[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013140628A1 - Display device, method for driving same, and display screen device - Google Patents

Display device, method for driving same, and display screen device Download PDF

Info

Publication number
WO2013140628A1
WO2013140628A1 PCT/JP2012/057611 JP2012057611W WO2013140628A1 WO 2013140628 A1 WO2013140628 A1 WO 2013140628A1 JP 2012057611 W JP2012057611 W JP 2012057611W WO 2013140628 A1 WO2013140628 A1 WO 2013140628A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
screen
control electrodes
state
image light
Prior art date
Application number
PCT/JP2012/057611
Other languages
French (fr)
Japanese (ja)
Inventor
吉岡 俊博
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2014505953A priority Critical patent/JP5856285B2/en
Priority to PCT/JP2012/057611 priority patent/WO2013140628A1/en
Publication of WO2013140628A1 publication Critical patent/WO2013140628A1/en
Priority to US14/852,962 priority patent/US20160027395A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/12Signs, boards or panels, illuminated from behind the insignia using a transparent mirror or other light reflecting surface transparent to transmitted light whereby a sign, symbol, picture or other is visible only when illuminated
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/18Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a display device, a driving method thereof, and a display screen device.
  • Some display devices project image light onto a screen to display the image on the screen.
  • a liquid crystal light control device which can control the transmittance
  • a plurality of control electrodes may be arranged side by side on one surface of the screen, and the optical state of the screen may be controlled for each divided region corresponding to each control electrode.
  • the divided area where the image is projected on the screen is controlled to be in a scattering state, and the other divided areas are controlled to be in a transparent transmission state in which scattering of incident light is small.
  • the screen can be controlled to the see-through state during the projection period of the image light.
  • the projected image and the background on the other side of the screen can be displayed in an overlapping manner.
  • the image displayed on the screen may be deteriorated. That is, the plurality of divided regions need to be controlled by individual voltages.
  • the plurality of divided regions need to be arranged apart from each other on one surface of the screen. An interval is formed between two adjacent divided regions. For this reason, even if a voltage is applied to each control electrode during the scanning period of the image light, the optical state of the gap region corresponding to the two divided regions is the same optical state as the central portion of the control electrode. Difficult to do. As a result, the image is disturbed in the gap region.
  • a display device it is required to improve image quality deterioration of a projected image caused by arranging a plurality of control electrodes on a screen and controlling an optical state for each divided region.
  • the invention according to claim 1 includes an optical layer whose optical state changes by application of a voltage, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer.
  • a screen a projector that irradiates the screen with image light and displays an image, and controls the application and stop of voltage to a plurality of control electrodes during the image light projection period, and the division corresponding to each control electrode by voltage application
  • a control unit that switches a region from a video state that scatters video light to a predetermined non-video state that is an optical state different from the video state.
  • a control part applies the voltage of the same polarity to two control electrodes arrange
  • the invention according to claim 8 is a method for driving a display device that displays an image of image light emitted from a projector on a screen having an optical layer whose optical state changes by application of a voltage, the optical state of the screen being changed.
  • the control unit for controlling applies a voltage to the plurality of control electrodes arranged along the optical layer and spaced apart from each other, and images by the image light irradiated on the screen having the optical layer and the plurality of control electrodes And controlling voltage application and stop to the plurality of control electrodes during the projection period of the image light, and by applying the voltage, the divided regions corresponding to the control electrodes are separated from the image state in which the image light is scattered.
  • the invention according to claim 9 has an optical layer whose optical state changes when a voltage is applied, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer. And controlling the voltage application and stop to the plurality of control electrodes in the projection period of the image light, the screen displaying the image by the irradiated image light, the divided regions corresponding to each control electrode by the voltage application, A control unit that switches from a video state that scatters video light to a predetermined non-video state that is an optical state different from the video state, and the control unit is arranged adjacent to the timing at which the video light is irradiated
  • This is a display screen device that applies a voltage of the same polarity to two control electrodes and controls the optical state of a region between two corresponding divided regions.
  • FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the synchronous control of screen scanning and driving.
  • FIG. 3 is an explanatory diagram of a projector that continuously projects a plane image.
  • FIG. 4 is an explanatory diagram of a projector that projects a plane image by time modulation.
  • FIG. 5 is an explanatory diagram of a projector that scans the screen.
  • FIG. 6 is a schematic cross-sectional view of the screen.
  • FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes.
  • FIG. 8 is a schematic timing chart of screen scanning and driving.
  • FIG. 9 is an explanatory diagram of a display state in which the image by the image light overlaps the screen background.
  • FIG. 10 is an explanatory diagram of the electric field distribution that affects the optical state of the gap region between the two divided regions.
  • FIG. 11 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the present embodiment.
  • FIG. 12 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the first comparative example.
  • FIG. 13 is an explanatory diagram of line inversion control of drive voltage waveforms applied to a plurality of control electrodes in the second embodiment.
  • FIG. 14 is an explanatory diagram of the control of the pulse width and the cycle number of the drive voltage waveform applied to the plurality of control electrodes in the third embodiment.
  • FIG. 1 is a schematic configuration diagram of a display device 1 according to the first embodiment.
  • the display device 1 in FIG. 1 includes a projector 11 that projects image light, a screen 21 that can control the optical state, and a synchronization control unit 31.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the display device 1 of the present embodiment is a transmissive projection device that scatters and transmits the image light of the projector 11 by a screen 21.
  • the synchronization control unit 31 controls the screen 21 on which the image is projected so as to scatter and transmit the projected image light, and when not projected, controls the screen 21 to a transparent transmission state in which the scattering of incident light is small. .
  • the display device 1 can be used as, for example, a sign boat that displays advertisements and the like.
  • FIG. 2 is an explanatory diagram of synchronous control of scanning and driving of the screen 21.
  • the projector 11 vertically scans the screen 21 from the top to the bottom with image light modulated by the image information.
  • the projector 11 scans the screen 21 vertically from top to bottom for each scanning repetition period (hereinafter referred to as a scanning cycle).
  • 2A to 2E show the scanning state at each time point in one scanning cycle in the scanning order.
  • the screen 21 in FIG. 2 has five divided regions 22.
  • the five divided regions 22 are arranged vertically along the scanning direction of the image light.
  • the synchronization control unit 31 controls the optical states of the five divided regions 22 individually in synchronization with the one-dimensional vertical scanning of the screen 21 by the projector 11.
  • each divided region 22 is controlled to a non-image state, that is, a transparent transmissive state with small scattering of incident light.
  • the scanning light of the projector 11 is first applied to the uppermost divided area 22 of the screen 21 as shown in FIG.
  • reference numeral 221 is used to distinguish the divided region 22 irradiated with the scanning light from other divided regions 22 that are not scanned.
  • the synchronization control unit 31 specifies a period during which the uppermost divided area 221 is scanned in the scanning cycle based on the synchronization signal from the projector, and controls the uppermost divided area 221 to the video state.
  • the image light that scans the uppermost divided area 221 is scattered by the divided area 221 in the scattering state and passes through the screen 21.
  • the synchronization control unit 31 specifies a period during which the second divided region 221 from the top in the scanning cycle is scanned, and controls the second divided region 221 from the top to the video state.
  • the image light that scans the second divided region 221 from the top is scattered by the divided region 221 in the scattering state and passes through the screen 21.
  • the synchronization control unit 31 controls the second divided area 221 from the top to the video state, and then controls the uppermost divided area 22 to the non-video state. Thereafter, as shown in FIGS. 2C to 2E, the synchronization control unit 31 controls the divided area 221 scanned by the scanning light to the video state, and sets the other divided areas 22 to the non-video state. Control.
  • the portion of the screen 21 irradiated with the scanning light is maintained in the video state. Thereby, the image light that scans the screen 21 is scattered by the screen 21 in the scattering state. Further, the portion of the screen 21 that is not irradiated with the scanning light is controlled to a non-image state.
  • Each divided region 22 is controlled to a transparent transmission state in which the scattering of incident light in a non-image state is small in most periods during which scanning with the scanning light is not performed. Therefore, the see-through characteristic of the screen 21 can be obtained while maintaining the visibility of the image during the projection period of the image light.
  • the projector 11 only needs to be able to project video light modulated by video information onto the screen 21.
  • the video information is obtained from a video signal input to the projector 11.
  • Video signals include, for example, NTSC (National Television Standards Committee), analog video signals such as PAL (Phase Alternation by Line), MPEG-TS (Moving Picture Experts Group-Transport Stream) format, HDV (High -There are video signals in digital format such as Definition Video) format.
  • the projector 11 may receive not only a moving image video signal but also a still image video signal such as JPEG (Joint Photographic Experts Group). In this case, the projector 11 may scan the screen 21 repeatedly with the same video light for displaying a still image.
  • FIG. 3 to 5 are explanatory diagrams of the projection method of the projector 11.
  • FIG. 3 is an explanatory diagram of the projector 11 that continuously projects a plane image.
  • FIG. 4 is an explanatory diagram of the projector 11 that projects a plane image by time modulation.
  • FIG. 5 is an explanatory diagram of the projector 11 that scans the screen 21.
  • FIG. 3A is an explanatory diagram of a method in which the projector 11 regularly projects image light.
  • image light is always projected onto the screen 21 in the scanning cycle.
  • the screen 21 must always be in a scattering state.
  • the optical state of the screen 21 is controlled so as to increase the parallel light transmittance, the luminance of the image decreases.
  • the horizontal axis of FIGS. 3B and 3C is the scanning cycle (time). The same applies to FIGS. 4B, 4C, 5B, and 5C.
  • FIG. 4A is an explanatory diagram of a method in which the projector 11 projects image light at an interval.
  • image light is projected on the screen 21 in a short period of time during a part of the scanning cycle.
  • the screen 21 may be in a scattering state during the partial period.
  • the projection light Compared to the case of projecting image light regularly, to obtain the same brightness, the projection light needs to have an intensity that is approximately the reciprocal of the duty (duty: a) in the scattering state with respect to the scanning period. Become. Therefore, in order to obtain a high see-through characteristic, a powerful pulsed projection light output is required.
  • FIG. 5A is an explanatory diagram of a projection method in which the projector 11 scans the screen 21.
  • video light is always projected onto the screen 21 during the scanning cycle.
  • the image light is projected in a part of the scanning period as shown in FIG.
  • each part of the screen only needs to be in a scattering state in the partial scanning period TP in which each part is scanned.
  • the see-through characteristic of the screen 21 can be achieved without causing a decrease in the luminance of the image in the scanning period. can get.
  • the projector 11 that projects the image light may be of any of the above projection methods. However, in order to suppress the generation of image light that is not used for scattering, the method of FIG. 4 or FIG. 5 is desirable. Moreover, a response time is required for the change in the optical state of the screen 21. For this reason, the projection method of FIG. 5 in which the response time is easily secured is preferable to FIG. In the following description, a case where the projector 11 of the projection method shown in FIG. 5 is used will be described.
  • a line-shaped image corresponding to a part of the screen 21 is sequentially projected onto the display surface of the screen 21 during the scanning period of the image light.
  • the projector 11 can be a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state in which no projection light is emitted) on the screen 21 during the scanning cycle, but other elements can also be used. Good.
  • the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially.
  • a laser projector that reflects and shakes the irradiation direction of the image-modulated light beam with a movable mirror can be used.
  • the projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
  • the screen 21 may be anything that can change the optical state by an electrical signal such as voltage or current.
  • it may be a dimming screen that uses a liquid crystal material and changes a scattering state and a transparent transmission state in which the scattering of incident light is small.
  • the light control screen uses, for example, a liquid crystal element such as a polymer-dispersed liquid crystal, or an element that controls a transparent transmission state with small scattering of incident light by moving white powder in a transparent cell.
  • the screen 21 operating in the reverse mode will be described as an example. In the screen 21 operating in the reverse mode, the screen 21 is in a transparent transmissive state in a normal state where no voltage is applied. When a voltage is applied, a scattering state of parallel light scattering rate (transmittance) according to the applied voltage is obtained.
  • the screen 21 can be switched between a transparent transmission state where the scattering of incident light is small and a scattering state when the plurality of divided regions 22 dividing the screen 21 are independent of each other.
  • the screen 21 only needs to have a plurality of divided regions divided into strips so as to correspond to the main scanning direction of the projector 11 (for example, the vertical direction in FIG. 2).
  • the screen 21 may be a screen in which regions divided into rectangles are arranged in a matrix so as to correspond to the main scanning direction and the sub-scanning direction (for example, the horizontal direction of the image) of the projector 11.
  • FIG. 6 is a schematic cross-sectional view of the screen 21 that can control the optical state for each divided region 22.
  • FIG. 6 also shows the synchronization control unit 31.
  • FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes on the screen 21 of FIG.
  • the screen 21 in the example of FIG. 6 has an optical layer 25 in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass plates 23 and 24.
  • a counter electrode 26 is formed on the entire surface of one glass plate 24 on the optical layer 25 side.
  • a plurality of control electrodes 27 are arranged side by side on the optical layer 25 side of the other glass plate 23.
  • An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the optical layer 25.
  • the counter electrode 26 and the control electrode 27 are formed as transparent electrodes by using, for example, ITO (indium tin oxide).
  • the optical layer 25 is disposed between the plurality of control electrodes 27 and the counter
  • the plurality of control electrodes 27 divide the area of the screen 21 irradiated with the image light into strips in one direction (for example, the scanning direction).
  • the plurality of control electrodes 27 are individually connected to the synchronization control unit 31 and applied with individual voltages. Adjacent control electrodes 27 are arranged apart from each other. A gap region 28 is formed in the optical layer 25 corresponding to a region where the control electrode 27 is not formed between the two adjacent control electrodes 27.
  • the counter electrode 26 is grounded. A voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26. Note that the voltage of the driving waveform described below indicates a potential difference between the control electrode 27 and the counter electrode 26.
  • the voltage applied to the control electrode 27 is applied to the optical layer 25 in a region corresponding to the control electrode 27.
  • the alignment state of the liquid crystal in the optical layer 25 changes depending on the voltage applied to the control electrode 27.
  • the optical layer 25 can be adjusted for each divided region 22 between a transparent transmission state where the scattering of incident light is small and a scattering state where the incident light is scattered.
  • the gap region 28 corresponding to the control electrode 27 is about 5 to 100 micrometers, and is desirably as narrow as possible.
  • the thickness of the optical layer 25 is several to several tens of micrometers, and is determined in consideration of optical characteristics and drive voltage.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the synchronization control unit 31 controls the optical state of the screen 21 in synchronization with the projection of the image light of the projector 11.
  • a synchronization signal synchronized with the scanning cycle of the projector 11 can be used.
  • the synchronization control unit 31 sets the plurality of divided regions 22 so that the portion irradiated with the projection light of the projector 11 is maintained in the video state (scattering state in the present embodiment). In the scanning order, the transparent transmission state is controlled to the scattering state.
  • each divided region 22 of the screen 21 is in a scattering state as a video state in a period Ton including a video period in which projection light is irradiated to the region.
  • a transparent transmission state as a non-image state is obtained.
