に限定されない。上述した金属磁性粉末と無機絶縁物の混合、分散に用いる方法を使用することができる。また、金属磁性粉末と無機絶縁物とを混合、分散する際に同時に結合材を添加することも可能である。ただし造粒工程は必須ではない。
 結合材としては、シラン系、チタン系、クロム系、アルミニウム系の各種カップリング剤や、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ブチラール樹脂、フェノール樹脂などを用いることが可能である。好ましくは、シラン系、チタン系、クロム、アルミニウム系の各種カップリング剤またはシリコーン樹脂等があげられる。これらを用いると、高温熱処理後にその酸化物が複合磁性材料中に残存する。
 残存する酸化物は、金属磁性粒子と無機絶縁物とを結合する役割を果たし、高温熱処理後の複合磁性材料の機械強度を高める。なお、複合磁性材料の機械強度を十分に確保できるのであれば、エポキシ樹脂、アクリル樹脂、ブチラール樹脂、フェノール樹脂等を同時に添加しても良い。
 次に上記造粒粉を加圧成形して成形体を形成する。この加圧成形工程の成形方法は特に限定されず、通常の加圧成形法を適用できる。成形圧力は、6ton/cm以上、20ton/cm以下の範囲であることが好ましい。成形圧力が6ton/cmより低いと金属磁性粉末の充填率が低くなり、高い磁気特性が得られない。また、20ton/cmより高いと加圧成形時の金型の機械強度を確保するため金型が大型化して生産性が低くなり、製品のコストアップにつながる。
 次に上記成形体を熱処理する。熱処理工程では、加圧成形時に金属磁性粉末に導入される加工歪みを緩和することで、低下した磁気特性が回復する。熱処理温度はより高いほうが、より多くの加工歪を緩和することができるため好ましい。しかしながら、温度が高すぎると金属磁性粒子同士が焼結してしまうため、金属磁性粒子間の絶縁が不充分となり渦電流損失が増大する。よって熱処理温度は700℃以上、1000℃以下の範囲とすることが好ましい。この温度範囲内で熱処理することにより加工歪を十分に緩和することができる。そのため、成形体の磁気特性を向上し、渦電流損失を抑制することができる。
 熱処理工程の雰囲気は、金属磁性粉末の酸化による軟磁気特性低下を抑制するため非酸化性雰囲気が好ましい。例えばアルゴンガス、窒素ガス、ヘリウムガス等の不活性雰囲気、水素ガス等還元雰囲気、真空雰囲気で成形体を熱処理すればよい。
 以下、本実施の形態による複合磁性材料について実施例を用いて詳細に説明する。
 まず、(表1)を参照しながら、金属磁性粉末としてFe-Si-Al系磁性粉末を用い、無機絶縁物として雲母を用いた複合磁性材料のサンプルを調製し、磁気特性を測定した結果について説明する。
 (表1)に記載の試料No.1~試料No.11における金属磁性粉末の材料組成は、Si:8.9wt%、Al:5.4wt%、残部はFe及び不可避な不純物である。平均粒子径は22μmである。また無機絶縁物である雲母のアスペクト比は30、長軸の平均長さは15μmである。それ以外の諸元は(表1)に記載のとおりである。すなわち、試料No.1~試料No.11では、雲母のFe含有量が異なる。なお雲母の添加量は金属磁性粉末100重量部に対して1.2重量部である。まず、上記金属磁性粉末とそれぞれの雲母とを混合して混合粉末を調製する。
 得られた混合粉末100重量部に、結合材としてシリコーン樹脂を1.0重量部添加した後、トルエンを少量加えて混練分散して造粒粉を調製する。この造粒粉を成形圧力11ton/cmで加圧成形した後に、アルゴンガス雰囲気にて850℃で1h熱処理する。なお、作製した試料の形状は、トロイダルコアであり、外形は14mm、内径は10mm、高さは約2mmである。
 得られた試料について直流重畳特性およびコア損失を評価している。直流重畳特性については、印加磁場54Oe、周波数110kHzにおける透磁率をLCRメータにて測定している。コア損失については、交流B-Hカーブ測定機を用いて測定周波数120kHz、測定磁束密度0.1Tで測定している。また、雲母中のFeの含有量はICP発光分析法により求めている。これらの測定結果を(表1)に示す。
Figure JPOXMLDOC01-appb-T000001
 (表1)より、雲母中のFeの含有量がFe換算で15wt%以下の試料No.1~9のトロイダルコアは、試料No.10、11よりも格段に優れた透磁率および低いコア損失を示すことがわかる。試料No.10、11における雲母中のFeの含有量はFe換算でそれぞれ16wt%、20wt%である。