  • the screen 21 can scatter image light with the same brightness as when the screen 21 is always in a scattering state while having transparency that can recognize the object on the back surface. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
  • FIG. 8 is a schematic timing chart of scanning and driving of the screen 21.
  • the horizontal axis is time.
  • the vertical axis indicates the position in the vertical direction of the screen, and corresponds to a plurality of divided regions 22 on the screen 21.
  • Each divided region 22 of the screen 21 is controlled from a transparent transmission state to a scattering state before the timing at which the image light starts to scan each region. Further, the divided region 22 in the scattering state is controlled from the scattering state to the transparent transmission state after the scanning of the image light for the region is completed.
  • the plurality of divided regions 22 are controlled to be in a video state in synchronization with a partial scanning period TP timing in which video light is irradiated to each region by scanning, thereby sequentially shifting to a video state in the scanning order. Can be switched.
  • the image light that scans the screen 21 is efficiently scattered by the portion maintained in the image state, and it is possible to obtain bright and high visibility.
  • Information on the switching timing for the synchronization control is sent from the projector 11 to the synchronization control unit 31 as a synchronization signal.
  • the synchronization control unit 31 preferably controls the voltage applied to each control electrode 27 so that the projection light is irradiated during a period in which the optical state of each divided region 22 is stable in a predetermined scattering state.
  • the optical state of each divided region 22 is switched according to the signal waveform of the voltage applied to the control electrode 27.
  • the information on the switching timing output from the projector 11 to the synchronization control unit 31 may include information on timing at which the projector 11 starts scanning in each scanning cycle and scanning speed (scanning delay / shift). .
  • the projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
  • the synchronization control unit 31 of the present embodiment switches the optical state of the plurality of divided regions 22 in the scanning period T of the video light in synchronization with the scanning of the video light by the projector 11 and
  • the optical state of the part where the image light is projected is defined as an image state. Therefore, the screen 21 can display an image because the portion irradiated with the image light is maintained in the scattering state in the period Ton including the timing when the image light is irradiated.
  • the screen 21 since the screen 21 is controlled to be in a transparent transmissive state at times other than the period Ton during the projection period of the image light, the screen 21 can be seen through.
  • FIG. 9 is an explanatory diagram of a display state in which the image by the image light and the background of the screen 21 overlap.
  • an image of a person 41 by video light is shown on the right side of the screen 21, and a tree 42 as a background on the other side of the screen 21 can be seen on the left side.
  • the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and the partial scanning period TP in which each divided region 22 is scanned. In the non-video state during the period when each is not scanned, that is, during the period other than the partial scanning period TP.
  • the synchronization control unit 31 sets the voltage applied to the control electrode 27 as a low-frequency AC voltage. Therefore, the DC component of the voltage applied to the optical layer 25 in each scanning period T of the image light can be suppressed.
  • FIG. 10 is an explanatory diagram of the electric field distribution in the optical layer in the gap region 28.
  • 10A and 10B are schematic cross-sectional views of the screen 21 in a state where a voltage is applied to the adjacent control electrode 27.
  • FIG. The arrows in the figure indicate a rough electric field distribution.
  • the difference in optical characteristics due to the difference in electric field and the difference in liquid crystal alignment from other parts is visually recognized as a gap-like luminance unevenness in the case where the image light is irradiated.
  • the optical state screen 21 of FIG. 10A the optical state is the same in both divided regions 22, but is different in the gap region 28. As a result, a singular part in the optical state is generated along the gap region 28, and luminance unevenness occurs in the video state.
  • the synchronization control unit 31 of the present embodiment applies a voltage having the same polarity to the adjacent control electrode 27 as shown in FIG.
  • the direction of the electric field of the gap region 28 is the direction along the electric field of the divided region 22, and the optical state of the gap region 28 at the time of voltage application is controlled to a scattering state by voltage application.
  • the optical state of the divided area 22 is substantially the same.
  • the optical state of the gap region 28 is substantially the same as that of both the divided regions 22, so that the gap region when the gap region 22 is irradiated with video light.
  • the luminance unevenness of the video at 28 is effectively suppressed, and uniform see-through performance and display are possible.
  • the adjacent control electrodes 27 have the same potential or the same polarity, the direction of the electric field in the gap region 28 is in the direction along that of the divided region 22, and the stripe-like unevenness caused by the orientation being different from other portions. Can be suppressed.
  • FIG. 11 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the present embodiment.
  • 11A to 11D show voltages applied to the four consecutive control electrodes 27.
  • FIG. In the following description, a waveform in which a voltage is applied to the control electrode 27 is described, but it can be considered as a voltage waveform applied to a region including the optical layer 25 as a potential difference from the counter electrode 26.
  • the horizontal axis is time, and the vertical axis is voltage.
  • FIGS. 11E to 11H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 11A to 11D.
  • the horizontal axis is time, and the vertical axis is parallel light transmittance.
  • the application of voltage to the four consecutive control electrodes 27 is stopped after each scan is finished in order to control the transmission state.
  • the four continuous divided regions 22 are controlled from the scattering state to the transparent transmission state.
  • the reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31.
  • the synchronization control unit 31 sequentially switches the voltage applied to the plurality of control electrodes 27 based on the reference timing so that the projection light is irradiated during a period when the scattering characteristics are constant and stable.
  • the scanning of the image light moves from the divided area 22 in FIG. 11A to the divided area 22 in FIG. 11B at a timing T1 in FIGS.
  • the image light is scanned so as to pass through the gap region 28 between the two divided regions 22.
  • voltages having the same polarity and the same potential are applied to the control electrode 27 in FIG. 11A and the control electrode 27 in FIG. Therefore, the optical state of the gap region 28 is controlled to the video state of FIG.
  • the gap region 28 scatters and transmits image light in the same optical state as the divided region 22.
  • T2 in FIGS. 11A to 11D the control electrode 27 in FIG. 11B and the control electrode 27 in FIG. Is applied.
  • T3 in FIGS. 11A to 11D the control electrode 27 in FIG. 11C and the control electrode 27 in FIG. Is applied.
  • the image light is scattered and transmitted in the gap region 28 in substantially the same scattering state as that of the divided region 22.
  • the synchronization control unit 31 applies a voltage of the same polarity to the two control electrodes 27 arranged adjacent to each other at the timing when the image light scans the gap region between these electrodes. .
  • the optical state of the gap region 28 of the optical layer corresponding to the region between the two corresponding divided regions 22 where the control electrode 27 is not formed can be controlled to a desired state.
  • the projector 11 scans the screen 21 with image light, and the screen 21 operates in a reverse mode in which parallel light transmittance is reduced by applying a voltage, and scatters the irradiated image light. Therefore, in the reverse mode screen 21, the optical state of the gap region 28 between the two corresponding divided regions 22 can be controlled to the video state.
  • the synchronization control unit 31 applies a voltage having the same polarity and the same amplitude to the corresponding two control electrodes 27. Therefore, the optical state of the gap region 28 of the screen 21 in the reverse mode can be controlled to the same video state as that of the divided region 22. Thereby, in the image formed by the scattering of the screen 21, the influence of luminance unevenness in the gap region 28 is suppressed. Unevenness is less likely to occur in the projected image over the entire screen 21.
  • FIG. 12 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the first comparative example.
  • FIGS. 12A to 12H correspond to FIGS. 11A to 11H.
  • the control electrodes 27 on both sides of the gap region 28 have the opposite polarity and A voltage having the same amplitude is applied.
  • the optical state of the gap region 28 is controlled to the video state of FIG.
  • the gap region 28 scatters image light in an optical state different from that of the divided region 22.
  • the scattering in the gap region 28 has a different characteristic from the scattering in the divided region 22, and the projected image is uneven over the entire screen 21.
  • the time required for the image light projected from the projector 11 to the screen 21 to pass through one divided region 22 is substantially uniform among the plurality of divided regions 22.
  • this time is referred to as a scanning delay time Td.
  • the scanning delay time Td is small when the projector 11 is separated from the screen 21 (the effective number of image area divisions is large), and is large when close to the reverse (the effective number of image area divisions is small). Become).
  • the scanning of the projector 11 is unique to each projector 11, it is not constant. In particular, in the last divided region 22 in the scanning period, the difference between individual differences becomes large.
  • the synchronization control unit 31 of the second embodiment adjusts the drive voltage waveform so that the polarity of the voltage of the control electrodes 27 on both sides thereof is aligned at the timing when the gap region 28 is scanned with respect to the scanning delay time Td that is not constant. To do. Specifically, for example, the synchronization control unit 31 determines, for each control electrode 27, based on both the scanning delay time Td obtained from the scanning period of the image light and the frequency of the AC voltage applied to the plurality of control electrodes 27. It is determined whether the drive voltage waveform needs to be inverted.
  • FIG. 13 is an explanatory diagram of line inversion control of drive voltage waveforms applied to the plurality of control electrodes 27 in the second embodiment.
  • the three sets of drive voltage waveforms in FIGS. 13A to 13C are drive voltage waveforms with a constant period.
  • the horizontal axis is time, and the vertical axis is voltage.
  • the synchronization control unit 31 determines that inversion is not necessary in determining inversion of each drive voltage waveform.
  • the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages whose polarity changes in phase without being inverted.
  • the synchronization control unit 31 calculates a value obtained by dividing the time for actually scanning the screen divided into a plurality of regions by the number of the control electrodes 27 in the scanning period of the image light notified from the projector 11. What is necessary is just to use for the scanning delay time Td.
  • the synchronization control unit 31 determines that the inversion is necessary in the inversion determination of each drive voltage waveform.
  • the second drive voltage waveform from the top is inverted with respect to the first
  • the third drive voltage waveform from the top is further inverted with respect to the second
  • the top is further inverted with respect to the third.
  • the synchronization control unit 31 determines that the inversion is necessary in the inversion determination of each drive voltage waveform.
  • the voltage is applied to each control electrode 27 as a voltage whose polarity changes in phase without being inverted.
  • the synchronization control unit 31 of this embodiment applies a common waveform AC voltage to the plurality of control electrodes 27.
  • the synchronization control unit 31 adjusts the waveform of the AC voltage applied to the plurality of control electrodes 27 based on the scanning period T of the image light and the frequency of the AC voltage applied to the plurality of control electrodes 27.
  • the synchronization control unit 31 adjusts the polarities of the voltages applied to the control electrodes 27 corresponding to the divided regions 22 on both sides of the gap region 28 at the timing when the gap region 28 is scanned with video light.
  • the AC voltage waveform applied to some control electrodes 27 is adjusted so as to be inverted with respect to the AC voltage waveform applied to other control electrodes 27.
  • the divided regions 22 on both sides of the gap region 28 at the timing when the image light is scanned are set to the same potential according to the scanning delay determined by the projection region of the projector 11 and the drive voltage waveform (pulse width).
  • line inversion / non-inversion is controlled so as to have the same polarity.
  • the drive voltage waveform includes a half cycle, it is inverted in units of scanning cycle. Therefore, in the present embodiment, even if the scanning period T of the screen 11 by the projector 11 changes, the plurality of gap regions 28 of the screen 11 are controlled to be in a scattering state (video state) equivalent to the divided region 22 in synchronization with it. it can.
  • FIG. 14 is an explanatory diagram of the control of the pulse width and the number of cycles of the drive voltage waveform applied to the plurality of control electrodes 27 in the third embodiment.
  • the drive voltage waveforms are applied to the control electrodes 27 corresponding to the divided regions 22 on both sides of the gap region 28 at the timing when the gap region 28 is scanned by the image light.
  • the pulse width and the number of cycles of the drive voltage waveform are controlled so that the voltages have the same polarity.
  • the horizontal axis is time, and the vertical axis is voltage.
  • the synchronization control unit 31 determines that adjustment is not necessary in determining whether the drive voltage waveform needs to be adjusted.
  • the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages having the same phase and changing in polarity while maintaining the standard waveforms.
  • the synchronization control unit 31 determines that adjustment is necessary in determining whether the drive voltage waveform needs to be adjusted. As a result, as shown in FIG. 14B, the number of cycles of the drive voltage waveform is reduced to, for example, half.
  • the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages whose polarities change in the same phase according to waveforms adjusted so that the pulse width is widened.
  • the synchronization control unit 31 determines that adjustment is not necessary in determining whether the drive voltage waveform needs to be adjusted.
  • the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages having the same phase and changing polarity while maintaining the standard waveforms.
  • the synchronization control unit 31 of this embodiment applies a common waveform AC voltage to the plurality of control electrodes 27.
  • the synchronization control unit 31 adjusts the waveform of the AC voltage applied to the plurality of control electrodes 27 based on the scanning period T of the image light and the frequency of the AC voltage applied to the plurality of control electrodes 27.
  • the synchronization control unit 31 adjusts the polarities of the voltages applied to the control electrodes 27 corresponding to the divided regions 22 on both sides of the gap region 28 at the timing when the gap region 28 is scanned with video light. Adjust the pulse width and cycle number of the driving voltage waveform.
  • the divided regions 22 on both sides of the gap region 28 at the timing when the image light is scanned are set to the same potential according to the scanning delay determined by the projection region of the projector 11 and the drive voltage waveform (pulse width).
  • the pulse width or the number of cycles is controlled so as to have the same polarity.
  • the pulse may be reversed in units of scanning cycle. Therefore, in the present embodiment, even if the scanning period T of the screen 11 by the projector 11 changes, the plurality of gap regions 28 of the screen 11 are controlled to be in a scattering state (video state) equivalent to the divided region 22 in synchronization with it. it can.
  • the synchronization control unit 31 performs line inversion control in the second embodiment, and controls the pulse width in the third embodiment.
  • the synchronization control unit 31 may adjust each drive voltage waveform by combining line inversion and pulse width control in accordance with the scanning delay Td determined by the projection area of the projector 11.
  • the screen 21 is controlled to be in the scattering state in the image state, and is scattered while transmitting the image light.
  • the screen 21 may be controlled to be in a high scattering state in the video state, and may be scattered while reflecting the video light.
  • the screen 21 functions as a reflective screen in which the viewer is positioned on the side where the image light from the projector 11 is projected.
  • the reverse mode screen 21 is used.
  • the screen 21 in the normal mode may be used.
  • the screen 21 in the normal mode increases the parallel light transmittance when a voltage is applied, but can be used when driven by applying a voltage to a scattering state that is an image state.
  • the synchronization control unit 31 moves the two image lights when the scanned image light moves from one divided region 22 to another divided region 22.
  • a voltage having the same polarity may be applied to the control electrode 27 corresponding to the divided area 22 to control the optical characteristics of the gap area 28 corresponding to the two divided areas 22 to the video state.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The present invention reduces video-quality degradation caused by a plurality of control electrodes lined up in a screen onto which video light is projected, controlling the optical state of each segment of said screen. This display device (1) has the following: a screen (21) comprising a plurality of control electrodes (27) laid out with spaces therebetween on one surface of an optical layer (25), the optical properties of which are changed by the application of voltage; a projector (11) that shines video light onto the screen (21) so as to display video; and a synchronization control unit (31) that controls the application of voltage to the plurality of control electrodes (27) and the cessation thereof over the course of a video-light scanning cycle (T), using the application of voltage to switch the segment (22) corresponding to each control electrode (27) from a non-video state to a video state. Upon video-light exposure, the synchronization control unit (31) applies voltages of the same polarity to two adjacent control electrodes (27) to control the optical state of a region (28) between the corresponding two segments (22).