 さらに試料No.1~試料No.3と試料No.4~試料No.9とを比較すると、Feの含有量がFe換算で0.5wt%以上、15wt%以下の範囲が好ましく、より優れた透磁率と低いコア損失を示すことがわかる。
 次に、金属磁性粉末としてFe-Ni系磁性粉末を用い、無機絶縁物として雲母を用いた複合磁性材料のサンプルを調製し、磁気特性を測定した結果について説明する。
 (表2)に記載の試料No.12~試料No.21における金属磁性粉末の材料組成は、Ni:49wt%、残部はFe及び不可避な不純物である。平均粒子径は16μmである。また雲母のアスペクト比は20、長軸の平均長さは10μmである。また雲母としてフッ素金雲母を用いている。それ以外の諸元は(表2)に記載のとおりである。すなわち、試料No.12~試料No.21では、雲母のFe含有量が異なる。なお雲母の添加量は金属磁性粉末100重量部に対して1.0重量部である。まず、上記金属磁性粉末とそれぞれの雲母とを混合して混合粉末を調製する。
 得られた混合粉末100重量部に、チタン系カップリング材を0.7重量部とブチラール樹脂を0.6重量部とを添加した後にエタノールを少量加え混練分散して、造粒粉を調製する。この造粒粉を9ton/cmで加圧成形した後に、窒素ガス雰囲気にて780℃で0.5h熱処理する。作製した試料形状は前述と同じ寸法のトロイダルコアである。
 得られた試料について直流重畳特性およびコア損失を評価している。直流重畳特性については、印加磁場50Oe、周波数120kHzにおける透磁率をLCRメータにて測定している。コア損失については、交流B-Hカーブ測定機を用いて測定周波数110kHz、測定磁束密度0.1Tで測定している。また、雲母中のFeの含有量はICP発光分析法により求めている。これらの測定結果を(表2)に示す。
Figure JPOXMLDOC01-appb-T000002
 (表2)より、雲母中のFeの含有量がFe換算で15wt%以下の試料No.12~19のトロイダルコアは、試料No.20、21よりも格段に優れた透磁率および低いコア損失を示すことがわかる。試料No.20、21における雲母中のFeの含有量はFe換算でそれぞれ16wt%、19wt%である。
 また、試料No.12~試料No.14と試料No.15~試料No.19とを比較すると、Feの含有量がFe換算で0.5wt%以上、15wt%以下の範囲が好ましく、より優れた透磁率と低いコア損失を示すことがわかる。
 次に、金属磁性粉末としてFe-Si系磁性粉末を用い、無機絶縁物として雲母を用いた複合磁性材料のサンプルを調製し、磁気特性を測定した結果について説明する。
 (表3)に記載の試料No.22~試料No.31における金属磁性粉末の材料組成は、Si:5.1wt%、残部はFe及び不可避な不純物である。平均粒子径は19μmである。また雲母のアスペクト比は6、長軸の平均長さは5μmである。また雲母としてフッ素四珪素雲母を用いている。それ以外の諸元は(表3)に記載のとおりである。すなわち、試料No.22~試料No.31では、雲母のFe含有量が異なる。なお雲母の添加量は金属磁性粉末100重量部に対して2.0重量部である。まず、上記金属磁性粉末とそれぞれの雲母とを混合して混合粉末を調製する。
 得られた混合粉末100重量部に、アクリル樹脂を1.5重量部添加した後、トルエンを少量加え混練分散して、造粒粉を調製する。この造粒粉を16ton/cmで加圧成形した後に、アルゴンガス雰囲気にて900℃で1.0h熱処理する。作製した試料形状は前述と同じ寸法のトロイダルコアである。
 得られた試料について直流重畳特性およびコア損失を評価している。直流重畳特性については、印加磁場52Oe、周波数120kHzにおける透磁率をLCRメータにて測定している。コア損失については交流B-Hカーブ測定機を用いて測定周波数110kHz、測定磁束密度0.1Tで測定している。また、雲母中のFeの含有量はICP発光分析法により求めている。これらの測定結果を(表3)に示す。
Figure JPOXMLDOC01-appb-T000003
 (表3)より、雲母中のFeの含有量がFe換算で15wt%以下の試料No.22~29のトロイダルコアは、試料No.30、31よりも格段に優れた透磁率および低いコア損失を示すことがわかる。試料No.30、31における雲母中のFeの含有量はFe換算でそれぞれ16wt%、25wt%である。
 また、試料No.22~試料No.24と試料No.25~試料No.29とを比較すると、Feの含有量がFe換算で0.5wt%以上、15wt%以下の範囲が好ましく、より優れた透磁率と低いコア損失を示すことがわかる。
 以上のように、本実施の形態による複合磁性材料は、雲母中のFeの含有量がFe換算で15wt%以下であるため、優れた磁気特性を有する。さらに雲母中のFeの含有量がFe換算で0.5wt%以上、15wt%以下であることがより好ましい。
 また(表1)の結果から、Fe-Si-Al系磁性粉末を用いる場合、雲母中のFeの含有量がFe換算で0.5wt%以上、8wt%以下であることがさらに好ましい。(表2)、(表3)の結果から、Fe-Ni系磁性粉末やFe-Si系磁性粉末を用いる場合、雲母中のFeの含有量がFe換算で0.5wt%以上、9wt%以下であることがさらに好ましい。したがって上記3種類の金属磁性粉末のいずれかを用いた場合、雲母中のFeの含有量がFe換算で0.5wt%以上、8wt%以下であることがさらに好ましい。
 次に、金属磁性粉末としてFe粉末を用い、無機絶縁物として雲母を用いた複合磁性材料の作製時の成形圧を変えたサンプルを調製し、磁気特性を測定した結果について説明する。
 (表4)に記載の試料No.32~試料No.37における金属磁性粉末は、平均粒径が10μmのFe粉末である。また雲母のアスペクト比は20、長軸の平均長さは8μmである。また雲母としてフッ素金雲母を用いている。ICP発光分析法により求めた雲母のFe含有量は、Fe換算で4wt%である。なお雲母の添加量は金属磁性粉末100重量部に対して3.0重量部である。まず、上記金属磁性粉末とそれぞれの雲母とを混合して混合粉末を調製する。
 得られた混合粉末100重量部に、シリコーン樹脂を2.0重量部添加した後、トルエンを少量加え混練分散して造粒粉を調製する。この造粒粉を(表4)に記載の成形圧で加圧成形した後に、アルゴンガス雰囲気にて750℃で1.5h熱処理する。作製した試料形状は前述と同じ寸法のトロイダルコアである。
 得られた試料について直流重畳特性およびコア損失を評価している。直流重畳特性については、印加磁場50Oe、周波数150kHzにおける透磁率をLCRメータにて測定している。コア損失については、交流B-Hカーブ測定機を用いて測定周波数100kHz、測定磁束密度0.1Tで測定している。これらの測定結果を(表4)に示す。
Figure JPOXMLDOC01-appb-T000004
 (表4)より、6ton/cm以上の成形圧で作製した試料No.33~37のトロイダルコアは優れた透磁率と低いコア損失を示すことがわかる。
 次に、金属磁性粉末としてFe-Ni-Mo系磁性粉末を用い、無機絶縁物として雲母を用いた複合磁性材料の作製時の熱処理温度を変えたサンプルを調製し、磁気特性を測定した結果について説明する。
 (表5)に記載の試料No.38~試料No.45における金属磁性粉末の材料組成は、Ni:78wt%、Mo:4.3wt%、残部はFe及び不可避な不純物である。平均粒子径は18μmである。また雲母のアスペクト比は35、長軸の平均長さは11μmである。また雲母としてフッ素金雲母を用いている。ICP発光分析法により求めた雲母のFe含有量は、Fe換算で3wt%である。なお雲母の添加量は金属磁性粉末100重量部に対して2.5重量部である。まず、上記金属磁性粉末とそれぞれの雲母とを混合して混合粉末を調製する。
 得られた混合粉末100重量部に、アルミニウム系カップリング材を1.0重量部とブチラール樹脂を0.8重量部添加した後、エタノールを少量加え混練分散して造粒粉を調製する。この造粒粉を8ton/cmにて加圧成形した後、窒素ガス雰囲気にて(表5)に記載の温度で0.5h熱処理する。作製した試料形状は前述と同じ寸法のトロイダルコアである。
 得られた試料について直流重畳特性およびコア損失を評価している。直流重畳特性については、印加磁場50Oe、周波数120kHzにおける透磁率をLCRメータにて測定している。コア損失については、交流B-Hカーブ測定機を用いて測定周波数120kHz、測定磁束密度0.1Tで測定している。これらの測定結果を(表5)に示す。
Figure JPOXMLDOC01-appb-T000005
 (表5)より、熱処理温度を700℃以上、1000℃以下として作製した試料No.40~43のトロイダルコアは優れた透磁率と低いコア損失を示すことがわかる。
 本発明は電子機器のインダクタ、チョークコイル、トランスその他に用いられる複合磁性体において、優れた磁気特性を実現する上で有用である。