Description

表示装置、その駆動方法、および表示用スクリーン装置Display device, driving method thereof, and display screen device
 本発明は、表示装置、その駆動方法、および表示用スクリーン装置に関する。 The present invention relates to a display device, a driving method thereof, and a display screen device.
 表示装置には、スクリーンに映像光を投影して、スクリーンに映像を表示させるものがある。
 調光デバイスには、透過率を制御できる液晶調光デバイスがある(特許文献1)。
Some display devices project image light onto a screen to display the image on the screen.
There exists a liquid crystal light control device which can control the transmittance | permeability in the light control device (patent document 1).
特開2007-219419号公報JP 2007-219419 A
 ところで、液晶調光デバイスの技術を用いて調光スクリーンを形成し、この調光スクリーンを、映像を映すためのスクリーンとして使用することが考えられる。 By the way, it is conceivable to form a dimming screen using the technology of the liquid crystal dimming device and to use this dimming screen as a screen for projecting an image.
 また、このような表示装置では、スクリーンの一面に複数の制御電極を並べて配置し、スクリーンの光学状態を、各制御電極に対応する分割領域毎に制御することが考えられる。
 たとえばスクリーンについての、映像を映す分割領域を散乱状態に制御するとともに、それ以外の分割領域を入射光の散乱が小さい透明な透過状態に制御する。
 この場合、映像光の投影期間中にスクリーンをシースルー状態に制御できる。スクリーンに、映し出す映像と、スクリーンの向こう側の背景とを重ねて表示させることができる。
In such a display device, a plurality of control electrodes may be arranged side by side on one surface of the screen, and the optical state of the screen may be controlled for each divided region corresponding to each control electrode.
For example, the divided area where the image is projected on the screen is controlled to be in a scattering state, and the other divided areas are controlled to be in a transparent transmission state in which scattering of incident light is small.
In this case, the screen can be controlled to the see-through state during the projection period of the image light. On the screen, the projected image and the background on the other side of the screen can be displayed in an overlapping manner.
 しかしながら、このようにスクリーンに複数の制御電極を設け、スクリーンの光学状態を分割領域毎に制御した場合、スクリーンに映し出す映像が劣化する可能性がある。
 すなわち、複数の分割領域は、個別の電圧により制御される必要がある。
 複数の分割領域は、スクリーンの一面において互いに離間して配置される必要がある。
 隣接する2つの分割領域の間には間隔が形成される。
 このため、映像光の走査周期中に、各制御電極に電圧を印加したとしても、該2つの分割領域の間に対応するギャップ領域の光学状態は、制御電極の中央部と同一な光学状態とすることが困難である。
 その結果、ギャップ領域において映像が乱れてしまう。
However, when a plurality of control electrodes are provided on the screen in this way and the optical state of the screen is controlled for each divided area, the image displayed on the screen may be deteriorated.
That is, the plurality of divided regions need to be controlled by individual voltages.
The plurality of divided regions need to be arranged apart from each other on one surface of the screen.
An interval is formed between two adjacent divided regions.
For this reason, even if a voltage is applied to each control electrode during the scanning period of the image light, the optical state of the gap region corresponding to the two divided regions is the same optical state as the central portion of the control electrode. Difficult to do.
As a result, the image is disturbed in the gap region.
 このように表示装置では、スクリーンに複数の制御電極を並べて分割領域ごとに光学状態を制御することに起因する、映し出す映像の画質劣化を改善することが求められる。 Thus, in a display device, it is required to improve image quality deterioration of a projected image caused by arranging a plurality of control electrodes on a screen and controlling an optical state for each divided region.
 請求項1に係る発明は、電圧の印加により光学状態が変化する光学層、および光学層に電圧を印加するために光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有するスクリーンと、スクリーンに映像光を照射して映像を表示させるプロジェクタと、映像光の投影期間において複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各制御電極に対応する分割領域を、映像光を散乱する映像状態から、これと異なる光学状態である所定の非映像状態へ切り替える制御部と、を有する表示装置である。そして、制御部は、隣接して配置された2つの制御電極に、これらの境界に映像光が照射されるタイミングに同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、表示装置である。 The invention according to claim 1 includes an optical layer whose optical state changes by application of a voltage, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer. A screen, a projector that irradiates the screen with image light and displays an image, and controls the application and stop of voltage to a plurality of control electrodes during the image light projection period, and the division corresponding to each control electrode by voltage application And a control unit that switches a region from a video state that scatters video light to a predetermined non-video state that is an optical state different from the video state. And a control part applies the voltage of the same polarity to two control electrodes arrange | positioned adjacently at the timing with which image light is irradiated to these boundaries, and the optical of the area | region between two corresponding division areas It is a display device that controls the state.
 請求項8に係る発明は、プロジェクタから照射される映像光による映像を、電圧の印加により光学状態が変化する光学層を有するスクリーンに表示する表示装置の駆動方法であって、スクリーンの光学状態を制御する制御部は、光学層に沿って並べて且つ互いに離間して配置される複数の制御電極に電圧を印加して、光学層および複数の制御電極を有するスクリーンに、照射される映像光による映像を表示させ、映像光の投影期間において複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各制御電極に対応する分割領域を、映像光を散乱する映像状態から、これと異なる光学状態である所定の非映像状態へ切り替え、映像光が照射されるタイミングにおいて、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、表示装置の駆動方法である。 The invention according to claim 8 is a method for driving a display device that displays an image of image light emitted from a projector on a screen having an optical layer whose optical state changes by application of a voltage, the optical state of the screen being changed. The control unit for controlling applies a voltage to the plurality of control electrodes arranged along the optical layer and spaced apart from each other, and images by the image light irradiated on the screen having the optical layer and the plurality of control electrodes And controlling voltage application and stop to the plurality of control electrodes during the projection period of the image light, and by applying the voltage, the divided regions corresponding to the control electrodes are separated from the image state in which the image light is scattered. Switching to a predetermined non-image state that is a different optical state, and applying a voltage of the same polarity to two adjacent control electrodes at the timing of image light irradiation, Controlling the optical state of the area between the two divided regions to respond, a method of driving a display device.
 請求項9に係る発明は、電圧の印加により光学状態が変化する光学層、および光学層に電圧を印加するために光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有し、照射された映像光による映像を表示するスクリーンと、映像光の投影期間において複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各制御電極に対応する分割領域を、映像光を散乱する映像状態から、これと異なる光学状態である所定の非映像状態へ切り替える制御部と、を有し、制御部は、映像光が照射されるタイミングにおいて、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、表示用スクリーン装置である。 The invention according to claim 9 has an optical layer whose optical state changes when a voltage is applied, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer. And controlling the voltage application and stop to the plurality of control electrodes in the projection period of the image light, the screen displaying the image by the irradiated image light, the divided regions corresponding to each control electrode by the voltage application, A control unit that switches from a video state that scatters video light to a predetermined non-video state that is an optical state different from the video state, and the control unit is arranged adjacent to the timing at which the video light is irradiated This is a display screen device that applies a voltage of the same polarity to two control electrodes and controls the optical state of a region between two corresponding divided regions.
図1は、本発明の第1実施形態に係る表示装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment of the present invention. 図2は、スクリーンの走査と駆動との同期制御の説明図である。FIG. 2 is an explanatory diagram of the synchronous control of screen scanning and driving. 図3は、連続的に面映像を投影するプロジェクタの説明図である。FIG. 3 is an explanatory diagram of a projector that continuously projects a plane image. 図4は、時間変調により面映像を投影するプロジェクタの説明図である。FIG. 4 is an explanatory diagram of a projector that projects a plane image by time modulation. 図5は、スクリーンを走査するプロジェクタの説明図である。FIG. 5 is an explanatory diagram of a projector that scans the screen. 図6は、スクリーンの模式的な断面図である。FIG. 6 is a schematic cross-sectional view of the screen. 図7は、複数の制御電極の配置を示すスクリーンの模式的な正面図である。FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes. 図8は、スクリーンの走査と駆動との模式的なタイミングチャートである。FIG. 8 is a schematic timing chart of screen scanning and driving. 図9は、映像光による映像とスクリーンの背景とが重なる表示状態の説明図である。FIG. 9 is an explanatory diagram of a display state in which the image by the image light overlaps the screen background. 図10は、2つの分割領域の間のギャップ領域の光学状態に影響する電界の分布の説明図である。FIG. 10 is an explanatory diagram of the electric field distribution that affects the optical state of the gap region between the two divided regions. 図11は、本実施形態での、複数の分割領域の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。FIG. 11 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the present embodiment. 図12は、第1比較例での、複数の分割領域の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。FIG. 12 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the first comparative example. 図13は、第2実施形態での、複数の制御電極に印加する駆動電圧波形のライン反転制御の説明図である。FIG. 13 is an explanatory diagram of line inversion control of drive voltage waveforms applied to a plurality of control electrodes in the second embodiment. 図14は、第3実施形態での、複数の制御電極に印加する駆動電圧波形のパルス幅およびサイクル数の制御の説明図である。FIG. 14 is an explanatory diagram of the control of the pulse width and the cycle number of the drive voltage waveform applied to the plurality of control electrodes in the third embodiment.
 以下、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
 図1は、第1実施形態に係る表示装置1の概略構成図である。
 図1の表示装置1は、映像光を投影するプロジェクタ11と、光学状態を制御可能なスクリーン21と、同期制御部31と、を有する。同期制御部31は、プロジェクタ11とスクリーン21とに接続される。
 本実施形態の表示装置1は、プロジェクタ11の映像光をスクリーン21で散乱して透過する透過型プロジェクション装置である。
 同期制御部31は、映像が投影されるスクリーン21を、投影された映像光を散乱して透過する状態に制御し、投影されていない場合に入射光の散乱が小さい透明な透過状態に制御する。
 スクリーン21の光学状態は、散乱して透過する状態が映像状態であり、それよりも入射光の散乱が小さく且つ平行光線の透過率が高い透明な透過状態が非映像状態である。
 表示装置1は、たとえば広告などを表示するサインボートなどとして利用できる。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a display device 1 according to the first embodiment.
The display device 1 in FIG. 1 includes a projector 11 that projects image light, a screen 21 that can control the optical state, and a synchronization control unit 31. The synchronization control unit 31 is connected to the projector 11 and the screen 21.
The display device 1 of the present embodiment is a transmissive projection device that scatters and transmits the image light of the projector 11 by a screen 21.
The synchronization control unit 31 controls the screen 21 on which the image is projected so as to scatter and transmit the projected image light, and when not projected, controls the screen 21 to a transparent transmission state in which the scattering of incident light is small. .
As for the optical state of the screen 21, a state where it is scattered and transmitted is an image state, and a transparent state where the scattering of incident light is smaller and the transmittance of parallel rays is higher than that is a non-image state.
The display device 1 can be used as, for example, a sign boat that displays advertisements and the like.
 次に、図1の表示装置1の基本的な動作原理を説明する。
 図2は、スクリーン21の走査と駆動との同期制御の説明図である。
 プロジェクタ11は、映像情報で変調された映像光で、スクリーン21を上から下へ縦に走査する。プロジェクタ11は、走査の繰り返し期間(以下、走査周期という。)毎に、スクリーン21を上から下へ縦に走査する。
 図2(A)から(E)は、1回の走査周期中の各時点での走査状態を、走査順で示すものである。
 図2のスクリーン21は、5つの分割領域22を有する。5つの分割領域22は、映像光の走査方向に沿って縦に配列される。
 同期制御部31は、プロジェクタ11によるスクリーン21の一次元の縦方向の走査に同期させて、5つの分割領域22の光学状態を個別に制御する。各分割領域22は、映像光が投影されていない場合、非映像状態、すなわち入射光の散乱が小さい透明な透過状態に制御される。
Next, the basic operation principle of the display device 1 of FIG. 1 will be described.
FIG. 2 is an explanatory diagram of synchronous control of scanning and driving of the screen 21.
The projector 11 vertically scans the screen 21 from the top to the bottom with image light modulated by the image information. The projector 11 scans the screen 21 vertically from top to bottom for each scanning repetition period (hereinafter referred to as a scanning cycle).
2A to 2E show the scanning state at each time point in one scanning cycle in the scanning order.
The screen 21 in FIG. 2 has five divided regions 22. The five divided regions 22 are arranged vertically along the scanning direction of the image light.
The synchronization control unit 31 controls the optical states of the five divided regions 22 individually in synchronization with the one-dimensional vertical scanning of the screen 21 by the projector 11. When the image light is not projected, each divided region 22 is controlled to a non-image state, that is, a transparent transmissive state with small scattering of incident light.
 映像光の走査が開始されると、プロジェクタ11の走査光は、まず、図2(A)のように、スクリーン21の最上部の分割領域22に照射される。以下、この説明において、走査光が照射される分割領域22について、走査されていない他の分割領域22から区別するために、符号221を使用する。同期制御部31は、プロジェクタからの同期信号に基づいて、走査周期中での、この最上部の分割領域221が走査される期間を特定し、最上部の分割領域221を映像状態に制御する。最上部の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され、スクリーン21を透過する。
 映像光の走査は、次に、図2(B)のように、スクリーン21の上から2番目の分割領域22に移動する。同期制御部31は、走査周期中での、この上から2番目の分割領域221が走査される期間を特定し、上から2番目の分割領域221を映像状態に制御する。上から2番目の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され、スクリーン21を透過する。また、同期制御部31は、上から2番目の分割領域221を映像状態に制御した後、最上部の分割領域22を非映像状態に制御する。
 その後も、図2(C)から(E)に示すように、同期制御部31は、走査光により走査される分割領域221を映像状態に制御し、それ以外の分割領域22を非映像状態に制御する。
When the scanning of the image light is started, the scanning light of the projector 11 is first applied to the uppermost divided area 22 of the screen 21 as shown in FIG. Hereinafter, in this description, reference numeral 221 is used to distinguish the divided region 22 irradiated with the scanning light from other divided regions 22 that are not scanned. The synchronization control unit 31 specifies a period during which the uppermost divided area 221 is scanned in the scanning cycle based on the synchronization signal from the projector, and controls the uppermost divided area 221 to the video state. The image light that scans the uppermost divided area 221 is scattered by the divided area 221 in the scattering state and passes through the screen 21.
Next, the scanning of the image light moves to the second divided area 22 from the top of the screen 21 as shown in FIG. The synchronization control unit 31 specifies a period during which the second divided region 221 from the top in the scanning cycle is scanned, and controls the second divided region 221 from the top to the video state. The image light that scans the second divided region 221 from the top is scattered by the divided region 221 in the scattering state and passes through the screen 21. Further, the synchronization control unit 31 controls the second divided area 221 from the top to the video state, and then controls the uppermost divided area 22 to the non-video state.
Thereafter, as shown in FIGS. 2C to 2E, the synchronization control unit 31 controls the divided area 221 scanned by the scanning light to the video state, and sets the other divided areas 22 to the non-video state. Control.
 以上の同期制御により、スクリーン21についての走査光が照射される部位は、映像状態に維持される。これにより、スクリーン21を走査する映像光は、散乱状態のスクリーン21により散乱される。
 また、スクリーン21についての走査光が照射されない部位は、非映像状態に制御される。各分割領域22は、走査光により走査されていない殆どの期間において、非映像状態の入射光の散乱が小さい透明な透過状態に制御される。従って、映像光の投影期間中に、映像の視認性を保ちつつ、スクリーン21のシースルー特性が得られる。
Through the above-described synchronization control, the portion of the screen 21 irradiated with the scanning light is maintained in the video state. Thereby, the image light that scans the screen 21 is scattered by the screen 21 in the scattering state.
Further, the portion of the screen 21 that is not irradiated with the scanning light is controlled to a non-image state. Each divided region 22 is controlled to a transparent transmission state in which the scattering of incident light in a non-image state is small in most periods during which scanning with the scanning light is not performed. Therefore, the see-through characteristic of the screen 21 can be obtained while maintaining the visibility of the image during the projection period of the image light.
 プロジェクタ11は、スクリーン21へ、映像情報により変調された映像光を投影できるものであればよい。
 なお、映像情報は、プロジェクタ11に入力される映像信号から得られる。映像信号には、たとえば、NTSC(National Television Standards Committee)方式、PAL(Phase Alternation by Line)方式のようなアナログ方式の映像信号、MPEG-TS(Moving Picture Experts Group - Transport Stream)フォーマット、HDV(High-Definition Video)フォーマットのようなデジタルフォーマットの映像信号がある。プロジェクタ11には、動画の映像信号だけでなく、たとえばJPEG(Joint Photographic Experts Group)のような静止画の映像信号が入力されてもよい。この場合、プロジェクタ11は、静止画を表示するための同じ映像光で、スクリーン21を繰り返し走査すればよい。
The projector 11 only needs to be able to project video light modulated by video information onto the screen 21.
Note that the video information is obtained from a video signal input to the projector 11. Video signals include, for example, NTSC (National Television Standards Committee), analog video signals such as PAL (Phase Alternation by Line), MPEG-TS (Moving Picture Experts Group-Transport Stream) format, HDV (High -There are video signals in digital format such as Definition Video) format. The projector 11 may receive not only a moving image video signal but also a still image video signal such as JPEG (Joint Photographic Experts Group). In this case, the projector 11 may scan the screen 21 repeatedly with the same video light for displaying a still image.
 図3から5は、プロジェクタ11の投影方式の説明図である。図3は、連続的に面映像を投影するプロジェクタ11の説明図である。図4は、時間変調により面映像を投影するプロジェクタ11の説明図である。図5は、スクリーン21を走査するプロジェクタ11の説明図である。 3 to 5 are explanatory diagrams of the projection method of the projector 11. FIG. 3 is an explanatory diagram of the projector 11 that continuously projects a plane image. FIG. 4 is an explanatory diagram of the projector 11 that projects a plane image by time modulation. FIG. 5 is an explanatory diagram of the projector 11 that scans the screen 21.
 図3(A)は、プロジェクタ11が定常的に映像光を投影する方式の説明図である。この場合、スクリーン21には、図3(B)に示すように、走査周期において映像光が常に投影されている。スクリーン21は、図3(C)に示すように、常に散乱状態とする必要がある。この場合、平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、映像の輝度が減少する。
 なお、図3(B)、(C)の横軸は、走査周期(時間)である。図4(B)、(C)、図5(B)、(C)も同様である。
FIG. 3A is an explanatory diagram of a method in which the projector 11 regularly projects image light. In this case, as shown in FIG. 3B, image light is always projected onto the screen 21 in the scanning cycle. As shown in FIG. 3C, the screen 21 must always be in a scattering state. In this case, if the optical state of the screen 21 is controlled so as to increase the parallel light transmittance, the luminance of the image decreases.
Note that the horizontal axis of FIGS. 3B and 3C is the scanning cycle (time). The same applies to FIGS. 4B, 4C, 5B, and 5C.
 図4(A)は、プロジェクタ11がインターバルを空けて映像光を投影する方式の説明図である。この場合、スクリーン21には、図4(B)に示すように、走査周期の一部において短期的に映像光が投影される。スクリーン21は、図4(C)に示すように、該一部の期間において散乱状態とすればよい。そして、該一部以外の期間において、スクリーン21の平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、走査周期おいて、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。定常的に映像光を投影する場合に比べ、同一輝度を得るには、走査周期に対する散乱状態の時間程度のデューティ(図中duty:a)の概ね逆数倍の強さの投影光が必要となる。従って高いシースルー特性を得るには、強力なパルス発光の投影光出力が必要である。 FIG. 4A is an explanatory diagram of a method in which the projector 11 projects image light at an interval. In this case, as shown in FIG. 4B, image light is projected on the screen 21 in a short period of time during a part of the scanning cycle. As shown in FIG. 4C, the screen 21 may be in a scattering state during the partial period. When the optical state of the screen 21 is controlled so as to increase the parallel light transmittance of the screen 21 in a period other than the part, the see-through characteristic of the screen 21 is not caused in the scanning cycle without causing a decrease in the luminance of the image. Is obtained. Compared to the case of projecting image light regularly, to obtain the same brightness, the projection light needs to have an intensity that is approximately the reciprocal of the duty (duty: a) in the scattering state with respect to the scanning period. Become. Therefore, in order to obtain a high see-through characteristic, a powerful pulsed projection light output is required.
 図5(A)は、プロジェクタ11がスクリーン21を走査する投影方式の説明図である。この場合、スクリーン21には、走査周期において常に映像光が投影される。しかしながら、スクリーン21の各部に注目すると、図5(B)に示すように走査周期の一部において映像光が投影されている。このため、図5(C)に示すように、スクリーンの各部は、各々が走査される部分走査期間TPにおいて散乱状態になればよい。また、スクリーン21の各部分は、該部分走査期間TP以外の期間において平行光線透過率を高くするように制御すれば、走査周期において、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。 FIG. 5A is an explanatory diagram of a projection method in which the projector 11 scans the screen 21. In this case, video light is always projected onto the screen 21 during the scanning cycle. However, paying attention to each part of the screen 21, the image light is projected in a part of the scanning period as shown in FIG. For this reason, as shown in FIG. 5C, each part of the screen only needs to be in a scattering state in the partial scanning period TP in which each part is scanned. Further, if each part of the screen 21 is controlled so as to increase the parallel light transmittance in a period other than the partial scanning period TP, the see-through characteristic of the screen 21 can be achieved without causing a decrease in the luminance of the image in the scanning period. can get.
 映像光を投影するプロジェクタ11は、上記いずれの投影方式のものでもよい。
 ただし、散乱に利用されない映像光の発生を抑制するためには、図4または図5の方式が望ましい。また、スクリーン21の光学状態の変化には、応答時間が必要である。このため、応答時間が確保し易い図5の投影方式が、図4よりも望ましい。以下の説明では、図5の投影方式のプロジェクタ11を利用した場合ついて説明する。
The projector 11 that projects the image light may be of any of the above projection methods.
However, in order to suppress the generation of image light that is not used for scattering, the method of FIG. 4 or FIG. 5 is desirable. Moreover, a response time is required for the change in the optical state of the screen 21. For this reason, the projection method of FIG. 5 in which the response time is easily secured is preferable to FIG. In the following description, a case where the projector 11 of the projection method shown in FIG. 5 is used will be described.
 図5の駆動方式では、映像光の走査周期中に、スクリーン21の一部に相当するライン状の映像が、順次、スクリーン21の表示面に投影される。
 このプロジェクタ11には、走査周期中にスクリーン21上で黒状態(投射光が出ない状態)を順次シフトさせる透過型あるいは反射型液晶ライトバルブなどを使用できるが、これ以外の素子を用いてもよい。
 また、プロジェクタ11は、映像の走査周期においてラスター走査し、スクリーン21の表示面に映像光を点順次で投影するものでもよい。このプロジェクタ11では、映像変調された光ビームの照射方向を可動ミラーで反射して振るような、例えばレーザプロジェクタなどを用いることができる。このプロジェクタ11は、映像光の照射位置がスクリーン21上の一方向に順次走査されているものと同様に考えることができる。
In the driving method of FIG. 5, a line-shaped image corresponding to a part of the screen 21 is sequentially projected onto the display surface of the screen 21 during the scanning period of the image light.
The projector 11 can be a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state in which no projection light is emitted) on the screen 21 during the scanning cycle, but other elements can also be used. Good.
Alternatively, the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially. As the projector 11, for example, a laser projector that reflects and shakes the irradiation direction of the image-modulated light beam with a movable mirror can be used. The projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
 スクリーン21は、電圧や電流などの電気信号により光学状態を変化できるものであればよい。
 例えば、液晶材料を用い、散乱状態と入射光の散乱が小さい透明な透過状態を変化させる調光スクリーンなどでよい。調光スクリーンには、たとえば、高分子分散液晶などの液晶素子を用いたもの、透明セル内の白色粉体を移動させることで散乱状態と入射光の散乱が小さい透明な透過状態を制御する素子などを用いたものがある。
 本実施形態では、リバースモードで動作するスクリーン21を例に説明する。
 リバースモードで動作するスクリーン21では、電圧を印加していない通常状態において、スクリーン21が透明な透過状態となる。電圧を印加すると、印加電圧に応じた平行光線の散乱率(透過率)の散乱状態となる。
The screen 21 may be anything that can change the optical state by an electrical signal such as voltage or current.
For example, it may be a dimming screen that uses a liquid crystal material and changes a scattering state and a transparent transmission state in which the scattering of incident light is small. The light control screen uses, for example, a liquid crystal element such as a polymer-dispersed liquid crystal, or an element that controls a transparent transmission state with small scattering of incident light by moving white powder in a transparent cell. There is something that uses.
In the present embodiment, the screen 21 operating in the reverse mode will be described as an example.
In the screen 21 operating in the reverse mode, the screen 21 is in a transparent transmissive state in a normal state where no voltage is applied. When a voltage is applied, a scattering state of parallel light scattering rate (transmittance) according to the applied voltage is obtained.
 また、スクリーン21は、スクリーン21を分割する複数の分割領域22が、それぞれ独立したタイミングで、入射光の散乱が小さい透明な透過状態と、散乱状態との間で切り替えることができるものであればよい。
 たとえば、スクリーン21は、プロジェクタ11の主走査方向(たとえば図2での縦方向)に対応するように短冊状に分割された複数の分割領域を有するものであればよい。
 この他にも、スクリーン21は、プロジェクタ11の主走査方向および副走査方向(たとえば映像の横方向)に対応するように、矩形に分割された領域がマトリクス状に配列されたものでもよい。
In addition, the screen 21 can be switched between a transparent transmission state where the scattering of incident light is small and a scattering state when the plurality of divided regions 22 dividing the screen 21 are independent of each other. Good.
For example, the screen 21 only needs to have a plurality of divided regions divided into strips so as to correspond to the main scanning direction of the projector 11 (for example, the vertical direction in FIG. 2).
In addition, the screen 21 may be a screen in which regions divided into rectangles are arranged in a matrix so as to correspond to the main scanning direction and the sub-scanning direction (for example, the horizontal direction of the image) of the projector 11.
 図6は、分割領域22毎に光学状態を制御可能なスクリーン21の模式的な断面図である。図6には、同期制御部31も図示されている。
 図7は、図6のスクリーン21での、複数の制御電極の配置を示すスクリーンの模式的な正面図である。
 図6の例のスクリーン21は、一対の透明なガラス板23,24の間に液晶を含む複合材料を挟み込んだ光学層25を有する。
 一方のガラス板24の光学層25側には、全面に対向電極26が形成される。
 他方のガラス板23の光学層25側には、複数の制御電極27が並べて配置される。
 電極26、27と光学層25との間に、絶縁体からなる中間層を形成してもよい。
 対向電極26および制御電極27は、たとえばITO(酸化インジウム・スズ)により、透明電極として形成される。
 光学層25は、複数の制御電極27と対向電極26との間に配置される。
FIG. 6 is a schematic cross-sectional view of the screen 21 that can control the optical state for each divided region 22. FIG. 6 also shows the synchronization control unit 31.
FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes on the screen 21 of FIG.
The screen 21 in the example of FIG. 6 has an optical layer 25 in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass plates 23 and 24.
A counter electrode 26 is formed on the entire surface of one glass plate 24 on the optical layer 25 side.
A plurality of control electrodes 27 are arranged side by side on the optical layer 25 side of the other glass plate 23.
An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the optical layer 25.
The counter electrode 26 and the control electrode 27 are formed as transparent electrodes by using, for example, ITO (indium tin oxide).
The optical layer 25 is disposed between the plurality of control electrodes 27 and the counter electrode 26.
 複数の制御電極27は、スクリーン21の映像光が照射される領域を、一方向(たとえば走査方向)で短冊状に分割する。
 複数の制御電極27は、同期制御部31に個別に接続され、個別の電圧が印加される。
 隣接する制御電極27は、互いに離間して配列される。
 隣接する2つの制御電極27の間の、制御電極27が形成されていない領域に対応した光学層25内に、ギャップ領域28が形成される。
 図6では、対向電極26は、接地されている。
 制御電極27と対向電極26との間に電位差を生じるように電圧が印加される。なお、以下に説明する駆動波形の電圧は、制御電極27と対向電極26との電位差を示している。
 制御電極27に印加された電圧は、当該制御電極27に対応する領域の光学層25に印加される。光学層25内の液晶の配向状態は、制御電極27の印加電圧により変化する。光学層25は、分割領域22毎に、入射光の散乱が小さい透明な透過状態と、入射光を散乱する散乱状態との間で調整できる。
 なお、制御電極27に対応したギャップ領域28は、5から100マイクロメートル程度であり、可能な限り狭いことが望ましい。光学層25の厚さは、数から数十マイクロメートルであり、光学特性と駆動電圧を考慮して決定される。
The plurality of control electrodes 27 divide the area of the screen 21 irradiated with the image light into strips in one direction (for example, the scanning direction).
The plurality of control electrodes 27 are individually connected to the synchronization control unit 31 and applied with individual voltages.
Adjacent control electrodes 27 are arranged apart from each other.
A gap region 28 is formed in the optical layer 25 corresponding to a region where the control electrode 27 is not formed between the two adjacent control electrodes 27.
In FIG. 6, the counter electrode 26 is grounded.
A voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26. Note that the voltage of the driving waveform described below indicates a potential difference between the control electrode 27 and the counter electrode 26.
The voltage applied to the control electrode 27 is applied to the optical layer 25 in a region corresponding to the control electrode 27. The alignment state of the liquid crystal in the optical layer 25 changes depending on the voltage applied to the control electrode 27. The optical layer 25 can be adjusted for each divided region 22 between a transparent transmission state where the scattering of incident light is small and a scattering state where the incident light is scattered.
The gap region 28 corresponding to the control electrode 27 is about 5 to 100 micrometers, and is desirably as narrow as possible. The thickness of the optical layer 25 is several to several tens of micrometers, and is determined in consideration of optical characteristics and drive voltage.
 同期制御部31は、プロジェクタ11とスクリーン21とに接続される。
 同期制御部31は、プロジェクタ11の映像光の投影に同期させて、スクリーン21の光学状態を制御する。
 プロジェクタ11から同期制御部31へ入力される同期信号は、たとえばプロジェクタ11の走査周期に同期した同期信号などを用いることができる。
The synchronization control unit 31 is connected to the projector 11 and the screen 21.
The synchronization control unit 31 controls the optical state of the screen 21 in synchronization with the projection of the image light of the projector 11.
As the synchronization signal input from the projector 11 to the synchronization control unit 31, for example, a synchronization signal synchronized with the scanning cycle of the projector 11 can be used.
 図7のスクリーン21のようにスクリーン21が一方向に短冊状に分割されている場合、プロジェクタ11の投影光は、スクリーン21の分割方向に順次走査される。
 同期制御部31は、プロジェクタ11からの同期信号に基づいて、プロジェクタ11の投影光が照射される部位が映像状態(本実施形態では散乱状態)に維持されるように、複数の分割領域22を、走査順で、透明な透過状態から散乱状態に制御する。
 この同期制御により、スクリーン21の各分割領域22は、当該領域に投影光が照射される映像期間を含む期間Tonにおいて、映像状態としての散乱状態になる。また、投影光が照射されない非映像期間Toffにおいては、非映像状態としての透明な透過状態となる。
 スクリーン21は、その背面の物体を認識しうる透明さを有しつつ、常時散乱状態とした場合と同等の明るさで映像光を散乱できる。つまり、背景物体を認識することが可能なシースルー性と、映像の高い視認性とを両立することが可能となる。
When the screen 21 is divided into strips in one direction like the screen 21 in FIG. 7, the projection light of the projector 11 is sequentially scanned in the division direction of the screen 21.
Based on the synchronization signal from the projector 11, the synchronization control unit 31 sets the plurality of divided regions 22 so that the portion irradiated with the projection light of the projector 11 is maintained in the video state (scattering state in the present embodiment). In the scanning order, the transparent transmission state is controlled to the scattering state.
By this synchronization control, each divided region 22 of the screen 21 is in a scattering state as a video state in a period Ton including a video period in which projection light is irradiated to the region. Further, in the non-image period Toff where the projection light is not irradiated, a transparent transmission state as a non-image state is obtained.
The screen 21 can scatter image light with the same brightness as when the screen 21 is always in a scattering state while having transparency that can recognize the object on the back surface. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
 図8は、スクリーン21の走査と駆動との模式的なタイミングチャートである。横軸は、時間である。縦軸は、スクリーンの縦方向の位置を示し、スクリーン21での複数の分割領域22に対応する。
 スクリーン21の各分割領域22は、各々の領域を映像光が走査し始始めるタイミングより前に、透明な透過状態から散乱状態に制御される。また、散乱状態の分割領域22は、当該領域についての映像光の走査が終了した後に、散乱状態から透明な透過状態に制御される。
 複数の分割領域22は、各々の領域に映像光が走査により照射される部分走査期間TPタイミングに同期して映像状態に制御されることにより、走査順で、時間をずらして、順次映像状態へ切り替えられる。スクリーン21を走査する映像光は、映像状態に維持された部分により効率よく散乱され、明るく高い視認性を得ることができる。
FIG. 8 is a schematic timing chart of scanning and driving of the screen 21. The horizontal axis is time. The vertical axis indicates the position in the vertical direction of the screen, and corresponds to a plurality of divided regions 22 on the screen 21.
Each divided region 22 of the screen 21 is controlled from a transparent transmission state to a scattering state before the timing at which the image light starts to scan each region. Further, the divided region 22 in the scattering state is controlled from the scattering state to the transparent transmission state after the scanning of the image light for the region is completed.
The plurality of divided regions 22 are controlled to be in a video state in synchronization with a partial scanning period TP timing in which video light is irradiated to each region by scanning, thereby sequentially shifting to a video state in the scanning order. Can be switched. The image light that scans the screen 21 is efficiently scattered by the portion maintained in the image state, and it is possible to obtain bright and high visibility.
 この同期制御のための切り替えタイミングの情報は、同期信号としてプロジェクタ11から同期制御部31に送出される。
 同期制御部31は、好ましくは、各分割領域22の光学状態が所定の散乱状態に安定している期間に投影光が照射されるように、各制御電極27へ印加する電圧を制御する。各分割領域22の光学状態は、制御電極27へ印加する電圧の信号波形により、切り替わる。
 特に、プロジェクタ11が同期制御部31へ出力する切り替えタイミングの情報には、プロジェクタ11の各走査周期での走査を開始するタイミングの情報と、走査速度(走査の遅延/シフト)とを含めるとよい。これにより、走査周期の周波数が変化した場合にも、映像を乱すことなく、良好なシースルー表示を実現できる。
 なお、プロジェクタ11および同期制御部31をマイクロ波、赤外線などの電磁波を用いたワイヤレス通信可能とし、これらの同期を得るための情報を無線信号により授受してもよい。
Information on the switching timing for the synchronization control is sent from the projector 11 to the synchronization control unit 31 as a synchronization signal.
The synchronization control unit 31 preferably controls the voltage applied to each control electrode 27 so that the projection light is irradiated during a period in which the optical state of each divided region 22 is stable in a predetermined scattering state. The optical state of each divided region 22 is switched according to the signal waveform of the voltage applied to the control electrode 27.
In particular, the information on the switching timing output from the projector 11 to the synchronization control unit 31 may include information on timing at which the projector 11 starts scanning in each scanning cycle and scanning speed (scanning delay / shift). . As a result, even when the frequency of the scanning cycle changes, good see-through display can be realized without disturbing the image.
The projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
 以上の同期制御により、本実施形態の同期制御部31は、映像光の走査周期Tにおける複数の分割領域22の光学状態を、プロジェクタ11による映像光の走査に同期させて切り替えて、スクリーン21についての、映像光が投影される部位の光学状態を映像状態とする。
 よって、スクリーン21は、映像光が照射されるタイミングを含む期間Tonにおいて、映像光が照射される部位が散乱状態に維持されるため、映像を表示できる。
 しかも、スクリーン21は、映像光の投影期間中に、各部位が期間Ton以外の時間では透明な透過状態に制御されるので、スクリーン21を透視することができる。人間の目にはスクリーン21の透過光が平均(積分)化されて見えるので、十分短い走査周期の場合、フリッカを感じることのないシースルー特性が得られる。
 これにより、たとえば図1の設置環境下では、スクリーン21を通して図9の画像を視認できる。
 図9は、映像光による映像とスクリーン21の背景とが重なる表示状態の説明図である。
 図9では、スクリーン21の右側に映像光による人物41の像が映り、左側に、スクリーン21の向こう側の背景としての樹木42を見ることができる。
Through the above-described synchronization control, the synchronization control unit 31 of the present embodiment switches the optical state of the plurality of divided regions 22 in the scanning period T of the video light in synchronization with the scanning of the video light by the projector 11 and The optical state of the part where the image light is projected is defined as an image state.
Therefore, the screen 21 can display an image because the portion irradiated with the image light is maintained in the scattering state in the period Ton including the timing when the image light is irradiated.
Moreover, since the screen 21 is controlled to be in a transparent transmissive state at times other than the period Ton during the projection period of the image light, the screen 21 can be seen through. Since the light transmitted through the screen 21 appears to be averaged (integrated) to the human eye, a see-through characteristic without flicker is obtained in a sufficiently short scanning period.
Thereby, for example, in the installation environment of FIG. 1, the image of FIG. 9 can be visually recognized through the screen 21.
FIG. 9 is an explanatory diagram of a display state in which the image by the image light and the background of the screen 21 overlap.
In FIG. 9, an image of a person 41 by video light is shown on the right side of the screen 21, and a tree 42 as a background on the other side of the screen 21 can be seen on the left side.
 また、本実施形態では、同期制御部31は、映像光の走査周期において複数の分割領域22に印加する電圧を走査順で切り替えて、各分割領域22を、各々が走査される部分走査期間TPにおいて映像状態に制御し、各々が走査されていない期間、すなわち部分走査期間TP以外の期間において非映像状態に制御する。 In the present embodiment, the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and the partial scanning period TP in which each divided region 22 is scanned. In the non-video state during the period when each is not scanned, that is, during the period other than the partial scanning period TP.
 また、本実施形態では、同期制御部31は、制御電極27に印加する電圧を、低周波の交流電圧としている。
 よって、映像光の各走査周期Tにおいて光学層25に印加される電圧の直流成分を抑えることができる。
In the present embodiment, the synchronization control unit 31 sets the voltage applied to the control electrode 27 as a low-frequency AC voltage.
Therefore, the DC component of the voltage applied to the optical layer 25 in each scanning period T of the image light can be suppressed.
 ところで、リバースモードのスクリーン21の一面に、個別の駆動電圧が印加される複数の制御電極27を形成した場合、図6および図7に示すように、隣接する2つの分割領域22の間には、制御電極27が形成されていない領域に対応する光学層25のギャップ領域28が形成される。
 図10は、ギャップ領域28の光学層内の電界の分布の説明図である。
 図10(A)および(B)は、隣接する制御電極27に電圧が印加された状態でのスクリーン21の模式的な断面図である。図中の矢印は、大まかな電界の分布を示している。
By the way, when a plurality of control electrodes 27 to which individual drive voltages are applied are formed on one surface of the reverse mode screen 21, as shown in FIG. 6 and FIG. A gap region 28 of the optical layer 25 corresponding to a region where the control electrode 27 is not formed is formed.
FIG. 10 is an explanatory diagram of the electric field distribution in the optical layer in the gap region 28.
10A and 10B are schematic cross-sectional views of the screen 21 in a state where a voltage is applied to the adjacent control electrode 27. FIG. The arrows in the figure indicate a rough electric field distribution.
 図10(A)に示すように、各々の制御電極27に同一の振幅の交流電圧が印加する場合であっても、図右側の一方の制御電極27に正電圧が印加され、図左側の他方の制御電極27に負電圧が印加され、対向電極26に0Vが印加される場合、すなわち隣接する制御電極27に逆極性の電圧が印加される場合、ギャップ領域28には、制御電極27に対応した分割領域22に対応する部位とは異なる電界が形成される。
 光学層25の液晶の配向は、この電界に影響される。よって、ギャップ領域28の光学状態は、電圧印加による光学状態とは異なる状態となる。
 電界が異なり、液晶配向が他の部位と異なることに起因する光学特性の違いは映像光が照射されるタイミングの場合、ギャップ領域28がスジ状の輝度ムラとして視認される。
 図10(A)の光学状態のスクリーン21では、光学状態は、双方の分割領域22では揃うが、ギャップ領域28では異なる。その結果、ギャップ領域28に沿って光学状態の特異部が生じ、映像状態において輝度ムラが発生する。
As shown in FIG. 10A, even when an AC voltage having the same amplitude is applied to each control electrode 27, a positive voltage is applied to one control electrode 27 on the right side of the figure, and the other on the left side of the figure. When a negative voltage is applied to the control electrode 27 and 0 V is applied to the counter electrode 26, that is, when a reverse polarity voltage is applied to the adjacent control electrode 27, the gap region 28 corresponds to the control electrode 27. An electric field different from the portion corresponding to the divided region 22 is formed.
The alignment of the liquid crystal in the optical layer 25 is affected by this electric field. Therefore, the optical state of the gap region 28 is different from the optical state due to voltage application.
The difference in optical characteristics due to the difference in electric field and the difference in liquid crystal alignment from other parts is visually recognized as a gap-like luminance unevenness in the case where the image light is irradiated.
In the optical state screen 21 of FIG. 10A, the optical state is the same in both divided regions 22, but is different in the gap region 28. As a result, a singular part in the optical state is generated along the gap region 28, and luminance unevenness occurs in the video state.
 そこで、本実施形態の同期制御部31は、図10(B)に示すように、隣接する制御電極27に同極性の電圧を印加する。
 図10(B)の場合、ギャップ領域28の電界の向きは、分割領域22での電界に沿った向きとなり、この電圧印加時におけるギャップ領域28の光学状態は、電圧印加により散乱状態に制御された分割領域22の光学状態とは略同じ状態になる。
 その結果、図10(B)対向電極のスクリーン21では、ギャップ領域28の光学状態が、双方の分割領域22のものと概ね揃うことにより、ギャップ領域22に映像光が照射される際のギャップ領域28における映像の輝度ムラが効果的に抑制され、表示の均一なシースルー性と表示が可能となる。
 隣接する制御電極27を同電位あるいは同極性とすることで、ギャップ領域28の電界の方向が分割領域22のものに沿った方向となり、配向が他の部位と異なることに起因するスジ状のムラを抑制できる。
Therefore, the synchronization control unit 31 of the present embodiment applies a voltage having the same polarity to the adjacent control electrode 27 as shown in FIG.
In the case of FIG. 10B, the direction of the electric field of the gap region 28 is the direction along the electric field of the divided region 22, and the optical state of the gap region 28 at the time of voltage application is controlled to a scattering state by voltage application. The optical state of the divided area 22 is substantially the same.
As a result, in the screen 21 of the counter electrode shown in FIG. 10B, the optical state of the gap region 28 is substantially the same as that of both the divided regions 22, so that the gap region when the gap region 22 is irradiated with video light. The luminance unevenness of the video at 28 is effectively suppressed, and uniform see-through performance and display are possible.
By making the adjacent control electrodes 27 have the same potential or the same polarity, the direction of the electric field in the gap region 28 is in the direction along that of the divided region 22, and the stripe-like unevenness caused by the orientation being different from other portions. Can be suppressed.
 図11は、本実施形態での、複数の分割領域22の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。
 図11(A)から(D)は、連続する4つの制御電極27に印加する電圧である。以下の説明では制御電極27に電圧を印加した波形を記載しているが、対向電極26との電位差として光学層25を含む領域に印加される電圧波形と考えることができる。横軸は時間であり、縦軸は電圧である。図11(E)から(H)は、図11(A)から(D)に対応する、連続する4つの分割領域22の光学特性である。横軸は時間であり、縦軸は平行光線透過率である。なお、以下の説明では光学状態の変化を平行光線透過率の変化を用いて説明している。本発明スクリーンでは、平行光線透過率の減少は散乱の増大を示している。
 図11(A)から(D)に示すように、連続する4個の制御電極27には、各々が走査されない非映像期間Toffでは、透明な透過状態に制御するために電圧の印加が停止される。そして、各々が走査される部分走査期間TPの前に、電圧印加が開始される。印加電圧は、交流とされている。このような電圧波形の印加により、図11(E)から(H)に示すように、連続する4個の分割領域22は、透過状態から散乱状態に制御される。
 また、図11(A)から(D)に示すように、連続する4個の制御電極27には、各々の走査が終了した後、透過状態に制御するために電圧の印加が停止される。このような電圧波形の印加により、図11(E)から(H)に示すように、連続する4個の分割領域22は、散乱状態から透明な透過状態に制御される。
 なお、この同期制御のための基準タイミングの情報は、プロジェクタ11から同期制御部31へ送出される。散乱特性が一定に安定した期間に投影光の照射がなされるように、同期制御部31は、該基準タイミングに基づいて、複数の制御電極27に印加する電圧を順次切り替える。
FIG. 11 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the present embodiment.
11A to 11D show voltages applied to the four consecutive control electrodes 27. FIG. In the following description, a waveform in which a voltage is applied to the control electrode 27 is described, but it can be considered as a voltage waveform applied to a region including the optical layer 25 as a potential difference from the counter electrode 26. The horizontal axis is time, and the vertical axis is voltage. FIGS. 11E to 11H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 11A to 11D. The horizontal axis is time, and the vertical axis is parallel light transmittance. In the following description, changes in the optical state are described using changes in parallel light transmittance. In the screen of the present invention, the decrease in parallel light transmittance indicates an increase in scattering.
As shown in FIGS. 11A to 11D, in the non-video period Toff in which each of the four consecutive control electrodes 27 is not scanned, voltage application is stopped in order to control the transparent transmission state. The Then, voltage application is started before the partial scanning period TP in which each is scanned. The applied voltage is AC. By applying such a voltage waveform, as shown in FIGS. 11E to 11H, the four continuous divided regions 22 are controlled from the transmission state to the scattering state.
Further, as shown in FIGS. 11A to 11D, the application of voltage to the four consecutive control electrodes 27 is stopped after each scan is finished in order to control the transmission state. By applying such a voltage waveform, as shown in FIGS. 11E to 11H, the four continuous divided regions 22 are controlled from the scattering state to the transparent transmission state.
The reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31. The synchronization control unit 31 sequentially switches the voltage applied to the plurality of control electrodes 27 based on the reference timing so that the projection light is irradiated during a period when the scattering characteristics are constant and stable.
 映像光の走査は、図11(A)から(D)中のタイミングT1において、図11(A)の分割領域22から、図11(B)の分割領域22へ移動する。このタイミングT1において、これら2つの分割領域22の間のギャップ領域28を通過するように映像光が走査される。
 そして、このタイミングT1では、図11(A)の制御電極27と、図11(B)の制御電極27とには、同極性かつ同電位の電圧が印加されている。
 よって、ギャップ領域28の光学状態は、図10(B)の映像状態に制御される。ギャップ領域28は、分割領域22と同様の光学状態で映像光を散乱して透過する。
 同様に、図11(A)から(D)中のタイミングT2においても、図11(B)の制御電極27と、図11(C)の制御電極27とには、同極性かつ同電位の電圧が印加されている。
 同様に、図11(A)から(D)中のタイミングT3においても、図11(C)の制御電極27と、図11(D)の制御電極27とには、同極性かつ同電位の電圧が印加されている。
 この結果、映像光は、ギャップ領域28においても分割領域22と略同じ散乱状態で散乱して透過される。
The scanning of the image light moves from the divided area 22 in FIG. 11A to the divided area 22 in FIG. 11B at a timing T1 in FIGS. At this timing T1, the image light is scanned so as to pass through the gap region 28 between the two divided regions 22.
At this timing T1, voltages having the same polarity and the same potential are applied to the control electrode 27 in FIG. 11A and the control electrode 27 in FIG.
Therefore, the optical state of the gap region 28 is controlled to the video state of FIG. The gap region 28 scatters and transmits image light in the same optical state as the divided region 22.
Similarly, at timing T2 in FIGS. 11A to 11D, the control electrode 27 in FIG. 11B and the control electrode 27 in FIG. Is applied.
Similarly, at timing T3 in FIGS. 11A to 11D, the control electrode 27 in FIG. 11C and the control electrode 27 in FIG. Is applied.
As a result, the image light is scattered and transmitted in the gap region 28 in substantially the same scattering state as that of the divided region 22.
 以上のように、本実施形態では、同期制御部31は、隣接して配置された2つの制御電極27に映像光がこれらの電極間のギャップ領域を走査するタイミングで同極性の電圧を印加する。
 これにより、制御電極27が形成されていない、対応する2つの分割領域22の間の領域に対応する光学層のギャップ領域28の光学状態を望ましい状態に制御できる。
 特に、プロジェクタ11は、映像光によりスクリーン21を走査し、スクリーン21は、電圧が印加されることで平行光線透過率が低くなるリバースモードで動作し、照射された映像光を散乱する。よって、リバースモードのスクリーン21において、対応する2つの分割領域22の間のギャップ領域28の光学状態を、映像状態に制御できる。
 また、同期制御部31は、映像光が1の分割領域22から隣接する別の分割領域22へ移動する際に、対応する2つの制御電極27に同極性且つ同振幅の電圧を印加する。よって、リバースモードのスクリーン21のギャップ領域28の光学状態を、分割領域22と同等の映像状態に制御できる。
 これにより、スクリーン21の散乱により形成される映像では、ギャップ領域28での輝度ムラの影響が抑制される。スクリーン21全体にわたり、映し出す映像にムラが生じ難くなる。
As described above, in the present embodiment, the synchronization control unit 31 applies a voltage of the same polarity to the two control electrodes 27 arranged adjacent to each other at the timing when the image light scans the gap region between these electrodes. .
Thereby, the optical state of the gap region 28 of the optical layer corresponding to the region between the two corresponding divided regions 22 where the control electrode 27 is not formed can be controlled to a desired state.
In particular, the projector 11 scans the screen 21 with image light, and the screen 21 operates in a reverse mode in which parallel light transmittance is reduced by applying a voltage, and scatters the irradiated image light. Therefore, in the reverse mode screen 21, the optical state of the gap region 28 between the two corresponding divided regions 22 can be controlled to the video state.
Further, when the image light moves from one divided region 22 to another adjacent divided region 22, the synchronization control unit 31 applies a voltage having the same polarity and the same amplitude to the corresponding two control electrodes 27. Therefore, the optical state of the gap region 28 of the screen 21 in the reverse mode can be controlled to the same video state as that of the divided region 22.
Thereby, in the image formed by the scattering of the screen 21, the influence of luminance unevenness in the gap region 28 is suppressed. Unevenness is less likely to occur in the projected image over the entire screen 21.
[第1比較例]
 第1比較例の表示装置は、第1実施形態のものと同様である。ただし、同期制御部31は、ギャップ領域28の制御を考慮していない駆動電圧を、複数の制御電極27に印加する。
 図12は、第1比較例での、複数の分割領域22の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。
 図12(A)から(H)は、図11(A)から(H)に対応する。
 そして、第1比較例では、映像光の走査がギャップ領域28となる図11(A)から(D)中のタイミングT11からT13において、ギャップ領域28の両側の制御電極27には、逆極性かつ同振幅の電圧が印加されている。
 よって、ギャップ領域28の光学状態は、図10(A)の映像状態に制御される。ギャップ領域28は、分割領域22とは異なる光学状態で映像光を散乱する。
 この結果、ギャップ領域28においての散乱が分割領域22の散乱と異なる特性となり、スクリーン21全体にわたり、映し出す映像にムラが生じる。
[First comparative example]
The display device of the first comparative example is the same as that of the first embodiment. However, the synchronization control unit 31 applies a drive voltage not considering the control of the gap region 28 to the plurality of control electrodes 27.
FIG. 12 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the first comparative example.
FIGS. 12A to 12H correspond to FIGS. 11A to 11H.
In the first comparative example, at the timings T11 to T13 in FIGS. 11A to 11D in which the scanning of the image light becomes the gap region 28, the control electrodes 27 on both sides of the gap region 28 have the opposite polarity and A voltage having the same amplitude is applied.
Therefore, the optical state of the gap region 28 is controlled to the video state of FIG. The gap region 28 scatters image light in an optical state different from that of the divided region 22.
As a result, the scattering in the gap region 28 has a different characteristic from the scattering in the divided region 22, and the projected image is uneven over the entire screen 21.
[第2実施形態]
 第2実施形態では、第1実施形態の表示装置1の変形例を説明する。
 プロジェクタ11からスクリーン21に投影される映像光が一つの分割領域22を通過するのに要する時間は、複数の分割領域22の間で略均一である。以下、この時間を、走査遅延時間Tdという。
 走査遅延時間Tdは、例えばプロジェクタ11をスクリーン21から離した場合は小さくなり(実効的な映像領域分割数が大きくなる)、逆に近づけた場合は大きくなる(実効的な映像領域分割数が小さくなる)。
 この他、プロジェクタ11の走査は、プロジェクタ11毎に固有のものであるため、一定ではない。特に、走査期間の最後の分割領域22では、個体差のずれが大きくなる。
[Second Embodiment]
In the second embodiment, a modification of the display device 1 of the first embodiment will be described.
The time required for the image light projected from the projector 11 to the screen 21 to pass through one divided region 22 is substantially uniform among the plurality of divided regions 22. Hereinafter, this time is referred to as a scanning delay time Td.
For example, the scanning delay time Td is small when the projector 11 is separated from the screen 21 (the effective number of image area divisions is large), and is large when close to the reverse (the effective number of image area divisions is small). Become).
In addition, since the scanning of the projector 11 is unique to each projector 11, it is not constant. In particular, in the last divided region 22 in the scanning period, the difference between individual differences becomes large.
 第2実施形態の同期制御部31は、一定ではない走査遅延時間Tdに対し、ギャップ領域28が走査されるタイミングにおいてその両側の制御電極27の電圧の極性をそろえるように、駆動電圧波形を調整する。
 具体的には、同期制御部31は、たとえば映像光の走査周期から得られる走査遅延時間Td、および複数の制御電極27に印加する交流電圧の周波数の双方に基づいて、制御電極27毎に、駆動電圧波形の反転の要否を判断する。
 そして、同期制御部31は、ギャップ領域28が走査されるタイミングにおいてその両側の制御電極27の電圧の極性をそろえるように、駆動電圧波形を適宜ライン反転する。
 図13は、第2実施形態での、複数の制御電極27に印加する駆動電圧波形のライン反転制御の説明図である。
 図13(A)から(C)の3組の駆動電圧波形は、一定の周期の駆動電圧波形である。横軸は時間であり、縦軸は電圧である。
The synchronization control unit 31 of the second embodiment adjusts the drive voltage waveform so that the polarity of the voltage of the control electrodes 27 on both sides thereof is aligned at the timing when the gap region 28 is scanned with respect to the scanning delay time Td that is not constant. To do.
Specifically, for example, the synchronization control unit 31 determines, for each control electrode 27, based on both the scanning delay time Td obtained from the scanning period of the image light and the frequency of the AC voltage applied to the plurality of control electrodes 27. It is determined whether the drive voltage waveform needs to be inverted.
Then, the synchronization control unit 31 appropriately inverts the drive voltage waveform so that the polarities of the voltages of the control electrodes 27 on both sides thereof are aligned at the timing when the gap region 28 is scanned.
FIG. 13 is an explanatory diagram of line inversion control of drive voltage waveforms applied to the plurality of control electrodes 27 in the second embodiment.
The three sets of drive voltage waveforms in FIGS. 13A to 13C are drive voltage waveforms with a constant period. The horizontal axis is time, and the vertical axis is voltage.
 図13(A)に示すように、走査遅延時間Tdが小さい場合、走査光がギャップ領域28を走査するタイミングT31からT33は、駆動電圧波形の半周期の間に収まる。
 この場合、同期制御部31は、各駆動電圧波形の反転判断において、反転不要と判断する。
 その結果、図13(A)に示すように、4つの駆動電圧波形は、反転されることなく、同相で極性が変化する電圧として、各々の制御電極27に印加される。
 なお、同期制御部31は、プロジェクタ11から通知された映像光の走査周期のうち、複数の領域に分割されたスクリーン上を実際に走査する時間を、制御電極27の本数で割った値を、走査遅延時間Tdに用いればよい。
As shown in FIG. 13A, when the scanning delay time Td is small, the timings T31 to T33 at which the scanning light scans the gap region 28 fall within the half cycle of the drive voltage waveform.
In this case, the synchronization control unit 31 determines that inversion is not necessary in determining inversion of each drive voltage waveform.
As a result, as shown in FIG. 13A, the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages whose polarity changes in phase without being inverted.
Note that the synchronization control unit 31 calculates a value obtained by dividing the time for actually scanning the screen divided into a plurality of regions by the number of the control electrodes 27 in the scanning period of the image light notified from the projector 11. What is necessary is just to use for the scanning delay time Td.
 図13(B)に示すように、走査遅延時間Tdが少し長くなると、走査光がギャップ領域28を走査するタイミングT41からT43は、駆動電圧波形の半周期の間に収まらなくなる。
 この場合、同期制御部31は、各駆動電圧波形の反転判断において、適宜反転要と判断する。
 その結果、図13(B)に示すように、上から2番目の駆動電圧波形は1番目に対して反転され、上から3番目の駆動電圧波形は更に2番目に対して反転され、上から4番目の駆動電圧波形は更に3番目に対して反転される。
As shown in FIG. 13B, when the scanning delay time Td becomes slightly longer, the timings T41 to T43 at which the scanning light scans the gap region 28 do not fit in the half cycle of the drive voltage waveform.
In this case, the synchronization control unit 31 determines that the inversion is necessary in the inversion determination of each drive voltage waveform.
As a result, as shown in FIG. 13B, the second drive voltage waveform from the top is inverted with respect to the first, the third drive voltage waveform from the top is further inverted with respect to the second, and from the top. The fourth drive voltage waveform is further inverted with respect to the third.
 図13(C)に示すように、走査遅延時間Tdが更に長くなると、走査光がギャップ領域28を走査するタイミングT51からT53の間隔が更に広がる。
 この場合、同期制御部31は、各駆動電圧波形の反転判断において、適宜反転要と判断する。
 ただし、図13(C)の場合では、反転されることなく、同相で極性が変化する電圧として、各々の制御電極27に印加されている。
As shown in FIG. 13C, when the scanning delay time Td is further increased, the interval from the timing T51 to T53 when the scanning light scans the gap region 28 is further widened.
In this case, the synchronization control unit 31 determines that the inversion is necessary in the inversion determination of each drive voltage waveform.
However, in the case of FIG. 13C, the voltage is applied to each control electrode 27 as a voltage whose polarity changes in phase without being inverted.
 以上のように、本実施形態の同期制御部31は、複数の制御電極27に対して、共通する波形の交流電圧を印加する。
 また、同期制御部31は、映像光の走査周期T、および複数の制御電極27に印加する交流電圧の周波数に基づいて、複数の制御電極27に印加する交流電圧の波形を調整する。
 具体的には、同期制御部31は、映像光によりギャップ領域28が走査されるタイミングで、該ギャップ領域28の両側の分割領域22に対応する制御電極27に印加する電圧の極性が揃うように、一部の制御電極27に印加する交流電圧の波形を、他の制御電極27に印加する交流電圧の波形に対して反転させるように調整する。
 すなわち、本実施形態では、プロジェクタ11の投影領域によって決まる走査遅延と、駆動電圧波形(のパルス幅)に応じて、映像光が走査されるタイミングのギャップ領域28の両側の分割領域22を同電位あるいは同極性となるように、ライン反転/非反転を制御する。駆動電圧波形が半周期を含む場合は、走査周期の単位で反転する。
 よって、本実施形態では、プロジェクタ11によるスクリーン11の走査周期Tが変動したとしても、それに同期させてスクリーン11の複数のギャップ領域28を、分割領域22と同等の散乱状態(映像状態)に制御できる。
As described above, the synchronization control unit 31 of this embodiment applies a common waveform AC voltage to the plurality of control electrodes 27.
In addition, the synchronization control unit 31 adjusts the waveform of the AC voltage applied to the plurality of control electrodes 27 based on the scanning period T of the image light and the frequency of the AC voltage applied to the plurality of control electrodes 27.
Specifically, the synchronization control unit 31 adjusts the polarities of the voltages applied to the control electrodes 27 corresponding to the divided regions 22 on both sides of the gap region 28 at the timing when the gap region 28 is scanned with video light. The AC voltage waveform applied to some control electrodes 27 is adjusted so as to be inverted with respect to the AC voltage waveform applied to other control electrodes 27.
That is, in the present embodiment, the divided regions 22 on both sides of the gap region 28 at the timing when the image light is scanned are set to the same potential according to the scanning delay determined by the projection region of the projector 11 and the drive voltage waveform (pulse width). Alternatively, line inversion / non-inversion is controlled so as to have the same polarity. When the drive voltage waveform includes a half cycle, it is inverted in units of scanning cycle.
Therefore, in the present embodiment, even if the scanning period T of the screen 11 by the projector 11 changes, the plurality of gap regions 28 of the screen 11 are controlled to be in a scattering state (video state) equivalent to the divided region 22 in synchronization with it. it can.
[第3実施形態]
 第3実施形態では、第2実施形態の表示装置1の変形例を説明する。
 第3実施形態の同期制御部31は、駆動電圧波形のライン反転を制御する替わりに、駆動電圧波形のパルス幅およびサイクル数を制御する。
 図14は、第3実施形態での、複数の制御電極27に印加する駆動電圧波形のパルス幅およびサイクル数の制御の説明図である。
 図14(A)から(C)の3組の駆動電圧波形では、映像光によりギャップ領域28が走査されるタイミングで、該ギャップ領域28の両側の分割領域22に対応する制御電極27に印加する電圧の極性が揃うように、駆動電圧波形のパルス幅およびサイクル数が制御されている。
 横軸は時間であり、縦軸は電圧である。
[Third Embodiment]
In the third embodiment, a modification of the display device 1 of the second embodiment will be described.
The synchronization control unit 31 of the third embodiment controls the pulse width and the number of cycles of the drive voltage waveform instead of controlling the line inversion of the drive voltage waveform.
FIG. 14 is an explanatory diagram of the control of the pulse width and the number of cycles of the drive voltage waveform applied to the plurality of control electrodes 27 in the third embodiment.
14A to 14C, the drive voltage waveforms are applied to the control electrodes 27 corresponding to the divided regions 22 on both sides of the gap region 28 at the timing when the gap region 28 is scanned by the image light. The pulse width and the number of cycles of the drive voltage waveform are controlled so that the voltages have the same polarity.
The horizontal axis is time, and the vertical axis is voltage.
 図14(A)に示すように、走査遅延時間Tdが小さい場合、走査光がギャップ領域28を走査するタイミングT61からT63は、標準的な駆動電圧波形の半周期の間に収まる。
 この場合、同期制御部31は、駆動電圧波形の調整要否判断において、調整不要と判断する。
 その結果、図14(A)に示すように、4つの駆動電圧波形は、標準的な波形のまま、同相で極性が変化する電圧として、各々の制御電極27に印加される。
As shown in FIG. 14A, when the scanning delay time Td is small, timings T61 to T63 at which the scanning light scans the gap region 28 fall within a half cycle of a standard driving voltage waveform.
In this case, the synchronization control unit 31 determines that adjustment is not necessary in determining whether the drive voltage waveform needs to be adjusted.
As a result, as shown in FIG. 14A, the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages having the same phase and changing in polarity while maintaining the standard waveforms.
 図14(B)に示すように、走査遅延時間Tdが少し長くなると、走査光がギャップ領域28を走査するタイミングT71からT73は、標準的な駆動電圧波形の半周期の間に収まらなくなる。
 この場合、同期制御部31は、駆動電圧波形の調整要否判断において、調整要と判断する。
 その結果、図14(B)に示すように、駆動電圧波形のサイクル数をたとえば半分に減らす。4つの駆動電圧波形は、パルス幅が広がるように調整された波形により、同相で極性が変化する電圧として、各々の制御電極27に印加される。
As shown in FIG. 14B, when the scanning delay time Td becomes slightly longer, the timings T71 to T73 at which the scanning light scans the gap region 28 do not fit within the half cycle of the standard driving voltage waveform.
In this case, the synchronization control unit 31 determines that adjustment is necessary in determining whether the drive voltage waveform needs to be adjusted.
As a result, as shown in FIG. 14B, the number of cycles of the drive voltage waveform is reduced to, for example, half. The four drive voltage waveforms are applied to the respective control electrodes 27 as voltages whose polarities change in the same phase according to waveforms adjusted so that the pulse width is widened.
 図14(C)に示すように、走査遅延時間Tdが更に長くなると、走査光がギャップ領域28を走査するタイミングT81からT83の間隔が更に広がる。
 この場合、同期制御部31は、駆動電圧波形の調整要否判断において、調整不要と判断する。
 その結果、図14(C)に示すように、4つの駆動電圧波形は、標準的な波形のまま、同相で極性が変化する電圧として、各々の制御電極27に印加される。
As shown in FIG. 14C, when the scanning delay time Td is further increased, the interval from the timing T81 to T83 when the scanning light scans the gap region 28 is further increased.
In this case, the synchronization control unit 31 determines that adjustment is not necessary in determining whether the drive voltage waveform needs to be adjusted.
As a result, as shown in FIG. 14C, the four drive voltage waveforms are applied to the respective control electrodes 27 as voltages having the same phase and changing polarity while maintaining the standard waveforms.
 以上のように、本実施形態の同期制御部31は、複数の制御電極27に対して、共通する波形の交流電圧を印加する。
 また、同期制御部31は、映像光の走査周期T、および複数の制御電極27に印加する交流電圧の周波数に基づいて、複数の制御電極27に印加する交流電圧の波形を調整する。
 具体的には、同期制御部31は、映像光によりギャップ領域28が走査されるタイミングで、該ギャップ領域28の両側の分割領域22に対応する制御電極27に印加する電圧の極性が揃うように、駆動電圧波形のパルス幅およびサイクル数を調整する。
 すなわち、本実施形態では、プロジェクタ11の投影領域によって決まる走査遅延と、駆動電圧波形(のパルス幅)に応じて、映像光が走査されるタイミングのギャップ領域28の両側の分割領域22を同電位あるいは同極性となるように、パルス幅あるいはサイクル数を制御する。なお、パルスが半周期を含む場合は、走査周期の単位で反転してよい。
 よって、本実施形態では、プロジェクタ11によるスクリーン11の走査周期Tが変動したとしても、それに同期させてスクリーン11の複数のギャップ領域28を、分割領域22と同等の散乱状態(映像状態)に制御できる。
As described above, the synchronization control unit 31 of this embodiment applies a common waveform AC voltage to the plurality of control electrodes 27.
In addition, the synchronization control unit 31 adjusts the waveform of the AC voltage applied to the plurality of control electrodes 27 based on the scanning period T of the image light and the frequency of the AC voltage applied to the plurality of control electrodes 27.
Specifically, the synchronization control unit 31 adjusts the polarities of the voltages applied to the control electrodes 27 corresponding to the divided regions 22 on both sides of the gap region 28 at the timing when the gap region 28 is scanned with video light. Adjust the pulse width and cycle number of the driving voltage waveform.
That is, in the present embodiment, the divided regions 22 on both sides of the gap region 28 at the timing when the image light is scanned are set to the same potential according to the scanning delay determined by the projection region of the projector 11 and the drive voltage waveform (pulse width). Alternatively, the pulse width or the number of cycles is controlled so as to have the same polarity. When the pulse includes a half cycle, the pulse may be reversed in units of scanning cycle.
Therefore, in the present embodiment, even if the scanning period T of the screen 11 by the projector 11 changes, the plurality of gap regions 28 of the screen 11 are controlled to be in a scattering state (video state) equivalent to the divided region 22 in synchronization with it. it can.
 以上の各実施形態は、本発明の好適な実施形態の例であるが、本発明は、これに限定されるものではなく、発明の要旨を逸脱しない範囲において種々の変形または変更が可能である。 Each of the above embodiments is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications or changes can be made without departing from the scope of the invention. .
 たとえば同期制御部31は、第2実施形態ではライン反転制御をし、第3実施形態ではパルス幅を制御している。この他にもたとえば、同期制御部31は、プロジェクタ11の投影領域によって決まる走査遅延Tdに応じて、各駆動電圧波形を、ライン反転とパルス幅制御を組み合わせて調整してよい。 For example, the synchronization control unit 31 performs line inversion control in the second embodiment, and controls the pulse width in the third embodiment. In addition, for example, the synchronization control unit 31 may adjust each drive voltage waveform by combining line inversion and pulse width control in accordance with the scanning delay Td determined by the projection area of the projector 11.
 上記実施形態では、スクリーン21は、映像状態で散乱状態に制御され、映像光を透過しつつ散乱している。この他にもたとえば、スクリーン21は、映像状態で高い散乱状態に制御され、映像光を反射しつつ散乱してもよい。この場合、スクリーン21に関し、プロジェクタ11からの映像光を投射する側に視聴者が位置する反射型スクリーンとして機能する。 In the above embodiment, the screen 21 is controlled to be in the scattering state in the image state, and is scattered while transmitting the image light. In addition, for example, the screen 21 may be controlled to be in a high scattering state in the video state, and may be scattered while reflecting the video light. In this case, the screen 21 functions as a reflective screen in which the viewer is positioned on the side where the image light from the projector 11 is projected.
 また、上記実施形態では、リバースモードのスクリーン21を使用している。この他にもたとえば、ノーマルモードのスクリーン21を利用してもよい。
 ノーマルモードのスクリーン21は、電圧が印加されることで平行光線透過率が高くなるが、映像状態である散乱状態に電圧を印加して駆動する場合に利用できる。
 たとえば、ノーマルモードのスクリーン21が照射された映像光を散乱する場合、同期制御部31は、走査される映像光が1つの分割領域22から別の分割領域22へ移動する際に、該2つの分割領域22に対応する制御電極27に同極性の電圧を印加し、該2つの分割領域22の間に対応するギャップ領域28の光学特性を映像状態に制御すればよい。
In the above embodiment, the reverse mode screen 21 is used. In addition, for example, the screen 21 in the normal mode may be used.
The screen 21 in the normal mode increases the parallel light transmittance when a voltage is applied, but can be used when driven by applying a voltage to a scattering state that is an image state.
For example, when the image light irradiated with the screen 21 in the normal mode is scattered, the synchronization control unit 31 moves the two image lights when the scanned image light moves from one divided region 22 to another divided region 22. A voltage having the same polarity may be applied to the control electrode 27 corresponding to the divided area 22 to control the optical characteristics of the gap area 28 corresponding to the two divided areas 22 to the video state.
1 表示装置
11 プロジェクタ
21 スクリーン
22 分割領域
25 光学層
27 制御電極
28 ギャップ領域
31 同期制御部(制御部)
T 走査周期
TP 部分走査期間
Ton 映像期間を含む期間
Toff 非映像期間
DESCRIPTION OF SYMBOLS 1 Display apparatus 11 Projector 21 Screen 22 Division | segmentation area | region 25 Optical layer 27 Control electrode 28 Gap area | region 31 Synchronization control part (control part)
T scanning period TP partial scanning period Ton period including video period Toff non-video period

Claims (9)

  1.  電圧の印加により光学特性が変化する光学層、および前記光学層に電圧を印加するために前記光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有するスクリーンと、
     前記スクリーンに映像光を照射して映像を表示させるプロジェクタと、
     映像光の投影期間において前記複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各前記制御電極に対応する分割領域を、前記映像光を散乱する映像状態から、これと異なる光学状態である所定の非映像状態へ切り替える制御部と、
     を有し、
     前記制御部は、
      映像光が照射されるタイミングにおいて、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、
     表示装置。
    An optical layer whose optical properties change by application of a voltage, and a screen having a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer;
    A projector that displays image by irradiating image light on the screen;
    The voltage application to the plurality of control electrodes is controlled and stopped during the projection period of the image light, and the divided regions corresponding to the control electrodes are different from the image state in which the image light is scattered by voltage application. A control unit for switching to a predetermined non-video state in an optical state;
    Have
    The controller is
    At the timing when the image light is irradiated, a voltage having the same polarity is applied to two adjacent control electrodes, and the optical state of the region between the two corresponding divided regions is controlled.
    Display device.
  2.  前記プロジェクタは、映像光により前記スクリーンを走査し、
     前記スクリーンは、電圧が印加されることで平行光線透過率が低くなるリバースモードで動作し、照射された映像光を散乱して透過し、
     前記制御部は、
      走査される前記映像光が1の分割領域から別の分割領域へ移動する際に、該2つの分割領域に対応する制御電極に同極性の電圧を印加し、該2つの分割領域の間の領域を映像状態に制御する、
     請求項1記載の表示装置。
    The projector scans the screen with image light,
    The screen operates in a reverse mode in which a parallel light transmittance is lowered by applying a voltage, and scatters and transmits the irradiated image light.
    The controller is
    When the image light to be scanned moves from one divided region to another divided region, a voltage having the same polarity is applied to the control electrodes corresponding to the two divided regions, and the region between the two divided regions To the video state,
    The display device according to claim 1.
  3.  前記制御部は、
      前記映像光が1の分割領域から別の分割領域へ移動する際に、該2つの分割領域の制御電極に同極性且つ同振幅の電圧を印加し、該2つの分割領域の間の領域を映像状態に制御する、
     請求項2記載の表示装置。
    The controller is
    When the image light moves from one divided region to another divided region, a voltage having the same polarity and the same amplitude is applied to the control electrodes of the two divided regions, and the region between the two divided regions is imaged. Control to the state,
    The display device according to claim 2.
  4.  前記制御部は、
      前記複数の制御電極に対して、共通する波形の交流電圧を印加し、
      映像光により前記2つの分割領域の間の領域が走査されるタイミングで、該領域の両側の分割領域に対応する制御電極に印加する電圧の極性が揃うように、一部の前記制御電極に印加する交流電圧の波形を、他の制御電極に印加する前記交流電圧の波形に対して極性を反転させるように調整する、
     請求項2または3記載の表示装置。
    The controller is
    Applying a common waveform AC voltage to the plurality of control electrodes,
    Applied to some of the control electrodes so that the polarities of the voltages applied to the control electrodes corresponding to the divided regions on both sides of the region are aligned at the timing when the region between the two divided regions is scanned by image light Adjusting the AC voltage waveform to reverse the polarity with respect to the AC voltage waveform applied to the other control electrode,
    The display device according to claim 2 or 3.
  5.  前記制御部は、
      前記複数の制御電極に対して、共通する波形の交流電圧を印加し、
      映像光により前記2つの分割領域の間の領域が走査されるタイミングで、該領域の両側の分割領域に対応する制御電極に印加する電圧の極性が揃うように、前記複数の制御電極に印加する交流電圧の波形でのパルス幅またはサイクル数を調整する、
     請求項2または3記載の表示装置。
    The controller is
    Applying a common waveform AC voltage to the plurality of control electrodes,
    Applied to the plurality of control electrodes so that the polarities of the voltages applied to the control electrodes corresponding to the divided regions on both sides of the region are aligned at the timing when the region between the two divided regions is scanned by the image light Adjust the pulse width or number of cycles in the AC voltage waveform,
    The display device according to claim 2 or 3.
  6.  前記制御部は、
      映像光の走査周期、および前記複数の制御電極に印加する交流電圧の周波数の少なくとも一方に基づいて、前記複数の制御電極に印加する交流電圧の波形を調整する、
     請求項4または5記載の表示装置。
    The controller is
    Adjusting the waveform of the AC voltage applied to the plurality of control electrodes based on at least one of the scanning period of the image light and the frequency of the AC voltage applied to the plurality of control electrodes;
    The display device according to claim 4 or 5.
  7.  前記プロジェクタは、映像光により前記スクリーンを走査し、
     前記スクリーンは、電圧が印加されることで平行光線透過率が高くなるノーマルモードで動作し、照射された映像光を散乱して透過し、
     前記制御部は、
      走査される前記映像光が1の分割領域から別の分割領域へ移動する際に、該2つの分割領域に対応する制御電極に同極性の電圧を印加し、該2つの分割領域の間の領域の光学特性を映像状態に制御する、
     請求項1記載の表示装置。
    The projector scans the screen with image light,
    The screen operates in a normal mode in which the parallel light transmittance is increased when a voltage is applied, and scatters and transmits the irradiated image light.
    The controller is
    When the image light to be scanned moves from one divided region to another divided region, a voltage having the same polarity is applied to the control electrodes corresponding to the two divided regions, and the region between the two divided regions To control the optical characteristics of the
    The display device according to claim 1.
  8.  プロジェクタから照射される映像光による映像を、電圧の印加により光学特性が変化する光学層を有するスクリーンに表示する表示装置の駆動方法であって、
     前記スクリーンの光学状態を制御する制御部は、
      前記光学層に沿って並べて且つ互いに離間して配置される複数の制御電極に電圧を印加して、前記光学層および前記複数の制御電極を有するスクリーンに、照射される映像光による映像を表示させ、
      映像光の投影期間において前記複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各前記制御電極に対応する分割領域を、前記映像光を散乱する映像状態から、これと異なる光学状態である所定の非映像状態へ切り替え、
      映像光が照射されるタイミングにおいて、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、
     表示装置の駆動方法。
    A display device driving method for displaying an image of image light emitted from a projector on a screen having an optical layer whose optical characteristics change by application of a voltage,
    The control unit for controlling the optical state of the screen,
    A voltage is applied to a plurality of control electrodes arranged along the optical layer and spaced apart from each other, and an image of the irradiated image light is displayed on a screen having the optical layer and the plurality of control electrodes. ,
    The voltage application to the plurality of control electrodes is controlled and stopped during the projection period of the image light, and the divided regions corresponding to the control electrodes are different from the image state in which the image light is scattered by voltage application. Switch to a predetermined non-video state that is an optical state,
    At the timing when the image light is irradiated, a voltage having the same polarity is applied to two adjacent control electrodes, and the optical state of the region between the two corresponding divided regions is controlled.
    A driving method of a display device.
  9.  電圧の印加により光学特性が変化する光学層、および前記光学層に電圧を印加するために前記光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有し、照射された映像光による映像を表示するスクリーンと、
     映像光の投影期間において前記複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各前記制御電極に対応する分割領域を、前記映像光を散乱する映像状態から、これと異なる光学状態である所定の非映像状態へ切り替える制御部と、
     を有し、
     前記制御部は、
      映像光が照射されるタイミングにおいて、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、
     表示用スクリーン装置。
    An optical layer having an optical layer whose optical characteristics change when a voltage is applied, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer. A screen for displaying images of light;
    The voltage application to the plurality of control electrodes is controlled and stopped during the projection period of the image light, and the divided regions corresponding to the control electrodes are different from the image state in which the image light is scattered by voltage application. A control unit for switching to a predetermined non-video state in an optical state;
    Have
    The controller is
    At the timing when the image light is irradiated, a voltage having the same polarity is applied to two adjacent control electrodes, and the optical state of the region between the two corresponding divided regions is controlled.
    Screen device for display.
PCT/JP2012/057611 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device WO2013140628A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014505953A JP5856285B2 (en) 2012-03-23 2012-03-23 Display device, driving method thereof, and display screen device
PCT/JP2012/057611 WO2013140628A1 (en) 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device
US14/852,962 US20160027395A1 (en) 2012-03-23 2015-09-14 Display apparatus, driving method thereof and screen apparatus for displaying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057611 WO2013140628A1 (en) 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14386878 A-371-Of-International 2012-03-23
US14/852,962 Continuation US20160027395A1 (en) 2012-03-23 2015-09-14 Display apparatus, driving method thereof and screen apparatus for displaying

Publications (1)

Publication Number Publication Date
WO2013140628A1 true WO2013140628A1 (en) 2013-09-26

Family

ID=49222119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057611 WO2013140628A1 (en) 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device

Country Status (2)

Country Link
JP (1) JP5856285B2 (en)
WO (1) WO2013140628A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125207A1 (en) * 2014-02-18 2015-08-27 パイオニア株式会社 Display control device
WO2015132907A1 (en) * 2014-03-05 2015-09-11 パイオニア株式会社 Display control device
FR3023930A1 (en) * 2014-07-17 2016-01-22 Commissariat Energie Atomique SCREEN AND DISPLAY DEVICE IN RETROPROJECTION

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Presence display device
JPH0682748A (en) * 1992-08-31 1994-03-25 Takiron Co Ltd Projection image pickup device
JPH06194627A (en) * 1992-12-24 1994-07-15 Casio Comput Co Ltd Driving method for macromolecule dispersion type liquid crystal display element
JP2004184979A (en) * 2002-09-03 2004-07-02 Optrex Corp Image display apparatus
JP2007219414A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Driving method of liquid crystal dimming device
JP2010197486A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Image-displaying system and image communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Presence display device
JPH0682748A (en) * 1992-08-31 1994-03-25 Takiron Co Ltd Projection image pickup device
JPH06194627A (en) * 1992-12-24 1994-07-15 Casio Comput Co Ltd Driving method for macromolecule dispersion type liquid crystal display element
JP2004184979A (en) * 2002-09-03 2004-07-02 Optrex Corp Image display apparatus
JP2007219414A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Driving method of liquid crystal dimming device
JP2010197486A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Image-displaying system and image communication system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125207A1 (en) * 2014-02-18 2015-08-27 パイオニア株式会社 Display control device
JPWO2015125207A1 (en) * 2014-02-18 2017-03-30 パイオニア株式会社 Display control device
WO2015132907A1 (en) * 2014-03-05 2015-09-11 パイオニア株式会社 Display control device
JPWO2015132907A1 (en) * 2014-03-05 2017-03-30 パイオニア株式会社 Display control device
FR3023930A1 (en) * 2014-07-17 2016-01-22 Commissariat Energie Atomique SCREEN AND DISPLAY DEVICE IN RETROPROJECTION

Also Published As

Publication number Publication date
JPWO2013140628A1 (en) 2015-08-03
JP5856285B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
US9785028B2 (en) Display apparatus, driving method thereof, and screen apparatus for displaying
JP5856284B2 (en) Display device, driving method thereof, and display screen device
JP5774675B2 (en) Display device
JP2013076956A (en) Image display system and control device
JP2014174424A (en) Display device
JP5856285B2 (en) Display device, driving method thereof, and display screen device
US20090128525A1 (en) Liquid crystal display device and method for driving same with making of drive voltages opposite to one another on the basis of an inversion pattern
WO2014033807A1 (en) Display device and drive method for display device
JP2014178524A (en) Display device
US9448466B2 (en) Display device and drive method for display device
WO2013140627A1 (en) Display device, method for driving same, and display screen device
WO2015045067A1 (en) Display device and control method for display device
JP2015226296A (en) Display divice
JP2019070844A (en) Display device and drive method for display device
JP2023082004A (en) Display device and drive method for display device
JP6297291B2 (en) Display device and driving method of display device
JPWO2013140627A1 (en) Display device, driving method thereof, and display screen device
JP2022023983A (en) Display device and drive method for display device
US20160027395A1 (en) Display apparatus, driving method thereof and screen apparatus for displaying
JP2020173467A (en) Display device and drive method for display device
WO2014080466A1 (en) Display apparatus
JP2017156768A (en) Display device and drive method for display device
JP2018059958A (en) Color display device
JP2016082386A (en) Display device
JP2016170306A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872279

Country of ref document: EP

Kind code of ref document: A1