Claims (7)

  1. 複数の金属磁性粒子で構成された金属磁性粉末と、前記金属磁性粒子間に介在する雲母とを含み、
    前記雲母に含まれるFeの含有量が前記雲母の全体を100wt%としたときにFe換算で15wt%以下である、
    複合磁性材料。
  2. 前記雲母に含まれるFeの含有量が前記雲母の全体を100wt%としたときにFe換算で0.5wt%以上、15wt%以下である、
    請求項1記載の複合磁性材料。
  3. 前記金属磁性粉末がFe、Fe-Si系合金、Fe-Ni系合金、Fe-Ni-Mo系合金、およびFe-Si-Al系合金よりなる群から選ばれる少なくとも1種で構成されている、
    請求項1記載の複合磁性材料。
  4. 前記金属磁性粉末がFe-Si-Al系合金で構成されている、
    請求項3記載の複合磁性材料。
  5. 複数の金属磁性粒子で構成された金属磁性粉末と雲母とを混合し、互いの間に分散させて混合粉末を調製するステップと、
    前記混合粉末を加圧成形して成形体を形成するステップと、
    前記成形体を熱処理するステップと、を備え、
    前記雲母に含まれるFeの含有量が前記雲母の全体を100wt%としたときにFe換算で15wt%以下である、
    複合磁性材料の製造方法。
  6. 前記成形体を形成する際に、6ton/cm以上、20ton/cm以下の成形圧力で加圧する、
    請求項5記載の複合磁性材料の製造方法。
  7. 前記成形体を熱処理する際の雰囲気は非酸化性雰囲気であり、熱処理温度は700℃以上、1000℃以下である、
    請求項5記載の複合磁性材料の製造方法。
PCT/JP2013/001753 2012-03-22 2013-03-15 複合磁性材料とその製造方法 WO2013140762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014506024A JP6229166B2 (ja) 2012-03-22 2013-03-15 インダクタ用複合磁性材料とその製造方法
EP13763567.8A EP2830070B1 (en) 2012-03-22 2013-03-15 Composite magnetic material and method for manufacturing same
CN201380015615.5A CN104221102B (zh) 2012-03-22 2013-03-15 复合磁性材料及其制造方法
US14/376,811 US9691529B2 (en) 2012-03-22 2013-03-15 Composite magnetic material and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-064998 2012-03-22
JP2012064998 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140762A1 true WO2013140762A1 (ja) 2013-09-26

Family

ID=49222244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001753 WO2013140762A1 (ja) 2012-03-22 2013-03-15 複合磁性材料とその製造方法

Country Status (5)

Country Link
US (1) US9691529B2 (ja)
EP (1) EP2830070B1 (ja)
JP (1) JP6229166B2 (ja)
CN (1) CN104221102B (ja)
WO (1) WO2013140762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002555A (ja) * 2019-06-20 2021-01-07 株式会社タムラ製作所 圧粉磁心及び圧粉磁心の製造方法
WO2022186222A1 (ja) * 2021-03-05 2022-09-09 パナソニックIpマネジメント株式会社 磁性材料、圧粉磁心、インダクタおよび圧粉磁心の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970207A (zh) * 2018-09-30 2020-04-07 广东德昌电机有限公司 印刷电路板以及使用该印刷电路板的电机
CN111484275B (zh) * 2020-04-24 2022-05-10 湖北平安电工材料有限公司 一种云母导磁板的制备方法
CN111516282B (zh) * 2020-04-24 2022-03-18 湖北平安电工材料有限公司 一种层压云母导磁板的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629114A (ja) 1992-07-09 1994-02-04 Toshiba Corp 圧粉磁心及びその製造方法
JP2003303711A (ja) * 2001-03-27 2003-10-24 Jfe Steel Kk 鉄基粉末およびこれを用いた圧粉磁心ならびに鉄基粉末の製造方法
JP2004217994A (ja) * 2003-01-14 2004-08-05 Honda Motor Co Ltd 磁性材料の製造方法及び磁性材料
JP2004339598A (ja) * 2003-05-19 2004-12-02 Honda Motor Co Ltd 複合軟磁性材料の製造方法
WO2009128427A1 (ja) * 2008-04-15 2009-10-22 東邦亜鉛株式会社 複合磁性材料の製造方法および複合磁性材料
WO2010038441A1 (ja) * 2008-10-01 2010-04-08 パナソニック株式会社 複合磁性材料及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255052A (en) 1963-12-09 1966-06-07 Magnetics Inc Flake magnetic core and method of making same
FR2700976B1 (fr) * 1993-02-04 1995-04-21 Mircal Procédé de récupération des micas par flottation et micas ainsi obtenus.
JP2008144278A (ja) * 2008-01-21 2008-06-26 Honda Motor Co Ltd 磁性材料
US8795407B2 (en) * 2008-12-22 2014-08-05 Hoganas Ab (Publ) Machinability improving composition
EP2509081A1 (en) 2011-04-07 2012-10-10 Höganäs AB New composition and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629114A (ja) 1992-07-09 1994-02-04 Toshiba Corp 圧粉磁心及びその製造方法
JP2003303711A (ja) * 2001-03-27 2003-10-24 Jfe Steel Kk 鉄基粉末およびこれを用いた圧粉磁心ならびに鉄基粉末の製造方法
JP2004217994A (ja) * 2003-01-14 2004-08-05 Honda Motor Co Ltd 磁性材料の製造方法及び磁性材料
JP2004339598A (ja) * 2003-05-19 2004-12-02 Honda Motor Co Ltd 複合軟磁性材料の製造方法
WO2009128427A1 (ja) * 2008-04-15 2009-10-22 東邦亜鉛株式会社 複合磁性材料の製造方法および複合磁性材料
WO2010038441A1 (ja) * 2008-10-01 2010-04-08 パナソニック株式会社 複合磁性材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2830070A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002555A (ja) * 2019-06-20 2021-01-07 株式会社タムラ製作所 圧粉磁心及び圧粉磁心の製造方法
JP7307603B2 (ja) 2019-06-20 2023-07-12 株式会社タムラ製作所 圧粉磁心及び圧粉磁心の製造方法
WO2022186222A1 (ja) * 2021-03-05 2022-09-09 パナソニックIpマネジメント株式会社 磁性材料、圧粉磁心、インダクタおよび圧粉磁心の製造方法

Also Published As

Publication number Publication date
US9691529B2 (en) 2017-06-27
EP2830070A4 (en) 2015-03-18
CN104221102B (zh) 2018-05-04
EP2830070A1 (en) 2015-01-28
JPWO2013140762A1 (ja) 2015-08-03
US20140373678A1 (en) 2014-12-25
JP6229166B2 (ja) 2017-11-15
CN104221102A (zh) 2014-12-17
EP2830070B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2010082486A1 (ja) 複合磁性材料の製造方法とそれを用いた圧粉磁芯及びその製造方法
JP5924480B2 (ja) 磁性粉末材料、その磁性粉末材料を含む低損失複合磁性材料、及びその低損失複合磁性材料を含む磁性素子
JP6365670B2 (ja) 磁心、磁心の製造方法およびコイル部品
JP2007299871A (ja) 複合磁性体の製造方法およびそれを用いて得られた複合磁性体
JP2015126047A (ja) 圧粉磁心、それを用いたコイル部品および圧粉磁心の製造方法
JPWO2012001943A1 (ja) 複合磁性体とその製造方法
JP5439888B2 (ja) 複合磁性材料およびその製造方法
JP6229166B2 (ja) インダクタ用複合磁性材料とその製造方法
WO2010038441A1 (ja) 複合磁性材料及びその製造方法
JP6471881B2 (ja) 磁心およびコイル部品
JP2013008762A (ja) 複合磁性材料
JP2012222062A (ja) 複合磁性材料
JP2012204744A (ja) 軟磁性金属粉末及びその製造方法、圧粉磁心及びその製造方法
CN109716454B (zh) 磁芯及线圈部件
JP2018198319A (ja) 圧粉磁心の製造方法
JP4106966B2 (ja) 複合磁性材料及びその製造方法
JP2011211026A (ja) 複合磁性材料
JP2004327762A (ja) 複合軟磁性材料
JP2004146563A (ja) 複合磁性材料
JP2003188009A (ja) 複合磁性材料
JP2018137349A (ja) 磁心およびコイル部品
JP2019106495A (ja) 圧粉磁芯およびインダクタ素子
JP2001057307A (ja) 複合磁性材料
JP2009302447A (ja) 複合磁性材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013763567

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014506024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376811

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE